]> git.proxmox.com Git - qemu.git/blob - exec.c
i386: kvm: bit 10 of CPUID[8000_0001].EDX is reserved
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc__) && HOST_LONG_BITS == 64
545 // Map the buffer below 2G, so we can use direct calls and branches
546 start = (void *) 0x40000000UL;
547 if (code_gen_buffer_size > (512 * 1024 * 1024))
548 code_gen_buffer_size = (512 * 1024 * 1024);
549 #elif defined(__arm__)
550 /* Keep the buffer no bigger than 16MB to branch between blocks */
551 if (code_gen_buffer_size > 16 * 1024 * 1024)
552 code_gen_buffer_size = 16 * 1024 * 1024;
553 #elif defined(__s390x__)
554 /* Map the buffer so that we can use direct calls and branches. */
555 /* We have a +- 4GB range on the branches; leave some slop. */
556 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
557 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
558 }
559 start = (void *)0x90000000UL;
560 #endif
561 code_gen_buffer = mmap(start, code_gen_buffer_size,
562 PROT_WRITE | PROT_READ | PROT_EXEC,
563 flags, -1, 0);
564 if (code_gen_buffer == MAP_FAILED) {
565 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
566 exit(1);
567 }
568 }
569 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
570 || defined(__DragonFly__) || defined(__OpenBSD__) \
571 || defined(__NetBSD__)
572 {
573 int flags;
574 void *addr = NULL;
575 flags = MAP_PRIVATE | MAP_ANONYMOUS;
576 #if defined(__x86_64__)
577 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
578 * 0x40000000 is free */
579 flags |= MAP_FIXED;
580 addr = (void *)0x40000000;
581 /* Cannot map more than that */
582 if (code_gen_buffer_size > (800 * 1024 * 1024))
583 code_gen_buffer_size = (800 * 1024 * 1024);
584 #elif defined(__sparc__) && HOST_LONG_BITS == 64
585 // Map the buffer below 2G, so we can use direct calls and branches
586 addr = (void *) 0x40000000UL;
587 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
588 code_gen_buffer_size = (512 * 1024 * 1024);
589 }
590 #endif
591 code_gen_buffer = mmap(addr, code_gen_buffer_size,
592 PROT_WRITE | PROT_READ | PROT_EXEC,
593 flags, -1, 0);
594 if (code_gen_buffer == MAP_FAILED) {
595 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
596 exit(1);
597 }
598 }
599 #else
600 code_gen_buffer = g_malloc(code_gen_buffer_size);
601 map_exec(code_gen_buffer, code_gen_buffer_size);
602 #endif
603 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
604 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
605 code_gen_buffer_max_size = code_gen_buffer_size -
606 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
607 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
608 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
609 }
610
611 /* Must be called before using the QEMU cpus. 'tb_size' is the size
612 (in bytes) allocated to the translation buffer. Zero means default
613 size. */
614 void tcg_exec_init(unsigned long tb_size)
615 {
616 cpu_gen_init();
617 code_gen_alloc(tb_size);
618 code_gen_ptr = code_gen_buffer;
619 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
620 page_init();
621 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
622 /* There's no guest base to take into account, so go ahead and
623 initialize the prologue now. */
624 tcg_prologue_init(&tcg_ctx);
625 #endif
626 }
627
628 bool tcg_enabled(void)
629 {
630 return code_gen_buffer != NULL;
631 }
632
633 void cpu_exec_init_all(void)
634 {
635 #if !defined(CONFIG_USER_ONLY)
636 memory_map_init();
637 io_mem_init();
638 #endif
639 }
640
641 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
642
643 static int cpu_common_post_load(void *opaque, int version_id)
644 {
645 CPUArchState *env = opaque;
646
647 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
648 version_id is increased. */
649 env->interrupt_request &= ~0x01;
650 tlb_flush(env, 1);
651
652 return 0;
653 }
654
655 static const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .minimum_version_id_old = 1,
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField []) {
662 VMSTATE_UINT32(halted, CPUArchState),
663 VMSTATE_UINT32(interrupt_request, CPUArchState),
664 VMSTATE_END_OF_LIST()
665 }
666 };
667 #endif
668
669 CPUArchState *qemu_get_cpu(int cpu)
670 {
671 CPUArchState *env = first_cpu;
672
673 while (env) {
674 if (env->cpu_index == cpu)
675 break;
676 env = env->next_cpu;
677 }
678
679 return env;
680 }
681
682 void cpu_exec_init(CPUArchState *env)
683 {
684 CPUArchState **penv;
685 int cpu_index;
686
687 #if defined(CONFIG_USER_ONLY)
688 cpu_list_lock();
689 #endif
690 env->next_cpu = NULL;
691 penv = &first_cpu;
692 cpu_index = 0;
693 while (*penv != NULL) {
694 penv = &(*penv)->next_cpu;
695 cpu_index++;
696 }
697 env->cpu_index = cpu_index;
698 env->numa_node = 0;
699 QTAILQ_INIT(&env->breakpoints);
700 QTAILQ_INIT(&env->watchpoints);
701 #ifndef CONFIG_USER_ONLY
702 env->thread_id = qemu_get_thread_id();
703 #endif
704 *penv = env;
705 #if defined(CONFIG_USER_ONLY)
706 cpu_list_unlock();
707 #endif
708 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
709 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
710 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
711 cpu_save, cpu_load, env);
712 #endif
713 }
714
715 /* Allocate a new translation block. Flush the translation buffer if
716 too many translation blocks or too much generated code. */
717 static TranslationBlock *tb_alloc(target_ulong pc)
718 {
719 TranslationBlock *tb;
720
721 if (nb_tbs >= code_gen_max_blocks ||
722 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
723 return NULL;
724 tb = &tbs[nb_tbs++];
725 tb->pc = pc;
726 tb->cflags = 0;
727 return tb;
728 }
729
730 void tb_free(TranslationBlock *tb)
731 {
732 /* In practice this is mostly used for single use temporary TB
733 Ignore the hard cases and just back up if this TB happens to
734 be the last one generated. */
735 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
736 code_gen_ptr = tb->tc_ptr;
737 nb_tbs--;
738 }
739 }
740
741 static inline void invalidate_page_bitmap(PageDesc *p)
742 {
743 if (p->code_bitmap) {
744 g_free(p->code_bitmap);
745 p->code_bitmap = NULL;
746 }
747 p->code_write_count = 0;
748 }
749
750 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
751
752 static void page_flush_tb_1 (int level, void **lp)
753 {
754 int i;
755
756 if (*lp == NULL) {
757 return;
758 }
759 if (level == 0) {
760 PageDesc *pd = *lp;
761 for (i = 0; i < L2_SIZE; ++i) {
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
764 }
765 } else {
766 void **pp = *lp;
767 for (i = 0; i < L2_SIZE; ++i) {
768 page_flush_tb_1 (level - 1, pp + i);
769 }
770 }
771 }
772
773 static void page_flush_tb(void)
774 {
775 int i;
776 for (i = 0; i < V_L1_SIZE; i++) {
777 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
778 }
779 }
780
781 /* flush all the translation blocks */
782 /* XXX: tb_flush is currently not thread safe */
783 void tb_flush(CPUArchState *env1)
784 {
785 CPUArchState *env;
786 #if defined(DEBUG_FLUSH)
787 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
788 (unsigned long)(code_gen_ptr - code_gen_buffer),
789 nb_tbs, nb_tbs > 0 ?
790 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
791 #endif
792 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
793 cpu_abort(env1, "Internal error: code buffer overflow\n");
794
795 nb_tbs = 0;
796
797 for(env = first_cpu; env != NULL; env = env->next_cpu) {
798 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
799 }
800
801 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
802 page_flush_tb();
803
804 code_gen_ptr = code_gen_buffer;
805 /* XXX: flush processor icache at this point if cache flush is
806 expensive */
807 tb_flush_count++;
808 }
809
810 #ifdef DEBUG_TB_CHECK
811
812 static void tb_invalidate_check(target_ulong address)
813 {
814 TranslationBlock *tb;
815 int i;
816 address &= TARGET_PAGE_MASK;
817 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
818 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
819 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
820 address >= tb->pc + tb->size)) {
821 printf("ERROR invalidate: address=" TARGET_FMT_lx
822 " PC=%08lx size=%04x\n",
823 address, (long)tb->pc, tb->size);
824 }
825 }
826 }
827 }
828
829 /* verify that all the pages have correct rights for code */
830 static void tb_page_check(void)
831 {
832 TranslationBlock *tb;
833 int i, flags1, flags2;
834
835 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
836 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
837 flags1 = page_get_flags(tb->pc);
838 flags2 = page_get_flags(tb->pc + tb->size - 1);
839 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
840 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
841 (long)tb->pc, tb->size, flags1, flags2);
842 }
843 }
844 }
845 }
846
847 #endif
848
849 /* invalidate one TB */
850 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
851 int next_offset)
852 {
853 TranslationBlock *tb1;
854 for(;;) {
855 tb1 = *ptb;
856 if (tb1 == tb) {
857 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
858 break;
859 }
860 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
861 }
862 }
863
864 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
865 {
866 TranslationBlock *tb1;
867 unsigned int n1;
868
869 for(;;) {
870 tb1 = *ptb;
871 n1 = (uintptr_t)tb1 & 3;
872 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
873 if (tb1 == tb) {
874 *ptb = tb1->page_next[n1];
875 break;
876 }
877 ptb = &tb1->page_next[n1];
878 }
879 }
880
881 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
882 {
883 TranslationBlock *tb1, **ptb;
884 unsigned int n1;
885
886 ptb = &tb->jmp_next[n];
887 tb1 = *ptb;
888 if (tb1) {
889 /* find tb(n) in circular list */
890 for(;;) {
891 tb1 = *ptb;
892 n1 = (uintptr_t)tb1 & 3;
893 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
894 if (n1 == n && tb1 == tb)
895 break;
896 if (n1 == 2) {
897 ptb = &tb1->jmp_first;
898 } else {
899 ptb = &tb1->jmp_next[n1];
900 }
901 }
902 /* now we can suppress tb(n) from the list */
903 *ptb = tb->jmp_next[n];
904
905 tb->jmp_next[n] = NULL;
906 }
907 }
908
909 /* reset the jump entry 'n' of a TB so that it is not chained to
910 another TB */
911 static inline void tb_reset_jump(TranslationBlock *tb, int n)
912 {
913 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
914 }
915
916 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
917 {
918 CPUArchState *env;
919 PageDesc *p;
920 unsigned int h, n1;
921 tb_page_addr_t phys_pc;
922 TranslationBlock *tb1, *tb2;
923
924 /* remove the TB from the hash list */
925 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
926 h = tb_phys_hash_func(phys_pc);
927 tb_remove(&tb_phys_hash[h], tb,
928 offsetof(TranslationBlock, phys_hash_next));
929
930 /* remove the TB from the page list */
931 if (tb->page_addr[0] != page_addr) {
932 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
933 tb_page_remove(&p->first_tb, tb);
934 invalidate_page_bitmap(p);
935 }
936 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
937 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
938 tb_page_remove(&p->first_tb, tb);
939 invalidate_page_bitmap(p);
940 }
941
942 tb_invalidated_flag = 1;
943
944 /* remove the TB from the hash list */
945 h = tb_jmp_cache_hash_func(tb->pc);
946 for(env = first_cpu; env != NULL; env = env->next_cpu) {
947 if (env->tb_jmp_cache[h] == tb)
948 env->tb_jmp_cache[h] = NULL;
949 }
950
951 /* suppress this TB from the two jump lists */
952 tb_jmp_remove(tb, 0);
953 tb_jmp_remove(tb, 1);
954
955 /* suppress any remaining jumps to this TB */
956 tb1 = tb->jmp_first;
957 for(;;) {
958 n1 = (uintptr_t)tb1 & 3;
959 if (n1 == 2)
960 break;
961 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
962 tb2 = tb1->jmp_next[n1];
963 tb_reset_jump(tb1, n1);
964 tb1->jmp_next[n1] = NULL;
965 tb1 = tb2;
966 }
967 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
968
969 tb_phys_invalidate_count++;
970 }
971
972 static inline void set_bits(uint8_t *tab, int start, int len)
973 {
974 int end, mask, end1;
975
976 end = start + len;
977 tab += start >> 3;
978 mask = 0xff << (start & 7);
979 if ((start & ~7) == (end & ~7)) {
980 if (start < end) {
981 mask &= ~(0xff << (end & 7));
982 *tab |= mask;
983 }
984 } else {
985 *tab++ |= mask;
986 start = (start + 8) & ~7;
987 end1 = end & ~7;
988 while (start < end1) {
989 *tab++ = 0xff;
990 start += 8;
991 }
992 if (start < end) {
993 mask = ~(0xff << (end & 7));
994 *tab |= mask;
995 }
996 }
997 }
998
999 static void build_page_bitmap(PageDesc *p)
1000 {
1001 int n, tb_start, tb_end;
1002 TranslationBlock *tb;
1003
1004 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1005
1006 tb = p->first_tb;
1007 while (tb != NULL) {
1008 n = (uintptr_t)tb & 3;
1009 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1010 /* NOTE: this is subtle as a TB may span two physical pages */
1011 if (n == 0) {
1012 /* NOTE: tb_end may be after the end of the page, but
1013 it is not a problem */
1014 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1015 tb_end = tb_start + tb->size;
1016 if (tb_end > TARGET_PAGE_SIZE)
1017 tb_end = TARGET_PAGE_SIZE;
1018 } else {
1019 tb_start = 0;
1020 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1021 }
1022 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1023 tb = tb->page_next[n];
1024 }
1025 }
1026
1027 TranslationBlock *tb_gen_code(CPUArchState *env,
1028 target_ulong pc, target_ulong cs_base,
1029 int flags, int cflags)
1030 {
1031 TranslationBlock *tb;
1032 uint8_t *tc_ptr;
1033 tb_page_addr_t phys_pc, phys_page2;
1034 target_ulong virt_page2;
1035 int code_gen_size;
1036
1037 phys_pc = get_page_addr_code(env, pc);
1038 tb = tb_alloc(pc);
1039 if (!tb) {
1040 /* flush must be done */
1041 tb_flush(env);
1042 /* cannot fail at this point */
1043 tb = tb_alloc(pc);
1044 /* Don't forget to invalidate previous TB info. */
1045 tb_invalidated_flag = 1;
1046 }
1047 tc_ptr = code_gen_ptr;
1048 tb->tc_ptr = tc_ptr;
1049 tb->cs_base = cs_base;
1050 tb->flags = flags;
1051 tb->cflags = cflags;
1052 cpu_gen_code(env, tb, &code_gen_size);
1053 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1054 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1055
1056 /* check next page if needed */
1057 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1058 phys_page2 = -1;
1059 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1060 phys_page2 = get_page_addr_code(env, virt_page2);
1061 }
1062 tb_link_page(tb, phys_pc, phys_page2);
1063 return tb;
1064 }
1065
1066 /*
1067 * Invalidate all TBs which intersect with the target physical address range
1068 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1069 * 'is_cpu_write_access' should be true if called from a real cpu write
1070 * access: the virtual CPU will exit the current TB if code is modified inside
1071 * this TB.
