]> git.proxmox.com Git - qemu.git/blob - exec-all.h
Extend TB flags to 64 bits (Alexander Graf).
[qemu.git] / exec-all.h
1 /*
2 * internal execution defines for qemu
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 /* allow to see translation results - the slowdown should be negligible, so we leave it */
22 #define DEBUG_DISAS
23
24 #ifndef glue
25 #define xglue(x, y) x ## y
26 #define glue(x, y) xglue(x, y)
27 #define stringify(s) tostring(s)
28 #define tostring(s) #s
29 #endif
30
31 #ifndef likely
32 #if __GNUC__ < 3
33 #define __builtin_expect(x, n) (x)
34 #endif
35
36 #define likely(x) __builtin_expect(!!(x), 1)
37 #define unlikely(x) __builtin_expect(!!(x), 0)
38 #endif
39
40 #ifdef __i386__
41 #define REGPARM(n) __attribute((regparm(n)))
42 #else
43 #define REGPARM(n)
44 #endif
45
46 /* is_jmp field values */
47 #define DISAS_NEXT 0 /* next instruction can be analyzed */
48 #define DISAS_JUMP 1 /* only pc was modified dynamically */
49 #define DISAS_UPDATE 2 /* cpu state was modified dynamically */
50 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
51
52 struct TranslationBlock;
53
54 /* XXX: make safe guess about sizes */
55 #define MAX_OP_PER_INSTR 32
56 #define OPC_BUF_SIZE 512
57 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
58
59 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3)
60
61 extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
62 extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
63 extern long gen_labels[OPC_BUF_SIZE];
64 extern int nb_gen_labels;
65 extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
66 extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
67 extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
68 extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
69 extern target_ulong gen_opc_jump_pc[2];
70 extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
71
72 typedef void (GenOpFunc)(void);
73 typedef void (GenOpFunc1)(long);
74 typedef void (GenOpFunc2)(long, long);
75 typedef void (GenOpFunc3)(long, long, long);
76
77 #if defined(TARGET_I386)
78
79 void optimize_flags_init(void);
80
81 #endif
82
83 extern FILE *logfile;
84 extern int loglevel;
85
86 void muls64(int64_t *phigh, int64_t *plow, int64_t a, int64_t b);
87 void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b);
88
89 int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
90 int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
91 void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
92 int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
93 int max_code_size, int *gen_code_size_ptr);
94 int cpu_restore_state(struct TranslationBlock *tb,
95 CPUState *env, unsigned long searched_pc,
96 void *puc);
97 int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
98 int max_code_size, int *gen_code_size_ptr);
99 int cpu_restore_state_copy(struct TranslationBlock *tb,
100 CPUState *env, unsigned long searched_pc,
101 void *puc);
102 void cpu_resume_from_signal(CPUState *env1, void *puc);
103 void cpu_exec_init(CPUState *env);
104 int page_unprotect(target_ulong address, unsigned long pc, void *puc);
105 void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
106 int is_cpu_write_access);
107 void tb_invalidate_page_range(target_ulong start, target_ulong end);
108 void tlb_flush_page(CPUState *env, target_ulong addr);
109 void tlb_flush(CPUState *env, int flush_global);
110 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
111 target_phys_addr_t paddr, int prot,
112 int is_user, int is_softmmu);
113 static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
114 target_phys_addr_t paddr, int prot,
115 int is_user, int is_softmmu)
116 {
117 if (prot & PAGE_READ)
118 prot |= PAGE_EXEC;
119 return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
120 }
121
122 #define CODE_GEN_MAX_SIZE 65536
123 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
124
125 #define CODE_GEN_PHYS_HASH_BITS 15
126 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
127
128 /* maximum total translate dcode allocated */
129
130 /* NOTE: the translated code area cannot be too big because on some
131 archs the range of "fast" function calls is limited. Here is a
132 summary of the ranges:
133
134 i386 : signed 32 bits
135 arm : signed 26 bits
136 ppc : signed 24 bits
137 sparc : signed 32 bits
138 alpha : signed 23 bits
139 */
140
141 #if defined(__alpha__)
142 #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
143 #elif defined(__ia64)
144 #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
145 #elif defined(__powerpc__)
146 #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
147 #else
148 #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
