]> git.proxmox.com Git - qemu.git/blob - exec-all.h
PowerPC merge (Jocelyn Mayer)
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #ifndef THUNK_H
32 /* horrible */
33 typedef uint32_t target_ulong;
34 #endif
35
36 #if GCC_MAJOR < 3
37 #define __builtin_expect(x, n) (x)
38 #endif
39
40 #ifdef __i386__
41 #define REGPARM(n) __attribute((regparm(n)))
42 #else
43 #define REGPARM(n)
44 #endif
45
46 /* is_jmp field values */
47 #define DISAS_NEXT 0 /* next instruction can be analyzed */
48 #define DISAS_JUMP 1 /* only pc was modified dynamically */
49 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
50 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
51
52 struct TranslationBlock;
53
54 /* XXX: make safe guess about sizes */
55 #define MAX_OP_PER_INSTR 32
56 #define OPC_BUF_SIZE 512
57 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
58
59 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
60
61 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
62 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
63 extern uint32_t gen_opc_pc[OPC_BUF_SIZE];
64 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
65 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
66
67 typedef void (GenOpFunc)(void);
68 typedef void (GenOpFunc1)(long);
69 typedef void (GenOpFunc2)(long, long);
70 typedef void (GenOpFunc3)(long, long, long);
71
72 #if defined(TARGET_I386)
73
74 void optimize_flags_init(void);
75
76 #endif
77
78 extern FILE *logfile;
79 extern int loglevel;
80
81 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
82 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
83 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
84 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
85 int max_code_size, int *gen_code_size_ptr);
86 int cpu_restore_state(struct TranslationBlock *tb,
87 CPUState *env, unsigned long searched_pc);
88 void cpu_exec_init(void);
89 int page_unprotect(unsigned long address);
90 void tb_invalidate_page_range(target_ulong start, target_ulong end);
91 void tlb_flush_page(CPUState *env, uint32_t addr);
92 void tlb_flush_page_write(CPUState *env, uint32_t addr);
93 void tlb_flush(CPUState *env);
94 int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
95 int is_user, int is_softmmu);
96
97 #define CODE_GEN_MAX_SIZE 65536
98 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
99
100 #define CODE_GEN_HASH_BITS 15
101 #define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
102
103 #define CODE_GEN_PHYS_HASH_BITS 15
104 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
105
106 /* maximum total translate dcode allocated */
107
108 /* NOTE: the translated code area cannot be too big because on some
109 archs the range of "fast" function calls is limited. Here is a
110 summary of the ranges:
111
112 i386 : signed 32 bits
113 arm : signed 26 bits
114 ppc : signed 24 bits
115 sparc : signed 32 bits
116 alpha : signed 23 bits
117 */
118
119 #if defined(__alpha__)
120 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
121 #elif defined(__powerpc__)
122 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
123 #else
124 #define CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
125 #endif
126
127 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
128
129 /* estimated block size for TB allocation */
130 /* XXX: use a per code average code fragment size and modulate it
131 according to the host CPU */
132 #if defined(CONFIG_SOFTMMU)
133 #define CODE_GEN_AVG_BLOCK_SIZE 128
134 #else
135 #define CODE_GEN_AVG_BLOCK_SIZE 64
136 #endif
137
138 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
139
140 #if defined(__powerpc__)
141 #define USE_DIRECT_JUMP
142 #endif
143 #if defined(__i386__)
144 #define USE_DIRECT_JUMP
145 #endif
146
147 typedef struct TranslationBlock {
148 unsigned long pc; /* simulated PC corresponding to this block (EIP + CS base) */
149 unsigned long cs_base; /* CS base for this block */
150 unsigned int flags; /* flags defining in which context the code was generated */
151 uint16_t size; /* size of target code for this block (1 <=
152 size <= TARGET_PAGE_SIZE) */
153 uint8_t *tc_ptr; /* pointer to the translated code */
154 struct TranslationBlock *hash_next; /* next matching tb for virtual address */
155 /* next matching tb for physical address. */
156 struct TranslationBlock *phys_hash_next;
157 /* first and second physical page containing code. The lower bit
158 of the pointer tells the index in page_next[] */
159 struct TranslationBlock *page_next[2];
160 target_ulong page_addr[2];
161
162 /* the following data are used to directly call another TB from
163 the code of this one. */
164 uint16_t tb_next_offset[2]; /* offset of original jump target */
165 #ifdef USE_DIRECT_JUMP
166 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
