]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: move qemu_ram_addr_from_host_nofail to cputlb.c
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
97 AddressSpace *as;
98 };
99
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
102 MemoryRegion iomem;
103 AddressSpace *as;
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106 } subpage_t;
107
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
114
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
120
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
124
125 static MemoryRegion io_mem_watch;
126 #endif
127
128 #if !defined(CONFIG_USER_ONLY)
129
130 static void phys_map_node_reserve(unsigned nodes)
131 {
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
140 }
141
142 static uint16_t phys_map_node_alloc(void)
143 {
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
153 }
154 return ret;
155 }
156
157 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
159 int level)
160 {
161 PhysPageEntry *p;
162 int i;
163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
164
165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
170 p[i].is_leaf = 1;
171 p[i].ptr = phys_section_unassigned;
172 }
173 }
174 } else {
175 p = phys_map_nodes[lp->ptr];
176 }
177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
178
179 while (*nb && lp < &p[L2_SIZE]) {
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
182 lp->ptr = leaf;
183 *index += step;
184 *nb -= step;
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
189 }
190 }
191
192 static void phys_page_set(AddressSpaceDispatch *d,
193 hwaddr index, hwaddr nb,
194 uint16_t leaf)
195 {
196 /* Wildly overreserve - it doesn't matter much. */
197 phys_map_node_reserve(3 * P_L2_LEVELS);
198
199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
200 }
201
202 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
203 {
204 PhysPageEntry lp = d->phys_map;
205 PhysPageEntry *p;
206 int i;
207
208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
210 return &phys_sections[phys_section_unassigned];
211 }
212 p = phys_map_nodes[lp.ptr];
213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
214 }
215 return &phys_sections[lp.ptr];
216 }
217
218 bool memory_region_is_unassigned(MemoryRegion *mr)
219 {
220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
221 && mr != &io_mem_watch;
222 }
223
224 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
225 hwaddr addr,
226 bool resolve_subpage)
227 {
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
237 }
238
239 static MemoryRegionSection *
240 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
242 {
243 MemoryRegionSection *section;
244 Int128 diff;
245
246 section = address_space_lookup_region(as, addr, resolve_subpage);
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
255 return section;
256 }
257
258 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
261 {
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
290 }
291
292 MemoryRegionSection *
293 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295 {
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
301 }
302 #endif
303
304 void cpu_exec_init_all(void)
305 {
306 #if !defined(CONFIG_USER_ONLY)
307 qemu_mutex_init(&ram_list.mutex);
308 memory_map_init();
309 io_mem_init();
310 #endif
311 }
312
313 #if !defined(CONFIG_USER_ONLY)
314
315 static int cpu_common_post_load(void *opaque, int version_id)
316 {
317 CPUState *cpu = opaque;
318
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
323
324 return 0;
325 }
326
327 const VMStateDescription vmstate_cpu_common = {
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
336 VMSTATE_END_OF_LIST()
337 }
338 };
339
340 #endif
341
342 CPUState *qemu_get_cpu(int index)
343 {
344 CPUArchState *env = first_cpu;
345 CPUState *cpu = NULL;
346
347 while (env) {
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
350 break;
351 }
352 env = env->next_cpu;
353 }
354
355 return env ? cpu : NULL;
356 }
357
358 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359 {
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366 }
367
368 void cpu_exec_init(CPUArchState *env)
369 {
370 CPUState *cpu = ENV_GET_CPU(env);
371 CPUClass *cc = CPU_GET_CLASS(cpu);
372 CPUArchState **penv;
373 int cpu_index;
374
375 #if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377 #endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
385 cpu->cpu_index = cpu_index;
386 cpu->numa_node = 0;
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389 #ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391 #endif
392 *penv = env;
393 #if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395 #endif
396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
397 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
400 assert(cc->vmsd == NULL);
401 #endif
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
405 }
406
407 #if defined(TARGET_HAS_ICE)
408 #if defined(CONFIG_USER_ONLY)
409 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
410 {
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412 }
413 #else
414 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415 {
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
418 }
419 #endif
420 #endif /* TARGET_HAS_ICE */
421
422 #if defined(CONFIG_USER_ONLY)
423 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
424
425 {
426 }
427
428 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
429 int flags, CPUWatchpoint **watchpoint)
430 {
431 return -ENOSYS;
432 }
433 #else
434 /* Add a watchpoint. */
435 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
436 int flags, CPUWatchpoint **watchpoint)
437 {
438 target_ulong len_mask = ~(len - 1);
439 CPUWatchpoint *wp;
440
441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
448 wp = g_malloc(sizeof(*wp));
449
450 wp->vaddr = addr;
451 wp->len_mask = len_mask;
452 wp->flags = flags;
453
454 /* keep all GDB-injected watchpoints in front */
455 if (flags & BP_GDB)
456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
457 else
458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
459
460 tlb_flush_page(env, addr);
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
465 }
466
467 /* Remove a specific watchpoint. */
468 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
469 int flags)
470 {
471 target_ulong len_mask = ~(len - 1);
472 CPUWatchpoint *wp;
473
474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
475 if (addr == wp->vaddr && len_mask == wp->len_mask
476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
477 cpu_watchpoint_remove_by_ref(env, wp);
478 return 0;
479 }
480 }
481 return -ENOENT;
482 }
483
484 /* Remove a specific watchpoint by reference. */
485 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
486 {
487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
488
489 tlb_flush_page(env, watchpoint->vaddr);
490
491 g_free(watchpoint);
492 }
493
494 /* Remove all matching watchpoints. */
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
496 {
497 CPUWatchpoint *wp, *next;
498
499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
502 }
503 }
504 #endif
505
506 /* Add a breakpoint. */
507 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
508 CPUBreakpoint **breakpoint)
509 {
510 #if defined(TARGET_HAS_ICE)
511 CPUBreakpoint *bp;
512
