]> git.proxmox.com Git - qemu.git/blob - exec.c
split out qemu-timer.c
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 static TranslationBlock *tbs;
66 int code_gen_max_blocks;
67 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
68 static int nb_tbs;
69 /* any access to the tbs or the page table must use this lock */
70 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
71
72 #if defined(__arm__) || defined(__sparc_v9__)
73 /* The prologue must be reachable with a direct jump. ARM and Sparc64
74 have limited branch ranges (possibly also PPC) so place it in a
75 section close to code segment. */
76 #define code_gen_section \
77 __attribute__((__section__(".gen_code"))) \
78 __attribute__((aligned (32)))
79 #elif defined(_WIN32)
80 /* Maximum alignment for Win32 is 16. */
81 #define code_gen_section \
82 __attribute__((aligned (16)))
83 #else
84 #define code_gen_section \
85 __attribute__((aligned (32)))
86 #endif
87
88 uint8_t code_gen_prologue[1024] code_gen_section;
89 static uint8_t *code_gen_buffer;
90 static unsigned long code_gen_buffer_size;
91 /* threshold to flush the translated code buffer */
92 static unsigned long code_gen_buffer_max_size;
93 uint8_t *code_gen_ptr;
94
95 #if !defined(CONFIG_USER_ONLY)
96 int phys_ram_fd;
97 uint8_t *phys_ram_dirty;
98 static int in_migration;
99
100 typedef struct RAMBlock {
101 uint8_t *host;
102 ram_addr_t offset;
103 ram_addr_t length;
104 struct RAMBlock *next;
105 } RAMBlock;
106
107 static RAMBlock *ram_blocks;
108 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
109 then we can no longer assume contiguous ram offsets, and external uses
110 of this variable will break. */
111 ram_addr_t last_ram_offset;
112 #endif
113
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
125
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
137
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143 #else
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 #endif
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 #endif
149
150 /* Size of the L2 (and L3, etc) page tables. */
151 #define L2_BITS 10
152 #define L2_SIZE (1 << L2_BITS)
153
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163 #else
164 #define P_L1_BITS P_L1_BITS_REM
165 #endif
166
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169 #else
170 #define V_L1_BITS V_L1_BITS_REM
171 #endif
172
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 unsigned long qemu_real_host_page_size;
180 unsigned long qemu_host_page_bits;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
194
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map[P_L1_SIZE];
198
199 static void io_mem_init(void);
200
201 /* io memory support */
202 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
204 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
205 static char io_mem_used[IO_MEM_NB_ENTRIES];
206 static int io_mem_watch;
207 #endif
208
209 /* log support */
210 #ifdef WIN32
211 static const char *logfilename = "qemu.log";
212 #else
213 static const char *logfilename = "/tmp/qemu.log";
214 #endif
215 FILE *logfile;
216 int loglevel;
217 static int log_append = 0;
218
219 /* statistics */
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count;
222 #endif
223 static int tb_flush_count;
224 static int tb_phys_invalidate_count;
225
226 #ifdef _WIN32
227 static void map_exec(void *addr, long size)
228 {
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233 }
234 #else
235 static void map_exec(void *addr, long size)
236 {
237 unsigned long start, end, page_size;
238
239 page_size = getpagesize();
240 start = (unsigned long)addr;
241 start &= ~(page_size - 1);
242
243 end = (unsigned long)addr + size;
244 end += page_size - 1;
245 end &= ~(page_size - 1);
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249 }
250 #endif
251
252 static void page_init(void)
253 {
254 /* NOTE: we can always suppose that qemu_host_page_size >=
255 TARGET_PAGE_SIZE */
256 #ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263 #else
264 qemu_real_host_page_size = getpagesize();
265 #endif
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
274
275 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
276 {
277 FILE *f;
278
279 last_brk = (unsigned long)sbrk(0);
280
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
283 mmap_lock();
284
285 do {
286 unsigned long startaddr, endaddr;
287 int n;
288
289 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
290
291 if (n == 2 && h2g_valid(startaddr)) {
292 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
293
294 if (h2g_valid(endaddr)) {
295 endaddr = h2g(endaddr);
296 } else {
297 endaddr = ~0ul;
298 }
299 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
300 }
301 } while (!feof(f));
302
303 fclose(f);
304 mmap_unlock();
305 }
306 }
307 #endif
308 }
309
310 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
311 {
312 PageDesc *pd;
313 void **lp;
314 int i;
315
316 #if defined(CONFIG_USER_ONLY)
317 /* We can't use qemu_malloc because it may recurse into a locked mutex.
318 Neither can we record the new pages we reserve while allocating a
319 given page because that may recurse into an unallocated page table
320 entry. Stuff the allocations we do make into a queue and process
321 them after having completed one entire page table allocation. */
322
323 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
324 int reserve_idx = 0;
325
326 # define ALLOC(P, SIZE) \
327 do { \
328 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
329 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
330 if (h2g_valid(P)) { \
331 reserve[reserve_idx] = h2g(P); \
332 reserve[reserve_idx + 1] = SIZE; \
333 reserve_idx += 2; \
334 } \
335 } while (0)
336 #else
337 # define ALLOC(P, SIZE) \
338 do { P = qemu_mallocz(SIZE); } while (0)
339 #endif
340
341 /* Level 1. Always allocated. */
342 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
343
344 /* Level 2..N-1. */
345 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
346 void **p = *lp;
347
348 if (p == NULL) {
349 if (!alloc) {
350 return NULL;
351 }
352 ALLOC(p, sizeof(void *) * L2_SIZE);
353 *lp = p;
354 }
355
356 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
357 }
358
359 pd = *lp;
360 if (pd == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
365 *lp = pd;
366 }
367
368 #undef ALLOC
369 #if defined(CONFIG_USER_ONLY)
370 for (i = 0; i < reserve_idx; i += 2) {
371 unsigned long addr = reserve[i];
372 unsigned long len = reserve[i + 1];
373
374 page_set_flags(addr & TARGET_PAGE_MASK,
375 TARGET_PAGE_ALIGN(addr + len),
376 PAGE_RESERVED);
377 }
378 #endif
379
380 return pd + (index & (L2_SIZE - 1));
381 }
382
383 static inline PageDesc *page_find(tb_page_addr_t index)
384 {
385 return page_find_alloc(index, 0);
386 }
387
388 #if !defined(CONFIG_USER_ONLY)
389 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
390 {
391 PhysPageDesc *pd;
392 void **lp;
393 int i;
394
395 /* Level 1. Always allocated. */
396 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
397
398 /* Level 2..N-1. */
399 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
400 void **p = *lp;
401 if (p == NULL) {
402 if (!alloc) {
403 return NULL;
404 }
405 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
406 }
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 int i;
413
414 if (!alloc) {
415 return NULL;
416 }
417
418 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
419
420 for (i = 0; i < L2_SIZE; i++) {
421 pd[i].phys_offset = IO_MEM_UNASSIGNED;
422 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
423 }
424 }
425
426 return pd + (index & (L2_SIZE - 1));
427 }
428
429 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
430 {
431 return phys_page_find_alloc(index, 0);
432 }
433
434 static void tlb_protect_code(ram_addr_t ram_addr);
435 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
436 target_ulong vaddr);
437 #define mmap_lock() do { } while(0)
438 #define mmap_unlock() do { } while(0)
439 #endif
440
441 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
442
443 #if defined(CONFIG_USER_ONLY)
444 /* Currently it is not recommended to allocate big chunks of data in
445 user mode. It will change when a dedicated libc will be used */
446 #define USE_STATIC_CODE_GEN_BUFFER
447 #endif
448
449 #ifdef USE_STATIC_CODE_GEN_BUFFER
450 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
451 #endif
452
453 static void code_gen_alloc(unsigned long tb_size)
454 {
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 code_gen_buffer = static_code_gen_buffer;
457 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
458 map_exec(code_gen_buffer, code_gen_buffer_size);
459 #else
460 code_gen_buffer_size = tb_size;
461 if (code_gen_buffer_size == 0) {
462 #if defined(CONFIG_USER_ONLY)
463 /* in user mode, phys_ram_size is not meaningful */
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 #else
466 /* XXX: needs adjustments */
467 code_gen_buffer_size = (unsigned long)(ram_size / 4);
468 #endif
469 }
470 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
471 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
472 /* The code gen buffer location may have constraints depending on
473 the host cpu and OS */
474 #if defined(__linux__)
475 {
476 int flags;
477 void *start = NULL;
478
479 flags = MAP_PRIVATE | MAP_ANONYMOUS;
480 #if defined(__x86_64__)
481 flags |= MAP_32BIT;
482 /* Cannot map more than that */
483 if (code_gen_buffer_size > (800 * 1024 * 1024))
484 code_gen_buffer_size = (800 * 1024 * 1024);
485 #elif defined(__sparc_v9__)
486 // Map the buffer below 2G, so we can use direct calls and branches
487 flags |= MAP_FIXED;
488 start = (void *) 0x60000000UL;
489 if (code_gen_buffer_size > (512 * 1024 * 1024))
490 code_gen_buffer_size = (512 * 1024 * 1024);
491 #elif defined(__arm__)
492 /* Map the buffer below 32M, so we can use direct calls and branches */
493 flags |= MAP_FIXED;
494 start = (void *) 0x01000000UL;
495 if (code_gen_buffer_size > 16 * 1024 * 1024)
496 code_gen_buffer_size = 16 * 1024 * 1024;
497 #endif
498 code_gen_buffer = mmap(start, code_gen_buffer_size,
499 PROT_WRITE | PROT_READ | PROT_EXEC,
500 flags, -1, 0);
501 if (code_gen_buffer == MAP_FAILED) {
502 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
503 exit(1);
504 }
505 }
506 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
507 {
508 int flags;
509 void *addr = NULL;
510 flags = MAP_PRIVATE | MAP_ANONYMOUS;
511 #if defined(__x86_64__)
512 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
513 * 0x40000000 is free */
514 flags |= MAP_FIXED;
515 addr = (void *)0x40000000;
516 /* Cannot map more than that */
517 if (code_gen_buffer_size > (800 * 1024 * 1024))
518 code_gen_buffer_size = (800 * 1024 * 1024);
519 #endif
520 code_gen_buffer = mmap(addr, code_gen_buffer_size,
521 PROT_WRITE | PROT_READ | PROT_EXEC,
522 flags, -1, 0);
523 if (code_gen_buffer == MAP_FAILED) {
524 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
525 exit(1);
526 }
527 }
528 #else
529 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
530 map_exec(code_gen_buffer, code_gen_buffer_size);
531 #endif
532 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
533 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
534 code_gen_buffer_max_size = code_gen_buffer_size -
535 code_gen_max_block_size();
536 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
537 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
538 }
539
540 /* Must be called before using the QEMU cpus. 'tb_size' is the size
541 (in bytes) allocated to the translation buffer. Zero means default
542 size. */
543 void cpu_exec_init_all(unsigned long tb_size)
544 {
545 cpu_gen_init();
546 code_gen_alloc(tb_size);
547 code_gen_ptr = code_gen_buffer;
548 page_init();
549 #if !defined(CONFIG_USER_ONLY)
550 io_mem_init();
551 #endif
552 }
553
554 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
555
556 static int cpu_common_post_load(void *opaque, int version_id)
557 {
558 CPUState *env = opaque;
559
560 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
561 version_id is increased. */
562 env->interrupt_request &= ~0x01;
563 tlb_flush(env, 1);
564
565 return 0;
566 }
567
568 static const VMStateDescription vmstate_cpu_common = {
569 .name = "cpu_common",
570 .version_id = 1,
571 .minimum_version_id = 1,
572 .minimum_version_id_old = 1,
573 .post_load = cpu_common_post_load,
574 .fields = (VMStateField []) {
575 VMSTATE_UINT32(halted, CPUState),
576 VMSTATE_UINT32(interrupt_request, CPUState),
577 VMSTATE_END_OF_LIST()
578 }
579 };
580 #endif
581
582 CPUState *qemu_get_cpu(int cpu)
583 {
584 CPUState *env = first_cpu;
585
586 while (env) {
587 if (env->cpu_index == cpu)
588 break;
589 env = env->next_cpu;
590 }
591
592 return env;
593 }
594
595 void cpu_exec_init(CPUState *env)
596 {
597 CPUState **penv;
598 int cpu_index;
599
600 #if defined(CONFIG_USER_ONLY)
601 cpu_list_lock();
602 #endif
603 env->next_cpu = NULL;
604 penv = &first_cpu;
605 cpu_index = 0;
606 while (*penv != NULL) {
607 penv = &(*penv)->next_cpu;
608 cpu_index++;
609 }
610 env->cpu_index = cpu_index;
611 env->numa_node = 0;
612 QTAILQ_INIT(&env->breakpoints);
613 QTAILQ_INIT(&env->watchpoints);
614 *penv = env;
615 #if defined(CONFIG_USER_ONLY)
616 cpu_list_unlock();
617 #endif
618 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
619 vmstate_register(cpu_index, &vmstate_cpu_common, env);
620 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
621 cpu_save, cpu_load, env);
622 #endif
623 }
624
625 static inline void invalidate_page_bitmap(PageDesc *p)
626 {
627 if (p->code_bitmap) {
628 qemu_free(p->code_bitmap);
629 p->code_bitmap = NULL;
630 }
631 p->code_write_count = 0;
632 }
633
634 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
635
636 static void page_flush_tb_1 (int level, void **lp)
637 {
638 int i;
639
640 if (*lp == NULL) {
641 return;
642 }
643 if (level == 0) {
644 PageDesc *pd = *lp;
645 for (i = 0; i < L2_SIZE; ++i) {
646 pd[i].first_tb = NULL;
647 invalidate_page_bitmap(pd + i);
648 }
649 } else {
650 void **pp = *lp;
651 for (i = 0; i < L2_SIZE; ++i) {
652 page_flush_tb_1 (level - 1, pp + i);
653 }
654 }
655 }
656
657 static void page_flush_tb(void)
658 {
659 int i;
660 for (i = 0; i < V_L1_SIZE; i++) {
661 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
662 }
663 }
664
665 /* flush all the translation blocks */
666 /* XXX: tb_flush is currently not thread safe */
667 void tb_flush(CPUState *env1)
668 {
669 CPUState *env;
670 #if defined(DEBUG_FLUSH)
671 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
672 (unsigned long)(code_gen_ptr - code_gen_buffer),
673 nb_tbs, nb_tbs > 0 ?
