]> git.proxmox.com Git - qemu.git/blob - exec.c
kvm: Rework dirty bitmap synchronization
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #include <windows.h>
23 #else
24 #include <sys/types.h>
25 #include <sys/mman.h>
26 #endif
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdarg.h>
30 #include <string.h>
31 #include <errno.h>
32 #include <unistd.h>
33 #include <inttypes.h>
34
35 #include "cpu.h"
36 #include "exec-all.h"
37 #include "qemu-common.h"
38 #include "tcg.h"
39 #include "hw/hw.h"
40 #include "osdep.h"
41 #include "kvm.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
80 #define TARGET_PHYS_ADDR_SPACE_BITS 32
81 #endif
82
83 static TranslationBlock *tbs;
84 int code_gen_max_blocks;
85 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
86 static int nb_tbs;
87 /* any access to the tbs or the page table must use this lock */
88 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
89
90 #if defined(__arm__) || defined(__sparc_v9__)
91 /* The prologue must be reachable with a direct jump. ARM and Sparc64
92 have limited branch ranges (possibly also PPC) so place it in a
93 section close to code segment. */
94 #define code_gen_section \
95 __attribute__((__section__(".gen_code"))) \
96 __attribute__((aligned (32)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
101
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 uint8_t *code_gen_ptr;
108
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 uint8_t *phys_ram_dirty;
112 static int in_migration;
113
114 typedef struct RAMBlock {
115 uint8_t *host;
116 ram_addr_t offset;
117 ram_addr_t length;
118 struct RAMBlock *next;
119 } RAMBlock;
120
121 static RAMBlock *ram_blocks;
122 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
123 then we can no longer assume contiguous ram offsets, and external uses
124 of this variable will break. */
125 ram_addr_t last_ram_offset;
126 #endif
127
128 CPUState *first_cpu;
129 /* current CPU in the current thread. It is only valid inside
130 cpu_exec() */
131 CPUState *cpu_single_env;
132 /* 0 = Do not count executed instructions.
133 1 = Precise instruction counting.
134 2 = Adaptive rate instruction counting. */
135 int use_icount = 0;
136 /* Current instruction counter. While executing translated code this may
137 include some instructions that have not yet been executed. */
138 int64_t qemu_icount;
139
140 typedef struct PageDesc {
141 /* list of TBs intersecting this ram page */
142 TranslationBlock *first_tb;
143 /* in order to optimize self modifying code, we count the number
144 of lookups we do to a given page to use a bitmap */
145 unsigned int code_write_count;
146 uint8_t *code_bitmap;
147 #if defined(CONFIG_USER_ONLY)
148 unsigned long flags;
149 #endif
150 } PageDesc;
151
152 typedef struct PhysPageDesc {
153 /* offset in host memory of the page + io_index in the low bits */
154 ram_addr_t phys_offset;
155 ram_addr_t region_offset;
156 } PhysPageDesc;
157
158 #define L2_BITS 10
159 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
160 /* XXX: this is a temporary hack for alpha target.
161 * In the future, this is to be replaced by a multi-level table
162 * to actually be able to handle the complete 64 bits address space.
163 */
164 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
165 #else
166 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
167 #endif
168
169 #define L1_SIZE (1 << L1_BITS)
170 #define L2_SIZE (1 << L2_BITS)
171
172 unsigned long qemu_real_host_page_size;
173 unsigned long qemu_host_page_bits;
174 unsigned long qemu_host_page_size;
175 unsigned long qemu_host_page_mask;
176
177 /* XXX: for system emulation, it could just be an array */
178 static PageDesc *l1_map[L1_SIZE];
179 static PhysPageDesc **l1_phys_map;
180
181 #if !defined(CONFIG_USER_ONLY)
182 static void io_mem_init(void);
183
184 /* io memory support */
185 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
186 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
187 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
188 static char io_mem_used[IO_MEM_NB_ENTRIES];
189 static int io_mem_watch;
190 #endif
191
192 /* log support */
193 static const char *logfilename = "/tmp/qemu.log";
194 FILE *logfile;
195 int loglevel;
196 static int log_append = 0;
197
198 /* statistics */
199 static int tlb_flush_count;
200 static int tb_flush_count;
201 static int tb_phys_invalidate_count;
202
203 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
204 typedef struct subpage_t {
205 target_phys_addr_t base;
206 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
207 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
208 void *opaque[TARGET_PAGE_SIZE][2][4];
209 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
210 } subpage_t;
211
212 #ifdef _WIN32
213 static void map_exec(void *addr, long size)
214 {
215 DWORD old_protect;
216 VirtualProtect(addr, size,
217 PAGE_EXECUTE_READWRITE, &old_protect);
218
219 }
220 #else
221 static void map_exec(void *addr, long size)
222 {
223 unsigned long start, end, page_size;
224
225 page_size = getpagesize();
226 start = (unsigned long)addr;
227 start &= ~(page_size - 1);
228
229 end = (unsigned long)addr + size;
230 end += page_size - 1;
231 end &= ~(page_size - 1);
232
233 mprotect((void *)start, end - start,
234 PROT_READ | PROT_WRITE | PROT_EXEC);
235 }
236 #endif
237
238 static void page_init(void)
239 {
240 /* NOTE: we can always suppose that qemu_host_page_size >=
241 TARGET_PAGE_SIZE */
242 #ifdef _WIN32
243 {
244 SYSTEM_INFO system_info;
245
246 GetSystemInfo(&system_info);
247 qemu_real_host_page_size = system_info.dwPageSize;
248 }
249 #else
250 qemu_real_host_page_size = getpagesize();
251 #endif
252 if (qemu_host_page_size == 0)
253 qemu_host_page_size = qemu_real_host_page_size;
254 if (qemu_host_page_size < TARGET_PAGE_SIZE)
255 qemu_host_page_size = TARGET_PAGE_SIZE;
256 qemu_host_page_bits = 0;
257 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
258 qemu_host_page_bits++;
259 qemu_host_page_mask = ~(qemu_host_page_size - 1);
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
262
263 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
264 {
265 long long startaddr, endaddr;
266 FILE *f;
267 int n;
268
269 mmap_lock();
270 last_brk = (unsigned long)sbrk(0);
271 f = fopen("/proc/self/maps", "r");
272 if (f) {
273 do {
274 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
275 if (n == 2) {
276 startaddr = MIN(startaddr,
277 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
278 endaddr = MIN(endaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 page_set_flags(startaddr & TARGET_PAGE_MASK,
281 TARGET_PAGE_ALIGN(endaddr),
282 PAGE_RESERVED);
283 }
284 } while (!feof(f));
285 fclose(f);
286 }
287 mmap_unlock();
288 }
289 #endif
290 }
291
292 static inline PageDesc **page_l1_map(target_ulong index)
293 {
294 #if TARGET_LONG_BITS > 32
295 /* Host memory outside guest VM. For 32-bit targets we have already
296 excluded high addresses. */
297 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
298 return NULL;
299 #endif
300 return &l1_map[index >> L2_BITS];
301 }
302
303 static inline PageDesc *page_find_alloc(target_ulong index)
304 {
305 PageDesc **lp, *p;
306 lp = page_l1_map(index);
307 if (!lp)
308 return NULL;
309
310 p = *lp;
311 if (!p) {
312 /* allocate if not found */
313 #if defined(CONFIG_USER_ONLY)
314 size_t len = sizeof(PageDesc) * L2_SIZE;
315 /* Don't use qemu_malloc because it may recurse. */
316 p = mmap(0, len, PROT_READ | PROT_WRITE,
317 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
318 *lp = p;
319 if (h2g_valid(p)) {
320 unsigned long addr = h2g(p);
321 page_set_flags(addr & TARGET_PAGE_MASK,
322 TARGET_PAGE_ALIGN(addr + len),
323 PAGE_RESERVED);
324 }
325 #else
326 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
327 *lp = p;
328 #endif
329 }
330 return p + (index & (L2_SIZE - 1));
331 }
332
333 static inline PageDesc *page_find(target_ulong index)
334 {
335 PageDesc **lp, *p;
336 lp = page_l1_map(index);
337 if (!lp)
338 return NULL;
339
340 p = *lp;
341 if (!p)
342 return 0;
343 return p + (index & (L2_SIZE - 1));
344 }
345
346 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
347 {
348 void **lp, **p;
349 PhysPageDesc *pd;
350
351 p = (void **)l1_phys_map;
352 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
353
354 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
355 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
356 #endif
357 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
358 p = *lp;
359 if (!p) {
360 /* allocate if not found */
361 if (!alloc)
362 return NULL;
363 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
364 memset(p, 0, sizeof(void *) * L1_SIZE);
365 *lp = p;
366 }
367 #endif
368 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
369 pd = *lp;
370 if (!pd) {
371 int i;
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
376 *lp = pd;
377 for (i = 0; i < L2_SIZE; i++) {
378 pd[i].phys_offset = IO_MEM_UNASSIGNED;
379 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
380 }
381 }
382 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
383 }
384
385 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
386 {
387 return phys_page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391 static void tlb_protect_code(ram_addr_t ram_addr);
392 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
393 target_ulong vaddr);
394 #define mmap_lock() do { } while(0)
395 #define mmap_unlock() do { } while(0)
396 #endif
397
398 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
399
400 #if defined(CONFIG_USER_ONLY)
401 /* Currently it is not recommended to allocate big chunks of data in
402 user mode. It will change when a dedicated libc will be used */
403 #define USE_STATIC_CODE_GEN_BUFFER
404 #endif
405
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
408 #endif
409
410 static void code_gen_alloc(unsigned long tb_size)
411 {
412 #ifdef USE_STATIC_CODE_GEN_BUFFER
413 code_gen_buffer = static_code_gen_buffer;
414 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
415 map_exec(code_gen_buffer, code_gen_buffer_size);
416 #else
417 code_gen_buffer_size = tb_size;
418 if (code_gen_buffer_size == 0) {
419 #if defined(CONFIG_USER_ONLY)
420 /* in user mode, phys_ram_size is not meaningful */
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 #else
423 /* XXX: needs adjustments */
424 code_gen_buffer_size = (unsigned long)(ram_size / 4);
425 #endif
426 }
427 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
428 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
429 /* The code gen buffer location may have constraints depending on
430 the host cpu and OS */
431 #if defined(__linux__)
432 {
433 int flags;
434 void *start = NULL;
435
436 flags = MAP_PRIVATE | MAP_ANONYMOUS;
437 #if defined(__x86_64__)
438 flags |= MAP_32BIT;
439 /* Cannot map more than that */
440 if (code_gen_buffer_size > (800 * 1024 * 1024))
441 code_gen_buffer_size = (800 * 1024 * 1024);
442 #elif defined(__sparc_v9__)
443 // Map the buffer below 2G, so we can use direct calls and branches
444 flags |= MAP_FIXED;
445 start = (void *) 0x60000000UL;
446 if (code_gen_buffer_size > (512 * 1024 * 1024))
447 code_gen_buffer_size = (512 * 1024 * 1024);
448 #elif defined(__arm__)
449 /* Map the buffer below 32M, so we can use direct calls and branches */
450 flags |= MAP_FIXED;
451 start = (void *) 0x01000000UL;
452 if (code_gen_buffer_size > 16 * 1024 * 1024)
453 code_gen_buffer_size = 16 * 1024 * 1024;
454 #endif
455 code_gen_buffer = mmap(start, code_gen_buffer_size,
456 PROT_WRITE | PROT_READ | PROT_EXEC,
457 flags, -1, 0);
458 if (code_gen_buffer == MAP_FAILED) {
459 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
460 exit(1);
461 }
462 }
463 #elif defined(__FreeBSD__) || defined(__DragonFly__)
464 {
465 int flags;
466 void *addr = NULL;
467 flags = MAP_PRIVATE | MAP_ANONYMOUS;
468 #if defined(__x86_64__)
469 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
470 * 0x40000000 is free */
471 flags |= MAP_FIXED;
472 addr = (void *)0x40000000;
473 /* Cannot map more than that */
474 if (code_gen_buffer_size > (800 * 1024 * 1024))
475 code_gen_buffer_size = (800 * 1024 * 1024);
