]> git.proxmox.com Git - qemu.git/blob - exec-all.h
experimental code copy support
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #if GCC_MAJOR < 3
32 #define __builtin_expect(x, n) (x)
33 #endif
34
35 #ifdef __i386__
36 #define REGPARM(n) __attribute((regparm(n)))
37 #else
38 #define REGPARM(n)
39 #endif
40
41 /* is_jmp field values */
42 #define DISAS_NEXT 0 /* next instruction can be analyzed */
43 #define DISAS_JUMP 1 /* only pc was modified dynamically */
44 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
45 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
46
47 struct TranslationBlock;
48
49 /* XXX: make safe guess about sizes */
50 #define MAX_OP_PER_INSTR 32
51 #define OPC_BUF_SIZE 512
52 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
53
54 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
55
56 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
57 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
58 extern uint32_t gen_opc_pc[OPC_BUF_SIZE];
59 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
60 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
61
62 typedef void (GenOpFunc)(void);
63 typedef void (GenOpFunc1)(long);
64 typedef void (GenOpFunc2)(long, long);
65 typedef void (GenOpFunc3)(long, long, long);
66
67 #if defined(TARGET_I386)
68
69 void optimize_flags_init(void);
70
71 #endif
72
73 extern FILE *logfile;
74 extern int loglevel;
75
76 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
77 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
78 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
79 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
80 int max_code_size, int *gen_code_size_ptr);
81 int cpu_restore_state(struct TranslationBlock *tb,
82 CPUState *env, unsigned long searched_pc,
83 void *puc);
84 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
85 int max_code_size, int *gen_code_size_ptr);
86 int cpu_restore_state_copy(struct TranslationBlock *tb,
87 CPUState *env, unsigned long searched_pc,
88 void *puc);
89 void cpu_exec_init(void);
90 int page_unprotect(unsigned long address);
91 void tb_invalidate_page_range(target_ulong start, target_ulong end);
92 void tlb_flush_page(CPUState *env, uint32_t addr);
93 void tlb_flush_page_write(CPUState *env, uint32_t addr);
94 void tlb_flush(CPUState *env, int flush_global);
95 int tlb_set_page(CPUState *env, uint32_t vaddr, uint32_t paddr, int prot,
96 int is_user, int is_softmmu);
97
98 #define CODE_GEN_MAX_SIZE 65536
99 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
100
101 #define CODE_GEN_HASH_BITS 15
102 #define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
103
104 #define CODE_GEN_PHYS_HASH_BITS 15
105 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
106
107 /* maximum total translate dcode allocated */
108
109 /* NOTE: the translated code area cannot be too big because on some
110 archs the range of "fast" function calls is limited. Here is a
111 summary of the ranges:
112
113 i386 : signed 32 bits
114 arm : signed 26 bits
115 ppc : signed 24 bits
116 sparc : signed 32 bits
117 alpha : signed 23 bits
118 */
119
120 #if defined(__alpha__)
121 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
122 #elif defined(__powerpc__)
123 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
124 #else
125 #define CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
126 #endif
127
128 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
129
130 /* estimated block size for TB allocation */
131 /* XXX: use a per code average code fragment size and modulate it
132 according to the host CPU */
133 #if defined(CONFIG_SOFTMMU)
134 #define CODE_GEN_AVG_BLOCK_SIZE 128
135 #else
136 #define CODE_GEN_AVG_BLOCK_SIZE 64
137 #endif
138
139 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
140
141 #if defined(__powerpc__)
142 #define USE_DIRECT_JUMP
143 #endif
144 #if defined(__i386__)
145 #define USE_DIRECT_JUMP
146 #endif
147
148 typedef struct TranslationBlock {
149 unsigned long pc; /* simulated PC corresponding to this block (EIP + CS base) */
150 unsigned long cs_base; /* CS base for this block */
151 unsigned int flags; /* flags defining in which context the code was generated */
152 uint16_t size; /* size of target code for this block (1 <=
153 size <= TARGET_PAGE_SIZE) */
154 uint16_t cflags; /* compile flags */
155 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
156
157 uint8_t *tc_ptr; /* pointer to the translated code */
158 struct TranslationBlock *hash_next; /* next matching tb for virtual address */
159 /* next matching tb for physical address. */
160 struct TranslationBlock *phys_hash_next;
161 /* first and second physical page containing code. The lower bit
162 of the pointer tells the index in page_next[] */
163 struct TranslationBlock *page_next[2];
164 target_ulong page_addr[2];
165
166 /* the following data are used to directly call another TB from
167 the code of this one. */