1072 */
1073 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1074 int is_cpu_write_access)
1075 {
1076 while (start < end) {
1077 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1078 start &= TARGET_PAGE_MASK;
1079 start += TARGET_PAGE_SIZE;
1080 }
1081 }
1082
1083 /*
1084 * Invalidate all TBs which intersect with the target physical address range
1085 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1086 * 'is_cpu_write_access' should be true if called from a real cpu write
1087 * access: the virtual CPU will exit the current TB if code is modified inside
1088 * this TB.
1089 */
1090 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1091 int is_cpu_write_access)
1092 {
1093 TranslationBlock *tb, *tb_next, *saved_tb;
1094 CPUArchState *env = cpu_single_env;
1095 tb_page_addr_t tb_start, tb_end;
1096 PageDesc *p;
1097 int n;
1098 #ifdef TARGET_HAS_PRECISE_SMC
1099 int current_tb_not_found = is_cpu_write_access;
1100 TranslationBlock *current_tb = NULL;
1101 int current_tb_modified = 0;
1102 target_ulong current_pc = 0;
1103 target_ulong current_cs_base = 0;
1104 int current_flags = 0;
1105 #endif /* TARGET_HAS_PRECISE_SMC */
1106
1107 p = page_find(start >> TARGET_PAGE_BITS);
1108 if (!p)
1109 return;
1110 if (!p->code_bitmap &&
1111 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1112 is_cpu_write_access) {
1113 /* build code bitmap */
1114 build_page_bitmap(p);
1115 }
1116
1117 /* we remove all the TBs in the range [start, end[ */
1118 /* XXX: see if in some cases it could be faster to invalidate all the code */
1119 tb = p->first_tb;
1120 while (tb != NULL) {
1121 n = (uintptr_t)tb & 3;
1122 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1123 tb_next = tb->page_next[n];
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1125 if (n == 0) {
1126 /* NOTE: tb_end may be after the end of the page, but
1127 it is not a problem */
1128 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1129 tb_end = tb_start + tb->size;
1130 } else {
1131 tb_start = tb->page_addr[1];
1132 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1133 }
1134 if (!(tb_end <= start || tb_start >= end)) {
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_not_found) {
1137 current_tb_not_found = 0;
1138 current_tb = NULL;
1139 if (env->mem_io_pc) {
1140 /* now we have a real cpu fault */
1141 current_tb = tb_find_pc(env->mem_io_pc);
1142 }
1143 }
1144 if (current_tb == tb &&
1145 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
1151
1152 current_tb_modified = 1;
1153 cpu_restore_state(current_tb, env, env->mem_io_pc);
1154 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1155 &current_flags);
1156 }
1157 #endif /* TARGET_HAS_PRECISE_SMC */
1158 /* we need to do that to handle the case where a signal
1159 occurs while doing tb_phys_invalidate() */
1160 saved_tb = NULL;
1161 if (env) {
1162 saved_tb = env->current_tb;
1163 env->current_tb = NULL;
1164 }
1165 tb_phys_invalidate(tb, -1);
1166 if (env) {
1167 env->current_tb = saved_tb;
1168 if (env->interrupt_request && env->current_tb)
1169 cpu_interrupt(env, env->interrupt_request);
1170 }
1171 }
1172 tb = tb_next;
1173 }
1174 #if !defined(CONFIG_USER_ONLY)
1175 /* if no code remaining, no need to continue to use slow writes */
1176 if (!p->first_tb) {
1177 invalidate_page_bitmap(p);
1178 if (is_cpu_write_access) {
1179 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1180 }
1181 }
1182 #endif
1183 #ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb_modified) {
1185 /* we generate a block containing just the instruction
1186 modifying the memory. It will ensure that it cannot modify
1187 itself */
1188 env->current_tb = NULL;
1189 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1190 cpu_resume_from_signal(env, NULL);
1191 }
1192 #endif
1193 }
1194
1195 /* len must be <= 8 and start must be a multiple of len */
1196 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1197 {
1198 PageDesc *p;
1199 int offset, b;
1200 #if 0
1201 if (1) {
1202 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1203 cpu_single_env->mem_io_vaddr, len,
1204 cpu_single_env->eip,
1205 cpu_single_env->eip +
1206 (intptr_t)cpu_single_env->segs[R_CS].base);
1207 }
1208 #endif
1209 p = page_find(start >> TARGET_PAGE_BITS);
1210 if (!p)
1211 return;
1212 if (p->code_bitmap) {
1213 offset = start & ~TARGET_PAGE_MASK;
1214 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1215 if (b & ((1 << len) - 1))
1216 goto do_invalidate;
1217 } else {
1218 do_invalidate:
1219 tb_invalidate_phys_page_range(start, start + len, 1);
1220 }
1221 }
1222
1223 #if !defined(CONFIG_SOFTMMU)
1224 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1225 uintptr_t pc, void *puc)
1226 {
1227 TranslationBlock *tb;
1228 PageDesc *p;
1229 int n;
1230 #ifdef TARGET_HAS_PRECISE_SMC
1231 TranslationBlock *current_tb = NULL;
1232 CPUArchState *env = cpu_single_env;
1233 int current_tb_modified = 0;
1234 target_ulong current_pc = 0;
1235 target_ulong current_cs_base = 0;
1236 int current_flags = 0;
1237 #endif
1238
1239 addr &= TARGET_PAGE_MASK;
1240 p = page_find(addr >> TARGET_PAGE_BITS);
1241 if (!p)
1242 return;
1243 tb = p->first_tb;
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (tb && pc != 0) {
1246 current_tb = tb_find_pc(pc);
1247 }
1248 #endif
1249 while (tb != NULL) {
1250 n = (uintptr_t)tb & 3;
1251 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1252 #ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1260
1261 current_tb_modified = 1;
1262 cpu_restore_state(current_tb, env, pc);
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1265 }
1266 #endif /* TARGET_HAS_PRECISE_SMC */
1267 tb_phys_invalidate(tb, addr);
1268 tb = tb->page_next[n];
1269 }
1270 p->first_tb = NULL;
1271 #ifdef TARGET_HAS_PRECISE_SMC
1272 if (current_tb_modified) {
1273 /* we generate a block containing just the instruction
1274 modifying the memory. It will ensure that it cannot modify
1275 itself */
1276 env->current_tb = NULL;
1277 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1278 cpu_resume_from_signal(env, puc);
1279 }
1280 #endif
1281 }
1282 #endif
1283
1284 /* add the tb in the target page and protect it if necessary */
1285 static inline void tb_alloc_page(TranslationBlock *tb,
1286 unsigned int n, tb_page_addr_t page_addr)
1287 {
1288 PageDesc *p;
1289 #ifndef CONFIG_USER_ONLY
1290 bool page_already_protected;
1291 #endif
1292
1293 tb->page_addr[n] = page_addr;
1294 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1295 tb->page_next[n] = p->first_tb;
1296 #ifndef CONFIG_USER_ONLY
1297 page_already_protected = p->first_tb != NULL;
1298 #endif
1299 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1300 invalidate_page_bitmap(p);
1301
1302 #if defined(TARGET_HAS_SMC) || 1
1303
1304 #if defined(CONFIG_USER_ONLY)
1305 if (p->flags & PAGE_WRITE) {
1306 target_ulong addr;
1307 PageDesc *p2;
1308 int prot;
1309
1310 /* force the host page as non writable (writes will have a
1311 page fault + mprotect overhead) */
1312 page_addr &= qemu_host_page_mask;
1313 prot = 0;
1314 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1315 addr += TARGET_PAGE_SIZE) {
1316
1317 p2 = page_find (addr >> TARGET_PAGE_BITS);
1318 if (!p2)
1319 continue;
1320 prot |= p2->flags;
1321 p2->flags &= ~PAGE_WRITE;
1322 }
1323 mprotect(g2h(page_addr), qemu_host_page_size,
1324 (prot & PAGE_BITS) & ~PAGE_WRITE);
1325 #ifdef DEBUG_TB_INVALIDATE
1326 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1327 page_addr);
1328 #endif
1329 }
1330 #else
1331 /* if some code is already present, then the pages are already
1332 protected. So we handle the case where only the first TB is
1333 allocated in a physical page */
1334 if (!page_already_protected) {
1335 tlb_protect_code(page_addr);
1336 }
1337 #endif
1338
1339 #endif /* TARGET_HAS_SMC */
1340 }
1341
1342 /* add a new TB and link it to the physical page tables. phys_page2 is
1343 (-1) to indicate that only one page contains the TB. */
1344 void tb_link_page(TranslationBlock *tb,
1345 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1346 {
1347 unsigned int h;
1348 TranslationBlock **ptb;
1349
1350 /* Grab the mmap lock to stop another thread invalidating this TB
1351 before we are done. */
1352 mmap_lock();
1353 /* add in the physical hash table */
1354 h = tb_phys_hash_func(phys_pc);
1355 ptb = &tb_phys_hash[h];
1356 tb->phys_hash_next = *ptb;
1357 *ptb = tb;
1358
1359 /* add in the page list */
1360 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1361 if (phys_page2 != -1)
1362 tb_alloc_page(tb, 1, phys_page2);
1363 else
1364 tb->page_addr[1] = -1;
1365
1366 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1367 tb->jmp_next[0] = NULL;
1368 tb->jmp_next[1] = NULL;
1369
1370 /* init original jump addresses */
1371 if (tb->tb_next_offset[0] != 0xffff)
1372 tb_reset_jump(tb, 0);
1373 if (tb->tb_next_offset[1] != 0xffff)
1374 tb_reset_jump(tb, 1);
1375
1376 #ifdef DEBUG_TB_CHECK
1377 tb_page_check();
1378 #endif
1379 mmap_unlock();
1380 }
1381
1382 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1383 tb[1].tc_ptr. Return NULL if not found */
1384 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1385 {
1386 int m_min, m_max, m;
1387 uintptr_t v;
1388 TranslationBlock *tb;
1389
1390 if (nb_tbs <= 0)
1391 return NULL;
1392 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1393 tc_ptr >= (uintptr_t)code_gen_ptr) {
1394 return NULL;
1395 }
1396 /* binary search (cf Knuth) */
1397 m_min = 0;
1398 m_max = nb_tbs - 1;
1399 while (m_min <= m_max) {
1400 m = (m_min + m_max) >> 1;
1401 tb = &tbs[m];
1402 v = (uintptr_t)tb->tc_ptr;
1403 if (v == tc_ptr)
1404 return tb;
1405 else if (tc_ptr < v) {
1406 m_max = m - 1;
1407 } else {
1408 m_min = m + 1;
1409 }
1410 }
1411 return &tbs[m_max];
1412 }
1413
1414 static void tb_reset_jump_recursive(TranslationBlock *tb);
1415
1416 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1417 {
1418 TranslationBlock *tb1, *tb_next, **ptb;
1419 unsigned int n1;
1420
1421 tb1 = tb->jmp_next[n];
1422 if (tb1 != NULL) {
1423 /* find head of list */
1424 for(;;) {
1425 n1 = (uintptr_t)tb1 & 3;
1426 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1427 if (n1 == 2)
1428 break;
1429 tb1 = tb1->jmp_next[n1];
1430 }
1431 /* we are now sure now that tb jumps to tb1 */
1432 tb_next = tb1;
1433
1434 /* remove tb from the jmp_first list */
1435 ptb = &tb_next->jmp_first;
1436 for(;;) {
1437 tb1 = *ptb;
1438 n1 = (uintptr_t)tb1 & 3;
1439 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1440 if (n1 == n && tb1 == tb)
1441 break;
1442 ptb = &tb1->jmp_next[n1];
1443 }
1444 *ptb = tb->jmp_next[n];
1445 tb->jmp_next[n] = NULL;
1446
1447 /* suppress the jump to next tb in generated code */
1448 tb_reset_jump(tb, n);
1449
1450 /* suppress jumps in the tb on which we could have jumped */
1451 tb_reset_jump_recursive(tb_next);
1452 }
1453 }
1454
1455 static void tb_reset_jump_recursive(TranslationBlock *tb)
1456 {
1457 tb_reset_jump_recursive2(tb, 0);
1458 tb_reset_jump_recursive2(tb, 1);
1459 }
1460
1461 #if defined(TARGET_HAS_ICE)
1462 #if defined(CONFIG_USER_ONLY)
1463 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1464 {
1465 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1466 }
1467 #else
1468 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1469 {
1470 ram_addr_t ram_addr;
1471 MemoryRegionSection *section;
1472
1473 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1474 if (!(memory_region_is_ram(section->mr)
1475 || (section->mr->rom_device && section->mr->readable))) {
1476 return;
1477 }
1478 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1479 + memory_region_section_addr(section, addr);
1480 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1481 }
1482
1483 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1484 {
