]> git.proxmox.com Git - qemu.git/blob - exec.c
kvm: Flush coalesced MMIO buffer periodly
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
44
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
49
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
53
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
61
62 #define SMC_BITMAP_USE_THRESHOLD 10
63
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #else
78 #define TARGET_PHYS_ADDR_SPACE_BITS 32
79 #endif
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
122
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
129
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
141
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
153
154 typedef struct PhysPageDesc {
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
158 } PhysPageDesc;
159
160 #define L2_BITS 10
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167 #else
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
169 #endif
170
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
173
174 unsigned long qemu_real_host_page_size;
175 unsigned long qemu_host_page_bits;
176 unsigned long qemu_host_page_size;
177 unsigned long qemu_host_page_mask;
178
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc *l1_map[L1_SIZE];
181 static PhysPageDesc **l1_phys_map;
182
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
185
186 /* io memory support */
187 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
189 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
190 static char io_mem_used[IO_MEM_NB_ENTRIES];
191 static int io_mem_watch;
192 #endif
193
194 /* log support */
195 #ifdef WIN32
196 static const char *logfilename = "qemu.log";
197 #else
198 static const char *logfilename = "/tmp/qemu.log";
199 #endif
200 FILE *logfile;
201 int loglevel;
202 static int log_append = 0;
203
204 /* statistics */
205 static int tlb_flush_count;
206 static int tb_flush_count;
207 static int tb_phys_invalidate_count;
208
209 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
210 typedef struct subpage_t {
211 target_phys_addr_t base;
212 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
213 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
214 void *opaque[TARGET_PAGE_SIZE][2][4];
215 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
216 } subpage_t;
217
218 #ifdef _WIN32
219 static void map_exec(void *addr, long size)
220 {
221 DWORD old_protect;
222 VirtualProtect(addr, size,
223 PAGE_EXECUTE_READWRITE, &old_protect);
224
225 }
226 #else
227 static void map_exec(void *addr, long size)
228 {
229 unsigned long start, end, page_size;
230
231 page_size = getpagesize();
232 start = (unsigned long)addr;
233 start &= ~(page_size - 1);
234
235 end = (unsigned long)addr + size;
236 end += page_size - 1;
237 end &= ~(page_size - 1);
238
239 mprotect((void *)start, end - start,
240 PROT_READ | PROT_WRITE | PROT_EXEC);
241 }
242 #endif
243
244 static void page_init(void)
245 {
246 /* NOTE: we can always suppose that qemu_host_page_size >=
247 TARGET_PAGE_SIZE */
248 #ifdef _WIN32
249 {
250 SYSTEM_INFO system_info;
251
252 GetSystemInfo(&system_info);
253 qemu_real_host_page_size = system_info.dwPageSize;
254 }
255 #else
256 qemu_real_host_page_size = getpagesize();
257 #endif
258 if (qemu_host_page_size == 0)
259 qemu_host_page_size = qemu_real_host_page_size;
260 if (qemu_host_page_size < TARGET_PAGE_SIZE)
261 qemu_host_page_size = TARGET_PAGE_SIZE;
262 qemu_host_page_bits = 0;
263 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
264 qemu_host_page_bits++;
265 qemu_host_page_mask = ~(qemu_host_page_size - 1);
266 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
267 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
268
269 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
270 {
271 long long startaddr, endaddr;
272 FILE *f;
273 int n;
274
275 mmap_lock();
276 last_brk = (unsigned long)sbrk(0);
277 f = fopen("/proc/self/maps", "r");
278 if (f) {
279 do {
280 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
281 if (n == 2) {
282 startaddr = MIN(startaddr,
283 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
284 endaddr = MIN(endaddr,
285 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
286 page_set_flags(startaddr & TARGET_PAGE_MASK,
287 TARGET_PAGE_ALIGN(endaddr),
288 PAGE_RESERVED);
289 }
290 } while (!feof(f));
291 fclose(f);
292 }
293 mmap_unlock();
294 }
295 #endif
296 }
297
298 static inline PageDesc **page_l1_map(target_ulong index)
299 {
300 #if TARGET_LONG_BITS > 32
301 /* Host memory outside guest VM. For 32-bit targets we have already
302 excluded high addresses. */
303 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
304 return NULL;
305 #endif
306 return &l1_map[index >> L2_BITS];
307 }
308
309 static inline PageDesc *page_find_alloc(target_ulong index)
310 {
311 PageDesc **lp, *p;
312 lp = page_l1_map(index);
313 if (!lp)
314 return NULL;
315
316 p = *lp;
317 if (!p) {
318 /* allocate if not found */
319 #if defined(CONFIG_USER_ONLY)
320 size_t len = sizeof(PageDesc) * L2_SIZE;
321 /* Don't use qemu_malloc because it may recurse. */
322 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
323 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
324 *lp = p;
325 if (h2g_valid(p)) {
326 unsigned long addr = h2g(p);
327 page_set_flags(addr & TARGET_PAGE_MASK,
328 TARGET_PAGE_ALIGN(addr + len),
329 PAGE_RESERVED);
330 }
331 #else
332 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
333 *lp = p;
334 #endif
335 }
336 return p + (index & (L2_SIZE - 1));
337 }
338
339 static inline PageDesc *page_find(target_ulong index)
340 {
341 PageDesc **lp, *p;
342 lp = page_l1_map(index);
343 if (!lp)
344 return NULL;
345
346 p = *lp;
347 if (!p) {
348 return NULL;
349 }
350 return p + (index & (L2_SIZE - 1));
351 }
352
353 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
354 {
355 void **lp, **p;
356 PhysPageDesc *pd;
357
358 p = (void **)l1_phys_map;
359 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
360
361 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
362 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
363 #endif
364 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
365 p = *lp;
366 if (!p) {
367 /* allocate if not found */
368 if (!alloc)
369 return NULL;
370 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
371 memset(p, 0, sizeof(void *) * L1_SIZE);
372 *lp = p;
373 }
374 #endif
375 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
376 pd = *lp;
377 if (!pd) {
378 int i;
379 /* allocate if not found */
380 if (!alloc)
381 return NULL;
382 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
383 *lp = pd;
384 for (i = 0; i < L2_SIZE; i++) {
385 pd[i].phys_offset = IO_MEM_UNASSIGNED;
386 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
387 }
388 }
389 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
390 }
391
392 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