513 bp = g_malloc(sizeof(*bp));
514
515 bp->pc = pc;
516 bp->flags = flags;
517
518 /* keep all GDB-injected breakpoints in front */
519 if (flags & BP_GDB)
520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
521 else
522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
523
524 breakpoint_invalidate(env, pc);
525
526 if (breakpoint)
527 *breakpoint = bp;
528 return 0;
529 #else
530 return -ENOSYS;
531 #endif
532 }
533
534 /* Remove a specific breakpoint. */
535 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
536 {
537 #if defined(TARGET_HAS_ICE)
538 CPUBreakpoint *bp;
539
540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
545 }
546 return -ENOENT;
547 #else
548 return -ENOSYS;
549 #endif
550 }
551
552 /* Remove a specific breakpoint by reference. */
553 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
554 {
555 #if defined(TARGET_HAS_ICE)
556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
557
558 breakpoint_invalidate(env, breakpoint->pc);
559
560 g_free(breakpoint);
561 #endif
562 }
563
564 /* Remove all matching breakpoints. */
565 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
566 {
567 #if defined(TARGET_HAS_ICE)
568 CPUBreakpoint *bp, *next;
569
570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
573 }
574 #endif
575 }
576
577 /* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
579 void cpu_single_step(CPUArchState *env, int enabled)
580 {
581 #if defined(TARGET_HAS_ICE)
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
587 /* must flush all the translated code to avoid inconsistencies */
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
632 #if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635 #endif
636
637 memcpy(new_env, env, sizeof(CPUArchState));
638
639 /* Preserve chaining. */
640 new_env->next_cpu = next_cpu;
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
725 iotlb = section - phys_sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
766 memory_region_ref(section->mr);
767 return phys_sections_nb++;
768 }
769
770 static void phys_section_destroy(MemoryRegion *mr)
771 {
772 memory_region_unref(mr);
773
774 if (mr->subpage) {
775 subpage_t *subpage = container_of(mr, subpage_t, iomem);
776 memory_region_destroy(&subpage->iomem);
777 g_free(subpage);
778 }
779 }
780
781 static void phys_sections_clear(void)
782 {
783 while (phys_sections_nb > 0) {
784 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
785 phys_section_destroy(section->mr);
786 }
787 phys_map_nodes_nb = 0;
788 }
789
790 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
791 {
792 subpage_t *subpage;
793 hwaddr base = section->offset_within_address_space
794 & TARGET_PAGE_MASK;
795 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
796 MemoryRegionSection subsection = {
797 .offset_within_address_space = base,
798 .size = int128_make64(TARGET_PAGE_SIZE),
799 };
800 hwaddr start, end;
801
802 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
803
804 if (!(existing->mr->subpage)) {
805 subpage = subpage_init(d->as, base);
806 subsection.mr = &subpage->iomem;
807 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
808 phys_section_add(&subsection));
809 } else {
810 subpage = container_of(existing->mr, subpage_t, iomem);
811 }
812 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
813 end = start + int128_get64(section->size) - 1;
814 subpage_register(subpage, start, end, phys_section_add(section));
815 }
816
817
818 static void register_multipage(AddressSpaceDispatch *d,
819 MemoryRegionSection *section)
820 {
821 hwaddr start_addr = section->offset_within_address_space;
822 uint16_t section_index = phys_section_add(section);
823 uint64_t num_pages = int128_get64(int128_rshift(section->size,
824 TARGET_PAGE_BITS));
825
826 assert(num_pages);
827 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
828 }
829
830 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
831 {
832 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
833 MemoryRegionSection now = *section, remain = *section;
834 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
835
836 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
837 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
838 - now.offset_within_address_space;
839
840 now.size = int128_min(int128_make64(left), now.size);
841 register_subpage(d, &now);
842 } else {
843 now.size = int128_zero();
844 }
845 while (int128_ne(remain.size, now.size)) {
846 remain.size = int128_sub(remain.size, now.size);
847 remain.offset_within_address_space += int128_get64(now.size);
848 remain.offset_within_region += int128_get64(now.size);
849 now = remain;
850 if (int128_lt(remain.size, page_size)) {
851 register_subpage(d, &now);
852 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
853 now.size = page_size;
854 register_subpage(d, &now);
855 } else {
856 now.size = int128_and(now.size, int128_neg(page_size));
857 register_multipage(d, &now);
858 }
859 }
860 }
861
862 void qemu_flush_coalesced_mmio_buffer(void)
863 {
864 if (kvm_enabled())
865 kvm_flush_coalesced_mmio_buffer();
866 }
867
868 void qemu_mutex_lock_ramlist(void)
869 {
870 qemu_mutex_lock(&ram_list.mutex);
871 }
872
873 void qemu_mutex_unlock_ramlist(void)
874 {
875 qemu_mutex_unlock(&ram_list.mutex);
876 }
877
878 #if defined(__linux__) && !defined(TARGET_S390X)
879
880 #include <sys/vfs.h>
881
882 #define HUGETLBFS_MAGIC 0x958458f6
883
884 static long gethugepagesize(const char *path)
885 {
886 struct statfs fs;
887 int ret;
888
889 do {
890 ret = statfs(path, &fs);
891 } while (ret != 0 && errno == EINTR);
892
893 if (ret != 0) {
894 perror(path);
895 return 0;
896 }
897
898 if (fs.f_type != HUGETLBFS_MAGIC)
899 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
900
901 return fs.f_bsize;
902 }
903
904 static void *file_ram_alloc(RAMBlock *block,
905 ram_addr_t memory,
906 const char *path)
907 {
908 char *filename;
909 char *sanitized_name;
910 char *c;
911 void *area;
912 int fd;
913 #ifdef MAP_POPULATE
914 int flags;
915 #endif
916 unsigned long hpagesize;
917
918 hpagesize = gethugepagesize(path);
919 if (!hpagesize) {
920 return NULL;
921 }
922
923 if (memory < hpagesize) {
924 return NULL;
925 }
926
927 if (kvm_enabled() && !kvm_has_sync_mmu()) {
928 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
929 return NULL;
930 }
931
932 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
933 sanitized_name = g_strdup(block->mr->name);
934 for (c = sanitized_name; *c != '\0'; c++) {
935 if (*c == '/')
936 *c = '_';
937 }
938
939 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
940 sanitized_name);
941 g_free(sanitized_name);
942
943 fd = mkstemp(filename);
944 if (fd < 0) {
945 perror("unable to create backing store for hugepages");
946 g_free(filename);
947 return NULL;
948 }
949 unlink(filename);
950 g_free(filename);
951
952 memory = (memory+hpagesize-1) & ~(hpagesize-1);
953
954 /*
955 * ftruncate is not supported by hugetlbfs in older
956 * hosts, so don't bother bailing out on errors.
957 * If anything goes wrong with it under other filesystems,
958 * mmap will fail.
959 */
960 if (ftruncate(fd, memory))
961 perror("ftruncate");
962
963 #ifdef MAP_POPULATE
964 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
965 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
966 * to sidestep this quirk.
