]> git.proxmox.com Git - qemu.git/blob - exec.c
Split TLB addend and target_phys_addr_t
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
61
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
66
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
70
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
73
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
78
79 #define SMC_BITMAP_USE_THRESHOLD 10
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
122
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
129
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
141
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
153
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159 #else
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
161 #endif
162 #else
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
164 #endif
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define L2_BITS 10
168 #define L2_SIZE (1 << L2_BITS)
169
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179 #else
180 #define P_L1_BITS P_L1_BITS_REM
181 #endif
182
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185 #else
186 #define V_L1_BITS V_L1_BITS_REM
187 #endif
188
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
195 unsigned long qemu_real_host_page_size;
196 unsigned long qemu_host_page_bits;
197 unsigned long qemu_host_page_size;
198 unsigned long qemu_host_page_mask;
199
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map[V_L1_SIZE];
203
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209 } PhysPageDesc;
210
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map[P_L1_SIZE];
214
215 static void io_mem_init(void);
216
217 /* io memory support */
218 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
220 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
221 static char io_mem_used[IO_MEM_NB_ENTRIES];
222 static int io_mem_watch;
223 #endif
224
225 /* log support */
226 #ifdef WIN32
227 static const char *logfilename = "qemu.log";
228 #else
229 static const char *logfilename = "/tmp/qemu.log";
230 #endif
231 FILE *logfile;
232 int loglevel;
233 static int log_append = 0;
234
235 /* statistics */
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count;
238 #endif
239 static int tb_flush_count;
240 static int tb_phys_invalidate_count;
241
242 #ifdef _WIN32
243 static void map_exec(void *addr, long size)
244 {
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249 }
250 #else
251 static void map_exec(void *addr, long size)
252 {
253 unsigned long start, end, page_size;
254
255 page_size = getpagesize();
256 start = (unsigned long)addr;
257 start &= ~(page_size - 1);
258
259 end = (unsigned long)addr + size;
260 end += page_size - 1;
261 end &= ~(page_size - 1);
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265 }
266 #endif
267
268 static void page_init(void)
269 {
270 /* NOTE: we can always suppose that qemu_host_page_size >=
271 TARGET_PAGE_SIZE */
272 #ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279 #else
280 qemu_real_host_page_size = getpagesize();
281 #endif
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
290
291 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315 #endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322 #else
323 FILE *f;
324
325 last_brk = (unsigned long)sbrk(0);
326
327 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329 #else
330 f = fopen("/proc/self/maps", "r");
331 #endif
332 if (f) {
333 mmap_lock();
334
335 do {
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
350 }
351 } while (!feof(f));
352
353 fclose(f);
354 mmap_unlock();
355 }
356 #endif
357 }
358 #endif
359 }
360
361 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
362 {
363 PageDesc *pd;
364 void **lp;
365 int i;
366
367 #if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377 # define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387 #else
388 # define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
390 #endif
391
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
405 }
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
417 }
418
419 #undef ALLOC
420 #if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429 #endif
430
431 return pd + (index & (L2_SIZE - 1));
432 }
433
434 static inline PageDesc *page_find(tb_page_addr_t index)
435 {
436 return page_find_alloc(index, 0);
437 }
438
439 #if !defined(CONFIG_USER_ONLY)
440 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
441 {
442 PhysPageDesc *pd;
443 void **lp;
444 int i;
445
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
448
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
459 }
460
461 pd = *lp;
462 if (pd == NULL) {
463 int i;
464
465 if (!alloc) {
466 return NULL;
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
471 for (i = 0; i < L2_SIZE; i++) {
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
474 }
475 }
476
477 return pd + (index & (L2_SIZE - 1));
478 }
479
480 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
481 {
482 return phys_page_find_alloc(index, 0);
483 }
484
485 static void tlb_protect_code(ram_addr_t ram_addr);
486 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
487 target_ulong vaddr);
488 #define mmap_lock() do { } while(0)
489 #define mmap_unlock() do { } while(0)
490 #endif
491
492 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494 #if defined(CONFIG_USER_ONLY)
495 /* Currently it is not recommended to allocate big chunks of data in
496 user mode. It will change when a dedicated libc will be used */
497 #define USE_STATIC_CODE_GEN_BUFFER
498 #endif
499
500 #ifdef USE_STATIC_CODE_GEN_BUFFER
501 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
502 __attribute__((aligned (CODE_GEN_ALIGN)));
503 #endif
504
505 static void code_gen_alloc(unsigned long tb_size)
506 {
507 #ifdef USE_STATIC_CODE_GEN_BUFFER
508 code_gen_buffer = static_code_gen_buffer;
509 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
510 map_exec(code_gen_buffer, code_gen_buffer_size);
511 #else
512 code_gen_buffer_size = tb_size;
513 if (code_gen_buffer_size == 0) {
514 #if defined(CONFIG_USER_ONLY)
515 /* in user mode, phys_ram_size is not meaningful */
516 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
517 #else
518 /* XXX: needs adjustments */
519 code_gen_buffer_size = (unsigned long)(ram_size / 4);
520 #endif
521 }
522 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
523 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
524 /* The code gen buffer location may have constraints depending on
525 the host cpu and OS */
526 #if defined(__linux__)
527 {
528 int flags;
529 void *start = NULL;
530
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532 #if defined(__x86_64__)
533 flags |= MAP_32BIT;
534 /* Cannot map more than that */
535 if (code_gen_buffer_size > (800 * 1024 * 1024))
536 code_gen_buffer_size = (800 * 1024 * 1024);
537 #elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
539 flags |= MAP_FIXED;
540 start = (void *) 0x60000000UL;
541 if (code_gen_buffer_size > (512 * 1024 * 1024))
542 code_gen_buffer_size = (512 * 1024 * 1024);
543 #elif defined(__arm__)
544 /* Map the buffer below 32M, so we can use direct calls and branches */
545 flags |= MAP_FIXED;
546 start = (void *) 0x01000000UL;
547 if (code_gen_buffer_size > 16 * 1024 * 1024)
548 code_gen_buffer_size = 16 * 1024 * 1024;
549 #endif
550 code_gen_buffer = mmap(start, code_gen_buffer_size,
551 PROT_WRITE | PROT_READ | PROT_EXEC,
552 flags, -1, 0);
553 if (code_gen_buffer == MAP_FAILED) {
554 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
555 exit(1);
556 }
557 }
558 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
559 {
560 int flags;
561 void *addr = NULL;
562 flags = MAP_PRIVATE | MAP_ANONYMOUS;
563 #if defined(__x86_64__)
564 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
565 * 0x40000000 is free */
566 flags |= MAP_FIXED;
567 addr = (void *)0x40000000;
568 /* Cannot map more than that */
569 if (code_gen_buffer_size > (800 * 1024 * 1024))
570 code_gen_buffer_size = (800 * 1024 * 1024);
571 #endif
572 code_gen_buffer = mmap(addr, code_gen_buffer_size,
573 PROT_WRITE | PROT_READ | PROT_EXEC,
574 flags, -1, 0);
575 if (code_gen_buffer == MAP_FAILED) {
576 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
577 exit(1);
578 }
579 }
580 #else
581 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
582 map_exec(code_gen_buffer, code_gen_buffer_size);
583 #endif
584 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
585 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
586 code_gen_buffer_max_size = code_gen_buffer_size -
587 code_gen_max_block_size();
588 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
589 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
590 }
591
592 /* Must be called before using the QEMU cpus. 'tb_size' is the size
593 (in bytes) allocated to the translation buffer. Zero means default
594 size. */
595 void cpu_exec_init_all(unsigned long tb_size)
596 {
597 cpu_gen_init();
598 code_gen_alloc(tb_size);
599 code_gen_ptr = code_gen_buffer;
600 page_init();
601 #if !defined(CONFIG_USER_ONLY)
602 io_mem_init();
603 #endif
604 }
605
606 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
607
608 static int cpu_common_post_load(void *opaque, int version_id)
609 {
610 CPUState *env = opaque;
611
612 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
613 version_id is increased. */
614 env->interrupt_request &= ~0x01;
615 tlb_flush(env, 1);
616
617 return 0;
618 }
619
620 static const VMStateDescription vmstate_cpu_common = {
621 .name = "cpu_common",
622 .version_id = 1,
623 .minimum_version_id = 1,
624 .minimum_version_id_old = 1,
625 .post_load = cpu_common_post_load,
626 .fields = (VMStateField []) {
627 VMSTATE_UINT32(halted, CPUState),
628 VMSTATE_UINT32(interrupt_request, CPUState),
629 VMSTATE_END_OF_LIST()
630 }
631 };
632 #endif
633
634 CPUState *qemu_get_cpu(int cpu)
635 {
636 CPUState *env = first_cpu;
637
638 while (env) {
639 if (env->cpu_index == cpu)
640 break;
641 env = env->next_cpu;
642 }
643
644 return env;
645 }
646
647 void cpu_exec_init(CPUState *env)
648 {
649 CPUState **penv;
650 int cpu_index;
651
652 #if defined(CONFIG_USER_ONLY)
653 cpu_list_lock();
654 #endif
655 env->next_cpu = NULL;
656 penv = &first_cpu;
657 cpu_index = 0;
658 while (*penv != NULL) {
659 penv = &(*penv)->next_cpu;
660 cpu_index++;
661 }
662 env->cpu_index = cpu_index;
663 env->numa_node = 0;
664 QTAILQ_INIT(&env->breakpoints);
665 QTAILQ_INIT(&env->watchpoints);
666 *penv = env;
667 #if defined(CONFIG_USER_ONLY)
668 cpu_list_unlock();
669 #endif
670 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
671 vmstate_register(cpu_index, &vmstate_cpu_common, env);
672 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
673 cpu_save, cpu_load, env);
674 #endif
675 }
676
677 static inline void invalidate_page_bitmap(PageDesc *p)
678 {
679 if (p->code_bitmap) {
680 qemu_free(p->code_bitmap);
681 p->code_bitmap = NULL;
682 }
683 p->code_write_count = 0;
684 }
685
686 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
687
688 static void page_flush_tb_1 (int level, void **lp)
689 {
690 int i;
691
692 if (*lp == NULL) {
693 return;
694 }
695 if (level == 0) {
696 PageDesc *pd = *lp;
697 for (i = 0; i < L2_SIZE; ++i) {
698 pd[i].first_tb = NULL;
699 invalidate_page_bitmap(pd + i);
700 }
701 } else {
702 void **pp = *lp;
703 for (i = 0; i < L2_SIZE; ++i) {
704 page_flush_tb_1 (level - 1, pp + i);
705 }
706 }
707 }
708
709 static void page_flush_tb(void)
710 {
711 int i;
712 for (i = 0; i < V_L1_SIZE; i++) {
713 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
714 }
715 }
716
717 /* flush all the translation blocks */
718 /* XXX: tb_flush is currently not thread safe */
719 void tb_flush(CPUState *env1)
720 {
721 CPUState *env;
722 #if defined(DEBUG_FLUSH)
723 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
724 (unsigned long)(code_gen_ptr - code_gen_buffer),
725 nb_tbs, nb_tbs > 0 ?