476 #endif
477 code_gen_buffer = mmap(addr, code_gen_buffer_size,
478 PROT_WRITE | PROT_READ | PROT_EXEC,
479 flags, -1, 0);
480 if (code_gen_buffer == MAP_FAILED) {
481 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
482 exit(1);
483 }
484 }
485 #else
486 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
487 map_exec(code_gen_buffer, code_gen_buffer_size);
488 #endif
489 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
490 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
491 code_gen_buffer_max_size = code_gen_buffer_size -
492 code_gen_max_block_size();
493 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
494 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
495 }
496
497 /* Must be called before using the QEMU cpus. 'tb_size' is the size
498 (in bytes) allocated to the translation buffer. Zero means default
499 size. */
500 void cpu_exec_init_all(unsigned long tb_size)
501 {
502 cpu_gen_init();
503 code_gen_alloc(tb_size);
504 code_gen_ptr = code_gen_buffer;
505 page_init();
506 #if !defined(CONFIG_USER_ONLY)
507 io_mem_init();
508 #endif
509 }
510
511 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
512
513 #define CPU_COMMON_SAVE_VERSION 1
514
515 static void cpu_common_save(QEMUFile *f, void *opaque)
516 {
517 CPUState *env = opaque;
518
519 qemu_put_be32s(f, &env->halted);
520 qemu_put_be32s(f, &env->interrupt_request);
521 }
522
523 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
524 {
525 CPUState *env = opaque;
526
527 if (version_id != CPU_COMMON_SAVE_VERSION)
528 return -EINVAL;
529
530 qemu_get_be32s(f, &env->halted);
531 qemu_get_be32s(f, &env->interrupt_request);
532 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
533 version_id is increased. */
534 env->interrupt_request &= ~0x01;
535 tlb_flush(env, 1);
536
537 return 0;
538 }
539 #endif
540
541 void cpu_exec_init(CPUState *env)
542 {
543 CPUState **penv;
544 int cpu_index;
545
546 #if defined(CONFIG_USER_ONLY)
547 cpu_list_lock();
548 #endif
549 env->next_cpu = NULL;
550 penv = &first_cpu;
551 cpu_index = 0;
552 while (*penv != NULL) {
553 penv = (CPUState **)&(*penv)->next_cpu;
554 cpu_index++;
555 }
556 env->cpu_index = cpu_index;
557 env->numa_node = 0;
558 TAILQ_INIT(&env->breakpoints);
559 TAILQ_INIT(&env->watchpoints);
560 *penv = env;
561 #if defined(CONFIG_USER_ONLY)
562 cpu_list_unlock();
563 #endif
564 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
565 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
566 cpu_common_save, cpu_common_load, env);
567 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
568 cpu_save, cpu_load, env);
569 #endif
570 }
571
572 static inline void invalidate_page_bitmap(PageDesc *p)
573 {
574 if (p->code_bitmap) {
575 qemu_free(p->code_bitmap);
576 p->code_bitmap = NULL;
577 }
578 p->code_write_count = 0;
579 }
580
581 /* set to NULL all the 'first_tb' fields in all PageDescs */
582 static void page_flush_tb(void)
583 {
584 int i, j;
585 PageDesc *p;
586
587 for(i = 0; i < L1_SIZE; i++) {
588 p = l1_map[i];
589 if (p) {
590 for(j = 0; j < L2_SIZE; j++) {
591 p->first_tb = NULL;
592 invalidate_page_bitmap(p);
593 p++;
594 }
595 }
596 }
597 }
598
599 /* flush all the translation blocks */
600 /* XXX: tb_flush is currently not thread safe */
601 void tb_flush(CPUState *env1)
602 {
603 CPUState *env;
604 #if defined(DEBUG_FLUSH)
605 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
606 (unsigned long)(code_gen_ptr - code_gen_buffer),
607 nb_tbs, nb_tbs > 0 ?
608 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
609 #endif
610 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
611 cpu_abort(env1, "Internal error: code buffer overflow\n");
612
613 nb_tbs = 0;
614
615 for(env = first_cpu; env != NULL; env = env->next_cpu) {
616 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
617 }
618
619 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
620 page_flush_tb();
621
622 code_gen_ptr = code_gen_buffer;
623 /* XXX: flush processor icache at this point if cache flush is
624 expensive */
625 tb_flush_count++;
626 }
627
628 #ifdef DEBUG_TB_CHECK
629
630 static void tb_invalidate_check(target_ulong address)
631 {
632 TranslationBlock *tb;
633 int i;
634 address &= TARGET_PAGE_MASK;
635 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
636 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
637 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
638 address >= tb->pc + tb->size)) {
639 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
640 address, (long)tb->pc, tb->size);
641 }
642 }
643 }
644 }
645
646 /* verify that all the pages have correct rights for code */
647 static void tb_page_check(void)
648 {
649 TranslationBlock *tb;
650 int i, flags1, flags2;
651
652 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
653 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
654 flags1 = page_get_flags(tb->pc);
655 flags2 = page_get_flags(tb->pc + tb->size - 1);
656 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
657 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
658 (long)tb->pc, tb->size, flags1, flags2);
659 }
660 }
661 }
662 }
663
664 static void tb_jmp_check(TranslationBlock *tb)
665 {
666 TranslationBlock *tb1;
667 unsigned int n1;
668
669 /* suppress any remaining jumps to this TB */
670 tb1 = tb->jmp_first;
671 for(;;) {
672 n1 = (long)tb1 & 3;
673 tb1 = (TranslationBlock *)((long)tb1 & ~3);
674 if (n1 == 2)
675 break;
676 tb1 = tb1->jmp_next[n1];
677 }
678 /* check end of list */
679 if (tb1 != tb) {
680 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
681 }
682 }
683
684 #endif
685
686 /* invalidate one TB */
687 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
689 {
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
696 }
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
698 }
699 }
700
701 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
702 {
703 TranslationBlock *tb1;
704 unsigned int n1;
705
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
713 }
714 ptb = &tb1->page_next[n1];
715 }
716 }
717
718 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
719 {
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
722
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
737 }
738 }
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
741
742 tb->jmp_next[n] = NULL;
743 }
744 }
745
746 /* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748 static inline void tb_reset_jump(TranslationBlock *tb, int n)
749 {
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
751 }
752
753 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
754 {
755 CPUState *env;
756 PageDesc *p;
757 unsigned int h, n1;
758 target_phys_addr_t phys_pc;
759 TranslationBlock *tb1, *tb2;
760
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
764 tb_remove(&tb_phys_hash[h], tb,
765 offsetof(TranslationBlock, phys_hash_next));
766
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
772 }
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
777 }
778
779 tb_invalidated_flag = 1;
780
781 /* remove the TB from the hash list */
782 h = tb_jmp_cache_hash_func(tb->pc);
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
786 }
787
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
791
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
803 }
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
805
806 tb_phys_invalidate_count++;
807 }
808
809 static inline void set_bits(uint8_t *tab, int start, int len)
810 {
811 int end, mask, end1;
812
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
820 }
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
828 }
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
832 }
833 }
834 }
835
836 static void build_page_bitmap(PageDesc *p)
837 {
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
840
841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
842
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
858 }
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
861 }
862 }
863
864 TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
867 {
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
872
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
879 tb = tb_alloc(pc);
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
882 }
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
888 cpu_gen_code(env, tb, &code_gen_size);
889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
890
891 /* check next page if needed */
892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
893 phys_page2 = -1;
894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
895 phys_page2 = get_phys_addr_code(env, virt_page2);
896 }
897 tb_link_phys(tb, phys_pc, phys_page2);
898 return tb;
899 }
900
901 /* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
906 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
907 int is_cpu_write_access)
908 {
909 TranslationBlock *tb, *tb_next, *saved_tb;
910 CPUState *env = cpu_single_env;
911 target_ulong tb_start, tb_end;
912 PageDesc *p;
913 int n;
914 #ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921 #endif /* TARGET_HAS_PRECISE_SMC */
922
923 p = page_find(start >> TARGET_PAGE_BITS);
924 if (!p)
925 return;
926 if (!p->code_bitmap &&
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
929 /* build code bitmap */
930 build_page_bitmap(p);
931 }
932
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
949 }
950 if (!(tb_end <= start || tb_start >= end)) {
951 #ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
955 if (env->mem_io_pc) {
956 /* now we have a real cpu fault */
957 current_tb = tb_find_pc(env->mem_io_pc);
958 }
959 }
960 if (current_tb == tb &&
961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
967
968 current_tb_modified = 1;
969 cpu_restore_state(current_tb, env,
970 env->mem_io_pc, NULL);
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
973 }
974 #endif /* TARGET_HAS_PRECISE_SMC */
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
981 }
982 tb_phys_invalidate(tb, -1);
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
987 }
988 }
989 tb = tb_next;
990 }
991 #if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
995 if (is_cpu_write_access) {
996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
997 }
998 }
999 #endif
1000 #ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
1005 env->current_tb = NULL;
1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1007 cpu_resume_from_signal(env, NULL);
1008 }
1009 #endif
1010 }
1011
1012 /* len must be <= 8 and start must be a multiple of len */
1013 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1014 {
1015 PageDesc *p;
1016 int offset, b;
1017 #if 0
1018 if (1) {
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1023 }
1024 #endif
1025 p = page_find(start >> TARGET_PAGE_BITS);
1026 if (!p)
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
1035 tb_invalidate_phys_page_range(start, start + len, 1);
1036 }
1037 }
1038
1039 #if !defined(CONFIG_SOFTMMU)
1040 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1041 unsigned long pc, void *puc)
1042 {
1043 TranslationBlock *tb;
1044 PageDesc *p;
1045 int n;
1046 #ifdef TARGET_HAS_PRECISE_SMC
1047 TranslationBlock *current_tb = NULL;
1048 CPUState *env = cpu_single_env;
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
1053 #endif
1054
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
1057 if (!p)
1058 return;
1059 tb = p->first_tb;
1060 #ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1063 }
1064 #endif
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
1076
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
1081 }
1082 #endif /* TARGET_HAS_PRECISE_SMC */
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1085 }
1086 p->first_tb = NULL;
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
1092 env->current_tb = NULL;
1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1094 cpu_resume_from_signal(env, puc);
1095 }
1096 #endif
1097 }
1098 #endif
1099
1100 /* add the tb in the target page and protect it if necessary */
1101 static inline void tb_alloc_page(TranslationBlock *tb,
1102 unsigned int n, target_ulong page_addr)
1103 {
