]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: Reduce ifdeffery around -mem-path
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUState *cpu;
355
356 CPU_FOREACH(cpu) {
357 if (cpu->cpu_index == index) {
358 return cpu;
359 }
360 }
361
362 return NULL;
363 }
364
365 void cpu_exec_init(CPUArchState *env)
366 {
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
369 CPUState *some_cpu;
370 int cpu_index;
371
372 #if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374 #endif
375 cpu_index = 0;
376 CPU_FOREACH(some_cpu) {
377 cpu_index++;
378 }
379 cpu->cpu_index = cpu_index;
380 cpu->numa_node = 0;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385 #endif
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389 #endif
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
398 #endif
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
402 }
403
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
407 {
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409 }
410 #else
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
412 {
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
415 }
416 #endif
417 #endif /* TARGET_HAS_ICE */
418
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
421
422 {
423 }
424
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
427 {
428 return -ENOSYS;
429 }
430 #else
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
434 {
435 target_ulong len_mask = ~(len - 1);
436 CPUWatchpoint *wp;
437
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
445 wp = g_malloc(sizeof(*wp));
446
447 wp->vaddr = addr;
448 wp->len_mask = len_mask;
449 wp->flags = flags;
450
451 /* keep all GDB-injected watchpoints in front */
452 if (flags & BP_GDB)
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
454 else
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
456
457 tlb_flush_page(env, addr);
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
462 }
463
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
466 int flags)
467 {
468 target_ulong len_mask = ~(len - 1);
469 CPUWatchpoint *wp;
470
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
475 return 0;
476 }
477 }
478 return -ENOENT;
479 }
480
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
483 {
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
485
486 tlb_flush_page(env, watchpoint->vaddr);
487
488 g_free(watchpoint);
489 }
490
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
493 {
494 CPUWatchpoint *wp, *next;
495
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
499 }
500 }
501 #endif
502
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
506 {
507 #if defined(TARGET_HAS_ICE)
508 CPUBreakpoint *bp;
509
510 bp = g_malloc(sizeof(*bp));
511
512 bp->pc = pc;
513 bp->flags = flags;
514
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
518 } else {
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
520 }
521
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
523
524 if (breakpoint) {
525 *breakpoint = bp;
526 }
527 return 0;
528 #else
529 return -ENOSYS;
530 #endif
531 }
532
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
535 {
536 #if defined(TARGET_HAS_ICE)
537 CPUBreakpoint *bp;
538
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
544 }
545 return -ENOENT;
546 #else
547 return -ENOSYS;
548 #endif
549 }
550
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
553 {
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
556
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
558
559 g_free(breakpoint);
560 #endif
561 }
562
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
565 {
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
568
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
572 }
573 #endif
574 }
575
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
579 {
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
584 kvm_update_guest_debug(cpu, 0);
585 } else {
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634 #endif
635
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
721 } else {
722 iotlb |= PHYS_SECTION_ROM;
723 }
724 } else {
725 iotlb = section - address_space_memory.dispatch->sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
759
760 if (next_map.sections_nb == next_map.sections_nb_alloc) {
761 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
762 16);
763 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
764 next_map.sections_nb_alloc);
765 }
766 next_map.sections[next_map.sections_nb] = *section;
767 memory_region_ref(section->mr);
768 return next_map.sections_nb++;
769 }
770
771 static void phys_section_destroy(MemoryRegion *mr)
772 {
773 memory_region_unref(mr);
774
775 if (mr->subpage) {
776 subpage_t *subpage = container_of(mr, subpage_t, iomem);
777 memory_region_destroy(&subpage->iomem);
778 g_free(subpage);
779 }
780 }
781
782 static void phys_sections_free(PhysPageMap *map)
783 {
784 while (map->sections_nb > 0) {
785 MemoryRegionSection *section = &map->sections[--map->sections_nb];
786 phys_section_destroy(section->mr);
787 }
788 g_free(map->sections);
789 g_free(map->nodes);
790 g_free(map);
791 }
792
793 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
794 {
795 subpage_t *subpage;
796 hwaddr base = section->offset_within_address_space
797 & TARGET_PAGE_MASK;
798 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
799 next_map.nodes, next_map.sections);
800 MemoryRegionSection subsection = {
801 .offset_within_address_space = base,
802 .size = int128_make64(TARGET_PAGE_SIZE),
803 };
804 hwaddr start, end;
805
806 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
807
808 if (!(existing->mr->subpage)) {
809 subpage = subpage_init(d->as, base);
810 subsection.mr = &subpage->iomem;
811 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
812 phys_section_add(&subsection));
813 } else {
814 subpage = container_of(existing->mr, subpage_t, iomem);
815 }
816 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
817 end = start + int128_get64(section->size) - 1;
818 subpage_register(subpage, start, end, phys_section_add(section));
819 }
820
821
822 static void register_multipage(AddressSpaceDispatch *d,
823 MemoryRegionSection *section)
824 {
825 hwaddr start_addr = section->offset_within_address_space;
826 uint16_t section_index = phys_section_add(section);
827 uint64_t num_pages = int128_get64(int128_rshift(section->size,
828 TARGET_PAGE_BITS));
829
830 assert(num_pages);
831 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
832 }
833
834 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
835 {
836 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
837 AddressSpaceDispatch *d = as->next_dispatch;
838 MemoryRegionSection now = *section, remain = *section;
839 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
840
841 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
842 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
843 - now.offset_within_address_space;
844
845 now.size = int128_min(int128_make64(left), now.size);
846 register_subpage(d, &now);
847 } else {
848 now.size = int128_zero();
849 }
850 while (int128_ne(remain.size, now.size)) {
851 remain.size = int128_sub(remain.size, now.size);
852 remain.offset_within_address_space += int128_get64(now.size);
853 remain.offset_within_region += int128_get64(now.size);
854 now = remain;
855 if (int128_lt(remain.size, page_size)) {
856 register_subpage(d, &now);
857 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
858 now.size = page_size;
859 register_subpage(d, &now);
860 } else {
861 now.size = int128_and(now.size, int128_neg(page_size));
862 register_multipage(d, &now);
863 }
864 }
865 }
866
867 void qemu_flush_coalesced_mmio_buffer(void)
868 {
869 if (kvm_enabled())
870 kvm_flush_coalesced_mmio_buffer();
871 }
872
873 void qemu_mutex_lock_ramlist(void)
874 {
875 qemu_mutex_lock(&ram_list.mutex);
876 }
877
878 void qemu_mutex_unlock_ramlist(void)
879 {
880 qemu_mutex_unlock(&ram_list.mutex);
881 }
882
883 #if defined(__linux__) && !defined(TARGET_S390X)
884
885 #include <sys/vfs.h>
886
887 #define HUGETLBFS_MAGIC 0x958458f6
888
889 static long gethugepagesize(const char *path)
890 {
891 struct statfs fs;
892 int ret;
893
894 do {
895 ret = statfs(path, &fs);
896 } while (ret != 0 && errno == EINTR);
897
898 if (ret != 0) {
899 perror(path);
900 return 0;
901 }
902
903 if (fs.f_type != HUGETLBFS_MAGIC)
904 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
905
906 return fs.f_bsize;
907 }
908
909 static void *file_ram_alloc(RAMBlock *block,
910 ram_addr_t memory,
911 const char *path)
912 {
913 char *filename;
914 char *sanitized_name;
915 char *c;
916 void *area;
917 int fd;
918 #ifdef MAP_POPULATE
919 int flags;
920 #endif
921 unsigned long hpagesize;
922
923 hpagesize = gethugepagesize(path);
924 if (!hpagesize) {
925 return NULL;
926 }
927
928 if (memory < hpagesize) {
929 return NULL;
930 }
931
932 if (kvm_enabled() && !kvm_has_sync_mmu()) {
933 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
934 return NULL;
935 }
936
937 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
938 sanitized_name = g_strdup(block->mr->name);
939 for (c = sanitized_name; *c != '\0'; c++) {
940 if (*c == '/')
941 *c = '_';
942 }
943
944 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
945 sanitized_name);
946 g_free(sanitized_name);
947
948 fd = mkstemp(filename);
949 if (fd < 0) {
950 perror("unable to create backing store for hugepages");
951 g_free(filename);
952 return NULL;
953 }
954 unlink(filename);
955 g_free(filename);
956
957 memory = (memory+hpagesize-1) & ~(hpagesize-1);
958
959 /*
960 * ftruncate is not supported by hugetlbfs in older
961 * hosts, so don't bother bailing out on errors.