726 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
727 #endif
728 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
729 cpu_abort(env1, "Internal error: code buffer overflow\n");
730
731 nb_tbs = 0;
732
733 for(env = first_cpu; env != NULL; env = env->next_cpu) {
734 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
735 }
736
737 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
738 page_flush_tb();
739
740 code_gen_ptr = code_gen_buffer;
741 /* XXX: flush processor icache at this point if cache flush is
742 expensive */
743 tb_flush_count++;
744 }
745
746 #ifdef DEBUG_TB_CHECK
747
748 static void tb_invalidate_check(target_ulong address)
749 {
750 TranslationBlock *tb;
751 int i;
752 address &= TARGET_PAGE_MASK;
753 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
754 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
755 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
756 address >= tb->pc + tb->size)) {
757 printf("ERROR invalidate: address=" TARGET_FMT_lx
758 " PC=%08lx size=%04x\n",
759 address, (long)tb->pc, tb->size);
760 }
761 }
762 }
763 }
764
765 /* verify that all the pages have correct rights for code */
766 static void tb_page_check(void)
767 {
768 TranslationBlock *tb;
769 int i, flags1, flags2;
770
771 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
772 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
773 flags1 = page_get_flags(tb->pc);
774 flags2 = page_get_flags(tb->pc + tb->size - 1);
775 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
776 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
777 (long)tb->pc, tb->size, flags1, flags2);
778 }
779 }
780 }
781 }
782
783 #endif
784
785 /* invalidate one TB */
786 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
787 int next_offset)
788 {
789 TranslationBlock *tb1;
790 for(;;) {
791 tb1 = *ptb;
792 if (tb1 == tb) {
793 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
794 break;
795 }
796 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
797 }
798 }
799
800 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
801 {
802 TranslationBlock *tb1;
803 unsigned int n1;
804
805 for(;;) {
806 tb1 = *ptb;
807 n1 = (long)tb1 & 3;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 if (tb1 == tb) {
810 *ptb = tb1->page_next[n1];
811 break;
812 }
813 ptb = &tb1->page_next[n1];
814 }
815 }
816
817 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
818 {
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843 }
844
845 /* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847 static inline void tb_reset_jump(TranslationBlock *tb, int n)
848 {
849 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
850 }
851
852 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
853 {
854 CPUState *env;
855 PageDesc *p;
856 unsigned int h, n1;
857 tb_page_addr_t phys_pc;
858 TranslationBlock *tb1, *tb2;
859
860 /* remove the TB from the hash list */
861 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
862 h = tb_phys_hash_func(phys_pc);
863 tb_remove(&tb_phys_hash[h], tb,
864 offsetof(TranslationBlock, phys_hash_next));
865
866 /* remove the TB from the page list */
867 if (tb->page_addr[0] != page_addr) {
868 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
869 tb_page_remove(&p->first_tb, tb);
870 invalidate_page_bitmap(p);
871 }
872 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
873 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
874 tb_page_remove(&p->first_tb, tb);
875 invalidate_page_bitmap(p);
876 }
877
878 tb_invalidated_flag = 1;
879
880 /* remove the TB from the hash list */
881 h = tb_jmp_cache_hash_func(tb->pc);
882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
883 if (env->tb_jmp_cache[h] == tb)
884 env->tb_jmp_cache[h] = NULL;
885 }
886
887 /* suppress this TB from the two jump lists */
888 tb_jmp_remove(tb, 0);
889 tb_jmp_remove(tb, 1);
890
891 /* suppress any remaining jumps to this TB */
892 tb1 = tb->jmp_first;
893 for(;;) {
894 n1 = (long)tb1 & 3;
895 if (n1 == 2)
896 break;
897 tb1 = (TranslationBlock *)((long)tb1 & ~3);
898 tb2 = tb1->jmp_next[n1];
899 tb_reset_jump(tb1, n1);
900 tb1->jmp_next[n1] = NULL;
901 tb1 = tb2;
902 }
903 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
904
905 tb_phys_invalidate_count++;
906 }
907
908 static inline void set_bits(uint8_t *tab, int start, int len)
909 {
910 int end, mask, end1;
911
912 end = start + len;
913 tab += start >> 3;
914 mask = 0xff << (start & 7);
915 if ((start & ~7) == (end & ~7)) {
916 if (start < end) {
917 mask &= ~(0xff << (end & 7));
918 *tab |= mask;
919 }
920 } else {
921 *tab++ |= mask;
922 start = (start + 8) & ~7;
923 end1 = end & ~7;
924 while (start < end1) {
925 *tab++ = 0xff;
926 start += 8;
927 }
928 if (start < end) {
929 mask = ~(0xff << (end & 7));
930 *tab |= mask;
931 }
932 }
933 }
934
935 static void build_page_bitmap(PageDesc *p)
936 {
937 int n, tb_start, tb_end;
938 TranslationBlock *tb;
939
940 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
941
942 tb = p->first_tb;
943 while (tb != NULL) {
944 n = (long)tb & 3;
945 tb = (TranslationBlock *)((long)tb & ~3);
946 /* NOTE: this is subtle as a TB may span two physical pages */
947 if (n == 0) {
948 /* NOTE: tb_end may be after the end of the page, but
949 it is not a problem */
950 tb_start = tb->pc & ~TARGET_PAGE_MASK;
951 tb_end = tb_start + tb->size;
952 if (tb_end > TARGET_PAGE_SIZE)
953 tb_end = TARGET_PAGE_SIZE;
954 } else {
955 tb_start = 0;
956 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
957 }
958 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
959 tb = tb->page_next[n];
960 }
961 }
962
963 TranslationBlock *tb_gen_code(CPUState *env,
964 target_ulong pc, target_ulong cs_base,
965 int flags, int cflags)
966 {
967 TranslationBlock *tb;
968 uint8_t *tc_ptr;
969 tb_page_addr_t phys_pc, phys_page2;
970 target_ulong virt_page2;
971 int code_gen_size;
972
973 phys_pc = get_page_addr_code(env, pc);
974 tb = tb_alloc(pc);
975 if (!tb) {
976 /* flush must be done */
977 tb_flush(env);
978 /* cannot fail at this point */
979 tb = tb_alloc(pc);
980 /* Don't forget to invalidate previous TB info. */
981 tb_invalidated_flag = 1;
982 }
983 tc_ptr = code_gen_ptr;
984 tb->tc_ptr = tc_ptr;
985 tb->cs_base = cs_base;
986 tb->flags = flags;
987 tb->cflags = cflags;
988 cpu_gen_code(env, tb, &code_gen_size);
989 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
990
991 /* check next page if needed */
992 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
993 phys_page2 = -1;
994 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
995 phys_page2 = get_page_addr_code(env, virt_page2);
996 }
997 tb_link_page(tb, phys_pc, phys_page2);
998 return tb;
999 }
1000
1001 /* invalidate all TBs which intersect with the target physical page
1002 starting in range [start;end[. NOTE: start and end must refer to
1003 the same physical page. 'is_cpu_write_access' should be true if called
1004 from a real cpu write access: the virtual CPU will exit the current
1005 TB if code is modified inside this TB. */
1006 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1007 int is_cpu_write_access)
1008 {
1009 TranslationBlock *tb, *tb_next, *saved_tb;
1010 CPUState *env = cpu_single_env;
1011 tb_page_addr_t tb_start, tb_end;
1012 PageDesc *p;
1013 int n;
1014 #ifdef TARGET_HAS_PRECISE_SMC
1015 int current_tb_not_found = is_cpu_write_access;
1016 TranslationBlock *current_tb = NULL;
1017 int current_tb_modified = 0;
1018 target_ulong current_pc = 0;
1019 target_ulong current_cs_base = 0;
1020 int current_flags = 0;
1021 #endif /* TARGET_HAS_PRECISE_SMC */
1022
1023 p = page_find(start >> TARGET_PAGE_BITS);
1024 if (!p)
1025 return;
1026 if (!p->code_bitmap &&
1027 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1028 is_cpu_write_access) {
1029 /* build code bitmap */
1030 build_page_bitmap(p);
1031 }
1032
1033 /* we remove all the TBs in the range [start, end[ */
1034 /* XXX: see if in some cases it could be faster to invalidate all the code */
1035 tb = p->first_tb;
1036 while (tb != NULL) {
1037 n = (long)tb & 3;
1038 tb = (TranslationBlock *)((long)tb & ~3);
1039 tb_next = tb->page_next[n];
1040 /* NOTE: this is subtle as a TB may span two physical pages */
1041 if (n == 0) {
1042 /* NOTE: tb_end may be after the end of the page, but
1043 it is not a problem */
1044 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1045 tb_end = tb_start + tb->size;
1046 } else {
1047 tb_start = tb->page_addr[1];
1048 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 }
1050 if (!(tb_end <= start || tb_start >= end)) {
1051 #ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb_not_found) {
1053 current_tb_not_found = 0;
1054 current_tb = NULL;
1055 if (env->mem_io_pc) {
1056 /* now we have a real cpu fault */
1057 current_tb = tb_find_pc(env->mem_io_pc);
1058 }
1059 }
1060 if (current_tb == tb &&
1061 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
1067
1068 current_tb_modified = 1;
1069 cpu_restore_state(current_tb, env,
1070 env->mem_io_pc, NULL);
1071 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1072 &current_flags);
1073 }
1074 #endif /* TARGET_HAS_PRECISE_SMC */
1075 /* we need to do that to handle the case where a signal
1076 occurs while doing tb_phys_invalidate() */
1077 saved_tb = NULL;
1078 if (env) {
1079 saved_tb = env->current_tb;
1080 env->current_tb = NULL;
1081 }
1082 tb_phys_invalidate(tb, -1);
1083 if (env) {
1084 env->current_tb = saved_tb;
1085 if (env->interrupt_request && env->current_tb)
1086 cpu_interrupt(env, env->interrupt_request);
1087 }
1088 }
1089 tb = tb_next;
1090 }
1091 #if !defined(CONFIG_USER_ONLY)
1092 /* if no code remaining, no need to continue to use slow writes */
1093 if (!p->first_tb) {
1094 invalidate_page_bitmap(p);
1095 if (is_cpu_write_access) {
1096 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1097 }
1098 }
1099 #endif
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 if (current_tb_modified) {
1102 /* we generate a block containing just the instruction
1103 modifying the memory. It will ensure that it cannot modify
1104 itself */
1105 env->current_tb = NULL;
1106 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1107 cpu_resume_from_signal(env, NULL);
1108 }
1109 #endif
1110 }
1111
1112 /* len must be <= 8 and start must be a multiple of len */
1113 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1114 {
1115 PageDesc *p;
1116 int offset, b;
1117 #if 0
1118 if (1) {
1119 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1120 cpu_single_env->mem_io_vaddr, len,
1121 cpu_single_env->eip,
1122 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1123 }
1124 #endif
1125 p = page_find(start >> TARGET_PAGE_BITS);
1126 if (!p)
1127 return;
1128 if (p->code_bitmap) {
1129 offset = start & ~TARGET_PAGE_MASK;
1130 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1131 if (b & ((1 << len) - 1))
1132 goto do_invalidate;
1133 } else {
1134 do_invalidate:
1135 tb_invalidate_phys_page_range(start, start + len, 1);
1136 }
1137 }
1138
1139 #if !defined(CONFIG_SOFTMMU)
1140 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1141 unsigned long pc, void *puc)
1142 {
1143 TranslationBlock *tb;
1144 PageDesc *p;
1145 int n;
1146 #ifdef TARGET_HAS_PRECISE_SMC
1147 TranslationBlock *current_tb = NULL;
1148 CPUState *env = cpu_single_env;
1149 int current_tb_modified = 0;
1150 target_ulong current_pc = 0;
1151 target_ulong current_cs_base = 0;
1152 int current_flags = 0;
1153 #endif
1154
1155 addr &= TARGET_PAGE_MASK;
1156 p = page_find(addr >> TARGET_PAGE_BITS);
1157 if (!p)
1158 return;
1159 tb = p->first_tb;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (tb && pc != 0) {
1162 current_tb = tb_find_pc(pc);
1163 }
1164 #endif
1165 while (tb != NULL) {
1166 n = (long)tb & 3;
1167 tb = (TranslationBlock *)((long)tb & ~3);
1168 #ifdef TARGET_HAS_PRECISE_SMC
1169 if (current_tb == tb &&
1170 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1171 /* If we are modifying the current TB, we must stop
1172 its execution. We could be more precise by checking
1173 that the modification is after the current PC, but it
1174 would require a specialized function to partially
1175 restore the CPU state */
1176
1177 current_tb_modified = 1;
1178 cpu_restore_state(current_tb, env, pc, puc);
1179 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1180 &current_flags);
1181 }
1182 #endif /* TARGET_HAS_PRECISE_SMC */
1183 tb_phys_invalidate(tb, addr);
1184 tb = tb->page_next[n];
1185 }
1186 p->first_tb = NULL;
1187 #ifdef TARGET_HAS_PRECISE_SMC
1188 if (current_tb_modified) {
1189 /* we generate a block containing just the instruction
1190 modifying the memory. It will ensure that it cannot modify
1191 itself */
1192 env->current_tb = NULL;
1193 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1194 cpu_resume_from_signal(env, puc);