1485 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1486 (pc & ~TARGET_PAGE_MASK));
1487 }
1488 #endif
1489 #endif /* TARGET_HAS_ICE */
1490
1491 #if defined(CONFIG_USER_ONLY)
1492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1493
1494 {
1495 }
1496
1497 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1498 int flags, CPUWatchpoint **watchpoint)
1499 {
1500 return -ENOSYS;
1501 }
1502 #else
1503 /* Add a watchpoint. */
1504 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1505 int flags, CPUWatchpoint **watchpoint)
1506 {
1507 target_ulong len_mask = ~(len - 1);
1508 CPUWatchpoint *wp;
1509
1510 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1511 if ((len & (len - 1)) || (addr & ~len_mask) ||
1512 len == 0 || len > TARGET_PAGE_SIZE) {
1513 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1514 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1515 return -EINVAL;
1516 }
1517 wp = g_malloc(sizeof(*wp));
1518
1519 wp->vaddr = addr;
1520 wp->len_mask = len_mask;
1521 wp->flags = flags;
1522
1523 /* keep all GDB-injected watchpoints in front */
1524 if (flags & BP_GDB)
1525 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1526 else
1527 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1528
1529 tlb_flush_page(env, addr);
1530
1531 if (watchpoint)
1532 *watchpoint = wp;
1533 return 0;
1534 }
1535
1536 /* Remove a specific watchpoint. */
1537 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1538 int flags)
1539 {
1540 target_ulong len_mask = ~(len - 1);
1541 CPUWatchpoint *wp;
1542
1543 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1544 if (addr == wp->vaddr && len_mask == wp->len_mask
1545 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1546 cpu_watchpoint_remove_by_ref(env, wp);
1547 return 0;
1548 }
1549 }
1550 return -ENOENT;
1551 }
1552
1553 /* Remove a specific watchpoint by reference. */
1554 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1555 {
1556 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1557
1558 tlb_flush_page(env, watchpoint->vaddr);
1559
1560 g_free(watchpoint);
1561 }
1562
1563 /* Remove all matching watchpoints. */
1564 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1565 {
1566 CPUWatchpoint *wp, *next;
1567
1568 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1569 if (wp->flags & mask)
1570 cpu_watchpoint_remove_by_ref(env, wp);
1571 }
1572 }
1573 #endif
1574
1575 /* Add a breakpoint. */
1576 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1577 CPUBreakpoint **breakpoint)
1578 {
1579 #if defined(TARGET_HAS_ICE)
1580 CPUBreakpoint *bp;
1581
1582 bp = g_malloc(sizeof(*bp));
1583
1584 bp->pc = pc;
1585 bp->flags = flags;
1586
1587 /* keep all GDB-injected breakpoints in front */
1588 if (flags & BP_GDB)
1589 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1590 else
1591 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1592
1593 breakpoint_invalidate(env, pc);
1594
1595 if (breakpoint)
1596 *breakpoint = bp;
1597 return 0;
1598 #else
1599 return -ENOSYS;
1600 #endif
1601 }
1602
1603 /* Remove a specific breakpoint. */
1604 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1605 {
1606 #if defined(TARGET_HAS_ICE)
1607 CPUBreakpoint *bp;
1608
1609 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1610 if (bp->pc == pc && bp->flags == flags) {
1611 cpu_breakpoint_remove_by_ref(env, bp);
1612 return 0;
1613 }
1614 }
1615 return -ENOENT;
1616 #else
1617 return -ENOSYS;
1618 #endif
1619 }
1620
1621 /* Remove a specific breakpoint by reference. */
1622 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1623 {
1624 #if defined(TARGET_HAS_ICE)
1625 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1626
1627 breakpoint_invalidate(env, breakpoint->pc);
1628
1629 g_free(breakpoint);
1630 #endif
1631 }
1632
1633 /* Remove all matching breakpoints. */
1634 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1635 {
1636 #if defined(TARGET_HAS_ICE)
1637 CPUBreakpoint *bp, *next;
1638
1639 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1640 if (bp->flags & mask)
1641 cpu_breakpoint_remove_by_ref(env, bp);
1642 }
1643 #endif
1644 }
1645
1646 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1647 CPU loop after each instruction */
1648 void cpu_single_step(CPUArchState *env, int enabled)
1649 {
1650 #if defined(TARGET_HAS_ICE)
1651 if (env->singlestep_enabled != enabled) {
1652 env->singlestep_enabled = enabled;
1653 if (kvm_enabled())
1654 kvm_update_guest_debug(env, 0);
1655 else {
1656 /* must flush all the translated code to avoid inconsistencies */
1657 /* XXX: only flush what is necessary */
1658 tb_flush(env);
1659 }
1660 }
1661 #endif
1662 }
1663
1664 static void cpu_unlink_tb(CPUArchState *env)
1665 {
1666 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1667 problem and hope the cpu will stop of its own accord. For userspace
1668 emulation this often isn't actually as bad as it sounds. Often
1669 signals are used primarily to interrupt blocking syscalls. */
1670 TranslationBlock *tb;
1671 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1672
1673 spin_lock(&interrupt_lock);
1674 tb = env->current_tb;
1675 /* if the cpu is currently executing code, we must unlink it and
1676 all the potentially executing TB */
1677 if (tb) {
1678 env->current_tb = NULL;
1679 tb_reset_jump_recursive(tb);
1680 }
1681 spin_unlock(&interrupt_lock);
1682 }
1683
1684 #ifndef CONFIG_USER_ONLY
1685 /* mask must never be zero, except for A20 change call */
1686 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1687 {
1688 int old_mask;
1689
1690 old_mask = env->interrupt_request;
1691 env->interrupt_request |= mask;
1692
1693 /*
1694 * If called from iothread context, wake the target cpu in
1695 * case its halted.
1696 */
1697 if (!qemu_cpu_is_self(env)) {
1698 qemu_cpu_kick(env);
1699 return;
1700 }
1701
1702 if (use_icount) {
1703 env->icount_decr.u16.high = 0xffff;
1704 if (!can_do_io(env)
1705 && (mask & ~old_mask) != 0) {
1706 cpu_abort(env, "Raised interrupt while not in I/O function");
1707 }
1708 } else {
1709 cpu_unlink_tb(env);
1710 }
1711 }
1712
1713 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1714
1715 #else /* CONFIG_USER_ONLY */
1716
1717 void cpu_interrupt(CPUArchState *env, int mask)
1718 {
1719 env->interrupt_request |= mask;
1720 cpu_unlink_tb(env);
1721 }
1722 #endif /* CONFIG_USER_ONLY */
1723
1724 void cpu_reset_interrupt(CPUArchState *env, int mask)
1725 {
1726 env->interrupt_request &= ~mask;
1727 }
1728
1729 void cpu_exit(CPUArchState *env)
1730 {
1731 env->exit_request = 1;
1732 cpu_unlink_tb(env);
1733 }
1734
1735 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1736 {
1737 va_list ap;
1738 va_list ap2;
1739
1740 va_start(ap, fmt);
1741 va_copy(ap2, ap);
1742 fprintf(stderr, "qemu: fatal: ");
1743 vfprintf(stderr, fmt, ap);
1744 fprintf(stderr, "\n");
1745 #ifdef TARGET_I386
1746 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1747 #else
1748 cpu_dump_state(env, stderr, fprintf, 0);
1749 #endif
1750 if (qemu_log_enabled()) {
1751 qemu_log("qemu: fatal: ");
1752 qemu_log_vprintf(fmt, ap2);
1753 qemu_log("\n");
1754 #ifdef TARGET_I386
1755 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1756 #else
1757 log_cpu_state(env, 0);
1758 #endif
1759 qemu_log_flush();
1760 qemu_log_close();
1761 }
1762 va_end(ap2);
1763 va_end(ap);
1764 #if defined(CONFIG_USER_ONLY)
1765 {
1766 struct sigaction act;
1767 sigfillset(&act.sa_mask);
1768 act.sa_handler = SIG_DFL;
1769 sigaction(SIGABRT, &act, NULL);
1770 }
1771 #endif
1772 abort();
1773 }
1774
1775 CPUArchState *cpu_copy(CPUArchState *env)
1776 {
1777 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1778 CPUArchState *next_cpu = new_env->next_cpu;
1779 int cpu_index = new_env->cpu_index;
1780 #if defined(TARGET_HAS_ICE)
1781 CPUBreakpoint *bp;
1782 CPUWatchpoint *wp;
1783 #endif
1784
1785 memcpy(new_env, env, sizeof(CPUArchState));
1786
1787 /* Preserve chaining and index. */
1788 new_env->next_cpu = next_cpu;
1789 new_env->cpu_index = cpu_index;
1790
1791 /* Clone all break/watchpoints.
1792 Note: Once we support ptrace with hw-debug register access, make sure
1793 BP_CPU break/watchpoints are handled correctly on clone. */
1794 QTAILQ_INIT(&env->breakpoints);
1795 QTAILQ_INIT(&env->watchpoints);
1796 #if defined(TARGET_HAS_ICE)
1797 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1798 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1799 }
1800 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1801 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1802 wp->flags, NULL);
1803 }
1804 #endif
1805
1806 return new_env;
1807 }
1808
1809 #if !defined(CONFIG_USER_ONLY)
1810 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1811 {
1812 unsigned int i;
1813
1814 /* Discard jump cache entries for any tb which might potentially
1815 overlap the flushed page. */
1816 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1817 memset (&env->tb_jmp_cache[i], 0,
1818 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1819
1820 i = tb_jmp_cache_hash_page(addr);
1821 memset (&env->tb_jmp_cache[i], 0,
1822 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1823 }
1824
1825 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1826 uintptr_t length)
1827 {
1828 uintptr_t start1;
1829
1830 /* we modify the TLB cache so that the dirty bit will be set again
1831 when accessing the range */
1832 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1833 /* Check that we don't span multiple blocks - this breaks the
1834 address comparisons below. */
1835 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1836 != (end - 1) - start) {
1837 abort();
1838 }
1839 cpu_tlb_reset_dirty_all(start1, length);
1840
1841 }
1842
1843 /* Note: start and end must be within the same ram block. */
1844 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1845 int dirty_flags)
1846 {
1847 uintptr_t length;
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
1855 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1856
1857 if (tcg_enabled()) {
1858 tlb_reset_dirty_range_all(start, end, length);
1859 }
1860 }
1861
1862 int cpu_physical_memory_set_dirty_tracking(int enable)
1863 {
1864 int ret = 0;
1865 in_migration = enable;
1866 return ret;
1867 }
1868
1869 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1870 MemoryRegionSection *section,
1871 target_ulong vaddr,
1872 target_phys_addr_t paddr,
1873 int prot,
1874 target_ulong *address)
1875 {
1876 target_phys_addr_t iotlb;
1877 CPUWatchpoint *wp;
1878
1879 if (memory_region_is_ram(section->mr)) {
1880 /* Normal RAM. */
1881 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1882 + memory_region_section_addr(section, paddr);
1883 if (!section->readonly) {
1884 iotlb |= phys_section_notdirty;
1885 } else {
1886 iotlb |= phys_section_rom;
1887 }
1888 } else {
1889 /* IO handlers are currently passed a physical address.
1890 It would be nice to pass an offset from the base address
1891 of that region. This would avoid having to special case RAM,
1892 and avoid full address decoding in every device.
1893 We can't use the high bits of pd for this because
1894 IO_MEM_ROMD uses these as a ram address. */
1895 iotlb = section - phys_sections;
1896 iotlb += memory_region_section_addr(section, paddr);
1897 }
1898
1899 /* Make accesses to pages with watchpoints go via the
1900 watchpoint trap routines. */
1901 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1902 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1903 /* Avoid trapping reads of pages with a write breakpoint. */
1904 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1905 iotlb = phys_section_watch + paddr;
1906 *address |= TLB_MMIO;
1907 break;
1908 }
1909 }
1910 }
1911
1912 return iotlb;
1913 }
1914
1915 #else
1916 /*
1917 * Walks guest process memory "regions" one by one
1918 * and calls callback function 'fn' for each region.