393 {
394 return phys_page_find_alloc(index, 0);
395 }
396
397 #if !defined(CONFIG_USER_ONLY)
398 static void tlb_protect_code(ram_addr_t ram_addr);
399 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
400 target_ulong vaddr);
401 #define mmap_lock() do { } while(0)
402 #define mmap_unlock() do { } while(0)
403 #endif
404
405 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
406
407 #if defined(CONFIG_USER_ONLY)
408 /* Currently it is not recommended to allocate big chunks of data in
409 user mode. It will change when a dedicated libc will be used */
410 #define USE_STATIC_CODE_GEN_BUFFER
411 #endif
412
413 #ifdef USE_STATIC_CODE_GEN_BUFFER
414 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
415 #endif
416
417 static void code_gen_alloc(unsigned long tb_size)
418 {
419 #ifdef USE_STATIC_CODE_GEN_BUFFER
420 code_gen_buffer = static_code_gen_buffer;
421 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
422 map_exec(code_gen_buffer, code_gen_buffer_size);
423 #else
424 code_gen_buffer_size = tb_size;
425 if (code_gen_buffer_size == 0) {
426 #if defined(CONFIG_USER_ONLY)
427 /* in user mode, phys_ram_size is not meaningful */
428 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
429 #else
430 /* XXX: needs adjustments */
431 code_gen_buffer_size = (unsigned long)(ram_size / 4);
432 #endif
433 }
434 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
435 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
436 /* The code gen buffer location may have constraints depending on
437 the host cpu and OS */
438 #if defined(__linux__)
439 {
440 int flags;
441 void *start = NULL;
442
443 flags = MAP_PRIVATE | MAP_ANONYMOUS;
444 #if defined(__x86_64__)
445 flags |= MAP_32BIT;
446 /* Cannot map more than that */
447 if (code_gen_buffer_size > (800 * 1024 * 1024))
448 code_gen_buffer_size = (800 * 1024 * 1024);
449 #elif defined(__sparc_v9__)
450 // Map the buffer below 2G, so we can use direct calls and branches
451 flags |= MAP_FIXED;
452 start = (void *) 0x60000000UL;
453 if (code_gen_buffer_size > (512 * 1024 * 1024))
454 code_gen_buffer_size = (512 * 1024 * 1024);
455 #elif defined(__arm__)
456 /* Map the buffer below 32M, so we can use direct calls and branches */
457 flags |= MAP_FIXED;
458 start = (void *) 0x01000000UL;
459 if (code_gen_buffer_size > 16 * 1024 * 1024)
460 code_gen_buffer_size = 16 * 1024 * 1024;
461 #endif
462 code_gen_buffer = mmap(start, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
470 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
471 {
472 int flags;
473 void *addr = NULL;
474 flags = MAP_PRIVATE | MAP_ANONYMOUS;
475 #if defined(__x86_64__)
476 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
477 * 0x40000000 is free */
478 flags |= MAP_FIXED;
479 addr = (void *)0x40000000;
480 /* Cannot map more than that */
481 if (code_gen_buffer_size > (800 * 1024 * 1024))
482 code_gen_buffer_size = (800 * 1024 * 1024);
483 #endif
484 code_gen_buffer = mmap(addr, code_gen_buffer_size,
485 PROT_WRITE | PROT_READ | PROT_EXEC,
486 flags, -1, 0);
487 if (code_gen_buffer == MAP_FAILED) {
488 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
489 exit(1);
490 }
491 }
492 #else
493 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
494 map_exec(code_gen_buffer, code_gen_buffer_size);
495 #endif
496 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
497 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
498 code_gen_buffer_max_size = code_gen_buffer_size -
499 code_gen_max_block_size();
500 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
501 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
502 }
503
504 /* Must be called before using the QEMU cpus. 'tb_size' is the size
505 (in bytes) allocated to the translation buffer. Zero means default
506 size. */
507 void cpu_exec_init_all(unsigned long tb_size)
508 {
509 cpu_gen_init();
510 code_gen_alloc(tb_size);
511 code_gen_ptr = code_gen_buffer;
512 page_init();
513 #if !defined(CONFIG_USER_ONLY)
514 io_mem_init();
515 #endif
516 }
517
518 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
519
520 static void cpu_common_pre_save(void *opaque)
521 {
522 CPUState *env = opaque;
523
524 cpu_synchronize_state(env);
525 }
526
527 static int cpu_common_pre_load(void *opaque)
528 {
529 CPUState *env = opaque;
530
531 cpu_synchronize_state(env);
532 return 0;
533 }
534
535 static int cpu_common_post_load(void *opaque, int version_id)
536 {
537 CPUState *env = opaque;
538
539 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
540 version_id is increased. */
541 env->interrupt_request &= ~0x01;
542 tlb_flush(env, 1);
543
544 return 0;
545 }
546
547 static const VMStateDescription vmstate_cpu_common = {
548 .name = "cpu_common",
549 .version_id = 1,
550 .minimum_version_id = 1,
551 .minimum_version_id_old = 1,
552 .pre_save = cpu_common_pre_save,
553 .pre_load = cpu_common_pre_load,
554 .post_load = cpu_common_post_load,
555 .fields = (VMStateField []) {
556 VMSTATE_UINT32(halted, CPUState),
557 VMSTATE_UINT32(interrupt_request, CPUState),
558 VMSTATE_END_OF_LIST()
559 }
560 };
561 #endif
562
563 CPUState *qemu_get_cpu(int cpu)
564 {
565 CPUState *env = first_cpu;
566
567 while (env) {
568 if (env->cpu_index == cpu)
569 break;
570 env = env->next_cpu;
571 }
572
573 return env;
574 }
575
576 void cpu_exec_init(CPUState *env)
577 {
578 CPUState **penv;
579 int cpu_index;
580
581 #if defined(CONFIG_USER_ONLY)
582 cpu_list_lock();
583 #endif
584 env->next_cpu = NULL;
585 penv = &first_cpu;
586 cpu_index = 0;
587 while (*penv != NULL) {
588 penv = &(*penv)->next_cpu;
589 cpu_index++;
590 }
591 env->cpu_index = cpu_index;
592 env->numa_node = 0;
593 QTAILQ_INIT(&env->breakpoints);
594 QTAILQ_INIT(&env->watchpoints);
595 *penv = env;
596 #if defined(CONFIG_USER_ONLY)
597 cpu_list_unlock();
598 #endif
599 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
600 vmstate_register(cpu_index, &vmstate_cpu_common, env);
601 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
602 cpu_save, cpu_load, env);
603 #endif
604 }
605
606 static inline void invalidate_page_bitmap(PageDesc *p)
607 {
608 if (p->code_bitmap) {
609 qemu_free(p->code_bitmap);
610 p->code_bitmap = NULL;
611 }
612 p->code_write_count = 0;
613 }
614
615 /* set to NULL all the 'first_tb' fields in all PageDescs */
616 static void page_flush_tb(void)
617 {
618 int i, j;
619 PageDesc *p;
620
621 for(i = 0; i < L1_SIZE; i++) {
622 p = l1_map[i];
623 if (p) {
624 for(j = 0; j < L2_SIZE; j++) {
625 p->first_tb = NULL;
626 invalidate_page_bitmap(p);
627 p++;
628 }
629 }
630 }
631 }
632
633 /* flush all the translation blocks */
634 /* XXX: tb_flush is currently not thread safe */
635 void tb_flush(CPUState *env1)
636 {
637 CPUState *env;
638 #if defined(DEBUG_FLUSH)
639 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
640 (unsigned long)(code_gen_ptr - code_gen_buffer),
641 nb_tbs, nb_tbs > 0 ?