1195 }
1196 #endif
1197 }
1198 #endif
1199
1200 /* add the tb in the target page and protect it if necessary */
1201 static inline void tb_alloc_page(TranslationBlock *tb,
1202 unsigned int n, tb_page_addr_t page_addr)
1203 {
1204 PageDesc *p;
1205 TranslationBlock *last_first_tb;
1206
1207 tb->page_addr[n] = page_addr;
1208 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1209 tb->page_next[n] = p->first_tb;
1210 last_first_tb = p->first_tb;
1211 p->first_tb = (TranslationBlock *)((long)tb | n);
1212 invalidate_page_bitmap(p);
1213
1214 #if defined(TARGET_HAS_SMC) || 1
1215
1216 #if defined(CONFIG_USER_ONLY)
1217 if (p->flags & PAGE_WRITE) {
1218 target_ulong addr;
1219 PageDesc *p2;
1220 int prot;
1221
1222 /* force the host page as non writable (writes will have a
1223 page fault + mprotect overhead) */
1224 page_addr &= qemu_host_page_mask;
1225 prot = 0;
1226 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1227 addr += TARGET_PAGE_SIZE) {
1228
1229 p2 = page_find (addr >> TARGET_PAGE_BITS);
1230 if (!p2)
1231 continue;
1232 prot |= p2->flags;
1233 p2->flags &= ~PAGE_WRITE;
1234 }
1235 mprotect(g2h(page_addr), qemu_host_page_size,
1236 (prot & PAGE_BITS) & ~PAGE_WRITE);
1237 #ifdef DEBUG_TB_INVALIDATE
1238 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1239 page_addr);
1240 #endif
1241 }
1242 #else
1243 /* if some code is already present, then the pages are already
1244 protected. So we handle the case where only the first TB is
1245 allocated in a physical page */
1246 if (!last_first_tb) {
1247 tlb_protect_code(page_addr);
1248 }
1249 #endif
1250
1251 #endif /* TARGET_HAS_SMC */
1252 }
1253
1254 /* Allocate a new translation block. Flush the translation buffer if
1255 too many translation blocks or too much generated code. */
1256 TranslationBlock *tb_alloc(target_ulong pc)
1257 {
1258 TranslationBlock *tb;
1259
1260 if (nb_tbs >= code_gen_max_blocks ||
1261 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1262 return NULL;
1263 tb = &tbs[nb_tbs++];
1264 tb->pc = pc;
1265 tb->cflags = 0;
1266 return tb;
1267 }
1268
1269 void tb_free(TranslationBlock *tb)
1270 {
1271 /* In practice this is mostly used for single use temporary TB
1272 Ignore the hard cases and just back up if this TB happens to
1273 be the last one generated. */
1274 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1275 code_gen_ptr = tb->tc_ptr;
1276 nb_tbs--;
1277 }
1278 }
1279
1280 /* add a new TB and link it to the physical page tables. phys_page2 is
1281 (-1) to indicate that only one page contains the TB. */
1282 void tb_link_page(TranslationBlock *tb,
1283 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1284 {
1285 unsigned int h;
1286 TranslationBlock **ptb;
1287
1288 /* Grab the mmap lock to stop another thread invalidating this TB
1289 before we are done. */
1290 mmap_lock();
1291 /* add in the physical hash table */
1292 h = tb_phys_hash_func(phys_pc);
1293 ptb = &tb_phys_hash[h];
1294 tb->phys_hash_next = *ptb;
1295 *ptb = tb;
1296
1297 /* add in the page list */
1298 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1299 if (phys_page2 != -1)
1300 tb_alloc_page(tb, 1, phys_page2);
1301 else
1302 tb->page_addr[1] = -1;
1303
1304 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1305 tb->jmp_next[0] = NULL;
1306 tb->jmp_next[1] = NULL;
1307
1308 /* init original jump addresses */
1309 if (tb->tb_next_offset[0] != 0xffff)
1310 tb_reset_jump(tb, 0);
1311 if (tb->tb_next_offset[1] != 0xffff)
1312 tb_reset_jump(tb, 1);
1313
1314 #ifdef DEBUG_TB_CHECK
1315 tb_page_check();
1316 #endif
1317 mmap_unlock();
1318 }
1319
1320 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1321 tb[1].tc_ptr. Return NULL if not found */
1322 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1323 {
1324 int m_min, m_max, m;
1325 unsigned long v;
1326 TranslationBlock *tb;
1327
1328 if (nb_tbs <= 0)
1329 return NULL;
1330 if (tc_ptr < (unsigned long)code_gen_buffer ||
1331 tc_ptr >= (unsigned long)code_gen_ptr)
1332 return NULL;
1333 /* binary search (cf Knuth) */
1334 m_min = 0;
1335 m_max = nb_tbs - 1;
1336 while (m_min <= m_max) {
1337 m = (m_min + m_max) >> 1;
1338 tb = &tbs[m];
1339 v = (unsigned long)tb->tc_ptr;
1340 if (v == tc_ptr)
1341 return tb;
1342 else if (tc_ptr < v) {
1343 m_max = m - 1;
1344 } else {
1345 m_min = m + 1;
1346 }
1347 }
1348 return &tbs[m_max];
1349 }
1350
1351 static void tb_reset_jump_recursive(TranslationBlock *tb);
1352
1353 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1354 {
1355 TranslationBlock *tb1, *tb_next, **ptb;
1356 unsigned int n1;
1357
1358 tb1 = tb->jmp_next[n];
1359 if (tb1 != NULL) {
1360 /* find head of list */
1361 for(;;) {
1362 n1 = (long)tb1 & 3;
1363 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1364 if (n1 == 2)
1365 break;
1366 tb1 = tb1->jmp_next[n1];
1367 }
1368 /* we are now sure now that tb jumps to tb1 */
1369 tb_next = tb1;
1370
1371 /* remove tb from the jmp_first list */
1372 ptb = &tb_next->jmp_first;
1373 for(;;) {
1374 tb1 = *ptb;
1375 n1 = (long)tb1 & 3;
1376 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1377 if (n1 == n && tb1 == tb)
1378 break;
1379 ptb = &tb1->jmp_next[n1];
1380 }
1381 *ptb = tb->jmp_next[n];
1382 tb->jmp_next[n] = NULL;
1383
1384 /* suppress the jump to next tb in generated code */
1385 tb_reset_jump(tb, n);
1386
1387 /* suppress jumps in the tb on which we could have jumped */
1388 tb_reset_jump_recursive(tb_next);
1389 }
1390 }
1391
1392 static void tb_reset_jump_recursive(TranslationBlock *tb)
1393 {
1394 tb_reset_jump_recursive2(tb, 0);
1395 tb_reset_jump_recursive2(tb, 1);
1396 }
1397
1398 #if defined(TARGET_HAS_ICE)
1399 #if defined(CONFIG_USER_ONLY)
1400 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401 {
1402 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1403 }
1404 #else
1405 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1406 {
1407 target_phys_addr_t addr;
1408 target_ulong pd;
1409 ram_addr_t ram_addr;
1410 PhysPageDesc *p;
1411
1412 addr = cpu_get_phys_page_debug(env, pc);
1413 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1414 if (!p) {
1415 pd = IO_MEM_UNASSIGNED;
1416 } else {
1417 pd = p->phys_offset;
1418 }
1419 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1420 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1421 }
1422 #endif
1423 #endif /* TARGET_HAS_ICE */
1424
1425 #if defined(CONFIG_USER_ONLY)
1426 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1427
1428 {
1429 }
1430
1431 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
1433 {
1434 return -ENOSYS;
1435 }
1436 #else
1437 /* Add a watchpoint. */
1438 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1439 int flags, CPUWatchpoint **watchpoint)
1440 {
1441 target_ulong len_mask = ~(len - 1);
1442 CPUWatchpoint *wp;
1443
1444 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1445 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1446 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1447 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1448 return -EINVAL;
1449 }
1450 wp = qemu_malloc(sizeof(*wp));
1451
1452 wp->vaddr = addr;
1453 wp->len_mask = len_mask;
1454 wp->flags = flags;
1455
1456 /* keep all GDB-injected watchpoints in front */
1457 if (flags & BP_GDB)
1458 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1459 else
1460 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1461
1462 tlb_flush_page(env, addr);
1463
1464 if (watchpoint)
1465 *watchpoint = wp;
1466 return 0;
1467 }
1468
1469 /* Remove a specific watchpoint. */
1470 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1471 int flags)
1472 {
1473 target_ulong len_mask = ~(len - 1);
1474 CPUWatchpoint *wp;
1475
1476 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1477 if (addr == wp->vaddr && len_mask == wp->len_mask
1478 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1479 cpu_watchpoint_remove_by_ref(env, wp);
1480 return 0;
1481 }
1482 }
1483 return -ENOENT;
1484 }
1485
1486 /* Remove a specific watchpoint by reference. */
1487 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1488 {
1489 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1490
1491 tlb_flush_page(env, watchpoint->vaddr);
1492
1493 qemu_free(watchpoint);
1494 }
1495
1496 /* Remove all matching watchpoints. */
1497 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1498 {
1499 CPUWatchpoint *wp, *next;
1500
1501 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1502 if (wp->flags & mask)
1503 cpu_watchpoint_remove_by_ref(env, wp);
1504 }
1505 }
1506 #endif
1507
1508 /* Add a breakpoint. */
1509 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1510 CPUBreakpoint **breakpoint)
1511 {
1512 #if defined(TARGET_HAS_ICE)
1513 CPUBreakpoint *bp;
1514
1515 bp = qemu_malloc(sizeof(*bp));
1516
1517 bp->pc = pc;
1518 bp->flags = flags;
1519
1520 /* keep all GDB-injected breakpoints in front */
1521 if (flags & BP_GDB)
1522 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1523 else
1524 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1525
1526 breakpoint_invalidate(env, pc);
1527
1528 if (breakpoint)
1529 *breakpoint = bp;
1530 return 0;
1531 #else
1532 return -ENOSYS;
1533 #endif
1534 }
1535
1536 /* Remove a specific breakpoint. */
1537 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1538 {
1539 #if defined(TARGET_HAS_ICE)
1540 CPUBreakpoint *bp;
1541
1542 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1543 if (bp->pc == pc && bp->flags == flags) {
1544 cpu_breakpoint_remove_by_ref(env, bp);
1545 return 0;
1546 }
1547 }
1548 return -ENOENT;
1549 #else
1550 return -ENOSYS;
1551 #endif
1552 }
1553
1554 /* Remove a specific breakpoint by reference. */
1555 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1556 {
1557 #if defined(TARGET_HAS_ICE)
1558 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1559
1560 breakpoint_invalidate(env, breakpoint->pc);
1561
1562 qemu_free(breakpoint);
1563 #endif
1564 }
1565
1566 /* Remove all matching breakpoints. */
1567 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1568 {
1569 #if defined(TARGET_HAS_ICE)
1570 CPUBreakpoint *bp, *next;
1571
1572 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1573 if (bp->flags & mask)
1574 cpu_breakpoint_remove_by_ref(env, bp);
1575 }
1576 #endif
1577 }
1578
1579 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1580 CPU loop after each instruction */
1581 void cpu_single_step(CPUState *env, int enabled)
1582 {
1583 #if defined(TARGET_HAS_ICE)
1584 if (env->singlestep_enabled != enabled) {
1585 env->singlestep_enabled = enabled;
1586 if (kvm_enabled())
1587 kvm_update_guest_debug(env, 0);
1588 else {
1589 /* must flush all the translated code to avoid inconsistencies */
1590 /* XXX: only flush what is necessary */
1591 tb_flush(env);
1592 }
1593 }
1594 #endif
1595 }
1596
1597 /* enable or disable low levels log */
1598 void cpu_set_log(int log_flags)
1599 {
1600 loglevel = log_flags;
1601 if (loglevel && !logfile) {
1602 logfile = fopen(logfilename, log_append ? "a" : "w");
1603 if (!logfile) {
1604 perror(logfilename);
1605 _exit(1);
1606 }
1607 #if !defined(CONFIG_SOFTMMU)
1608 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1609 {
1610 static char logfile_buf[4096];
1611 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1612 }
1613 #elif !defined(_WIN32)
1614 /* Win32 doesn't support line-buffering and requires size >= 2 */
1615 setvbuf(logfile, NULL, _IOLBF, 0);
1616 #endif
1617 log_append = 1;
1618 }
1619 if (!loglevel && logfile) {
1620 fclose(logfile);
1621 logfile = NULL;
1622 }
1623 }
1624
1625 void cpu_set_log_filename(const char *filename)
1626 {
1627 logfilename = strdup(filename);
1628 if (logfile) {
1629 fclose(logfile);
1630 logfile = NULL;
1631 }
1632 cpu_set_log(loglevel);
1633 }
1634
1635 static void cpu_unlink_tb(CPUState *env)
1636 {
1637 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1638 problem and hope the cpu will stop of its own accord. For userspace
1639 emulation this often isn't actually as bad as it sounds. Often
1640 signals are used primarily to interrupt blocking syscalls. */
1641 TranslationBlock *tb;
1642 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1643
1644 spin_lock(&interrupt_lock);
1645 tb = env->current_tb;
1646 /* if the cpu is currently executing code, we must unlink it and
1647 all the potentially executing TB */
1648 if (tb) {
1649 env->current_tb = NULL;
1650 tb_reset_jump_recursive(tb);
1651 }
1652 spin_unlock(&interrupt_lock);
1653 }
1654
1655 /* mask must never be zero, except for A20 change call */
1656 void cpu_interrupt(CPUState *env, int mask)
1657 {
1658 int old_mask;
1659
1660 old_mask = env->interrupt_request;
1661 env->interrupt_request |= mask;
1662
1663 #ifndef CONFIG_USER_ONLY
1664 /*
1665 * If called from iothread context, wake the target cpu in
1666 * case its halted.