962 * If anything goes wrong with it under other filesystems,
963 * mmap will fail.
964 */
965 if (ftruncate(fd, memory))
966 perror("ftruncate");
967
968 #ifdef MAP_POPULATE
969 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
970 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
971 * to sidestep this quirk.
972 */
973 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
974 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
975 #else
976 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
977 #endif
978 if (area == MAP_FAILED) {
979 perror("file_ram_alloc: can't mmap RAM pages");
980 close(fd);
981 return (NULL);
982 }
983 block->fd = fd;
984 return area;
985 }
986 #endif
987
988 static ram_addr_t find_ram_offset(ram_addr_t size)
989 {
990 RAMBlock *block, *next_block;
991 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
992
993 assert(size != 0); /* it would hand out same offset multiple times */
994
995 if (QTAILQ_EMPTY(&ram_list.blocks))
996 return 0;
997
998 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
999 ram_addr_t end, next = RAM_ADDR_MAX;
1000
1001 end = block->offset + block->length;
1002
1003 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1004 if (next_block->offset >= end) {
1005 next = MIN(next, next_block->offset);
1006 }
1007 }
1008 if (next - end >= size && next - end < mingap) {
1009 offset = end;
1010 mingap = next - end;
1011 }
1012 }
1013
1014 if (offset == RAM_ADDR_MAX) {
1015 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1016 (uint64_t)size);
1017 abort();
1018 }
1019
1020 return offset;
1021 }
1022
1023 ram_addr_t last_ram_offset(void)
1024 {
1025 RAMBlock *block;
1026 ram_addr_t last = 0;
1027
1028 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1029 last = MAX(last, block->offset + block->length);
1030
1031 return last;
1032 }
1033
1034 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1035 {
1036 int ret;
1037
1038 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1039 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1040 "dump-guest-core", true)) {
1041 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1042 if (ret) {
1043 perror("qemu_madvise");
1044 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1045 "but dump_guest_core=off specified\n");
1046 }
1047 }
1048 }
1049
1050 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1051 {
1052 RAMBlock *new_block, *block;
1053
1054 new_block = NULL;
1055 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1056 if (block->offset == addr) {
1057 new_block = block;
1058 break;
1059 }
1060 }
1061 assert(new_block);
1062 assert(!new_block->idstr[0]);
1063
1064 if (dev) {
1065 char *id = qdev_get_dev_path(dev);
1066 if (id) {
1067 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1068 g_free(id);
1069 }
1070 }
1071 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1072
1073 /* This assumes the iothread lock is taken here too. */
1074 qemu_mutex_lock_ramlist();
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1077 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1078 new_block->idstr);
1079 abort();
1080 }
1081 }
1082 qemu_mutex_unlock_ramlist();
1083 }
1084
1085 static int memory_try_enable_merging(void *addr, size_t len)
1086 {
1087 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093 }
1094
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097 {
1098 RAMBlock *block, *new_block;
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1102 new_block->fd = -1;
1103
1104 /* This assumes the iothread lock is taken here too. */
1105 qemu_mutex_lock_ramlist();
1106 new_block->mr = mr;
1107 new_block->offset = find_ram_offset(size);
1108 if (host) {
1109 new_block->host = host;
1110 new_block->flags |= RAM_PREALLOC_MASK;
1111 } else if (xen_enabled()) {
1112 if (mem_path) {
1113 fprintf(stderr, "-mem-path not supported with Xen\n");
1114 exit(1);
1115 }
1116 xen_ram_alloc(new_block->offset, size, mr);
1117 } else {
1118 if (mem_path) {
1119 #if defined (__linux__) && !defined(TARGET_S390X)
1120 new_block->host = file_ram_alloc(new_block, size, mem_path);
1121 #else
1122 fprintf(stderr, "-mem-path option unsupported\n");
1123 exit(1);
1124 #endif
1125 }
1126 if (!new_block->host) {
1127 if (kvm_enabled()) {
1128 /* some s390/kvm configurations have special constraints */
1129 new_block->host = kvm_ram_alloc(size);
1130 } else {
1131 new_block->host = qemu_anon_ram_alloc(size);
1132 }
1133 memory_try_enable_merging(new_block->host, size);
1134 }
1135 }
1136 new_block->length = size;
1137
1138 /* Keep the list sorted from biggest to smallest block. */
1139 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1140 if (block->length < new_block->length) {
1141 break;
1142 }
1143 }
1144 if (block) {
1145 QTAILQ_INSERT_BEFORE(block, new_block, next);
1146 } else {
1147 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1148 }
1149 ram_list.mru_block = NULL;
1150
1151 ram_list.version++;
1152 qemu_mutex_unlock_ramlist();
1153
1154 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1155 last_ram_offset() >> TARGET_PAGE_BITS);
1156 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1157 0, size >> TARGET_PAGE_BITS);
1158 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1159
1160 qemu_ram_setup_dump(new_block->host, size);
1161 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1162
1163 if (kvm_enabled())
1164 kvm_setup_guest_memory(new_block->host, size);
1165
1166 return new_block->offset;
1167 }
1168
1169 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1170 {
1171 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1172 }
1173
1174 void qemu_ram_free_from_ptr(ram_addr_t addr)
1175 {
1176 RAMBlock *block;
1177
1178 /* This assumes the iothread lock is taken here too. */
1179 qemu_mutex_lock_ramlist();
1180 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1181 if (addr == block->offset) {
1182 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1183 ram_list.mru_block = NULL;
1184 ram_list.version++;
1185 g_free(block);
1186 break;
1187 }
1188 }
1189 qemu_mutex_unlock_ramlist();
1190 }
1191
1192 void qemu_ram_free(ram_addr_t addr)
1193 {
1194 RAMBlock *block;
1195
1196 /* This assumes the iothread lock is taken here too. */
1197 qemu_mutex_lock_ramlist();
1198 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1199 if (addr == block->offset) {
1200 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1201 ram_list.mru_block = NULL;
1202 ram_list.version++;
1203 if (block->flags & RAM_PREALLOC_MASK) {
1204 ;
1205 } else if (xen_enabled()) {
1206 xen_invalidate_map_cache_entry(block->host);
1207 } else if (block->fd >= 0) {
1208 munmap(block->host, block->length);
1209 close(block->fd);
1210 } else {
1211 qemu_anon_ram_free(block->host, block->length);
1212 }
1213 g_free(block);
1214 break;
1215 }
1216 }
1217 qemu_mutex_unlock_ramlist();
1218
1219 }
1220
1221 #ifndef _WIN32
1222 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1223 {
1224 RAMBlock *block;
1225 ram_addr_t offset;
1226 int flags;
