]> git.proxmox.com Git - qemu.git/blob - exec-i386.c
fixed popf TF flag bug (should never hapen in user code except in test-i386!)
[qemu.git] / exec-i386.c
1 /*
2 * i386 emulator main execution loop
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "exec-i386.h"
21 #include "disas.h"
22
23 //#define DEBUG_EXEC
24 //#define DEBUG_SIGNAL
25
26 /* main execution loop */
27
28 /* thread support */
29
30 spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
31
32 void cpu_lock(void)
33 {
34 spin_lock(&global_cpu_lock);
35 }
36
37 void cpu_unlock(void)
38 {
39 spin_unlock(&global_cpu_lock);
40 }
41
42 /* exception support */
43 /* NOTE: not static to force relocation generation by GCC */
44 void raise_exception_err(int exception_index, int error_code)
45 {
46 /* NOTE: the register at this point must be saved by hand because
47 longjmp restore them */
48 #ifdef __sparc__
49 /* We have to stay in the same register window as our caller,
50 * thus this trick.
51 */
52 __asm__ __volatile__("restore\n\t"
53 "mov\t%o0, %i0");
54 #endif
55 #ifdef reg_EAX
56 env->regs[R_EAX] = EAX;
57 #endif
58 #ifdef reg_ECX
59 env->regs[R_ECX] = ECX;
60 #endif
61 #ifdef reg_EDX
62 env->regs[R_EDX] = EDX;
63 #endif
64 #ifdef reg_EBX
65 env->regs[R_EBX] = EBX;
66 #endif
67 #ifdef reg_ESP
68 env->regs[R_ESP] = ESP;
69 #endif
70 #ifdef reg_EBP
71 env->regs[R_EBP] = EBP;
72 #endif
73 #ifdef reg_ESI
74 env->regs[R_ESI] = ESI;
75 #endif
76 #ifdef reg_EDI
77 env->regs[R_EDI] = EDI;
78 #endif
79 env->exception_index = exception_index;
80 env->error_code = error_code;
81 longjmp(env->jmp_env, 1);
82 }
83
84 /* short cut if error_code is 0 or not present */
85 void raise_exception(int exception_index)
86 {
87 raise_exception_err(exception_index, 0);
88 }
89
90 int cpu_x86_exec(CPUX86State *env1)
91 {
92 int saved_T0, saved_T1, saved_A0;
93 CPUX86State *saved_env;
94 #ifdef reg_EAX
95 int saved_EAX;
96 #endif
97 #ifdef reg_ECX
98 int saved_ECX;
99 #endif
100 #ifdef reg_EDX
101 int saved_EDX;
102 #endif
103 #ifdef reg_EBX
104 int saved_EBX;
105 #endif
106 #ifdef reg_ESP
107 int saved_ESP;
108 #endif
109 #ifdef reg_EBP
110 int saved_EBP;
111 #endif
112 #ifdef reg_ESI
113 int saved_ESI;
114 #endif
115 #ifdef reg_EDI
116 int saved_EDI;
117 #endif
118 int code_gen_size, ret, code_size;
119 void (*gen_func)(void);
120 TranslationBlock *tb, **ptb;
121 uint8_t *tc_ptr, *cs_base, *pc;
122 unsigned int flags;
123
124 /* first we save global registers */
125 saved_T0 = T0;
126 saved_T1 = T1;
127 saved_A0 = A0;
128 saved_env = env;
129 env = env1;
130 #ifdef reg_EAX
131 saved_EAX = EAX;
132 EAX = env->regs[R_EAX];
133 #endif
134 #ifdef reg_ECX
135 saved_ECX = ECX;
136 ECX = env->regs[R_ECX];
137 #endif
138 #ifdef reg_EDX
139 saved_EDX = EDX;
140 EDX = env->regs[R_EDX];
141 #endif
142 #ifdef reg_EBX
143 saved_EBX = EBX;
144 EBX = env->regs[R_EBX];
145 #endif
146 #ifdef reg_ESP
147 saved_ESP = ESP;
148 ESP = env->regs[R_ESP];
149 #endif
150 #ifdef reg_EBP
151 saved_EBP = EBP;
152 EBP = env->regs[R_EBP];
153 #endif
154 #ifdef reg_ESI
155 saved_ESI = ESI;
156 ESI = env->regs[R_ESI];
157 #endif
158 #ifdef reg_EDI
159 saved_EDI = EDI;
160 EDI = env->regs[R_EDI];
161 #endif
162
163 /* put eflags in CPU temporary format */
164 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
165 DF = 1 - (2 * ((env->eflags >> 10) & 1));