642 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
643 #endif
644 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
645 cpu_abort(env1, "Internal error: code buffer overflow\n");
646
647 nb_tbs = 0;
648
649 for(env = first_cpu; env != NULL; env = env->next_cpu) {
650 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
651 }
652
653 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
654 page_flush_tb();
655
656 code_gen_ptr = code_gen_buffer;
657 /* XXX: flush processor icache at this point if cache flush is
658 expensive */
659 tb_flush_count++;
660 }
661
662 #ifdef DEBUG_TB_CHECK
663
664 static void tb_invalidate_check(target_ulong address)
665 {
666 TranslationBlock *tb;
667 int i;
668 address &= TARGET_PAGE_MASK;
669 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
670 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
671 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
672 address >= tb->pc + tb->size)) {
673 printf("ERROR invalidate: address=" TARGET_FMT_lx
674 " PC=%08lx size=%04x\n",
675 address, (long)tb->pc, tb->size);
676 }
677 }
678 }
679 }
680
681 /* verify that all the pages have correct rights for code */
682 static void tb_page_check(void)
683 {
684 TranslationBlock *tb;
685 int i, flags1, flags2;
686
687 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
688 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
689 flags1 = page_get_flags(tb->pc);
690 flags2 = page_get_flags(tb->pc + tb->size - 1);
691 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
692 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
693 (long)tb->pc, tb->size, flags1, flags2);
694 }
695 }
696 }
697 }
698
699 #endif
700
701 /* invalidate one TB */
702 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
703 int next_offset)
704 {
705 TranslationBlock *tb1;
706 for(;;) {
707 tb1 = *ptb;
708 if (tb1 == tb) {
709 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
710 break;
711 }
712 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
713 }
714 }
715
716 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
717 {
718 TranslationBlock *tb1;
719 unsigned int n1;
720
721 for(;;) {
722 tb1 = *ptb;
723 n1 = (long)tb1 & 3;
724 tb1 = (TranslationBlock *)((long)tb1 & ~3);
725 if (tb1 == tb) {
726 *ptb = tb1->page_next[n1];
727 break;
728 }
729 ptb = &tb1->page_next[n1];
730 }
731 }
732
733 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
734 {
735 TranslationBlock *tb1, **ptb;
736 unsigned int n1;
737
738 ptb = &tb->jmp_next[n];
739 tb1 = *ptb;
740 if (tb1) {
741 /* find tb(n) in circular list */
742 for(;;) {
743 tb1 = *ptb;
744 n1 = (long)tb1 & 3;
745 tb1 = (TranslationBlock *)((long)tb1 & ~3);
746 if (n1 == n && tb1 == tb)
747 break;
748 if (n1 == 2) {
749 ptb = &tb1->jmp_first;
750 } else {
751 ptb = &tb1->jmp_next[n1];
752 }
753 }
754 /* now we can suppress tb(n) from the list */
755 *ptb = tb->jmp_next[n];
756
757 tb->jmp_next[n] = NULL;
758 }
759 }
760
761 /* reset the jump entry 'n' of a TB so that it is not chained to
762 another TB */
763 static inline void tb_reset_jump(TranslationBlock *tb, int n)
764 {
765 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
766 }
767
768 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
769 {
770 CPUState *env;
771 PageDesc *p;
772 unsigned int h, n1;
773 target_phys_addr_t phys_pc;
774 TranslationBlock *tb1, *tb2;
775
776 /* remove the TB from the hash list */
777 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
778 h = tb_phys_hash_func(phys_pc);
779 tb_remove(&tb_phys_hash[h], tb,
780 offsetof(TranslationBlock, phys_hash_next));
781
782 /* remove the TB from the page list */
783 if (tb->page_addr[0] != page_addr) {
784 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
789 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
790 tb_page_remove(&p->first_tb, tb);
791 invalidate_page_bitmap(p);
792 }
793
794 tb_invalidated_flag = 1;
795
796 /* remove the TB from the hash list */
797 h = tb_jmp_cache_hash_func(tb->pc);
798 for(env = first_cpu; env != NULL; env = env->next_cpu) {
799 if (env->tb_jmp_cache[h] == tb)
800 env->tb_jmp_cache[h] = NULL;
801 }
802
803 /* suppress this TB from the two jump lists */
804 tb_jmp_remove(tb, 0);
805 tb_jmp_remove(tb, 1);
806
807 /* suppress any remaining jumps to this TB */
808 tb1 = tb->jmp_first;
809 for(;;) {
810 n1 = (long)tb1 & 3;
811 if (n1 == 2)
812 break;
813 tb1 = (TranslationBlock *)((long)tb1 & ~3);
814 tb2 = tb1->jmp_next[n1];
815 tb_reset_jump(tb1, n1);
816 tb1->jmp_next[n1] = NULL;
817 tb1 = tb2;
818 }
819 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
820
821 tb_phys_invalidate_count++;
822 }
823
824 static inline void set_bits(uint8_t *tab, int start, int len)
825 {
826 int end, mask, end1;
827
828 end = start + len;
829 tab += start >> 3;
830 mask = 0xff << (start & 7);
831 if ((start & ~7) == (end & ~7)) {
832 if (start < end) {
833 mask &= ~(0xff << (end & 7));
834 *tab |= mask;
835 }
836 } else {
837 *tab++ |= mask;
838 start = (start + 8) & ~7;
839 end1 = end & ~7;
840 while (start < end1) {
841 *tab++ = 0xff;
842 start += 8;
843 }
844 if (start < end) {
845 mask = ~(0xff << (end & 7));
846 *tab |= mask;
847 }
848 }
849 }
850
851 static void build_page_bitmap(PageDesc *p)
852 {
853 int n, tb_start, tb_end;
854 TranslationBlock *tb;
855
856 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
857
858 tb = p->first_tb;
859 while (tb != NULL) {
860 n = (long)tb & 3;
861 tb = (TranslationBlock *)((long)tb & ~3);
862 /* NOTE: this is subtle as a TB may span two physical pages */
863 if (n == 0) {
864 /* NOTE: tb_end may be after the end of the page, but
865 it is not a problem */
866 tb_start = tb->pc & ~TARGET_PAGE_MASK;
867 tb_end = tb_start + tb->size;
868 if (tb_end > TARGET_PAGE_SIZE)
869 tb_end = TARGET_PAGE_SIZE;
870 } else {
871 tb_start = 0;
872 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
873 }
874 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
875 tb = tb->page_next[n];
876 }
877 }
878
879 TranslationBlock *tb_gen_code(CPUState *env,
880 target_ulong pc, target_ulong cs_base,
881 int flags, int cflags)
882 {
883 TranslationBlock *tb;
884 uint8_t *tc_ptr;
885 target_ulong phys_pc, phys_page2, virt_page2;
886 int code_gen_size;
887
888 phys_pc = get_phys_addr_code(env, pc);
889 tb = tb_alloc(pc);
890 if (!tb) {
891 /* flush must be done */
892 tb_flush(env);
893 /* cannot fail at this point */
894 tb = tb_alloc(pc);