1667 */
1668 if (!qemu_cpu_self(env)) {
1669 qemu_cpu_kick(env);
1670 return;
1671 }
1672 #endif
1673
1674 if (use_icount) {
1675 env->icount_decr.u16.high = 0xffff;
1676 #ifndef CONFIG_USER_ONLY
1677 if (!can_do_io(env)
1678 && (mask & ~old_mask) != 0) {
1679 cpu_abort(env, "Raised interrupt while not in I/O function");
1680 }
1681 #endif
1682 } else {
1683 cpu_unlink_tb(env);
1684 }
1685 }
1686
1687 void cpu_reset_interrupt(CPUState *env, int mask)
1688 {
1689 env->interrupt_request &= ~mask;
1690 }
1691
1692 void cpu_exit(CPUState *env)
1693 {
1694 env->exit_request = 1;
1695 cpu_unlink_tb(env);
1696 }
1697
1698 const CPULogItem cpu_log_items[] = {
1699 { CPU_LOG_TB_OUT_ASM, "out_asm",
1700 "show generated host assembly code for each compiled TB" },
1701 { CPU_LOG_TB_IN_ASM, "in_asm",
1702 "show target assembly code for each compiled TB" },
1703 { CPU_LOG_TB_OP, "op",
1704 "show micro ops for each compiled TB" },
1705 { CPU_LOG_TB_OP_OPT, "op_opt",
1706 "show micro ops "
1707 #ifdef TARGET_I386
1708 "before eflags optimization and "
1709 #endif
1710 "after liveness analysis" },
1711 { CPU_LOG_INT, "int",
1712 "show interrupts/exceptions in short format" },
1713 { CPU_LOG_EXEC, "exec",
1714 "show trace before each executed TB (lots of logs)" },
1715 { CPU_LOG_TB_CPU, "cpu",
1716 "show CPU state before block translation" },
1717 #ifdef TARGET_I386
1718 { CPU_LOG_PCALL, "pcall",
1719 "show protected mode far calls/returns/exceptions" },
1720 { CPU_LOG_RESET, "cpu_reset",
1721 "show CPU state before CPU resets" },
1722 #endif
1723 #ifdef DEBUG_IOPORT
1724 { CPU_LOG_IOPORT, "ioport",
1725 "show all i/o ports accesses" },
1726 #endif
1727 { 0, NULL, NULL },
1728 };
1729
1730 #ifndef CONFIG_USER_ONLY
1731 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1732 = QLIST_HEAD_INITIALIZER(memory_client_list);
1733
1734 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1735 ram_addr_t size,
1736 ram_addr_t phys_offset)
1737 {
1738 CPUPhysMemoryClient *client;
1739 QLIST_FOREACH(client, &memory_client_list, list) {
1740 client->set_memory(client, start_addr, size, phys_offset);
1741 }
1742 }
1743
1744 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1745 target_phys_addr_t end)
1746 {
1747 CPUPhysMemoryClient *client;
1748 QLIST_FOREACH(client, &memory_client_list, list) {
1749 int r = client->sync_dirty_bitmap(client, start, end);
1750 if (r < 0)
1751 return r;
1752 }
1753 return 0;
1754 }
1755
1756 static int cpu_notify_migration_log(int enable)
1757 {
1758 CPUPhysMemoryClient *client;
1759 QLIST_FOREACH(client, &memory_client_list, list) {
1760 int r = client->migration_log(client, enable);
1761 if (r < 0)
1762 return r;
1763 }
1764 return 0;
1765 }
1766
1767 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1768 int level, void **lp)
1769 {
1770 int i;
1771
1772 if (*lp == NULL) {
1773 return;
1774 }
1775 if (level == 0) {
1776 PhysPageDesc *pd = *lp;
1777 for (i = 0; i < L2_SIZE; ++i) {
1778 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1779 client->set_memory(client, pd[i].region_offset,
1780 TARGET_PAGE_SIZE, pd[i].phys_offset);
1781 }
1782 }
1783 } else {
1784 void **pp = *lp;
1785 for (i = 0; i < L2_SIZE; ++i) {
1786 phys_page_for_each_1(client, level - 1, pp + i);
1787 }
1788 }
1789 }
1790
1791 static void phys_page_for_each(CPUPhysMemoryClient *client)
1792 {
1793 int i;
1794 for (i = 0; i < P_L1_SIZE; ++i) {
1795 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1796 l1_phys_map + 1);
1797 }
1798 }
1799
1800 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1801 {
1802 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1803 phys_page_for_each(client);
1804 }
1805
1806 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1807 {
1808 QLIST_REMOVE(client, list);
1809 }
1810 #endif
1811
1812 static int cmp1(const char *s1, int n, const char *s2)
1813 {
1814 if (strlen(s2) != n)
1815 return 0;
1816 return memcmp(s1, s2, n) == 0;
1817 }
1818
1819 /* takes a comma separated list of log masks. Return 0 if error. */
1820 int cpu_str_to_log_mask(const char *str)
1821 {
1822 const CPULogItem *item;
1823 int mask;
1824 const char *p, *p1;
1825
1826 p = str;
1827 mask = 0;
1828 for(;;) {
1829 p1 = strchr(p, ',');
1830 if (!p1)
1831 p1 = p + strlen(p);
1832 if(cmp1(p,p1-p,"all")) {
1833 for(item = cpu_log_items; item->mask != 0; item++) {
1834 mask |= item->mask;
1835 }
1836 } else {
1837 for(item = cpu_log_items; item->mask != 0; item++) {
1838 if (cmp1(p, p1 - p, item->name))
1839 goto found;
1840 }
1841 return 0;
1842 }
1843 found:
1844 mask |= item->mask;
1845 if (*p1 != ',')
1846 break;
1847 p = p1 + 1;
1848 }
1849 return mask;
1850 }
1851
1852 void cpu_abort(CPUState *env, const char *fmt, ...)
1853 {
1854 va_list ap;
1855 va_list ap2;
1856
1857 va_start(ap, fmt);
1858 va_copy(ap2, ap);
1859 fprintf(stderr, "qemu: fatal: ");
1860 vfprintf(stderr, fmt, ap);
1861 fprintf(stderr, "\n");
1862 #ifdef TARGET_I386
1863 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1864 #else
1865 cpu_dump_state(env, stderr, fprintf, 0);
1866 #endif
1867 if (qemu_log_enabled()) {
1868 qemu_log("qemu: fatal: ");
1869 qemu_log_vprintf(fmt, ap2);
1870 qemu_log("\n");
1871 #ifdef TARGET_I386
1872 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1873 #else
1874 log_cpu_state(env, 0);
1875 #endif
1876 qemu_log_flush();
1877 qemu_log_close();
1878 }
1879 va_end(ap2);
1880 va_end(ap);
1881 #if defined(CONFIG_USER_ONLY)
1882 {
1883 struct sigaction act;
1884 sigfillset(&act.sa_mask);
1885 act.sa_handler = SIG_DFL;
1886 sigaction(SIGABRT, &act, NULL);
1887 }
1888 #endif
1889 abort();
1890 }
1891
1892 CPUState *cpu_copy(CPUState *env)
1893 {
1894 CPUState *new_env = cpu_init(env->cpu_model_str);
1895 CPUState *next_cpu = new_env->next_cpu;
1896 int cpu_index = new_env->cpu_index;
1897 #if defined(TARGET_HAS_ICE)
1898 CPUBreakpoint *bp;
1899 CPUWatchpoint *wp;
1900 #endif
1901
1902 memcpy(new_env, env, sizeof(CPUState));
1903
1904 /* Preserve chaining and index. */
1905 new_env->next_cpu = next_cpu;
1906 new_env->cpu_index = cpu_index;
1907
1908 /* Clone all break/watchpoints.
1909 Note: Once we support ptrace with hw-debug register access, make sure
1910 BP_CPU break/watchpoints are handled correctly on clone. */
1911 QTAILQ_INIT(&env->breakpoints);
1912 QTAILQ_INIT(&env->watchpoints);
1913 #if defined(TARGET_HAS_ICE)
1914 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1915 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1916 }
1917 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1918 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1919 wp->flags, NULL);
1920 }
1921 #endif
1922
1923 return new_env;
1924 }
1925
1926 #if !defined(CONFIG_USER_ONLY)
1927
1928 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1929 {
1930 unsigned int i;
1931
1932 /* Discard jump cache entries for any tb which might potentially
1933 overlap the flushed page. */
1934 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1935 memset (&env->tb_jmp_cache[i], 0,
1936 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1937
1938 i = tb_jmp_cache_hash_page(addr);
1939 memset (&env->tb_jmp_cache[i], 0,
1940 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1941 }
1942
1943 static CPUTLBEntry s_cputlb_empty_entry = {
1944 .addr_read = -1,
1945 .addr_write = -1,
1946 .addr_code = -1,
1947 .addend = -1,
1948 };
1949
1950 /* NOTE: if flush_global is true, also flush global entries (not
1951 implemented yet) */
1952 void tlb_flush(CPUState *env, int flush_global)
1953 {
1954 int i;
1955
1956 #if defined(DEBUG_TLB)
1957 printf("tlb_flush:\n");
1958 #endif
1959 /* must reset current TB so that interrupts cannot modify the
1960 links while we are modifying them */
1961 env->current_tb = NULL;
1962
1963 for(i = 0; i < CPU_TLB_SIZE; i++) {
1964 int mmu_idx;
1965 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1966 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1967 }
1968 }
1969
1970 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1971
1972 env->tlb_flush_addr = -1;
1973 env->tlb_flush_mask = 0;
1974 tlb_flush_count++;
1975 }
1976
1977 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1978 {
1979 if (addr == (tlb_entry->addr_read &
1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1981 addr == (tlb_entry->addr_write &
1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1983 addr == (tlb_entry->addr_code &
1984 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1985 *tlb_entry = s_cputlb_empty_entry;
1986 }
1987 }
1988
1989 void tlb_flush_page(CPUState *env, target_ulong addr)
1990 {
1991 int i;
1992 int mmu_idx;
1993
1994 #if defined(DEBUG_TLB)
1995 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1996 #endif
1997 /* Check if we need to flush due to large pages. */
1998 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1999 #if defined(DEBUG_TLB)
2000 printf("tlb_flush_page: forced full flush ("
2001 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2002 env->tlb_flush_addr, env->tlb_flush_mask);
2003 #endif
2004 tlb_flush(env, 1);
2005 return;
2006 }
2007 /* must reset current TB so that interrupts cannot modify the
2008 links while we are modifying them */
2009 env->current_tb = NULL;
2010
2011 addr &= TARGET_PAGE_MASK;
2012 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2013 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2014 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2015
2016 tlb_flush_jmp_cache(env, addr);
2017 }
2018
2019 /* update the TLBs so that writes to code in the virtual page 'addr'
2020 can be detected */
2021 static void tlb_protect_code(ram_addr_t ram_addr)
2022 {
2023 cpu_physical_memory_reset_dirty(ram_addr,
2024 ram_addr + TARGET_PAGE_SIZE,
2025 CODE_DIRTY_FLAG);
2026 }
2027
2028 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2029 tested for self modifying code */
2030 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2031 target_ulong vaddr)
2032 {
2033 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
2034 }
2035
2036 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2037 unsigned long start, unsigned long length)
2038 {
2039 unsigned long addr;
2040 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2041 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2042 if ((addr - start) < length) {
2043 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2044 }
2045 }
2046 }
2047
2048 /* Note: start and end must be within the same ram block. */
2049 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2050 int dirty_flags)
2051 {
2052 CPUState *env;
2053 unsigned long length, start1;
2054 int i, mask, len;
2055 uint8_t *p;
2056
2057 start &= TARGET_PAGE_MASK;
2058 end = TARGET_PAGE_ALIGN(end);
2059
2060 length = end - start;
2061 if (length == 0)
2062 return;
2063 len = length >> TARGET_PAGE_BITS;
2064 mask = ~dirty_flags;
2065 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2066 for(i = 0; i < len; i++)
2067 p[i] &= mask;
2068
2069 /* we modify the TLB cache so that the dirty bit will be set again
2070 when accessing the range */
2071 start1 = (unsigned long)qemu_get_ram_ptr(start);
2072 /* Chek that we don't span multiple blocks - this breaks the
2073 address comparisons below. */
2074 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2075 != (end - 1) - start) {
2076 abort();
2077 }
2078
2079 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2080 int mmu_idx;
2081 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2082 for(i = 0; i < CPU_TLB_SIZE; i++)
2083 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2084 start1, length);
2085 }
2086 }
2087 }
2088
2089 int cpu_physical_memory_set_dirty_tracking(int enable)
2090 {
2091 int ret = 0;
2092 in_migration = enable;
2093 ret = cpu_notify_migration_log(!!enable);
2094 return ret;
2095 }
2096
2097 int cpu_physical_memory_get_dirty_tracking(void)
2098 {
2099 return in_migration;
2100 }
2101
2102 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2103 target_phys_addr_t end_addr)
2104 {
2105 int ret;
2106
2107 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2108 return ret;
2109 }
2110
2111 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2112 {
2113 ram_addr_t ram_addr;
2114 void *p;
2115
2116 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2117 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2118 + tlb_entry->addend);
2119 ram_addr = qemu_ram_addr_from_host(p);
2120 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2121 tlb_entry->addr_write |= TLB_NOTDIRTY;
2122 }
2123 }
2124 }
2125
2126 /* update the TLB according to the current state of the dirty bits */
2127 void cpu_tlb_update_dirty(CPUState *env)
2128 {
2129 int i;
2130 int mmu_idx;
2131 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2132 for(i = 0; i < CPU_TLB_SIZE; i++)
2133 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2134 }
2135 }
2136
2137 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2138 {
2139 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2140 tlb_entry->addr_write = vaddr;
2141 }
2142
2143 /* update the TLB corresponding to virtual page vaddr
2144 so that it is no longer dirty */
2145 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2146 {
2147 int i;
2148 int mmu_idx;
2149
2150 vaddr &= TARGET_PAGE_MASK;
2151 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2152 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2153 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2154 }
2155
2156 /* Our TLB does not support large pages, so remember the area covered by
2157 large pages and trigger a full TLB flush if these are invalidated. */
2158 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2159 target_ulong size)
2160 {
2161 target_ulong mask = ~(size - 1);
2162
2163 if (env->tlb_flush_addr == (target_ulong)-1) {
2164 env->tlb_flush_addr = vaddr & mask;
2165 env->tlb_flush_mask = mask;
2166 return;
2167 }
2168 /* Extend the existing region to include the new page.