674 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
675 #endif
676 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
677 cpu_abort(env1, "Internal error: code buffer overflow\n");
678
679 nb_tbs = 0;
680
681 for(env = first_cpu; env != NULL; env = env->next_cpu) {
682 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
683 }
684
685 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
686 page_flush_tb();
687
688 code_gen_ptr = code_gen_buffer;
689 /* XXX: flush processor icache at this point if cache flush is
690 expensive */
691 tb_flush_count++;
692 }
693
694 #ifdef DEBUG_TB_CHECK
695
696 static void tb_invalidate_check(target_ulong address)
697 {
698 TranslationBlock *tb;
699 int i;
700 address &= TARGET_PAGE_MASK;
701 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
702 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
703 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
704 address >= tb->pc + tb->size)) {
705 printf("ERROR invalidate: address=" TARGET_FMT_lx
706 " PC=%08lx size=%04x\n",
707 address, (long)tb->pc, tb->size);
708 }
709 }
710 }
711 }
712
713 /* verify that all the pages have correct rights for code */
714 static void tb_page_check(void)
715 {
716 TranslationBlock *tb;
717 int i, flags1, flags2;
718
719 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
720 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
721 flags1 = page_get_flags(tb->pc);
722 flags2 = page_get_flags(tb->pc + tb->size - 1);
723 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
724 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
725 (long)tb->pc, tb->size, flags1, flags2);
726 }
727 }
728 }
729 }
730
731 #endif
732
733 /* invalidate one TB */
734 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
735 int next_offset)
736 {
737 TranslationBlock *tb1;
738 for(;;) {
739 tb1 = *ptb;
740 if (tb1 == tb) {
741 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
742 break;
743 }
744 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
745 }
746 }
747
748 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
749 {
750 TranslationBlock *tb1;
751 unsigned int n1;
752
753 for(;;) {
754 tb1 = *ptb;
755 n1 = (long)tb1 & 3;
756 tb1 = (TranslationBlock *)((long)tb1 & ~3);
757 if (tb1 == tb) {
758 *ptb = tb1->page_next[n1];
759 break;
760 }
761 ptb = &tb1->page_next[n1];
762 }
763 }
764
765 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
766 {
767 TranslationBlock *tb1, **ptb;
768 unsigned int n1;
769
770 ptb = &tb->jmp_next[n];
771 tb1 = *ptb;
772 if (tb1) {
773 /* find tb(n) in circular list */
774 for(;;) {
775 tb1 = *ptb;
776 n1 = (long)tb1 & 3;
777 tb1 = (TranslationBlock *)((long)tb1 & ~3);
778 if (n1 == n && tb1 == tb)
779 break;
780 if (n1 == 2) {
781 ptb = &tb1->jmp_first;
782 } else {
783 ptb = &tb1->jmp_next[n1];
784 }
785 }
786 /* now we can suppress tb(n) from the list */
787 *ptb = tb->jmp_next[n];
788
789 tb->jmp_next[n] = NULL;
790 }
791 }
792
793 /* reset the jump entry 'n' of a TB so that it is not chained to
794 another TB */
795 static inline void tb_reset_jump(TranslationBlock *tb, int n)
796 {
797 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
798 }
799
800 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
801 {
802 CPUState *env;
803 PageDesc *p;
804 unsigned int h, n1;
805 tb_page_addr_t phys_pc;
806 TranslationBlock *tb1, *tb2;
807
808 /* remove the TB from the hash list */
809 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
810 h = tb_phys_hash_func(phys_pc);
811 tb_remove(&tb_phys_hash[h], tb,
812 offsetof(TranslationBlock, phys_hash_next));
813
814 /* remove the TB from the page list */
815 if (tb->page_addr[0] != page_addr) {
816 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
817 tb_page_remove(&p->first_tb, tb);
818 invalidate_page_bitmap(p);
819 }
820 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
821 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
822 tb_page_remove(&p->first_tb, tb);
823 invalidate_page_bitmap(p);
824 }
825
826 tb_invalidated_flag = 1;
827
828 /* remove the TB from the hash list */
829 h = tb_jmp_cache_hash_func(tb->pc);
830 for(env = first_cpu; env != NULL; env = env->next_cpu) {
831 if (env->tb_jmp_cache[h] == tb)
832 env->tb_jmp_cache[h] = NULL;
833 }
834
835 /* suppress this TB from the two jump lists */
836 tb_jmp_remove(tb, 0);
837 tb_jmp_remove(tb, 1);
838
839 /* suppress any remaining jumps to this TB */
840 tb1 = tb->jmp_first;
841 for(;;) {
842 n1 = (long)tb1 & 3;
843 if (n1 == 2)
844 break;
845 tb1 = (TranslationBlock *)((long)tb1 & ~3);
846 tb2 = tb1->jmp_next[n1];
847 tb_reset_jump(tb1, n1);
848 tb1->jmp_next[n1] = NULL;
849 tb1 = tb2;
850 }
851 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
852
853 tb_phys_invalidate_count++;
854 }
855
856 static inline void set_bits(uint8_t *tab, int start, int len)
857 {
858 int end, mask, end1;
859
860 end = start + len;
861 tab += start >> 3;
862 mask = 0xff << (start & 7);
863 if ((start & ~7) == (end & ~7)) {
864 if (start < end) {
865 mask &= ~(0xff << (end & 7));
866 *tab |= mask;
867 }
868 } else {
869 *tab++ |= mask;
870 start = (start + 8) & ~7;
871 end1 = end & ~7;
872 while (start < end1) {
873 *tab++ = 0xff;
874 start += 8;
875 }
876 if (start < end) {
877 mask = ~(0xff << (end & 7));
878 *tab |= mask;
879 }
880 }
881 }
882
883 static void build_page_bitmap(PageDesc *p)
884 {
885 int n, tb_start, tb_end;
886 TranslationBlock *tb;
887
888 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
889
890 tb = p->first_tb;
891 while (tb != NULL) {
892 n = (long)tb & 3;
893 tb = (TranslationBlock *)((long)tb & ~3);
894 /* NOTE: this is subtle as a TB may span two physical pages */
895 if (n == 0) {
896 /* NOTE: tb_end may be after the end of the page, but
897 it is not a problem */
898 tb_start = tb->pc & ~TARGET_PAGE_MASK;
899 tb_end = tb_start + tb->size;
900 if (tb_end > TARGET_PAGE_SIZE)
901 tb_end = TARGET_PAGE_SIZE;
902 } else {
903 tb_start = 0;
904 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
905 }
906 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
907 tb = tb->page_next[n];
908 }
909 }
910
911 TranslationBlock *tb_gen_code(CPUState *env,
912 target_ulong pc, target_ulong cs_base,
913 int flags, int cflags)
914 {
915 TranslationBlock *tb;
916 uint8_t *tc_ptr;
917 tb_page_addr_t phys_pc, phys_page2;
918 target_ulong virt_page2;
919 int code_gen_size;
920
921 phys_pc = get_page_addr_code(env, pc);
922 tb = tb_alloc(pc);
923 if (!tb) {
924 /* flush must be done */
925 tb_flush(env);
926 /* cannot fail at this point */
927 tb = tb_alloc(pc);
928 /* Don't forget to invalidate previous TB info. */
929 tb_invalidated_flag = 1;
930 }
931 tc_ptr = code_gen_ptr;
932 tb->tc_ptr = tc_ptr;
933 tb->cs_base = cs_base;
934 tb->flags = flags;
935 tb->cflags = cflags;
936 cpu_gen_code(env, tb, &code_gen_size);
937 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
938
939 /* check next page if needed */
940 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
941 phys_page2 = -1;
942 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
943 phys_page2 = get_page_addr_code(env, virt_page2);
944 }
945 tb_link_page(tb, phys_pc, phys_page2);
946 return tb;
947 }
948
949 /* invalidate all TBs which intersect with the target physical page
950 starting in range [start;end[. NOTE: start and end must refer to
951 the same physical page. 'is_cpu_write_access' should be true if called
952 from a real cpu write access: the virtual CPU will exit the current
953 TB if code is modified inside this TB. */
954 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
955 int is_cpu_write_access)
956 {
957 TranslationBlock *tb, *tb_next, *saved_tb;
958 CPUState *env = cpu_single_env;
959 tb_page_addr_t tb_start, tb_end;
960 PageDesc *p;
961 int n;
962 #ifdef TARGET_HAS_PRECISE_SMC
963 int current_tb_not_found = is_cpu_write_access;
964 TranslationBlock *current_tb = NULL;
965 int current_tb_modified = 0;
966 target_ulong current_pc = 0;
967 target_ulong current_cs_base = 0;
968 int current_flags = 0;
969 #endif /* TARGET_HAS_PRECISE_SMC */
970
971 p = page_find(start >> TARGET_PAGE_BITS);
972 if (!p)
973 return;
974 if (!p->code_bitmap &&
975 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
976 is_cpu_write_access) {
977 /* build code bitmap */
978 build_page_bitmap(p);
979 }
980
981 /* we remove all the TBs in the range [start, end[ */
982 /* XXX: see if in some cases it could be faster to invalidate all the code */
983 tb = p->first_tb;
984 while (tb != NULL) {
985 n = (long)tb & 3;
986 tb = (TranslationBlock *)((long)tb & ~3);
987 tb_next = tb->page_next[n];
988 /* NOTE: this is subtle as a TB may span two physical pages */
989 if (n == 0) {
990 /* NOTE: tb_end may be after the end of the page, but
991 it is not a problem */
992 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
993 tb_end = tb_start + tb->size;
994 } else {
995 tb_start = tb->page_addr[1];
996 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
997 }
998 if (!(tb_end <= start || tb_start >= end)) {
999 #ifdef TARGET_HAS_PRECISE_SMC
1000 if (current_tb_not_found) {
1001 current_tb_not_found = 0;
1002 current_tb = NULL;
1003 if (env->mem_io_pc) {
1004 /* now we have a real cpu fault */
1005 current_tb = tb_find_pc(env->mem_io_pc);
1006 }
1007 }
1008 if (current_tb == tb &&
1009 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1010 /* If we are modifying the current TB, we must stop
1011 its execution. We could be more precise by checking
1012 that the modification is after the current PC, but it
1013 would require a specialized function to partially
1014 restore the CPU state */
1015
1016 current_tb_modified = 1;
1017 cpu_restore_state(current_tb, env,
1018 env->mem_io_pc, NULL);
1019 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1020 &current_flags);
1021 }
1022 #endif /* TARGET_HAS_PRECISE_SMC */
1023 /* we need to do that to handle the case where a signal
1024 occurs while doing tb_phys_invalidate() */
1025 saved_tb = NULL;
1026 if (env) {
1027 saved_tb = env->current_tb;
1028 env->current_tb = NULL;
1029 }
1030 tb_phys_invalidate(tb, -1);
1031 if (env) {
1032 env->current_tb = saved_tb;
1033 if (env->interrupt_request && env->current_tb)
1034 cpu_interrupt(env, env->interrupt_request);
1035 }
1036 }
1037 tb = tb_next;
1038 }
1039 #if !defined(CONFIG_USER_ONLY)
1040 /* if no code remaining, no need to continue to use slow writes */
1041 if (!p->first_tb) {
1042 invalidate_page_bitmap(p);
1043 if (is_cpu_write_access) {
1044 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1045 }
1046 }
1047 #endif
1048 #ifdef TARGET_HAS_PRECISE_SMC
1049 if (current_tb_modified) {
1050 /* we generate a block containing just the instruction
1051 modifying the memory. It will ensure that it cannot modify
1052 itself */
1053 env->current_tb = NULL;
1054 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1055 cpu_resume_from_signal(env, NULL);
1056 }
1057 #endif
1058 }
1059
1060 /* len must be <= 8 and start must be a multiple of len */
1061 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1062 {
1063 PageDesc *p;
1064 int offset, b;
1065 #if 0
1066 if (1) {
1067 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1068 cpu_single_env->mem_io_vaddr, len,
1069 cpu_single_env->eip,
1070 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1071 }
1072 #endif
1073 p = page_find(start >> TARGET_PAGE_BITS);
1074 if (!p)
1075 return;
1076 if (p->code_bitmap) {
1077 offset = start & ~TARGET_PAGE_MASK;
1078 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1079 if (b & ((1 << len) - 1))
1080 goto do_invalidate;
1081 } else {
1082 do_invalidate:
1083 tb_invalidate_phys_page_range(start, start + len, 1);
1084 }
1085 }
1086
1087 #if !defined(CONFIG_SOFTMMU)
1088 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1089 unsigned long pc, void *puc)
1090 {
1091 TranslationBlock *tb;
1092 PageDesc *p;
1093 int n;
1094 #ifdef TARGET_HAS_PRECISE_SMC
1095 TranslationBlock *current_tb = NULL;
1096 CPUState *env = cpu_single_env;
1097 int current_tb_modified = 0;
1098 target_ulong current_pc = 0;
1099 target_ulong current_cs_base = 0;
1100 int current_flags = 0;
1101 #endif
1102
1103 addr &= TARGET_PAGE_MASK;
1104 p = page_find(addr >> TARGET_PAGE_BITS);
1105 if (!p)
1106 return;
1107 tb = p->first_tb;
1108 #ifdef TARGET_HAS_PRECISE_SMC
1109 if (tb && pc != 0) {
1110 current_tb = tb_find_pc(pc);
1111 }
1112 #endif
1113 while (tb != NULL) {
1114 n = (long)tb & 3;
1115 tb = (TranslationBlock *)((long)tb & ~3);
1116 #ifdef TARGET_HAS_PRECISE_SMC
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1124
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env, pc, puc);
1127 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1128 &current_flags);
1129 }
1130 #endif /* TARGET_HAS_PRECISE_SMC */
1131 tb_phys_invalidate(tb, addr);
1132 tb = tb->page_next[n];
1133 }
1134 p->first_tb = NULL;
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_modified) {
1137 /* we generate a block containing just the instruction