1104 PageDesc *p;
1105 TranslationBlock *last_first_tb;
1106
1107 tb->page_addr[n] = page_addr;
1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
1113
1114 #if defined(TARGET_HAS_SMC) || 1
1115
1116 #if defined(CONFIG_USER_ONLY)
1117 if (p->flags & PAGE_WRITE) {
1118 target_ulong addr;
1119 PageDesc *p2;
1120 int prot;
1121
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
1124 page_addr &= qemu_host_page_mask;
1125 prot = 0;
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1128
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1135 }
1136 mprotect(g2h(page_addr), qemu_host_page_size,
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138 #ifdef DEBUG_TB_INVALIDATE
1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1140 page_addr);
1141 #endif
1142 }
1143 #else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
1148 tlb_protect_code(page_addr);
1149 }
1150 #endif
1151
1152 #endif /* TARGET_HAS_SMC */
1153 }
1154
1155 /* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
1157 TranslationBlock *tb_alloc(target_ulong pc)
1158 {
1159 TranslationBlock *tb;
1160
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1163 return NULL;
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
1166 tb->cflags = 0;
1167 return tb;
1168 }
1169
1170 void tb_free(TranslationBlock *tb)
1171 {
1172 /* In practice this is mostly used for single use temporary TB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1178 }
1179 }
1180
1181 /* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
1183 void tb_link_phys(TranslationBlock *tb,
1184 target_ulong phys_pc, target_ulong phys_page2)
1185 {
1186 unsigned int h;
1187 TranslationBlock **ptb;
1188
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
1197
1198 /* add in the page list */
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
1204
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1208
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
1214
1215 #ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217 #endif
1218 mmap_unlock();
1219 }
1220
1221 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1224 {
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
1228
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1247 }
1248 }
1249 return &tbs[m_max];
1250 }
1251
1252 static void tb_reset_jump_recursive(TranslationBlock *tb);
1253
1254 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1255 {
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1258
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1268 }
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1271
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1281 }
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
1284
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1287
1288 /* suppress jumps in the tb on which we could have jumped */
1289 tb_reset_jump_recursive(tb_next);
1290 }
1291 }
1292
1293 static void tb_reset_jump_recursive(TranslationBlock *tb)
1294 {
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1297 }
1298
1299 #if defined(TARGET_HAS_ICE)
1300 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1301 {
1302 target_phys_addr_t addr;
1303 target_ulong pd;
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
1306
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1313 }
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1316 }
1317 #endif
1318
1319 /* Add a watchpoint. */
1320 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
1322 {
1323 target_ulong len_mask = ~(len - 1);
1324 CPUWatchpoint *wp;
1325
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1331 }
1332 wp = qemu_malloc(sizeof(*wp));
1333
1334 wp->vaddr = addr;
1335 wp->len_mask = len_mask;
1336 wp->flags = flags;
1337
1338 /* keep all GDB-injected watchpoints in front */
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1343
1344 tlb_flush_page(env, addr);
1345
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
1349 }
1350
1351 /* Remove a specific watchpoint. */
1352 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
1354 {
1355 target_ulong len_mask = ~(len - 1);
1356 CPUWatchpoint *wp;
1357
1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1359 if (addr == wp->vaddr && len_mask == wp->len_mask
1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1361 cpu_watchpoint_remove_by_ref(env, wp);
1362 return 0;
1363 }
1364 }
1365 return -ENOENT;
1366 }
1367
1368 /* Remove a specific watchpoint by reference. */
1369 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1370 {
1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1372
1373 tlb_flush_page(env, watchpoint->vaddr);
1374
1375 qemu_free(watchpoint);
1376 }
1377
1378 /* Remove all matching watchpoints. */
1379 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1380 {
1381 CPUWatchpoint *wp, *next;
1382
1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
1386 }
1387 }
1388
1389 /* Add a breakpoint. */
1390 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
1392 {
1393 #if defined(TARGET_HAS_ICE)
1394 CPUBreakpoint *bp;
1395
1396 bp = qemu_malloc(sizeof(*bp));
1397
1398 bp->pc = pc;
1399 bp->flags = flags;
1400
1401 /* keep all GDB-injected breakpoints in front */
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1406
1407 breakpoint_invalidate(env, pc);
1408
1409 if (breakpoint)
1410 *breakpoint = bp;
1411 return 0;
1412 #else
1413 return -ENOSYS;
1414 #endif
1415 }
1416
1417 /* Remove a specific breakpoint. */
1418 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1419 {
1420 #if defined(TARGET_HAS_ICE)
1421 CPUBreakpoint *bp;
1422
1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1427 }
1428 }
1429 return -ENOENT;
1430 #else
1431 return -ENOSYS;
1432 #endif
1433 }
1434
1435 /* Remove a specific breakpoint by reference. */
1436 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1437 {
1438 #if defined(TARGET_HAS_ICE)
1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1440
1441 breakpoint_invalidate(env, breakpoint->pc);
1442
1443 qemu_free(breakpoint);
1444 #endif
1445 }
1446
1447 /* Remove all matching breakpoints. */
1448 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1449 {
1450 #if defined(TARGET_HAS_ICE)
1451 CPUBreakpoint *bp, *next;
1452
1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
1456 }
1457 #endif
1458 }
1459
1460 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462 void cpu_single_step(CPUState *env, int enabled)
1463 {
1464 #if defined(TARGET_HAS_ICE)
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
1470 /* must flush all the translated code to avoid inconsistencies */
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1473 }
1474 }
1475 #endif
1476 }
1477
1478 /* enable or disable low levels log */
1479 void cpu_set_log(int log_flags)
1480 {
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
1483 logfile = fopen(logfilename, log_append ? "a" : "w");
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1487 }
1488 #if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1490 {
1491 static char logfile_buf[4096];
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1493 }
1494 #else
1495 setvbuf(logfile, NULL, _IOLBF, 0);
1496 #endif
1497 log_append = 1;
1498 }
1499 if (!loglevel && logfile) {
1500 fclose(logfile);
1501 logfile = NULL;
1502 }
1503 }
1504
1505 void cpu_set_log_filename(const char *filename)
1506 {
1507 logfilename = strdup(filename);
1508 if (logfile) {
1509 fclose(logfile);
1510 logfile = NULL;
1511 }
1512 cpu_set_log(loglevel);
1513 }
1514
1515 static void cpu_unlink_tb(CPUState *env)
1516 {
1517 #if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522 #else
1523 TranslationBlock *tb;
1524 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1525
1526 tb = env->current_tb;
1527 /* if the cpu is currently executing code, we must unlink it and
1528 all the potentially executing TB */
1529 if (tb && !testandset(&interrupt_lock)) {
1530 env->current_tb = NULL;
1531 tb_reset_jump_recursive(tb);
1532 resetlock(&interrupt_lock);
1533 }
1534 #endif
1535 }
1536
1537 /* mask must never be zero, except for A20 change call */
1538 void cpu_interrupt(CPUState *env, int mask)
1539 {
1540 int old_mask;
1541
1542 old_mask = env->interrupt_request;
1543 env->interrupt_request |= mask;
1544
1545 #ifndef CONFIG_USER_ONLY
1546 /*
1547 * If called from iothread context, wake the target cpu in
1548 * case its halted.
1549 */
1550 if (!qemu_cpu_self(env)) {
1551 qemu_cpu_kick(env);
1552 return;
1553 }
1554 #endif
1555
1556 if (use_icount) {
1557 env->icount_decr.u16.high = 0xffff;
1558 #ifndef CONFIG_USER_ONLY
1559 if (!can_do_io(env)
1560 && (mask & ~old_mask) != 0) {
1561 cpu_abort(env, "Raised interrupt while not in I/O function");
1562 }
1563 #endif
1564 } else {
1565 cpu_unlink_tb(env);
1566 }
1567 }
1568
1569 void cpu_reset_interrupt(CPUState *env, int mask)
1570 {
1571 env->interrupt_request &= ~mask;
1572 }
1573
1574 void cpu_exit(CPUState *env)
1575 {
1576 env->exit_request = 1;
1577 cpu_unlink_tb(env);
1578 }
1579
1580 const CPULogItem cpu_log_items[] = {
1581 { CPU_LOG_TB_OUT_ASM, "out_asm",
1582 "show generated host assembly code for each compiled TB" },
1583 { CPU_LOG_TB_IN_ASM, "in_asm",
1584 "show target assembly code for each compiled TB" },
1585 { CPU_LOG_TB_OP, "op",
1586 "show micro ops for each compiled TB" },
1587 { CPU_LOG_TB_OP_OPT, "op_opt",
1588 "show micro ops "
1589 #ifdef TARGET_I386
1590 "before eflags optimization and "
1591 #endif
1592 "after liveness analysis" },
1593 { CPU_LOG_INT, "int",
1594 "show interrupts/exceptions in short format" },
1595 { CPU_LOG_EXEC, "exec",
1596 "show trace before each executed TB (lots of logs)" },
1597 { CPU_LOG_TB_CPU, "cpu",
1598 "show CPU state before block translation" },
1599 #ifdef TARGET_I386
1600 { CPU_LOG_PCALL, "pcall",
1601 "show protected mode far calls/returns/exceptions" },
1602 { CPU_LOG_RESET, "cpu_reset",
1603 "show CPU state before CPU resets" },
1604 #endif
1605 #ifdef DEBUG_IOPORT
1606 { CPU_LOG_IOPORT, "ioport",
1607 "show all i/o ports accesses" },
1608 #endif
1609 { 0, NULL, NULL },
1610 };
1611
1612 static int cmp1(const char *s1, int n, const char *s2)
1613 {
1614 if (strlen(s2) != n)
1615 return 0;
1616 return memcmp(s1, s2, n) == 0;
1617 }
1618
1619 /* takes a comma separated list of log masks. Return 0 if error. */
1620 int cpu_str_to_log_mask(const char *str)
1621 {
1622 const CPULogItem *item;
1623 int mask;
1624 const char *p, *p1;
1625
1626 p = str;
1627 mask = 0;
1628 for(;;) {
1629 p1 = strchr(p, ',');
1630 if (!p1)
1631 p1 = p + strlen(p);
1632 if(cmp1(p,p1-p,"all")) {
1633 for(item = cpu_log_items; item->mask != 0; item++) {
1634 mask |= item->mask;
1635 }
1636 } else {
1637 for(item = cpu_log_items; item->mask != 0; item++) {
1638 if (cmp1(p, p1 - p, item->name))
1639 goto found;
1640 }
1641 return 0;
1642 }
1643 found:
1644 mask |= item->mask;
1645 if (*p1 != ',')
1646 break;
1647 p = p1 + 1;
1648 }
1649 return mask;
1650 }
1651
1652 void cpu_abort(CPUState *env, const char *fmt, ...)
1653 {
1654 va_list ap;
1655 va_list ap2;
1656
1657 va_start(ap, fmt);
1658 va_copy(ap2, ap);
1659 fprintf(stderr, "qemu: fatal: ");
1660 vfprintf(stderr, fmt, ap);
1661 fprintf(stderr, "\n");
1662 #ifdef TARGET_I386
1663 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1664 #else
1665 cpu_dump_state(env, stderr, fprintf, 0);
1666 #endif
1667 if (qemu_log_enabled()) {
1668 qemu_log("qemu: fatal: ");
1669 qemu_log_vprintf(fmt, ap2);
1670 qemu_log("\n");
1671 #ifdef TARGET_I386
1672 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1673 #else
1674 log_cpu_state(env, 0);
1675 #endif
1676 qemu_log_flush();
1677 qemu_log_close();
1678 }
1679 va_end(ap2);
1680 va_end(ap);
1681 abort();
1682 }
1683
1684 CPUState *cpu_copy(CPUState *env)
1685 {
1686 CPUState *new_env = cpu_init(env->cpu_model_str);
1687 CPUState *next_cpu = new_env->next_cpu;
1688 int cpu_index = new_env->cpu_index;
1689 #if defined(TARGET_HAS_ICE)
1690 CPUBreakpoint *bp;
1691 CPUWatchpoint *wp;
1692 #endif
1693
1694 memcpy(new_env, env, sizeof(CPUState));
1695
1696 /* Preserve chaining and index. */
1697 new_env->next_cpu = next_cpu;
1698 new_env->cpu_index = cpu_index;
1699
1700 /* Clone all break/watchpoints.