1227 void *area, *vaddr;
1228
1229 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1230 offset = addr - block->offset;
1231 if (offset < block->length) {
1232 vaddr = block->host + offset;
1233 if (block->flags & RAM_PREALLOC_MASK) {
1234 ;
1235 } else if (xen_enabled()) {
1236 abort();
1237 } else {
1238 flags = MAP_FIXED;
1239 munmap(vaddr, length);
1240 if (block->fd >= 0) {
1241 #ifdef MAP_POPULATE
1242 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1243 MAP_PRIVATE;
1244 #else
1245 flags |= MAP_PRIVATE;
1246 #endif
1247 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1248 flags, block->fd, offset);
1249 } else {
1250 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1251 flags |= MAP_SHARED | MAP_ANONYMOUS;
1252 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1253 flags, -1, 0);
1254 #else
1255 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1256 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1257 flags, -1, 0);
1258 #endif
1259 }
1260 if (area != vaddr) {
1261 fprintf(stderr, "Could not remap addr: "
1262 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1263 length, addr);
1264 exit(1);
1265 }
1266 memory_try_enable_merging(vaddr, length);
1267 qemu_ram_setup_dump(vaddr, length);
1268 }
1269 return;
1270 }
1271 }
1272 }
1273 #endif /* !_WIN32 */
1274
1275 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1276 {
1277 RAMBlock *block;
1278
1279 /* The list is protected by the iothread lock here. */
1280 block = ram_list.mru_block;
1281 if (block && addr - block->offset < block->length) {
1282 goto found;
1283 }
1284 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1285 if (addr - block->offset < block->length) {
1286 goto found;
1287 }
1288 }
1289
1290 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1291 abort();
1292
1293 found:
1294 ram_list.mru_block = block;
1295 return block;
1296 }
1297
1298 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1299 With the exception of the softmmu code in this file, this should
1300 only be used for local memory (e.g. video ram) that the device owns,
1301 and knows it isn't going to access beyond the end of the block.
1302
1303 It should not be used for general purpose DMA.
1304 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1305 */
1306 void *qemu_get_ram_ptr(ram_addr_t addr)
1307 {
1308 RAMBlock *block = qemu_get_ram_block(addr);
1309
1310 if (xen_enabled()) {
1311 /* We need to check if the requested address is in the RAM
1312 * because we don't want to map the entire memory in QEMU.
1313 * In that case just map until the end of the page.
1314 */
1315 if (block->offset == 0) {
1316 return xen_map_cache(addr, 0, 0);
1317 } else if (block->host == NULL) {
1318 block->host =
1319 xen_map_cache(block->offset, block->length, 1);
1320 }
1321 }
1322 return block->host + (addr - block->offset);
1323 }
1324
1325 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1326 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1327 *
1328 * ??? Is this still necessary?
1329 */
1330 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1331 {
1332 RAMBlock *block;
1333
1334 /* The list is protected by the iothread lock here. */
1335 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1336 if (addr - block->offset < block->length) {
1337 if (xen_enabled()) {
1338 /* We need to check if the requested address is in the RAM
1339 * because we don't want to map the entire memory in QEMU.
1340 * In that case just map until the end of the page.
1341 */
1342 if (block->offset == 0) {
1343 return xen_map_cache(addr, 0, 0);
1344 } else if (block->host == NULL) {
1345 block->host =
1346 xen_map_cache(block->offset, block->length, 1);
1347 }
1348 }
1349 return block->host + (addr - block->offset);
1350 }
1351 }
1352
1353 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1354 abort();
1355
1356 return NULL;
1357 }
1358
1359 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1360 * but takes a size argument */
1361 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1362 {
1363 if (*size == 0) {
1364 return NULL;
1365 }
1366 if (xen_enabled()) {
1367 return xen_map_cache(addr, *size, 1);
1368 } else {
1369 RAMBlock *block;
1370
1371 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1372 if (addr - block->offset < block->length) {
1373 if (addr - block->offset + *size > block->length)
1374 *size = block->length - addr + block->offset;
1375 return block->host + (addr - block->offset);
1376 }
1377 }
1378
1379 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1380 abort();
1381 }
1382 }
1383
1384 /* Some of the softmmu routines need to translate from a host pointer
1385 (typically a TLB entry) back to a ram offset. */
1386 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1387 {
1388 RAMBlock *block;
1389 uint8_t *host = ptr;
1390
1391 if (xen_enabled()) {
1392 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1393 return qemu_get_ram_block(*ram_addr)->mr;
1394 }
1395
1396 block = ram_list.mru_block;
1397 if (block && block->host && host - block->host < block->length) {
1398 goto found;
1399 }
1400
1401 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1402 /* This case append when the block is not mapped. */
1403 if (block->host == NULL) {
1404 continue;
1405 }
1406 if (host - block->host < block->length) {
1407 goto found;
1408 }
1409 }
1410
1411 return NULL;
1412
1413 found:
1414 *ram_addr = block->offset + (host - block->host);
1415 return block->mr;
1416 }
1417
1418 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1419 uint64_t val, unsigned size)
1420 {
1421 int dirty_flags;
1422 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1423 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1424 tb_invalidate_phys_page_fast(ram_addr, size);
1425 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1426 }
1427 switch (size) {
1428 case 1:
1429 stb_p(qemu_get_ram_ptr(ram_addr), val);
1430 break;
1431 case 2:
1432 stw_p(qemu_get_ram_ptr(ram_addr), val);
1433 break;
1434 case 4:
1435 stl_p(qemu_get_ram_ptr(ram_addr), val);
1436 break;
1437 default:
1438 abort();
1439 }
1440 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1441 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1442 /* we remove the notdirty callback only if the code has been
1443 flushed */
1444 if (dirty_flags == 0xff) {
1445 CPUArchState *env = current_cpu->env_ptr;
1446 tlb_set_dirty(env, env->mem_io_vaddr);
1447 }
1448 }
1449
1450 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1451 unsigned size, bool is_write)
1452 {
1453 return is_write;
1454 }
1455
1456 static const MemoryRegionOps notdirty_mem_ops = {
1457 .write = notdirty_mem_write,
1458 .valid.accepts = notdirty_mem_accepts,
1459 .endianness = DEVICE_NATIVE_ENDIAN,
1460 };
1461
1462 /* Generate a debug exception if a watchpoint has been hit. */
1463 static void check_watchpoint(int offset, int len_mask, int flags)
1464 {
1465 CPUArchState *env = current_cpu->env_ptr;
1466 target_ulong pc, cs_base;
1467 target_ulong vaddr;
