]> git.proxmox.com Git - qemu.git/blob - exec-all.h
added generic physical memory dirty bit support
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #if GCC_MAJOR < 3
32 #define __builtin_expect(x, n) (x)
33 #endif
34
35 #ifdef __i386__
36 #define REGPARM(n) __attribute((regparm(n)))
37 #else
38 #define REGPARM(n)
39 #endif
40
41 /* is_jmp field values */
42 #define DISAS_NEXT 0 /* next instruction can be analyzed */
43 #define DISAS_JUMP 1 /* only pc was modified dynamically */
44 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
45 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
46
47 struct TranslationBlock;
48
49 /* XXX: make safe guess about sizes */
50 #define MAX_OP_PER_INSTR 32
51 #define OPC_BUF_SIZE 512
52 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
53
54 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
55
56 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
57 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
58 extern uint32_t gen_opc_pc[OPC_BUF_SIZE];
59 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
60 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
61
62 typedef void (GenOpFunc)(void);
63 typedef void (GenOpFunc1)(long);
64 typedef void (GenOpFunc2)(long, long);
65 typedef void (GenOpFunc3)(long, long, long);
66
67 #if defined(TARGET_I386)
68
69 void optimize_flags_init(void);
70
71 #endif
72
73 extern FILE *logfile;
74 extern int loglevel;
75
76 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
77 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
78 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
79 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
80 int max_code_size, int *gen_code_size_ptr);
81 int cpu_restore_state(struct TranslationBlock *tb,
82 CPUState *env, unsigned long searched_pc);
83 void cpu_exec_init(void);
84 int page_unprotect(unsigned long address);
85 void tb_invalidate_page_range(target_ulong start, target_ulong end);
86 void tlb_flush_page(CPUState *env, uint32_t addr);
87 void tlb_flush_page_write(CPUState *env, uint32_t addr);
88 void tlb_flush(CPUState *env, int flush_global);
89 int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
90 int is_user, int is_softmmu);
91
92 #define CODE_GEN_MAX_SIZE 65536
93 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
94
95 #define CODE_GEN_HASH_BITS 15
96 #define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
97
98 #define CODE_GEN_PHYS_HASH_BITS 15
99 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
100
101 /* maximum total translate dcode allocated */
102
103 /* NOTE: the translated code area cannot be too big because on some
104 archs the range of "fast" function calls is limited. Here is a
105 summary of the ranges:
106
107 i386 : signed 32 bits
108 arm : signed 26 bits
109 ppc : signed 24 bits
110 sparc : signed 32 bits
111 alpha : signed 23 bits
112 */
113
114 #if defined(__alpha__)
115 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
116 #elif defined(__powerpc__)
117 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
118 #else
119 #define CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
120 #endif
121
122 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
123
124 /* estimated block size for TB allocation */
125 /* XXX: use a per code average code fragment size and modulate it
126 according to the host CPU */
127 #if defined(CONFIG_SOFTMMU)
128 #define CODE_GEN_AVG_BLOCK_SIZE 128
129 #else
130 #define CODE_GEN_AVG_BLOCK_SIZE 64
131 #endif
132
133 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
134
135 #if defined(__powerpc__)
136 #define USE_DIRECT_JUMP
137 #endif
138 #if defined(__i386__)
139 #define USE_DIRECT_JUMP
140 #endif
141
142 typedef struct TranslationBlock {
143 unsigned long pc; /* simulated PC corresponding to this block (EIP + CS base) */
144 unsigned long cs_base; /* CS base for this block */
145 unsigned int flags; /* flags defining in which context the code was generated */
146 uint16_t size; /* size of target code for this block (1 <=
147 size <= TARGET_PAGE_SIZE) */
148 uint8_t *tc_ptr; /* pointer to the translated code */
149 struct TranslationBlock *hash_next; /* next matching tb for virtual address */
150 /* next matching tb for physical address. */
151 struct TranslationBlock *phys_hash_next;
152 /* first and second physical page containing code. The lower bit
153 of the pointer tells the index in page_next[] */
154 struct TranslationBlock *page_next[2];
155 target_ulong page_addr[2];
156
157 /* the following data are used to directly call another TB from
158 the code of this one. */
159 uint16_t tb_next_offset[2]; /* offset of original jump target */
160 #ifdef USE_DIRECT_JUMP
161 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
162 #else
163 uint32_t tb_next[2]; /* address of jump generated code */