1701 Note: Once we support ptrace with hw-debug register access, make sure
1702 BP_CPU break/watchpoints are handled correctly on clone. */
1703 TAILQ_INIT(&env->breakpoints);
1704 TAILQ_INIT(&env->watchpoints);
1705 #if defined(TARGET_HAS_ICE)
1706 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1707 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1708 }
1709 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1710 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1711 wp->flags, NULL);
1712 }
1713 #endif
1714
1715 return new_env;
1716 }
1717
1718 #if !defined(CONFIG_USER_ONLY)
1719
1720 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1721 {
1722 unsigned int i;
1723
1724 /* Discard jump cache entries for any tb which might potentially
1725 overlap the flushed page. */
1726 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1727 memset (&env->tb_jmp_cache[i], 0,
1728 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1729
1730 i = tb_jmp_cache_hash_page(addr);
1731 memset (&env->tb_jmp_cache[i], 0,
1732 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1733 }
1734
1735 /* NOTE: if flush_global is true, also flush global entries (not
1736 implemented yet) */
1737 void tlb_flush(CPUState *env, int flush_global)
1738 {
1739 int i;
1740
1741 #if defined(DEBUG_TLB)
1742 printf("tlb_flush:\n");
1743 #endif
1744 /* must reset current TB so that interrupts cannot modify the
1745 links while we are modifying them */
1746 env->current_tb = NULL;
1747
1748 for(i = 0; i < CPU_TLB_SIZE; i++) {
1749 env->tlb_table[0][i].addr_read = -1;
1750 env->tlb_table[0][i].addr_write = -1;
1751 env->tlb_table[0][i].addr_code = -1;
1752 env->tlb_table[1][i].addr_read = -1;
1753 env->tlb_table[1][i].addr_write = -1;
1754 env->tlb_table[1][i].addr_code = -1;
1755 #if (NB_MMU_MODES >= 3)
1756 env->tlb_table[2][i].addr_read = -1;
1757 env->tlb_table[2][i].addr_write = -1;
1758 env->tlb_table[2][i].addr_code = -1;
1759 #endif
1760 #if (NB_MMU_MODES >= 4)
1761 env->tlb_table[3][i].addr_read = -1;
1762 env->tlb_table[3][i].addr_write = -1;
1763 env->tlb_table[3][i].addr_code = -1;
1764 #endif
1765 #if (NB_MMU_MODES >= 5)
1766 env->tlb_table[4][i].addr_read = -1;
1767 env->tlb_table[4][i].addr_write = -1;
1768 env->tlb_table[4][i].addr_code = -1;
1769 #endif
1770
1771 }
1772
1773 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1774
1775 #ifdef CONFIG_KQEMU
1776 if (env->kqemu_enabled) {
1777 kqemu_flush(env, flush_global);
1778 }
1779 #endif
1780 tlb_flush_count++;
1781 }
1782
1783 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1784 {
1785 if (addr == (tlb_entry->addr_read &
1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1787 addr == (tlb_entry->addr_write &
1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1789 addr == (tlb_entry->addr_code &
1790 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1791 tlb_entry->addr_read = -1;
1792 tlb_entry->addr_write = -1;
1793 tlb_entry->addr_code = -1;
1794 }
1795 }
1796
1797 void tlb_flush_page(CPUState *env, target_ulong addr)
1798 {
1799 int i;
1800
1801 #if defined(DEBUG_TLB)
1802 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1803 #endif
1804 /* must reset current TB so that interrupts cannot modify the
1805 links while we are modifying them */
1806 env->current_tb = NULL;
1807
1808 addr &= TARGET_PAGE_MASK;
1809 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1810 tlb_flush_entry(&env->tlb_table[0][i], addr);
1811 tlb_flush_entry(&env->tlb_table[1][i], addr);
1812 #if (NB_MMU_MODES >= 3)
1813 tlb_flush_entry(&env->tlb_table[2][i], addr);
1814 #endif
1815 #if (NB_MMU_MODES >= 4)
1816 tlb_flush_entry(&env->tlb_table[3][i], addr);
1817 #endif
1818 #if (NB_MMU_MODES >= 5)
1819 tlb_flush_entry(&env->tlb_table[4][i], addr);
1820 #endif
1821
1822 tlb_flush_jmp_cache(env, addr);
1823
1824 #ifdef CONFIG_KQEMU
1825 if (env->kqemu_enabled) {
1826 kqemu_flush_page(env, addr);
1827 }
1828 #endif
1829 }
1830
1831 /* update the TLBs so that writes to code in the virtual page 'addr'
1832 can be detected */
1833 static void tlb_protect_code(ram_addr_t ram_addr)
1834 {
1835 cpu_physical_memory_reset_dirty(ram_addr,
1836 ram_addr + TARGET_PAGE_SIZE,
1837 CODE_DIRTY_FLAG);
1838 }
1839
1840 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1841 tested for self modifying code */
1842 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1843 target_ulong vaddr)
1844 {
1845 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1846 }
1847
1848 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1849 unsigned long start, unsigned long length)
1850 {
1851 unsigned long addr;
1852 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1853 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1854 if ((addr - start) < length) {
1855 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1856 }
1857 }
1858 }
1859
1860 /* Note: start and end must be within the same ram block. */
1861 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1862 int dirty_flags)
1863 {
1864 CPUState *env;
1865 unsigned long length, start1;
1866 int i, mask, len;
1867 uint8_t *p;
1868
1869 start &= TARGET_PAGE_MASK;
1870 end = TARGET_PAGE_ALIGN(end);
1871
1872 length = end - start;
1873 if (length == 0)
1874 return;
1875 len = length >> TARGET_PAGE_BITS;
1876 #ifdef CONFIG_KQEMU
1877 /* XXX: should not depend on cpu context */
1878 env = first_cpu;
1879 if (env->kqemu_enabled) {
1880 ram_addr_t addr;
1881 addr = start;
1882 for(i = 0; i < len; i++) {
1883 kqemu_set_notdirty(env, addr);
1884 addr += TARGET_PAGE_SIZE;
1885 }
1886 }
1887 #endif
1888 mask = ~dirty_flags;
1889 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1890 for(i = 0; i < len; i++)
1891 p[i] &= mask;
1892
1893 /* we modify the TLB cache so that the dirty bit will be set again
1894 when accessing the range */
1895 start1 = (unsigned long)qemu_get_ram_ptr(start);
1896 /* Chek that we don't span multiple blocks - this breaks the
1897 address comparisons below. */
1898 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1899 != (end - 1) - start) {
1900 abort();
1901 }
1902
1903 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1904 for(i = 0; i < CPU_TLB_SIZE; i++)
1905 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1906 for(i = 0; i < CPU_TLB_SIZE; i++)
1907 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1908 #if (NB_MMU_MODES >= 3)
1909 for(i = 0; i < CPU_TLB_SIZE; i++)
1910 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1911 #endif
1912 #if (NB_MMU_MODES >= 4)
1913 for(i = 0; i < CPU_TLB_SIZE; i++)
1914 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1915 #endif
1916 #if (NB_MMU_MODES >= 5)
1917 for(i = 0; i < CPU_TLB_SIZE; i++)
1918 tlb_reset_dirty_range(&env->tlb_table[4][i], start1, length);
1919 #endif
1920 }
1921 }
1922
1923 int cpu_physical_memory_set_dirty_tracking(int enable)
1924 {
1925 in_migration = enable;
1926 return 0;
1927 }
1928
1929 int cpu_physical_memory_get_dirty_tracking(void)
1930 {
1931 return in_migration;
1932 }
1933
1934 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1935 target_phys_addr_t end_addr)
1936 {
1937 int ret = 0;
1938
1939 if (kvm_enabled())
1940 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1941 return ret;
1942 }
1943
1944 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1945 {
1946 ram_addr_t ram_addr;
1947 void *p;
1948
1949 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1950 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1951 + tlb_entry->addend);
1952 ram_addr = qemu_ram_addr_from_host(p);
1953 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1954 tlb_entry->addr_write |= TLB_NOTDIRTY;
1955 }
1956 }
1957 }
1958
1959 /* update the TLB according to the current state of the dirty bits */
1960 void cpu_tlb_update_dirty(CPUState *env)
1961 {
1962 int i;
1963 for(i = 0; i < CPU_TLB_SIZE; i++)
1964 tlb_update_dirty(&env->tlb_table[0][i]);
1965 for(i = 0; i < CPU_TLB_SIZE; i++)
1966 tlb_update_dirty(&env->tlb_table[1][i]);
1967 #if (NB_MMU_MODES >= 3)
1968 for(i = 0; i < CPU_TLB_SIZE; i++)
1969 tlb_update_dirty(&env->tlb_table[2][i]);
1970 #endif
1971 #if (NB_MMU_MODES >= 4)
1972 for(i = 0; i < CPU_TLB_SIZE; i++)
1973 tlb_update_dirty(&env->tlb_table[3][i]);
1974 #endif
1975 #if (NB_MMU_MODES >= 5)
1976 for(i = 0; i < CPU_TLB_SIZE; i++)
1977 tlb_update_dirty(&env->tlb_table[4][i]);
1978 #endif
1979 }
1980
1981 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1982 {
1983 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1984 tlb_entry->addr_write = vaddr;
1985 }
1986
1987 /* update the TLB corresponding to virtual page vaddr
1988 so that it is no longer dirty */
1989 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1990 {
1991 int i;
1992
1993 vaddr &= TARGET_PAGE_MASK;
1994 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1995 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1996 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1997 #if (NB_MMU_MODES >= 3)
1998 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1999 #endif
2000 #if (NB_MMU_MODES >= 4)
2001 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2002 #endif
2003 #if (NB_MMU_MODES >= 5)
2004 tlb_set_dirty1(&env->tlb_table[4][i], vaddr);
2005 #endif
2006 }
2007
2008 /* add a new TLB entry. At most one entry for a given virtual address
2009 is permitted. Return 0 if OK or 2 if the page could not be mapped
2010 (can only happen in non SOFTMMU mode for I/O pages or pages
2011 conflicting with the host address space). */
2012 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2013 target_phys_addr_t paddr, int prot,
2014 int mmu_idx, int is_softmmu)
2015 {
2016 PhysPageDesc *p;
2017 unsigned long pd;
2018 unsigned int index;
2019 target_ulong address;
2020 target_ulong code_address;
2021 target_phys_addr_t addend;
2022 int ret;
2023 CPUTLBEntry *te;
2024 CPUWatchpoint *wp;
2025 target_phys_addr_t iotlb;
2026
2027 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2028 if (!p) {
2029 pd = IO_MEM_UNASSIGNED;
2030 } else {
2031 pd = p->phys_offset;
2032 }
2033 #if defined(DEBUG_TLB)
2034 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2035 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2036 #endif
2037
2038 ret = 0;
2039 address = vaddr;
2040 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2041 /* IO memory case (romd handled later) */
2042 address |= TLB_MMIO;
2043 }
2044 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2045 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2046 /* Normal RAM. */
2047 iotlb = pd & TARGET_PAGE_MASK;
2048 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2049 iotlb |= IO_MEM_NOTDIRTY;
2050 else
2051 iotlb |= IO_MEM_ROM;
2052 } else {
2053 /* IO handlers are currently passed a physical address.
2054 It would be nice to pass an offset from the base address
2055 of that region. This would avoid having to special case RAM,
2056 and avoid full address decoding in every device.