895 /* Don't forget to invalidate previous TB info. */
896 tb_invalidated_flag = 1;
897 }
898 tc_ptr = code_gen_ptr;
899 tb->tc_ptr = tc_ptr;
900 tb->cs_base = cs_base;
901 tb->flags = flags;
902 tb->cflags = cflags;
903 cpu_gen_code(env, tb, &code_gen_size);
904 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
905
906 /* check next page if needed */
907 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
908 phys_page2 = -1;
909 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
910 phys_page2 = get_phys_addr_code(env, virt_page2);
911 }
912 tb_link_phys(tb, phys_pc, phys_page2);
913 return tb;
914 }
915
916 /* invalidate all TBs which intersect with the target physical page
917 starting in range [start;end[. NOTE: start and end must refer to
918 the same physical page. 'is_cpu_write_access' should be true if called
919 from a real cpu write access: the virtual CPU will exit the current
920 TB if code is modified inside this TB. */
921 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
922 int is_cpu_write_access)
923 {
924 TranslationBlock *tb, *tb_next, *saved_tb;
925 CPUState *env = cpu_single_env;
926 target_ulong tb_start, tb_end;
927 PageDesc *p;
928 int n;
929 #ifdef TARGET_HAS_PRECISE_SMC
930 int current_tb_not_found = is_cpu_write_access;
931 TranslationBlock *current_tb = NULL;
932 int current_tb_modified = 0;
933 target_ulong current_pc = 0;
934 target_ulong current_cs_base = 0;
935 int current_flags = 0;
936 #endif /* TARGET_HAS_PRECISE_SMC */
937
938 p = page_find(start >> TARGET_PAGE_BITS);
939 if (!p)
940 return;
941 if (!p->code_bitmap &&
942 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
943 is_cpu_write_access) {
944 /* build code bitmap */
945 build_page_bitmap(p);
946 }
947
948 /* we remove all the TBs in the range [start, end[ */
949 /* XXX: see if in some cases it could be faster to invalidate all the code */
950 tb = p->first_tb;
951 while (tb != NULL) {
952 n = (long)tb & 3;
953 tb = (TranslationBlock *)((long)tb & ~3);
954 tb_next = tb->page_next[n];
955 /* NOTE: this is subtle as a TB may span two physical pages */
956 if (n == 0) {
957 /* NOTE: tb_end may be after the end of the page, but
958 it is not a problem */
959 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
960 tb_end = tb_start + tb->size;
961 } else {
962 tb_start = tb->page_addr[1];
963 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
964 }
965 if (!(tb_end <= start || tb_start >= end)) {
966 #ifdef TARGET_HAS_PRECISE_SMC
967 if (current_tb_not_found) {
968 current_tb_not_found = 0;
969 current_tb = NULL;
970 if (env->mem_io_pc) {
971 /* now we have a real cpu fault */
972 current_tb = tb_find_pc(env->mem_io_pc);
973 }
974 }
975 if (current_tb == tb &&
976 (current_tb->cflags & CF_COUNT_MASK) != 1) {
977 /* If we are modifying the current TB, we must stop
978 its execution. We could be more precise by checking
979 that the modification is after the current PC, but it
980 would require a specialized function to partially
981 restore the CPU state */
982
983 current_tb_modified = 1;
984 cpu_restore_state(current_tb, env,
985 env->mem_io_pc, NULL);
986 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
987 &current_flags);
988 }
989 #endif /* TARGET_HAS_PRECISE_SMC */
990 /* we need to do that to handle the case where a signal
991 occurs while doing tb_phys_invalidate() */
992 saved_tb = NULL;
993 if (env) {
994 saved_tb = env->current_tb;
995 env->current_tb = NULL;
996 }
997 tb_phys_invalidate(tb, -1);
998 if (env) {
999 env->current_tb = saved_tb;
1000 if (env->interrupt_request && env->current_tb)
1001 cpu_interrupt(env, env->interrupt_request);
1002 }
1003 }
1004 tb = tb_next;
1005 }
1006 #if !defined(CONFIG_USER_ONLY)
1007 /* if no code remaining, no need to continue to use slow writes */
1008 if (!p->first_tb) {
1009 invalidate_page_bitmap(p);
1010 if (is_cpu_write_access) {
1011 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1012 }
1013 }
1014 #endif
1015 #ifdef TARGET_HAS_PRECISE_SMC
1016 if (current_tb_modified) {
1017 /* we generate a block containing just the instruction
1018 modifying the memory. It will ensure that it cannot modify
1019 itself */
1020 env->current_tb = NULL;
1021 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1022 cpu_resume_from_signal(env, NULL);
1023 }
1024 #endif
1025 }
1026
1027 /* len must be <= 8 and start must be a multiple of len */
1028 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1029 {
1030 PageDesc *p;
1031 int offset, b;
1032 #if 0
1033 if (1) {
1034 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1035 cpu_single_env->mem_io_vaddr, len,
1036 cpu_single_env->eip,
1037 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1038 }
1039 #endif
1040 p = page_find(start >> TARGET_PAGE_BITS);
1041 if (!p)
1042 return;
1043 if (p->code_bitmap) {
1044 offset = start & ~TARGET_PAGE_MASK;
1045 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1046 if (b & ((1 << len) - 1))
1047 goto do_invalidate;
1048 } else {
1049 do_invalidate:
1050 tb_invalidate_phys_page_range(start, start + len, 1);
1051 }
1052 }
1053
1054 #if !defined(CONFIG_SOFTMMU)
1055 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1056 unsigned long pc, void *puc)
1057 {
1058 TranslationBlock *tb;
1059 PageDesc *p;
1060 int n;
1061 #ifdef TARGET_HAS_PRECISE_SMC
1062 TranslationBlock *current_tb = NULL;
1063 CPUState *env = cpu_single_env;
1064 int current_tb_modified = 0;
1065 target_ulong current_pc = 0;
1066 target_ulong current_cs_base = 0;
1067 int current_flags = 0;
1068 #endif
1069
1070 addr &= TARGET_PAGE_MASK;
1071 p = page_find(addr >> TARGET_PAGE_BITS);
1072 if (!p)
1073 return;
1074 tb = p->first_tb;
1075 #ifdef TARGET_HAS_PRECISE_SMC
1076 if (tb && pc != 0) {
1077 current_tb = tb_find_pc(pc);
1078 }
1079 #endif
1080 while (tb != NULL) {
1081 n = (long)tb & 3;
1082 tb = (TranslationBlock *)((long)tb & ~3);
1083 #ifdef TARGET_HAS_PRECISE_SMC
1084 if (current_tb == tb &&
1085 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1086 /* If we are modifying the current TB, we must stop
1087 its execution. We could be more precise by checking
1088 that the modification is after the current PC, but it
1089 would require a specialized function to partially
1090 restore the CPU state */
1091
1092 current_tb_modified = 1;
1093 cpu_restore_state(current_tb, env, pc, puc);
1094 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1095 &current_flags);