164 #endif
165 /* list of TBs jumping to this one. This is a circular list using
166 the two least significant bits of the pointers to tell what is
167 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
168 jmp_first */
169 struct TranslationBlock *jmp_next[2];
170 struct TranslationBlock *jmp_first;
171 } TranslationBlock;
172
173 static inline unsigned int tb_hash_func(unsigned long pc)
174 {
175 return pc & (CODE_GEN_HASH_SIZE - 1);
176 }
177
178 static inline unsigned int tb_phys_hash_func(unsigned long pc)
179 {
180 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
181 }
182
183 TranslationBlock *tb_alloc(unsigned long pc);
184 void tb_flush(CPUState *env);
185 void tb_link(TranslationBlock *tb);
186 void tb_link_phys(TranslationBlock *tb,
187 target_ulong phys_pc, target_ulong phys_page2);
188
189 extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
190 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
191
192 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
193 extern uint8_t *code_gen_ptr;
194
195 /* find a translation block in the translation cache. If not found,
196 return NULL and the pointer to the last element of the list in pptb */
197 static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
198 unsigned long pc,
199 unsigned long cs_base,
200 unsigned int flags)
201 {
202 TranslationBlock **ptb, *tb;
203 unsigned int h;
204
205 h = tb_hash_func(pc);
206 ptb = &tb_hash[h];
207 for(;;) {
208 tb = *ptb;
209 if (!tb)
210 break;
211 if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
212 return tb;
213 ptb = &tb->hash_next;
214 }
215 *pptb = ptb;
216 return NULL;
217 }
218
219
220 #if defined(USE_DIRECT_JUMP)
221
222 #if defined(__powerpc__)
223 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
224 {
225 uint32_t val, *ptr;
226
227 /* patch the branch destination */
228 ptr = (uint32_t *)jmp_addr;
229 val = *ptr;
230 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
231 *ptr = val;
232 /* flush icache */
233 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
234 asm volatile ("sync" : : : "memory");
235 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
236 asm volatile ("sync" : : : "memory");
237 asm volatile ("isync" : : : "memory");
238 }
239 #elif defined(__i386__)
240 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
241 {
242 /* patch the branch destination */
243 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
244 /* no need to flush icache explicitely */
245 }
246 #endif
247
248 static inline void tb_set_jmp_target(TranslationBlock *tb,
249 int n, unsigned long addr)
250 {
251 unsigned long offset;
252
253 offset = tb->tb_jmp_offset[n];
254 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
255 offset = tb->tb_jmp_offset[n + 2];
256 if (offset != 0xffff)
257 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
258 }
259
260 #else
261
262 /* set the jump target */
263 static inline void tb_set_jmp_target(TranslationBlock *tb,
264 int n, unsigned long addr)
265 {
266 tb->tb_next[n] = addr;
267 }
268
269 #endif
270
271 static inline void tb_add_jump(TranslationBlock *tb, int n,
272 TranslationBlock *tb_next)
273 {
274 /* NOTE: this test is only needed for thread safety */
275 if (!tb->jmp_next[n]) {
276 /* patch the native jump address */
277 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
278
279 /* add in TB jmp circular list */
280 tb->jmp_next[n] = tb_next->jmp_first;
281 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
282 }
283 }
284
285 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
286
287 #ifndef offsetof
288 #define offsetof(type, field) ((size_t) &((type *)0)->field)
289 #endif
290
291 #if defined(__powerpc__)
292
293 /* we patch the jump instruction directly */
294 #define JUMP_TB(opname, tbparam, n, eip)\
295 do {\
296 asm volatile (".section \".data\"\n"\
297 "__op_label" #n "." stringify(opname) ":\n"\
298 ".long 1f\n"\
299 ".previous\n"\
300 "b __op_jmp" #n "\n"\
301 "1:\n");\
302 T0 = (long)(tbparam) + (n);\
303 EIP = eip;\
304 EXIT_TB();\
305 } while (0)
306
307 #define JUMP_TB2(opname, tbparam, n)\
308 do {\
309 asm volatile ("b __op_jmp" #n "\n");\
310 } while (0)
311
312 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
313
314 /* we patch the jump instruction directly */
315 #define JUMP_TB(opname, tbparam, n, eip)\
316 do {\
317 asm volatile (".section \".data\"\n"\
318 "__op_label" #n "." stringify(opname) ":\n"\
319 ".long 1f\n"\
320 ".previous\n"\
321 "jmp __op_jmp" #n "\n"\
322 "1:\n");\
323 T0 = (long)(tbparam) + (n);\
324 EIP = eip;\
325 EXIT_TB();\
326 } while (0)
327
328 #define JUMP_TB2(opname, tbparam, n)\
329 do {\
330 asm volatile ("jmp __op_jmp" #n "\n");\
331 } while (0)
332
333 #else
334
335 /* jump to next block operations (more portable code, does not need