2057 We can't use the high bits of pd for this because
2058 IO_MEM_ROMD uses these as a ram address. */
2059 iotlb = (pd & ~TARGET_PAGE_MASK);
2060 if (p) {
2061 iotlb += p->region_offset;
2062 } else {
2063 iotlb += paddr;
2064 }
2065 }
2066
2067 code_address = address;
2068 /* Make accesses to pages with watchpoints go via the
2069 watchpoint trap routines. */
2070 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2071 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2072 iotlb = io_mem_watch + paddr;
2073 /* TODO: The memory case can be optimized by not trapping
2074 reads of pages with a write breakpoint. */
2075 address |= TLB_MMIO;
2076 }
2077 }
2078
2079 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2080 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2081 te = &env->tlb_table[mmu_idx][index];
2082 te->addend = addend - vaddr;
2083 if (prot & PAGE_READ) {
2084 te->addr_read = address;
2085 } else {
2086 te->addr_read = -1;
2087 }
2088
2089 if (prot & PAGE_EXEC) {
2090 te->addr_code = code_address;
2091 } else {
2092 te->addr_code = -1;
2093 }
2094 if (prot & PAGE_WRITE) {
2095 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2096 (pd & IO_MEM_ROMD)) {
2097 /* Write access calls the I/O callback. */
2098 te->addr_write = address | TLB_MMIO;
2099 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2100 !cpu_physical_memory_is_dirty(pd)) {
2101 te->addr_write = address | TLB_NOTDIRTY;
2102 } else {
2103 te->addr_write = address;
2104 }
2105 } else {
2106 te->addr_write = -1;
2107 }
2108 return ret;
2109 }
2110
2111 #else
2112
2113 void tlb_flush(CPUState *env, int flush_global)
2114 {
2115 }
2116
2117 void tlb_flush_page(CPUState *env, target_ulong addr)
2118 {
2119 }
2120
2121 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2122 target_phys_addr_t paddr, int prot,
2123 int mmu_idx, int is_softmmu)
2124 {
2125 return 0;
2126 }
2127
2128 /* dump memory mappings */
2129 void page_dump(FILE *f)
2130 {
2131 unsigned long start, end;
2132 int i, j, prot, prot1;
2133 PageDesc *p;
2134
2135 fprintf(f, "%-8s %-8s %-8s %s\n",
2136 "start", "end", "size", "prot");
2137 start = -1;
2138 end = -1;
2139 prot = 0;
2140 for(i = 0; i <= L1_SIZE; i++) {
2141 if (i < L1_SIZE)
2142 p = l1_map[i];
2143 else
2144 p = NULL;
2145 for(j = 0;j < L2_SIZE; j++) {
2146 if (!p)
2147 prot1 = 0;
2148 else
2149 prot1 = p[j].flags;
2150 if (prot1 != prot) {
2151 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2152 if (start != -1) {
2153 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2154 start, end, end - start,
2155 prot & PAGE_READ ? 'r' : '-',
2156 prot & PAGE_WRITE ? 'w' : '-',
2157 prot & PAGE_EXEC ? 'x' : '-');
2158 }
2159 if (prot1 != 0)
2160 start = end;
2161 else
2162 start = -1;
2163 prot = prot1;
2164 }
2165 if (!p)
2166 break;
2167 }
2168 }
2169 }
2170
2171 int page_get_flags(target_ulong address)
2172 {
2173 PageDesc *p;
2174
2175 p = page_find(address >> TARGET_PAGE_BITS);
2176 if (!p)
2177 return 0;
2178 return p->flags;
2179 }
2180
2181 /* modify the flags of a page and invalidate the code if
2182 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2183 depending on PAGE_WRITE */
2184 void page_set_flags(target_ulong start, target_ulong end, int flags)
2185 {
2186 PageDesc *p;
2187 target_ulong addr;
2188
2189 /* mmap_lock should already be held. */
2190 start = start & TARGET_PAGE_MASK;
2191 end = TARGET_PAGE_ALIGN(end);
2192 if (flags & PAGE_WRITE)
2193 flags |= PAGE_WRITE_ORG;
2194 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2195 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2196 /* We may be called for host regions that are outside guest
2197 address space. */
2198 if (!p)
2199 return;
2200 /* if the write protection is set, then we invalidate the code
2201 inside */
2202 if (!(p->flags & PAGE_WRITE) &&
2203 (flags & PAGE_WRITE) &&
2204 p->first_tb) {
2205 tb_invalidate_phys_page(addr, 0, NULL);
2206 }
2207 p->flags = flags;
2208 }
2209 }
2210
2211 int page_check_range(target_ulong start, target_ulong len, int flags)
2212 {
2213 PageDesc *p;
2214 target_ulong end;
2215 target_ulong addr;
2216
2217 if (start + len < start)
2218 /* we've wrapped around */
2219 return -1;
2220
2221 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2222 start = start & TARGET_PAGE_MASK;
2223
2224 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2225 p = page_find(addr >> TARGET_PAGE_BITS);
2226 if( !p )
2227 return -1;
2228 if( !(p->flags & PAGE_VALID) )
2229 return -1;
2230
2231 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2232 return -1;
2233 if (flags & PAGE_WRITE) {
2234 if (!(p->flags & PAGE_WRITE_ORG))
2235 return -1;
2236 /* unprotect the page if it was put read-only because it
2237 contains translated code */
2238 if (!(p->flags & PAGE_WRITE)) {
2239 if (!page_unprotect(addr, 0, NULL))
2240 return -1;
2241 }
2242 return 0;
2243 }
2244 }
2245 return 0;
2246 }
2247
2248 /* called from signal handler: invalidate the code and unprotect the
2249 page. Return TRUE if the fault was successfully handled. */
2250 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2251 {
2252 unsigned int page_index, prot, pindex;
2253 PageDesc *p, *p1;
2254 target_ulong host_start, host_end, addr;
2255
2256 /* Technically this isn't safe inside a signal handler. However we
2257 know this only ever happens in a synchronous SEGV handler, so in
2258 practice it seems to be ok. */
2259 mmap_lock();
2260
2261 host_start = address & qemu_host_page_mask;
2262 page_index = host_start >> TARGET_PAGE_BITS;
2263 p1 = page_find(page_index);
2264 if (!p1) {
2265 mmap_unlock();
2266 return 0;
2267 }
2268 host_end = host_start + qemu_host_page_size;
2269 p = p1;
2270 prot = 0;
2271 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2272 prot |= p->flags;
2273 p++;
2274 }
2275 /* if the page was really writable, then we change its
2276 protection back to writable */
2277 if (prot & PAGE_WRITE_ORG) {
2278 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2279 if (!(p1[pindex].flags & PAGE_WRITE)) {
2280 mprotect((void *)g2h(host_start), qemu_host_page_size,
2281 (prot & PAGE_BITS) | PAGE_WRITE);
2282 p1[pindex].flags |= PAGE_WRITE;
2283 /* and since the content will be modified, we must invalidate
2284 the corresponding translated code. */
2285 tb_invalidate_phys_page(address, pc, puc);
2286 #ifdef DEBUG_TB_CHECK
2287 tb_invalidate_check(address);
2288 #endif
2289 mmap_unlock();
2290 return 1;
2291 }
2292 }
2293 mmap_unlock();
2294 return 0;
2295 }
2296
2297 static inline void tlb_set_dirty(CPUState *env,
2298 unsigned long addr, target_ulong vaddr)
2299 {
2300 }
2301 #endif /* defined(CONFIG_USER_ONLY) */
2302
2303 #if !defined(CONFIG_USER_ONLY)
2304
2305 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2306 ram_addr_t memory, ram_addr_t region_offset);
2307 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2308 ram_addr_t orig_memory, ram_addr_t region_offset);
2309 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2310 need_subpage) \
2311 do { \
2312 if (addr > start_addr) \
2313 start_addr2 = 0; \
2314 else { \
2315 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2316 if (start_addr2 > 0) \
2317 need_subpage = 1; \
2318 } \
2319 \
2320 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2321 end_addr2 = TARGET_PAGE_SIZE - 1; \
2322 else { \
2323 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2324 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2325 need_subpage = 1; \
2326 } \
2327 } while (0)
2328
2329 /* register physical memory. 'size' must be a multiple of the target
2330 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2331 io memory page. The address used when calling the IO function is
2332 the offset from the start of the region, plus region_offset. Both
2333 start_addr and region_offset are rounded down to a page boundary
2334 before calculating this offset. This should not be a problem unless
2335 the low bits of start_addr and region_offset differ. */
2336 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2337 ram_addr_t size,
2338 ram_addr_t phys_offset,
2339 ram_addr_t region_offset)
2340 {
2341 target_phys_addr_t addr, end_addr;
2342 PhysPageDesc *p;
2343 CPUState *env;
2344 ram_addr_t orig_size = size;
2345 void *subpage;
2346
2347 #ifdef CONFIG_KQEMU
2348 /* XXX: should not depend on cpu context */
2349 env = first_cpu;
2350 if (env->kqemu_enabled) {
2351 kqemu_set_phys_mem(start_addr, size, phys_offset);
2352 }
2353 #endif
2354 if (kvm_enabled())
2355 kvm_set_phys_mem(start_addr, size, phys_offset);
2356
2357 if (phys_offset == IO_MEM_UNASSIGNED) {
2358 region_offset = start_addr;
2359 }
2360 region_offset &= TARGET_PAGE_MASK;
2361 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2362 end_addr = start_addr + (target_phys_addr_t)size;
2363 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2364 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2365 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2366 ram_addr_t orig_memory = p->phys_offset;
2367 target_phys_addr_t start_addr2, end_addr2;
2368 int need_subpage = 0;
2369
2370 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2371 need_subpage);
2372 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2373 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2374 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2375 &p->phys_offset, orig_memory,
2376 p->region_offset);
2377 } else {
2378 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2379 >> IO_MEM_SHIFT];
2380 }
2381 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2382 region_offset);
2383 p->region_offset = 0;
2384 } else {
2385 p->phys_offset = phys_offset;
2386 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2387 (phys_offset & IO_MEM_ROMD))
2388 phys_offset += TARGET_PAGE_SIZE;
2389 }
2390 } else {
2391 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2392 p->phys_offset = phys_offset;
2393 p->region_offset = region_offset;
2394 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2395 (phys_offset & IO_MEM_ROMD)) {
2396 phys_offset += TARGET_PAGE_SIZE;
2397 } else {
2398 target_phys_addr_t start_addr2, end_addr2;
2399 int need_subpage = 0;
2400
2401 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2402 end_addr2, need_subpage);
2403
2404 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2405 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2406 &p->phys_offset, IO_MEM_UNASSIGNED,
2407 addr & TARGET_PAGE_MASK);
2408 subpage_register(subpage, start_addr2, end_addr2,
2409 phys_offset, region_offset);
2410 p->region_offset = 0;
2411 }
2412 }
2413 }
2414 region_offset += TARGET_PAGE_SIZE;
2415 }
2416
2417 /* since each CPU stores ram addresses in its TLB cache, we must
2418 reset the modified entries */
2419 /* XXX: slow ! */
2420 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2421 tlb_flush(env, 1);
2422 }
2423 }
2424
2425 /* XXX: temporary until new memory mapping API */
2426 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2427 {
2428 PhysPageDesc *p;
2429
2430 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2431 if (!p)
2432 return IO_MEM_UNASSIGNED;
2433 return p->phys_offset;
2434 }
2435
2436 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2437 {
2438 if (kvm_enabled())
2439 kvm_coalesce_mmio_region(addr, size);
2440 }
2441
2442 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2443 {
2444 if (kvm_enabled())
2445 kvm_uncoalesce_mmio_region(addr, size);
2446 }
2447
2448 #ifdef CONFIG_KQEMU
2449 /* XXX: better than nothing */
2450 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2451 {
2452 ram_addr_t addr;
2453 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2454 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2455 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2456 abort();
2457 }
2458 addr = last_ram_offset;
2459 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2460 return addr;
2461 }
2462 #endif
2463
2464 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2465 {
2466 RAMBlock *new_block;
2467
2468 #ifdef CONFIG_KQEMU
2469 if (kqemu_phys_ram_base) {
2470 return kqemu_ram_alloc(size);
2471 }
2472 #endif
2473
2474 size = TARGET_PAGE_ALIGN(size);
2475 new_block = qemu_malloc(sizeof(*new_block));
2476
2477 new_block->host = qemu_vmalloc(size);
2478 new_block->offset = last_ram_offset;
2479 new_block->length = size;
2480
2481 new_block->next = ram_blocks;
2482 ram_blocks = new_block;
2483
2484 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2485 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2486 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2487 0xff, size >> TARGET_PAGE_BITS);
2488
2489 last_ram_offset += size;
2490
2491 if (kvm_enabled())
2492 kvm_setup_guest_memory(new_block->host, size);
2493
2494 return new_block->offset;
2495 }
2496
2497 void qemu_ram_free(ram_addr_t addr)
2498 {
2499 /* TODO: implement this. */
2500 }
2501
2502 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2503 With the exception of the softmmu code in this file, this should
2504 only be used for local memory (e.g. video ram) that the device owns,
2505 and knows it isn't going to access beyond the end of the block.