967 */
968 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
969 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
970 #else
971 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
972 #endif
973 if (area == MAP_FAILED) {
974 perror("file_ram_alloc: can't mmap RAM pages");
975 close(fd);
976 return (NULL);
977 }
978 block->fd = fd;
979 return area;
980 }
981 #endif
982
983 static ram_addr_t find_ram_offset(ram_addr_t size)
984 {
985 RAMBlock *block, *next_block;
986 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
987
988 assert(size != 0); /* it would hand out same offset multiple times */
989
990 if (QTAILQ_EMPTY(&ram_list.blocks))
991 return 0;
992
993 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
994 ram_addr_t end, next = RAM_ADDR_MAX;
995
996 end = block->offset + block->length;
997
998 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
999 if (next_block->offset >= end) {
1000 next = MIN(next, next_block->offset);
1001 }
1002 }
1003 if (next - end >= size && next - end < mingap) {
1004 offset = end;
1005 mingap = next - end;
1006 }
1007 }
1008
1009 if (offset == RAM_ADDR_MAX) {
1010 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1011 (uint64_t)size);
1012 abort();
1013 }
1014
1015 return offset;
1016 }
1017
1018 ram_addr_t last_ram_offset(void)
1019 {
1020 RAMBlock *block;
1021 ram_addr_t last = 0;
1022
1023 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1024 last = MAX(last, block->offset + block->length);
1025
1026 return last;
1027 }
1028
1029 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1030 {
1031 int ret;
1032 QemuOpts *machine_opts;
1033
1034 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1035 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1036 if (machine_opts &&
1037 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1039 if (ret) {
1040 perror("qemu_madvise");
1041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1042 "but dump_guest_core=off specified\n");
1043 }
1044 }
1045 }
1046
1047 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1048 {
1049 RAMBlock *new_block, *block;
1050
1051 new_block = NULL;
1052 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1053 if (block->offset == addr) {
1054 new_block = block;
1055 break;
1056 }
1057 }
1058 assert(new_block);
1059 assert(!new_block->idstr[0]);
1060
1061 if (dev) {
1062 char *id = qdev_get_dev_path(dev);
1063 if (id) {
1064 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1065 g_free(id);
1066 }
1067 }
1068 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1069
1070 /* This assumes the iothread lock is taken here too. */
1071 qemu_mutex_lock_ramlist();
1072 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1073 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1074 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1075 new_block->idstr);
1076 abort();
1077 }
1078 }
1079 qemu_mutex_unlock_ramlist();
1080 }
1081
1082 static int memory_try_enable_merging(void *addr, size_t len)
1083 {
1084 QemuOpts *opts;
1085
1086 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1087 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093 }
1094
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097 {
1098 RAMBlock *block, *new_block;
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1102
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1105 new_block->mr = mr;
1106 new_block->offset = find_ram_offset(size);
1107 if (host) {
1108 new_block->host = host;
1109 new_block->flags |= RAM_PREALLOC_MASK;
1110 } else {
1111 if (mem_path) {
1112 #if defined (__linux__) && !defined(TARGET_S390X)
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
1115 new_block->host = qemu_anon_ram_alloc(size);
1116 memory_try_enable_merging(new_block->host, size);
1117 }
1118 #else
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
1121 #endif
1122 } else {
1123 if (xen_enabled()) {
1124 xen_ram_alloc(new_block->offset, size, mr);
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
1127 new_block->host = kvm_ram_alloc(size);
1128 } else {
1129 new_block->host = qemu_anon_ram_alloc(size);
1130 }
1131 memory_try_enable_merging(new_block->host, size);
1132 }
1133 }
1134 new_block->length = size;
1135
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
1147 ram_list.mru_block = NULL;
1148
1149 ram_list.version++;
1150 qemu_mutex_unlock_ramlist();
1151
1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1153 last_ram_offset() >> TARGET_PAGE_BITS);
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1157
1158 qemu_ram_setup_dump(new_block->host, size);
1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1160
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
1164 return new_block->offset;
1165 }
1166
1167 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1168 {
1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1170 }
1171
1172 void qemu_ram_free_from_ptr(ram_addr_t addr)
1173 {
1174 RAMBlock *block;
1175
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1179 if (addr == block->offset) {
1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1181 ram_list.mru_block = NULL;
1182 ram_list.version++;
1183 g_free(block);
1184 break;
1185 }
1186 }
1187 qemu_mutex_unlock_ramlist();
1188 }
1189
1190 void qemu_ram_free(ram_addr_t addr)
1191 {
1192 RAMBlock *block;
1193
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1197 if (addr == block->offset) {
1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1199 ram_list.mru_block = NULL;
1200 ram_list.version++;
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
1204 #if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
1209 qemu_anon_ram_free(block->host, block->length);
1210 }
1211 #else
1212 abort();
1213 #endif
1214 } else {
1215 if (xen_enabled()) {
1216 xen_invalidate_map_cache_entry(block->host);
1217 } else {
1218 qemu_anon_ram_free(block->host, block->length);
1219 }
1220 }
1221 g_free(block);
1222 break;
1223 }
1224 }
1225 qemu_mutex_unlock_ramlist();
1226
1227 }
1228
1229 #ifndef _WIN32
1230 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231 {
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247 #if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249 #ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252 #else
1253 flags |= MAP_PRIVATE;
1254 #endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
1262 #else
1263 abort();
1264 #endif
1265 } else {
1266 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270 #else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274 #endif
1275 }
1276 if (area != vaddr) {
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1279 length, addr);
1280 exit(1);
1281 }
1282 memory_try_enable_merging(vaddr, length);
1283 qemu_ram_setup_dump(vaddr, length);
1284 }
1285 return;
1286 }
1287 }
1288 }
1289 #endif /* !_WIN32 */
1290
1291 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1292 With the exception of the softmmu code in this file, this should
1293 only be used for local memory (e.g. video ram) that the device owns,
1294 and knows it isn't going to access beyond the end of the block.
1295
1296 It should not be used for general purpose DMA.
1297 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1298 */
1299 void *qemu_get_ram_ptr(ram_addr_t addr)
1300 {
1301 RAMBlock *block;
1302
1303 /* The list is protected by the iothread lock here. */
1304 block = ram_list.mru_block;
1305 if (block && addr - block->offset < block->length) {
1306 goto found;
1307 }
1308 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1309 if (addr - block->offset < block->length) {
1310 goto found;
1311 }
1312 }
1313
1314 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1315 abort();
1316
1317 found:
1318 ram_list.mru_block = block;
1319 if (xen_enabled()) {
1320 /* We need to check if the requested address is in the RAM
1321 * because we don't want to map the entire memory in QEMU.
1322 * In that case just map until the end of the page.
1323 */
1324 if (block->offset == 0) {
1325 return xen_map_cache(addr, 0, 0);
1326 } else if (block->host == NULL) {
1327 block->host =
1328 xen_map_cache(block->offset, block->length, 1);
1329 }
1330 }
1331 return block->host + (addr - block->offset);
1332 }
1333
1334 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1335 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1336 *
1337 * ??? Is this still necessary?