1138 modifying the memory. It will ensure that it cannot modify
1139 itself */
1140 env->current_tb = NULL;
1141 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1142 cpu_resume_from_signal(env, puc);
1143 }
1144 #endif
1145 }
1146 #endif
1147
1148 /* add the tb in the target page and protect it if necessary */
1149 static inline void tb_alloc_page(TranslationBlock *tb,
1150 unsigned int n, tb_page_addr_t page_addr)
1151 {
1152 PageDesc *p;
1153 TranslationBlock *last_first_tb;
1154
1155 tb->page_addr[n] = page_addr;
1156 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1157 tb->page_next[n] = p->first_tb;
1158 last_first_tb = p->first_tb;
1159 p->first_tb = (TranslationBlock *)((long)tb | n);
1160 invalidate_page_bitmap(p);
1161
1162 #if defined(TARGET_HAS_SMC) || 1
1163
1164 #if defined(CONFIG_USER_ONLY)
1165 if (p->flags & PAGE_WRITE) {
1166 target_ulong addr;
1167 PageDesc *p2;
1168 int prot;
1169
1170 /* force the host page as non writable (writes will have a
1171 page fault + mprotect overhead) */
1172 page_addr &= qemu_host_page_mask;
1173 prot = 0;
1174 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1175 addr += TARGET_PAGE_SIZE) {
1176
1177 p2 = page_find (addr >> TARGET_PAGE_BITS);
1178 if (!p2)
1179 continue;
1180 prot |= p2->flags;
1181 p2->flags &= ~PAGE_WRITE;
1182 page_get_flags(addr);
1183 }
1184 mprotect(g2h(page_addr), qemu_host_page_size,
1185 (prot & PAGE_BITS) & ~PAGE_WRITE);
1186 #ifdef DEBUG_TB_INVALIDATE
1187 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1188 page_addr);
1189 #endif
1190 }
1191 #else
1192 /* if some code is already present, then the pages are already
1193 protected. So we handle the case where only the first TB is
1194 allocated in a physical page */
1195 if (!last_first_tb) {
1196 tlb_protect_code(page_addr);
1197 }
1198 #endif
1199
1200 #endif /* TARGET_HAS_SMC */
1201 }
1202
1203 /* Allocate a new translation block. Flush the translation buffer if
1204 too many translation blocks or too much generated code. */
1205 TranslationBlock *tb_alloc(target_ulong pc)
1206 {
1207 TranslationBlock *tb;
1208
1209 if (nb_tbs >= code_gen_max_blocks ||
1210 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1211 return NULL;
1212 tb = &tbs[nb_tbs++];
1213 tb->pc = pc;
1214 tb->cflags = 0;
1215 return tb;
1216 }
1217
1218 void tb_free(TranslationBlock *tb)
1219 {
1220 /* In practice this is mostly used for single use temporary TB
1221 Ignore the hard cases and just back up if this TB happens to
1222 be the last one generated. */
1223 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1224 code_gen_ptr = tb->tc_ptr;
1225 nb_tbs--;
1226 }
1227 }
1228
1229 /* add a new TB and link it to the physical page tables. phys_page2 is
1230 (-1) to indicate that only one page contains the TB. */
1231 void tb_link_page(TranslationBlock *tb,
1232 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1233 {
1234 unsigned int h;
1235 TranslationBlock **ptb;
1236
1237 /* Grab the mmap lock to stop another thread invalidating this TB
1238 before we are done. */
1239 mmap_lock();
1240 /* add in the physical hash table */
1241 h = tb_phys_hash_func(phys_pc);
1242 ptb = &tb_phys_hash[h];
1243 tb->phys_hash_next = *ptb;
1244 *ptb = tb;
1245
1246 /* add in the page list */
1247 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1248 if (phys_page2 != -1)
1249 tb_alloc_page(tb, 1, phys_page2);
1250 else
1251 tb->page_addr[1] = -1;
1252
1253 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1254 tb->jmp_next[0] = NULL;
1255 tb->jmp_next[1] = NULL;
1256
1257 /* init original jump addresses */
1258 if (tb->tb_next_offset[0] != 0xffff)
1259 tb_reset_jump(tb, 0);
1260 if (tb->tb_next_offset[1] != 0xffff)
1261 tb_reset_jump(tb, 1);
1262
1263 #ifdef DEBUG_TB_CHECK
1264 tb_page_check();
1265 #endif
1266 mmap_unlock();
1267 }
1268
1269 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1270 tb[1].tc_ptr. Return NULL if not found */
1271 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1272 {
1273 int m_min, m_max, m;
1274 unsigned long v;
1275 TranslationBlock *tb;
1276
1277 if (nb_tbs <= 0)
1278 return NULL;
1279 if (tc_ptr < (unsigned long)code_gen_buffer ||
1280 tc_ptr >= (unsigned long)code_gen_ptr)
1281 return NULL;
1282 /* binary search (cf Knuth) */
1283 m_min = 0;
1284 m_max = nb_tbs - 1;
1285 while (m_min <= m_max) {
1286 m = (m_min + m_max) >> 1;
1287 tb = &tbs[m];
1288 v = (unsigned long)tb->tc_ptr;
1289 if (v == tc_ptr)
1290 return tb;
1291 else if (tc_ptr < v) {
1292 m_max = m - 1;
1293 } else {
1294 m_min = m + 1;
1295 }
1296 }
1297 return &tbs[m_max];
1298 }
1299
1300 static void tb_reset_jump_recursive(TranslationBlock *tb);
1301
1302 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1303 {
1304 TranslationBlock *tb1, *tb_next, **ptb;
1305 unsigned int n1;
1306
1307 tb1 = tb->jmp_next[n];
1308 if (tb1 != NULL) {
1309 /* find head of list */
1310 for(;;) {
1311 n1 = (long)tb1 & 3;
1312 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1313 if (n1 == 2)
1314 break;
1315 tb1 = tb1->jmp_next[n1];
1316 }
1317 /* we are now sure now that tb jumps to tb1 */
1318 tb_next = tb1;
1319
1320 /* remove tb from the jmp_first list */
1321 ptb = &tb_next->jmp_first;
1322 for(;;) {
1323 tb1 = *ptb;
1324 n1 = (long)tb1 & 3;
1325 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1326 if (n1 == n && tb1 == tb)
1327 break;
1328 ptb = &tb1->jmp_next[n1];
1329 }
1330 *ptb = tb->jmp_next[n];
1331 tb->jmp_next[n] = NULL;
1332
1333 /* suppress the jump to next tb in generated code */
1334 tb_reset_jump(tb, n);
1335
1336 /* suppress jumps in the tb on which we could have jumped */
1337 tb_reset_jump_recursive(tb_next);
1338 }
1339 }
1340
1341 static void tb_reset_jump_recursive(TranslationBlock *tb)
1342 {
1343 tb_reset_jump_recursive2(tb, 0);
1344 tb_reset_jump_recursive2(tb, 1);
1345 }
1346
1347 #if defined(TARGET_HAS_ICE)
1348 #if defined(CONFIG_USER_ONLY)
1349 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1350 {
1351 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1352 }
1353 #else
1354 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1355 {
1356 target_phys_addr_t addr;
1357 target_ulong pd;
1358 ram_addr_t ram_addr;
1359 PhysPageDesc *p;
1360
1361 addr = cpu_get_phys_page_debug(env, pc);
1362 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1363 if (!p) {
1364 pd = IO_MEM_UNASSIGNED;
1365 } else {
1366 pd = p->phys_offset;
1367 }
1368 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1369 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1370 }
1371 #endif
1372 #endif /* TARGET_HAS_ICE */
1373
1374 #if defined(CONFIG_USER_ONLY)
1375 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1376
1377 {
1378 }
1379
1380 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
1382 {
1383 return -ENOSYS;
1384 }
1385 #else
1386 /* Add a watchpoint. */
1387 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1388 int flags, CPUWatchpoint **watchpoint)
1389 {
1390 target_ulong len_mask = ~(len - 1);
1391 CPUWatchpoint *wp;
1392
1393 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1394 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1395 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1396 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1397 return -EINVAL;
1398 }
1399 wp = qemu_malloc(sizeof(*wp));
1400
1401 wp->vaddr = addr;
1402 wp->len_mask = len_mask;
1403 wp->flags = flags;
1404
1405 /* keep all GDB-injected watchpoints in front */
1406 if (flags & BP_GDB)
1407 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1408 else
1409 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1410
1411 tlb_flush_page(env, addr);
1412
1413 if (watchpoint)
1414 *watchpoint = wp;
1415 return 0;
1416 }
1417
1418 /* Remove a specific watchpoint. */
1419 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1420 int flags)
1421 {
1422 target_ulong len_mask = ~(len - 1);
1423 CPUWatchpoint *wp;
1424
1425 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1426 if (addr == wp->vaddr && len_mask == wp->len_mask
1427 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1428 cpu_watchpoint_remove_by_ref(env, wp);
1429 return 0;
1430 }
1431 }
1432 return -ENOENT;
1433 }
1434
1435 /* Remove a specific watchpoint by reference. */
1436 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1437 {
1438 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1439
1440 tlb_flush_page(env, watchpoint->vaddr);
1441
1442 qemu_free(watchpoint);
1443 }
1444
1445 /* Remove all matching watchpoints. */
1446 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1447 {
1448 CPUWatchpoint *wp, *next;
1449
1450 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1451 if (wp->flags & mask)
1452 cpu_watchpoint_remove_by_ref(env, wp);
1453 }
1454 }
1455 #endif
1456
1457 /* Add a breakpoint. */
1458 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1459 CPUBreakpoint **breakpoint)
1460 {
1461 #if defined(TARGET_HAS_ICE)
1462 CPUBreakpoint *bp;
1463
1464 bp = qemu_malloc(sizeof(*bp));
1465
1466 bp->pc = pc;
1467 bp->flags = flags;
1468
1469 /* keep all GDB-injected breakpoints in front */
1470 if (flags & BP_GDB)
1471 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1472 else
1473 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1474
1475 breakpoint_invalidate(env, pc);
1476
1477 if (breakpoint)
1478 *breakpoint = bp;
1479 return 0;
1480 #else
1481 return -ENOSYS;
1482 #endif
1483 }
1484
1485 /* Remove a specific breakpoint. */
1486 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1487 {
1488 #if defined(TARGET_HAS_ICE)
1489 CPUBreakpoint *bp;
1490
1491 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1492 if (bp->pc == pc && bp->flags == flags) {
1493 cpu_breakpoint_remove_by_ref(env, bp);
1494 return 0;
1495 }
1496 }
1497 return -ENOENT;
1498 #else
1499 return -ENOSYS;
1500 #endif
1501 }
1502
1503 /* Remove a specific breakpoint by reference. */
1504 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1505 {
1506 #if defined(TARGET_HAS_ICE)
1507 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1508
1509 breakpoint_invalidate(env, breakpoint->pc);
1510
1511 qemu_free(breakpoint);
1512 #endif
1513 }
1514
1515 /* Remove all matching breakpoints. */
1516 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1517 {
1518 #if defined(TARGET_HAS_ICE)
1519 CPUBreakpoint *bp, *next;
1520
1521 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1522 if (bp->flags & mask)
1523 cpu_breakpoint_remove_by_ref(env, bp);
1524 }
1525 #endif
1526 }
1527
1528 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1529 CPU loop after each instruction */
1530 void cpu_single_step(CPUState *env, int enabled)
1531 {
1532 #if defined(TARGET_HAS_ICE)
1533 if (env->singlestep_enabled != enabled) {
1534 env->singlestep_enabled = enabled;
1535 if (kvm_enabled())
1536 kvm_update_guest_debug(env, 0);
1537 else {
1538 /* must flush all the translated code to avoid inconsistencies */
1539 /* XXX: only flush what is necessary */
1540 tb_flush(env);
1541 }
1542 }
1543 #endif
1544 }
1545
1546 /* enable or disable low levels log */
1547 void cpu_set_log(int log_flags)
1548 {
1549 loglevel = log_flags;
1550 if (loglevel && !logfile) {
1551 logfile = fopen(logfilename, log_append ? "a" : "w");
1552 if (!logfile) {
1553 perror(logfilename);
1554 _exit(1);
1555 }
1556 #if !defined(CONFIG_SOFTMMU)
1557 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1558 {
1559 static char logfile_buf[4096];
1560 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1561 }
1562 #elif !defined(_WIN32)
1563 /* Win32 doesn't support line-buffering and requires size >= 2 */
1564 setvbuf(logfile, NULL, _IOLBF, 0);
1565 #endif
1566 log_append = 1;
1567 }
1568 if (!loglevel && logfile) {
1569 fclose(logfile);
1570 logfile = NULL;
1571 }
1572 }
1573
1574 void cpu_set_log_filename(const char *filename)
1575 {
1576 logfilename = strdup(filename);
1577 if (logfile) {
1578 fclose(logfile);
1579 logfile = NULL;
1580 }
1581 cpu_set_log(loglevel);
1582 }
1583
1584 static void cpu_unlink_tb(CPUState *env)
1585 {
1586 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1587 problem and hope the cpu will stop of its own accord. For userspace
1588 emulation this often isn't actually as bad as it sounds. Often
1589 signals are used primarily to interrupt blocking syscalls. */
1590 TranslationBlock *tb;
1591 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1592
1593 spin_lock(&interrupt_lock);
1594 tb = env->current_tb;
1595 /* if the cpu is currently executing code, we must unlink it and
1596 all the potentially executing TB */
1597 if (tb) {
1598 env->current_tb = NULL;
1599 tb_reset_jump_recursive(tb);
1600 }
1601 spin_unlock(&interrupt_lock);
1602 }
1603
1604 /* mask must never be zero, except for A20 change call */
1605 void cpu_interrupt(CPUState *env, int mask)
1606 {
1607 int old_mask;
1608
1609 old_mask = env->interrupt_request;
1610 env->interrupt_request |= mask;
1611
1612 #ifndef CONFIG_USER_ONLY
1613 /*
1614 * If called from iothread context, wake the target cpu in
1615 * case its halted.