336 cache flushing, but slower because of indirect jump) */
337 #define JUMP_TB(opname, tbparam, n, eip)\
338 do {\
339 static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
340 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
341 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
342 label ## n:\
343 T0 = (long)(tbparam) + (n);\
344 EIP = eip;\
345 dummy_label ## n:\
346 EXIT_TB();\
347 } while (0)
348
349 /* second jump to same destination 'n' */
350 #define JUMP_TB2(opname, tbparam, n)\
351 do {\
352 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n - 2]);\
353 } while (0)
354
355 #endif
356
357 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
358 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
359
360 #ifdef __powerpc__
361 static inline int testandset (int *p)
362 {
363 int ret;
364 __asm__ __volatile__ (
365 "0: lwarx %0,0,%1 ;"
366 " xor. %0,%3,%0;"
367 " bne 1f;"
368 " stwcx. %2,0,%1;"
369 " bne- 0b;"
370 "1: "
371 : "=&r" (ret)
372 : "r" (p), "r" (1), "r" (0)
373 : "cr0", "memory");
374 return ret;
375 }
376 #endif
377
378 #ifdef __i386__
379 static inline int testandset (int *p)
380 {
381 char ret;
382 long int readval;
383
384 __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
385 : "=q" (ret), "=m" (*p), "=a" (readval)
386 : "r" (1), "m" (*p), "a" (0)
387 : "memory");
388 return ret;
389 }
390 #endif
391
392 #ifdef __s390__
393 static inline int testandset (int *p)
394 {
395 int ret;
396
397 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
398 " jl 0b"
399 : "=&d" (ret)
400 : "r" (1), "a" (p), "0" (*p)
401 : "cc", "memory" );
402 return ret;
403 }
404 #endif
405
406 #ifdef __alpha__
407 static inline int testandset (int *p)
408 {
409 int ret;
410 unsigned long one;
411
412 __asm__ __volatile__ ("0: mov 1,%2\n"
413 " ldl_l %0,%1\n"
414 " stl_c %2,%1\n"
415 " beq %2,1f\n"
416 ".subsection 2\n"
417 "1: br 0b\n"
418 ".previous"
419 : "=r" (ret), "=m" (*p), "=r" (one)
420 : "m" (*p));
421 return ret;
422 }
423 #endif
424
425 #ifdef __sparc__
426 static inline int testandset (int *p)
427 {
428 int ret;
429
430 __asm__ __volatile__("ldstub [%1], %0"
431 : "=r" (ret)
432 : "r" (p)
433 : "memory");
434
435 return (ret ? 1 : 0);
436 }
437 #endif
438
439 #ifdef __arm__
440 static inline int testandset (int *spinlock)
441 {
442 register unsigned int ret;
443 __asm__ __volatile__("swp %0, %1, [%2]"
444 : "=r"(ret)
445 : "0"(1), "r"(spinlock));
446
447 return ret;
448 }
449 #endif
450
451 #ifdef __mc68000
452 static inline int testandset (int *p)
453 {
454 char ret;
455 __asm__ __volatile__("tas %1; sne %0"
456 : "=r" (ret)
457 : "m" (p)
458 : "cc","memory");
459 return ret == 0;
460 }
461 #endif
462
463 typedef int spinlock_t;
464
465 #define SPIN_LOCK_UNLOCKED 0
466
467 #if defined(CONFIG_USER_ONLY)
468 static inline void spin_lock(spinlock_t *lock)
469 {
470 while (testandset(lock));
471 }
472
473 static inline void spin_unlock(spinlock_t *lock)
474 {
475 *lock = 0;
476 }
477
478 static inline int spin_trylock(spinlock_t *lock)
479 {
480 return !testandset(lock);
481 }
482 #else
483 static inline void spin_lock(spinlock_t *lock)
484 {
485 }
486
487 static inline void spin_unlock(spinlock_t *lock)
488 {
489 }
490
491 static inline int spin_trylock(spinlock_t *lock)
492 {
493 return 1;
494 }
495 #endif
496
497 extern spinlock_t tb_lock;
498
499 extern int tb_invalidated_flag;
500
501 #if (defined(TARGET_I386) || defined(TARGET_PPC)) && \
502 !defined(CONFIG_USER_ONLY)
503
504 void tlb_fill(unsigned long addr, int is_write, int is_user,
505 void *retaddr);
506
507 #define ACCESS_TYPE 3
508 #define MEMSUFFIX _code
509 #define env cpu_single_env
510
511 #define DATA_SIZE 1
512 #include "softmmu_header.h"
513
514 #define DATA_SIZE 2
515 #include "softmmu_header.h"
516
517 #define DATA_SIZE 4
518 #include "softmmu_header.h"
519
520 #undef ACCESS_TYPE
521 #undef MEMSUFFIX
522 #undef env
523
524 #endif
525
526 #if defined(CONFIG_USER_ONLY)
527 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
528 {
529 return addr;
530 }
531 #else
532 /* NOTE: this function can trigger an exception */
533 /* NOTE2: the returned address is not exactly the physical address: it
534 is the offset relative to phys_ram_base */
535 /* XXX: i386 target specific */
536 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
537 {
538 int is_user, index;
539
540 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
541 #if defined(TARGET_I386)
542 is_user = ((env->hflags & HF_CPL_MASK) == 3);
543 #elif defined (TARGET_PPC)
544 is_user = msr_pr;
545 #else
546 #error "Unimplemented !"
547 #endif
548 if (__builtin_expect(env->tlb_read[is_user][index].address !=
549 (addr & TARGET_PAGE_MASK), 0)) {
550 ldub_code((void *)addr);
551 }
552 return addr + env->tlb_read[is_user][index].addend - (unsigned long)phys_ram_base;
553 }
554 #endif
555