1096 }
1097 #endif /* TARGET_HAS_PRECISE_SMC */
1098 tb_phys_invalidate(tb, addr);
1099 tb = tb->page_next[n];
1100 }
1101 p->first_tb = NULL;
1102 #ifdef TARGET_HAS_PRECISE_SMC
1103 if (current_tb_modified) {
1104 /* we generate a block containing just the instruction
1105 modifying the memory. It will ensure that it cannot modify
1106 itself */
1107 env->current_tb = NULL;
1108 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1109 cpu_resume_from_signal(env, puc);
1110 }
1111 #endif
1112 }
1113 #endif
1114
1115 /* add the tb in the target page and protect it if necessary */
1116 static inline void tb_alloc_page(TranslationBlock *tb,
1117 unsigned int n, target_ulong page_addr)
1118 {
1119 PageDesc *p;
1120 TranslationBlock *last_first_tb;
1121
1122 tb->page_addr[n] = page_addr;
1123 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1124 tb->page_next[n] = p->first_tb;
1125 last_first_tb = p->first_tb;
1126 p->first_tb = (TranslationBlock *)((long)tb | n);
1127 invalidate_page_bitmap(p);
1128
1129 #if defined(TARGET_HAS_SMC) || 1
1130
1131 #if defined(CONFIG_USER_ONLY)
1132 if (p->flags & PAGE_WRITE) {
1133 target_ulong addr;
1134 PageDesc *p2;
1135 int prot;
1136
1137 /* force the host page as non writable (writes will have a
1138 page fault + mprotect overhead) */
1139 page_addr &= qemu_host_page_mask;
1140 prot = 0;
1141 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1142 addr += TARGET_PAGE_SIZE) {
1143
1144 p2 = page_find (addr >> TARGET_PAGE_BITS);
1145 if (!p2)
1146 continue;
1147 prot |= p2->flags;
1148 p2->flags &= ~PAGE_WRITE;
1149 page_get_flags(addr);
1150 }
1151 mprotect(g2h(page_addr), qemu_host_page_size,
1152 (prot & PAGE_BITS) & ~PAGE_WRITE);
1153 #ifdef DEBUG_TB_INVALIDATE
1154 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1155 page_addr);
1156 #endif
1157 }
1158 #else
1159 /* if some code is already present, then the pages are already
1160 protected. So we handle the case where only the first TB is
1161 allocated in a physical page */
1162 if (!last_first_tb) {
1163 tlb_protect_code(page_addr);
1164 }
1165 #endif
1166
1167 #endif /* TARGET_HAS_SMC */
1168 }
1169
1170 /* Allocate a new translation block. Flush the translation buffer if
1171 too many translation blocks or too much generated code. */
1172 TranslationBlock *tb_alloc(target_ulong pc)
1173 {
1174 TranslationBlock *tb;
1175
1176 if (nb_tbs >= code_gen_max_blocks ||
1177 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1178 return NULL;
1179 tb = &tbs[nb_tbs++];
1180 tb->pc = pc;
1181 tb->cflags = 0;
1182 return tb;
1183 }
1184
1185 void tb_free(TranslationBlock *tb)
1186 {
1187 /* In practice this is mostly used for single use temporary TB
1188 Ignore the hard cases and just back up if this TB happens to
1189 be the last one generated. */
1190 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1191 code_gen_ptr = tb->tc_ptr;
1192 nb_tbs--;
1193 }
1194 }
1195
1196 /* add a new TB and link it to the physical page tables. phys_page2 is
1197 (-1) to indicate that only one page contains the TB. */
1198 void tb_link_phys(TranslationBlock *tb,
1199 target_ulong phys_pc, target_ulong phys_page2)
1200 {
1201 unsigned int h;
1202 TranslationBlock **ptb;
1203
1204 /* Grab the mmap lock to stop another thread invalidating this TB
1205 before we are done. */
1206 mmap_lock();
1207 /* add in the physical hash table */
1208 h = tb_phys_hash_func(phys_pc);
1209 ptb = &tb_phys_hash[h];
1210 tb->phys_hash_next = *ptb;
1211 *ptb = tb;
1212
1213 /* add in the page list */
1214 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1215 if (phys_page2 != -1)
1216 tb_alloc_page(tb, 1, phys_page2);
1217 else
1218 tb->page_addr[1] = -1;
1219
1220 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1221 tb->jmp_next[0] = NULL;
1222 tb->jmp_next[1] = NULL;
1223
1224 /* init original jump addresses */
1225 if (tb->tb_next_offset[0] != 0xffff)
1226 tb_reset_jump(tb, 0);
1227 if (tb->tb_next_offset[1] != 0xffff)
1228 tb_reset_jump(tb, 1);
1229
1230 #ifdef DEBUG_TB_CHECK
1231 tb_page_check();
1232 #endif
1233 mmap_unlock();
1234 }
1235
1236 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1237 tb[1].tc_ptr. Return NULL if not found */
1238 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1239 {
1240 int m_min, m_max, m;
1241 unsigned long v;
1242 TranslationBlock *tb;
1243
1244 if (nb_tbs <= 0)
1245 return NULL;
1246 if (tc_ptr < (unsigned long)code_gen_buffer ||
1247 tc_ptr >= (unsigned long)code_gen_ptr)
1248 return NULL;
1249 /* binary search (cf Knuth) */
1250 m_min = 0;
1251 m_max = nb_tbs - 1;
1252 while (m_min <= m_max) {
1253 m = (m_min + m_max) >> 1;
1254 tb = &tbs[m];
1255 v = (unsigned long)tb->tc_ptr;
1256 if (v == tc_ptr)
1257 return tb;
1258 else if (tc_ptr < v) {
1259 m_max = m - 1;
1260 } else {
1261 m_min = m + 1;
1262 }
1263 }
1264 return &tbs[m_max];
1265 }
1266
1267 static void tb_reset_jump_recursive(TranslationBlock *tb);
1268
1269 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1270 {
1271 TranslationBlock *tb1, *tb_next, **ptb;
1272 unsigned int n1;
1273
1274 tb1 = tb->jmp_next[n];
1275 if (tb1 != NULL) {
1276 /* find head of list */
1277 for(;;) {
1278 n1 = (long)tb1 & 3;
1279 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1280 if (n1 == 2)
1281 break;
1282 tb1 = tb1->jmp_next[n1];
1283 }
1284 /* we are now sure now that tb jumps to tb1 */
1285 tb_next = tb1;
1286
1287 /* remove tb from the jmp_first list */
1288 ptb = &tb_next->jmp_first;
1289 for(;;) {
1290 tb1 = *ptb;
1291 n1 = (long)tb1 & 3;
1292 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1293 if (n1 == n && tb1 == tb)
1294 break;
1295 ptb = &tb1->jmp_next[n1];
1296 }
1297 *ptb = tb->jmp_next[n];
1298 tb->jmp_next[n] = NULL;
1299
1300 /* suppress the jump to next tb in generated code */
1301 tb_reset_jump(tb, n);
1302
1303 /* suppress jumps in the tb on which we could have jumped */
1304 tb_reset_jump_recursive(tb_next);
1305 }
1306 }
1307
1308 static void tb_reset_jump_recursive(TranslationBlock *tb)
1309 {
1310 tb_reset_jump_recursive2(tb, 0);
1311 tb_reset_jump_recursive2(tb, 1);
1312 }
1313
1314 #if defined(TARGET_HAS_ICE)
1315 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1316 {
1317 target_phys_addr_t addr;
1318 target_ulong pd;
1319 ram_addr_t ram_addr;
1320 PhysPageDesc *p;
1321
1322 addr = cpu_get_phys_page_debug(env, pc);
1323 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1324 if (!p) {