1919 */
1920
1921 struct walk_memory_regions_data
1922 {
1923 walk_memory_regions_fn fn;
1924 void *priv;
1925 uintptr_t start;
1926 int prot;
1927 };
1928
1929 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1930 abi_ulong end, int new_prot)
1931 {
1932 if (data->start != -1ul) {
1933 int rc = data->fn(data->priv, data->start, end, data->prot);
1934 if (rc != 0) {
1935 return rc;
1936 }
1937 }
1938
1939 data->start = (new_prot ? end : -1ul);
1940 data->prot = new_prot;
1941
1942 return 0;
1943 }
1944
1945 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1946 abi_ulong base, int level, void **lp)
1947 {
1948 abi_ulong pa;
1949 int i, rc;
1950
1951 if (*lp == NULL) {
1952 return walk_memory_regions_end(data, base, 0);
1953 }
1954
1955 if (level == 0) {
1956 PageDesc *pd = *lp;
1957 for (i = 0; i < L2_SIZE; ++i) {
1958 int prot = pd[i].flags;
1959
1960 pa = base | (i << TARGET_PAGE_BITS);
1961 if (prot != data->prot) {
1962 rc = walk_memory_regions_end(data, pa, prot);
1963 if (rc != 0) {
1964 return rc;
1965 }
1966 }
1967 }
1968 } else {
1969 void **pp = *lp;
1970 for (i = 0; i < L2_SIZE; ++i) {
1971 pa = base | ((abi_ulong)i <<
1972 (TARGET_PAGE_BITS + L2_BITS * level));
1973 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1974 if (rc != 0) {
1975 return rc;
1976 }
1977 }
1978 }
1979
1980 return 0;
1981 }
1982
1983 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1984 {
1985 struct walk_memory_regions_data data;
1986 uintptr_t i;
1987
1988 data.fn = fn;
1989 data.priv = priv;
1990 data.start = -1ul;
1991 data.prot = 0;
1992
1993 for (i = 0; i < V_L1_SIZE; i++) {
1994 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1995 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1996 if (rc != 0) {
1997 return rc;
1998 }
1999 }
2000
2001 return walk_memory_regions_end(&data, 0, 0);
2002 }
2003
2004 static int dump_region(void *priv, abi_ulong start,
2005 abi_ulong end, unsigned long prot)
2006 {
2007 FILE *f = (FILE *)priv;
2008
2009 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2010 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2011 start, end, end - start,
2012 ((prot & PAGE_READ) ? 'r' : '-'),
2013 ((prot & PAGE_WRITE) ? 'w' : '-'),
2014 ((prot & PAGE_EXEC) ? 'x' : '-'));
2015
2016 return (0);
2017 }
2018
2019 /* dump memory mappings */
2020 void page_dump(FILE *f)
2021 {
2022 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2023 "start", "end", "size", "prot");
2024 walk_memory_regions(f, dump_region);
2025 }
2026
2027 int page_get_flags(target_ulong address)
2028 {
2029 PageDesc *p;
2030
2031 p = page_find(address >> TARGET_PAGE_BITS);
2032 if (!p)
2033 return 0;
2034 return p->flags;
2035 }
2036
2037 /* Modify the flags of a page and invalidate the code if necessary.
2038 The flag PAGE_WRITE_ORG is positioned automatically depending
2039 on PAGE_WRITE. The mmap_lock should already be held. */
2040 void page_set_flags(target_ulong start, target_ulong end, int flags)
2041 {
2042 target_ulong addr, len;
2043
2044 /* This function should never be called with addresses outside the
2045 guest address space. If this assert fires, it probably indicates
2046 a missing call to h2g_valid. */
2047 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2048 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2049 #endif
2050 assert(start < end);
2051
2052 start = start & TARGET_PAGE_MASK;
2053 end = TARGET_PAGE_ALIGN(end);
2054
2055 if (flags & PAGE_WRITE) {
2056 flags |= PAGE_WRITE_ORG;
2057 }
2058
2059 for (addr = start, len = end - start;
2060 len != 0;
2061 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2062 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2063
2064 /* If the write protection bit is set, then we invalidate
2065 the code inside. */
2066 if (!(p->flags & PAGE_WRITE) &&
2067 (flags & PAGE_WRITE) &&
2068 p->first_tb) {
2069 tb_invalidate_phys_page(addr, 0, NULL);
2070 }
2071 p->flags = flags;
2072 }
2073 }
2074
2075 int page_check_range(target_ulong start, target_ulong len, int flags)
2076 {
2077 PageDesc *p;
2078 target_ulong end;
2079 target_ulong addr;
2080
2081 /* This function should never be called with addresses outside the
2082 guest address space. If this assert fires, it probably indicates
2083 a missing call to h2g_valid. */
2084 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2085 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2086 #endif
2087
2088 if (len == 0) {
2089 return 0;
2090 }
2091 if (start + len - 1 < start) {
2092 /* We've wrapped around. */
2093 return -1;
2094 }
2095
2096 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2097 start = start & TARGET_PAGE_MASK;
2098
2099 for (addr = start, len = end - start;
2100 len != 0;
2101 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2102 p = page_find(addr >> TARGET_PAGE_BITS);
2103 if( !p )
2104 return -1;
2105 if( !(p->flags & PAGE_VALID) )
2106 return -1;
2107
2108 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2109 return -1;
2110 if (flags & PAGE_WRITE) {
2111 if (!(p->flags & PAGE_WRITE_ORG))
2112 return -1;
2113 /* unprotect the page if it was put read-only because it
2114 contains translated code */
2115 if (!(p->flags & PAGE_WRITE)) {
2116 if (!page_unprotect(addr, 0, NULL))
2117 return -1;
2118 }
2119 return 0;
2120 }
2121 }
2122 return 0;
2123 }
2124
2125 /* called from signal handler: invalidate the code and unprotect the
2126 page. Return TRUE if the fault was successfully handled. */
2127 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2128 {
2129 unsigned int prot;
2130 PageDesc *p;
2131 target_ulong host_start, host_end, addr;
2132
2133 /* Technically this isn't safe inside a signal handler. However we
2134 know this only ever happens in a synchronous SEGV handler, so in
2135 practice it seems to be ok. */
2136 mmap_lock();
2137
2138 p = page_find(address >> TARGET_PAGE_BITS);
2139 if (!p) {
2140 mmap_unlock();
2141 return 0;
2142 }
2143
2144 /* if the page was really writable, then we change its
2145 protection back to writable */
2146 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2147 host_start = address & qemu_host_page_mask;
2148 host_end = host_start + qemu_host_page_size;
2149
2150 prot = 0;
2151 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2152 p = page_find(addr >> TARGET_PAGE_BITS);
2153 p->flags |= PAGE_WRITE;
2154 prot |= p->flags;
2155
2156 /* and since the content will be modified, we must invalidate
2157 the corresponding translated code. */
2158 tb_invalidate_phys_page(addr, pc, puc);
2159 #ifdef DEBUG_TB_CHECK
2160 tb_invalidate_check(addr);
2161 #endif
2162 }
2163 mprotect((void *)g2h(host_start), qemu_host_page_size,
2164 prot & PAGE_BITS);
2165
2166 mmap_unlock();
2167 return 1;
2168 }
2169 mmap_unlock();
2170 return 0;
2171 }
2172 #endif /* defined(CONFIG_USER_ONLY) */
2173
2174 #if !defined(CONFIG_USER_ONLY)
2175
2176 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2177 typedef struct subpage_t {
2178 MemoryRegion iomem;
2179 target_phys_addr_t base;
2180 uint16_t sub_section[TARGET_PAGE_SIZE];
2181 } subpage_t;
2182
2183 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2184 uint16_t section);
2185 static subpage_t *subpage_init(target_phys_addr_t base);
2186 static void destroy_page_desc(uint16_t section_index)
2187 {
2188 MemoryRegionSection *section = &phys_sections[section_index];
2189 MemoryRegion *mr = section->mr;
2190
2191 if (mr->subpage) {
2192 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2193 memory_region_destroy(&subpage->iomem);
2194 g_free(subpage);
2195 }
2196 }
2197
2198 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2199 {
2200 unsigned i;
2201 PhysPageEntry *p;
2202
2203 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2204 return;
2205 }
2206
2207 p = phys_map_nodes[lp->ptr];
2208 for (i = 0; i < L2_SIZE; ++i) {
2209 if (!p[i].is_leaf) {
2210 destroy_l2_mapping(&p[i], level - 1);
2211 } else {
2212 destroy_page_desc(p[i].ptr);
2213 }
2214 }
2215 lp->is_leaf = 0;
2216 lp->ptr = PHYS_MAP_NODE_NIL;
2217 }
2218
2219 static void destroy_all_mappings(void)
2220 {
2221 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2222 phys_map_nodes_reset();
2223 }
2224
2225 static uint16_t phys_section_add(MemoryRegionSection *section)
2226 {
2227 if (phys_sections_nb == phys_sections_nb_alloc) {
2228 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2229 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2230 phys_sections_nb_alloc);
2231 }
2232 phys_sections[phys_sections_nb] = *section;
2233 return phys_sections_nb++;
2234 }
2235
2236 static void phys_sections_clear(void)
2237 {
2238 phys_sections_nb = 0;
2239 }
2240
2241 static void register_subpage(MemoryRegionSection *section)
2242 {
2243 subpage_t *subpage;
2244 target_phys_addr_t base = section->offset_within_address_space
2245 & TARGET_PAGE_MASK;
2246 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2247 MemoryRegionSection subsection = {
2248 .offset_within_address_space = base,
2249 .size = TARGET_PAGE_SIZE,
2250 };
2251 target_phys_addr_t start, end;
2252
2253 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2254
2255 if (!(existing->mr->subpage)) {
2256 subpage = subpage_init(base);
2257 subsection.mr = &subpage->iomem;
2258 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2259 phys_section_add(&subsection));
2260 } else {
2261 subpage = container_of(existing->mr, subpage_t, iomem);
2262 }
2263 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2264 end = start + section->size - 1;
2265 subpage_register(subpage, start, end, phys_section_add(section));
2266 }
2267
2268
2269 static void register_multipage(MemoryRegionSection *section)
2270 {
2271 target_phys_addr_t start_addr = section->offset_within_address_space;
2272 ram_addr_t size = section->size;
2273 target_phys_addr_t addr;
2274 uint16_t section_index = phys_section_add(section);
2275
2276 assert(size);
2277
2278 addr = start_addr;
2279 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2280 section_index);
2281 }
2282
2283 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2284 bool readonly)
2285 {
2286 MemoryRegionSection now = *section, remain = *section;
2287
2288 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2289 || (now.size < TARGET_PAGE_SIZE)) {
2290 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2291 - now.offset_within_address_space,
2292 now.size);
2293 register_subpage(&now);
2294 remain.size -= now.size;
2295 remain.offset_within_address_space += now.size;
2296 remain.offset_within_region += now.size;
2297 }
2298 while (remain.size >= TARGET_PAGE_SIZE) {
2299 now = remain;
2300 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2301 now.size = TARGET_PAGE_SIZE;
2302 register_subpage(&now);
2303 } else {
2304 now.size &= TARGET_PAGE_MASK;
2305 register_multipage(&now);
2306 }
2307 remain.size -= now.size;
2308 remain.offset_within_address_space += now.size;
2309 remain.offset_within_region += now.size;
2310 }
2311 now = remain;
2312 if (now.size) {
2313 register_subpage(&now);
2314 }
2315 }
2316
2317
2318 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2319 {
2320 if (kvm_enabled())
2321 kvm_coalesce_mmio_region(addr, size);
2322 }
2323
2324 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2325 {
2326 if (kvm_enabled())
2327 kvm_uncoalesce_mmio_region(addr, size);
2328 }
2329
2330 void qemu_flush_coalesced_mmio_buffer(void)
2331 {
2332 if (kvm_enabled())
2333 kvm_flush_coalesced_mmio_buffer();
2334 }
2335
2336 #if defined(__linux__) && !defined(TARGET_S390X)
2337
2338 #include <sys/vfs.h>
2339
2340 #define HUGETLBFS_MAGIC 0x958458f6
2341
2342 static long gethugepagesize(const char *path)
2343 {
2344 struct statfs fs;
2345 int ret;
2346
2347 do {
2348 ret = statfs(path, &fs);
2349 } while (ret != 0 && errno == EINTR);
2350
2351 if (ret != 0) {
2352 perror(path);
2353 return 0;
2354 }
2355
2356 if (fs.f_type != HUGETLBFS_MAGIC)
2357 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2358
2359 return fs.f_bsize;
2360 }
2361
2362 static void *file_ram_alloc(RAMBlock *block,
2363 ram_addr_t memory,
2364 const char *path)
2365 {
2366 char *filename;
2367 void *area;
2368 int fd;
2369 #ifdef MAP_POPULATE
2370 int flags;
2371 #endif
2372 unsigned long hpagesize;
2373
2374 hpagesize = gethugepagesize(path);
2375 if (!hpagesize) {
2376 return NULL;
2377 }
2378
2379 if (memory < hpagesize) {
2380 return NULL;
2381 }
2382
2383 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2384 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2385 return NULL;
2386 }
2387
2388 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2389 return NULL;
2390 }
2391
2392 fd = mkstemp(filename);
2393 if (fd < 0) {
2394 perror("unable to create backing store for hugepages");
2395 free(filename);
2396 return NULL;
2397 }
2398 unlink(filename);
2399 free(filename);
2400
2401 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2402
2403 /*
2404 * ftruncate is not supported by hugetlbfs in older
2405 * hosts, so don't bother bailing out on errors.
2406 * If anything goes wrong with it under other filesystems,
2407 * mmap will fail.
2408 */
2409 if (ftruncate(fd, memory))
2410 perror("ftruncate");
2411
2412 #ifdef MAP_POPULATE
2413 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2414 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2415 * to sidestep this quirk.