2169 This is a compromise between unnecessary flushes and the cost
2170 of maintaining a full variable size TLB. */
2171 mask &= env->tlb_flush_mask;
2172 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2173 mask <<= 1;
2174 }
2175 env->tlb_flush_addr &= mask;
2176 env->tlb_flush_mask = mask;
2177 }
2178
2179 /* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
2182 void tlb_set_page(CPUState *env, target_ulong vaddr,
2183 target_phys_addr_t paddr, int prot,
2184 int mmu_idx, target_ulong size)
2185 {
2186 PhysPageDesc *p;
2187 unsigned long pd;
2188 unsigned int index;
2189 target_ulong address;
2190 target_ulong code_address;
2191 unsigned long addend;
2192 CPUTLBEntry *te;
2193 CPUWatchpoint *wp;
2194 target_phys_addr_t iotlb;
2195
2196 assert(size >= TARGET_PAGE_SIZE);
2197 if (size != TARGET_PAGE_SIZE) {
2198 tlb_add_large_page(env, vaddr, size);
2199 }
2200 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2201 if (!p) {
2202 pd = IO_MEM_UNASSIGNED;
2203 } else {
2204 pd = p->phys_offset;
2205 }
2206 #if defined(DEBUG_TLB)
2207 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2208 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2209 #endif
2210
2211 address = vaddr;
2212 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2213 /* IO memory case (romd handled later) */
2214 address |= TLB_MMIO;
2215 }
2216 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2217 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2218 /* Normal RAM. */
2219 iotlb = pd & TARGET_PAGE_MASK;
2220 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2221 iotlb |= IO_MEM_NOTDIRTY;
2222 else
2223 iotlb |= IO_MEM_ROM;
2224 } else {
2225 /* IO handlers are currently passed a physical address.
2226 It would be nice to pass an offset from the base address
2227 of that region. This would avoid having to special case RAM,
2228 and avoid full address decoding in every device.
2229 We can't use the high bits of pd for this because
2230 IO_MEM_ROMD uses these as a ram address. */
2231 iotlb = (pd & ~TARGET_PAGE_MASK);
2232 if (p) {
2233 iotlb += p->region_offset;
2234 } else {
2235 iotlb += paddr;
2236 }
2237 }
2238
2239 code_address = address;
2240 /* Make accesses to pages with watchpoints go via the
2241 watchpoint trap routines. */
2242 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2243 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2244 iotlb = io_mem_watch + paddr;
2245 /* TODO: The memory case can be optimized by not trapping
2246 reads of pages with a write breakpoint. */
2247 address |= TLB_MMIO;
2248 }
2249 }
2250
2251 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2252 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2253 te = &env->tlb_table[mmu_idx][index];
2254 te->addend = addend - vaddr;
2255 if (prot & PAGE_READ) {
2256 te->addr_read = address;
2257 } else {
2258 te->addr_read = -1;
2259 }
2260
2261 if (prot & PAGE_EXEC) {
2262 te->addr_code = code_address;
2263 } else {
2264 te->addr_code = -1;
2265 }
2266 if (prot & PAGE_WRITE) {
2267 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2268 (pd & IO_MEM_ROMD)) {
2269 /* Write access calls the I/O callback. */
2270 te->addr_write = address | TLB_MMIO;
2271 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2272 !cpu_physical_memory_is_dirty(pd)) {
2273 te->addr_write = address | TLB_NOTDIRTY;
2274 } else {
2275 te->addr_write = address;
2276 }
2277 } else {
2278 te->addr_write = -1;
2279 }
2280 }
2281
2282 #else
2283
2284 void tlb_flush(CPUState *env, int flush_global)
2285 {
2286 }
2287
2288 void tlb_flush_page(CPUState *env, target_ulong addr)
2289 {
2290 }
2291
2292 /*
2293 * Walks guest process memory "regions" one by one
2294 * and calls callback function 'fn' for each region.
2295 */
2296
2297 struct walk_memory_regions_data
2298 {
2299 walk_memory_regions_fn fn;
2300 void *priv;
2301 unsigned long start;
2302 int prot;
2303 };
2304
2305 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2306 abi_ulong end, int new_prot)
2307 {
2308 if (data->start != -1ul) {
2309 int rc = data->fn(data->priv, data->start, end, data->prot);
2310 if (rc != 0) {
2311 return rc;
2312 }
2313 }
2314
2315 data->start = (new_prot ? end : -1ul);
2316 data->prot = new_prot;
2317
2318 return 0;
2319 }
2320
2321 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2322 abi_ulong base, int level, void **lp)
2323 {
2324 abi_ulong pa;
2325 int i, rc;
2326
2327 if (*lp == NULL) {
2328 return walk_memory_regions_end(data, base, 0);
2329 }
2330
2331 if (level == 0) {
2332 PageDesc *pd = *lp;
2333 for (i = 0; i < L2_SIZE; ++i) {
2334 int prot = pd[i].flags;
2335
2336 pa = base | (i << TARGET_PAGE_BITS);
2337 if (prot != data->prot) {
2338 rc = walk_memory_regions_end(data, pa, prot);
2339 if (rc != 0) {
2340 return rc;
2341 }
2342 }
2343 }
2344 } else {
2345 void **pp = *lp;
2346 for (i = 0; i < L2_SIZE; ++i) {
2347 pa = base | ((abi_ulong)i <<
2348 (TARGET_PAGE_BITS + L2_BITS * level));
2349 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2350 if (rc != 0) {
2351 return rc;
2352 }
2353 }
2354 }
2355
2356 return 0;
2357 }
2358
2359 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2360 {
2361 struct walk_memory_regions_data data;
2362 unsigned long i;
2363
2364 data.fn = fn;
2365 data.priv = priv;
2366 data.start = -1ul;
2367 data.prot = 0;
2368
2369 for (i = 0; i < V_L1_SIZE; i++) {
2370 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2371 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2372 if (rc != 0) {
2373 return rc;
2374 }
2375 }
2376
2377 return walk_memory_regions_end(&data, 0, 0);
2378 }
2379
2380 static int dump_region(void *priv, abi_ulong start,
2381 abi_ulong end, unsigned long prot)
2382 {
2383 FILE *f = (FILE *)priv;
2384
2385 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2386 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2387 start, end, end - start,
2388 ((prot & PAGE_READ) ? 'r' : '-'),
2389 ((prot & PAGE_WRITE) ? 'w' : '-'),
2390 ((prot & PAGE_EXEC) ? 'x' : '-'));
2391
2392 return (0);
2393 }
2394
2395 /* dump memory mappings */
2396 void page_dump(FILE *f)
2397 {
2398 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2399 "start", "end", "size", "prot");
2400 walk_memory_regions(f, dump_region);
2401 }
2402
2403 int page_get_flags(target_ulong address)
2404 {
2405 PageDesc *p;
2406
2407 p = page_find(address >> TARGET_PAGE_BITS);
2408 if (!p)
2409 return 0;
2410 return p->flags;
2411 }
2412
2413 /* Modify the flags of a page and invalidate the code if necessary.
2414 The flag PAGE_WRITE_ORG is positioned automatically depending
2415 on PAGE_WRITE. The mmap_lock should already be held. */
2416 void page_set_flags(target_ulong start, target_ulong end, int flags)
2417 {
2418 target_ulong addr, len;
2419
2420 /* This function should never be called with addresses outside the
2421 guest address space. If this assert fires, it probably indicates
2422 a missing call to h2g_valid. */
2423 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2424 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2425 #endif
2426 assert(start < end);
2427
2428 start = start & TARGET_PAGE_MASK;
2429 end = TARGET_PAGE_ALIGN(end);
2430
2431 if (flags & PAGE_WRITE) {
2432 flags |= PAGE_WRITE_ORG;
2433 }
2434
2435 for (addr = start, len = end - start;
2436 len != 0;
2437 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2438 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2439
2440 /* If the write protection bit is set, then we invalidate
2441 the code inside. */
2442 if (!(p->flags & PAGE_WRITE) &&
2443 (flags & PAGE_WRITE) &&
2444 p->first_tb) {
2445 tb_invalidate_phys_page(addr, 0, NULL);
2446 }
2447 p->flags = flags;
2448 }
2449 }
2450
2451 int page_check_range(target_ulong start, target_ulong len, int flags)
2452 {
2453 PageDesc *p;
2454 target_ulong end;
2455 target_ulong addr;
2456
2457 /* This function should never be called with addresses outside the
2458 guest address space. If this assert fires, it probably indicates
2459 a missing call to h2g_valid. */
2460 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2461 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2462 #endif
2463
2464 if (start + len - 1 < start) {
2465 /* We've wrapped around. */
2466 return -1;
2467 }
2468
2469 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2470 start = start & TARGET_PAGE_MASK;
2471
2472 for (addr = start, len = end - start;
2473 len != 0;
2474 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2475 p = page_find(addr >> TARGET_PAGE_BITS);
2476 if( !p )
2477 return -1;
2478 if( !(p->flags & PAGE_VALID) )
2479 return -1;
2480
2481 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2482 return -1;
2483 if (flags & PAGE_WRITE) {
2484 if (!(p->flags & PAGE_WRITE_ORG))
2485 return -1;
2486 /* unprotect the page if it was put read-only because it
2487 contains translated code */
2488 if (!(p->flags & PAGE_WRITE)) {
2489 if (!page_unprotect(addr, 0, NULL))
2490 return -1;
2491 }
2492 return 0;
2493 }
2494 }
2495 return 0;
2496 }
2497
2498 /* called from signal handler: invalidate the code and unprotect the
2499 page. Return TRUE if the fault was successfully handled. */
2500 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2501 {
2502 unsigned int prot;
2503 PageDesc *p;
2504 target_ulong host_start, host_end, addr;
2505
2506 /* Technically this isn't safe inside a signal handler. However we
2507 know this only ever happens in a synchronous SEGV handler, so in
2508 practice it seems to be ok. */
2509 mmap_lock();
2510
2511 p = page_find(address >> TARGET_PAGE_BITS);
2512 if (!p) {
2513 mmap_unlock();
2514 return 0;
2515 }
2516
2517 /* if the page was really writable, then we change its
2518 protection back to writable */
2519 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2520 host_start = address & qemu_host_page_mask;
2521 host_end = host_start + qemu_host_page_size;
2522
2523 prot = 0;
2524 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2525 p = page_find(addr >> TARGET_PAGE_BITS);
2526 p->flags |= PAGE_WRITE;
2527 prot |= p->flags;
2528
2529 /* and since the content will be modified, we must invalidate
2530 the corresponding translated code. */
2531 tb_invalidate_phys_page(addr, pc, puc);
2532 #ifdef DEBUG_TB_CHECK
2533 tb_invalidate_check(addr);
2534 #endif
2535 }
2536 mprotect((void *)g2h(host_start), qemu_host_page_size,
2537 prot & PAGE_BITS);
2538
2539 mmap_unlock();
2540 return 1;
2541 }
2542 mmap_unlock();
2543 return 0;
2544 }
2545
2546 static inline void tlb_set_dirty(CPUState *env,
2547 unsigned long addr, target_ulong vaddr)
2548 {
2549 }
2550 #endif /* defined(CONFIG_USER_ONLY) */
2551
2552 #if !defined(CONFIG_USER_ONLY)
2553
2554 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2555 typedef struct subpage_t {
2556 target_phys_addr_t base;
2557 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2558 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2559 void *opaque[TARGET_PAGE_SIZE][2][4];
2560 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2561 } subpage_t;
2562
2563 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2564 ram_addr_t memory, ram_addr_t region_offset);
2565 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2566 ram_addr_t orig_memory, ram_addr_t region_offset);
2567 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2568 need_subpage) \
2569 do { \
2570 if (addr > start_addr) \
2571 start_addr2 = 0; \
2572 else { \
2573 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2574 if (start_addr2 > 0) \
2575 need_subpage = 1; \
2576 } \
2577 \
2578 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2579 end_addr2 = TARGET_PAGE_SIZE - 1; \
2580 else { \
2581 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2582 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2583 need_subpage = 1; \
2584 } \
2585 } while (0)
2586
2587 /* register physical memory.