1325 pd = IO_MEM_UNASSIGNED;
1326 } else {
1327 pd = p->phys_offset;
1328 }
1329 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1330 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1331 }
1332 #endif
1333
1334 /* Add a watchpoint. */
1335 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags, CPUWatchpoint **watchpoint)
1337 {
1338 target_ulong len_mask = ~(len - 1);
1339 CPUWatchpoint *wp;
1340
1341 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1342 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1343 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1344 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1345 return -EINVAL;
1346 }
1347 wp = qemu_malloc(sizeof(*wp));
1348
1349 wp->vaddr = addr;
1350 wp->len_mask = len_mask;
1351 wp->flags = flags;
1352
1353 /* keep all GDB-injected watchpoints in front */
1354 if (flags & BP_GDB)
1355 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1356 else
1357 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1358
1359 tlb_flush_page(env, addr);
1360
1361 if (watchpoint)
1362 *watchpoint = wp;
1363 return 0;
1364 }
1365
1366 /* Remove a specific watchpoint. */
1367 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1368 int flags)
1369 {
1370 target_ulong len_mask = ~(len - 1);
1371 CPUWatchpoint *wp;
1372
1373 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1374 if (addr == wp->vaddr && len_mask == wp->len_mask
1375 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1376 cpu_watchpoint_remove_by_ref(env, wp);
1377 return 0;
1378 }
1379 }
1380 return -ENOENT;
1381 }
1382
1383 /* Remove a specific watchpoint by reference. */
1384 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1385 {
1386 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1387
1388 tlb_flush_page(env, watchpoint->vaddr);
1389
1390 qemu_free(watchpoint);
1391 }
1392
1393 /* Remove all matching watchpoints. */
1394 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1395 {
1396 CPUWatchpoint *wp, *next;
1397
1398 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1399 if (wp->flags & mask)
1400 cpu_watchpoint_remove_by_ref(env, wp);
1401 }
1402 }
1403
1404 /* Add a breakpoint. */
1405 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1406 CPUBreakpoint **breakpoint)
1407 {
1408 #if defined(TARGET_HAS_ICE)
1409 CPUBreakpoint *bp;
1410
1411 bp = qemu_malloc(sizeof(*bp));
1412
1413 bp->pc = pc;
1414 bp->flags = flags;
1415
1416 /* keep all GDB-injected breakpoints in front */
1417 if (flags & BP_GDB)
1418 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1419 else
1420 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1421
1422 breakpoint_invalidate(env, pc);
1423
1424 if (breakpoint)
1425 *breakpoint = bp;
1426 return 0;
1427 #else
1428 return -ENOSYS;
1429 #endif
1430 }
1431
1432 /* Remove a specific breakpoint. */
1433 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1434 {
1435 #if defined(TARGET_HAS_ICE)
1436 CPUBreakpoint *bp;
1437
1438 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1439 if (bp->pc == pc && bp->flags == flags) {
1440 cpu_breakpoint_remove_by_ref(env, bp);
1441 return 0;
1442 }
1443 }
1444 return -ENOENT;
1445 #else
1446 return -ENOSYS;
1447 #endif
1448 }
1449
1450 /* Remove a specific breakpoint by reference. */
1451 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1452 {
1453 #if defined(TARGET_HAS_ICE)
1454 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1455
1456 breakpoint_invalidate(env, breakpoint->pc);
1457
1458 qemu_free(breakpoint);
1459 #endif
1460 }
1461
1462 /* Remove all matching breakpoints. */
1463 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1464 {
1465 #if defined(TARGET_HAS_ICE)
1466 CPUBreakpoint *bp, *next;
1467
1468 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1469 if (bp->flags & mask)
1470 cpu_breakpoint_remove_by_ref(env, bp);
1471 }
1472 #endif
1473 }
1474
1475 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1476 CPU loop after each instruction */
1477 void cpu_single_step(CPUState *env, int enabled)
1478 {
1479 #if defined(TARGET_HAS_ICE)
1480 if (env->singlestep_enabled != enabled) {
1481 env->singlestep_enabled = enabled;
1482 if (kvm_enabled())
1483 kvm_update_guest_debug(env, 0);
1484 else {
1485 /* must flush all the translated code to avoid inconsistencies */
1486 /* XXX: only flush what is necessary */
1487 tb_flush(env);
1488 }
1489 }
1490 #endif
1491 }
1492
1493 /* enable or disable low levels log */
1494 void cpu_set_log(int log_flags)
1495 {
1496 loglevel = log_flags;
1497 if (loglevel && !logfile) {
1498 logfile = fopen(logfilename, log_append ? "a" : "w");
1499 if (!logfile) {
1500 perror(logfilename);
1501 _exit(1);
1502 }
1503 #if !defined(CONFIG_SOFTMMU)
1504 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1505 {
1506 static char logfile_buf[4096];
1507 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1508 }
1509 #elif !defined(_WIN32)
1510 /* Win32 doesn't support line-buffering and requires size >= 2 */
1511 setvbuf(logfile, NULL, _IOLBF, 0);
1512 #endif
1513 log_append = 1;
1514 }
1515 if (!loglevel && logfile) {
1516 fclose(logfile);
1517 logfile = NULL;
1518 }
1519 }
1520
1521 void cpu_set_log_filename(const char *filename)
1522 {
1523 logfilename = strdup(filename);
1524 if (logfile) {
1525 fclose(logfile);
1526 logfile = NULL;
1527 }
1528 cpu_set_log(loglevel);
1529 }
1530
1531 static void cpu_unlink_tb(CPUState *env)
1532 {
1533 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1534 problem and hope the cpu will stop of its own accord. For userspace
1535 emulation this often isn't actually as bad as it sounds. Often
1536 signals are used primarily to interrupt blocking syscalls. */
1537 TranslationBlock *tb;
1538 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1539
1540 tb = env->current_tb;
1541 /* if the cpu is currently executing code, we must unlink it and
1542 all the potentially executing TB */
1543 if (tb) {
1544 spin_lock(&interrupt_lock);
1545 env->current_tb = NULL;
1546 tb_reset_jump_recursive(tb);
1547 spin_unlock(&interrupt_lock);
1548 }
1549 }
1550
1551 /* mask must never be zero, except for A20 change call */
1552 void cpu_interrupt(CPUState *env, int mask)
1553 {
1554 int old_mask;
1555
1556 old_mask = env->interrupt_request;
1557 env->interrupt_request |= mask;
1558
1559 #ifndef CONFIG_USER_ONLY
1560 /*
1561 * If called from iothread context, wake the target cpu in
1562 * case its halted.