1616 */
1617 if (!qemu_cpu_self(env)) {
1618 qemu_cpu_kick(env);
1619 return;
1620 }
1621 #endif
1622
1623 if (use_icount) {
1624 env->icount_decr.u16.high = 0xffff;
1625 #ifndef CONFIG_USER_ONLY
1626 if (!can_do_io(env)
1627 && (mask & ~old_mask) != 0) {
1628 cpu_abort(env, "Raised interrupt while not in I/O function");
1629 }
1630 #endif
1631 } else {
1632 cpu_unlink_tb(env);
1633 }
1634 }
1635
1636 void cpu_reset_interrupt(CPUState *env, int mask)
1637 {
1638 env->interrupt_request &= ~mask;
1639 }
1640
1641 void cpu_exit(CPUState *env)
1642 {
1643 env->exit_request = 1;
1644 cpu_unlink_tb(env);
1645 }
1646
1647 const CPULogItem cpu_log_items[] = {
1648 { CPU_LOG_TB_OUT_ASM, "out_asm",
1649 "show generated host assembly code for each compiled TB" },
1650 { CPU_LOG_TB_IN_ASM, "in_asm",
1651 "show target assembly code for each compiled TB" },
1652 { CPU_LOG_TB_OP, "op",
1653 "show micro ops for each compiled TB" },
1654 { CPU_LOG_TB_OP_OPT, "op_opt",
1655 "show micro ops "
1656 #ifdef TARGET_I386
1657 "before eflags optimization and "
1658 #endif
1659 "after liveness analysis" },
1660 { CPU_LOG_INT, "int",
1661 "show interrupts/exceptions in short format" },
1662 { CPU_LOG_EXEC, "exec",
1663 "show trace before each executed TB (lots of logs)" },
1664 { CPU_LOG_TB_CPU, "cpu",
1665 "show CPU state before block translation" },
1666 #ifdef TARGET_I386
1667 { CPU_LOG_PCALL, "pcall",
1668 "show protected mode far calls/returns/exceptions" },
1669 { CPU_LOG_RESET, "cpu_reset",
1670 "show CPU state before CPU resets" },
1671 #endif
1672 #ifdef DEBUG_IOPORT
1673 { CPU_LOG_IOPORT, "ioport",
1674 "show all i/o ports accesses" },
1675 #endif
1676 { 0, NULL, NULL },
1677 };
1678
1679 #ifndef CONFIG_USER_ONLY
1680 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1681 = QLIST_HEAD_INITIALIZER(memory_client_list);
1682
1683 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1684 ram_addr_t size,
1685 ram_addr_t phys_offset)
1686 {
1687 CPUPhysMemoryClient *client;
1688 QLIST_FOREACH(client, &memory_client_list, list) {
1689 client->set_memory(client, start_addr, size, phys_offset);
1690 }
1691 }
1692
1693 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1694 target_phys_addr_t end)
1695 {
1696 CPUPhysMemoryClient *client;
1697 QLIST_FOREACH(client, &memory_client_list, list) {
1698 int r = client->sync_dirty_bitmap(client, start, end);
1699 if (r < 0)
1700 return r;
1701 }
1702 return 0;
1703 }
1704
1705 static int cpu_notify_migration_log(int enable)
1706 {
1707 CPUPhysMemoryClient *client;
1708 QLIST_FOREACH(client, &memory_client_list, list) {
1709 int r = client->migration_log(client, enable);
1710 if (r < 0)
1711 return r;
1712 }
1713 return 0;
1714 }
1715
1716 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1717 int level, void **lp)
1718 {
1719 int i;
1720
1721 if (*lp == NULL) {
1722 return;
1723 }
1724 if (level == 0) {
1725 PhysPageDesc *pd = *lp;
1726 for (i = 0; i < L2_SIZE; ++i) {
1727 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1728 client->set_memory(client, pd[i].region_offset,
1729 TARGET_PAGE_SIZE, pd[i].phys_offset);
1730 }
1731 }
1732 } else {
1733 void **pp = *lp;
1734 for (i = 0; i < L2_SIZE; ++i) {
1735 phys_page_for_each_1(client, level - 1, pp + i);
1736 }
1737 }
1738 }
1739
1740 static void phys_page_for_each(CPUPhysMemoryClient *client)
1741 {
1742 int i;
1743 for (i = 0; i < P_L1_SIZE; ++i) {
1744 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1745 l1_phys_map + 1);
1746 }
1747 }
1748
1749 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1750 {
1751 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1752 phys_page_for_each(client);
1753 }
1754
1755 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1756 {
1757 QLIST_REMOVE(client, list);
1758 }
1759 #endif
1760
1761 static int cmp1(const char *s1, int n, const char *s2)
1762 {
1763 if (strlen(s2) != n)
1764 return 0;
1765 return memcmp(s1, s2, n) == 0;
1766 }
1767
1768 /* takes a comma separated list of log masks. Return 0 if error. */
1769 int cpu_str_to_log_mask(const char *str)
1770 {
1771 const CPULogItem *item;
1772 int mask;
1773 const char *p, *p1;
1774
1775 p = str;
1776 mask = 0;
1777 for(;;) {
1778 p1 = strchr(p, ',');
1779 if (!p1)
1780 p1 = p + strlen(p);
1781 if(cmp1(p,p1-p,"all")) {
1782 for(item = cpu_log_items; item->mask != 0; item++) {
1783 mask |= item->mask;
1784 }
1785 } else {
1786 for(item = cpu_log_items; item->mask != 0; item++) {
1787 if (cmp1(p, p1 - p, item->name))
1788 goto found;
1789 }
1790 return 0;
1791 }
1792 found:
1793 mask |= item->mask;
1794 if (*p1 != ',')
1795 break;
1796 p = p1 + 1;
1797 }
1798 return mask;
1799 }
1800
1801 void cpu_abort(CPUState *env, const char *fmt, ...)
1802 {
1803 va_list ap;
1804 va_list ap2;
1805
1806 va_start(ap, fmt);
1807 va_copy(ap2, ap);
1808 fprintf(stderr, "qemu: fatal: ");
1809 vfprintf(stderr, fmt, ap);
1810 fprintf(stderr, "\n");
1811 #ifdef TARGET_I386
1812 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1813 #else
1814 cpu_dump_state(env, stderr, fprintf, 0);
1815 #endif
1816 if (qemu_log_enabled()) {
1817 qemu_log("qemu: fatal: ");
1818 qemu_log_vprintf(fmt, ap2);
1819 qemu_log("\n");
1820 #ifdef TARGET_I386
1821 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1822 #else
1823 log_cpu_state(env, 0);
1824 #endif
1825 qemu_log_flush();
1826 qemu_log_close();
1827 }
1828 va_end(ap2);
1829 va_end(ap);
1830 #if defined(CONFIG_USER_ONLY)
1831 {
1832 struct sigaction act;
1833 sigfillset(&act.sa_mask);
1834 act.sa_handler = SIG_DFL;
1835 sigaction(SIGABRT, &act, NULL);
1836 }
1837 #endif
1838 abort();
1839 }
1840
1841 CPUState *cpu_copy(CPUState *env)
1842 {
1843 CPUState *new_env = cpu_init(env->cpu_model_str);
1844 CPUState *next_cpu = new_env->next_cpu;
1845 int cpu_index = new_env->cpu_index;
1846 #if defined(TARGET_HAS_ICE)
1847 CPUBreakpoint *bp;
1848 CPUWatchpoint *wp;
1849 #endif
1850
1851 memcpy(new_env, env, sizeof(CPUState));
1852
1853 /* Preserve chaining and index. */
1854 new_env->next_cpu = next_cpu;
1855 new_env->cpu_index = cpu_index;
1856
1857 /* Clone all break/watchpoints.
1858 Note: Once we support ptrace with hw-debug register access, make sure
1859 BP_CPU break/watchpoints are handled correctly on clone. */
1860 QTAILQ_INIT(&env->breakpoints);
1861 QTAILQ_INIT(&env->watchpoints);
1862 #if defined(TARGET_HAS_ICE)
1863 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1864 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1865 }
1866 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1867 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1868 wp->flags, NULL);
1869 }
1870 #endif
1871
1872 return new_env;
1873 }
1874
1875 #if !defined(CONFIG_USER_ONLY)
1876
1877 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1878 {
1879 unsigned int i;
1880
1881 /* Discard jump cache entries for any tb which might potentially
1882 overlap the flushed page. */
1883 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1884 memset (&env->tb_jmp_cache[i], 0,
1885 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1886
1887 i = tb_jmp_cache_hash_page(addr);
1888 memset (&env->tb_jmp_cache[i], 0,
1889 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1890 }
1891
1892 static CPUTLBEntry s_cputlb_empty_entry = {
1893 .addr_read = -1,
1894 .addr_write = -1,
1895 .addr_code = -1,
1896 .addend = -1,
1897 };
1898
1899 /* NOTE: if flush_global is true, also flush global entries (not
1900 implemented yet) */
1901 void tlb_flush(CPUState *env, int flush_global)
1902 {
1903 int i;
1904
1905 #if defined(DEBUG_TLB)
1906 printf("tlb_flush:\n");
1907 #endif
1908 /* must reset current TB so that interrupts cannot modify the
1909 links while we are modifying them */
1910 env->current_tb = NULL;
1911
1912 for(i = 0; i < CPU_TLB_SIZE; i++) {
1913 int mmu_idx;
1914 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1915 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1916 }
1917 }
1918
1919 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1920
1921 env->tlb_flush_addr = -1;
1922 env->tlb_flush_mask = 0;
1923 tlb_flush_count++;
1924 }
1925
1926 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1927 {
1928 if (addr == (tlb_entry->addr_read &
1929 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1930 addr == (tlb_entry->addr_write &
1931 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1932 addr == (tlb_entry->addr_code &
1933 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1934 *tlb_entry = s_cputlb_empty_entry;
1935 }
1936 }
1937
1938 void tlb_flush_page(CPUState *env, target_ulong addr)
1939 {
1940 int i;
1941 int mmu_idx;
1942
1943 #if defined(DEBUG_TLB)
1944 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1945 #endif
1946 /* Check if we need to flush due to large pages. */
1947 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1948 #if defined(DEBUG_TLB)
1949 printf("tlb_flush_page: forced full flush ("
1950 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1951 env->tlb_flush_addr, env->tlb_flush_mask);
1952 #endif
1953 tlb_flush(env, 1);
1954 return;
1955 }
1956 /* must reset current TB so that interrupts cannot modify the
1957 links while we are modifying them */
1958 env->current_tb = NULL;
1959
1960 addr &= TARGET_PAGE_MASK;
1961 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1962 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1963 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1964
1965 tlb_flush_jmp_cache(env, addr);
1966 }
1967
1968 /* update the TLBs so that writes to code in the virtual page 'addr'
1969 can be detected */
1970 static void tlb_protect_code(ram_addr_t ram_addr)
1971 {
1972 cpu_physical_memory_reset_dirty(ram_addr,
1973 ram_addr + TARGET_PAGE_SIZE,
1974 CODE_DIRTY_FLAG);
1975 }
1976
1977 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1978 tested for self modifying code */
1979 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1980 target_ulong vaddr)
1981 {
1982 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1983 }
1984
1985 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1986 unsigned long start, unsigned long length)
1987 {
1988 unsigned long addr;
1989 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1990 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1991 if ((addr - start) < length) {
1992 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1993 }
1994 }
1995 }
1996
1997 /* Note: start and end must be within the same ram block. */
1998 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1999 int dirty_flags)
2000 {
2001 CPUState *env;
2002 unsigned long length, start1;
2003 int i, mask, len;
2004 uint8_t *p;
2005
2006 start &= TARGET_PAGE_MASK;
2007 end = TARGET_PAGE_ALIGN(end);
2008
2009 length = end - start;
2010 if (length == 0)
2011 return;
2012 len = length >> TARGET_PAGE_BITS;
2013 mask = ~dirty_flags;
2014 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2015 for(i = 0; i < len; i++)
2016 p[i] &= mask;
2017
2018 /* we modify the TLB cache so that the dirty bit will be set again
2019 when accessing the range */
2020 start1 = (unsigned long)qemu_get_ram_ptr(start);
2021 /* Chek that we don't span multiple blocks - this breaks the
2022 address comparisons below. */
2023 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2024 != (end - 1) - start) {
2025 abort();
2026 }
2027
2028 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2029 int mmu_idx;
2030 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2031 for(i = 0; i < CPU_TLB_SIZE; i++)
2032 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2033 start1, length);
2034 }
2035 }
2036 }
2037
2038 int cpu_physical_memory_set_dirty_tracking(int enable)
2039 {
2040 int ret = 0;
2041 in_migration = enable;
2042 ret = cpu_notify_migration_log(!!enable);
2043 return ret;
2044 }
2045
2046 int cpu_physical_memory_get_dirty_tracking(void)
2047 {
2048 return in_migration;
2049 }
2050
2051 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2052 target_phys_addr_t end_addr)
2053 {
2054 int ret;
2055
2056 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2057 return ret;
2058 }
2059
2060 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2061 {
2062 ram_addr_t ram_addr;
2063 void *p;
2064
2065 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2066 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2067 + tlb_entry->addend);
2068 ram_addr = qemu_ram_addr_from_host(p);
2069 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2070 tlb_entry->addr_write |= TLB_NOTDIRTY;
2071 }
2072 }
2073 }
2074
2075 /* update the TLB according to the current state of the dirty bits */
2076 void cpu_tlb_update_dirty(CPUState *env)
2077 {
2078 int i;
2079 int mmu_idx;
2080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2081 for(i = 0; i < CPU_TLB_SIZE; i++)
2082 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2083 }
2084 }
2085
2086 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2087 {
2088 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2089 tlb_entry->addr_write = vaddr;
2090 }
2091
2092 /* update the TLB corresponding to virtual page vaddr
2093 so that it is no longer dirty */
2094 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2095 {
2096 int i;
2097 int mmu_idx;
2098
2099 vaddr &= TARGET_PAGE_MASK;
2100 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2101 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2102 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2103 }
2104
2105 /* Our TLB does not support large pages, so remember the area covered by
2106 large pages and trigger a full TLB flush if these are invalidated. */
2107 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2108 target_ulong size)
2109 {
2110 target_ulong mask = ~(size - 1);
2111
2112 if (env->tlb_flush_addr == (target_ulong)-1) {
2113 env->tlb_flush_addr = vaddr & mask;
2114 env->tlb_flush_mask = mask;
2115 return;
2116 }
2117 /* Extend the existing region to include the new page.