2506
2507 It should not be used for general purpose DMA.
2508 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2509 */
2510 void *qemu_get_ram_ptr(ram_addr_t addr)
2511 {
2512 RAMBlock *prev;
2513 RAMBlock **prevp;
2514 RAMBlock *block;
2515
2516 #ifdef CONFIG_KQEMU
2517 if (kqemu_phys_ram_base) {
2518 return kqemu_phys_ram_base + addr;
2519 }
2520 #endif
2521
2522 prev = NULL;
2523 prevp = &ram_blocks;
2524 block = ram_blocks;
2525 while (block && (block->offset > addr
2526 || block->offset + block->length <= addr)) {
2527 if (prev)
2528 prevp = &prev->next;
2529 prev = block;
2530 block = block->next;
2531 }
2532 if (!block) {
2533 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2534 abort();
2535 }
2536 /* Move this entry to to start of the list. */
2537 if (prev) {
2538 prev->next = block->next;
2539 block->next = *prevp;
2540 *prevp = block;
2541 }
2542 return block->host + (addr - block->offset);
2543 }
2544
2545 /* Some of the softmmu routines need to translate from a host pointer
2546 (typically a TLB entry) back to a ram offset. */
2547 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2548 {
2549 RAMBlock *prev;
2550 RAMBlock **prevp;
2551 RAMBlock *block;
2552 uint8_t *host = ptr;
2553
2554 #ifdef CONFIG_KQEMU
2555 if (kqemu_phys_ram_base) {
2556 return host - kqemu_phys_ram_base;
2557 }
2558 #endif
2559
2560 prev = NULL;
2561 prevp = &ram_blocks;
2562 block = ram_blocks;
2563 while (block && (block->host > host
2564 || block->host + block->length <= host)) {
2565 if (prev)
2566 prevp = &prev->next;
2567 prev = block;
2568 block = block->next;
2569 }
2570 if (!block) {
2571 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2572 abort();
2573 }
2574 return block->offset + (host - block->host);
2575 }
2576
2577 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2578 {
2579 #ifdef DEBUG_UNASSIGNED
2580 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2581 #endif
2582 #if defined(TARGET_SPARC)
2583 do_unassigned_access(addr, 0, 0, 0, 1);
2584 #endif
2585 return 0;
2586 }
2587
2588 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2589 {
2590 #ifdef DEBUG_UNASSIGNED
2591 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2592 #endif
2593 #if defined(TARGET_SPARC)
2594 do_unassigned_access(addr, 0, 0, 0, 2);
2595 #endif
2596 return 0;
2597 }
2598
2599 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2600 {
2601 #ifdef DEBUG_UNASSIGNED
2602 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2603 #endif
2604 #if defined(TARGET_SPARC)
2605 do_unassigned_access(addr, 0, 0, 0, 4);
2606 #endif
2607 return 0;
2608 }
2609
2610 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2611 {
2612 #ifdef DEBUG_UNASSIGNED
2613 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2614 #endif
2615 #if defined(TARGET_SPARC)
2616 do_unassigned_access(addr, 1, 0, 0, 1);
2617 #endif
2618 }
2619
2620 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2621 {
2622 #ifdef DEBUG_UNASSIGNED
2623 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2624 #endif
2625 #if defined(TARGET_SPARC)
2626 do_unassigned_access(addr, 1, 0, 0, 2);
2627 #endif
2628 }
2629
2630 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2631 {
2632 #ifdef DEBUG_UNASSIGNED
2633 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2634 #endif
2635 #if defined(TARGET_SPARC)
2636 do_unassigned_access(addr, 1, 0, 0, 4);
2637 #endif
2638 }
2639
2640 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2641 unassigned_mem_readb,
2642 unassigned_mem_readw,
2643 unassigned_mem_readl,
2644 };
2645
2646 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2647 unassigned_mem_writeb,
2648 unassigned_mem_writew,
2649 unassigned_mem_writel,
2650 };
2651
2652 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2653 uint32_t val)
2654 {
2655 int dirty_flags;
2656 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2657 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2658 #if !defined(CONFIG_USER_ONLY)
2659 tb_invalidate_phys_page_fast(ram_addr, 1);
2660 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2661 #endif
2662 }
2663 stb_p(qemu_get_ram_ptr(ram_addr), val);
2664 #ifdef CONFIG_KQEMU
2665 if (cpu_single_env->kqemu_enabled &&
2666 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2667 kqemu_modify_page(cpu_single_env, ram_addr);
2668 #endif
2669 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2670 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2671 /* we remove the notdirty callback only if the code has been
2672 flushed */
2673 if (dirty_flags == 0xff)
2674 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2675 }
2676
2677 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2678 uint32_t val)
2679 {
2680 int dirty_flags;
2681 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2682 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2683 #if !defined(CONFIG_USER_ONLY)
2684 tb_invalidate_phys_page_fast(ram_addr, 2);
2685 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2686 #endif
2687 }
2688 stw_p(qemu_get_ram_ptr(ram_addr), val);
2689 #ifdef CONFIG_KQEMU
2690 if (cpu_single_env->kqemu_enabled &&
2691 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2692 kqemu_modify_page(cpu_single_env, ram_addr);
2693 #endif
2694 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2695 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2696 /* we remove the notdirty callback only if the code has been
2697 flushed */
2698 if (dirty_flags == 0xff)
2699 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2700 }
2701
2702 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2703 uint32_t val)
2704 {
2705 int dirty_flags;
2706 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2707 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2708 #if !defined(CONFIG_USER_ONLY)
2709 tb_invalidate_phys_page_fast(ram_addr, 4);
2710 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2711 #endif
2712 }
2713 stl_p(qemu_get_ram_ptr(ram_addr), val);
2714 #ifdef CONFIG_KQEMU
2715 if (cpu_single_env->kqemu_enabled &&
2716 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2717 kqemu_modify_page(cpu_single_env, ram_addr);
2718 #endif
2719 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2720 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2721 /* we remove the notdirty callback only if the code has been
2722 flushed */
2723 if (dirty_flags == 0xff)
2724 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2725 }
2726
2727 static CPUReadMemoryFunc *error_mem_read[3] = {
2728 NULL, /* never used */
2729 NULL, /* never used */
2730 NULL, /* never used */
2731 };
2732
2733 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2734 notdirty_mem_writeb,
2735 notdirty_mem_writew,
2736 notdirty_mem_writel,
2737 };
2738
2739 /* Generate a debug exception if a watchpoint has been hit. */
2740 static void check_watchpoint(int offset, int len_mask, int flags)
2741 {
2742 CPUState *env = cpu_single_env;
2743 target_ulong pc, cs_base;
2744 TranslationBlock *tb;
2745 target_ulong vaddr;
2746 CPUWatchpoint *wp;
2747 int cpu_flags;
2748
2749 if (env->watchpoint_hit) {
2750 /* We re-entered the check after replacing the TB. Now raise
2751 * the debug interrupt so that is will trigger after the
2752 * current instruction. */
2753 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2754 return;
2755 }
2756 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2757 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2758 if ((vaddr == (wp->vaddr & len_mask) ||
2759 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2760 wp->flags |= BP_WATCHPOINT_HIT;
2761 if (!env->watchpoint_hit) {
2762 env->watchpoint_hit = wp;
2763 tb = tb_find_pc(env->mem_io_pc);
2764 if (!tb) {
2765 cpu_abort(env, "check_watchpoint: could not find TB for "
2766 "pc=%p", (void *)env->mem_io_pc);
2767 }
2768 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2769 tb_phys_invalidate(tb, -1);
2770 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2771 env->exception_index = EXCP_DEBUG;
2772 } else {
2773 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2774 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2775 }
2776 cpu_resume_from_signal(env, NULL);
2777 }
2778 } else {
2779 wp->flags &= ~BP_WATCHPOINT_HIT;
2780 }
2781 }
2782 }
2783
2784 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2785 so these check for a hit then pass through to the normal out-of-line
2786 phys routines. */
2787 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2788 {
2789 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2790 return ldub_phys(addr);
2791 }
2792
2793 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2794 {
2795 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2796 return lduw_phys(addr);
2797 }
2798
2799 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2800 {
2801 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2802 return ldl_phys(addr);
2803 }
2804
2805 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2806 uint32_t val)
2807 {
2808 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2809 stb_phys(addr, val);
2810 }
2811
2812 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2813 uint32_t val)
2814 {
2815 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2816 stw_phys(addr, val);
2817 }
2818
2819 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2820 uint32_t val)
2821 {
2822 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2823 stl_phys(addr, val);
2824 }
2825
2826 static CPUReadMemoryFunc *watch_mem_read[3] = {
2827 watch_mem_readb,
2828 watch_mem_readw,
2829 watch_mem_readl,
2830 };
2831
2832 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2833 watch_mem_writeb,
2834 watch_mem_writew,
2835 watch_mem_writel,
2836 };
2837
2838 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2839 unsigned int len)
2840 {
2841 uint32_t ret;
2842 unsigned int idx;
2843
2844 idx = SUBPAGE_IDX(addr);
2845 #if defined(DEBUG_SUBPAGE)
2846 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2847 mmio, len, addr, idx);
2848 #endif
2849 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2850 addr + mmio->region_offset[idx][0][len]);
2851
2852 return ret;
2853 }
2854
2855 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2856 uint32_t value, unsigned int len)
2857 {
2858 unsigned int idx;
2859
2860 idx = SUBPAGE_IDX(addr);
2861 #if defined(DEBUG_SUBPAGE)
2862 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2863 mmio, len, addr, idx, value);
2864 #endif
2865 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2866 addr + mmio->region_offset[idx][1][len],
2867 value);
2868 }
2869
2870 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2871 {
2872 #if defined(DEBUG_SUBPAGE)
2873 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2874 #endif
2875
2876 return subpage_readlen(opaque, addr, 0);
2877 }
2878
2879 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2880 uint32_t value)
2881 {
2882 #if defined(DEBUG_SUBPAGE)
2883 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2884 #endif
2885 subpage_writelen(opaque, addr, value, 0);
2886 }
2887
2888 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2889 {
2890 #if defined(DEBUG_SUBPAGE)
2891 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2892 #endif
2893
2894 return subpage_readlen(opaque, addr, 1);
2895 }
2896
2897 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2898 uint32_t value)
2899 {
2900 #if defined(DEBUG_SUBPAGE)
2901 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2902 #endif
2903 subpage_writelen(opaque, addr, value, 1);
2904 }
2905
2906 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2907 {
2908 #if defined(DEBUG_SUBPAGE)
2909 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2910 #endif
2911
2912 return subpage_readlen(opaque, addr, 2);
2913 }
2914
2915 static void subpage_writel (void *opaque,
2916 target_phys_addr_t addr, uint32_t value)
2917 {
2918 #if defined(DEBUG_SUBPAGE)
2919 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2920 #endif
2921 subpage_writelen(opaque, addr, value, 2);
2922 }
2923
2924 static CPUReadMemoryFunc *subpage_read[] = {
2925 &subpage_readb,
2926 &subpage_readw,
2927 &subpage_readl,
2928 };
2929
2930 static CPUWriteMemoryFunc *subpage_write[] = {
2931 &subpage_writeb,
2932 &subpage_writew,
2933 &subpage_writel,
2934 };
2935
2936 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2937 ram_addr_t memory, ram_addr_t region_offset)
2938 {
2939 int idx, eidx;
2940 unsigned int i;
2941
2942 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2943 return -1;
2944 idx = SUBPAGE_IDX(start);
2945 eidx = SUBPAGE_IDX(end);
2946 #if defined(DEBUG_SUBPAGE)
2947 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2948 mmio, start, end, idx, eidx, memory);
2949 #endif
2950 memory >>= IO_MEM_SHIFT;
2951 for (; idx <= eidx; idx++) {
2952 for (i = 0; i < 4; i++) {
2953 if (io_mem_read[memory][i]) {
2954 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2955 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2956 mmio->region_offset[idx][0][i] = region_offset;
2957 }
2958 if (io_mem_write[memory][i]) {
2959 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2960 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2961 mmio->region_offset[idx][1][i] = region_offset;
2962 }
2963 }
2964 }
2965
2966 return 0;
2967 }
2968
2969 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2970 ram_addr_t orig_memory, ram_addr_t region_offset)
2971 {
2972 subpage_t *mmio;
2973 int subpage_memory;
2974
2975 mmio = qemu_mallocz(sizeof(subpage_t));
2976
2977 mmio->base = base;
2978 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2979 #if defined(DEBUG_SUBPAGE)
2980 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2981 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2982 #endif
2983 *phys = subpage_memory | IO_MEM_SUBPAGE;
2984 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2985 region_offset);
2986
2987 return mmio;
2988 }
2989
2990 static int get_free_io_mem_idx(void)
2991 {
2992 int i;
2993
2994 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2995 if (!io_mem_used[i]) {
2996 io_mem_used[i] = 1;
2997 return i;
2998 }
2999
3000 return -1;
3001 }
3002
3003 static void io_mem_init(void)
3004 {
3005 int i;
3006
3007 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
3008 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3009 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
3010 for (i=0; i<5; i++)
3011 io_mem_used[i] = 1;
3012
3013 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
3014 watch_mem_write, NULL);
3015 #ifdef CONFIG_KQEMU
3016 if (kqemu_phys_ram_base) {
3017 /* alloc dirty bits array */
3018 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3019 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3020 }
3021 #endif
3022 }
3023
3024 /* mem_read and mem_write are arrays of functions containing the
3025 function to access byte (index 0), word (index 1) and dword (index
3026 2). Functions can be omitted with a NULL function pointer.