166 CC_OP = CC_OP_EFLAGS;
167 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
168 env->interrupt_request = 0;
169
170 /* prepare setjmp context for exception handling */
171 if (setjmp(env->jmp_env) == 0) {
172 for(;;) {
173 if (env->interrupt_request) {
174 raise_exception(EXCP_INTERRUPT);
175 }
176 #ifdef DEBUG_EXEC
177 if (loglevel) {
178 /* XXX: save all volatile state in cpu state */
179 /* restore flags in standard format */
180 env->regs[R_EAX] = EAX;
181 env->regs[R_EBX] = EBX;
182 env->regs[R_ECX] = ECX;
183 env->regs[R_EDX] = EDX;
184 env->regs[R_ESI] = ESI;
185 env->regs[R_EDI] = EDI;
186 env->regs[R_EBP] = EBP;
187 env->regs[R_ESP] = ESP;
188 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
189 cpu_x86_dump_state(env, logfile, 0);
190 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
191 }
192 #endif
193 /* we compute the CPU state. We assume it will not
194 change during the whole generated block. */
195 flags = env->seg_cache[R_CS].seg_32bit << GEN_FLAG_CODE32_SHIFT;
196 flags |= env->seg_cache[R_SS].seg_32bit << GEN_FLAG_SS32_SHIFT;
197 flags |= (((unsigned long)env->seg_cache[R_DS].base |
198 (unsigned long)env->seg_cache[R_ES].base |
199 (unsigned long)env->seg_cache[R_SS].base) != 0) <<
200 GEN_FLAG_ADDSEG_SHIFT;
201 if (!(env->eflags & VM_MASK)) {
202 flags |= (env->segs[R_CS] & 3) << GEN_FLAG_CPL_SHIFT;
203 } else {
204 /* NOTE: a dummy CPL is kept */
205 flags |= (1 << GEN_FLAG_VM_SHIFT);
206 flags |= (3 << GEN_FLAG_CPL_SHIFT);
207 }
208 flags |= (env->eflags & IOPL_MASK) >> (12 - GEN_FLAG_IOPL_SHIFT);
209 flags |= (env->eflags & TF_MASK) << (GEN_FLAG_TF_SHIFT - 8);
210 cs_base = env->seg_cache[R_CS].base;
211 pc = cs_base + env->eip;
212 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
213 flags);
214 if (!tb) {
215 /* if no translated code available, then translate it now */
216 /* very inefficient but safe: we lock all the cpus
217 when generating code */
218 spin_lock(&tb_lock);
219 tc_ptr = code_gen_ptr;
220 ret = cpu_x86_gen_code(code_gen_ptr, CODE_GEN_MAX_SIZE,
221 &code_gen_size, pc, cs_base, flags,
222 &code_size);
223 /* if invalid instruction, signal it */
224 if (ret != 0) {
225 spin_unlock(&tb_lock);
226 raise_exception(EXCP06_ILLOP);
227 }
228 tb = tb_alloc((unsigned long)pc, code_size);
229 *ptb = tb;
230 tb->cs_base = (unsigned long)cs_base;
231 tb->flags = flags;
232 tb->tc_ptr = tc_ptr;
233 tb->hash_next = NULL;
234 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
235 spin_unlock(&tb_lock);
236 }
237 #ifdef DEBUG_EXEC
238 if (loglevel) {
239 fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
240 (long)tb->tc_ptr, (long)tb->pc,
241 lookup_symbol((void *)tb->pc));
242 }
243 #endif
244 /* execute the generated code */
245 tc_ptr = tb->tc_ptr;
246 gen_func = (void *)tc_ptr;
247 #ifdef __sparc__
248 __asm__ __volatile__("call %0\n\t"
249 " mov %%o7,%%i0"
250 : /* no outputs */
251 : "r" (gen_func)
252 : "i0", "i1", "i2", "i3", "i4", "i5");
253 #else
254 gen_func();
255 #endif
256 }
257 }
258 ret = env->exception_index;
259
260 /* restore flags in standard format */
261 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
262
263 /* restore global registers */
264 #ifdef reg_EAX
265 EAX = saved_EAX;
266 #endif
267 #ifdef reg_ECX
268 ECX = saved_ECX;
269 #endif
270 #ifdef reg_EDX