2118 This is a compromise between unnecessary flushes and the cost
2119 of maintaining a full variable size TLB. */
2120 mask &= env->tlb_flush_mask;
2121 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2122 mask <<= 1;
2123 }
2124 env->tlb_flush_addr &= mask;
2125 env->tlb_flush_mask = mask;
2126 }
2127
2128 /* Add a new TLB entry. At most one entry for a given virtual address
2129 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2130 supplied size is only used by tlb_flush_page. */
2131 void tlb_set_page(CPUState *env, target_ulong vaddr,
2132 target_phys_addr_t paddr, int prot,
2133 int mmu_idx, target_ulong size)
2134 {
2135 PhysPageDesc *p;
2136 unsigned long pd;
2137 unsigned int index;
2138 target_ulong address;
2139 target_ulong code_address;
2140 target_phys_addr_t addend;
2141 CPUTLBEntry *te;
2142 CPUWatchpoint *wp;
2143 target_phys_addr_t iotlb;
2144
2145 assert(size >= TARGET_PAGE_SIZE);
2146 if (size != TARGET_PAGE_SIZE) {
2147 tlb_add_large_page(env, vaddr, size);
2148 }
2149 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2150 if (!p) {
2151 pd = IO_MEM_UNASSIGNED;
2152 } else {
2153 pd = p->phys_offset;
2154 }
2155 #if defined(DEBUG_TLB)
2156 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2157 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2158 #endif
2159
2160 address = vaddr;
2161 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2162 /* IO memory case (romd handled later) */
2163 address |= TLB_MMIO;
2164 }
2165 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2166 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2167 /* Normal RAM. */
2168 iotlb = pd & TARGET_PAGE_MASK;
2169 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2170 iotlb |= IO_MEM_NOTDIRTY;
2171 else
2172 iotlb |= IO_MEM_ROM;
2173 } else {
2174 /* IO handlers are currently passed a physical address.
2175 It would be nice to pass an offset from the base address
2176 of that region. This would avoid having to special case RAM,
2177 and avoid full address decoding in every device.
2178 We can't use the high bits of pd for this because
2179 IO_MEM_ROMD uses these as a ram address. */
2180 iotlb = (pd & ~TARGET_PAGE_MASK);
2181 if (p) {
2182 iotlb += p->region_offset;
2183 } else {
2184 iotlb += paddr;
2185 }
2186 }
2187
2188 code_address = address;
2189 /* Make accesses to pages with watchpoints go via the
2190 watchpoint trap routines. */
2191 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2192 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2193 iotlb = io_mem_watch + paddr;
2194 /* TODO: The memory case can be optimized by not trapping
2195 reads of pages with a write breakpoint. */
2196 address |= TLB_MMIO;
2197 }
2198 }
2199
2200 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2201 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2202 te = &env->tlb_table[mmu_idx][index];
2203 te->addend = addend - vaddr;
2204 if (prot & PAGE_READ) {
2205 te->addr_read = address;
2206 } else {
2207 te->addr_read = -1;
2208 }
2209
2210 if (prot & PAGE_EXEC) {
2211 te->addr_code = code_address;
2212 } else {
2213 te->addr_code = -1;
2214 }
2215 if (prot & PAGE_WRITE) {
2216 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2217 (pd & IO_MEM_ROMD)) {
2218 /* Write access calls the I/O callback. */
2219 te->addr_write = address | TLB_MMIO;
2220 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2221 !cpu_physical_memory_is_dirty(pd)) {
2222 te->addr_write = address | TLB_NOTDIRTY;
2223 } else {
2224 te->addr_write = address;
2225 }
2226 } else {
2227 te->addr_write = -1;
2228 }
2229 }
2230
2231 #else
2232
2233 void tlb_flush(CPUState *env, int flush_global)
2234 {
2235 }
2236
2237 void tlb_flush_page(CPUState *env, target_ulong addr)
2238 {
2239 }
2240
2241 /*
2242 * Walks guest process memory "regions" one by one
2243 * and calls callback function 'fn' for each region.
2244 */
2245
2246 struct walk_memory_regions_data
2247 {
2248 walk_memory_regions_fn fn;
2249 void *priv;
2250 unsigned long start;
2251 int prot;
2252 };
2253
2254 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2255 abi_ulong end, int new_prot)
2256 {
2257 if (data->start != -1ul) {
2258 int rc = data->fn(data->priv, data->start, end, data->prot);
2259 if (rc != 0) {
2260 return rc;
2261 }
2262 }
2263
2264 data->start = (new_prot ? end : -1ul);
2265 data->prot = new_prot;
2266
2267 return 0;
2268 }
2269
2270 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2271 abi_ulong base, int level, void **lp)
2272 {
2273 abi_ulong pa;
2274 int i, rc;
2275
2276 if (*lp == NULL) {
2277 return walk_memory_regions_end(data, base, 0);
2278 }
2279
2280 if (level == 0) {
2281 PageDesc *pd = *lp;
2282 for (i = 0; i < L2_SIZE; ++i) {
2283 int prot = pd[i].flags;
2284
2285 pa = base | (i << TARGET_PAGE_BITS);
2286 if (prot != data->prot) {
2287 rc = walk_memory_regions_end(data, pa, prot);
2288 if (rc != 0) {
2289 return rc;
2290 }
2291 }
2292 }
2293 } else {
2294 void **pp = *lp;
2295 for (i = 0; i < L2_SIZE; ++i) {
2296 pa = base | ((abi_ulong)i <<
2297 (TARGET_PAGE_BITS + L2_BITS * level));
2298 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2299 if (rc != 0) {
2300 return rc;
2301 }
2302 }
2303 }
2304
2305 return 0;
2306 }
2307
2308 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2309 {
2310 struct walk_memory_regions_data data;
2311 unsigned long i;
2312
2313 data.fn = fn;
2314 data.priv = priv;
2315 data.start = -1ul;
2316 data.prot = 0;
2317
2318 for (i = 0; i < V_L1_SIZE; i++) {
2319 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2320 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2321 if (rc != 0) {
2322 return rc;
2323 }
2324 }
2325
2326 return walk_memory_regions_end(&data, 0, 0);
2327 }
2328
2329 static int dump_region(void *priv, abi_ulong start,
2330 abi_ulong end, unsigned long prot)
2331 {
2332 FILE *f = (FILE *)priv;
2333
2334 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2335 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2336 start, end, end - start,
2337 ((prot & PAGE_READ) ? 'r' : '-'),
2338 ((prot & PAGE_WRITE) ? 'w' : '-'),
2339 ((prot & PAGE_EXEC) ? 'x' : '-'));
2340
2341 return (0);
2342 }
2343
2344 /* dump memory mappings */
2345 void page_dump(FILE *f)
2346 {
2347 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2348 "start", "end", "size", "prot");
2349 walk_memory_regions(f, dump_region);
2350 }
2351
2352 int page_get_flags(target_ulong address)
2353 {
2354 PageDesc *p;
2355
2356 p = page_find(address >> TARGET_PAGE_BITS);
2357 if (!p)
2358 return 0;
2359 return p->flags;
2360 }
2361
2362 /* Modify the flags of a page and invalidate the code if necessary.
2363 The flag PAGE_WRITE_ORG is positioned automatically depending
2364 on PAGE_WRITE. The mmap_lock should already be held. */
2365 void page_set_flags(target_ulong start, target_ulong end, int flags)
2366 {
2367 target_ulong addr, len;
2368
2369 /* This function should never be called with addresses outside the
2370 guest address space. If this assert fires, it probably indicates
2371 a missing call to h2g_valid. */
2372 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2373 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2374 #endif
2375 assert(start < end);
2376
2377 start = start & TARGET_PAGE_MASK;
2378 end = TARGET_PAGE_ALIGN(end);
2379
2380 if (flags & PAGE_WRITE) {
2381 flags |= PAGE_WRITE_ORG;
2382 }
2383
2384 for (addr = start, len = end - start;
2385 len != 0;
2386 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2387 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2388
2389 /* If the write protection bit is set, then we invalidate
2390 the code inside. */
2391 if (!(p->flags & PAGE_WRITE) &&
2392 (flags & PAGE_WRITE) &&
2393 p->first_tb) {
2394 tb_invalidate_phys_page(addr, 0, NULL);
2395 }
2396 p->flags = flags;
2397 }
2398 }
2399
2400 int page_check_range(target_ulong start, target_ulong len, int flags)
2401 {
2402 PageDesc *p;
2403 target_ulong end;
2404 target_ulong addr;
2405
2406 /* This function should never be called with addresses outside the
2407 guest address space. If this assert fires, it probably indicates
2408 a missing call to h2g_valid. */
2409 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2410 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2411 #endif
2412
2413 if (start + len - 1 < start) {
2414 /* We've wrapped around. */
2415 return -1;
2416 }
2417
2418 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2419 start = start & TARGET_PAGE_MASK;
2420
2421 for (addr = start, len = end - start;
2422 len != 0;
2423 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2424 p = page_find(addr >> TARGET_PAGE_BITS);
2425 if( !p )
2426 return -1;
2427 if( !(p->flags & PAGE_VALID) )
2428 return -1;
2429
2430 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2431 return -1;
2432 if (flags & PAGE_WRITE) {
2433 if (!(p->flags & PAGE_WRITE_ORG))
2434 return -1;
2435 /* unprotect the page if it was put read-only because it
2436 contains translated code */
2437 if (!(p->flags & PAGE_WRITE)) {
2438 if (!page_unprotect(addr, 0, NULL))
2439 return -1;
2440 }
2441 return 0;
2442 }
2443 }
2444 return 0;
2445 }
2446
2447 /* called from signal handler: invalidate the code and unprotect the
2448 page. Return TRUE if the fault was successfully handled. */
2449 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2450 {
2451 unsigned int page_index, prot, pindex;
2452 PageDesc *p, *p1;
2453 target_ulong host_start, host_end, addr;
2454
2455 /* Technically this isn't safe inside a signal handler. However we
2456 know this only ever happens in a synchronous SEGV handler, so in
2457 practice it seems to be ok. */
2458 mmap_lock();
2459
2460 host_start = address & qemu_host_page_mask;
2461 page_index = host_start >> TARGET_PAGE_BITS;
2462 p1 = page_find(page_index);
2463 if (!p1) {
2464 mmap_unlock();
2465 return 0;
2466 }
2467 host_end = host_start + qemu_host_page_size;
2468 p = p1;
2469 prot = 0;
2470 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2471 prot |= p->flags;
2472 p++;
2473 }
2474 /* if the page was really writable, then we change its
2475 protection back to writable */
2476 if (prot & PAGE_WRITE_ORG) {
2477 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2478 if (!(p1[pindex].flags & PAGE_WRITE)) {
2479 mprotect((void *)g2h(host_start), qemu_host_page_size,
2480 (prot & PAGE_BITS) | PAGE_WRITE);
2481 p1[pindex].flags |= PAGE_WRITE;
2482 /* and since the content will be modified, we must invalidate
2483 the corresponding translated code. */
2484 tb_invalidate_phys_page(address, pc, puc);
2485 #ifdef DEBUG_TB_CHECK
2486 tb_invalidate_check(address);
2487 #endif
2488 mmap_unlock();
2489 return 1;
2490 }
2491 }
2492 mmap_unlock();
2493 return 0;
2494 }
2495
2496 static inline void tlb_set_dirty(CPUState *env,
2497 unsigned long addr, target_ulong vaddr)
2498 {
2499 }
2500 #endif /* defined(CONFIG_USER_ONLY) */
2501
2502 #if !defined(CONFIG_USER_ONLY)
2503
2504 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2505 typedef struct subpage_t {
2506 target_phys_addr_t base;
2507 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2508 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2509 void *opaque[TARGET_PAGE_SIZE][2][4];
2510 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2511 } subpage_t;
2512
2513 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2514 ram_addr_t memory, ram_addr_t region_offset);
2515 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2516 ram_addr_t orig_memory, ram_addr_t region_offset);
2517 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2518 need_subpage) \
2519 do { \
2520 if (addr > start_addr) \
2521 start_addr2 = 0; \
2522 else { \
2523 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2524 if (start_addr2 > 0) \
2525 need_subpage = 1; \
2526 } \
2527 \
2528 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2529 end_addr2 = TARGET_PAGE_SIZE - 1; \
2530 else { \
2531 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2532 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2533 need_subpage = 1; \
2534 } \
2535 } while (0)
2536
2537 /* register physical memory.