1563 */
1564 if (!qemu_cpu_self(env)) {
1565 qemu_cpu_kick(env);
1566 return;
1567 }
1568 #endif
1569
1570 if (use_icount) {
1571 env->icount_decr.u16.high = 0xffff;
1572 #ifndef CONFIG_USER_ONLY
1573 if (!can_do_io(env)
1574 && (mask & ~old_mask) != 0) {
1575 cpu_abort(env, "Raised interrupt while not in I/O function");
1576 }
1577 #endif
1578 } else {
1579 cpu_unlink_tb(env);
1580 }
1581 }
1582
1583 void cpu_reset_interrupt(CPUState *env, int mask)
1584 {
1585 env->interrupt_request &= ~mask;
1586 }
1587
1588 void cpu_exit(CPUState *env)
1589 {
1590 env->exit_request = 1;
1591 cpu_unlink_tb(env);
1592 }
1593
1594 const CPULogItem cpu_log_items[] = {
1595 { CPU_LOG_TB_OUT_ASM, "out_asm",
1596 "show generated host assembly code for each compiled TB" },
1597 { CPU_LOG_TB_IN_ASM, "in_asm",
1598 "show target assembly code for each compiled TB" },
1599 { CPU_LOG_TB_OP, "op",
1600 "show micro ops for each compiled TB" },
1601 { CPU_LOG_TB_OP_OPT, "op_opt",
1602 "show micro ops "
1603 #ifdef TARGET_I386
1604 "before eflags optimization and "
1605 #endif
1606 "after liveness analysis" },
1607 { CPU_LOG_INT, "int",
1608 "show interrupts/exceptions in short format" },
1609 { CPU_LOG_EXEC, "exec",
1610 "show trace before each executed TB (lots of logs)" },
1611 { CPU_LOG_TB_CPU, "cpu",
1612 "show CPU state before block translation" },
1613 #ifdef TARGET_I386
1614 { CPU_LOG_PCALL, "pcall",
1615 "show protected mode far calls/returns/exceptions" },
1616 { CPU_LOG_RESET, "cpu_reset",
1617 "show CPU state before CPU resets" },
1618 #endif
1619 #ifdef DEBUG_IOPORT
1620 { CPU_LOG_IOPORT, "ioport",
1621 "show all i/o ports accesses" },
1622 #endif
1623 { 0, NULL, NULL },
1624 };
1625
1626 static int cmp1(const char *s1, int n, const char *s2)
1627 {
1628 if (strlen(s2) != n)
1629 return 0;
1630 return memcmp(s1, s2, n) == 0;
1631 }
1632
1633 /* takes a comma separated list of log masks. Return 0 if error. */
1634 int cpu_str_to_log_mask(const char *str)
1635 {
1636 const CPULogItem *item;
1637 int mask;
1638 const char *p, *p1;
1639
1640 p = str;
1641 mask = 0;
1642 for(;;) {
1643 p1 = strchr(p, ',');
1644 if (!p1)
1645 p1 = p + strlen(p);
1646 if(cmp1(p,p1-p,"all")) {
1647 for(item = cpu_log_items; item->mask != 0; item++) {
1648 mask |= item->mask;
1649 }
1650 } else {
1651 for(item = cpu_log_items; item->mask != 0; item++) {
1652 if (cmp1(p, p1 - p, item->name))
1653 goto found;
1654 }
1655 return 0;
1656 }
1657 found:
1658 mask |= item->mask;
1659 if (*p1 != ',')
1660 break;
1661 p = p1 + 1;
1662 }
1663 return mask;
1664 }
1665
1666 void cpu_abort(CPUState *env, const char *fmt, ...)
1667 {
1668 va_list ap;
1669 va_list ap2;
1670
1671 va_start(ap, fmt);
1672 va_copy(ap2, ap);
1673 fprintf(stderr, "qemu: fatal: ");
1674 vfprintf(stderr, fmt, ap);
1675 fprintf(stderr, "\n");
1676 #ifdef TARGET_I386
1677 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1678 #else
1679 cpu_dump_state(env, stderr, fprintf, 0);
1680 #endif
1681 if (qemu_log_enabled()) {
1682 qemu_log("qemu: fatal: ");
1683 qemu_log_vprintf(fmt, ap2);
1684 qemu_log("\n");
1685 #ifdef TARGET_I386
1686 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1687 #else
1688 log_cpu_state(env, 0);
1689 #endif
1690 qemu_log_flush();
1691 qemu_log_close();
1692 }
1693 va_end(ap2);
1694 va_end(ap);
1695 abort();
1696 }
1697
1698 CPUState *cpu_copy(CPUState *env)
1699 {
1700 CPUState *new_env = cpu_init(env->cpu_model_str);
1701 CPUState *next_cpu = new_env->next_cpu;
1702 int cpu_index = new_env->cpu_index;
1703 #if defined(TARGET_HAS_ICE)
1704 CPUBreakpoint *bp;
1705 CPUWatchpoint *wp;
1706 #endif
1707
1708 memcpy(new_env, env, sizeof(CPUState));
1709
1710 /* Preserve chaining and index. */
1711 new_env->next_cpu = next_cpu;
1712 new_env->cpu_index = cpu_index;
1713
1714 /* Clone all break/watchpoints.