2416 */
2417 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2418 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2419 #else
2420 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2421 #endif
2422 if (area == MAP_FAILED) {
2423 perror("file_ram_alloc: can't mmap RAM pages");
2424 close(fd);
2425 return (NULL);
2426 }
2427 block->fd = fd;
2428 return area;
2429 }
2430 #endif
2431
2432 static ram_addr_t find_ram_offset(ram_addr_t size)
2433 {
2434 RAMBlock *block, *next_block;
2435 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2436
2437 if (QLIST_EMPTY(&ram_list.blocks))
2438 return 0;
2439
2440 QLIST_FOREACH(block, &ram_list.blocks, next) {
2441 ram_addr_t end, next = RAM_ADDR_MAX;
2442
2443 end = block->offset + block->length;
2444
2445 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2446 if (next_block->offset >= end) {
2447 next = MIN(next, next_block->offset);
2448 }
2449 }
2450 if (next - end >= size && next - end < mingap) {
2451 offset = end;
2452 mingap = next - end;
2453 }
2454 }
2455
2456 if (offset == RAM_ADDR_MAX) {
2457 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2458 (uint64_t)size);
2459 abort();
2460 }
2461
2462 return offset;
2463 }
2464
2465 static ram_addr_t last_ram_offset(void)
2466 {
2467 RAMBlock *block;
2468 ram_addr_t last = 0;
2469
2470 QLIST_FOREACH(block, &ram_list.blocks, next)
2471 last = MAX(last, block->offset + block->length);
2472
2473 return last;
2474 }
2475
2476 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2477 {
2478 int ret;
2479 QemuOpts *machine_opts;
2480
2481 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2482 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2483 if (machine_opts &&
2484 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
2485 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2486 if (ret) {
2487 perror("qemu_madvise");
2488 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2489 "but dump_guest_core=off specified\n");
2490 }
2491 }
2492 }
2493
2494 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2495 {
2496 RAMBlock *new_block, *block;
2497
2498 new_block = NULL;
2499 QLIST_FOREACH(block, &ram_list.blocks, next) {
2500 if (block->offset == addr) {
2501 new_block = block;
2502 break;
2503 }
2504 }
2505 assert(new_block);
2506 assert(!new_block->idstr[0]);
2507
2508 if (dev) {
2509 char *id = qdev_get_dev_path(dev);
2510 if (id) {
2511 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2512 g_free(id);
2513 }
2514 }
2515 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2516
2517 QLIST_FOREACH(block, &ram_list.blocks, next) {
2518 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2519 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2520 new_block->idstr);
2521 abort();
2522 }
2523 }
2524 }
2525
2526 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2527 MemoryRegion *mr)
2528 {
2529 RAMBlock *new_block;
2530
2531 size = TARGET_PAGE_ALIGN(size);
2532 new_block = g_malloc0(sizeof(*new_block));
2533
2534 new_block->mr = mr;
2535 new_block->offset = find_ram_offset(size);
2536 if (host) {
2537 new_block->host = host;
2538 new_block->flags |= RAM_PREALLOC_MASK;
2539 } else {
2540 if (mem_path) {
2541 #if defined (__linux__) && !defined(TARGET_S390X)
2542 new_block->host = file_ram_alloc(new_block, size, mem_path);
2543 if (!new_block->host) {
2544 new_block->host = qemu_vmalloc(size);
2545 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2546 }
2547 #else
2548 fprintf(stderr, "-mem-path option unsupported\n");
2549 exit(1);
2550 #endif
2551 } else {
2552 if (xen_enabled()) {
2553 xen_ram_alloc(new_block->offset, size, mr);
2554 } else if (kvm_enabled()) {
2555 /* some s390/kvm configurations have special constraints */
2556 new_block->host = kvm_vmalloc(size);
2557 } else {
2558 new_block->host = qemu_vmalloc(size);
2559 }
2560 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2561 }
2562 }
2563 new_block->length = size;
2564
2565 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2566
2567 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2568 last_ram_offset() >> TARGET_PAGE_BITS);
2569 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2570 0, size >> TARGET_PAGE_BITS);
2571 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2572
2573 qemu_ram_setup_dump(new_block->host, size);
2574
2575 if (kvm_enabled())
2576 kvm_setup_guest_memory(new_block->host, size);
2577
2578 return new_block->offset;
2579 }
2580
2581 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2582 {
2583 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2584 }
2585
2586 void qemu_ram_free_from_ptr(ram_addr_t addr)
2587 {
2588 RAMBlock *block;
2589
2590 QLIST_FOREACH(block, &ram_list.blocks, next) {
2591 if (addr == block->offset) {
2592 QLIST_REMOVE(block, next);
2593 g_free(block);
2594 return;
2595 }
2596 }
2597 }
2598
2599 void qemu_ram_free(ram_addr_t addr)
2600 {
2601 RAMBlock *block;
2602
2603 QLIST_FOREACH(block, &ram_list.blocks, next) {
2604 if (addr == block->offset) {
2605 QLIST_REMOVE(block, next);
2606 if (block->flags & RAM_PREALLOC_MASK) {
2607 ;
2608 } else if (mem_path) {
2609 #if defined (__linux__) && !defined(TARGET_S390X)
2610 if (block->fd) {
2611 munmap(block->host, block->length);
2612 close(block->fd);
2613 } else {
2614 qemu_vfree(block->host);
2615 }
2616 #else
2617 abort();
2618 #endif
2619 } else {
2620 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2621 munmap(block->host, block->length);
2622 #else
2623 if (xen_enabled()) {
2624 xen_invalidate_map_cache_entry(block->host);
2625 } else {
2626 qemu_vfree(block->host);
2627 }
2628 #endif
2629 }
2630 g_free(block);
2631 return;
2632 }
2633 }
2634
2635 }
2636
2637 #ifndef _WIN32
2638 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2639 {
2640 RAMBlock *block;
2641 ram_addr_t offset;
2642 int flags;
2643 void *area, *vaddr;
2644
2645 QLIST_FOREACH(block, &ram_list.blocks, next) {
2646 offset = addr - block->offset;
2647 if (offset < block->length) {
2648 vaddr = block->host + offset;
2649 if (block->flags & RAM_PREALLOC_MASK) {
2650 ;
2651 } else {
2652 flags = MAP_FIXED;
2653 munmap(vaddr, length);
2654 if (mem_path) {
2655 #if defined(__linux__) && !defined(TARGET_S390X)
2656 if (block->fd) {
2657 #ifdef MAP_POPULATE
2658 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2659 MAP_PRIVATE;
2660 #else
2661 flags |= MAP_PRIVATE;
2662 #endif
2663 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2664 flags, block->fd, offset);
2665 } else {
2666 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2667 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2668 flags, -1, 0);
2669 }
2670 #else
2671 abort();
2672 #endif
2673 } else {
2674 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2675 flags |= MAP_SHARED | MAP_ANONYMOUS;
2676 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2677 flags, -1, 0);
2678 #else
2679 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2680 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2681 flags, -1, 0);
2682 #endif
2683 }
2684 if (area != vaddr) {
2685 fprintf(stderr, "Could not remap addr: "
2686 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2687 length, addr);
2688 exit(1);
2689 }
2690 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2691 qemu_ram_setup_dump(vaddr, length);
2692 }
2693 return;
2694 }
2695 }
2696 }
2697 #endif /* !_WIN32 */
2698
2699 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2700 With the exception of the softmmu code in this file, this should
2701 only be used for local memory (e.g. video ram) that the device owns,
2702 and knows it isn't going to access beyond the end of the block.
2703
2704 It should not be used for general purpose DMA.
2705 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2706 */
2707 void *qemu_get_ram_ptr(ram_addr_t addr)
2708 {
2709 RAMBlock *block;
2710
2711 QLIST_FOREACH(block, &ram_list.blocks, next) {
2712 if (addr - block->offset < block->length) {
2713 /* Move this entry to to start of the list. */
2714 if (block != QLIST_FIRST(&ram_list.blocks)) {
2715 QLIST_REMOVE(block, next);
2716 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2717 }
2718 if (xen_enabled()) {
2719 /* We need to check if the requested address is in the RAM
2720 * because we don't want to map the entire memory in QEMU.
2721 * In that case just map until the end of the page.
2722 */
2723 if (block->offset == 0) {
2724 return xen_map_cache(addr, 0, 0);
2725 } else if (block->host == NULL) {
2726 block->host =
2727 xen_map_cache(block->offset, block->length, 1);
2728 }
2729 }
2730 return block->host + (addr - block->offset);
2731 }
2732 }
2733
2734 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2735 abort();
2736
2737 return NULL;
2738 }
2739
2740 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2741 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2742 */
2743 void *qemu_safe_ram_ptr(ram_addr_t addr)
2744 {
2745 RAMBlock *block;
2746
2747 QLIST_FOREACH(block, &ram_list.blocks, next) {
2748 if (addr - block->offset < block->length) {
2749 if (xen_enabled()) {
2750 /* We need to check if the requested address is in the RAM
2751 * because we don't want to map the entire memory in QEMU.
2752 * In that case just map until the end of the page.
2753 */
2754 if (block->offset == 0) {
2755 return xen_map_cache(addr, 0, 0);
2756 } else if (block->host == NULL) {
2757 block->host =
2758 xen_map_cache(block->offset, block->length, 1);
2759 }
2760 }
2761 return block->host + (addr - block->offset);
2762 }
2763 }
2764
2765 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2766 abort();
2767
2768 return NULL;
2769 }
2770
2771 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2772 * but takes a size argument */
2773 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2774 {
2775 if (*size == 0) {
2776 return NULL;
2777 }
2778 if (xen_enabled()) {
2779 return xen_map_cache(addr, *size, 1);
2780 } else {
2781 RAMBlock *block;
2782
2783 QLIST_FOREACH(block, &ram_list.blocks, next) {
2784 if (addr - block->offset < block->length) {
2785 if (addr - block->offset + *size > block->length)
2786 *size = block->length - addr + block->offset;
2787 return block->host + (addr - block->offset);
2788 }
2789 }
2790
2791 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2792 abort();
2793 }
2794 }
2795
2796 void qemu_put_ram_ptr(void *addr)
2797 {
2798 trace_qemu_put_ram_ptr(addr);
2799 }
2800
2801 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2802 {
2803 RAMBlock *block;
2804 uint8_t *host = ptr;
2805
2806 if (xen_enabled()) {
2807 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2808 return 0;
2809 }
2810
2811 QLIST_FOREACH(block, &ram_list.blocks, next) {
2812 /* This case append when the block is not mapped. */
2813 if (block->host == NULL) {
2814 continue;
2815 }
2816 if (host - block->host < block->length) {
2817 *ram_addr = block->offset + (host - block->host);
2818 return 0;
2819 }
2820 }
2821
2822 return -1;
2823 }
2824
2825 /* Some of the softmmu routines need to translate from a host pointer
2826 (typically a TLB entry) back to a ram offset. */
2827 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2828 {
2829 ram_addr_t ram_addr;
2830
2831 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2832 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2833 abort();
2834 }
2835 return ram_addr;
2836 }
2837
2838 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2839 unsigned size)
2840 {
2841 #ifdef DEBUG_UNASSIGNED
2842 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2843 #endif
2844 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2845 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2846 #endif
2847 return 0;
2848 }
2849
2850 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2851 uint64_t val, unsigned size)
2852 {
2853 #ifdef DEBUG_UNASSIGNED
2854 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2855 #endif
2856 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2857 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2858 #endif
2859 }
2860
2861 static const MemoryRegionOps unassigned_mem_ops = {
2862 .read = unassigned_mem_read,
2863 .write = unassigned_mem_write,
2864 .endianness = DEVICE_NATIVE_ENDIAN,
2865 };
2866
2867 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2868 unsigned size)
2869 {
2870 abort();
2871 }
2872
2873 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2874 uint64_t value, unsigned size)