2538 For RAM, 'size' must be a multiple of the target page size.
2539 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2540 io memory page. The address used when calling the IO function is
2541 the offset from the start of the region, plus region_offset. Both
2542 start_addr and region_offset are rounded down to a page boundary
2543 before calculating this offset. This should not be a problem unless
2544 the low bits of start_addr and region_offset differ. */
2545 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2546 ram_addr_t size,
2547 ram_addr_t phys_offset,
2548 ram_addr_t region_offset)
2549 {
2550 target_phys_addr_t addr, end_addr;
2551 PhysPageDesc *p;
2552 CPUState *env;
2553 ram_addr_t orig_size = size;
2554 void *subpage;
2555
2556 cpu_notify_set_memory(start_addr, size, phys_offset);
2557
2558 if (phys_offset == IO_MEM_UNASSIGNED) {
2559 region_offset = start_addr;
2560 }
2561 region_offset &= TARGET_PAGE_MASK;
2562 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2563 end_addr = start_addr + (target_phys_addr_t)size;
2564 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2565 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2566 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2567 ram_addr_t orig_memory = p->phys_offset;
2568 target_phys_addr_t start_addr2, end_addr2;
2569 int need_subpage = 0;
2570
2571 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2572 need_subpage);
2573 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2574 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2575 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2576 &p->phys_offset, orig_memory,
2577 p->region_offset);
2578 } else {
2579 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2580 >> IO_MEM_SHIFT];
2581 }
2582 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2583 region_offset);
2584 p->region_offset = 0;
2585 } else {
2586 p->phys_offset = phys_offset;
2587 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2588 (phys_offset & IO_MEM_ROMD))
2589 phys_offset += TARGET_PAGE_SIZE;
2590 }
2591 } else {
2592 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2593 p->phys_offset = phys_offset;
2594 p->region_offset = region_offset;
2595 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2596 (phys_offset & IO_MEM_ROMD)) {
2597 phys_offset += TARGET_PAGE_SIZE;
2598 } else {
2599 target_phys_addr_t start_addr2, end_addr2;
2600 int need_subpage = 0;
2601
2602 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2603 end_addr2, need_subpage);
2604
2605 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2606 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2607 &p->phys_offset, IO_MEM_UNASSIGNED,
2608 addr & TARGET_PAGE_MASK);
2609 subpage_register(subpage, start_addr2, end_addr2,
2610 phys_offset, region_offset);
2611 p->region_offset = 0;
2612 }
2613 }
2614 }
2615 region_offset += TARGET_PAGE_SIZE;
2616 }
2617
2618 /* since each CPU stores ram addresses in its TLB cache, we must
2619 reset the modified entries */
2620 /* XXX: slow ! */
2621 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2622 tlb_flush(env, 1);
2623 }
2624 }
2625
2626 /* XXX: temporary until new memory mapping API */
2627 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2628 {
2629 PhysPageDesc *p;
2630
2631 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2632 if (!p)
2633 return IO_MEM_UNASSIGNED;
2634 return p->phys_offset;
2635 }
2636
2637 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2638 {
2639 if (kvm_enabled())
2640 kvm_coalesce_mmio_region(addr, size);
2641 }
2642
2643 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2644 {
2645 if (kvm_enabled())
2646 kvm_uncoalesce_mmio_region(addr, size);
2647 }
2648
2649 void qemu_flush_coalesced_mmio_buffer(void)
2650 {
2651 if (kvm_enabled())
2652 kvm_flush_coalesced_mmio_buffer();
2653 }
2654
2655 #if defined(__linux__) && !defined(TARGET_S390X)
2656
2657 #include <sys/vfs.h>
2658
2659 #define HUGETLBFS_MAGIC 0x958458f6
2660
2661 static long gethugepagesize(const char *path)
2662 {
2663 struct statfs fs;
2664 int ret;
2665
2666 do {
2667 ret = statfs(path, &fs);
2668 } while (ret != 0 && errno == EINTR);
2669
2670 if (ret != 0) {
2671 perror("statfs");
2672 return 0;
2673 }
2674
2675 if (fs.f_type != HUGETLBFS_MAGIC)
2676 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2677
2678 return fs.f_bsize;
2679 }
2680
2681 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2682 {
2683 char *filename;
2684 void *area;
2685 int fd;
2686 #ifdef MAP_POPULATE
2687 int flags;
2688 #endif
2689 unsigned long hpagesize;
2690
2691 hpagesize = gethugepagesize(path);
2692 if (!hpagesize) {
2693 return NULL;
2694 }
2695
2696 if (memory < hpagesize) {
2697 return NULL;
2698 }
2699
2700 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2701 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2702 return NULL;
2703 }
2704
2705 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2706 return NULL;
2707 }
2708
2709 fd = mkstemp(filename);
2710 if (fd < 0) {
2711 perror("mkstemp");
2712 free(filename);
2713 return NULL;
2714 }
2715 unlink(filename);
2716 free(filename);
2717
2718 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2719
2720 /*
2721 * ftruncate is not supported by hugetlbfs in older
2722 * hosts, so don't bother bailing out on errors.
2723 * If anything goes wrong with it under other filesystems,
2724 * mmap will fail.
2725 */
2726 if (ftruncate(fd, memory))
2727 perror("ftruncate");
2728
2729 #ifdef MAP_POPULATE
2730 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2731 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2732 * to sidestep this quirk.
2733 */
2734 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2735 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2736 #else
2737 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2738 #endif
2739 if (area == MAP_FAILED) {
2740 perror("file_ram_alloc: can't mmap RAM pages");
2741 close(fd);
2742 return (NULL);
2743 }
2744 return area;
2745 }
2746 #endif
2747
2748 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2749 {
2750 RAMBlock *new_block;
2751
2752 size = TARGET_PAGE_ALIGN(size);
2753 new_block = qemu_malloc(sizeof(*new_block));
2754
2755 if (mem_path) {
2756 #if defined (__linux__) && !defined(TARGET_S390X)
2757 new_block->host = file_ram_alloc(size, mem_path);
2758 if (!new_block->host)
2759 exit(1);
2760 #else
2761 fprintf(stderr, "-mem-path option unsupported\n");
2762 exit(1);
2763 #endif
2764 } else {
2765 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2766 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2767 new_block->host = mmap((void*)0x1000000, size,
2768 PROT_EXEC|PROT_READ|PROT_WRITE,
2769 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2770 #else
2771 new_block->host = qemu_vmalloc(size);
2772 #endif
2773 #ifdef MADV_MERGEABLE
2774 madvise(new_block->host, size, MADV_MERGEABLE);
2775 #endif
2776 }
2777 new_block->offset = last_ram_offset;
2778 new_block->length = size;
2779
2780 new_block->next = ram_blocks;
2781 ram_blocks = new_block;
2782
2783 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2784 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2785 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2786 0xff, size >> TARGET_PAGE_BITS);
2787
2788 last_ram_offset += size;
2789
2790 if (kvm_enabled())
2791 kvm_setup_guest_memory(new_block->host, size);
2792
2793 return new_block->offset;
2794 }
2795
2796 void qemu_ram_free(ram_addr_t addr)
2797 {
2798 /* TODO: implement this. */
2799 }
2800
2801 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2802 With the exception of the softmmu code in this file, this should
2803 only be used for local memory (e.g. video ram) that the device owns,
2804 and knows it isn't going to access beyond the end of the block.
2805
2806 It should not be used for general purpose DMA.
2807 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2808 */
2809 void *qemu_get_ram_ptr(ram_addr_t addr)
2810 {
2811 RAMBlock *prev;
2812 RAMBlock **prevp;
2813 RAMBlock *block;
2814
2815 prev = NULL;
2816 prevp = &ram_blocks;
2817 block = ram_blocks;
2818 while (block && (block->offset > addr
2819 || block->offset + block->length <= addr)) {
2820 if (prev)
2821 prevp = &prev->next;
2822 prev = block;
2823 block = block->next;
2824 }
2825 if (!block) {
2826 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2827 abort();
2828 }
2829 /* Move this entry to to start of the list. */
2830 if (prev) {
2831 prev->next = block->next;
2832 block->next = *prevp;
2833 *prevp = block;
2834 }
2835 return block->host + (addr - block->offset);
2836 }
2837
2838 /* Some of the softmmu routines need to translate from a host pointer
2839 (typically a TLB entry) back to a ram offset. */
2840 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2841 {
2842 RAMBlock *prev;
2843 RAMBlock *block;
2844 uint8_t *host = ptr;
2845
2846 prev = NULL;
2847 block = ram_blocks;
2848 while (block && (block->host > host
2849 || block->host + block->length <= host)) {
2850 prev = block;
2851 block = block->next;
2852 }
2853 if (!block) {
2854 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2855 abort();
2856 }
2857 return block->offset + (host - block->host);
2858 }
2859
2860 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2861 {
2862 #ifdef DEBUG_UNASSIGNED
2863 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2864 #endif
2865 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2866 do_unassigned_access(addr, 0, 0, 0, 1);
2867 #endif
2868 return 0;
2869 }
2870
2871 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2872 {
2873 #ifdef DEBUG_UNASSIGNED
2874 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2875 #endif
2876 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2877 do_unassigned_access(addr, 0, 0, 0, 2);
2878 #endif
2879 return 0;
2880 }
2881
2882 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2883 {
2884 #ifdef DEBUG_UNASSIGNED
2885 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2886 #endif
2887 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2888 do_unassigned_access(addr, 0, 0, 0, 4);
2889 #endif
2890 return 0;
2891 }
2892
2893 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2894 {
2895 #ifdef DEBUG_UNASSIGNED
2896 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2897 #endif
2898 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2899 do_unassigned_access(addr, 1, 0, 0, 1);
2900 #endif
2901 }
2902
2903 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2904 {
2905 #ifdef DEBUG_UNASSIGNED
2906 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2907 #endif
2908 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2909 do_unassigned_access(addr, 1, 0, 0, 2);
2910 #endif
2911 }
2912
2913 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2914 {
2915 #ifdef DEBUG_UNASSIGNED
2916 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2917 #endif
2918 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2919 do_unassigned_access(addr, 1, 0, 0, 4);
2920 #endif
2921 }
2922
2923 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2924 unassigned_mem_readb,
2925 unassigned_mem_readw,
2926 unassigned_mem_readl,
2927 };
2928
2929 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2930 unassigned_mem_writeb,
2931 unassigned_mem_writew,
2932 unassigned_mem_writel,
2933 };
2934
2935 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2936 uint32_t val)
2937 {
2938 int dirty_flags;
2939 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2940 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2941 #if !defined(CONFIG_USER_ONLY)
2942 tb_invalidate_phys_page_fast(ram_addr, 1);
2943 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2944 #endif
2945 }
2946 stb_p(qemu_get_ram_ptr(ram_addr), val);
2947 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2948 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2949 /* we remove the notdirty callback only if the code has been
2950 flushed */
2951 if (dirty_flags == 0xff)
2952 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2953 }
2954
2955 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2956 uint32_t val)
2957 {
2958 int dirty_flags;
2959 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2960 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2961 #if !defined(CONFIG_USER_ONLY)
2962 tb_invalidate_phys_page_fast(ram_addr, 2);
2963 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2964 #endif
2965 }
2966 stw_p(qemu_get_ram_ptr(ram_addr), val);
2967 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2968 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2969 /* we remove the notdirty callback only if the code has been
2970 flushed */
2971 if (dirty_flags == 0xff)
2972 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2973 }
2974
2975 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2976 uint32_t val)
2977 {
2978 int dirty_flags;
2979 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2980 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2981 #if !defined(CONFIG_USER_ONLY)
2982 tb_invalidate_phys_page_fast(ram_addr, 4);
2983 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2984 #endif
2985 }
2986 stl_p(qemu_get_ram_ptr(ram_addr), val);
2987 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2988 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2989 /* we remove the notdirty callback only if the code has been
2990 flushed */
2991 if (dirty_flags == 0xff)
2992 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2993 }
2994
2995 static CPUReadMemoryFunc * const error_mem_read[3] = {
2996 NULL, /* never used */
2997 NULL, /* never used */
2998 NULL, /* never used */
2999 };
3000
3001 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3002 notdirty_mem_writeb,
3003 notdirty_mem_writew,
3004 notdirty_mem_writel,
3005 };
3006
3007 /* Generate a debug exception if a watchpoint has been hit. */
3008 static void check_watchpoint(int offset, int len_mask, int flags)
3009 {
3010 CPUState *env = cpu_single_env;
3011 target_ulong pc, cs_base;
3012 TranslationBlock *tb;
3013 target_ulong vaddr;
3014 CPUWatchpoint *wp;
3015 int cpu_flags;
3016
3017 if (env->watchpoint_hit) {
3018 /* We re-entered the check after replacing the TB. Now raise
3019 * the debug interrupt so that is will trigger after the
3020 * current instruction. */
3021 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3022 return;
3023 }
3024 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3025 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3026 if ((vaddr == (wp->vaddr & len_mask) ||
3027 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3028 wp->flags |= BP_WATCHPOINT_HIT;
3029 if (!env->watchpoint_hit) {
3030 env->watchpoint_hit = wp;
3031 tb = tb_find_pc(env->mem_io_pc);