149 #endif
150
151 //#define CODE_GEN_BUFFER_SIZE (128 * 1024)
152
153 /* estimated block size for TB allocation */
154 /* XXX: use a per code average code fragment size and modulate it
155 according to the host CPU */
156 #if defined(CONFIG_SOFTMMU)
157 #define CODE_GEN_AVG_BLOCK_SIZE 128
158 #else
159 #define CODE_GEN_AVG_BLOCK_SIZE 64
160 #endif
161
162 #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
163
164 #if defined(__powerpc__)
165 #define USE_DIRECT_JUMP
166 #endif
167 #if defined(__i386__) && !defined(_WIN32)
168 #define USE_DIRECT_JUMP
169 #endif
170
171 typedef struct TranslationBlock {
172 target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
173 target_ulong cs_base; /* CS base for this block */
174 uint64_t flags; /* flags defining in which context the code was generated */
175 uint16_t size; /* size of target code for this block (1 <=
176 size <= TARGET_PAGE_SIZE) */
177 uint16_t cflags; /* compile flags */
178 #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
179 #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
180 #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
181 #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
182
183 uint8_t *tc_ptr; /* pointer to the translated code */
184 /* next matching tb for physical address. */
185 struct TranslationBlock *phys_hash_next;
186 /* first and second physical page containing code. The lower bit
187 of the pointer tells the index in page_next[] */
188 struct TranslationBlock *page_next[2];
189 target_ulong page_addr[2];
190
191 /* the following data are used to directly call another TB from
192 the code of this one. */
193 uint16_t tb_next_offset[2]; /* offset of original jump target */
194 #ifdef USE_DIRECT_JUMP
195 uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
196 #else
197 uint32_t tb_next[2]; /* address of jump generated code */
198 #endif
199 /* list of TBs jumping to this one. This is a circular list using
200 the two least significant bits of the pointers to tell what is
201 the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
202 jmp_first */
203 struct TranslationBlock *jmp_next[2];
204 struct TranslationBlock *jmp_first;
205 } TranslationBlock;
206
207 static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
208 {
209 target_ulong tmp;
210 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
211 return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
212 }
213
214 static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
215 {
216 target_ulong tmp;
217 tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
218 return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
219 (tmp & TB_JMP_ADDR_MASK));
220 }
221
222 static inline unsigned int tb_phys_hash_func(unsigned long pc)
223 {
224 return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
225 }
226
227 TranslationBlock *tb_alloc(target_ulong pc);
228 void tb_flush(CPUState *env);
229 void tb_link_phys(TranslationBlock *tb,
230 target_ulong phys_pc, target_ulong phys_page2);
231
232 extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
233
234 extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
235 extern uint8_t *code_gen_ptr;
236
237 #if defined(USE_DIRECT_JUMP)
238
239 #if defined(__powerpc__)
240 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
241 {
242 uint32_t val, *ptr;
243
244 /* patch the branch destination */
245 ptr = (uint32_t *)jmp_addr;
246 val = *ptr;
247 val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
248 *ptr = val;
249 /* flush icache */
250 asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
251 asm volatile ("sync" : : : "memory");
252 asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
253 asm volatile ("sync" : : : "memory");
254 asm volatile ("isync" : : : "memory");
255 }
256 #elif defined(__i386__)
257 static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
258 {
259 /* patch the branch destination */
260 *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
261 /* no need to flush icache explicitely */
262 }
263 #endif
264
265 static inline void tb_set_jmp_target(TranslationBlock *tb,
266 int n, unsigned long addr)
267 {
268 unsigned long offset;
269
270 offset = tb->tb_jmp_offset[n];
271 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
272 offset = tb->tb_jmp_offset[n + 2];
273 if (offset != 0xffff)
274 tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
275 }
276
277 #else
278
279 /* set the jump target */
280 static inline void tb_set_jmp_target(TranslationBlock *tb,
281 int n, unsigned long addr)
282 {
283 tb->tb_next[n] = addr;
284 }
285
286 #endif
287
288 static inline void tb_add_jump(TranslationBlock *tb, int n,