1468 CPUWatchpoint *wp;
1469 int cpu_flags;
1470
1471 if (env->watchpoint_hit) {
1472 /* We re-entered the check after replacing the TB. Now raise
1473 * the debug interrupt so that is will trigger after the
1474 * current instruction. */
1475 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1476 return;
1477 }
1478 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1479 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1480 if ((vaddr == (wp->vaddr & len_mask) ||
1481 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1482 wp->flags |= BP_WATCHPOINT_HIT;
1483 if (!env->watchpoint_hit) {
1484 env->watchpoint_hit = wp;
1485 tb_check_watchpoint(env);
1486 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1487 env->exception_index = EXCP_DEBUG;
1488 cpu_loop_exit(env);
1489 } else {
1490 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1491 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1492 cpu_resume_from_signal(env, NULL);
1493 }
1494 }
1495 } else {
1496 wp->flags &= ~BP_WATCHPOINT_HIT;
1497 }
1498 }
1499 }
1500
1501 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1502 so these check for a hit then pass through to the normal out-of-line
1503 phys routines. */
1504 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1505 unsigned size)
1506 {
1507 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1508 switch (size) {
1509 case 1: return ldub_phys(addr);
1510 case 2: return lduw_phys(addr);
1511 case 4: return ldl_phys(addr);
1512 default: abort();
1513 }
1514 }
1515
1516 static void watch_mem_write(void *opaque, hwaddr addr,
1517 uint64_t val, unsigned size)
1518 {
1519 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1520 switch (size) {
1521 case 1:
1522 stb_phys(addr, val);
1523 break;
1524 case 2:
1525 stw_phys(addr, val);
1526 break;
1527 case 4:
1528 stl_phys(addr, val);
1529 break;
1530 default: abort();
1531 }
1532 }
1533
1534 static const MemoryRegionOps watch_mem_ops = {
1535 .read = watch_mem_read,
1536 .write = watch_mem_write,
1537 .endianness = DEVICE_NATIVE_ENDIAN,
1538 };
1539
1540 static uint64_t subpage_read(void *opaque, hwaddr addr,
1541 unsigned len)
1542 {
1543 subpage_t *subpage = opaque;
1544 uint8_t buf[4];
1545
1546 #if defined(DEBUG_SUBPAGE)
1547 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1548 subpage, len, addr);
1549 #endif
1550 address_space_read(subpage->as, addr + subpage->base, buf, len);
1551 switch (len) {
1552 case 1:
1553 return ldub_p(buf);
1554 case 2:
1555 return lduw_p(buf);
1556 case 4:
1557 return ldl_p(buf);
1558 default:
1559 abort();
1560 }
1561 }
1562
1563 static void subpage_write(void *opaque, hwaddr addr,
1564 uint64_t value, unsigned len)
1565 {
1566 subpage_t *subpage = opaque;
1567 uint8_t buf[4];
1568
1569 #if defined(DEBUG_SUBPAGE)
1570 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1571 " value %"PRIx64"\n",
1572 __func__, subpage, len, addr, value);
1573 #endif
1574 switch (len) {
1575 case 1:
1576 stb_p(buf, value);
1577 break;
1578 case 2:
1579 stw_p(buf, value);
1580 break;
1581 case 4:
1582 stl_p(buf, value);
1583 break;
1584 default:
1585 abort();
1586 }
1587 address_space_write(subpage->as, addr + subpage->base, buf, len);
1588 }
1589
1590 static bool subpage_accepts(void *opaque, hwaddr addr,
1591 unsigned size, bool is_write)
1592 {
1593 subpage_t *subpage = opaque;
1594 #if defined(DEBUG_SUBPAGE)
1595 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1596 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1597 #endif
1598
1599 return address_space_access_valid(subpage->as, addr + subpage->base,
1600 size, is_write);
1601 }
1602
1603 static const MemoryRegionOps subpage_ops = {
1604 .read = subpage_read,
1605 .write = subpage_write,
1606 .valid.accepts = subpage_accepts,
1607 .endianness = DEVICE_NATIVE_ENDIAN,
1608 };
1609
1610 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1611 uint16_t section)
1612 {
1613 int idx, eidx;
1614
1615 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1616 return -1;
1617 idx = SUBPAGE_IDX(start);
1618 eidx = SUBPAGE_IDX(end);
1619 #if defined(DEBUG_SUBPAGE)
1620 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1621 mmio, start, end, idx, eidx, memory);
1622 #endif
1623 for (; idx <= eidx; idx++) {
1624 mmio->sub_section[idx] = section;
1625 }
1626
1627 return 0;
1628 }
1629
1630 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1631 {
1632 subpage_t *mmio;
1633
1634 mmio = g_malloc0(sizeof(subpage_t));
1635
1636 mmio->as = as;
1637 mmio->base = base;
1638 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1639 "subpage", TARGET_PAGE_SIZE);
1640 mmio->iomem.subpage = true;
1641 #if defined(DEBUG_SUBPAGE)
1642 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1643 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1644 #endif
1645 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1646
1647 return mmio;
1648 }
1649
1650 static uint16_t dummy_section(MemoryRegion *mr)
1651 {
1652 MemoryRegionSection section = {
1653 .mr = mr,
1654 .offset_within_address_space = 0,
1655 .offset_within_region = 0,
1656 .size = int128_2_64(),
1657 };
1658
1659 return phys_section_add(&section);
1660 }
1661
1662 MemoryRegion *iotlb_to_region(hwaddr index)
1663 {
1664 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1665 }
1666
1667 static void io_mem_init(void)
1668 {
1669 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1670 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1671 "unassigned", UINT64_MAX);
1672 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1673 "notdirty", UINT64_MAX);
1674 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1675 "watch", UINT64_MAX);
1676 }
1677
1678 static void mem_begin(MemoryListener *listener)
1679 {
1680 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1681 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1682
1683 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1684 d->as = as;
1685 as->next_dispatch = d;
1686 }
1687
1688 static void mem_commit(MemoryListener *listener)
1689 {
1690 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1691 AddressSpaceDispatch *cur = as->dispatch;
1692 AddressSpaceDispatch *next = as->next_dispatch;
1693
1694 next->nodes = next_map.nodes;
1695 next->sections = next_map.sections;
1696
1697 as->dispatch = next;
1698 g_free(cur);
1699 }
1700
1701 static void core_begin(MemoryListener *listener)
1702 {
1703 uint16_t n;
1704
1705 prev_map = g_new(PhysPageMap, 1);
1706 *prev_map = next_map;
1707
1708 memset(&next_map, 0, sizeof(next_map));
1709 n = dummy_section(&io_mem_unassigned);
1710 assert(n == PHYS_SECTION_UNASSIGNED);
1711 n = dummy_section(&io_mem_notdirty);
1712 assert(n == PHYS_SECTION_NOTDIRTY);
1713 n = dummy_section(&io_mem_rom);
1714 assert(n == PHYS_SECTION_ROM);
1715 n = dummy_section(&io_mem_watch);
1716 assert(n == PHYS_SECTION_WATCH);
1717 }
1718
1719 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1720 * All AddressSpaceDispatch instances have switched to the next map.