168 uint16_t tb_next_offset[2]; /* offset of original jump target */
169 #ifdef USE_DIRECT_JUMP
170 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
171 #else
172 uint32_t tb_next[2]; /* address of jump generated code */
173 #endif
174 /* list of TBs jumping to this one. This is a circular list using
175 the two least significant bits of the pointers to tell what is
176 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
177 jmp_first */
178 struct TranslationBlock *jmp_next[2];
179 struct TranslationBlock *jmp_first;
180 } TranslationBlock;
181
182 static inline unsigned int tb_hash_func(unsigned long pc)
183 {
184 return pc & (CODE_GEN_HASH_SIZE - 1);
185 }
186
187 static inline unsigned int tb_phys_hash_func(unsigned long pc)
188 {
189 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
190 }
191
192 TranslationBlock *tb_alloc(unsigned long pc);
193 void tb_flush(CPUState *env);
194 void tb_link(TranslationBlock *tb);
195 void tb_link_phys(TranslationBlock *tb,
196 target_ulong phys_pc, target_ulong phys_page2);
197
198 extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
199 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
200
201 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
202 extern uint8_t *code_gen_ptr;
203
204 /* find a translation block in the translation cache. If not found,
205 return NULL and the pointer to the last element of the list in pptb */
206 static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
207 unsigned long pc,
208 unsigned long cs_base,
209 unsigned int flags)
210 {
211 TranslationBlock **ptb, *tb;
212 unsigned int h;
213
214 h = tb_hash_func(pc);
215 ptb = &tb_hash[h];
216 for(;;) {
217 tb = *ptb;
218 if (!tb)
219 break;
220 if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
221 return tb;
222 ptb = &tb->hash_next;
223 }
224 *pptb = ptb;
225 return NULL;
226 }
227
228
229 #if defined(USE_DIRECT_JUMP)
230
231 #if defined(__powerpc__)
232 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
233 {
234 uint32_t val, *ptr;
235
236 /* patch the branch destination */
237 ptr = (uint32_t *)jmp_addr;
238 val = *ptr;
239 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
240 *ptr = val;
241 /* flush icache */
242 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
243 asm volatile ("sync" : : : "memory");
244 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
245 asm volatile ("sync" : : : "memory");
246 asm volatile ("isync" : : : "memory");
247 }
248 #elif defined(__i386__)
249 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
250 {
251 /* patch the branch destination */
252 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
253 /* no need to flush icache explicitely */
254 }
255 #endif
256
257 static inline void tb_set_jmp_target(TranslationBlock *tb,
258 int n, unsigned long addr)
259 {
260 unsigned long offset;
261
262 offset = tb->tb_jmp_offset[n];
263 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
264 offset = tb->tb_jmp_offset[n + 2];
265 if (offset != 0xffff)
266 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
267 }
268
269 #else
270
271 /* set the jump target */
272 static inline void tb_set_jmp_target(TranslationBlock *tb,
273 int n, unsigned long addr)
274 {
275 tb->tb_next[n] = addr;
276 }
277
278 #endif
279
280 static inline void tb_add_jump(TranslationBlock *tb, int n,
281 TranslationBlock *tb_next)
282 {
283 /* NOTE: this test is only needed for thread safety */
284 if (!tb->jmp_next[n]) {
285 /* patch the native jump address */
286 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
287
288 /* add in TB jmp circular list */
289 tb->jmp_next[n] = tb_next->jmp_first;
290 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
291 }
292 }
293
294 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
295
296 #ifndef offsetof
297 #define offsetof(type, field) ((size_t) &((type *)0)->field)
298 #endif
299
300 #if defined(__powerpc__)
301
302 /* we patch the jump instruction directly */
303 #define JUMP_TB(opname, tbparam, n, eip)\
304 do {\
305 asm volatile (".section \".data\"\n"\
306 "__op_label" #n "." stringify(opname) ":\n"\
307 ".long 1f\n"\
308 ".previous\n"\
309 "b __op_jmp" #n "\n"\
310 "1:\n");\
311 T0 = (long)(tbparam) + (n);\
312 EIP = eip;\
313 EXIT_TB();\
314 } while (0)
315
316 #define JUMP_TB2(opname, tbparam, n)\
317 do {\
318 asm volatile ("b __op_jmp" #n "\n");\
319 } while (0)
320
321 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
322
323 /* we patch the jump instruction directly */
324 #define JUMP_TB(opname, tbparam, n, eip)\
325 do {\
326 asm volatile (".section \".data\"\n"\
327 "__op_label" #n "." stringify(opname) ":\n"\
328 ".long 1f\n"\
329 ".previous\n"\
330 "jmp __op_jmp" #n "\n"\
331 "1:\n");\
332 T0 = (long)(tbparam) + (n);\
333 EIP = eip;\
334 EXIT_TB();\
335 } while (0)
336
337 #define JUMP_TB2(opname, tbparam, n)\
338 do {\
339 asm volatile ("jmp __op_jmp" #n "\n");\
340 } while (0)
341