1338 */
1339 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1340 {
1341 RAMBlock *block;
1342
1343 /* The list is protected by the iothread lock here. */
1344 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1345 if (addr - block->offset < block->length) {
1346 if (xen_enabled()) {
1347 /* We need to check if the requested address is in the RAM
1348 * because we don't want to map the entire memory in QEMU.
1349 * In that case just map until the end of the page.
1350 */
1351 if (block->offset == 0) {
1352 return xen_map_cache(addr, 0, 0);
1353 } else if (block->host == NULL) {
1354 block->host =
1355 xen_map_cache(block->offset, block->length, 1);
1356 }
1357 }
1358 return block->host + (addr - block->offset);
1359 }
1360 }
1361
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1364
1365 return NULL;
1366 }
1367
1368 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1369 * but takes a size argument */
1370 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1371 {
1372 if (*size == 0) {
1373 return NULL;
1374 }
1375 if (xen_enabled()) {
1376 return xen_map_cache(addr, *size, 1);
1377 } else {
1378 RAMBlock *block;
1379
1380 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1381 if (addr - block->offset < block->length) {
1382 if (addr - block->offset + *size > block->length)
1383 *size = block->length - addr + block->offset;
1384 return block->host + (addr - block->offset);
1385 }
1386 }
1387
1388 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1389 abort();
1390 }
1391 }
1392
1393 /* Some of the softmmu routines need to translate from a host pointer
1394 (typically a TLB entry) back to a ram offset. */
1395 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1396 {
1397 RAMBlock *block;
1398 uint8_t *host = ptr;
1399
1400 if (xen_enabled()) {
1401 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1402 return 0;
1403 }
1404
1405 block = ram_list.mru_block;
1406 if (block && block->host && host - block->host < block->length) {
1407 goto found;
1408 }
1409
1410 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1411 /* This case append when the block is not mapped. */
1412 if (block->host == NULL) {
1413 continue;
1414 }
1415 if (host - block->host < block->length) {
1416 goto found;
1417 }
1418 }
1419
1420 return -1;
1421
1422 found:
1423 *ram_addr = block->offset + (host - block->host);
1424 return 0;
1425 }
1426
1427 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1428 uint64_t val, unsigned size)
1429 {
1430 int dirty_flags;
1431 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1432 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1433 tb_invalidate_phys_page_fast(ram_addr, size);
1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1435 }
1436 switch (size) {
1437 case 1:
1438 stb_p(qemu_get_ram_ptr(ram_addr), val);
1439 break;
1440 case 2:
1441 stw_p(qemu_get_ram_ptr(ram_addr), val);
1442 break;
1443 case 4:
1444 stl_p(qemu_get_ram_ptr(ram_addr), val);
1445 break;
1446 default:
1447 abort();
1448 }
1449 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1450 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1451 /* we remove the notdirty callback only if the code has been
1452 flushed */
1453 if (dirty_flags == 0xff)
1454 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1455 }
1456
1457 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1459 {
1460 return is_write;
1461 }
1462
1463 static const MemoryRegionOps notdirty_mem_ops = {
1464 .write = notdirty_mem_write,
1465 .valid.accepts = notdirty_mem_accepts,
1466 .endianness = DEVICE_NATIVE_ENDIAN,
1467 };
1468
1469 /* Generate a debug exception if a watchpoint has been hit. */
1470 static void check_watchpoint(int offset, int len_mask, int flags)
1471 {
1472 CPUArchState *env = cpu_single_env;
1473 target_ulong pc, cs_base;
1474 target_ulong vaddr;
1475 CPUWatchpoint *wp;
1476 int cpu_flags;
1477
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1483 return;
1484 }
1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
1492 tb_check_watchpoint(env);
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
1495 cpu_loop_exit(env);
1496 } else {
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1499 cpu_resume_from_signal(env, NULL);
1500 }
1501 }
1502 } else {
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
1504 }
1505 }
1506 }
1507
1508 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1510 phys routines. */
1511 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1512 unsigned size)
1513 {
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1515 switch (size) {
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1519 default: abort();
1520 }
1521 }
1522
1523 static void watch_mem_write(void *opaque, hwaddr addr,
1524 uint64_t val, unsigned size)
1525 {
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1527 switch (size) {
1528 case 1:
1529 stb_phys(addr, val);
1530 break;
1531 case 2:
1532 stw_phys(addr, val);
1533 break;
1534 case 4:
1535 stl_phys(addr, val);
1536 break;
1537 default: abort();
1538 }
1539 }
1540
1541 static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
1545 };
1546
1547 static uint64_t subpage_read(void *opaque, hwaddr addr,
1548 unsigned len)
1549 {
1550 subpage_t *subpage = opaque;
1551 uint8_t buf[4];
1552
1553 #if defined(DEBUG_SUBPAGE)
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
1556 #endif
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1558 switch (len) {
1559 case 1:
1560 return ldub_p(buf);
1561 case 2:
1562 return lduw_p(buf);
1563 case 4:
1564 return ldl_p(buf);
1565 default:
1566 abort();
1567 }
1568 }
1569
1570 static void subpage_write(void *opaque, hwaddr addr,
1571 uint64_t value, unsigned len)
1572 {
1573 subpage_t *subpage = opaque;
1574 uint8_t buf[4];
1575
1576 #if defined(DEBUG_SUBPAGE)
1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
1580 #endif
1581 switch (len) {
1582 case 1:
1583 stb_p(buf, value);
1584 break;
1585 case 2:
1586 stw_p(buf, value);
1587 break;
1588 case 4:
1589 stl_p(buf, value);
1590 break;
1591 default:
1592 abort();
1593 }
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
1595 }
1596
1597 static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1599 {
1600 subpage_t *subpage = opaque;
1601 #if defined(DEBUG_SUBPAGE)
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1604 #endif
1605
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1607 size, is_write);
1608 }
1609