1721 */
1722 static void core_commit(MemoryListener *listener)
1723 {
1724 phys_sections_free(prev_map);
1725 }
1726
1727 static void tcg_commit(MemoryListener *listener)
1728 {
1729 CPUState *cpu;
1730
1731 /* since each CPU stores ram addresses in its TLB cache, we must
1732 reset the modified entries */
1733 /* XXX: slow ! */
1734 CPU_FOREACH(cpu) {
1735 CPUArchState *env = cpu->env_ptr;
1736
1737 tlb_flush(env, 1);
1738 }
1739 }
1740
1741 static void core_log_global_start(MemoryListener *listener)
1742 {
1743 cpu_physical_memory_set_dirty_tracking(1);
1744 }
1745
1746 static void core_log_global_stop(MemoryListener *listener)
1747 {
1748 cpu_physical_memory_set_dirty_tracking(0);
1749 }
1750
1751 static MemoryListener core_memory_listener = {
1752 .begin = core_begin,
1753 .commit = core_commit,
1754 .log_global_start = core_log_global_start,
1755 .log_global_stop = core_log_global_stop,
1756 .priority = 1,
1757 };
1758
1759 static MemoryListener tcg_memory_listener = {
1760 .commit = tcg_commit,
1761 };
1762
1763 void address_space_init_dispatch(AddressSpace *as)
1764 {
1765 as->dispatch = NULL;
1766 as->dispatch_listener = (MemoryListener) {
1767 .begin = mem_begin,
1768 .commit = mem_commit,
1769 .region_add = mem_add,
1770 .region_nop = mem_add,
1771 .priority = 0,
1772 };
1773 memory_listener_register(&as->dispatch_listener, as);
1774 }
1775
1776 void address_space_destroy_dispatch(AddressSpace *as)
1777 {
1778 AddressSpaceDispatch *d = as->dispatch;
1779
1780 memory_listener_unregister(&as->dispatch_listener);
1781 g_free(d);
1782 as->dispatch = NULL;
1783 }
1784
1785 static void memory_map_init(void)
1786 {
1787 system_memory = g_malloc(sizeof(*system_memory));
1788 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1789 address_space_init(&address_space_memory, system_memory, "memory");
1790
1791 system_io = g_malloc(sizeof(*system_io));
1792 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1793 65536);
1794 address_space_init(&address_space_io, system_io, "I/O");
1795
1796 memory_listener_register(&core_memory_listener, &address_space_memory);
1797 if (tcg_enabled()) {
1798 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1799 }
1800 }
1801
1802 MemoryRegion *get_system_memory(void)
1803 {
1804 return system_memory;
1805 }
1806
1807 MemoryRegion *get_system_io(void)
1808 {
1809 return system_io;
1810 }
1811
1812 #endif /* !defined(CONFIG_USER_ONLY) */
1813
1814 /* physical memory access (slow version, mainly for debug) */
1815 #if defined(CONFIG_USER_ONLY)
1816 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1817 uint8_t *buf, int len, int is_write)
1818 {
1819 int l, flags;
1820 target_ulong page;
1821 void * p;
1822
1823 while (len > 0) {
1824 page = addr & TARGET_PAGE_MASK;
1825 l = (page + TARGET_PAGE_SIZE) - addr;
1826 if (l > len)
1827 l = len;
1828 flags = page_get_flags(page);
1829 if (!(flags & PAGE_VALID))
1830 return -1;
1831 if (is_write) {
1832 if (!(flags & PAGE_WRITE))
1833 return -1;
1834 /* XXX: this code should not depend on lock_user */
1835 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1836 return -1;
1837 memcpy(p, buf, l);
1838 unlock_user(p, addr, l);
1839 } else {
1840 if (!(flags & PAGE_READ))
1841 return -1;
1842 /* XXX: this code should not depend on lock_user */
1843 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1844 return -1;
1845 memcpy(buf, p, l);
1846 unlock_user(p, addr, 0);
1847 }
1848 len -= l;
1849 buf += l;
1850 addr += l;
1851 }
1852 return 0;
1853 }
1854
1855 #else
1856
1857 static void invalidate_and_set_dirty(hwaddr addr,
1858 hwaddr length)
1859 {
1860 if (!cpu_physical_memory_is_dirty(addr)) {
1861 /* invalidate code */
1862 tb_invalidate_phys_page_range(addr, addr + length, 0);
1863 /* set dirty bit */
1864 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1865 }
1866 xen_modified_memory(addr, length);
1867 }
1868
1869 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1870 {
1871 if (memory_region_is_ram(mr)) {
1872 return !(is_write && mr->readonly);
1873 }
1874 if (memory_region_is_romd(mr)) {
1875 return !is_write;
1876 }
1877
1878 return false;
1879 }
1880
1881 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1882 {
1883 unsigned access_size_max = mr->ops->valid.max_access_size;
1884
1885 /* Regions are assumed to support 1-4 byte accesses unless
1886 otherwise specified. */
1887 if (access_size_max == 0) {
1888 access_size_max = 4;
1889 }
1890
1891 /* Bound the maximum access by the alignment of the address. */
1892 if (!mr->ops->impl.unaligned) {
1893 unsigned align_size_max = addr & -addr;
1894 if (align_size_max != 0 && align_size_max < access_size_max) {
1895 access_size_max = align_size_max;
1896 }
1897 }
1898
1899 /* Don't attempt accesses larger than the maximum. */
1900 if (l > access_size_max) {
1901 l = access_size_max;
1902 }
1903 if (l & (l - 1)) {
1904 l = 1 << (qemu_fls(l) - 1);
1905 }
1906
1907 return l;
1908 }
1909
1910 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1911 int len, bool is_write)
1912 {
1913 hwaddr l;
1914 uint8_t *ptr;
1915 uint64_t val;
1916 hwaddr addr1;
1917 MemoryRegion *mr;
1918 bool error = false;
1919
1920 while (len > 0) {
1921 l = len;
1922 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1923
1924 if (is_write) {
1925 if (!memory_access_is_direct(mr, is_write)) {
1926 l = memory_access_size(mr, l, addr1);
1927 /* XXX: could force current_cpu to NULL to avoid
1928 potential bugs */
1929 switch (l) {
1930 case 8:
1931 /* 64 bit write access */
1932 val = ldq_p(buf);
1933 error |= io_mem_write(mr, addr1, val, 8);
1934 break;
1935 case 4:
1936 /* 32 bit write access */
1937 val = ldl_p(buf);
1938 error |= io_mem_write(mr, addr1, val, 4);
1939 break;
1940 case 2:
1941 /* 16 bit write access */
1942 val = lduw_p(buf);