2875 {
2876 abort();
2877 }
2878
2879 static const MemoryRegionOps error_mem_ops = {
2880 .read = error_mem_read,
2881 .write = error_mem_write,
2882 .endianness = DEVICE_NATIVE_ENDIAN,
2883 };
2884
2885 static const MemoryRegionOps rom_mem_ops = {
2886 .read = error_mem_read,
2887 .write = unassigned_mem_write,
2888 .endianness = DEVICE_NATIVE_ENDIAN,
2889 };
2890
2891 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2892 uint64_t val, unsigned size)
2893 {
2894 int dirty_flags;
2895 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2896 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2897 #if !defined(CONFIG_USER_ONLY)
2898 tb_invalidate_phys_page_fast(ram_addr, size);
2899 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2900 #endif
2901 }
2902 switch (size) {
2903 case 1:
2904 stb_p(qemu_get_ram_ptr(ram_addr), val);
2905 break;
2906 case 2:
2907 stw_p(qemu_get_ram_ptr(ram_addr), val);
2908 break;
2909 case 4:
2910 stl_p(qemu_get_ram_ptr(ram_addr), val);
2911 break;
2912 default:
2913 abort();
2914 }
2915 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2916 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2917 /* we remove the notdirty callback only if the code has been
2918 flushed */
2919 if (dirty_flags == 0xff)
2920 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2921 }
2922
2923 static const MemoryRegionOps notdirty_mem_ops = {
2924 .read = error_mem_read,
2925 .write = notdirty_mem_write,
2926 .endianness = DEVICE_NATIVE_ENDIAN,
2927 };
2928
2929 /* Generate a debug exception if a watchpoint has been hit. */
2930 static void check_watchpoint(int offset, int len_mask, int flags)
2931 {
2932 CPUArchState *env = cpu_single_env;
2933 target_ulong pc, cs_base;
2934 TranslationBlock *tb;
2935 target_ulong vaddr;
2936 CPUWatchpoint *wp;
2937 int cpu_flags;
2938
2939 if (env->watchpoint_hit) {
2940 /* We re-entered the check after replacing the TB. Now raise
2941 * the debug interrupt so that is will trigger after the
2942 * current instruction. */
2943 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2944 return;
2945 }
2946 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2947 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2948 if ((vaddr == (wp->vaddr & len_mask) ||
2949 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2950 wp->flags |= BP_WATCHPOINT_HIT;
2951 if (!env->watchpoint_hit) {
2952 env->watchpoint_hit = wp;
2953 tb = tb_find_pc(env->mem_io_pc);
2954 if (!tb) {
2955 cpu_abort(env, "check_watchpoint: could not find TB for "
2956 "pc=%p", (void *)env->mem_io_pc);
2957 }
2958 cpu_restore_state(tb, env, env->mem_io_pc);
2959 tb_phys_invalidate(tb, -1);
2960 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2961 env->exception_index = EXCP_DEBUG;
2962 cpu_loop_exit(env);
2963 } else {
2964 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2965 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2966 cpu_resume_from_signal(env, NULL);
2967 }
2968 }
2969 } else {
2970 wp->flags &= ~BP_WATCHPOINT_HIT;
2971 }
2972 }
2973 }
2974
2975 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2976 so these check for a hit then pass through to the normal out-of-line
2977 phys routines. */
2978 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2979 unsigned size)
2980 {
2981 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2982 switch (size) {
2983 case 1: return ldub_phys(addr);
2984 case 2: return lduw_phys(addr);
2985 case 4: return ldl_phys(addr);
2986 default: abort();
2987 }
2988 }
2989
2990 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2991 uint64_t val, unsigned size)
2992 {
2993 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2994 switch (size) {
2995 case 1:
2996 stb_phys(addr, val);
2997 break;
2998 case 2:
2999 stw_phys(addr, val);
3000 break;
3001 case 4:
3002 stl_phys(addr, val);
3003 break;
3004 default: abort();
3005 }
3006 }
3007
3008 static const MemoryRegionOps watch_mem_ops = {
3009 .read = watch_mem_read,
3010 .write = watch_mem_write,
3011 .endianness = DEVICE_NATIVE_ENDIAN,
3012 };
3013
3014 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3015 unsigned len)
3016 {
3017 subpage_t *mmio = opaque;
3018 unsigned int idx = SUBPAGE_IDX(addr);
3019 MemoryRegionSection *section;
3020 #if defined(DEBUG_SUBPAGE)
3021 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3022 mmio, len, addr, idx);
3023 #endif
3024
3025 section = &phys_sections[mmio->sub_section[idx]];
3026 addr += mmio->base;
3027 addr -= section->offset_within_address_space;
3028 addr += section->offset_within_region;
3029 return io_mem_read(section->mr, addr, len);
3030 }
3031
3032 static void subpage_write(void *opaque, target_phys_addr_t addr,
3033 uint64_t value, unsigned len)
3034 {
3035 subpage_t *mmio = opaque;
3036 unsigned int idx = SUBPAGE_IDX(addr);
3037 MemoryRegionSection *section;
3038 #if defined(DEBUG_SUBPAGE)
3039 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3040 " idx %d value %"PRIx64"\n",
3041 __func__, mmio, len, addr, idx, value);
3042 #endif
3043
3044 section = &phys_sections[mmio->sub_section[idx]];
3045 addr += mmio->base;
3046 addr -= section->offset_within_address_space;
3047 addr += section->offset_within_region;
3048 io_mem_write(section->mr, addr, value, len);
3049 }
3050
3051 static const MemoryRegionOps subpage_ops = {
3052 .read = subpage_read,
3053 .write = subpage_write,
3054 .endianness = DEVICE_NATIVE_ENDIAN,
3055 };
3056
3057 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3058 unsigned size)
3059 {
3060 ram_addr_t raddr = addr;
3061 void *ptr = qemu_get_ram_ptr(raddr);
3062 switch (size) {
3063 case 1: return ldub_p(ptr);
3064 case 2: return lduw_p(ptr);
3065 case 4: return ldl_p(ptr);
3066 default: abort();
3067 }
3068 }
3069
3070 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3071 uint64_t value, unsigned size)
3072 {
3073 ram_addr_t raddr = addr;
3074 void *ptr = qemu_get_ram_ptr(raddr);
3075 switch (size) {
3076 case 1: return stb_p(ptr, value);
3077 case 2: return stw_p(ptr, value);
3078 case 4: return stl_p(ptr, value);
3079 default: abort();
3080 }
3081 }
3082
3083 static const MemoryRegionOps subpage_ram_ops = {
3084 .read = subpage_ram_read,
3085 .write = subpage_ram_write,
3086 .endianness = DEVICE_NATIVE_ENDIAN,
3087 };
3088
3089 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3090 uint16_t section)
3091 {
3092 int idx, eidx;
3093
3094 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3095 return -1;
3096 idx = SUBPAGE_IDX(start);
3097 eidx = SUBPAGE_IDX(end);
3098 #if defined(DEBUG_SUBPAGE)
3099 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3100 mmio, start, end, idx, eidx, memory);
3101 #endif
3102 if (memory_region_is_ram(phys_sections[section].mr)) {
3103 MemoryRegionSection new_section = phys_sections[section];
3104 new_section.mr = &io_mem_subpage_ram;
3105 section = phys_section_add(&new_section);
3106 }
3107 for (; idx <= eidx; idx++) {
3108 mmio->sub_section[idx] = section;
3109 }
3110
3111 return 0;
3112 }
3113
3114 static subpage_t *subpage_init(target_phys_addr_t base)
3115 {
3116 subpage_t *mmio;
3117
3118 mmio = g_malloc0(sizeof(subpage_t));
3119
3120 mmio->base = base;
3121 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3122 "subpage", TARGET_PAGE_SIZE);
3123 mmio->iomem.subpage = true;
3124 #if defined(DEBUG_SUBPAGE)
3125 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3126 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3127 #endif
3128 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3129
3130 return mmio;
3131 }
3132
3133 static uint16_t dummy_section(MemoryRegion *mr)
3134 {
3135 MemoryRegionSection section = {
3136 .mr = mr,
3137 .offset_within_address_space = 0,
3138 .offset_within_region = 0,
3139 .size = UINT64_MAX,
3140 };
3141
3142 return phys_section_add(&section);
3143 }
3144
3145 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3146 {
3147 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3148 }
3149
3150 static void io_mem_init(void)
3151 {
3152 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3153 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3154 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3155 "unassigned", UINT64_MAX);
3156 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3157 "notdirty", UINT64_MAX);
3158 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3159 "subpage-ram", UINT64_MAX);
3160 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3161 "watch", UINT64_MAX);
3162 }
3163
3164 static void core_begin(MemoryListener *listener)
3165 {
3166 destroy_all_mappings();
3167 phys_sections_clear();
3168 phys_map.ptr = PHYS_MAP_NODE_NIL;
3169 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3170 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3171 phys_section_rom = dummy_section(&io_mem_rom);
3172 phys_section_watch = dummy_section(&io_mem_watch);
3173 }
3174
3175 static void core_commit(MemoryListener *listener)
3176 {
3177 CPUArchState *env;
3178
3179 /* since each CPU stores ram addresses in its TLB cache, we must
3180 reset the modified entries */
3181 /* XXX: slow ! */
3182 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3183 tlb_flush(env, 1);
3184 }
3185 }
3186
3187 static void core_region_add(MemoryListener *listener,
3188 MemoryRegionSection *section)
3189 {
3190 cpu_register_physical_memory_log(section, section->readonly);
3191 }
3192
3193 static void core_region_del(MemoryListener *listener,
3194 MemoryRegionSection *section)
3195 {
3196 }
3197
3198 static void core_region_nop(MemoryListener *listener,
3199 MemoryRegionSection *section)
3200 {
3201 cpu_register_physical_memory_log(section, section->readonly);
3202 }
3203
3204 static void core_log_start(MemoryListener *listener,
3205 MemoryRegionSection *section)
3206 {
3207 }
3208
3209 static void core_log_stop(MemoryListener *listener,
3210 MemoryRegionSection *section)
3211 {
3212 }
3213
3214 static void core_log_sync(MemoryListener *listener,
3215 MemoryRegionSection *section)
3216 {
3217 }
3218
3219 static void core_log_global_start(MemoryListener *listener)
3220 {
3221 cpu_physical_memory_set_dirty_tracking(1);
3222 }
3223
3224 static void core_log_global_stop(MemoryListener *listener)
3225 {
3226 cpu_physical_memory_set_dirty_tracking(0);
3227 }
3228
3229 static void core_eventfd_add(MemoryListener *listener,
3230 MemoryRegionSection *section,
3231 bool match_data, uint64_t data, EventNotifier *e)
3232 {
3233 }
3234
3235 static void core_eventfd_del(MemoryListener *listener,
3236 MemoryRegionSection *section,
3237 bool match_data, uint64_t data, EventNotifier *e)
3238 {
3239 }
3240
3241 static void io_begin(MemoryListener *listener)
3242 {
3243 }
3244
3245 static void io_commit(MemoryListener *listener)
3246 {
3247 }
3248
3249 static void io_region_add(MemoryListener *listener,
3250 MemoryRegionSection *section)
3251 {
3252 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3253
3254 mrio->mr = section->mr;
3255 mrio->offset = section->offset_within_region;
3256 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3257 section->offset_within_address_space, section->size);
3258 ioport_register(&mrio->iorange);
3259 }
3260
3261 static void io_region_del(MemoryListener *listener,
3262 MemoryRegionSection *section)
3263 {
3264 isa_unassign_ioport(section->offset_within_address_space, section->size);
3265 }
3266
3267 static void io_region_nop(MemoryListener *listener,
3268 MemoryRegionSection *section)
3269 {
3270 }
3271
3272 static void io_log_start(MemoryListener *listener,
3273 MemoryRegionSection *section)
3274 {
3275 }
3276
3277 static void io_log_stop(MemoryListener *listener,
3278 MemoryRegionSection *section)
3279 {
3280 }
3281
3282 static void io_log_sync(MemoryListener *listener,
3283 MemoryRegionSection *section)
3284 {
3285 }
3286
3287 static void io_log_global_start(MemoryListener *listener)
3288 {
3289 }
3290
3291 static void io_log_global_stop(MemoryListener *listener)
3292 {
3293 }
3294
3295 static void io_eventfd_add(MemoryListener *listener,
3296 MemoryRegionSection *section,
3297 bool match_data, uint64_t data, EventNotifier *e)
3298 {
3299 }
3300
3301 static void io_eventfd_del(MemoryListener *listener,
3302 MemoryRegionSection *section,
3303 bool match_data, uint64_t data, EventNotifier *e)
3304 {
3305 }
3306
3307 static MemoryListener core_memory_listener = {
3308 .begin = core_begin,