1610 static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
1613 .valid.accepts = subpage_accepts,
1614 .endianness = DEVICE_NATIVE_ENDIAN,
1615 };
1616
1617 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1618 uint16_t section)
1619 {
1620 int idx, eidx;
1621
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1623 return -1;
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626 #if defined(DEBUG_SUBPAGE)
1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1628 mmio, start, end, idx, eidx, memory);
1629 #endif
1630 for (; idx <= eidx; idx++) {
1631 mmio->sub_section[idx] = section;
1632 }
1633
1634 return 0;
1635 }
1636
1637 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1638 {
1639 subpage_t *mmio;
1640
1641 mmio = g_malloc0(sizeof(subpage_t));
1642
1643 mmio->as = as;
1644 mmio->base = base;
1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1646 "subpage", TARGET_PAGE_SIZE);
1647 mmio->iomem.subpage = true;
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1651 #endif
1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1653
1654 return mmio;
1655 }
1656
1657 static uint16_t dummy_section(MemoryRegion *mr)
1658 {
1659 MemoryRegionSection section = {
1660 .mr = mr,
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
1663 .size = int128_2_64(),
1664 };
1665
1666 return phys_section_add(&section);
1667 }
1668
1669 MemoryRegion *iotlb_to_region(hwaddr index)
1670 {
1671 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1672 }
1673
1674 static void io_mem_init(void)
1675 {
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1678 "unassigned", UINT64_MAX);
1679 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1680 "notdirty", UINT64_MAX);
1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1682 "watch", UINT64_MAX);
1683 }
1684
1685 static void mem_begin(MemoryListener *listener)
1686 {
1687 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1688
1689 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1690 }
1691
1692 static void core_begin(MemoryListener *listener)
1693 {
1694 phys_sections_clear();
1695 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1696 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1697 phys_section_rom = dummy_section(&io_mem_rom);
1698 phys_section_watch = dummy_section(&io_mem_watch);
1699 }
1700
1701 static void tcg_commit(MemoryListener *listener)
1702 {
1703 CPUArchState *env;
1704
1705 /* since each CPU stores ram addresses in its TLB cache, we must
1706 reset the modified entries */
1707 /* XXX: slow ! */
1708 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1709 tlb_flush(env, 1);
1710 }
1711 }
1712
1713 static void core_log_global_start(MemoryListener *listener)
1714 {
1715 cpu_physical_memory_set_dirty_tracking(1);
1716 }
1717
1718 static void core_log_global_stop(MemoryListener *listener)
1719 {
1720 cpu_physical_memory_set_dirty_tracking(0);
1721 }
1722
1723 static MemoryListener core_memory_listener = {
1724 .begin = core_begin,
1725 .log_global_start = core_log_global_start,
1726 .log_global_stop = core_log_global_stop,
1727 .priority = 1,
1728 };
1729
1730 static MemoryListener tcg_memory_listener = {
1731 .commit = tcg_commit,
1732 };
1733
1734 void address_space_init_dispatch(AddressSpace *as)
1735 {
1736 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1737
1738 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1739 d->listener = (MemoryListener) {
1740 .begin = mem_begin,
1741 .region_add = mem_add,
1742 .region_nop = mem_add,
1743 .priority = 0,
1744 };
1745 d->as = as;
1746 as->dispatch = d;
1747 memory_listener_register(&d->listener, as);
1748 }
1749
1750 void address_space_destroy_dispatch(AddressSpace *as)
1751 {
1752 AddressSpaceDispatch *d = as->dispatch;
1753
1754 memory_listener_unregister(&d->listener);
1755 g_free(d);
1756 as->dispatch = NULL;
1757 }
1758
1759 static void memory_map_init(void)
1760 {
1761 system_memory = g_malloc(sizeof(*system_memory));
1762 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1763 address_space_init(&address_space_memory, system_memory, "memory");
1764
1765 system_io = g_malloc(sizeof(*system_io));
1766 memory_region_init(system_io, NULL, "io", 65536);
1767 address_space_init(&address_space_io, system_io, "I/O");
1768
1769 memory_listener_register(&core_memory_listener, &address_space_memory);
1770 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1771 }
1772
1773 MemoryRegion *get_system_memory(void)
1774 {
1775 return system_memory;
1776 }
1777
1778 MemoryRegion *get_system_io(void)
1779 {
1780 return system_io;
1781 }
1782
1783 #endif /* !defined(CONFIG_USER_ONLY) */
1784
1785 /* physical memory access (slow version, mainly for debug) */
1786 #if defined(CONFIG_USER_ONLY)
1787 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1788 uint8_t *buf, int len, int is_write)
1789 {
1790 int l, flags;
1791 target_ulong page;
1792 void * p;
1793
1794 while (len > 0) {
1795 page = addr & TARGET_PAGE_MASK;
1796 l = (page + TARGET_PAGE_SIZE) - addr;
1797 if (l > len)
1798 l = len;
1799 flags = page_get_flags(page);
1800 if (!(flags & PAGE_VALID))
1801 return -1;
1802 if (is_write) {
1803 if (!(flags & PAGE_WRITE))
1804 return -1;
1805 /* XXX: this code should not depend on lock_user */
1806 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1807 return -1;
1808 memcpy(p, buf, l);
1809 unlock_user(p, addr, l);
1810 } else {
1811 if (!(flags & PAGE_READ))
1812 return -1;
1813 /* XXX: this code should not depend on lock_user */
1814 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1815 return -1;
1816 memcpy(buf, p, l);
1817 unlock_user(p, addr, 0);
1818 }
1819 len -= l;
1820 buf += l;
1821 addr += l;
1822 }
1823 return 0;
1824 }
1825
1826 #else
1827
1828 static void invalidate_and_set_dirty(hwaddr addr,
1829 hwaddr length)
1830 {
1831 if (!cpu_physical_memory_is_dirty(addr)) {
1832 /* invalidate code */
1833 tb_invalidate_phys_page_range(addr, addr + length, 0);
1834 /* set dirty bit */
1835 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1836 }
1837 xen_modified_memory(addr, length);
1838 }
1839
1840 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1841 {
1842 if (memory_region_is_ram(mr)) {
1843 return !(is_write && mr->readonly);
1844 }
1845 if (memory_region_is_romd(mr)) {
1846 return !is_write;
1847 }
1848
1849 return false;
1850 }
1851
1852 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1853 {
1854 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1855 return 4;