1943 error |= io_mem_write(mr, addr1, val, 2);
1944 break;
1945 case 1:
1946 /* 8 bit write access */
1947 val = ldub_p(buf);
1948 error |= io_mem_write(mr, addr1, val, 1);
1949 break;
1950 default:
1951 abort();
1952 }
1953 } else {
1954 addr1 += memory_region_get_ram_addr(mr);
1955 /* RAM case */
1956 ptr = qemu_get_ram_ptr(addr1);
1957 memcpy(ptr, buf, l);
1958 invalidate_and_set_dirty(addr1, l);
1959 }
1960 } else {
1961 if (!memory_access_is_direct(mr, is_write)) {
1962 /* I/O case */
1963 l = memory_access_size(mr, l, addr1);
1964 switch (l) {
1965 case 8:
1966 /* 64 bit read access */
1967 error |= io_mem_read(mr, addr1, &val, 8);
1968 stq_p(buf, val);
1969 break;
1970 case 4:
1971 /* 32 bit read access */
1972 error |= io_mem_read(mr, addr1, &val, 4);
1973 stl_p(buf, val);
1974 break;
1975 case 2:
1976 /* 16 bit read access */
1977 error |= io_mem_read(mr, addr1, &val, 2);
1978 stw_p(buf, val);
1979 break;
1980 case 1:
1981 /* 8 bit read access */
1982 error |= io_mem_read(mr, addr1, &val, 1);
1983 stb_p(buf, val);
1984 break;
1985 default:
1986 abort();
1987 }
1988 } else {
1989 /* RAM case */
1990 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1991 memcpy(buf, ptr, l);
1992 }
1993 }
1994 len -= l;
1995 buf += l;
1996 addr += l;
1997 }
1998
1999 return error;
2000 }
2001
2002 bool address_space_write(AddressSpace *as, hwaddr addr,
2003 const uint8_t *buf, int len)
2004 {
2005 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2006 }
2007
2008 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2009 {
2010 return address_space_rw(as, addr, buf, len, false);
2011 }
2012
2013
2014 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2015 int len, int is_write)
2016 {
2017 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2018 }
2019
2020 /* used for ROM loading : can write in RAM and ROM */
2021 void cpu_physical_memory_write_rom(hwaddr addr,
2022 const uint8_t *buf, int len)
2023 {
2024 hwaddr l;
2025 uint8_t *ptr;
2026 hwaddr addr1;
2027 MemoryRegion *mr;
2028
2029 while (len > 0) {
2030 l = len;
2031 mr = address_space_translate(&address_space_memory,
2032 addr, &addr1, &l, true);
2033
2034 if (!(memory_region_is_ram(mr) ||
2035 memory_region_is_romd(mr))) {
2036 /* do nothing */
2037 } else {
2038 addr1 += memory_region_get_ram_addr(mr);
2039 /* ROM/RAM case */
2040 ptr = qemu_get_ram_ptr(addr1);
2041 memcpy(ptr, buf, l);
2042 invalidate_and_set_dirty(addr1, l);
2043 }
2044 len -= l;
2045 buf += l;
2046 addr += l;
2047 }
2048 }
2049
2050 typedef struct {
2051 MemoryRegion *mr;
2052 void *buffer;
2053 hwaddr addr;
2054 hwaddr len;
2055 } BounceBuffer;
2056
2057 static BounceBuffer bounce;
2058
2059 typedef struct MapClient {
2060 void *opaque;
2061 void (*callback)(void *opaque);
2062 QLIST_ENTRY(MapClient) link;
2063 } MapClient;
2064
2065 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2066 = QLIST_HEAD_INITIALIZER(map_client_list);
2067
2068 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2069 {
2070 MapClient *client = g_malloc(sizeof(*client));
2071
2072 client->opaque = opaque;
2073 client->callback = callback;
2074 QLIST_INSERT_HEAD(&map_client_list, client, link);
2075 return client;
2076 }
2077
2078 static void cpu_unregister_map_client(void *_client)
2079 {
2080 MapClient *client = (MapClient *)_client;
2081
2082 QLIST_REMOVE(client, link);
2083 g_free(client);
2084 }
2085
2086 static void cpu_notify_map_clients(void)
2087 {
2088 MapClient *client;
2089
2090 while (!QLIST_EMPTY(&map_client_list)) {
2091 client = QLIST_FIRST(&map_client_list);
2092 client->callback(client->opaque);
2093 cpu_unregister_map_client(client);
2094 }
2095 }
2096
2097 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2098 {
2099 MemoryRegion *mr;
2100 hwaddr l, xlat;
2101
2102 while (len > 0) {
2103 l = len;
2104 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2105 if (!memory_access_is_direct(mr, is_write)) {
2106 l = memory_access_size(mr, l, addr);
2107 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2108 return false;
2109 }
2110 }
2111
2112 len -= l;
2113 addr += l;
2114 }
2115 return true;
2116 }
2117
2118 /* Map a physical memory region into a host virtual address.
2119 * May map a subset of the requested range, given by and returned in *plen.
2120 * May return NULL if resources needed to perform the mapping are exhausted.
2121 * Use only for reads OR writes - not for read-modify-write operations.
2122 * Use cpu_register_map_client() to know when retrying the map operation is
2123 * likely to succeed.
2124 */
2125 void *address_space_map(AddressSpace *as,
2126 hwaddr addr,
2127 hwaddr *plen,
2128 bool is_write)
2129 {
2130 hwaddr len = *plen;
2131 hwaddr done = 0;
2132 hwaddr l, xlat, base;
2133 MemoryRegion *mr, *this_mr;
2134 ram_addr_t raddr;
2135
2136 if (len == 0) {
2137 return NULL;
2138 }
2139
2140 l = len;
2141 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2142 if (!memory_access_is_direct(mr, is_write)) {
2143 if (bounce.buffer) {
2144 return NULL;
2145 }
2146 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2147 bounce.addr = addr;
2148 bounce.len = l;
2149
2150 memory_region_ref(mr);
2151 bounce.mr = mr;
2152 if (!is_write) {
2153 address_space_read(as, addr, bounce.buffer, l);
2154 }
2155
2156 *plen = l;
2157 return bounce.buffer;
2158 }
2159
2160 base = xlat;
2161 raddr = memory_region_get_ram_addr(mr);
2162
2163 for (;;) {
2164 len -= l;
2165 addr += l;
2166 done += l;
2167 if (len == 0) {
2168 break;
2169 }
2170
2171 l = len;
2172 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2173 if (this_mr != mr || xlat != base + done) {
2174 break;
2175 }
2176 }
2177
2178 memory_region_ref(mr);
2179 *plen = done;
2180 return qemu_ram_ptr_length(raddr + base, plen);
2181 }
2182
2183 /* Unmaps a memory region previously mapped by address_space_map().