3309 .commit = core_commit,
3310 .region_add = core_region_add,
3311 .region_del = core_region_del,
3312 .region_nop = core_region_nop,
3313 .log_start = core_log_start,
3314 .log_stop = core_log_stop,
3315 .log_sync = core_log_sync,
3316 .log_global_start = core_log_global_start,
3317 .log_global_stop = core_log_global_stop,
3318 .eventfd_add = core_eventfd_add,
3319 .eventfd_del = core_eventfd_del,
3320 .priority = 0,
3321 };
3322
3323 static MemoryListener io_memory_listener = {
3324 .begin = io_begin,
3325 .commit = io_commit,
3326 .region_add = io_region_add,
3327 .region_del = io_region_del,
3328 .region_nop = io_region_nop,
3329 .log_start = io_log_start,
3330 .log_stop = io_log_stop,
3331 .log_sync = io_log_sync,
3332 .log_global_start = io_log_global_start,
3333 .log_global_stop = io_log_global_stop,
3334 .eventfd_add = io_eventfd_add,
3335 .eventfd_del = io_eventfd_del,
3336 .priority = 0,
3337 };
3338
3339 static void memory_map_init(void)
3340 {
3341 system_memory = g_malloc(sizeof(*system_memory));
3342 memory_region_init(system_memory, "system", INT64_MAX);
3343 set_system_memory_map(system_memory);
3344
3345 system_io = g_malloc(sizeof(*system_io));
3346 memory_region_init(system_io, "io", 65536);
3347 set_system_io_map(system_io);
3348
3349 memory_listener_register(&core_memory_listener, system_memory);
3350 memory_listener_register(&io_memory_listener, system_io);
3351 }
3352
3353 MemoryRegion *get_system_memory(void)
3354 {
3355 return system_memory;
3356 }
3357
3358 MemoryRegion *get_system_io(void)
3359 {
3360 return system_io;
3361 }
3362
3363 #endif /* !defined(CONFIG_USER_ONLY) */
3364
3365 /* physical memory access (slow version, mainly for debug) */
3366 #if defined(CONFIG_USER_ONLY)
3367 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3368 uint8_t *buf, int len, int is_write)
3369 {
3370 int l, flags;
3371 target_ulong page;
3372 void * p;
3373
3374 while (len > 0) {
3375 page = addr & TARGET_PAGE_MASK;
3376 l = (page + TARGET_PAGE_SIZE) - addr;
3377 if (l > len)
3378 l = len;
3379 flags = page_get_flags(page);
3380 if (!(flags & PAGE_VALID))
3381 return -1;
3382 if (is_write) {
3383 if (!(flags & PAGE_WRITE))
3384 return -1;
3385 /* XXX: this code should not depend on lock_user */
3386 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3387 return -1;
3388 memcpy(p, buf, l);
3389 unlock_user(p, addr, l);
3390 } else {
3391 if (!(flags & PAGE_READ))
3392 return -1;
3393 /* XXX: this code should not depend on lock_user */
3394 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3395 return -1;
3396 memcpy(buf, p, l);
3397 unlock_user(p, addr, 0);
3398 }
3399 len -= l;
3400 buf += l;
3401 addr += l;
3402 }
3403 return 0;
3404 }
3405
3406 #else
3407 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3408 int len, int is_write)
3409 {
3410 int l;
3411 uint8_t *ptr;
3412 uint32_t val;
3413 target_phys_addr_t page;
3414 MemoryRegionSection *section;
3415
3416 while (len > 0) {
3417 page = addr & TARGET_PAGE_MASK;
3418 l = (page + TARGET_PAGE_SIZE) - addr;
3419 if (l > len)
3420 l = len;
3421 section = phys_page_find(page >> TARGET_PAGE_BITS);
3422
3423 if (is_write) {
3424 if (!memory_region_is_ram(section->mr)) {
3425 target_phys_addr_t addr1;
3426 addr1 = memory_region_section_addr(section, addr);
3427 /* XXX: could force cpu_single_env to NULL to avoid
3428 potential bugs */
3429 if (l >= 4 && ((addr1 & 3) == 0)) {
3430 /* 32 bit write access */
3431 val = ldl_p(buf);
3432 io_mem_write(section->mr, addr1, val, 4);
3433 l = 4;
3434 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3435 /* 16 bit write access */
3436 val = lduw_p(buf);
3437 io_mem_write(section->mr, addr1, val, 2);
3438 l = 2;
3439 } else {
3440 /* 8 bit write access */
3441 val = ldub_p(buf);
3442 io_mem_write(section->mr, addr1, val, 1);
3443 l = 1;
3444 }
3445 } else if (!section->readonly) {
3446 ram_addr_t addr1;
3447 addr1 = memory_region_get_ram_addr(section->mr)
3448 + memory_region_section_addr(section, addr);
3449 /* RAM case */
3450 ptr = qemu_get_ram_ptr(addr1);
3451 memcpy(ptr, buf, l);
3452 if (!cpu_physical_memory_is_dirty(addr1)) {
3453 /* invalidate code */
3454 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3455 /* set dirty bit */
3456 cpu_physical_memory_set_dirty_flags(
3457 addr1, (0xff & ~CODE_DIRTY_FLAG));
3458 }
3459 qemu_put_ram_ptr(ptr);
3460 }
3461 } else {
3462 if (!(memory_region_is_ram(section->mr) ||
3463 memory_region_is_romd(section->mr))) {
3464 target_phys_addr_t addr1;
3465 /* I/O case */
3466 addr1 = memory_region_section_addr(section, addr);
3467 if (l >= 4 && ((addr1 & 3) == 0)) {
3468 /* 32 bit read access */
3469 val = io_mem_read(section->mr, addr1, 4);
3470 stl_p(buf, val);
3471 l = 4;
3472 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3473 /* 16 bit read access */
3474 val = io_mem_read(section->mr, addr1, 2);
3475 stw_p(buf, val);
3476 l = 2;
3477 } else {
3478 /* 8 bit read access */
3479 val = io_mem_read(section->mr, addr1, 1);
3480 stb_p(buf, val);
3481 l = 1;
3482 }
3483 } else {
3484 /* RAM case */
3485 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3486 + memory_region_section_addr(section,
3487 addr));
3488 memcpy(buf, ptr, l);
3489 qemu_put_ram_ptr(ptr);
3490 }
3491 }
3492 len -= l;
3493 buf += l;
3494 addr += l;
3495 }
3496 }
3497
3498 /* used for ROM loading : can write in RAM and ROM */
3499 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3500 const uint8_t *buf, int len)
3501 {
3502 int l;
3503 uint8_t *ptr;
3504 target_phys_addr_t page;
3505 MemoryRegionSection *section;
3506
3507 while (len > 0) {
3508 page = addr & TARGET_PAGE_MASK;
3509 l = (page + TARGET_PAGE_SIZE) - addr;
3510 if (l > len)
3511 l = len;
3512 section = phys_page_find(page >> TARGET_PAGE_BITS);
3513
3514 if (!(memory_region_is_ram(section->mr) ||
3515 memory_region_is_romd(section->mr))) {
3516 /* do nothing */
3517 } else {
3518 unsigned long addr1;
3519 addr1 = memory_region_get_ram_addr(section->mr)
3520 + memory_region_section_addr(section, addr);
3521 /* ROM/RAM case */
3522 ptr = qemu_get_ram_ptr(addr1);
3523 memcpy(ptr, buf, l);
3524 if (!cpu_physical_memory_is_dirty(addr1)) {
3525 /* invalidate code */
3526 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3527 /* set dirty bit */
3528 cpu_physical_memory_set_dirty_flags(
3529 addr1, (0xff & ~CODE_DIRTY_FLAG));
3530 }
3531 qemu_put_ram_ptr(ptr);
3532 }
3533 len -= l;
3534 buf += l;
3535 addr += l;
3536 }
3537 }
3538
3539 typedef struct {
3540 void *buffer;
3541 target_phys_addr_t addr;
3542 target_phys_addr_t len;
3543 } BounceBuffer;
3544
3545 static BounceBuffer bounce;
3546
3547 typedef struct MapClient {
3548 void *opaque;
3549 void (*callback)(void *opaque);
3550 QLIST_ENTRY(MapClient) link;
3551 } MapClient;
3552
3553 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3554 = QLIST_HEAD_INITIALIZER(map_client_list);
3555
3556 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3557 {
3558 MapClient *client = g_malloc(sizeof(*client));
3559
3560 client->opaque = opaque;
3561 client->callback = callback;
3562 QLIST_INSERT_HEAD(&map_client_list, client, link);
3563 return client;
3564 }
3565
3566 void cpu_unregister_map_client(void *_client)
3567 {
3568 MapClient *client = (MapClient *)_client;
3569
3570 QLIST_REMOVE(client, link);
3571 g_free(client);
3572 }
3573
3574 static void cpu_notify_map_clients(void)
3575 {
3576 MapClient *client;
3577
3578 while (!QLIST_EMPTY(&map_client_list)) {
3579 client = QLIST_FIRST(&map_client_list);
3580 client->callback(client->opaque);
3581 cpu_unregister_map_client(client);
3582 }
3583 }
3584
3585 /* Map a physical memory region into a host virtual address.
3586 * May map a subset of the requested range, given by and returned in *plen.
3587 * May return NULL if resources needed to perform the mapping are exhausted.
3588 * Use only for reads OR writes - not for read-modify-write operations.
3589 * Use cpu_register_map_client() to know when retrying the map operation is
3590 * likely to succeed.
3591 */
3592 void *cpu_physical_memory_map(target_phys_addr_t addr,
3593 target_phys_addr_t *plen,
3594 int is_write)
3595 {
3596 target_phys_addr_t len = *plen;
3597 target_phys_addr_t todo = 0;
3598 int l;
3599 target_phys_addr_t page;
3600 MemoryRegionSection *section;
3601 ram_addr_t raddr = RAM_ADDR_MAX;
3602 ram_addr_t rlen;
3603 void *ret;
3604
3605 while (len > 0) {
3606 page = addr & TARGET_PAGE_MASK;
3607 l = (page + TARGET_PAGE_SIZE) - addr;
3608 if (l > len)
3609 l = len;
3610 section = phys_page_find(page >> TARGET_PAGE_BITS);
3611
3612 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3613 if (todo || bounce.buffer) {
3614 break;
3615 }
3616 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3617 bounce.addr = addr;
3618 bounce.len = l;
3619 if (!is_write) {
3620 cpu_physical_memory_read(addr, bounce.buffer, l);
3621 }
3622
3623 *plen = l;
3624 return bounce.buffer;
3625 }
3626 if (!todo) {
3627 raddr = memory_region_get_ram_addr(section->mr)
3628 + memory_region_section_addr(section, addr);
3629 }
3630
3631 len -= l;
3632 addr += l;
3633 todo += l;
3634 }
3635 rlen = todo;
3636 ret = qemu_ram_ptr_length(raddr, &rlen);
3637 *plen = rlen;
3638 return ret;
3639 }
3640
3641 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3642 * Will also mark the memory as dirty if is_write == 1. access_len gives
3643 * the amount of memory that was actually read or written by the caller.
3644 */
3645 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3646 int is_write, target_phys_addr_t access_len)
3647 {
3648 if (buffer != bounce.buffer) {
3649 if (is_write) {
3650 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3651 while (access_len) {
3652 unsigned l;
3653 l = TARGET_PAGE_SIZE;
3654 if (l > access_len)
3655 l = access_len;
3656 if (!cpu_physical_memory_is_dirty(addr1)) {
3657 /* invalidate code */
3658 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3659 /* set dirty bit */
3660 cpu_physical_memory_set_dirty_flags(
3661 addr1, (0xff & ~CODE_DIRTY_FLAG));
3662 }
3663 addr1 += l;
3664 access_len -= l;
3665 }
3666 }
3667 if (xen_enabled()) {
3668 xen_invalidate_map_cache_entry(buffer);
3669 }
3670 return;
3671 }
3672 if (is_write) {
3673 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3674 }
3675 qemu_vfree(bounce.buffer);
3676 bounce.buffer = NULL;
3677 cpu_notify_map_clients();
3678 }
3679
3680 /* warning: addr must be aligned */
3681 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3682 enum device_endian endian)
3683 {
3684 uint8_t *ptr;
3685 uint32_t val;
3686 MemoryRegionSection *section;
3687
3688 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3689
3690 if (!(memory_region_is_ram(section->mr) ||
3691 memory_region_is_romd(section->mr))) {
3692 /* I/O case */
3693 addr = memory_region_section_addr(section, addr);
3694 val = io_mem_read(section->mr, addr, 4);
3695 #if defined(TARGET_WORDS_BIGENDIAN)
3696 if (endian == DEVICE_LITTLE_ENDIAN) {
3697 val = bswap32(val);
3698 }
3699 #else
3700 if (endian == DEVICE_BIG_ENDIAN) {
3701 val = bswap32(val);
3702 }
3703 #endif
3704 } else {
3705 /* RAM case */
3706 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3707 & TARGET_PAGE_MASK)
3708 + memory_region_section_addr(section, addr));
3709 switch (endian) {
3710 case DEVICE_LITTLE_ENDIAN:
3711 val = ldl_le_p(ptr);
3712 break;
3713 case DEVICE_BIG_ENDIAN:
3714 val = ldl_be_p(ptr);
3715 break;
3716 default:
3717 val = ldl_p(ptr);
3718 break;
3719 }
3720 }
3721 return val;
3722 }
3723
3724 uint32_t ldl_phys(target_phys_addr_t addr)
3725 {
3726 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3727 }
3728
3729 uint32_t ldl_le_phys(target_phys_addr_t addr)
3730 {
3731 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3732 }
3733
3734 uint32_t ldl_be_phys(target_phys_addr_t addr)
3735 {
3736 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3737 }
3738
3739 /* warning: addr must be aligned */
3740 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3741 enum device_endian endian)
3742 {
3743 uint8_t *ptr;
3744 uint64_t val;
3745 MemoryRegionSection *section;
3746
3747 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3748
3749 if (!(memory_region_is_ram(section->mr) ||
3750 memory_region_is_romd(section->mr))) {
3751 /* I/O case */
3752 addr = memory_region_section_addr(section, addr);
3753
3754 /* XXX This is broken when device endian != cpu endian.