342 #else
343
344 /* jump to next block operations (more portable code, does not need
345 cache flushing, but slower because of indirect jump) */
346 #define JUMP_TB(opname, tbparam, n, eip)\
347 do {\
348 static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
349 static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
350 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
351 label ## n:\
352 T0 = (long)(tbparam) + (n);\
353 EIP = eip;\
354 dummy_label ## n:\
355 EXIT_TB();\
356 } while (0)
357
358 /* second jump to same destination 'n' */
359 #define JUMP_TB2(opname, tbparam, n)\
360 do {\
361 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n - 2]);\
362 } while (0)
363
364 #endif
365
366 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
367 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
368
369 #ifdef __powerpc__
370 static inline int testandset (int *p)
371 {
372 int ret;
373 __asm__ __volatile__ (
374 "0: lwarx %0,0,%1 ;"
375 " xor. %0,%3,%0;"
376 " bne 1f;"
377 " stwcx. %2,0,%1;"
378 " bne- 0b;"
379 "1: "
380 : "=&r" (ret)
381 : "r" (p), "r" (1), "r" (0)
382 : "cr0", "memory");
383 return ret;
384 }
385 #endif
386
387 #ifdef __i386__
388 static inline int testandset (int *p)
389 {
390 char ret;
391 long int readval;
392
393 __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
394 : "=q" (ret), "=m" (*p), "=a" (readval)
395 : "r" (1), "m" (*p), "a" (0)
396 : "memory");
397 return ret;
398 }
399 #endif
400
401 #ifdef __s390__
402 static inline int testandset (int *p)
403 {
404 int ret;
405
406 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
407 " jl 0b"
408 : "=&d" (ret)
409 : "r" (1), "a" (p), "0" (*p)
410 : "cc", "memory" );
411 return ret;
412 }
413 #endif
414
415 #ifdef __alpha__
416 static inline int testandset (int *p)
417 {
418 int ret;
419 unsigned long one;
420
421 __asm__ __volatile__ ("0: mov 1,%2\n"
422 " ldl_l %0,%1\n"
423 " stl_c %2,%1\n"
424 " beq %2,1f\n"
425 ".subsection 2\n"
426 "1: br 0b\n"
427 ".previous"
428 : "=r" (ret), "=m" (*p), "=r" (one)
429 : "m" (*p));
430 return ret;
431 }
432 #endif
433
434 #ifdef __sparc__
435 static inline int testandset (int *p)
436 {
437 int ret;
438
439 __asm__ __volatile__("ldstub [%1], %0"
440 : "=r" (ret)
441 : "r" (p)
442 : "memory");
443
444 return (ret ? 1 : 0);
445 }
446 #endif
447
448 #ifdef __arm__
449 static inline int testandset (int *spinlock)
450 {
451 register unsigned int ret;
452 __asm__ __volatile__("swp %0, %1, [%2]"
453 : "=r"(ret)
454 : "0"(1), "r"(spinlock));
455
456 return ret;
457 }
458 #endif
459
460 #ifdef __mc68000
461 static inline int testandset (int *p)
462 {
463 char ret;
464 __asm__ __volatile__("tas %1; sne %0"
465 : "=r" (ret)
466 : "m" (p)
467 : "cc","memory");
468 return ret == 0;
469 }
470 #endif
471
472 typedef int spinlock_t;
473
474 #define SPIN_LOCK_UNLOCKED 0
475
476 #if defined(CONFIG_USER_ONLY)
477 static inline void spin_lock(spinlock_t *lock)
478 {
479 while (testandset(lock));
480 }
481
482 static inline void spin_unlock(spinlock_t *lock)
483 {
484 *lock = 0;
485 }
486
487 static inline int spin_trylock(spinlock_t *lock)
488 {
489 return !testandset(lock);
490 }
491 #else
492 static inline void spin_lock(spinlock_t *lock)
493 {
494 }
495
496 static inline void spin_unlock(spinlock_t *lock)
497 {
498 }
499
500 static inline int spin_trylock(spinlock_t *lock)
501 {
502 return 1;
503 }
504 #endif
505
506 extern spinlock_t tb_lock;
507
508 extern int tb_invalidated_flag;
509
510 #if (defined(TARGET_I386) || defined(TARGET_PPC)) && \
511 !defined(CONFIG_USER_ONLY)
512
513 void tlb_fill(unsigned long addr, int is_write, int is_user,
514 void *retaddr);
515
516 #define ACCESS_TYPE 3
517 #define MEMSUFFIX _code
518 #define env cpu_single_env
519
520 #define DATA_SIZE 1
521 #include "softmmu_header.h"
522
523 #define DATA_SIZE 2
524 #include "softmmu_header.h"
525
526 #define DATA_SIZE 4
527 #include "softmmu_header.h"
528
529 #undef ACCESS_TYPE
530 #undef MEMSUFFIX
531 #undef env
532
533 #endif
534
535 #if defined(CONFIG_USER_ONLY)
536 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
537 {
538 return addr;
539 }
540 #else
541 /* NOTE: this function can trigger an exception */
542 /* NOTE2: the returned address is not exactly the physical address: it
543 is the offset relative to phys_ram_base */
544 /* XXX: i386 target specific */
545 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
546 {
547 int is_user, index;
548
549 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
550 #if defined(TARGET_I386)
551 is_user = ((env->hflags & HF_CPL_MASK) == 3);
552 #elif defined (TARGET_PPC)
553 is_user = msr_pr;
554 #else
555 #error "Unimplemented !"
556 #endif
557 if (__builtin_expect(env->tlb_read[is_user][index].address !=
558 (addr & TARGET_PAGE_MASK), 0)) {
559 ldub_code((void *)addr);
560 }
561 return addr + env->tlb_read[is_user][index].addend - (unsigned long)phys_ram_base;
562 }
563 #endif