167 #else
168 uint32_t tb_next[2]; /* address of jump generated code */
169 #endif
170 /* list of TBs jumping to this one. This is a circular list using
171 the two least significant bits of the pointers to tell what is
172 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
173 jmp_first */
174 struct TranslationBlock *jmp_next[2];
175 struct TranslationBlock *jmp_first;
176 } TranslationBlock;
177
178 static inline unsigned int tb_hash_func(unsigned long pc)
179 {
180 return pc & (CODE_GEN_HASH_SIZE - 1);
181 }
182
183 static inline unsigned int tb_phys_hash_func(unsigned long pc)
184 {
185 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
186 }
187
188 TranslationBlock *tb_alloc(unsigned long pc);
189 void tb_flush(CPUState *env);
190 void tb_link(TranslationBlock *tb);
191 void tb_link_phys(TranslationBlock *tb,
192 target_ulong phys_pc, target_ulong phys_page2);
193
194 extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
195 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
196
197 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
198 extern uint8_t *code_gen_ptr;
199
200 /* find a translation block in the translation cache. If not found,
201 return NULL and the pointer to the last element of the list in pptb */
202 static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
203 unsigned long pc,
204 unsigned long cs_base,
205 unsigned int flags)
206 {
207 TranslationBlock **ptb, *tb;
208 unsigned int h;
209
210 h = tb_hash_func(pc);
211 ptb = &tb_hash[h];
212 for(;;) {
213 tb = *ptb;
214 if (!tb)
215 break;
216 if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
217 return tb;
218 ptb = &tb->hash_next;
219 }
220 *pptb = ptb;
221 return NULL;
222 }
223
224
225 #if defined(USE_DIRECT_JUMP)
226
227 #if defined(__powerpc__)
228 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
229 {
230 uint32_t val, *ptr;
231
232 /* patch the branch destination */
233 ptr = (uint32_t *)jmp_addr;
234 val = *ptr;
235 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
236 *ptr = val;
237 /* flush icache */
238 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
239 asm volatile ("sync" : : : "memory");
240 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
241 asm volatile ("sync" : : : "memory");
242 asm volatile ("isync" : : : "memory");
243 }
244 #elif defined(__i386__)
245 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
246 {
247 /* patch the branch destination */
248 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
249 /* no need to flush icache explicitely */
250 }
251 #endif
252
253 static inline void tb_set_jmp_target(TranslationBlock *tb,
254 int n, unsigned long addr)
255 {
256 unsigned long offset;
257
258 offset = tb->tb_jmp_offset[n];
259 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
260 offset = tb->tb_jmp_offset[n + 2];
261 if (offset != 0xffff)
262 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
263 }
264
265 #else
266
267 /* set the jump target */
268 static inline void tb_set_jmp_target(TranslationBlock *tb,
269 int n, unsigned long addr)
270 {
271 tb->tb_next[n] = addr;
272 }
273
274 #endif
275
276 static inline void tb_add_jump(TranslationBlock *tb, int n,
277 TranslationBlock *tb_next)
278 {
279 /* NOTE: this test is only needed for thread safety */
280 if (!tb->jmp_next[n]) {
281 /* patch the native jump address */
282 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
283
284 /* add in TB jmp circular list */
285 tb->jmp_next[n] = tb_next->jmp_first;
286 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
287 }
288 }
289
290 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
291
292 #ifndef offsetof
293 #define offsetof(type, field) ((size_t) &((type *)0)->field)
294 #endif
295
296 #if defined(__powerpc__)
297
298 /* we patch the jump instruction directly */
299 #define JUMP_TB(opname, tbparam, n, eip)\
300 do {\
301 asm volatile (".section \".data\"\n"\
302 "__op_label" #n "." stringify(opname) ":\n"\
303 ".long 1f\n"\
304 ".previous\n"\
305 "b __op_jmp" #n "\n"\
306 "1:\n");\
307 T0 = (long)(tbparam) + (n);\
308 EIP = eip;\
309 EXIT_TB();\
310 } while (0)
311
312 #define JUMP_TB2(opname, tbparam, n)\
313 do {\
314 asm volatile ("b __op_jmp" #n "\n");\
315 } while (0)
316
317 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
318
319 /* we patch the jump instruction directly */
320 #define JUMP_TB(opname, tbparam, n, eip)\
321 do {\
322 asm volatile (".section \".data\"\n"\
323 "__op_label" #n "." stringify(opname) ":\n"\
324 ".long 1f\n"\
325 ".previous\n"\
326 "jmp __op_jmp" #n "\n"\
327 "1:\n");\
328 T0 = (long)(tbparam) + (n);\
329 EIP = eip;\
330 EXIT_TB();\
331 } while (0)
332
333 #define JUMP_TB2(opname, tbparam, n)\
334 do {\
335 asm volatile ("jmp __op_jmp" #n "\n");\
336 } while (0)
337
338 #else
339