1856 }
1857 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1858 return 2;
1859 }
1860 return 1;
1861 }
1862
1863 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1864 int len, bool is_write)
1865 {
1866 hwaddr l;
1867 uint8_t *ptr;
1868 uint64_t val;
1869 hwaddr addr1;
1870 MemoryRegion *mr;
1871 bool error = false;
1872
1873 while (len > 0) {
1874 l = len;
1875 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1876
1877 if (is_write) {
1878 if (!memory_access_is_direct(mr, is_write)) {
1879 l = memory_access_size(mr, l, addr1);
1880 /* XXX: could force cpu_single_env to NULL to avoid
1881 potential bugs */
1882 if (l == 4) {
1883 /* 32 bit write access */
1884 val = ldl_p(buf);
1885 error |= io_mem_write(mr, addr1, val, 4);
1886 } else if (l == 2) {
1887 /* 16 bit write access */
1888 val = lduw_p(buf);
1889 error |= io_mem_write(mr, addr1, val, 2);
1890 } else {
1891 /* 8 bit write access */
1892 val = ldub_p(buf);
1893 error |= io_mem_write(mr, addr1, val, 1);
1894 }
1895 } else {
1896 addr1 += memory_region_get_ram_addr(mr);
1897 /* RAM case */
1898 ptr = qemu_get_ram_ptr(addr1);
1899 memcpy(ptr, buf, l);
1900 invalidate_and_set_dirty(addr1, l);
1901 }
1902 } else {
1903 if (!memory_access_is_direct(mr, is_write)) {
1904 /* I/O case */
1905 l = memory_access_size(mr, l, addr1);
1906 if (l == 4) {
1907 /* 32 bit read access */
1908 error |= io_mem_read(mr, addr1, &val, 4);
1909 stl_p(buf, val);
1910 } else if (l == 2) {
1911 /* 16 bit read access */
1912 error |= io_mem_read(mr, addr1, &val, 2);
1913 stw_p(buf, val);
1914 } else {
1915 /* 8 bit read access */
1916 error |= io_mem_read(mr, addr1, &val, 1);
1917 stb_p(buf, val);
1918 }
1919 } else {
1920 /* RAM case */
1921 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1922 memcpy(buf, ptr, l);
1923 }
1924 }
1925 len -= l;
1926 buf += l;
1927 addr += l;
1928 }
1929
1930 return error;
1931 }
1932
1933 bool address_space_write(AddressSpace *as, hwaddr addr,
1934 const uint8_t *buf, int len)
1935 {
1936 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1937 }
1938
1939 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1940 {
1941 return address_space_rw(as, addr, buf, len, false);
1942 }
1943
1944
1945 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1946 int len, int is_write)
1947 {
1948 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1949 }
1950
1951 /* used for ROM loading : can write in RAM and ROM */
1952 void cpu_physical_memory_write_rom(hwaddr addr,
1953 const uint8_t *buf, int len)
1954 {
1955 hwaddr l;
1956 uint8_t *ptr;
1957 hwaddr addr1;
1958 MemoryRegion *mr;
1959
1960 while (len > 0) {
1961 l = len;
1962 mr = address_space_translate(&address_space_memory,
1963 addr, &addr1, &l, true);
1964
1965 if (!(memory_region_is_ram(mr) ||
1966 memory_region_is_romd(mr))) {
1967 /* do nothing */
1968 } else {
1969 addr1 += memory_region_get_ram_addr(mr);
1970 /* ROM/RAM case */
1971 ptr = qemu_get_ram_ptr(addr1);
1972 memcpy(ptr, buf, l);
1973 invalidate_and_set_dirty(addr1, l);
1974 }
1975 len -= l;
1976 buf += l;
1977 addr += l;
1978 }
1979 }
1980
1981 typedef struct {
1982 void *buffer;
1983 hwaddr addr;
1984 hwaddr len;
1985 } BounceBuffer;
1986
1987 static BounceBuffer bounce;
1988
1989 typedef struct MapClient {
1990 void *opaque;
1991 void (*callback)(void *opaque);
1992 QLIST_ENTRY(MapClient) link;
1993 } MapClient;
1994
1995 static QLIST_HEAD(map_client_list, MapClient) map_client_list
1996 = QLIST_HEAD_INITIALIZER(map_client_list);
1997
1998 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
1999 {
2000 MapClient *client = g_malloc(sizeof(*client));
2001
2002 client->opaque = opaque;
2003 client->callback = callback;
2004 QLIST_INSERT_HEAD(&map_client_list, client, link);
2005 return client;
2006 }
2007
2008 static void cpu_unregister_map_client(void *_client)
2009 {
2010 MapClient *client = (MapClient *)_client;
2011
2012 QLIST_REMOVE(client, link);
2013 g_free(client);
2014 }
2015
2016 static void cpu_notify_map_clients(void)
2017 {
2018 MapClient *client;
2019
2020 while (!QLIST_EMPTY(&map_client_list)) {
2021 client = QLIST_FIRST(&map_client_list);
2022 client->callback(client->opaque);
2023 cpu_unregister_map_client(client);
2024 }
2025 }
2026
2027 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2028 {
2029 MemoryRegion *mr;
2030 hwaddr l, xlat;
2031
2032 while (len > 0) {
2033 l = len;
2034 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2035 if (!memory_access_is_direct(mr, is_write)) {
2036 l = memory_access_size(mr, l, addr);
2037 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2038 return false;
2039 }
2040 }
2041
2042 len -= l;
2043 addr += l;
2044 }
2045 return true;
2046 }
2047
2048 /* Map a physical memory region into a host virtual address.
2049 * May map a subset of the requested range, given by and returned in *plen.
2050 * May return NULL if resources needed to perform the mapping are exhausted.
2051 * Use only for reads OR writes - not for read-modify-write operations.
2052 * Use cpu_register_map_client() to know when retrying the map operation is
2053 * likely to succeed.
2054 */
2055 void *address_space_map(AddressSpace *as,
2056 hwaddr addr,
2057 hwaddr *plen,
2058 bool is_write)
2059 {
2060 hwaddr len = *plen;
2061 hwaddr todo = 0;
2062 hwaddr l, xlat;
2063 MemoryRegion *mr;
2064 ram_addr_t raddr = RAM_ADDR_MAX;
2065 ram_addr_t rlen;
2066 void *ret;
2067
2068 while (len > 0) {
2069 l = len;
2070 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2071
2072 if (!memory_access_is_direct(mr, is_write)) {
2073 if (todo || bounce.buffer) {
2074 break;
2075 }
2076 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2077 bounce.addr = addr;
2078 bounce.len = l;
2079 if (!is_write) {
2080 address_space_read(as, addr, bounce.buffer, l);
2081 }
2082
2083 *plen = l;
2084 return bounce.buffer;
2085 }
2086 if (!todo) {
2087 raddr = memory_region_get_ram_addr(mr) + xlat;
2088 } else {
2089 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2090 break;
2091 }
2092 }
2093
2094 len -= l;
2095 addr += l;
2096 todo += l;
2097 }
2098 rlen = todo;
2099 ret = qemu_ram_ptr_length(raddr, &rlen);
2100 *plen = rlen;
2101 return ret;
2102 }
2103
2104 /* Unmaps a memory region previously mapped by address_space_map().
2105 * Will also mark the memory as dirty if is_write == 1. access_len gives
2106 * the amount of memory that was actually read or written by the caller.