3755 Fix and add "endian" variable check */
3756 #ifdef TARGET_WORDS_BIGENDIAN
3757 val = io_mem_read(section->mr, addr, 4) << 32;
3758 val |= io_mem_read(section->mr, addr + 4, 4);
3759 #else
3760 val = io_mem_read(section->mr, addr, 4);
3761 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3762 #endif
3763 } else {
3764 /* RAM case */
3765 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3766 & TARGET_PAGE_MASK)
3767 + memory_region_section_addr(section, addr));
3768 switch (endian) {
3769 case DEVICE_LITTLE_ENDIAN:
3770 val = ldq_le_p(ptr);
3771 break;
3772 case DEVICE_BIG_ENDIAN:
3773 val = ldq_be_p(ptr);
3774 break;
3775 default:
3776 val = ldq_p(ptr);
3777 break;
3778 }
3779 }
3780 return val;
3781 }
3782
3783 uint64_t ldq_phys(target_phys_addr_t addr)
3784 {
3785 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3786 }
3787
3788 uint64_t ldq_le_phys(target_phys_addr_t addr)
3789 {
3790 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3791 }
3792
3793 uint64_t ldq_be_phys(target_phys_addr_t addr)
3794 {
3795 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3796 }
3797
3798 /* XXX: optimize */
3799 uint32_t ldub_phys(target_phys_addr_t addr)
3800 {
3801 uint8_t val;
3802 cpu_physical_memory_read(addr, &val, 1);
3803 return val;
3804 }
3805
3806 /* warning: addr must be aligned */
3807 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3808 enum device_endian endian)
3809 {
3810 uint8_t *ptr;
3811 uint64_t val;
3812 MemoryRegionSection *section;
3813
3814 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3815
3816 if (!(memory_region_is_ram(section->mr) ||
3817 memory_region_is_romd(section->mr))) {
3818 /* I/O case */
3819 addr = memory_region_section_addr(section, addr);
3820 val = io_mem_read(section->mr, addr, 2);
3821 #if defined(TARGET_WORDS_BIGENDIAN)
3822 if (endian == DEVICE_LITTLE_ENDIAN) {
3823 val = bswap16(val);
3824 }
3825 #else
3826 if (endian == DEVICE_BIG_ENDIAN) {
3827 val = bswap16(val);
3828 }
3829 #endif
3830 } else {
3831 /* RAM case */
3832 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3833 & TARGET_PAGE_MASK)
3834 + memory_region_section_addr(section, addr));
3835 switch (endian) {
3836 case DEVICE_LITTLE_ENDIAN:
3837 val = lduw_le_p(ptr);
3838 break;
3839 case DEVICE_BIG_ENDIAN:
3840 val = lduw_be_p(ptr);
3841 break;
3842 default:
3843 val = lduw_p(ptr);
3844 break;
3845 }
3846 }
3847 return val;
3848 }
3849
3850 uint32_t lduw_phys(target_phys_addr_t addr)
3851 {
3852 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3853 }
3854
3855 uint32_t lduw_le_phys(target_phys_addr_t addr)
3856 {
3857 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3858 }
3859
3860 uint32_t lduw_be_phys(target_phys_addr_t addr)
3861 {
3862 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3863 }
3864
3865 /* warning: addr must be aligned. The ram page is not masked as dirty
3866 and the code inside is not invalidated. It is useful if the dirty
3867 bits are used to track modified PTEs */
3868 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3869 {
3870 uint8_t *ptr;
3871 MemoryRegionSection *section;
3872
3873 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3874
3875 if (!memory_region_is_ram(section->mr) || section->readonly) {
3876 addr = memory_region_section_addr(section, addr);
3877 if (memory_region_is_ram(section->mr)) {
3878 section = &phys_sections[phys_section_rom];
3879 }
3880 io_mem_write(section->mr, addr, val, 4);
3881 } else {
3882 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3883 & TARGET_PAGE_MASK)
3884 + memory_region_section_addr(section, addr);
3885 ptr = qemu_get_ram_ptr(addr1);
3886 stl_p(ptr, val);
3887
3888 if (unlikely(in_migration)) {
3889 if (!cpu_physical_memory_is_dirty(addr1)) {
3890 /* invalidate code */
3891 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3892 /* set dirty bit */
3893 cpu_physical_memory_set_dirty_flags(
3894 addr1, (0xff & ~CODE_DIRTY_FLAG));
3895 }
3896 }
3897 }
3898 }
3899
3900 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3901 {
3902 uint8_t *ptr;
3903 MemoryRegionSection *section;
3904
3905 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3906
3907 if (!memory_region_is_ram(section->mr) || section->readonly) {
3908 addr = memory_region_section_addr(section, addr);
3909 if (memory_region_is_ram(section->mr)) {
3910 section = &phys_sections[phys_section_rom];
3911 }
3912 #ifdef TARGET_WORDS_BIGENDIAN
3913 io_mem_write(section->mr, addr, val >> 32, 4);
3914 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3915 #else
3916 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3917 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3918 #endif
3919 } else {
3920 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3921 & TARGET_PAGE_MASK)
3922 + memory_region_section_addr(section, addr));
3923 stq_p(ptr, val);
3924 }
3925 }
3926
3927 /* warning: addr must be aligned */
3928 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3929 enum device_endian endian)
3930 {
3931 uint8_t *ptr;
3932 MemoryRegionSection *section;
3933
3934 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3935
3936 if (!memory_region_is_ram(section->mr) || section->readonly) {
3937 addr = memory_region_section_addr(section, addr);
3938 if (memory_region_is_ram(section->mr)) {
3939 section = &phys_sections[phys_section_rom];
3940 }
3941 #if defined(TARGET_WORDS_BIGENDIAN)
3942 if (endian == DEVICE_LITTLE_ENDIAN) {
3943 val = bswap32(val);
3944 }
3945 #else
3946 if (endian == DEVICE_BIG_ENDIAN) {
3947 val = bswap32(val);
3948 }
3949 #endif
3950 io_mem_write(section->mr, addr, val, 4);
3951 } else {
3952 unsigned long addr1;
3953 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3954 + memory_region_section_addr(section, addr);
3955 /* RAM case */
3956 ptr = qemu_get_ram_ptr(addr1);
3957 switch (endian) {
3958 case DEVICE_LITTLE_ENDIAN:
3959 stl_le_p(ptr, val);
3960 break;
3961 case DEVICE_BIG_ENDIAN:
3962 stl_be_p(ptr, val);
3963 break;
3964 default:
3965 stl_p(ptr, val);
3966 break;
3967 }
3968 if (!cpu_physical_memory_is_dirty(addr1)) {
3969 /* invalidate code */
3970 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3971 /* set dirty bit */
3972 cpu_physical_memory_set_dirty_flags(addr1,
3973 (0xff & ~CODE_DIRTY_FLAG));
3974 }
3975 }
3976 }
3977
3978 void stl_phys(target_phys_addr_t addr, uint32_t val)
3979 {
3980 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3981 }
3982
3983 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3984 {
3985 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3986 }
3987
3988 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3989 {
3990 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3991 }
3992
3993 /* XXX: optimize */
3994 void stb_phys(target_phys_addr_t addr, uint32_t val)
3995 {
3996 uint8_t v = val;
3997 cpu_physical_memory_write(addr, &v, 1);
3998 }
3999
4000 /* warning: addr must be aligned */
4001 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4002 enum device_endian endian)
4003 {
4004 uint8_t *ptr;
4005 MemoryRegionSection *section;
4006
4007 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4008
4009 if (!memory_region_is_ram(section->mr) || section->readonly) {
4010 addr = memory_region_section_addr(section, addr);
4011 if (memory_region_is_ram(section->mr)) {
4012 section = &phys_sections[phys_section_rom];
4013 }
4014 #if defined(TARGET_WORDS_BIGENDIAN)
4015 if (endian == DEVICE_LITTLE_ENDIAN) {
4016 val = bswap16(val);
4017 }
4018 #else
4019 if (endian == DEVICE_BIG_ENDIAN) {
4020 val = bswap16(val);
4021 }
4022 #endif
4023 io_mem_write(section->mr, addr, val, 2);
4024 } else {
4025 unsigned long addr1;
4026 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4027 + memory_region_section_addr(section, addr);
4028 /* RAM case */
4029 ptr = qemu_get_ram_ptr(addr1);
4030 switch (endian) {
4031 case DEVICE_LITTLE_ENDIAN:
4032 stw_le_p(ptr, val);
4033 break;
4034 case DEVICE_BIG_ENDIAN:
4035 stw_be_p(ptr, val);
4036 break;
4037 default:
4038 stw_p(ptr, val);
4039 break;
4040 }
4041 if (!cpu_physical_memory_is_dirty(addr1)) {
4042 /* invalidate code */
4043 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4044 /* set dirty bit */
4045 cpu_physical_memory_set_dirty_flags(addr1,
4046 (0xff & ~CODE_DIRTY_FLAG));
4047 }
4048 }
4049 }
4050
4051 void stw_phys(target_phys_addr_t addr, uint32_t val)
4052 {
4053 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4054 }
4055
4056 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4057 {
4058 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4059 }
4060
4061 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4062 {
4063 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4064 }
4065
4066 /* XXX: optimize */
4067 void stq_phys(target_phys_addr_t addr, uint64_t val)
4068 {
4069 val = tswap64(val);
4070 cpu_physical_memory_write(addr, &val, 8);
4071 }
4072
4073 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4074 {
4075 val = cpu_to_le64(val);
4076 cpu_physical_memory_write(addr, &val, 8);
4077 }
4078
4079 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4080 {
4081 val = cpu_to_be64(val);
4082 cpu_physical_memory_write(addr, &val, 8);
4083 }
4084
4085 /* virtual memory access for debug (includes writing to ROM) */
4086 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4087 uint8_t *buf, int len, int is_write)
4088 {
4089 int l;
4090 target_phys_addr_t phys_addr;
4091 target_ulong page;
4092
4093 while (len > 0) {
4094 page = addr & TARGET_PAGE_MASK;
4095 phys_addr = cpu_get_phys_page_debug(env, page);
4096 /* if no physical page mapped, return an error */
4097 if (phys_addr == -1)
4098 return -1;
4099 l = (page + TARGET_PAGE_SIZE) - addr;
4100 if (l > len)
4101 l = len;
4102 phys_addr += (addr & ~TARGET_PAGE_MASK);
4103 if (is_write)
4104 cpu_physical_memory_write_rom(phys_addr, buf, l);
4105 else
4106 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4107 len -= l;
4108 buf += l;
4109 addr += l;
4110 }
4111 return 0;
4112 }
4113 #endif
4114
4115 /* in deterministic execution mode, instructions doing device I/Os
4116 must be at the end of the TB */
4117 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4118 {
4119 TranslationBlock *tb;
4120 uint32_t n, cflags;
4121 target_ulong pc, cs_base;
4122 uint64_t flags;
4123
4124 tb = tb_find_pc(retaddr);
4125 if (!tb) {
4126 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4127 (void *)retaddr);
4128 }
4129 n = env->icount_decr.u16.low + tb->icount;
4130 cpu_restore_state(tb, env, retaddr);
4131 /* Calculate how many instructions had been executed before the fault
4132 occurred. */
4133 n = n - env->icount_decr.u16.low;
4134 /* Generate a new TB ending on the I/O insn. */
4135 n++;
4136 /* On MIPS and SH, delay slot instructions can only be restarted if
4137 they were already the first instruction in the TB. If this is not
4138 the first instruction in a TB then re-execute the preceding
4139 branch. */
4140 #if defined(TARGET_MIPS)
4141 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4142 env->active_tc.PC -= 4;
4143 env->icount_decr.u16.low++;
4144 env->hflags &= ~MIPS_HFLAG_BMASK;
4145 }
4146 #elif defined(TARGET_SH4)
4147 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4148 && n > 1) {
4149 env->pc -= 2;
4150 env->icount_decr.u16.low++;
4151 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4152 }
4153 #endif
4154 /* This should never happen. */
4155 if (n > CF_COUNT_MASK)
4156 cpu_abort(env, "TB too big during recompile");
4157
4158 cflags = n | CF_LAST_IO;
4159 pc = tb->pc;
4160 cs_base = tb->cs_base;
4161 flags = tb->flags;
4162 tb_phys_invalidate(tb, -1);
4163 /* FIXME: In theory this could raise an exception. In practice
4164 we have already translated the block once so it's probably ok. */
4165 tb_gen_code(env, pc, cs_base, flags, cflags);
4166 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4167 the first in the TB) then we end up generating a whole new TB and
4168 repeating the fault, which is horribly inefficient.
4169 Better would be to execute just this insn uncached, or generate a
4170 second new TB. */
4171 cpu_resume_from_signal(env, NULL);
4172 }
4173
4174 #if !defined(CONFIG_USER_ONLY)
4175
4176 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4177 {
4178 int i, target_code_size, max_target_code_size;
4179 int direct_jmp_count, direct_jmp2_count, cross_page;
4180 TranslationBlock *tb;
4181
4182 target_code_size = 0;
4183 max_target_code_size = 0;
4184 cross_page = 0;
4185 direct_jmp_count = 0;
4186 direct_jmp2_count = 0;
4187 for(i = 0; i < nb_tbs; i++) {
4188 tb = &tbs[i];
4189 target_code_size += tb->size;
4190 if (tb->size > max_target_code_size)
4191 max_target_code_size = tb->size;
4192 if (tb->page_addr[1] != -1)
4193 cross_page++;
4194 if (tb->tb_next_offset[0] != 0xffff) {
4195 direct_jmp_count++;
4196 if (tb->tb_next_offset[1] != 0xffff) {
4197 direct_jmp2_count++;
4198 }
4199 }
4200 }
4201 /* XXX: avoid using doubles ? */
4202 cpu_fprintf(f, "Translation buffer state:\n");
4203 cpu_fprintf(f, "gen code size %td/%ld\n",
4204 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4205 cpu_fprintf(f, "TB count %d/%d\n",
4206 nb_tbs, code_gen_max_blocks);
4207 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4208 nb_tbs ? target_code_size / nb_tbs : 0,
4209 max_target_code_size);
4210 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4211 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4212 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4213 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4214 cross_page,
4215 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4216 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4217 direct_jmp_count,
4218 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4219 direct_jmp2_count,
4220 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4221 cpu_fprintf(f, "\nStatistics:\n");
4222 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4223 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4224 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4225 tcg_dump_info(f, cpu_fprintf);
4226 }
4227
4228 /*
4229 * A helper function for the _utterly broken_ virtio device model to find out if
4230 * it's running on a big endian machine. Don't do this at home kids!
4231 */
4232 bool virtio_is_big_endian(void);
4233 bool virtio_is_big_endian(void)
4234 {
4235 #if defined(TARGET_WORDS_BIGENDIAN)
4236 return true;
4237 #else
4238 return false;
4239 #endif
4240 }
4241
4242 #endif
4243
4244 #ifndef CONFIG_USER_ONLY
4245 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4246 {
4247 MemoryRegionSection *section;
4248
4249 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4250
4251 return !(memory_region_is_ram(section->mr) ||
4252 memory_region_is_romd(section->mr));
4253 }
4254 #endif