340 /* jump to next block operations (more portable code, does not need
341 cache flushing, but slower because of indirect jump) */
342 #define JUMP_TB(opname, tbparam, n, eip)\
343 do {\
344 static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
345 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
346 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
347 label ## n:\
348 T0 = (long)(tbparam) + (n);\
349 EIP = eip;\
350 dummy_label ## n:\
351 EXIT_TB();\
352 } while (0)
353
354 /* second jump to same destination 'n' */
355 #define JUMP_TB2(opname, tbparam, n)\
356 do {\
357 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n - 2]);\
358 } while (0)
359
360 #endif
361
362 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
363 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
364
365 #ifdef __powerpc__
366 static inline int testandset (int *p)
367 {
368 int ret;
369 __asm__ __volatile__ (
370 "0: lwarx %0,0,%1 ;"
371 " xor. %0,%3,%0;"
372 " bne 1f;"
373 " stwcx. %2,0,%1;"
374 " bne- 0b;"
375 "1: "
376 : "=&r" (ret)
377 : "r" (p), "r" (1), "r" (0)
378 : "cr0", "memory");
379 return ret;
380 }
381 #endif
382
383 #ifdef __i386__
384 static inline int testandset (int *p)
385 {
386 char ret;
387 long int readval;
388
389 __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
390 : "=q" (ret), "=m" (*p), "=a" (readval)
391 : "r" (1), "m" (*p), "a" (0)
392 : "memory");
393 return ret;
394 }
395 #endif
396
397 #ifdef __s390__
398 static inline int testandset (int *p)
399 {
400 int ret;
401
402 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
403 " jl 0b"
404 : "=&d" (ret)
405 : "r" (1), "a" (p), "0" (*p)
406 : "cc", "memory" );
407 return ret;
408 }
409 #endif
410
411 #ifdef __alpha__
412 static inline int testandset (int *p)
413 {
414 int ret;
415 unsigned long one;
416
417 __asm__ __volatile__ ("0: mov 1,%2\n"
418 " ldl_l %0,%1\n"
419 " stl_c %2,%1\n"
420 " beq %2,1f\n"
421 ".subsection 2\n"
422 "1: br 0b\n"
423 ".previous"
424 : "=r" (ret), "=m" (*p), "=r" (one)
425 : "m" (*p));
426 return ret;
427 }
428 #endif
429
430 #ifdef __sparc__
431 static inline int testandset (int *p)
432 {
433 int ret;
434
435 __asm__ __volatile__("ldstub [%1], %0"
436 : "=r" (ret)
437 : "r" (p)
438 : "memory");
439
440 return (ret ? 1 : 0);
441 }
442 #endif
443
444 #ifdef __arm__
445 static inline int testandset (int *spinlock)
446 {
447 register unsigned int ret;
448 __asm__ __volatile__("swp %0, %1, [%2]"
449 : "=r"(ret)
450 : "0"(1), "r"(spinlock));
451
452 return ret;
453 }
454 #endif
455
456 #ifdef __mc68000
457 static inline int testandset (int *p)
458 {
459 char ret;
460 __asm__ __volatile__("tas %1; sne %0"
461 : "=r" (ret)
462 : "m" (p)
463 : "cc","memory");
464 return ret == 0;
465 }
466 #endif
467
468 typedef int spinlock_t;
469
470 #define SPIN_LOCK_UNLOCKED 0
471
472 #if defined(CONFIG_USER_ONLY)
473 static inline void spin_lock(spinlock_t *lock)
474 {
475 while (testandset(lock));
476 }
477
478 static inline void spin_unlock(spinlock_t *lock)
479 {
480 *lock = 0;
481 }
482
483 static inline int spin_trylock(spinlock_t *lock)
484 {
485 return !testandset(lock);
486 }
487 #else
488 static inline void spin_lock(spinlock_t *lock)
489 {
490 }
491
492 static inline void spin_unlock(spinlock_t *lock)
493 {
494 }
495
496 static inline int spin_trylock(spinlock_t *lock)
497 {
498 return 1;
499 }
500 #endif
501
502 extern spinlock_t tb_lock;
503
504 extern int tb_invalidated_flag;
505
506 #if (defined(TARGET_I386) || defined(TARGET_PPC)) && \
507 !defined(CONFIG_USER_ONLY)
508
509 void tlb_fill(unsigned long addr, int is_write, int is_user,
510 void *retaddr);
511
512 #define ACCESS_TYPE 3
513 #define MEMSUFFIX _code
514 #define env cpu_single_env
515
516 #define DATA_SIZE 1
517 #include "softmmu_header.h"
518
519 #define DATA_SIZE 2
520 #include "softmmu_header.h"
521
522 #define DATA_SIZE 4
523 #include "softmmu_header.h"
524
525 #undef ACCESS_TYPE
526 #undef MEMSUFFIX
527 #undef env
528
529 #endif
530
531 #if defined(CONFIG_USER_ONLY)
532 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
533 {
534 return addr;
535 }
536 #else
537 /* NOTE: this function can trigger an exception */
538 /* XXX: i386 target specific */
539 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
540 {
541 int is_user, index;
542
543 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
544 #if defined(TARGET_I386)
545 is_user = ((env->hflags & HF_CPL_MASK) == 3);
546 #elif defined (TARGET_PPC)
547 is_user = msr_pr;
548 #else
549 #error "Unimplemented !"
550 #endif
551 if (__builtin_expect(env->tlb_read[is_user][index].address !=
552 (addr & TARGET_PAGE_MASK), 0)) {
553 ldub_code((void *)addr);
554 }
555 return addr + env->tlb_read[is_user][index].addend - (unsigned long)phys_ram_base;
556 }
557 #endif
558