2588 For RAM, 'size' must be a multiple of the target page size.
2589 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2590 io memory page. The address used when calling the IO function is
2591 the offset from the start of the region, plus region_offset. Both
2592 start_addr and region_offset are rounded down to a page boundary
2593 before calculating this offset. This should not be a problem unless
2594 the low bits of start_addr and region_offset differ. */
2595 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2596 ram_addr_t size,
2597 ram_addr_t phys_offset,
2598 ram_addr_t region_offset)
2599 {
2600 target_phys_addr_t addr, end_addr;
2601 PhysPageDesc *p;
2602 CPUState *env;
2603 ram_addr_t orig_size = size;
2604 void *subpage;
2605
2606 cpu_notify_set_memory(start_addr, size, phys_offset);
2607
2608 if (phys_offset == IO_MEM_UNASSIGNED) {
2609 region_offset = start_addr;
2610 }
2611 region_offset &= TARGET_PAGE_MASK;
2612 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2613 end_addr = start_addr + (target_phys_addr_t)size;
2614 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2615 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2616 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2617 ram_addr_t orig_memory = p->phys_offset;
2618 target_phys_addr_t start_addr2, end_addr2;
2619 int need_subpage = 0;
2620
2621 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2622 need_subpage);
2623 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2624 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2625 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2626 &p->phys_offset, orig_memory,
2627 p->region_offset);
2628 } else {
2629 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2630 >> IO_MEM_SHIFT];
2631 }
2632 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2633 region_offset);
2634 p->region_offset = 0;
2635 } else {
2636 p->phys_offset = phys_offset;
2637 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2638 (phys_offset & IO_MEM_ROMD))
2639 phys_offset += TARGET_PAGE_SIZE;
2640 }
2641 } else {
2642 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2643 p->phys_offset = phys_offset;
2644 p->region_offset = region_offset;
2645 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2646 (phys_offset & IO_MEM_ROMD)) {
2647 phys_offset += TARGET_PAGE_SIZE;
2648 } else {
2649 target_phys_addr_t start_addr2, end_addr2;
2650 int need_subpage = 0;
2651
2652 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2653 end_addr2, need_subpage);
2654
2655 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2656 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2657 &p->phys_offset, IO_MEM_UNASSIGNED,
2658 addr & TARGET_PAGE_MASK);
2659 subpage_register(subpage, start_addr2, end_addr2,
2660 phys_offset, region_offset);
2661 p->region_offset = 0;
2662 }
2663 }
2664 }
2665 region_offset += TARGET_PAGE_SIZE;
2666 }
2667
2668 /* since each CPU stores ram addresses in its TLB cache, we must
2669 reset the modified entries */
2670 /* XXX: slow ! */
2671 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2672 tlb_flush(env, 1);
2673 }
2674 }
2675
2676 /* XXX: temporary until new memory mapping API */
2677 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2678 {
2679 PhysPageDesc *p;
2680
2681 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2682 if (!p)
2683 return IO_MEM_UNASSIGNED;
2684 return p->phys_offset;
2685 }
2686
2687 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2688 {
2689 if (kvm_enabled())
2690 kvm_coalesce_mmio_region(addr, size);
2691 }
2692
2693 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2694 {
2695 if (kvm_enabled())
2696 kvm_uncoalesce_mmio_region(addr, size);
2697 }
2698
2699 void qemu_flush_coalesced_mmio_buffer(void)
2700 {
2701 if (kvm_enabled())
2702 kvm_flush_coalesced_mmio_buffer();
2703 }
2704
2705 #if defined(__linux__) && !defined(TARGET_S390X)
2706
2707 #include <sys/vfs.h>
2708
2709 #define HUGETLBFS_MAGIC 0x958458f6
2710
2711 static long gethugepagesize(const char *path)
2712 {
2713 struct statfs fs;
2714 int ret;
2715
2716 do {
2717 ret = statfs(path, &fs);
2718 } while (ret != 0 && errno == EINTR);
2719
2720 if (ret != 0) {
2721 perror(path);
2722 return 0;
2723 }
2724
2725 if (fs.f_type != HUGETLBFS_MAGIC)
2726 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2727
2728 return fs.f_bsize;
2729 }
2730
2731 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2732 {
2733 char *filename;
2734 void *area;
2735 int fd;
2736 #ifdef MAP_POPULATE
2737 int flags;
2738 #endif
2739 unsigned long hpagesize;
2740
2741 hpagesize = gethugepagesize(path);
2742 if (!hpagesize) {
2743 return NULL;
2744 }
2745
2746 if (memory < hpagesize) {
2747 return NULL;
2748 }
2749
2750 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2751 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2752 return NULL;
2753 }
2754
2755 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2756 return NULL;
2757 }
2758
2759 fd = mkstemp(filename);
2760 if (fd < 0) {
2761 perror("unable to create backing store for hugepages");
2762 free(filename);
2763 return NULL;
2764 }
2765 unlink(filename);
2766 free(filename);
2767
2768 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2769
2770 /*
2771 * ftruncate is not supported by hugetlbfs in older
2772 * hosts, so don't bother bailing out on errors.
2773 * If anything goes wrong with it under other filesystems,
2774 * mmap will fail.
2775 */
2776 if (ftruncate(fd, memory))
2777 perror("ftruncate");
2778
2779 #ifdef MAP_POPULATE
2780 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2781 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2782 * to sidestep this quirk.
2783 */
2784 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2785 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2786 #else
2787 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2788 #endif
2789 if (area == MAP_FAILED) {
2790 perror("file_ram_alloc: can't mmap RAM pages");
2791 close(fd);
2792 return (NULL);
2793 }
2794 return area;
2795 }
2796 #endif
2797
2798 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2799 {
2800 RAMBlock *new_block;
2801
2802 size = TARGET_PAGE_ALIGN(size);
2803 new_block = qemu_malloc(sizeof(*new_block));
2804
2805 if (mem_path) {
2806 #if defined (__linux__) && !defined(TARGET_S390X)
2807 new_block->host = file_ram_alloc(size, mem_path);
2808 if (!new_block->host)
2809 exit(1);
2810 #else
2811 fprintf(stderr, "-mem-path option unsupported\n");
2812 exit(1);
2813 #endif
2814 } else {
2815 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2816 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2817 new_block->host = mmap((void*)0x1000000, size,
2818 PROT_EXEC|PROT_READ|PROT_WRITE,
2819 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2820 #else
2821 new_block->host = qemu_vmalloc(size);
2822 #endif
2823 #ifdef MADV_MERGEABLE
2824 madvise(new_block->host, size, MADV_MERGEABLE);
2825 #endif
2826 }
2827 new_block->offset = last_ram_offset;
2828 new_block->length = size;
2829
2830 new_block->next = ram_blocks;
2831 ram_blocks = new_block;
2832
2833 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2834 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2835 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2836 0xff, size >> TARGET_PAGE_BITS);
2837
2838 last_ram_offset += size;
2839
2840 if (kvm_enabled())
2841 kvm_setup_guest_memory(new_block->host, size);
2842
2843 return new_block->offset;
2844 }
2845
2846 void qemu_ram_free(ram_addr_t addr)
2847 {
2848 /* TODO: implement this. */
2849 }
2850
2851 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2852 With the exception of the softmmu code in this file, this should
2853 only be used for local memory (e.g. video ram) that the device owns,
2854 and knows it isn't going to access beyond the end of the block.
2855
2856 It should not be used for general purpose DMA.
2857 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2858 */
2859 void *qemu_get_ram_ptr(ram_addr_t addr)
2860 {
2861 RAMBlock *prev;
2862 RAMBlock **prevp;
2863 RAMBlock *block;
2864
2865 prev = NULL;
2866 prevp = &ram_blocks;
2867 block = ram_blocks;
2868 while (block && (block->offset > addr
2869 || block->offset + block->length <= addr)) {
2870 if (prev)
2871 prevp = &prev->next;
2872 prev = block;
2873 block = block->next;
2874 }
2875 if (!block) {
2876 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2877 abort();
2878 }
2879 /* Move this entry to to start of the list. */
2880 if (prev) {
2881 prev->next = block->next;
2882 block->next = *prevp;
2883 *prevp = block;
2884 }
2885 return block->host + (addr - block->offset);
2886 }
2887
2888 /* Some of the softmmu routines need to translate from a host pointer
2889 (typically a TLB entry) back to a ram offset. */
2890 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2891 {
2892 RAMBlock *prev;
2893 RAMBlock *block;
2894 uint8_t *host = ptr;
2895
2896 prev = NULL;
2897 block = ram_blocks;
2898 while (block && (block->host > host
2899 || block->host + block->length <= host)) {
2900 prev = block;
2901 block = block->next;
2902 }
2903 if (!block) {
2904 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2905 abort();
2906 }
2907 return block->offset + (host - block->host);
2908 }
2909
2910 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2911 {
2912 #ifdef DEBUG_UNASSIGNED
2913 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2914 #endif
2915 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2916 do_unassigned_access(addr, 0, 0, 0, 1);
2917 #endif
2918 return 0;
2919 }
2920
2921 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2922 {
2923 #ifdef DEBUG_UNASSIGNED
2924 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2925 #endif
2926 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2927 do_unassigned_access(addr, 0, 0, 0, 2);
2928 #endif
2929 return 0;
2930 }
2931
2932 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2933 {
2934 #ifdef DEBUG_UNASSIGNED
2935 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2936 #endif
2937 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2938 do_unassigned_access(addr, 0, 0, 0, 4);
2939 #endif
2940 return 0;
2941 }
2942
2943 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2944 {
2945 #ifdef DEBUG_UNASSIGNED
2946 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2947 #endif
2948 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2949 do_unassigned_access(addr, 1, 0, 0, 1);
2950 #endif
2951 }
2952
2953 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2954 {
2955 #ifdef DEBUG_UNASSIGNED
2956 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2957 #endif
2958 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2959 do_unassigned_access(addr, 1, 0, 0, 2);
2960 #endif
2961 }
2962
2963 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2964 {
2965 #ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2967 #endif
2968 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2969 do_unassigned_access(addr, 1, 0, 0, 4);
2970 #endif
2971 }
2972
2973 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2974 unassigned_mem_readb,
2975 unassigned_mem_readw,
2976 unassigned_mem_readl,
2977 };
2978
2979 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2980 unassigned_mem_writeb,
2981 unassigned_mem_writew,
2982 unassigned_mem_writel,
2983 };
2984
2985 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2986 uint32_t val)
2987 {
2988 int dirty_flags;
2989 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2990 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2991 #if !defined(CONFIG_USER_ONLY)
2992 tb_invalidate_phys_page_fast(ram_addr, 1);
2993 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2994 #endif
2995 }
2996 stb_p(qemu_get_ram_ptr(ram_addr), val);
2997 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2998 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2999 /* we remove the notdirty callback only if the code has been
3000 flushed */
3001 if (dirty_flags == 0xff)
3002 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3003 }
3004
3005 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3006 uint32_t val)
3007 {
3008 int dirty_flags;
3009 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3010 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3011 #if !defined(CONFIG_USER_ONLY)
3012 tb_invalidate_phys_page_fast(ram_addr, 2);
3013 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3014 #endif
3015 }
3016 stw_p(qemu_get_ram_ptr(ram_addr), val);
3017 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3018 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3019 /* we remove the notdirty callback only if the code has been
3020 flushed */
3021 if (dirty_flags == 0xff)
3022 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3023 }
3024
3025 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3026 uint32_t val)
3027 {
3028 int dirty_flags;
3029 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3030 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3031 #if !defined(CONFIG_USER_ONLY)
3032 tb_invalidate_phys_page_fast(ram_addr, 4);
3033 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3034 #endif
3035 }
3036 stl_p(qemu_get_ram_ptr(ram_addr), val);
3037 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3038 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3039 /* we remove the notdirty callback only if the code has been
3040 flushed */
3041 if (dirty_flags == 0xff)
3042 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3043 }
3044
3045 static CPUReadMemoryFunc * const error_mem_read[3] = {
3046 NULL, /* never used */
3047 NULL, /* never used */
3048 NULL, /* never used */
3049 };
3050
3051 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3052 notdirty_mem_writeb,
3053 notdirty_mem_writew,
3054 notdirty_mem_writel,
3055 };
3056
3057 /* Generate a debug exception if a watchpoint has been hit. */
3058 static void check_watchpoint(int offset, int len_mask, int flags)
3059 {
3060 CPUState *env = cpu_single_env;
3061 target_ulong pc, cs_base;
3062 TranslationBlock *tb;
3063 target_ulong vaddr;
3064 CPUWatchpoint *wp;
3065 int cpu_flags;
3066
3067 if (env->watchpoint_hit) {
3068 /* We re-entered the check after replacing the TB. Now raise
3069 * the debug interrupt so that is will trigger after the
3070 * current instruction. */
3071 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3072 return;
3073 }
3074 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3075 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3076 if ((vaddr == (wp->vaddr & len_mask) ||
3077 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3078 wp->flags |= BP_WATCHPOINT_HIT;
3079 if (!env->watchpoint_hit) {
3080 env->watchpoint_hit = wp;
3081 tb = tb_find_pc(env->mem_io_pc);
3082 if (!tb) {
3083 cpu_abort(env, "check_watchpoint: could not find TB for "
3084 "pc=%p", (void *)env->mem_io_pc);
3085 }