3032 if (!tb) {
3033 cpu_abort(env, "check_watchpoint: could not find TB for "
3034 "pc=%p", (void *)env->mem_io_pc);
3035 }
3036 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3037 tb_phys_invalidate(tb, -1);
3038 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3039 env->exception_index = EXCP_DEBUG;
3040 } else {
3041 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3042 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3043 }
3044 cpu_resume_from_signal(env, NULL);
3045 }
3046 } else {
3047 wp->flags &= ~BP_WATCHPOINT_HIT;
3048 }
3049 }
3050 }
3051
3052 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3053 so these check for a hit then pass through to the normal out-of-line
3054 phys routines. */
3055 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3056 {
3057 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3058 return ldub_phys(addr);
3059 }
3060
3061 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3062 {
3063 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3064 return lduw_phys(addr);
3065 }
3066
3067 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3068 {
3069 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3070 return ldl_phys(addr);
3071 }
3072
3073 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3074 uint32_t val)
3075 {
3076 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3077 stb_phys(addr, val);
3078 }
3079
3080 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3081 uint32_t val)
3082 {
3083 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3084 stw_phys(addr, val);
3085 }
3086
3087 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3088 uint32_t val)
3089 {
3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3091 stl_phys(addr, val);
3092 }
3093
3094 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3095 watch_mem_readb,
3096 watch_mem_readw,
3097 watch_mem_readl,
3098 };
3099
3100 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3101 watch_mem_writeb,
3102 watch_mem_writew,
3103 watch_mem_writel,
3104 };
3105
3106 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3107 unsigned int len)
3108 {
3109 uint32_t ret;
3110 unsigned int idx;
3111
3112 idx = SUBPAGE_IDX(addr);
3113 #if defined(DEBUG_SUBPAGE)
3114 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3115 mmio, len, addr, idx);
3116 #endif
3117 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3118 addr + mmio->region_offset[idx][0][len]);
3119
3120 return ret;
3121 }
3122
3123 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3124 uint32_t value, unsigned int len)
3125 {
3126 unsigned int idx;
3127
3128 idx = SUBPAGE_IDX(addr);
3129 #if defined(DEBUG_SUBPAGE)
3130 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3131 mmio, len, addr, idx, value);
3132 #endif
3133 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3134 addr + mmio->region_offset[idx][1][len],
3135 value);
3136 }
3137
3138 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3139 {
3140 #if defined(DEBUG_SUBPAGE)
3141 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3142 #endif
3143
3144 return subpage_readlen(opaque, addr, 0);
3145 }
3146
3147 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3148 uint32_t value)
3149 {
3150 #if defined(DEBUG_SUBPAGE)
3151 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3152 #endif
3153 subpage_writelen(opaque, addr, value, 0);
3154 }
3155
3156 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3157 {
3158 #if defined(DEBUG_SUBPAGE)
3159 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3160 #endif
3161
3162 return subpage_readlen(opaque, addr, 1);
3163 }
3164
3165 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3166 uint32_t value)
3167 {
3168 #if defined(DEBUG_SUBPAGE)
3169 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3170 #endif
3171 subpage_writelen(opaque, addr, value, 1);
3172 }
3173
3174 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3175 {
3176 #if defined(DEBUG_SUBPAGE)
3177 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3178 #endif
3179
3180 return subpage_readlen(opaque, addr, 2);
3181 }
3182
3183 static void subpage_writel (void *opaque,
3184 target_phys_addr_t addr, uint32_t value)
3185 {
3186 #if defined(DEBUG_SUBPAGE)
3187 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3188 #endif
3189 subpage_writelen(opaque, addr, value, 2);
3190 }
3191
3192 static CPUReadMemoryFunc * const subpage_read[] = {
3193 &subpage_readb,
3194 &subpage_readw,
3195 &subpage_readl,
3196 };
3197
3198 static CPUWriteMemoryFunc * const subpage_write[] = {
3199 &subpage_writeb,
3200 &subpage_writew,
3201 &subpage_writel,
3202 };
3203
3204 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3205 ram_addr_t memory, ram_addr_t region_offset)
3206 {
3207 int idx, eidx;
3208 unsigned int i;
3209
3210 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3211 return -1;
3212 idx = SUBPAGE_IDX(start);
3213 eidx = SUBPAGE_IDX(end);
3214 #if defined(DEBUG_SUBPAGE)
3215 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3216 mmio, start, end, idx, eidx, memory);
3217 #endif
3218 memory >>= IO_MEM_SHIFT;
3219 for (; idx <= eidx; idx++) {
3220 for (i = 0; i < 4; i++) {
3221 if (io_mem_read[memory][i]) {
3222 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3223 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3224 mmio->region_offset[idx][0][i] = region_offset;
3225 }
3226 if (io_mem_write[memory][i]) {
3227 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3228 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3229 mmio->region_offset[idx][1][i] = region_offset;
3230 }
3231 }
3232 }
3233
3234 return 0;
3235 }
3236
3237 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3238 ram_addr_t orig_memory, ram_addr_t region_offset)
3239 {
3240 subpage_t *mmio;
3241 int subpage_memory;
3242
3243 mmio = qemu_mallocz(sizeof(subpage_t));
3244
3245 mmio->base = base;
3246 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3247 #if defined(DEBUG_SUBPAGE)
3248 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3249 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3250 #endif
3251 *phys = subpage_memory | IO_MEM_SUBPAGE;
3252 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3253 region_offset);
3254
3255 return mmio;
3256 }
3257
3258 static int get_free_io_mem_idx(void)
3259 {
3260 int i;
3261
3262 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3263 if (!io_mem_used[i]) {
3264 io_mem_used[i] = 1;
3265 return i;
3266 }
3267 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3268 return -1;
3269 }
3270
3271 /* mem_read and mem_write are arrays of functions containing the
3272 function to access byte (index 0), word (index 1) and dword (index
3273 2). Functions can be omitted with a NULL function pointer.
3274 If io_index is non zero, the corresponding io zone is
3275 modified. If it is zero, a new io zone is allocated. The return
3276 value can be used with cpu_register_physical_memory(). (-1) is
3277 returned if error. */
3278 static int cpu_register_io_memory_fixed(int io_index,
3279 CPUReadMemoryFunc * const *mem_read,
3280 CPUWriteMemoryFunc * const *mem_write,
3281 void *opaque)
3282 {
3283 int i, subwidth = 0;
3284
3285 if (io_index <= 0) {
3286 io_index = get_free_io_mem_idx();
3287 if (io_index == -1)
3288 return io_index;
3289 } else {
3290 io_index >>= IO_MEM_SHIFT;
3291 if (io_index >= IO_MEM_NB_ENTRIES)
3292 return -1;
3293 }
3294
3295 for(i = 0;i < 3; i++) {
3296 if (!mem_read[i] || !mem_write[i])
3297 subwidth = IO_MEM_SUBWIDTH;
3298 io_mem_read[io_index][i] = mem_read[i];
3299 io_mem_write[io_index][i] = mem_write[i];
3300 }
3301 io_mem_opaque[io_index] = opaque;
3302 return (io_index << IO_MEM_SHIFT) | subwidth;
3303 }
3304
3305 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3306 CPUWriteMemoryFunc * const *mem_write,
3307 void *opaque)
3308 {
3309 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3310 }
3311
3312 void cpu_unregister_io_memory(int io_table_address)
3313 {
3314 int i;
3315 int io_index = io_table_address >> IO_MEM_SHIFT;
3316
3317 for (i=0;i < 3; i++) {
3318 io_mem_read[io_index][i] = unassigned_mem_read[i];
3319 io_mem_write[io_index][i] = unassigned_mem_write[i];
3320 }
3321 io_mem_opaque[io_index] = NULL;
3322 io_mem_used[io_index] = 0;
3323 }
3324
3325 static void io_mem_init(void)
3326 {
3327 int i;
3328
3329 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3330 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3331 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3332 for (i=0; i<5; i++)
3333 io_mem_used[i] = 1;
3334
3335 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3336 watch_mem_write, NULL);
3337 }
3338
3339 #endif /* !defined(CONFIG_USER_ONLY) */
3340
3341 /* physical memory access (slow version, mainly for debug) */
3342 #if defined(CONFIG_USER_ONLY)
3343 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3344 uint8_t *buf, int len, int is_write)
3345 {
3346 int l, flags;
3347 target_ulong page;
3348 void * p;
3349
3350 while (len > 0) {
3351 page = addr & TARGET_PAGE_MASK;
3352 l = (page + TARGET_PAGE_SIZE) - addr;
3353 if (l > len)
3354 l = len;
3355 flags = page_get_flags(page);
3356 if (!(flags & PAGE_VALID))
3357 return -1;
3358 if (is_write) {
3359 if (!(flags & PAGE_WRITE))
3360 return -1;
3361 /* XXX: this code should not depend on lock_user */
3362 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3363 return -1;
3364 memcpy(p, buf, l);
3365 unlock_user(p, addr, l);
3366 } else {
3367 if (!(flags & PAGE_READ))
3368 return -1;
3369 /* XXX: this code should not depend on lock_user */
3370 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3371 return -1;
3372 memcpy(buf, p, l);
3373 unlock_user(p, addr, 0);
3374 }
3375 len -= l;
3376 buf += l;
3377 addr += l;
3378 }
3379 return 0;
3380 }
3381
3382 #else
3383 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3384 int len, int is_write)
3385 {
3386 int l, io_index;
3387 uint8_t *ptr;
3388 uint32_t val;
3389 target_phys_addr_t page;
3390 unsigned long pd;
3391 PhysPageDesc *p;
3392
3393 while (len > 0) {
3394 page = addr & TARGET_PAGE_MASK;
3395 l = (page + TARGET_PAGE_SIZE) - addr;
3396 if (l > len)
3397 l = len;
3398 p = phys_page_find(page >> TARGET_PAGE_BITS);
3399 if (!p) {
3400 pd = IO_MEM_UNASSIGNED;
3401 } else {
3402 pd = p->phys_offset;
3403 }
3404
3405 if (is_write) {
3406 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3407 target_phys_addr_t addr1 = addr;
3408 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3409 if (p)
3410 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3411 /* XXX: could force cpu_single_env to NULL to avoid
3412 potential bugs */
3413 if (l >= 4 && ((addr1 & 3) == 0)) {
3414 /* 32 bit write access */
3415 val = ldl_p(buf);
3416 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3417 l = 4;
3418 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3419 /* 16 bit write access */
3420 val = lduw_p(buf);
3421 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3422 l = 2;
3423 } else {
3424 /* 8 bit write access */
3425 val = ldub_p(buf);
3426 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3427 l = 1;
3428 }
3429 } else {
3430 unsigned long addr1;
3431 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3432 /* RAM case */
3433 ptr = qemu_get_ram_ptr(addr1);
3434 memcpy(ptr, buf, l);
3435 if (!cpu_physical_memory_is_dirty(addr1)) {
3436 /* invalidate code */
3437 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3438 /* set dirty bit */
3439 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3440 (0xff & ~CODE_DIRTY_FLAG);
3441 }
3442 }
3443 } else {
3444 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3445 !(pd & IO_MEM_ROMD)) {
3446 target_phys_addr_t addr1 = addr;
3447 /* I/O case */
3448 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3449 if (p)
3450 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3451 if (l >= 4 && ((addr1 & 3) == 0)) {
3452 /* 32 bit read access */
3453 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3454 stl_p(buf, val);
3455 l = 4;
3456 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3457 /* 16 bit read access */
3458 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3459 stw_p(buf, val);
3460 l = 2;
3461 } else {
3462 /* 8 bit read access */
3463 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3464 stb_p(buf, val);
3465 l = 1;
3466 }
3467 } else {
3468 /* RAM case */
3469 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3470 (addr & ~TARGET_PAGE_MASK);
3471 memcpy(buf, ptr, l);
3472 }
3473 }
3474 len -= l;
3475 buf += l;
3476 addr += l;
3477 }
3478 }
3479
3480 /* used for ROM loading : can write in RAM and ROM */
3481 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3482 const uint8_t *buf, int len)
3483 {
3484 int l;
3485 uint8_t *ptr;
3486 target_phys_addr_t page;
3487 unsigned long pd;
3488 PhysPageDesc *p;
3489
3490 while (len > 0) {
3491 page = addr & TARGET_PAGE_MASK;
3492 l = (page + TARGET_PAGE_SIZE) - addr;
3493 if (l > len)
3494 l = len;
3495 p = phys_page_find(page >> TARGET_PAGE_BITS);
3496 if (!p) {
3497 pd = IO_MEM_UNASSIGNED;
3498 } else {
3499 pd = p->phys_offset;
3500 }
3501
3502 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3503 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3504 !(pd & IO_MEM_ROMD)) {
3505 /* do nothing */
3506 } else {
3507 unsigned long addr1;
3508 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3509 /* ROM/RAM case */
3510 ptr = qemu_get_ram_ptr(addr1);
3511 memcpy(ptr, buf, l);
3512 }
3513 len -= l;
3514 buf += l;
3515 addr += l;
3516 }
3517 }
3518
3519 typedef struct {
3520 void *buffer;
3521 target_phys_addr_t addr;
3522 target_phys_addr_t len;
3523 } BounceBuffer;
3524
3525 static BounceBuffer bounce;
3526
3527 typedef struct MapClient {
3528 void *opaque;
3529 void (*callback)(void *opaque);
3530 QLIST_ENTRY(MapClient) link;
3531 } MapClient;
3532
3533 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3534 = QLIST_HEAD_INITIALIZER(map_client_list);
3535
3536 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3537 {
3538 MapClient *client = qemu_malloc(sizeof(*client));
3539
3540 client->opaque = opaque;
3541 client->callback = callback;
3542 QLIST_INSERT_HEAD(&map_client_list, client, link);
3543 return client;
3544 }
3545
3546 void cpu_unregister_map_client(void *_client)
3547 {
3548 MapClient *client = (MapClient *)_client;
3549
3550 QLIST_REMOVE(client, link);
3551 qemu_free(client);
3552 }
3553
3554 static void cpu_notify_map_clients(void)
3555 {
3556 MapClient *client;
3557
3558 while (!QLIST_EMPTY(&map_client_list)) {
3559 client = QLIST_FIRST(&map_client_list);
3560 client->callback(client->opaque);
3561 cpu_unregister_map_client(client);
3562 }
3563 }
3564
3565 /* Map a physical memory region into a host virtual address.