2184 * Will also mark the memory as dirty if is_write == 1. access_len gives
2185 * the amount of memory that was actually read or written by the caller.
2186 */
2187 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2188 int is_write, hwaddr access_len)
2189 {
2190 if (buffer != bounce.buffer) {
2191 MemoryRegion *mr;
2192 ram_addr_t addr1;
2193
2194 mr = qemu_ram_addr_from_host(buffer, &addr1);
2195 assert(mr != NULL);
2196 if (is_write) {
2197 while (access_len) {
2198 unsigned l;
2199 l = TARGET_PAGE_SIZE;
2200 if (l > access_len)
2201 l = access_len;
2202 invalidate_and_set_dirty(addr1, l);
2203 addr1 += l;
2204 access_len -= l;
2205 }
2206 }
2207 if (xen_enabled()) {
2208 xen_invalidate_map_cache_entry(buffer);
2209 }
2210 memory_region_unref(mr);
2211 return;
2212 }
2213 if (is_write) {
2214 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2215 }
2216 qemu_vfree(bounce.buffer);
2217 bounce.buffer = NULL;
2218 memory_region_unref(bounce.mr);
2219 cpu_notify_map_clients();
2220 }
2221
2222 void *cpu_physical_memory_map(hwaddr addr,
2223 hwaddr *plen,
2224 int is_write)
2225 {
2226 return address_space_map(&address_space_memory, addr, plen, is_write);
2227 }
2228
2229 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2230 int is_write, hwaddr access_len)
2231 {
2232 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2233 }
2234
2235 /* warning: addr must be aligned */
2236 static inline uint32_t ldl_phys_internal(hwaddr addr,
2237 enum device_endian endian)
2238 {
2239 uint8_t *ptr;
2240 uint64_t val;
2241 MemoryRegion *mr;
2242 hwaddr l = 4;
2243 hwaddr addr1;
2244
2245 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2246 false);
2247 if (l < 4 || !memory_access_is_direct(mr, false)) {
2248 /* I/O case */
2249 io_mem_read(mr, addr1, &val, 4);
2250 #if defined(TARGET_WORDS_BIGENDIAN)
2251 if (endian == DEVICE_LITTLE_ENDIAN) {
2252 val = bswap32(val);
2253 }
2254 #else
2255 if (endian == DEVICE_BIG_ENDIAN) {
2256 val = bswap32(val);
2257 }
2258 #endif
2259 } else {
2260 /* RAM case */
2261 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2262 & TARGET_PAGE_MASK)
2263 + addr1);
2264 switch (endian) {
2265 case DEVICE_LITTLE_ENDIAN:
2266 val = ldl_le_p(ptr);
2267 break;
2268 case DEVICE_BIG_ENDIAN:
2269 val = ldl_be_p(ptr);
2270 break;
2271 default:
2272 val = ldl_p(ptr);
2273 break;
2274 }
2275 }
2276 return val;
2277 }
2278
2279 uint32_t ldl_phys(hwaddr addr)
2280 {
2281 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2282 }
2283
2284 uint32_t ldl_le_phys(hwaddr addr)
2285 {
2286 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2287 }
2288
2289 uint32_t ldl_be_phys(hwaddr addr)
2290 {
2291 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2292 }
2293
2294 /* warning: addr must be aligned */
2295 static inline uint64_t ldq_phys_internal(hwaddr addr,
2296 enum device_endian endian)
2297 {
2298 uint8_t *ptr;
2299 uint64_t val;
2300 MemoryRegion *mr;
2301 hwaddr l = 8;
2302 hwaddr addr1;
2303
2304 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2305 false);
2306 if (l < 8 || !memory_access_is_direct(mr, false)) {
2307 /* I/O case */
2308 io_mem_read(mr, addr1, &val, 8);
2309 #if defined(TARGET_WORDS_BIGENDIAN)
2310 if (endian == DEVICE_LITTLE_ENDIAN) {
2311 val = bswap64(val);
2312 }
2313 #else
2314 if (endian == DEVICE_BIG_ENDIAN) {
2315 val = bswap64(val);
2316 }
2317 #endif
2318 } else {
2319 /* RAM case */
2320 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2321 & TARGET_PAGE_MASK)
2322 + addr1);
2323 switch (endian) {
2324 case DEVICE_LITTLE_ENDIAN:
2325 val = ldq_le_p(ptr);
2326 break;
2327 case DEVICE_BIG_ENDIAN:
2328 val = ldq_be_p(ptr);
2329 break;
2330 default:
2331 val = ldq_p(ptr);
2332 break;
2333 }
2334 }
2335 return val;
2336 }
2337
2338 uint64_t ldq_phys(hwaddr addr)
2339 {
2340 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2341 }
2342
2343 uint64_t ldq_le_phys(hwaddr addr)
2344 {
2345 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2346 }
2347
2348 uint64_t ldq_be_phys(hwaddr addr)
2349 {
2350 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2351 }
2352
2353 /* XXX: optimize */
2354 uint32_t ldub_phys(hwaddr addr)
2355 {
2356 uint8_t val;
2357 cpu_physical_memory_read(addr, &val, 1);
2358 return val;
2359 }
2360
2361 /* warning: addr must be aligned */
2362 static inline uint32_t lduw_phys_internal(hwaddr addr,
2363 enum device_endian endian)
2364 {
2365 uint8_t *ptr;
2366 uint64_t val;
2367 MemoryRegion *mr;
2368 hwaddr l = 2;
2369 hwaddr addr1;
2370
2371 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2372 false);
2373 if (l < 2 || !memory_access_is_direct(mr, false)) {
2374 /* I/O case */
2375 io_mem_read(mr, addr1, &val, 2);
2376 #if defined(TARGET_WORDS_BIGENDIAN)
2377 if (endian == DEVICE_LITTLE_ENDIAN) {
2378 val = bswap16(val);
2379 }
2380 #else
2381 if (endian == DEVICE_BIG_ENDIAN) {
2382 val = bswap16(val);
2383 }
2384 #endif
2385 } else {
2386 /* RAM case */
2387 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2388 & TARGET_PAGE_MASK)
2389 + addr1);
2390 switch (endian) {
2391 case DEVICE_LITTLE_ENDIAN:
2392 val = lduw_le_p(ptr);
2393 break;
2394 case DEVICE_BIG_ENDIAN:
2395 val = lduw_be_p(ptr);
2396 break;
2397 default:
2398 val = lduw_p(ptr);
2399 break;
2400 }
2401 }
2402 return val;
2403 }
2404
2405 uint32_t lduw_phys(hwaddr addr)
2406 {
2407 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2408 }
2409
2410 uint32_t lduw_le_phys(hwaddr addr)
2411 {
2412 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2413 }
2414
2415 uint32_t lduw_be_phys(hwaddr addr)
2416 {
2417 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2418 }
2419
2420 /* warning: addr must be aligned. The ram page is not masked as dirty
2421 and the code inside is not invalidated. It is useful if the dirty
2422 bits are used to track modified PTEs */
2423 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2424 {