3027 If io_index is non zero, the corresponding io zone is
3028 modified. If it is zero, a new io zone is allocated. The return
3029 value can be used with cpu_register_physical_memory(). (-1) is
3030 returned if error. */
3031 int cpu_register_io_memory(int io_index,
3032 CPUReadMemoryFunc **mem_read,
3033 CPUWriteMemoryFunc **mem_write,
3034 void *opaque)
3035 {
3036 int i, subwidth = 0;
3037
3038 if (io_index <= 0) {
3039 io_index = get_free_io_mem_idx();
3040 if (io_index == -1)
3041 return io_index;
3042 } else {
3043 if (io_index >= IO_MEM_NB_ENTRIES)
3044 return -1;
3045 }
3046
3047 for(i = 0;i < 3; i++) {
3048 if (!mem_read[i] || !mem_write[i])
3049 subwidth = IO_MEM_SUBWIDTH;
3050 io_mem_read[io_index][i] = mem_read[i];
3051 io_mem_write[io_index][i] = mem_write[i];
3052 }
3053 io_mem_opaque[io_index] = opaque;
3054 return (io_index << IO_MEM_SHIFT) | subwidth;
3055 }
3056
3057 void cpu_unregister_io_memory(int io_table_address)
3058 {
3059 int i;
3060 int io_index = io_table_address >> IO_MEM_SHIFT;
3061
3062 for (i=0;i < 3; i++) {
3063 io_mem_read[io_index][i] = unassigned_mem_read[i];
3064 io_mem_write[io_index][i] = unassigned_mem_write[i];
3065 }
3066 io_mem_opaque[io_index] = NULL;
3067 io_mem_used[io_index] = 0;
3068 }
3069
3070 #endif /* !defined(CONFIG_USER_ONLY) */
3071
3072 /* physical memory access (slow version, mainly for debug) */
3073 #if defined(CONFIG_USER_ONLY)
3074 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3075 int len, int is_write)
3076 {
3077 int l, flags;
3078 target_ulong page;
3079 void * p;
3080
3081 while (len > 0) {
3082 page = addr & TARGET_PAGE_MASK;
3083 l = (page + TARGET_PAGE_SIZE) - addr;
3084 if (l > len)
3085 l = len;
3086 flags = page_get_flags(page);
3087 if (!(flags & PAGE_VALID))
3088 return;
3089 if (is_write) {
3090 if (!(flags & PAGE_WRITE))
3091 return;
3092 /* XXX: this code should not depend on lock_user */
3093 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3094 /* FIXME - should this return an error rather than just fail? */
3095 return;
3096 memcpy(p, buf, l);
3097 unlock_user(p, addr, l);
3098 } else {
3099 if (!(flags & PAGE_READ))
3100 return;
3101 /* XXX: this code should not depend on lock_user */
3102 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3103 /* FIXME - should this return an error rather than just fail? */
3104 return;
3105 memcpy(buf, p, l);
3106 unlock_user(p, addr, 0);
3107 }
3108 len -= l;
3109 buf += l;
3110 addr += l;
3111 }
3112 }
3113
3114 #else
3115 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3116 int len, int is_write)
3117 {
3118 int l, io_index;
3119 uint8_t *ptr;
3120 uint32_t val;
3121 target_phys_addr_t page;
3122 unsigned long pd;
3123 PhysPageDesc *p;
3124
3125 while (len > 0) {
3126 page = addr & TARGET_PAGE_MASK;
3127 l = (page + TARGET_PAGE_SIZE) - addr;
3128 if (l > len)
3129 l = len;
3130 p = phys_page_find(page >> TARGET_PAGE_BITS);
3131 if (!p) {
3132 pd = IO_MEM_UNASSIGNED;
3133 } else {
3134 pd = p->phys_offset;
3135 }
3136
3137 if (is_write) {
3138 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3139 target_phys_addr_t addr1 = addr;
3140 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3141 if (p)
3142 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3143 /* XXX: could force cpu_single_env to NULL to avoid
3144 potential bugs */
3145 if (l >= 4 && ((addr1 & 3) == 0)) {
3146 /* 32 bit write access */
3147 val = ldl_p(buf);
3148 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3149 l = 4;
3150 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3151 /* 16 bit write access */
3152 val = lduw_p(buf);
3153 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3154 l = 2;
3155 } else {
3156 /* 8 bit write access */
3157 val = ldub_p(buf);
3158 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3159 l = 1;
3160 }
3161 } else {
3162 unsigned long addr1;
3163 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3164 /* RAM case */
3165 ptr = qemu_get_ram_ptr(addr1);
3166 memcpy(ptr, buf, l);
3167 if (!cpu_physical_memory_is_dirty(addr1)) {
3168 /* invalidate code */
3169 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3170 /* set dirty bit */
3171 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3172 (0xff & ~CODE_DIRTY_FLAG);
3173 }
3174 }
3175 } else {
3176 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3177 !(pd & IO_MEM_ROMD)) {
3178 target_phys_addr_t addr1 = addr;
3179 /* I/O case */
3180 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3181 if (p)
3182 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3183 if (l >= 4 && ((addr1 & 3) == 0)) {
3184 /* 32 bit read access */
3185 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3186 stl_p(buf, val);
3187 l = 4;
3188 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3189 /* 16 bit read access */
3190 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3191 stw_p(buf, val);
3192 l = 2;
3193 } else {
3194 /* 8 bit read access */
3195 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3196 stb_p(buf, val);
3197 l = 1;
3198 }
3199 } else {
3200 /* RAM case */
3201 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3202 (addr & ~TARGET_PAGE_MASK);
3203 memcpy(buf, ptr, l);
3204 }
3205 }
3206 len -= l;
3207 buf += l;
3208 addr += l;
3209 }
3210 }
3211
3212 /* used for ROM loading : can write in RAM and ROM */
3213 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3214 const uint8_t *buf, int len)
3215 {
3216 int l;
3217 uint8_t *ptr;
3218 target_phys_addr_t page;
3219 unsigned long pd;
3220 PhysPageDesc *p;
3221
3222 while (len > 0) {
3223 page = addr & TARGET_PAGE_MASK;
3224 l = (page + TARGET_PAGE_SIZE) - addr;
3225 if (l > len)
3226 l = len;
3227 p = phys_page_find(page >> TARGET_PAGE_BITS);
3228 if (!p) {
3229 pd = IO_MEM_UNASSIGNED;
3230 } else {
3231 pd = p->phys_offset;
3232 }
3233
3234 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3235 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3236 !(pd & IO_MEM_ROMD)) {
3237 /* do nothing */
3238 } else {
3239 unsigned long addr1;
3240 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3241 /* ROM/RAM case */
3242 ptr = qemu_get_ram_ptr(addr1);
3243 memcpy(ptr, buf, l);
3244 }
3245 len -= l;
3246 buf += l;
3247 addr += l;
3248 }
3249 }
3250
3251 typedef struct {
3252 void *buffer;
3253 target_phys_addr_t addr;
3254 target_phys_addr_t len;
3255 } BounceBuffer;
3256
3257 static BounceBuffer bounce;
3258
3259 typedef struct MapClient {
3260 void *opaque;
3261 void (*callback)(void *opaque);
3262 LIST_ENTRY(MapClient) link;
3263 } MapClient;
3264
3265 static LIST_HEAD(map_client_list, MapClient) map_client_list
3266 = LIST_HEAD_INITIALIZER(map_client_list);
3267
3268 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3269 {
3270 MapClient *client = qemu_malloc(sizeof(*client));
3271
3272 client->opaque = opaque;
3273 client->callback = callback;
3274 LIST_INSERT_HEAD(&map_client_list, client, link);
3275 return client;
3276 }
3277
3278 void cpu_unregister_map_client(void *_client)
3279 {
3280 MapClient *client = (MapClient *)_client;
3281
3282 LIST_REMOVE(client, link);
3283 }
3284
3285 static void cpu_notify_map_clients(void)
3286 {
3287 MapClient *client;
3288
3289 while (!LIST_EMPTY(&map_client_list)) {
3290 client = LIST_FIRST(&map_client_list);
3291 client->callback(client->opaque);
3292 LIST_REMOVE(client, link);
3293 }
3294 }
3295
3296 /* Map a physical memory region into a host virtual address.
3297 * May map a subset of the requested range, given by and returned in *plen.
3298 * May return NULL if resources needed to perform the mapping are exhausted.
3299 * Use only for reads OR writes - not for read-modify-write operations.
3300 * Use cpu_register_map_client() to know when retrying the map operation is
3301 * likely to succeed.
3302 */
3303 void *cpu_physical_memory_map(target_phys_addr_t addr,
3304 target_phys_addr_t *plen,
3305 int is_write)
3306 {
3307 target_phys_addr_t len = *plen;
3308 target_phys_addr_t done = 0;
3309 int l;
3310 uint8_t *ret = NULL;
3311 uint8_t *ptr;
3312 target_phys_addr_t page;
3313 unsigned long pd;
3314 PhysPageDesc *p;
3315 unsigned long addr1;
3316
3317 while (len > 0) {
3318 page = addr & TARGET_PAGE_MASK;
3319 l = (page + TARGET_PAGE_SIZE) - addr;
3320 if (l > len)
3321 l = len;
3322 p = phys_page_find(page >> TARGET_PAGE_BITS);
3323 if (!p) {
3324 pd = IO_MEM_UNASSIGNED;
3325 } else {
3326 pd = p->phys_offset;
3327 }
3328
3329 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3330 if (done || bounce.buffer) {
3331 break;
3332 }
3333 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3334 bounce.addr = addr;
3335 bounce.len = l;
3336 if (!is_write) {
3337 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3338 }
3339 ptr = bounce.buffer;
3340 } else {
3341 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3342 ptr = qemu_get_ram_ptr(addr1);
3343 }
3344 if (!done) {
3345 ret = ptr;
3346 } else if (ret + done != ptr) {
3347 break;
3348 }
3349
3350 len -= l;
3351 addr += l;
3352 done += l;
3353 }
3354 *plen = done;
3355 return ret;
3356 }
3357
3358 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3359 * Will also mark the memory as dirty if is_write == 1. access_len gives
3360 * the amount of memory that was actually read or written by the caller.