289 TranslationBlock *tb_next)
290 {
291 /* NOTE: this test is only needed for thread safety */
292 if (!tb->jmp_next[n]) {
293 /* patch the native jump address */
294 tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
295
296 /* add in TB jmp circular list */
297 tb->jmp_next[n] = tb_next->jmp_first;
298 tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
299 }
300 }
301
302 TranslationBlock *tb_find_pc(unsigned long pc_ptr);
303
304 #ifndef offsetof
305 #define offsetof(type, field) ((size_t) &((type *)0)->field)
306 #endif
307
308 #if defined(_WIN32)
309 #define ASM_DATA_SECTION ".section \".data\"\n"
310 #define ASM_PREVIOUS_SECTION ".section .text\n"
311 #elif defined(__APPLE__)
312 #define ASM_DATA_SECTION ".data\n"
313 #define ASM_PREVIOUS_SECTION ".text\n"
314 #else
315 #define ASM_DATA_SECTION ".section \".data\"\n"
316 #define ASM_PREVIOUS_SECTION ".previous\n"
317 #endif
318
319 #define ASM_OP_LABEL_NAME(n, opname) \
320 ASM_NAME(__op_label) #n "." ASM_NAME(opname)
321
322 #if defined(__powerpc__)
323
324 /* we patch the jump instruction directly */
325 #define GOTO_TB(opname, tbparam, n)\
326 do {\
327 asm volatile (ASM_DATA_SECTION\
328 ASM_OP_LABEL_NAME(n, opname) ":\n"\
329 ".long 1f\n"\
330 ASM_PREVIOUS_SECTION \
331 "b " ASM_NAME(__op_jmp) #n "\n"\
332 "1:\n");\
333 } while (0)
334
335 #elif defined(__i386__) && defined(USE_DIRECT_JUMP)
336
337 /* we patch the jump instruction directly */
338 #define GOTO_TB(opname, tbparam, n)\
339 do {\
340 asm volatile (".section .data\n"\
341 ASM_OP_LABEL_NAME(n, opname) ":\n"\
342 ".long 1f\n"\
343 ASM_PREVIOUS_SECTION \
344 "jmp " ASM_NAME(__op_jmp) #n "\n"\
345 "1:\n");\
346 } while (0)
347
348 #elif defined(__s390__)
349 /* GCC spills R13, so we have to restore it before branching away */
350
351 #define GOTO_TB(opname, tbparam, n)\
352 do {\
353 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
354 static void __attribute__((used)) *__op_label ## n \
355 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
356 __asm__ __volatile__ ( \
357 "l %%r13,52(%%r15)\n" \
358 "br %0\n" \
359 : : "r" (((TranslationBlock*)tbparam)->tb_next[n]));\
360 \
361 for(;*((int*)0);); /* just to keep GCC busy */ \
362 label ## n: ;\
363 dummy_label ## n: ;\
364 } while(0)
365
366 #else
367
368 /* jump to next block operations (more portable code, does not need
369 cache flushing, but slower because of indirect jump) */
370 #define GOTO_TB(opname, tbparam, n)\
371 do {\
372 static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
373 static void __attribute__((used)) *__op_label ## n \
374 __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
375 goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
376 label ## n: ;\
377 dummy_label ## n: ;\
378 } while (0)
379
380 #endif
381
382 extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
383 extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
384 extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
385
386 #if defined(__powerpc__)
387 static inline int testandset (int *p)
388 {
389 int ret;
390 __asm__ __volatile__ (
391 "0: lwarx %0,0,%1\n"
392 " xor. %0,%3,%0\n"
393 " bne 1f\n"
394 " stwcx. %2,0,%1\n"
395 " bne- 0b\n"
396 "1: "
397 : "=&r" (ret)
398 : "r" (p), "r" (1), "r" (0)
399 : "cr0", "memory");
400 return ret;
401 }
402 #elif defined(__i386__)
403 static inline int testandset (int *p)
404 {
405 long int readval = 0;
406
407 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
408 : "+m" (*p), "+a" (readval)
409 : "r" (1)
410 : "cc");
411 return readval;
412 }
413 #elif defined(__x86_64__)
414 static inline int testandset (int *p)
415 {
416 long int readval = 0;
417
418 __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
419 : "+m" (*p), "+a" (readval)
420 : "r" (1)
421 : "cc");
422 return readval;
423 }
424 #elif defined(__s390__)
425 static inline int testandset (int *p)
426 {
427 int ret;
428
429 __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
430 " jl 0b"
431 : "=&d" (ret)
432 : "r" (1), "a" (p), "0" (*p)
433 : "cc", "memory" );
434 return ret;
435 }
436 #elif defined(__alpha__)
437 static inline int testandset (int *p)
438 {
439 int ret;
440 unsigned long one;
441
442 __asm__ __volatile__ ("0: mov 1,%2\n"
443 " ldl_l %0,%1\n"
444 " stl_c %2,%1\n"
445 " beq %2,1f\n"
446 ".subsection 2\n"
447 "1: br 0b\n"
448 ".previous"
449 : "=r" (ret), "=m" (*p), "=r" (one)
450 : "m" (*p));
451 return ret;
452 }
453 #elif defined(__sparc__)
454 static inline int testandset (int *p)
455 {
456 int ret;
457
458 __asm__ __volatile__("ldstub [%1], %0"
459 : "=r" (ret)
460 : "r" (p)
461 : "memory");
462
463 return (ret ? 1 : 0);
464 }
465 #elif defined(__arm__)