3566 * May map a subset of the requested range, given by and returned in *plen.
3567 * May return NULL if resources needed to perform the mapping are exhausted.
3568 * Use only for reads OR writes - not for read-modify-write operations.
3569 * Use cpu_register_map_client() to know when retrying the map operation is
3570 * likely to succeed.
3571 */
3572 void *cpu_physical_memory_map(target_phys_addr_t addr,
3573 target_phys_addr_t *plen,
3574 int is_write)
3575 {
3576 target_phys_addr_t len = *plen;
3577 target_phys_addr_t done = 0;
3578 int l;
3579 uint8_t *ret = NULL;
3580 uint8_t *ptr;
3581 target_phys_addr_t page;
3582 unsigned long pd;
3583 PhysPageDesc *p;
3584 unsigned long addr1;
3585
3586 while (len > 0) {
3587 page = addr & TARGET_PAGE_MASK;
3588 l = (page + TARGET_PAGE_SIZE) - addr;
3589 if (l > len)
3590 l = len;
3591 p = phys_page_find(page >> TARGET_PAGE_BITS);
3592 if (!p) {
3593 pd = IO_MEM_UNASSIGNED;
3594 } else {
3595 pd = p->phys_offset;
3596 }
3597
3598 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3599 if (done || bounce.buffer) {
3600 break;
3601 }
3602 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3603 bounce.addr = addr;
3604 bounce.len = l;
3605 if (!is_write) {
3606 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3607 }
3608 ptr = bounce.buffer;
3609 } else {
3610 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3611 ptr = qemu_get_ram_ptr(addr1);
3612 }
3613 if (!done) {
3614 ret = ptr;
3615 } else if (ret + done != ptr) {
3616 break;
3617 }
3618
3619 len -= l;
3620 addr += l;
3621 done += l;
3622 }
3623 *plen = done;
3624 return ret;
3625 }
3626
3627 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3628 * Will also mark the memory as dirty if is_write == 1. access_len gives
3629 * the amount of memory that was actually read or written by the caller.
3630 */
3631 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3632 int is_write, target_phys_addr_t access_len)
3633 {
3634 if (buffer != bounce.buffer) {
3635 if (is_write) {
3636 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3637 while (access_len) {
3638 unsigned l;
3639 l = TARGET_PAGE_SIZE;
3640 if (l > access_len)
3641 l = access_len;
3642 if (!cpu_physical_memory_is_dirty(addr1)) {
3643 /* invalidate code */
3644 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3645 /* set dirty bit */
3646 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3647 (0xff & ~CODE_DIRTY_FLAG);
3648 }
3649 addr1 += l;
3650 access_len -= l;
3651 }
3652 }
3653 return;
3654 }
3655 if (is_write) {
3656 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3657 }
3658 qemu_vfree(bounce.buffer);
3659 bounce.buffer = NULL;
3660 cpu_notify_map_clients();
3661 }
3662
3663 /* warning: addr must be aligned */
3664 uint32_t ldl_phys(target_phys_addr_t addr)
3665 {
3666 int io_index;
3667 uint8_t *ptr;
3668 uint32_t val;
3669 unsigned long pd;
3670 PhysPageDesc *p;
3671
3672 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3673 if (!p) {
3674 pd = IO_MEM_UNASSIGNED;
3675 } else {
3676 pd = p->phys_offset;
3677 }
3678
3679 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3680 !(pd & IO_MEM_ROMD)) {
3681 /* I/O case */
3682 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3683 if (p)
3684 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3685 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3686 } else {
3687 /* RAM case */
3688 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3689 (addr & ~TARGET_PAGE_MASK);
3690 val = ldl_p(ptr);
3691 }
3692 return val;
3693 }
3694
3695 /* warning: addr must be aligned */
3696 uint64_t ldq_phys(target_phys_addr_t addr)
3697 {
3698 int io_index;
3699 uint8_t *ptr;
3700 uint64_t val;
3701 unsigned long pd;
3702 PhysPageDesc *p;
3703
3704 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3705 if (!p) {
3706 pd = IO_MEM_UNASSIGNED;
3707 } else {
3708 pd = p->phys_offset;
3709 }
3710
3711 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3712 !(pd & IO_MEM_ROMD)) {
3713 /* I/O case */
3714 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3715 if (p)
3716 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3717 #ifdef TARGET_WORDS_BIGENDIAN
3718 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3719 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3720 #else
3721 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3722 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3723 #endif
3724 } else {
3725 /* RAM case */
3726 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3727 (addr & ~TARGET_PAGE_MASK);
3728 val = ldq_p(ptr);
3729 }
3730 return val;
3731 }
3732
3733 /* XXX: optimize */
3734 uint32_t ldub_phys(target_phys_addr_t addr)
3735 {
3736 uint8_t val;
3737 cpu_physical_memory_read(addr, &val, 1);
3738 return val;
3739 }
3740
3741 /* XXX: optimize */
3742 uint32_t lduw_phys(target_phys_addr_t addr)
3743 {
3744 uint16_t val;
3745 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3746 return tswap16(val);
3747 }
3748
3749 /* warning: addr must be aligned. The ram page is not masked as dirty
3750 and the code inside is not invalidated. It is useful if the dirty
3751 bits are used to track modified PTEs */
3752 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3753 {
3754 int io_index;
3755 uint8_t *ptr;
3756 unsigned long pd;
3757 PhysPageDesc *p;
3758
3759 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3760 if (!p) {
3761 pd = IO_MEM_UNASSIGNED;
3762 } else {
3763 pd = p->phys_offset;
3764 }
3765
3766 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3767 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3768 if (p)
3769 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3770 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3771 } else {
3772 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3773 ptr = qemu_get_ram_ptr(addr1);
3774 stl_p(ptr, val);
3775
3776 if (unlikely(in_migration)) {
3777 if (!cpu_physical_memory_is_dirty(addr1)) {
3778 /* invalidate code */
3779 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3780 /* set dirty bit */
3781 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3782 (0xff & ~CODE_DIRTY_FLAG);
3783 }
3784 }
3785 }
3786 }
3787
3788 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3789 {
3790 int io_index;
3791 uint8_t *ptr;
3792 unsigned long pd;
3793 PhysPageDesc *p;
3794
3795 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3796 if (!p) {
3797 pd = IO_MEM_UNASSIGNED;
3798 } else {
3799 pd = p->phys_offset;
3800 }
3801
3802 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3803 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3804 if (p)
3805 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3806 #ifdef TARGET_WORDS_BIGENDIAN
3807 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3808 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3809 #else
3810 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3811 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3812 #endif
3813 } else {
3814 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3815 (addr & ~TARGET_PAGE_MASK);
3816 stq_p(ptr, val);
3817 }
3818 }
3819
3820 /* warning: addr must be aligned */
3821 void stl_phys(target_phys_addr_t addr, uint32_t val)
3822 {
3823 int io_index;
3824 uint8_t *ptr;
3825 unsigned long pd;
3826 PhysPageDesc *p;
3827
3828 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3829 if (!p) {
3830 pd = IO_MEM_UNASSIGNED;
3831 } else {
3832 pd = p->phys_offset;
3833 }
3834
3835 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3836 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3837 if (p)
3838 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3839 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3840 } else {
3841 unsigned long addr1;
3842 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3843 /* RAM case */
3844 ptr = qemu_get_ram_ptr(addr1);
3845 stl_p(ptr, val);
3846 if (!cpu_physical_memory_is_dirty(addr1)) {
3847 /* invalidate code */
3848 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3849 /* set dirty bit */
3850 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3851 (0xff & ~CODE_DIRTY_FLAG);
3852 }
3853 }
3854 }
3855
3856 /* XXX: optimize */
3857 void stb_phys(target_phys_addr_t addr, uint32_t val)
3858 {
3859 uint8_t v = val;
3860 cpu_physical_memory_write(addr, &v, 1);
3861 }
3862
3863 /* XXX: optimize */
3864 void stw_phys(target_phys_addr_t addr, uint32_t val)
3865 {
3866 uint16_t v = tswap16(val);
3867 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3868 }
3869
3870 /* XXX: optimize */
3871 void stq_phys(target_phys_addr_t addr, uint64_t val)
3872 {
3873 val = tswap64(val);
3874 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3875 }
3876
3877 /* virtual memory access for debug (includes writing to ROM) */
3878 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3879 uint8_t *buf, int len, int is_write)
3880 {
3881 int l;
3882 target_phys_addr_t phys_addr;
3883 target_ulong page;
3884
3885 while (len > 0) {
3886 page = addr & TARGET_PAGE_MASK;
3887 phys_addr = cpu_get_phys_page_debug(env, page);
3888 /* if no physical page mapped, return an error */
3889 if (phys_addr == -1)
3890 return -1;
3891 l = (page + TARGET_PAGE_SIZE) - addr;
3892 if (l > len)
3893 l = len;
3894 phys_addr += (addr & ~TARGET_PAGE_MASK);
3895 if (is_write)
3896 cpu_physical_memory_write_rom(phys_addr, buf, l);
3897 else
3898 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3899 len -= l;
3900 buf += l;
3901 addr += l;
3902 }
3903 return 0;
3904 }
3905 #endif
3906
3907 /* in deterministic execution mode, instructions doing device I/Os
3908 must be at the end of the TB */
3909 void cpu_io_recompile(CPUState *env, void *retaddr)
3910 {
3911 TranslationBlock *tb;
3912 uint32_t n, cflags;
3913 target_ulong pc, cs_base;
3914 uint64_t flags;
3915
3916 tb = tb_find_pc((unsigned long)retaddr);
3917 if (!tb) {
3918 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3919 retaddr);
3920 }
3921 n = env->icount_decr.u16.low + tb->icount;
3922 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3923 /* Calculate how many instructions had been executed before the fault
3924 occurred. */
3925 n = n - env->icount_decr.u16.low;
3926 /* Generate a new TB ending on the I/O insn. */
3927 n++;
3928 /* On MIPS and SH, delay slot instructions can only be restarted if
3929 they were already the first instruction in the TB. If this is not
3930 the first instruction in a TB then re-execute the preceding
3931 branch. */
3932 #if defined(TARGET_MIPS)
3933 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3934 env->active_tc.PC -= 4;
3935 env->icount_decr.u16.low++;
3936 env->hflags &= ~MIPS_HFLAG_BMASK;
3937 }
3938 #elif defined(TARGET_SH4)
3939 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3940 && n > 1) {
3941 env->pc -= 2;
3942 env->icount_decr.u16.low++;
3943 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3944 }
3945 #endif
3946 /* This should never happen. */
3947 if (n > CF_COUNT_MASK)
3948 cpu_abort(env, "TB too big during recompile");
3949
3950 cflags = n | CF_LAST_IO;
3951 pc = tb->pc;
3952 cs_base = tb->cs_base;
3953 flags = tb->flags;
3954 tb_phys_invalidate(tb, -1);
3955 /* FIXME: In theory this could raise an exception. In practice
3956 we have already translated the block once so it's probably ok. */
3957 tb_gen_code(env, pc, cs_base, flags, cflags);
3958 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3959 the first in the TB) then we end up generating a whole new TB and
3960 repeating the fault, which is horribly inefficient.
3961 Better would be to execute just this insn uncached, or generate a
3962 second new TB. */
3963 cpu_resume_from_signal(env, NULL);
3964 }
3965
3966 #if !defined(CONFIG_USER_ONLY)
3967
3968 void dump_exec_info(FILE *f,
3969 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3970 {
3971 int i, target_code_size, max_target_code_size;
3972 int direct_jmp_count, direct_jmp2_count, cross_page;
3973 TranslationBlock *tb;
3974
3975 target_code_size = 0;
3976 max_target_code_size = 0;
3977 cross_page = 0;
3978 direct_jmp_count = 0;
3979 direct_jmp2_count = 0;
3980 for(i = 0; i < nb_tbs; i++) {
3981 tb = &tbs[i];
3982 target_code_size += tb->size;
3983 if (tb->size > max_target_code_size)
3984 max_target_code_size = tb->size;
3985 if (tb->page_addr[1] != -1)
3986 cross_page++;
3987 if (tb->tb_next_offset[0] != 0xffff) {
3988 direct_jmp_count++;
3989 if (tb->tb_next_offset[1] != 0xffff) {
3990 direct_jmp2_count++;
3991 }
3992 }
3993 }
3994 /* XXX: avoid using doubles ? */
3995 cpu_fprintf(f, "Translation buffer state:\n");
3996 cpu_fprintf(f, "gen code size %ld/%ld\n",
3997 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3998 cpu_fprintf(f, "TB count %d/%d\n",
3999 nb_tbs, code_gen_max_blocks);
4000 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4001 nb_tbs ? target_code_size / nb_tbs : 0,
4002 max_target_code_size);
4003 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4004 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4005 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4006 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4007 cross_page,
4008 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4009 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4010 direct_jmp_count,
4011 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4012 direct_jmp2_count,
4013 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4014 cpu_fprintf(f, "\nStatistics:\n");
4015 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4016 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4017 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4018 tcg_dump_info(f, cpu_fprintf);
4019 }
4020
4021 #define MMUSUFFIX _cmmu
4022 #define GETPC() NULL
4023 #define env cpu_single_env
4024 #define SOFTMMU_CODE_ACCESS
4025
4026 #define SHIFT 0
4027 #include "softmmu_template.h"
4028
4029 #define SHIFT 1
4030 #include "softmmu_template.h"
4031
4032 #define SHIFT 2
4033 #include "softmmu_template.h"
4034
4035 #define SHIFT 3
4036 #include "softmmu_template.h"
4037
4038 #undef env
4039
4040 #endif