271 EDX = saved_EDX;
272 #endif
273 #ifdef reg_EBX
274 EBX = saved_EBX;
275 #endif
276 #ifdef reg_ESP
277 ESP = saved_ESP;
278 #endif
279 #ifdef reg_EBP
280 EBP = saved_EBP;
281 #endif
282 #ifdef reg_ESI
283 ESI = saved_ESI;
284 #endif
285 #ifdef reg_EDI
286 EDI = saved_EDI;
287 #endif
288 T0 = saved_T0;
289 T1 = saved_T1;
290 A0 = saved_A0;
291 env = saved_env;
292 return ret;
293 }
294
295 void cpu_x86_interrupt(CPUX86State *s)
296 {
297 s->interrupt_request = 1;
298 }
299
300
301 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
302 {
303 CPUX86State *saved_env;
304
305 saved_env = env;
306 env = s;
307 load_seg(seg_reg, selector);
308 env = saved_env;
309 }
310
311 #undef EAX
312 #undef ECX
313 #undef EDX
314 #undef EBX
315 #undef ESP
316 #undef EBP
317 #undef ESI
318 #undef EDI
319 #undef EIP
320 #include <signal.h>
321 #include <sys/ucontext.h>
322
323 /* 'pc' is the host PC at which the exception was raised. 'address' is
324 the effective address of the memory exception. 'is_write' is 1 if a
325 write caused the exception and otherwise 0'. 'old_set' is the
326 signal set which should be restored */
327 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
328 int is_write, sigset_t *old_set)
329 {
330 #if defined(DEBUG_SIGNAL)
331 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx wr=%d oldset=0x%08lx\n",
332 pc, address, is_write, *(unsigned long *)old_set);
333 #endif
334 /* XXX: locking issue */
335 if (is_write && page_unprotect(address)) {
336 return 1;
337 }
338 if (pc >= (unsigned long)code_gen_buffer &&
339 pc < (unsigned long)code_gen_buffer + CODE_GEN_BUFFER_SIZE) {
340 /* the PC is inside the translated code. It means that we have
341 a virtual CPU fault */
342 /* we restore the process signal mask as the sigreturn should
343 do it */
344 sigprocmask(SIG_SETMASK, old_set, NULL);
345 /* XXX: need to compute virtual pc position by retranslating
346 code. The rest of the CPU state should be correct. */
347 env->cr2 = address;
348 raise_exception_err(EXCP0E_PAGE, 4 | (is_write << 1));
349 /* never comes here */
350 return 1;
351 } else {
352 return 0;
353 }
354 }
355
356 #if defined(__i386__)
357
358 int cpu_x86_signal_handler(int host_signum, struct siginfo *info,
359 void *puc)
360 {
361 struct ucontext *uc = puc;
362 unsigned long pc;
363
364 #ifndef REG_EIP
365 /* for glibc 2.1 */
366 #define REG_EIP EIP
367 #define REG_ERR ERR
368 #define REG_TRAPNO TRAPNO
369 #endif
370 pc = uc->uc_mcontext.gregs[REG_EIP];
371 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
372 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
373 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
374 &uc->uc_sigmask);
375 }
376
377 #elif defined(__powerpc)
378
379 int cpu_x86_signal_handler(int host_signum, struct siginfo *info,
380 void *puc)
381 {
382 struct ucontext *uc = puc;
383 struct pt_regs *regs = uc->uc_mcontext.regs;
384 unsigned long pc;
385 int is_write;
386
387 pc = regs->nip;
388 is_write = 0;
389 #if 0
390 /* ppc 4xx case */
391 if (regs->dsisr & 0x00800000)
392 is_write = 1;
393 #else
394 if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
395 is_write = 1;
396 #endif
397 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
398 is_write, &uc->uc_sigmask);
399 }
400
401 #else
402
403 #error CPU specific signal handler needed
404
405 #endif