466 static inline int testandset (int *spinlock)
467 {
468 register unsigned int ret;
469 __asm__ __volatile__("swp %0, %1, [%2]"
470 : "=r"(ret)
471 : "0"(1), "r"(spinlock));
472
473 return ret;
474 }
475 #elif defined(__mc68000)
476 static inline int testandset (int *p)
477 {
478 char ret;
479 __asm__ __volatile__("tas %1; sne %0"
480 : "=r" (ret)
481 : "m" (p)
482 : "cc","memory");
483 return ret;
484 }
485 #elif defined(__ia64)
486
487 #include <ia64intrin.h>
488
489 static inline int testandset (int *p)
490 {
491 return __sync_lock_test_and_set (p, 1);
492 }
493 #elif defined(__mips__)
494 static inline int testandset (int *p)
495 {
496 int ret;
497
498 __asm__ __volatile__ (
499 " .set push \n"
500 " .set noat \n"
501 " .set mips2 \n"
502 "1: li $1, 1 \n"
503 " ll %0, %1 \n"
504 " sc $1, %1 \n"
505 " beqz $1, 1b \n"
506 " .set pop "
507 : "=r" (ret), "+R" (*p)
508 :
509 : "memory");
510
511 return ret;
512 }
513 #else
514 #error unimplemented CPU support
515 #endif
516
517 typedef int spinlock_t;
518
519 #define SPIN_LOCK_UNLOCKED 0
520
521 #if defined(CONFIG_USER_ONLY)
522 static inline void spin_lock(spinlock_t *lock)
523 {
524 while (testandset(lock));
525 }
526
527 static inline void spin_unlock(spinlock_t *lock)
528 {
529 *lock = 0;
530 }
531
532 static inline int spin_trylock(spinlock_t *lock)
533 {
534 return !testandset(lock);
535 }
536 #else
537 static inline void spin_lock(spinlock_t *lock)
538 {
539 }
540
541 static inline void spin_unlock(spinlock_t *lock)
542 {
543 }
544
545 static inline int spin_trylock(spinlock_t *lock)
546 {
547 return 1;
548 }
549 #endif
550
551 extern spinlock_t tb_lock;
552
553 extern int tb_invalidated_flag;
554
555 #if !defined(CONFIG_USER_ONLY)
556
557 void tlb_fill(target_ulong addr, int is_write, int is_user,
558 void *retaddr);
559
560 #define ACCESS_TYPE 3
561 #define MEMSUFFIX _code
562 #define env cpu_single_env
563
564 #define DATA_SIZE 1
565 #include "softmmu_header.h"
566
567 #define DATA_SIZE 2
568 #include "softmmu_header.h"
569
570 #define DATA_SIZE 4
571 #include "softmmu_header.h"
572
573 #define DATA_SIZE 8
574 #include "softmmu_header.h"
575
576 #undef ACCESS_TYPE
577 #undef MEMSUFFIX
578 #undef env
579
580 #endif
581
582 #if defined(CONFIG_USER_ONLY)
583 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
584 {
585 return addr;
586 }
587 #else
588 /* NOTE: this function can trigger an exception */
589 /* NOTE2: the returned address is not exactly the physical address: it
590 is the offset relative to phys_ram_base */
591 static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
592 {
593 int is_user, index, pd;
594
595 index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
596 #if defined(TARGET_I386)
597 is_user = ((env->hflags & HF_CPL_MASK) == 3);
598 #elif defined (TARGET_PPC)
599 is_user = msr_pr;
600 #elif defined (TARGET_MIPS)
601 is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
602 #elif defined (TARGET_SPARC)
603 is_user = (env->psrs == 0);
604 #elif defined (TARGET_ARM)
605 is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR);
606 #elif defined (TARGET_SH4)
607 is_user = ((env->sr & SR_MD) == 0);
608 #elif defined (TARGET_ALPHA)
609 is_user = ((env->ps >> 3) & 3);
610 #elif defined (TARGET_M68K)
611 is_user = ((env->sr & SR_S) == 0);
612 #else
613 #error unimplemented CPU
614 #endif
615 if (__builtin_expect(env->tlb_table[is_user][index].addr_code !=
616 (addr & TARGET_PAGE_MASK), 0)) {
617 ldub_code(addr);
618 }
619 pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK;
620 if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
621 #ifdef TARGET_SPARC
622 do_unassigned_access(addr, 0, 1, 0);
623 #else
624 cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
625 #endif
626 }
627 return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base;
628 }
629 #endif
630
631 #ifdef USE_KQEMU
632 #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
633
634 int kqemu_init(CPUState *env);
635 int kqemu_cpu_exec(CPUState *env);
636 void kqemu_flush_page(CPUState *env, target_ulong addr);
637 void kqemu_flush(CPUState *env, int global);
638 void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
639 void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
640 void kqemu_cpu_interrupt(CPUState *env);
641 void kqemu_record_dump(void);
642
643 static inline int kqemu_is_ok(CPUState *env)
644 {
645 return(env->kqemu_enabled &&
646 (env->cr[0] & CR0_PE_MASK) &&
647 !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
648 (env->eflags & IF_MASK) &&
649 !(env->eflags & VM_MASK) &&
650 (env->kqemu_enabled == 2 ||
651 ((env->hflags & HF_CPL_MASK) == 3 &&
652 (env->eflags & IOPL_MASK) != IOPL_MASK)));
653 }
654
655 #endif