3086 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3087 tb_phys_invalidate(tb, -1);
3088 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3089 env->exception_index = EXCP_DEBUG;
3090 } else {
3091 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3092 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3093 }
3094 cpu_resume_from_signal(env, NULL);
3095 }
3096 } else {
3097 wp->flags &= ~BP_WATCHPOINT_HIT;
3098 }
3099 }
3100 }
3101
3102 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3103 so these check for a hit then pass through to the normal out-of-line
3104 phys routines. */
3105 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3106 {
3107 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3108 return ldub_phys(addr);
3109 }
3110
3111 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3112 {
3113 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3114 return lduw_phys(addr);
3115 }
3116
3117 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3118 {
3119 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3120 return ldl_phys(addr);
3121 }
3122
3123 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3124 uint32_t val)
3125 {
3126 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3127 stb_phys(addr, val);
3128 }
3129
3130 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3131 uint32_t val)
3132 {
3133 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3134 stw_phys(addr, val);
3135 }
3136
3137 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3138 uint32_t val)
3139 {
3140 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3141 stl_phys(addr, val);
3142 }
3143
3144 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3145 watch_mem_readb,
3146 watch_mem_readw,
3147 watch_mem_readl,
3148 };
3149
3150 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3151 watch_mem_writeb,
3152 watch_mem_writew,
3153 watch_mem_writel,
3154 };
3155
3156 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
3157 unsigned int len)
3158 {
3159 uint32_t ret;
3160 unsigned int idx;
3161
3162 idx = SUBPAGE_IDX(addr);
3163 #if defined(DEBUG_SUBPAGE)
3164 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3165 mmio, len, addr, idx);
3166 #endif
3167 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3168 addr + mmio->region_offset[idx][0][len]);
3169
3170 return ret;
3171 }
3172
3173 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3174 uint32_t value, unsigned int len)
3175 {
3176 unsigned int idx;
3177
3178 idx = SUBPAGE_IDX(addr);
3179 #if defined(DEBUG_SUBPAGE)
3180 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3181 mmio, len, addr, idx, value);
3182 #endif
3183 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3184 addr + mmio->region_offset[idx][1][len],
3185 value);
3186 }
3187
3188 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3189 {
3190 #if defined(DEBUG_SUBPAGE)
3191 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3192 #endif
3193
3194 return subpage_readlen(opaque, addr, 0);
3195 }
3196
3197 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3198 uint32_t value)
3199 {
3200 #if defined(DEBUG_SUBPAGE)
3201 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3202 #endif
3203 subpage_writelen(opaque, addr, value, 0);
3204 }
3205
3206 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3207 {
3208 #if defined(DEBUG_SUBPAGE)
3209 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3210 #endif
3211
3212 return subpage_readlen(opaque, addr, 1);
3213 }
3214
3215 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3216 uint32_t value)
3217 {
3218 #if defined(DEBUG_SUBPAGE)
3219 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3220 #endif
3221 subpage_writelen(opaque, addr, value, 1);
3222 }
3223
3224 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3225 {
3226 #if defined(DEBUG_SUBPAGE)
3227 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3228 #endif
3229
3230 return subpage_readlen(opaque, addr, 2);
3231 }
3232
3233 static void subpage_writel (void *opaque,
3234 target_phys_addr_t addr, uint32_t value)
3235 {
3236 #if defined(DEBUG_SUBPAGE)
3237 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3238 #endif
3239 subpage_writelen(opaque, addr, value, 2);
3240 }
3241
3242 static CPUReadMemoryFunc * const subpage_read[] = {
3243 &subpage_readb,
3244 &subpage_readw,
3245 &subpage_readl,
3246 };
3247
3248 static CPUWriteMemoryFunc * const subpage_write[] = {
3249 &subpage_writeb,
3250 &subpage_writew,
3251 &subpage_writel,
3252 };
3253
3254 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3255 ram_addr_t memory, ram_addr_t region_offset)
3256 {
3257 int idx, eidx;
3258 unsigned int i;
3259
3260 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3261 return -1;
3262 idx = SUBPAGE_IDX(start);
3263 eidx = SUBPAGE_IDX(end);
3264 #if defined(DEBUG_SUBPAGE)
3265 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3266 mmio, start, end, idx, eidx, memory);
3267 #endif
3268 memory >>= IO_MEM_SHIFT;
3269 for (; idx <= eidx; idx++) {
3270 for (i = 0; i < 4; i++) {
3271 if (io_mem_read[memory][i]) {
3272 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3273 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3274 mmio->region_offset[idx][0][i] = region_offset;
3275 }
3276 if (io_mem_write[memory][i]) {
3277 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3278 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3279 mmio->region_offset[idx][1][i] = region_offset;
3280 }
3281 }
3282 }
3283
3284 return 0;
3285 }
3286
3287 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3288 ram_addr_t orig_memory, ram_addr_t region_offset)
3289 {
3290 subpage_t *mmio;
3291 int subpage_memory;
3292
3293 mmio = qemu_mallocz(sizeof(subpage_t));
3294
3295 mmio->base = base;
3296 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3297 #if defined(DEBUG_SUBPAGE)
3298 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3299 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3300 #endif
3301 *phys = subpage_memory | IO_MEM_SUBPAGE;
3302 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3303 region_offset);
3304
3305 return mmio;
3306 }
3307
3308 static int get_free_io_mem_idx(void)
3309 {
3310 int i;
3311
3312 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3313 if (!io_mem_used[i]) {
3314 io_mem_used[i] = 1;
3315 return i;
3316 }
3317 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3318 return -1;
3319 }
3320
3321 /* mem_read and mem_write are arrays of functions containing the
3322 function to access byte (index 0), word (index 1) and dword (index
3323 2). Functions can be omitted with a NULL function pointer.
3324 If io_index is non zero, the corresponding io zone is
3325 modified. If it is zero, a new io zone is allocated. The return
3326 value can be used with cpu_register_physical_memory(). (-1) is
3327 returned if error. */
3328 static int cpu_register_io_memory_fixed(int io_index,
3329 CPUReadMemoryFunc * const *mem_read,
3330 CPUWriteMemoryFunc * const *mem_write,
3331 void *opaque)
3332 {
3333 int i, subwidth = 0;
3334
3335 if (io_index <= 0) {
3336 io_index = get_free_io_mem_idx();
3337 if (io_index == -1)
3338 return io_index;
3339 } else {
3340 io_index >>= IO_MEM_SHIFT;
3341 if (io_index >= IO_MEM_NB_ENTRIES)
3342 return -1;
3343 }
3344
3345 for(i = 0;i < 3; i++) {
3346 if (!mem_read[i] || !mem_write[i])
3347 subwidth = IO_MEM_SUBWIDTH;
3348 io_mem_read[io_index][i] = mem_read[i];
3349 io_mem_write[io_index][i] = mem_write[i];
3350 }
3351 io_mem_opaque[io_index] = opaque;
3352 return (io_index << IO_MEM_SHIFT) | subwidth;
3353 }
3354
3355 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3356 CPUWriteMemoryFunc * const *mem_write,
3357 void *opaque)
3358 {
3359 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3360 }
3361
3362 void cpu_unregister_io_memory(int io_table_address)
3363 {
3364 int i;
3365 int io_index = io_table_address >> IO_MEM_SHIFT;
3366
3367 for (i=0;i < 3; i++) {
3368 io_mem_read[io_index][i] = unassigned_mem_read[i];
3369 io_mem_write[io_index][i] = unassigned_mem_write[i];
3370 }
3371 io_mem_opaque[io_index] = NULL;
3372 io_mem_used[io_index] = 0;
3373 }
3374
3375 static void io_mem_init(void)
3376 {
3377 int i;
3378
3379 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3380 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3381 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3382 for (i=0; i<5; i++)
3383 io_mem_used[i] = 1;
3384
3385 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3386 watch_mem_write, NULL);
3387 }
3388
3389 #endif /* !defined(CONFIG_USER_ONLY) */
3390
3391 /* physical memory access (slow version, mainly for debug) */
3392 #if defined(CONFIG_USER_ONLY)
3393 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3394 uint8_t *buf, int len, int is_write)
3395 {
3396 int l, flags;
3397 target_ulong page;
3398 void * p;
3399
3400 while (len > 0) {
3401 page = addr & TARGET_PAGE_MASK;
3402 l = (page + TARGET_PAGE_SIZE) - addr;
3403 if (l > len)
3404 l = len;
3405 flags = page_get_flags(page);
3406 if (!(flags & PAGE_VALID))
3407 return -1;
3408 if (is_write) {
3409 if (!(flags & PAGE_WRITE))
3410 return -1;
3411 /* XXX: this code should not depend on lock_user */
3412 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3413 return -1;
3414 memcpy(p, buf, l);
3415 unlock_user(p, addr, l);
3416 } else {
3417 if (!(flags & PAGE_READ))
3418 return -1;
3419 /* XXX: this code should not depend on lock_user */
3420 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3421 return -1;
3422 memcpy(buf, p, l);
3423 unlock_user(p, addr, 0);
3424 }
3425 len -= l;
3426 buf += l;
3427 addr += l;
3428 }
3429 return 0;
3430 }
3431
3432 #else
3433 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3434 int len, int is_write)
3435 {
3436 int l, io_index;
3437 uint8_t *ptr;
3438 uint32_t val;
3439 target_phys_addr_t page;
3440 unsigned long pd;
3441 PhysPageDesc *p;
3442
3443 while (len > 0) {
3444 page = addr & TARGET_PAGE_MASK;
3445 l = (page + TARGET_PAGE_SIZE) - addr;
3446 if (l > len)
3447 l = len;
3448 p = phys_page_find(page >> TARGET_PAGE_BITS);
3449 if (!p) {
3450 pd = IO_MEM_UNASSIGNED;
3451 } else {
3452 pd = p->phys_offset;
3453 }
3454
3455 if (is_write) {
3456 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3457 target_phys_addr_t addr1 = addr;
3458 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3459 if (p)
3460 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3461 /* XXX: could force cpu_single_env to NULL to avoid
3462 potential bugs */
3463 if (l >= 4 && ((addr1 & 3) == 0)) {
3464 /* 32 bit write access */
3465 val = ldl_p(buf);
3466 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3467 l = 4;
3468 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3469 /* 16 bit write access */
3470 val = lduw_p(buf);
3471 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3472 l = 2;
3473 } else {
3474 /* 8 bit write access */
3475 val = ldub_p(buf);
3476 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3477 l = 1;
3478 }
3479 } else {
3480 unsigned long addr1;
3481 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3482 /* RAM case */
3483 ptr = qemu_get_ram_ptr(addr1);
3484 memcpy(ptr, buf, l);
3485 if (!cpu_physical_memory_is_dirty(addr1)) {
3486 /* invalidate code */
3487 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3488 /* set dirty bit */
3489 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3490 (0xff & ~CODE_DIRTY_FLAG);
3491 }
3492 }
3493 } else {
3494 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3495 !(pd & IO_MEM_ROMD)) {
3496 target_phys_addr_t addr1 = addr;
3497 /* I/O case */
3498 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3499 if (p)
3500 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3501 if (l >= 4 && ((addr1 & 3) == 0)) {
3502 /* 32 bit read access */
3503 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3504 stl_p(buf, val);
3505 l = 4;
3506 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3507 /* 16 bit read access */
3508 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3509 stw_p(buf, val);
3510 l = 2;
3511 } else {
3512 /* 8 bit read access */
3513 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3514 stb_p(buf, val);
3515 l = 1;
3516 }
3517 } else {
3518 /* RAM case */
3519 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3520 (addr & ~TARGET_PAGE_MASK);
3521 memcpy(buf, ptr, l);
3522 }
3523 }
3524 len -= l;
3525 buf += l;
3526 addr += l;
3527 }
3528 }
3529
3530 /* used for ROM loading : can write in RAM and ROM */
3531 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3532 const uint8_t *buf, int len)
3533 {
3534 int l;
3535 uint8_t *ptr;
3536 target_phys_addr_t page;
3537 unsigned long pd;
3538 PhysPageDesc *p;
3539
3540 while (len > 0) {
3541 page = addr & TARGET_PAGE_MASK;
3542 l = (page + TARGET_PAGE_SIZE) - addr;
3543 if (l > len)
3544 l = len;
3545 p = phys_page_find(page >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3550 }
3551
3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3553 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3554 !(pd & IO_MEM_ROMD)) {
3555 /* do nothing */
3556 } else {
3557 unsigned long addr1;
3558 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3559 /* ROM/RAM case */
3560 ptr = qemu_get_ram_ptr(addr1);
3561 memcpy(ptr, buf, l);
3562 }
3563 len -= l;
3564 buf += l;
3565 addr += l;
3566 }
3567 }
3568
3569 typedef struct {
3570 void *buffer;
3571 target_phys_addr_t addr;
3572 target_phys_addr_t len;
3573 } BounceBuffer;
3574
3575 static BounceBuffer bounce;
3576
3577 typedef struct MapClient {
3578 void *opaque;
3579 void (*callback)(void *opaque);
3580 QLIST_ENTRY(MapClient) link;
3581 } MapClient;
3582
3583 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3584 = QLIST_HEAD_INITIALIZER(map_client_list);
3585
3586 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3587 {
3588 MapClient *client = qemu_malloc(sizeof(*client));
3589
3590 client->opaque = opaque;
3591 client->callback = callback;
3592 QLIST_INSERT_HEAD(&map_client_list, client, link);
3593 return client;
3594 }
3595
3596 void cpu_unregister_map_client(void *_client)
3597 {
3598 MapClient *client = (MapClient *)_client;
3599
3600 QLIST_REMOVE(client, link);
3601 qemu_free(client);
3602 }
3603
3604 static void cpu_notify_map_clients(void)
3605 {
3606 MapClient *client;
3607
3608 while (!QLIST_EMPTY(&map_client_list)) {
3609 client = QLIST_FIRST(&map_client_list);
3610 client->callback(client->opaque);
3611 cpu_unregister_map_client(client);
3612 }
3613 }
3614
3615 /* Map a physical memory region into a host virtual address.
3616 * May map a subset of the requested range, given by and returned in *plen.
3617 * May return NULL if resources needed to perform the mapping are exhausted.
3618 * Use only for reads OR writes - not for read-modify-write operations.
3619 * Use cpu_register_map_client() to know when retrying the map operation is
3620 * likely to succeed.