3361 */
3362 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3363 int is_write, target_phys_addr_t access_len)
3364 {
3365 if (buffer != bounce.buffer) {
3366 if (is_write) {
3367 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3368 while (access_len) {
3369 unsigned l;
3370 l = TARGET_PAGE_SIZE;
3371 if (l > access_len)
3372 l = access_len;
3373 if (!cpu_physical_memory_is_dirty(addr1)) {
3374 /* invalidate code */
3375 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3376 /* set dirty bit */
3377 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3378 (0xff & ~CODE_DIRTY_FLAG);
3379 }
3380 addr1 += l;
3381 access_len -= l;
3382 }
3383 }
3384 return;
3385 }
3386 if (is_write) {
3387 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3388 }
3389 qemu_free(bounce.buffer);
3390 bounce.buffer = NULL;
3391 cpu_notify_map_clients();
3392 }
3393
3394 /* warning: addr must be aligned */
3395 uint32_t ldl_phys(target_phys_addr_t addr)
3396 {
3397 int io_index;
3398 uint8_t *ptr;
3399 uint32_t val;
3400 unsigned long pd;
3401 PhysPageDesc *p;
3402
3403 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3404 if (!p) {
3405 pd = IO_MEM_UNASSIGNED;
3406 } else {
3407 pd = p->phys_offset;
3408 }
3409
3410 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3411 !(pd & IO_MEM_ROMD)) {
3412 /* I/O case */
3413 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3414 if (p)
3415 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3416 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3417 } else {
3418 /* RAM case */
3419 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3420 (addr & ~TARGET_PAGE_MASK);
3421 val = ldl_p(ptr);
3422 }
3423 return val;
3424 }
3425
3426 /* warning: addr must be aligned */
3427 uint64_t ldq_phys(target_phys_addr_t addr)
3428 {
3429 int io_index;
3430 uint8_t *ptr;
3431 uint64_t val;
3432 unsigned long pd;
3433 PhysPageDesc *p;
3434
3435 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3436 if (!p) {
3437 pd = IO_MEM_UNASSIGNED;
3438 } else {
3439 pd = p->phys_offset;
3440 }
3441
3442 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3443 !(pd & IO_MEM_ROMD)) {
3444 /* I/O case */
3445 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3446 if (p)
3447 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3448 #ifdef TARGET_WORDS_BIGENDIAN
3449 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3450 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3451 #else
3452 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3453 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3454 #endif
3455 } else {
3456 /* RAM case */
3457 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3458 (addr & ~TARGET_PAGE_MASK);
3459 val = ldq_p(ptr);
3460 }
3461 return val;
3462 }
3463
3464 /* XXX: optimize */
3465 uint32_t ldub_phys(target_phys_addr_t addr)
3466 {
3467 uint8_t val;
3468 cpu_physical_memory_read(addr, &val, 1);
3469 return val;
3470 }
3471
3472 /* XXX: optimize */
3473 uint32_t lduw_phys(target_phys_addr_t addr)
3474 {
3475 uint16_t val;
3476 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3477 return tswap16(val);
3478 }
3479
3480 /* warning: addr must be aligned. The ram page is not masked as dirty
3481 and the code inside is not invalidated. It is useful if the dirty
3482 bits are used to track modified PTEs */
3483 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3484 {
3485 int io_index;
3486 uint8_t *ptr;
3487 unsigned long pd;
3488 PhysPageDesc *p;
3489
3490 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3491 if (!p) {
3492 pd = IO_MEM_UNASSIGNED;
3493 } else {
3494 pd = p->phys_offset;
3495 }
3496
3497 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3498 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3499 if (p)
3500 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3501 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3502 } else {
3503 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3504 ptr = qemu_get_ram_ptr(addr1);
3505 stl_p(ptr, val);
3506
3507 if (unlikely(in_migration)) {
3508 if (!cpu_physical_memory_is_dirty(addr1)) {
3509 /* invalidate code */
3510 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3511 /* set dirty bit */
3512 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3513 (0xff & ~CODE_DIRTY_FLAG);
3514 }
3515 }
3516 }
3517 }
3518
3519 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3520 {
3521 int io_index;
3522 uint8_t *ptr;
3523 unsigned long pd;
3524 PhysPageDesc *p;
3525
3526 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3527 if (!p) {
3528 pd = IO_MEM_UNASSIGNED;
3529 } else {
3530 pd = p->phys_offset;
3531 }
3532
3533 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3534 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3535 if (p)
3536 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3537 #ifdef TARGET_WORDS_BIGENDIAN
3538 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3539 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3540 #else
3541 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3542 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3543 #endif
3544 } else {
3545 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3546 (addr & ~TARGET_PAGE_MASK);
3547 stq_p(ptr, val);
3548 }
3549 }
3550
3551 /* warning: addr must be aligned */
3552 void stl_phys(target_phys_addr_t addr, uint32_t val)
3553 {
3554 int io_index;
3555 uint8_t *ptr;
3556 unsigned long pd;
3557 PhysPageDesc *p;
3558
3559 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3560 if (!p) {
3561 pd = IO_MEM_UNASSIGNED;
3562 } else {
3563 pd = p->phys_offset;
3564 }
3565
3566 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3567 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3568 if (p)
3569 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3570 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3571 } else {
3572 unsigned long addr1;
3573 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3574 /* RAM case */
3575 ptr = qemu_get_ram_ptr(addr1);
3576 stl_p(ptr, val);
3577 if (!cpu_physical_memory_is_dirty(addr1)) {
3578 /* invalidate code */
3579 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3580 /* set dirty bit */
3581 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3582 (0xff & ~CODE_DIRTY_FLAG);
3583 }
3584 }
3585 }
3586
3587 /* XXX: optimize */
3588 void stb_phys(target_phys_addr_t addr, uint32_t val)
3589 {
3590 uint8_t v = val;
3591 cpu_physical_memory_write(addr, &v, 1);
3592 }
3593
3594 /* XXX: optimize */
3595 void stw_phys(target_phys_addr_t addr, uint32_t val)
3596 {
3597 uint16_t v = tswap16(val);
3598 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3599 }
3600
3601 /* XXX: optimize */
3602 void stq_phys(target_phys_addr_t addr, uint64_t val)
3603 {
3604 val = tswap64(val);
3605 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3606 }
3607
3608 #endif
3609
3610 /* virtual memory access for debug (includes writing to ROM) */
3611 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3612 uint8_t *buf, int len, int is_write)
3613 {
3614 int l;
3615 target_phys_addr_t phys_addr;
3616 target_ulong page;
3617
3618 while (len > 0) {
3619 page = addr & TARGET_PAGE_MASK;
3620 phys_addr = cpu_get_phys_page_debug(env, page);
3621 /* if no physical page mapped, return an error */
3622 if (phys_addr == -1)
3623 return -1;
3624 l = (page + TARGET_PAGE_SIZE) - addr;
3625 if (l > len)
3626 l = len;
3627 phys_addr += (addr & ~TARGET_PAGE_MASK);
3628 #if !defined(CONFIG_USER_ONLY)
3629 if (is_write)
3630 cpu_physical_memory_write_rom(phys_addr, buf, l);
3631 else
3632 #endif
3633 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3634 len -= l;
3635 buf += l;
3636 addr += l;
3637 }
3638 return 0;
3639 }
3640
3641 /* in deterministic execution mode, instructions doing device I/Os
3642 must be at the end of the TB */
3643 void cpu_io_recompile(CPUState *env, void *retaddr)
3644 {
3645 TranslationBlock *tb;
3646 uint32_t n, cflags;
3647 target_ulong pc, cs_base;
3648 uint64_t flags;
3649
3650 tb = tb_find_pc((unsigned long)retaddr);
3651 if (!tb) {
3652 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3653 retaddr);
3654 }
3655 n = env->icount_decr.u16.low + tb->icount;
3656 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3657 /* Calculate how many instructions had been executed before the fault
3658 occurred. */
3659 n = n - env->icount_decr.u16.low;
3660 /* Generate a new TB ending on the I/O insn. */
3661 n++;
3662 /* On MIPS and SH, delay slot instructions can only be restarted if
3663 they were already the first instruction in the TB. If this is not
3664 the first instruction in a TB then re-execute the preceding
3665 branch. */
3666 #if defined(TARGET_MIPS)
3667 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3668 env->active_tc.PC -= 4;
3669 env->icount_decr.u16.low++;
3670 env->hflags &= ~MIPS_HFLAG_BMASK;
3671 }
3672 #elif defined(TARGET_SH4)
3673 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3674 && n > 1) {
3675 env->pc -= 2;
3676 env->icount_decr.u16.low++;
3677 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3678 }
3679 #endif
3680 /* This should never happen. */
3681 if (n > CF_COUNT_MASK)
3682 cpu_abort(env, "TB too big during recompile");
3683
3684 cflags = n | CF_LAST_IO;
3685 pc = tb->pc;
3686 cs_base = tb->cs_base;
3687 flags = tb->flags;
3688 tb_phys_invalidate(tb, -1);
3689 /* FIXME: In theory this could raise an exception. In practice
3690 we have already translated the block once so it's probably ok. */
3691 tb_gen_code(env, pc, cs_base, flags, cflags);
3692 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3693 the first in the TB) then we end up generating a whole new TB and
3694 repeating the fault, which is horribly inefficient.
3695 Better would be to execute just this insn uncached, or generate a
3696 second new TB. */
3697 cpu_resume_from_signal(env, NULL);
3698 }
3699
3700 void dump_exec_info(FILE *f,
3701 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3702 {
3703 int i, target_code_size, max_target_code_size;
3704 int direct_jmp_count, direct_jmp2_count, cross_page;
3705 TranslationBlock *tb;
3706
3707 target_code_size = 0;
3708 max_target_code_size = 0;
3709 cross_page = 0;
3710 direct_jmp_count = 0;
3711 direct_jmp2_count = 0;
3712 for(i = 0; i < nb_tbs; i++) {
3713 tb = &tbs[i];
3714 target_code_size += tb->size;
3715 if (tb->size > max_target_code_size)
3716 max_target_code_size = tb->size;
3717 if (tb->page_addr[1] != -1)
3718 cross_page++;
3719 if (tb->tb_next_offset[0] != 0xffff) {
3720 direct_jmp_count++;
3721 if (tb->tb_next_offset[1] != 0xffff) {
3722 direct_jmp2_count++;
3723 }
3724 }
3725 }
3726 /* XXX: avoid using doubles ? */
3727 cpu_fprintf(f, "Translation buffer state:\n");
3728 cpu_fprintf(f, "gen code size %ld/%ld\n",
3729 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3730 cpu_fprintf(f, "TB count %d/%d\n",
3731 nb_tbs, code_gen_max_blocks);
3732 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3733 nb_tbs ? target_code_size / nb_tbs : 0,
3734 max_target_code_size);
3735 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3736 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3737 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3738 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3739 cross_page,
3740 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3741 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3742 direct_jmp_count,
3743 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3744 direct_jmp2_count,
3745 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3746 cpu_fprintf(f, "\nStatistics:\n");
3747 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3748 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3749 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3750 tcg_dump_info(f, cpu_fprintf);
3751 }
3752
3753 #if !defined(CONFIG_USER_ONLY)
3754
3755 #define MMUSUFFIX _cmmu
3756 #define GETPC() NULL
3757 #define env cpu_single_env
3758 #define SOFTMMU_CODE_ACCESS
3759
3760 #define SHIFT 0
3761 #include "softmmu_template.h"
3762
3763 #define SHIFT 1
3764 #include "softmmu_template.h"
3765
3766 #define SHIFT 2
3767 #include "softmmu_template.h"
3768
3769 #define SHIFT 3
3770 #include "softmmu_template.h"
3771
3772 #undef env
3773
3774 #endif