2425 uint8_t *ptr;
2426 MemoryRegion *mr;
2427 hwaddr l = 4;
2428 hwaddr addr1;
2429
2430 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2431 true);
2432 if (l < 4 || !memory_access_is_direct(mr, true)) {
2433 io_mem_write(mr, addr1, val, 4);
2434 } else {
2435 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2436 ptr = qemu_get_ram_ptr(addr1);
2437 stl_p(ptr, val);
2438
2439 if (unlikely(in_migration)) {
2440 if (!cpu_physical_memory_is_dirty(addr1)) {
2441 /* invalidate code */
2442 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2443 /* set dirty bit */
2444 cpu_physical_memory_set_dirty_flags(
2445 addr1, (0xff & ~CODE_DIRTY_FLAG));
2446 }
2447 }
2448 }
2449 }
2450
2451 /* warning: addr must be aligned */
2452 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2453 enum device_endian endian)
2454 {
2455 uint8_t *ptr;
2456 MemoryRegion *mr;
2457 hwaddr l = 4;
2458 hwaddr addr1;
2459
2460 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2461 true);
2462 if (l < 4 || !memory_access_is_direct(mr, true)) {
2463 #if defined(TARGET_WORDS_BIGENDIAN)
2464 if (endian == DEVICE_LITTLE_ENDIAN) {
2465 val = bswap32(val);
2466 }
2467 #else
2468 if (endian == DEVICE_BIG_ENDIAN) {
2469 val = bswap32(val);
2470 }
2471 #endif
2472 io_mem_write(mr, addr1, val, 4);
2473 } else {
2474 /* RAM case */
2475 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2476 ptr = qemu_get_ram_ptr(addr1);
2477 switch (endian) {
2478 case DEVICE_LITTLE_ENDIAN:
2479 stl_le_p(ptr, val);
2480 break;
2481 case DEVICE_BIG_ENDIAN:
2482 stl_be_p(ptr, val);
2483 break;
2484 default:
2485 stl_p(ptr, val);
2486 break;
2487 }
2488 invalidate_and_set_dirty(addr1, 4);
2489 }
2490 }
2491
2492 void stl_phys(hwaddr addr, uint32_t val)
2493 {
2494 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2495 }
2496
2497 void stl_le_phys(hwaddr addr, uint32_t val)
2498 {
2499 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2500 }
2501
2502 void stl_be_phys(hwaddr addr, uint32_t val)
2503 {
2504 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2505 }
2506
2507 /* XXX: optimize */
2508 void stb_phys(hwaddr addr, uint32_t val)
2509 {
2510 uint8_t v = val;
2511 cpu_physical_memory_write(addr, &v, 1);
2512 }
2513
2514 /* warning: addr must be aligned */
2515 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2516 enum device_endian endian)
2517 {
2518 uint8_t *ptr;
2519 MemoryRegion *mr;
2520 hwaddr l = 2;
2521 hwaddr addr1;
2522
2523 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2524 true);
2525 if (l < 2 || !memory_access_is_direct(mr, true)) {
2526 #if defined(TARGET_WORDS_BIGENDIAN)
2527 if (endian == DEVICE_LITTLE_ENDIAN) {
2528 val = bswap16(val);
2529 }
2530 #else
2531 if (endian == DEVICE_BIG_ENDIAN) {
2532 val = bswap16(val);
2533 }
2534 #endif
2535 io_mem_write(mr, addr1, val, 2);
2536 } else {
2537 /* RAM case */
2538 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2539 ptr = qemu_get_ram_ptr(addr1);
2540 switch (endian) {
2541 case DEVICE_LITTLE_ENDIAN:
2542 stw_le_p(ptr, val);
2543 break;
2544 case DEVICE_BIG_ENDIAN:
2545 stw_be_p(ptr, val);
2546 break;
2547 default:
2548 stw_p(ptr, val);
2549 break;
2550 }
2551 invalidate_and_set_dirty(addr1, 2);
2552 }
2553 }
2554
2555 void stw_phys(hwaddr addr, uint32_t val)
2556 {
2557 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2558 }
2559
2560 void stw_le_phys(hwaddr addr, uint32_t val)
2561 {
2562 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2563 }
2564
2565 void stw_be_phys(hwaddr addr, uint32_t val)
2566 {
2567 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2568 }
2569
2570 /* XXX: optimize */
2571 void stq_phys(hwaddr addr, uint64_t val)
2572 {
2573 val = tswap64(val);
2574 cpu_physical_memory_write(addr, &val, 8);
2575 }
2576
2577 void stq_le_phys(hwaddr addr, uint64_t val)
2578 {
2579 val = cpu_to_le64(val);
2580 cpu_physical_memory_write(addr, &val, 8);
2581 }
2582
2583 void stq_be_phys(hwaddr addr, uint64_t val)
2584 {
2585 val = cpu_to_be64(val);
2586 cpu_physical_memory_write(addr, &val, 8);
2587 }
2588
2589 /* virtual memory access for debug (includes writing to ROM) */
2590 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2591 uint8_t *buf, int len, int is_write)
2592 {
2593 int l;
2594 hwaddr phys_addr;
2595 target_ulong page;
2596
2597 while (len > 0) {
2598 page = addr & TARGET_PAGE_MASK;
2599 phys_addr = cpu_get_phys_page_debug(cpu, page);
2600 /* if no physical page mapped, return an error */
2601 if (phys_addr == -1)
2602 return -1;
2603 l = (page + TARGET_PAGE_SIZE) - addr;
2604 if (l > len)
2605 l = len;
2606 phys_addr += (addr & ~TARGET_PAGE_MASK);
2607 if (is_write)
2608 cpu_physical_memory_write_rom(phys_addr, buf, l);
2609 else
2610 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2611 len -= l;
2612 buf += l;
2613 addr += l;
2614 }
2615 return 0;
2616 }
2617 #endif
2618
2619 #if !defined(CONFIG_USER_ONLY)
2620
2621 /*
2622 * A helper function for the _utterly broken_ virtio device model to find out if
2623 * it's running on a big endian machine. Don't do this at home kids!
2624 */
2625 bool virtio_is_big_endian(void);
2626 bool virtio_is_big_endian(void)
2627 {
2628 #if defined(TARGET_WORDS_BIGENDIAN)
2629 return true;
2630 #else
2631 return false;
2632 #endif
2633 }
2634
2635 #endif
2636
2637 #ifndef CONFIG_USER_ONLY
2638 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2639 {
2640 MemoryRegion*mr;
2641 hwaddr l = 1;
2642
2643 mr = address_space_translate(&address_space_memory,
2644 phys_addr, &phys_addr, &l, false);
2645
2646 return !(memory_region_is_ram(mr) ||
2647 memory_region_is_romd(mr));
2648 }
2649
2650 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2651 {
2652 RAMBlock *block;
2653
2654 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2655 func(block->host, block->offset, block->length, opaque);
2656 }
2657 }
2658 #endif