3621 */
3622 void *cpu_physical_memory_map(target_phys_addr_t addr,
3623 target_phys_addr_t *plen,
3624 int is_write)
3625 {
3626 target_phys_addr_t len = *plen;
3627 target_phys_addr_t done = 0;
3628 int l;
3629 uint8_t *ret = NULL;
3630 uint8_t *ptr;
3631 target_phys_addr_t page;
3632 unsigned long pd;
3633 PhysPageDesc *p;
3634 unsigned long addr1;
3635
3636 while (len > 0) {
3637 page = addr & TARGET_PAGE_MASK;
3638 l = (page + TARGET_PAGE_SIZE) - addr;
3639 if (l > len)
3640 l = len;
3641 p = phys_page_find(page >> TARGET_PAGE_BITS);
3642 if (!p) {
3643 pd = IO_MEM_UNASSIGNED;
3644 } else {
3645 pd = p->phys_offset;
3646 }
3647
3648 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3649 if (done || bounce.buffer) {
3650 break;
3651 }
3652 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3653 bounce.addr = addr;
3654 bounce.len = l;
3655 if (!is_write) {
3656 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3657 }
3658 ptr = bounce.buffer;
3659 } else {
3660 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3661 ptr = qemu_get_ram_ptr(addr1);
3662 }
3663 if (!done) {
3664 ret = ptr;
3665 } else if (ret + done != ptr) {
3666 break;
3667 }
3668
3669 len -= l;
3670 addr += l;
3671 done += l;
3672 }
3673 *plen = done;
3674 return ret;
3675 }
3676
3677 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3678 * Will also mark the memory as dirty if is_write == 1. access_len gives
3679 * the amount of memory that was actually read or written by the caller.
3680 */
3681 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3682 int is_write, target_phys_addr_t access_len)
3683 {
3684 if (buffer != bounce.buffer) {
3685 if (is_write) {
3686 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3687 while (access_len) {
3688 unsigned l;
3689 l = TARGET_PAGE_SIZE;
3690 if (l > access_len)
3691 l = access_len;
3692 if (!cpu_physical_memory_is_dirty(addr1)) {
3693 /* invalidate code */
3694 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3695 /* set dirty bit */
3696 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3697 (0xff & ~CODE_DIRTY_FLAG);
3698 }
3699 addr1 += l;
3700 access_len -= l;
3701 }
3702 }
3703 return;
3704 }
3705 if (is_write) {
3706 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3707 }
3708 qemu_vfree(bounce.buffer);
3709 bounce.buffer = NULL;
3710 cpu_notify_map_clients();
3711 }
3712
3713 /* warning: addr must be aligned */
3714 uint32_t ldl_phys(target_phys_addr_t addr)
3715 {
3716 int io_index;
3717 uint8_t *ptr;
3718 uint32_t val;
3719 unsigned long pd;
3720 PhysPageDesc *p;
3721
3722 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3723 if (!p) {
3724 pd = IO_MEM_UNASSIGNED;
3725 } else {
3726 pd = p->phys_offset;
3727 }
3728
3729 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3730 !(pd & IO_MEM_ROMD)) {
3731 /* I/O case */
3732 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3733 if (p)
3734 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3735 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3736 } else {
3737 /* RAM case */
3738 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3739 (addr & ~TARGET_PAGE_MASK);
3740 val = ldl_p(ptr);
3741 }
3742 return val;
3743 }
3744
3745 /* warning: addr must be aligned */
3746 uint64_t ldq_phys(target_phys_addr_t addr)
3747 {
3748 int io_index;
3749 uint8_t *ptr;
3750 uint64_t val;
3751 unsigned long pd;
3752 PhysPageDesc *p;
3753
3754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3755 if (!p) {
3756 pd = IO_MEM_UNASSIGNED;
3757 } else {
3758 pd = p->phys_offset;
3759 }
3760
3761 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3762 !(pd & IO_MEM_ROMD)) {
3763 /* I/O case */
3764 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3765 if (p)
3766 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3767 #ifdef TARGET_WORDS_BIGENDIAN
3768 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3769 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3770 #else
3771 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3772 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3773 #endif
3774 } else {
3775 /* RAM case */
3776 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3777 (addr & ~TARGET_PAGE_MASK);
3778 val = ldq_p(ptr);
3779 }
3780 return val;
3781 }
3782
3783 /* XXX: optimize */
3784 uint32_t ldub_phys(target_phys_addr_t addr)
3785 {
3786 uint8_t val;
3787 cpu_physical_memory_read(addr, &val, 1);
3788 return val;
3789 }
3790
3791 /* XXX: optimize */
3792 uint32_t lduw_phys(target_phys_addr_t addr)
3793 {
3794 uint16_t val;
3795 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3796 return tswap16(val);
3797 }
3798
3799 /* warning: addr must be aligned. The ram page is not masked as dirty
3800 and the code inside is not invalidated. It is useful if the dirty
3801 bits are used to track modified PTEs */
3802 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3803 {
3804 int io_index;
3805 uint8_t *ptr;
3806 unsigned long pd;
3807 PhysPageDesc *p;
3808
3809 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3810 if (!p) {
3811 pd = IO_MEM_UNASSIGNED;
3812 } else {
3813 pd = p->phys_offset;
3814 }
3815
3816 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3817 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3818 if (p)
3819 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3821 } else {
3822 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3823 ptr = qemu_get_ram_ptr(addr1);
3824 stl_p(ptr, val);
3825
3826 if (unlikely(in_migration)) {
3827 if (!cpu_physical_memory_is_dirty(addr1)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3830 /* set dirty bit */
3831 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3832 (0xff & ~CODE_DIRTY_FLAG);
3833 }
3834 }
3835 }
3836 }
3837
3838 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3839 {
3840 int io_index;
3841 uint8_t *ptr;
3842 unsigned long pd;
3843 PhysPageDesc *p;
3844
3845 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3846 if (!p) {
3847 pd = IO_MEM_UNASSIGNED;
3848 } else {
3849 pd = p->phys_offset;
3850 }
3851
3852 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3853 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3854 if (p)
3855 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3856 #ifdef TARGET_WORDS_BIGENDIAN
3857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3858 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3859 #else
3860 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3861 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3862 #endif
3863 } else {
3864 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3865 (addr & ~TARGET_PAGE_MASK);
3866 stq_p(ptr, val);
3867 }
3868 }
3869
3870 /* warning: addr must be aligned */
3871 void stl_phys(target_phys_addr_t addr, uint32_t val)
3872 {
3873 int io_index;
3874 uint8_t *ptr;
3875 unsigned long pd;
3876 PhysPageDesc *p;
3877
3878 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3879 if (!p) {
3880 pd = IO_MEM_UNASSIGNED;
3881 } else {
3882 pd = p->phys_offset;
3883 }
3884
3885 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3886 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3887 if (p)
3888 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3889 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3890 } else {
3891 unsigned long addr1;
3892 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3893 /* RAM case */
3894 ptr = qemu_get_ram_ptr(addr1);
3895 stl_p(ptr, val);
3896 if (!cpu_physical_memory_is_dirty(addr1)) {
3897 /* invalidate code */
3898 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3899 /* set dirty bit */
3900 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3901 (0xff & ~CODE_DIRTY_FLAG);
3902 }
3903 }
3904 }
3905
3906 /* XXX: optimize */
3907 void stb_phys(target_phys_addr_t addr, uint32_t val)
3908 {
3909 uint8_t v = val;
3910 cpu_physical_memory_write(addr, &v, 1);
3911 }
3912
3913 /* XXX: optimize */
3914 void stw_phys(target_phys_addr_t addr, uint32_t val)
3915 {
3916 uint16_t v = tswap16(val);
3917 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3918 }
3919
3920 /* XXX: optimize */
3921 void stq_phys(target_phys_addr_t addr, uint64_t val)
3922 {
3923 val = tswap64(val);
3924 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3925 }
3926
3927 /* virtual memory access for debug (includes writing to ROM) */
3928 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3929 uint8_t *buf, int len, int is_write)
3930 {
3931 int l;
3932 target_phys_addr_t phys_addr;
3933 target_ulong page;
3934
3935 while (len > 0) {
3936 page = addr & TARGET_PAGE_MASK;
3937 phys_addr = cpu_get_phys_page_debug(env, page);
3938 /* if no physical page mapped, return an error */
3939 if (phys_addr == -1)
3940 return -1;
3941 l = (page + TARGET_PAGE_SIZE) - addr;
3942 if (l > len)
3943 l = len;
3944 phys_addr += (addr & ~TARGET_PAGE_MASK);
3945 if (is_write)
3946 cpu_physical_memory_write_rom(phys_addr, buf, l);
3947 else
3948 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3949 len -= l;
3950 buf += l;
3951 addr += l;
3952 }
3953 return 0;
3954 }
3955 #endif
3956
3957 /* in deterministic execution mode, instructions doing device I/Os
3958 must be at the end of the TB */
3959 void cpu_io_recompile(CPUState *env, void *retaddr)
3960 {
3961 TranslationBlock *tb;
3962 uint32_t n, cflags;
3963 target_ulong pc, cs_base;
3964 uint64_t flags;
3965
3966 tb = tb_find_pc((unsigned long)retaddr);
3967 if (!tb) {
3968 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3969 retaddr);
3970 }
3971 n = env->icount_decr.u16.low + tb->icount;
3972 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3973 /* Calculate how many instructions had been executed before the fault
3974 occurred. */
3975 n = n - env->icount_decr.u16.low;
3976 /* Generate a new TB ending on the I/O insn. */
3977 n++;
3978 /* On MIPS and SH, delay slot instructions can only be restarted if
3979 they were already the first instruction in the TB. If this is not
3980 the first instruction in a TB then re-execute the preceding
3981 branch. */
3982 #if defined(TARGET_MIPS)
3983 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3984 env->active_tc.PC -= 4;
3985 env->icount_decr.u16.low++;
3986 env->hflags &= ~MIPS_HFLAG_BMASK;
3987 }
3988 #elif defined(TARGET_SH4)
3989 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3990 && n > 1) {
3991 env->pc -= 2;
3992 env->icount_decr.u16.low++;
3993 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3994 }
3995 #endif
3996 /* This should never happen. */
3997 if (n > CF_COUNT_MASK)
3998 cpu_abort(env, "TB too big during recompile");
3999
4000 cflags = n | CF_LAST_IO;
4001 pc = tb->pc;
4002 cs_base = tb->cs_base;
4003 flags = tb->flags;
4004 tb_phys_invalidate(tb, -1);
4005 /* FIXME: In theory this could raise an exception. In practice
4006 we have already translated the block once so it's probably ok. */
4007 tb_gen_code(env, pc, cs_base, flags, cflags);
4008 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4009 the first in the TB) then we end up generating a whole new TB and
4010 repeating the fault, which is horribly inefficient.
4011 Better would be to execute just this insn uncached, or generate a
4012 second new TB. */
4013 cpu_resume_from_signal(env, NULL);
4014 }
4015
4016 #if !defined(CONFIG_USER_ONLY)
4017
4018 void dump_exec_info(FILE *f,
4019 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4020 {
4021 int i, target_code_size, max_target_code_size;
4022 int direct_jmp_count, direct_jmp2_count, cross_page;
4023 TranslationBlock *tb;
4024
4025 target_code_size = 0;
4026 max_target_code_size = 0;
4027 cross_page = 0;
4028 direct_jmp_count = 0;
4029 direct_jmp2_count = 0;
4030 for(i = 0; i < nb_tbs; i++) {
4031 tb = &tbs[i];
4032 target_code_size += tb->size;
4033 if (tb->size > max_target_code_size)
4034 max_target_code_size = tb->size;
4035 if (tb->page_addr[1] != -1)
4036 cross_page++;
4037 if (tb->tb_next_offset[0] != 0xffff) {
4038 direct_jmp_count++;
4039 if (tb->tb_next_offset[1] != 0xffff) {
4040 direct_jmp2_count++;
4041 }
4042 }
4043 }
4044 /* XXX: avoid using doubles ? */
4045 cpu_fprintf(f, "Translation buffer state:\n");
4046 cpu_fprintf(f, "gen code size %ld/%ld\n",
4047 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4048 cpu_fprintf(f, "TB count %d/%d\n",
4049 nb_tbs, code_gen_max_blocks);
4050 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4051 nb_tbs ? target_code_size / nb_tbs : 0,
4052 max_target_code_size);
4053 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4054 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4055 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4056 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4057 cross_page,
4058 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4059 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4060 direct_jmp_count,
4061 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4062 direct_jmp2_count,
4063 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4064 cpu_fprintf(f, "\nStatistics:\n");
4065 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4066 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4067 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4068 tcg_dump_info(f, cpu_fprintf);
4069 }
4070
4071 #define MMUSUFFIX _cmmu
4072 #define GETPC() NULL
4073 #define env cpu_single_env
4074 #define SOFTMMU_CODE_ACCESS
4075
4076 #define SHIFT 0
4077 #include "softmmu_template.h"
4078
4079 #define SHIFT 1
4080 #include "softmmu_template.h"
4081
4082 #define SHIFT 2
4083 #include "softmmu_template.h"
4084
4085 #define SHIFT 3
4086 #include "softmmu_template.h"
4087
4088 #undef env
4089
4090 #endif