2107 */
2108 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2109 int is_write, hwaddr access_len)
2110 {
2111 if (buffer != bounce.buffer) {
2112 if (is_write) {
2113 ram_addr_t addr1;
2114 int rc = qemu_ram_addr_from_host(buffer, &addr1);
2115 assert(rc == 0);
2116 while (access_len) {
2117 unsigned l;
2118 l = TARGET_PAGE_SIZE;
2119 if (l > access_len)
2120 l = access_len;
2121 invalidate_and_set_dirty(addr1, l);
2122 addr1 += l;
2123 access_len -= l;
2124 }
2125 }
2126 if (xen_enabled()) {
2127 xen_invalidate_map_cache_entry(buffer);
2128 }
2129 return;
2130 }
2131 if (is_write) {
2132 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2133 }
2134 qemu_vfree(bounce.buffer);
2135 bounce.buffer = NULL;
2136 cpu_notify_map_clients();
2137 }
2138
2139 void *cpu_physical_memory_map(hwaddr addr,
2140 hwaddr *plen,
2141 int is_write)
2142 {
2143 return address_space_map(&address_space_memory, addr, plen, is_write);
2144 }
2145
2146 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2147 int is_write, hwaddr access_len)
2148 {
2149 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2150 }
2151
2152 /* warning: addr must be aligned */
2153 static inline uint32_t ldl_phys_internal(hwaddr addr,
2154 enum device_endian endian)
2155 {
2156 uint8_t *ptr;
2157 uint64_t val;
2158 MemoryRegion *mr;
2159 hwaddr l = 4;
2160 hwaddr addr1;
2161
2162 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2163 false);
2164 if (l < 4 || !memory_access_is_direct(mr, false)) {
2165 /* I/O case */
2166 io_mem_read(mr, addr1, &val, 4);
2167 #if defined(TARGET_WORDS_BIGENDIAN)
2168 if (endian == DEVICE_LITTLE_ENDIAN) {
2169 val = bswap32(val);
2170 }
2171 #else
2172 if (endian == DEVICE_BIG_ENDIAN) {
2173 val = bswap32(val);
2174 }
2175 #endif
2176 } else {
2177 /* RAM case */
2178 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2179 & TARGET_PAGE_MASK)
2180 + addr1);
2181 switch (endian) {
2182 case DEVICE_LITTLE_ENDIAN:
2183 val = ldl_le_p(ptr);
2184 break;
2185 case DEVICE_BIG_ENDIAN:
2186 val = ldl_be_p(ptr);
2187 break;
2188 default:
2189 val = ldl_p(ptr);
2190 break;
2191 }
2192 }
2193 return val;
2194 }
2195
2196 uint32_t ldl_phys(hwaddr addr)
2197 {
2198 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2199 }
2200
2201 uint32_t ldl_le_phys(hwaddr addr)
2202 {
2203 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2204 }
2205
2206 uint32_t ldl_be_phys(hwaddr addr)
2207 {
2208 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2209 }
2210
2211 /* warning: addr must be aligned */
2212 static inline uint64_t ldq_phys_internal(hwaddr addr,
2213 enum device_endian endian)
2214 {
2215 uint8_t *ptr;
2216 uint64_t val;
2217 MemoryRegion *mr;
2218 hwaddr l = 8;
2219 hwaddr addr1;
2220
2221 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2222 false);
2223 if (l < 8 || !memory_access_is_direct(mr, false)) {
2224 /* I/O case */
2225 io_mem_read(mr, addr1, &val, 8);
2226 #if defined(TARGET_WORDS_BIGENDIAN)
2227 if (endian == DEVICE_LITTLE_ENDIAN) {
2228 val = bswap64(val);
2229 }
2230 #else
2231 if (endian == DEVICE_BIG_ENDIAN) {
2232 val = bswap64(val);
2233 }
2234 #endif
2235 } else {
2236 /* RAM case */
2237 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2238 & TARGET_PAGE_MASK)
2239 + addr1);
2240 switch (endian) {
2241 case DEVICE_LITTLE_ENDIAN:
2242 val = ldq_le_p(ptr);
2243 break;
2244 case DEVICE_BIG_ENDIAN:
2245 val = ldq_be_p(ptr);
2246 break;
2247 default:
2248 val = ldq_p(ptr);
2249 break;
2250 }
2251 }
2252 return val;
2253 }
2254
2255 uint64_t ldq_phys(hwaddr addr)
2256 {
2257 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2258 }
2259
2260 uint64_t ldq_le_phys(hwaddr addr)
2261 {
2262 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2263 }
2264
2265 uint64_t ldq_be_phys(hwaddr addr)
2266 {
2267 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2268 }
2269
2270 /* XXX: optimize */
2271 uint32_t ldub_phys(hwaddr addr)
2272 {
2273 uint8_t val;
2274 cpu_physical_memory_read(addr, &val, 1);
2275 return val;
2276 }
2277
2278 /* warning: addr must be aligned */
2279 static inline uint32_t lduw_phys_internal(hwaddr addr,
2280 enum device_endian endian)
2281 {
2282 uint8_t *ptr;
2283 uint64_t val;
2284 MemoryRegion *mr;
2285 hwaddr l = 2;
2286 hwaddr addr1;
2287
2288 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2289 false);
2290 if (l < 2 || !memory_access_is_direct(mr, false)) {
2291 /* I/O case */
2292 io_mem_read(mr, addr1, &val, 2);
2293 #if defined(TARGET_WORDS_BIGENDIAN)
2294 if (endian == DEVICE_LITTLE_ENDIAN) {
2295 val = bswap16(val);
2296 }
2297 #else
2298 if (endian == DEVICE_BIG_ENDIAN) {
2299 val = bswap16(val);
2300 }
2301 #endif
2302 } else {
2303 /* RAM case */
2304 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2305 & TARGET_PAGE_MASK)
2306 + addr1);
2307 switch (endian) {
2308 case DEVICE_LITTLE_ENDIAN:
2309 val = lduw_le_p(ptr);
2310 break;
2311 case DEVICE_BIG_ENDIAN:
2312 val = lduw_be_p(ptr);
2313 break;
2314 default:
2315 val = lduw_p(ptr);
2316 break;
2317 }
2318 }
2319 return val;
2320 }
2321
2322 uint32_t lduw_phys(hwaddr addr)
2323 {
2324 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2325 }
2326
2327 uint32_t lduw_le_phys(hwaddr addr)
2328 {
2329 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2330 }
2331
2332 uint32_t lduw_be_phys(hwaddr addr)
2333 {
2334 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2335 }
2336
2337 /* warning: addr must be aligned. The ram page is not masked as dirty
2338 and the code inside is not invalidated. It is useful if the dirty
2339 bits are used to track modified PTEs */
2340 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2341 {
2342 uint8_t *ptr;
2343 MemoryRegion *mr;
2344 hwaddr l = 4;
2345 hwaddr addr1;
2346
2347 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2348 true);
2349 if (l < 4 || !memory_access_is_direct(mr, true)) {
2350 io_mem_write(mr, addr1, val, 4);
2351 } else {
2352 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2353 ptr = qemu_get_ram_ptr(addr1);
2354 stl_p(ptr, val);
2355
2356 if (unlikely(in_migration)) {
2357 if (!cpu_physical_memory_is_dirty(addr1)) {
2358 /* invalidate code */
2359 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2360 /* set dirty bit */
2361 cpu_physical_memory_set_dirty_flags(
2362 addr1, (0xff & ~CODE_DIRTY_FLAG));
2363 }
2364 }
2365 }
2366 }
2367
2368 /* warning: addr must be aligned */
2369 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2370 enum device_endian endian)
2371 {
2372 uint8_t *ptr;
2373 MemoryRegion *mr;
2374 hwaddr l = 4;
2375 hwaddr addr1;
2376
2377 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2378 true);
2379 if (l < 4 || !memory_access_is_direct(mr, true)) {
2380 #if defined(TARGET_WORDS_BIGENDIAN)
2381 if (endian == DEVICE_LITTLE_ENDIAN) {
2382 val = bswap32(val);
2383 }
2384 #else
2385 if (endian == DEVICE_BIG_ENDIAN) {
2386 val = bswap32(val);
2387 }
2388 #endif
2389 io_mem_write(mr, addr1, val, 4);
2390 } else {
2391 /* RAM case */
2392 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2393 ptr = qemu_get_ram_ptr(addr1);
2394 switch (endian) {
2395 case DEVICE_LITTLE_ENDIAN:
2396 stl_le_p(ptr, val);
2397 break;
2398 case DEVICE_BIG_ENDIAN:
2399 stl_be_p(ptr, val);
2400 break;
2401 default:
2402 stl_p(ptr, val);
2403 break;
2404 }
2405 invalidate_and_set_dirty(addr1, 4);
2406 }
2407 }
2408
2409 void stl_phys(hwaddr addr, uint32_t val)
2410 {
2411 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2412 }
2413
2414 void stl_le_phys(hwaddr addr, uint32_t val)
2415 {
2416 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2417 }
2418
2419 void stl_be_phys(hwaddr addr, uint32_t val)
2420 {
2421 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2422 }
2423
2424 /* XXX: optimize */
2425 void stb_phys(hwaddr addr, uint32_t val)
2426 {
2427 uint8_t v = val;
2428 cpu_physical_memory_write(addr, &v, 1);
2429 }
2430
2431 /* warning: addr must be aligned */
2432 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2433 enum device_endian endian)
2434 {
2435 uint8_t *ptr;
2436 MemoryRegion *mr;
2437 hwaddr l = 2;
2438 hwaddr addr1;
2439
2440 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2441 true);
2442 if (l < 2 || !memory_access_is_direct(mr, true)) {
2443 #if defined(TARGET_WORDS_BIGENDIAN)
2444 if (endian == DEVICE_LITTLE_ENDIAN) {
2445 val = bswap16(val);
2446 }
2447 #else
2448 if (endian == DEVICE_BIG_ENDIAN) {
2449 val = bswap16(val);
2450 }
2451 #endif
2452 io_mem_write(mr, addr1, val, 2);
2453 } else {
2454 /* RAM case */
2455 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2456 ptr = qemu_get_ram_ptr(addr1);
2457 switch (endian) {
2458 case DEVICE_LITTLE_ENDIAN:
2459 stw_le_p(ptr, val);
2460 break;
2461 case DEVICE_BIG_ENDIAN:
2462 stw_be_p(ptr, val);
2463 break;
2464 default:
2465 stw_p(ptr, val);
2466 break;
2467 }
2468 invalidate_and_set_dirty(addr1, 2);
2469 }
2470 }
2471
2472 void stw_phys(hwaddr addr, uint32_t val)
2473 {
2474 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2475 }
2476
2477 void stw_le_phys(hwaddr addr, uint32_t val)
2478 {
2479 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2480 }
2481
2482 void stw_be_phys(hwaddr addr, uint32_t val)
2483 {
2484 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2485 }
2486
2487 /* XXX: optimize */
2488 void stq_phys(hwaddr addr, uint64_t val)
2489 {
2490 val = tswap64(val);
2491 cpu_physical_memory_write(addr, &val, 8);
2492 }
2493
2494 void stq_le_phys(hwaddr addr, uint64_t val)
2495 {
2496 val = cpu_to_le64(val);
2497 cpu_physical_memory_write(addr, &val, 8);
2498 }
2499
2500 void stq_be_phys(hwaddr addr, uint64_t val)
2501 {
2502 val = cpu_to_be64(val);
2503 cpu_physical_memory_write(addr, &val, 8);
2504 }
2505
2506 /* virtual memory access for debug (includes writing to ROM) */
2507 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2508 uint8_t *buf, int len, int is_write)
2509 {
2510 int l;
2511 hwaddr phys_addr;
2512 target_ulong page;
2513
2514 while (len > 0) {
2515 page = addr & TARGET_PAGE_MASK;
2516 phys_addr = cpu_get_phys_page_debug(env, page);
2517 /* if no physical page mapped, return an error */
2518 if (phys_addr == -1)
2519 return -1;
2520 l = (page + TARGET_PAGE_SIZE) - addr;
2521 if (l > len)
2522 l = len;
2523 phys_addr += (addr & ~TARGET_PAGE_MASK);
2524 if (is_write)
2525 cpu_physical_memory_write_rom(phys_addr, buf, l);
2526 else
2527 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2528 len -= l;
2529 buf += l;
2530 addr += l;
2531 }
2532 return 0;
2533 }
2534 #endif
2535
2536 #if !defined(CONFIG_USER_ONLY)
2537
2538 /*
2539 * A helper function for the _utterly broken_ virtio device model to find out if
2540 * it's running on a big endian machine. Don't do this at home kids!
2541 */
2542 bool virtio_is_big_endian(void);
2543 bool virtio_is_big_endian(void)
2544 {
2545 #if defined(TARGET_WORDS_BIGENDIAN)
2546 return true;
2547 #else
2548 return false;
2549 #endif
2550 }
2551
2552 #endif
2553
2554 #ifndef CONFIG_USER_ONLY
2555 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2556 {
2557 MemoryRegion*mr;
2558 hwaddr l = 1;
2559
2560 mr = address_space_translate(&address_space_memory,
2561 phys_addr, &phys_addr, &l, false);
2562
2563 return !(memory_region_is_ram(mr) ||
2564 memory_region_is_romd(mr));
2565 }
2566
2567 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2568 {
2569 RAMBlock *block;
2570
2571 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2572 func(block->host, block->offset, block->length, opaque);
2573 }
2574 }
2575 #endif