1715 Note: Once we support ptrace with hw-debug register access, make sure
1716 BP_CPU break/watchpoints are handled correctly on clone. */
1717 QTAILQ_INIT(&env->breakpoints);
1718 QTAILQ_INIT(&env->watchpoints);
1719 #if defined(TARGET_HAS_ICE)
1720 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1721 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1722 }
1723 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1724 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1725 wp->flags, NULL);
1726 }
1727 #endif
1728
1729 return new_env;
1730 }
1731
1732 #if !defined(CONFIG_USER_ONLY)
1733
1734 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1735 {
1736 unsigned int i;
1737
1738 /* Discard jump cache entries for any tb which might potentially
1739 overlap the flushed page. */
1740 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1741 memset (&env->tb_jmp_cache[i], 0,
1742 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1743
1744 i = tb_jmp_cache_hash_page(addr);
1745 memset (&env->tb_jmp_cache[i], 0,
1746 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1747 }
1748
1749 static CPUTLBEntry s_cputlb_empty_entry = {
1750 .addr_read = -1,
1751 .addr_write = -1,
1752 .addr_code = -1,
1753 .addend = -1,
1754 };
1755
1756 /* NOTE: if flush_global is true, also flush global entries (not
1757 implemented yet) */
1758 void tlb_flush(CPUState *env, int flush_global)
1759 {
1760 int i;
1761
1762 #if defined(DEBUG_TLB)
1763 printf("tlb_flush:\n");
1764 #endif
1765 /* must reset current TB so that interrupts cannot modify the
1766 links while we are modifying them */
1767 env->current_tb = NULL;
1768
1769 for(i = 0; i < CPU_TLB_SIZE; i++) {
1770 int mmu_idx;
1771 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1772 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1773 }
1774 }
1775
1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1777
1778 tlb_flush_count++;
1779 }
1780
1781 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1782 {
1783 if (addr == (tlb_entry->addr_read &
1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1785 addr == (tlb_entry->addr_write &
1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1787 addr == (tlb_entry->addr_code &
1788 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1789 *tlb_entry = s_cputlb_empty_entry;
1790 }
1791 }
1792
1793 void tlb_flush_page(CPUState *env, target_ulong addr)
1794 {
1795 int i;
1796 int mmu_idx;
1797
1798 #if defined(DEBUG_TLB)
1799 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1800 #endif
1801 /* must reset current TB so that interrupts cannot modify the
1802 links while we are modifying them */
1803 env->current_tb = NULL;
1804
1805 addr &= TARGET_PAGE_MASK;
1806 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1807 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1808 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1809
1810 tlb_flush_jmp_cache(env, addr);
1811 }
1812
1813 /* update the TLBs so that writes to code in the virtual page 'addr'
1814 can be detected */
1815 static void tlb_protect_code(ram_addr_t ram_addr)
1816 {
1817 cpu_physical_memory_reset_dirty(ram_addr,
1818 ram_addr + TARGET_PAGE_SIZE,
1819 CODE_DIRTY_FLAG);
1820 }
1821
1822 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1823 tested for self modifying code */
1824 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1825 target_ulong vaddr)
1826 {
1827 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1828 }
1829
1830 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1831 unsigned long start, unsigned long length)
1832 {
1833 unsigned long addr;
1834 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1835 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1836 if ((addr - start) < length) {
1837 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1838 }
1839 }
1840 }
1841
1842 /* Note: start and end must be within the same ram block. */
1843 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1844 int dirty_flags)
1845 {
1846 CPUState *env;
1847 unsigned long length, start1;
1848 int i, mask, len;
1849 uint8_t *p;
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 len = length >> TARGET_PAGE_BITS;
1858 mask = ~dirty_flags;
1859 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1860 for(i = 0; i < len; i++)
1861 p[i] &= mask;
1862
1863 /* we modify the TLB cache so that the dirty bit will be set again
1864 when accessing the range */
1865 start1 = (unsigned long)qemu_get_ram_ptr(start);
1866 /* Chek that we don't span multiple blocks - this breaks the
1867 address comparisons below. */
1868 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1869 != (end - 1) - start) {
1870 abort();
1871 }
1872
1873 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1876 for(i = 0; i < CPU_TLB_SIZE; i++)
1877 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1878 start1, length);
1879 }
1880 }
1881 }
1882
1883 int cpu_physical_memory_set_dirty_tracking(int enable)
1884 {
1885 in_migration = enable;
1886 if (kvm_enabled()) {
1887 return kvm_set_migration_log(enable);
1888 }
1889 return 0;
1890 }
1891
1892 int cpu_physical_memory_get_dirty_tracking(void)
1893 {
1894 return in_migration;
1895 }
1896
1897 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1898 target_phys_addr_t end_addr)
1899 {
1900 int ret = 0;
1901
1902 if (kvm_enabled())
1903 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1904 return ret;
1905 }
1906
1907 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1908 {
1909 ram_addr_t ram_addr;
1910 void *p;
1911
1912 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1913 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1914 + tlb_entry->addend);
1915 ram_addr = qemu_ram_addr_from_host(p);
1916 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1917 tlb_entry->addr_write |= TLB_NOTDIRTY;
1918 }
1919 }
1920 }
1921
1922 /* update the TLB according to the current state of the dirty bits */
1923 void cpu_tlb_update_dirty(CPUState *env)
1924 {
1925 int i;
1926 int mmu_idx;
1927 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1928 for(i = 0; i < CPU_TLB_SIZE; i++)
1929 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1930 }
1931 }
1932
1933 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1934 {
1935 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1936 tlb_entry->addr_write = vaddr;
1937 }
1938
1939 /* update the TLB corresponding to virtual page vaddr
1940 so that it is no longer dirty */
1941 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1942 {
1943 int i;
1944 int mmu_idx;
1945
1946 vaddr &= TARGET_PAGE_MASK;
1947 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1948 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1949 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1950 }
1951
1952 /* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
1956 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1957 target_phys_addr_t paddr, int prot,
1958 int mmu_idx, int is_softmmu)
1959 {
1960 PhysPageDesc *p;
1961 unsigned long pd;
1962 unsigned int index;
1963 target_ulong address;
1964 target_ulong code_address;
1965 target_phys_addr_t addend;
1966 int ret;
1967 CPUTLBEntry *te;
1968 CPUWatchpoint *wp;
1969 target_phys_addr_t iotlb;
1970
1971 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1972 if (!p) {
1973 pd = IO_MEM_UNASSIGNED;
1974 } else {
1975 pd = p->phys_offset;
1976 }
1977 #if defined(DEBUG_TLB)
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1980 #endif
1981
1982 ret = 0;
1983 address = vaddr;
1984 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1985 /* IO memory case (romd handled later) */
1986 address |= TLB_MMIO;
1987 }
1988 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1989 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1990 /* Normal RAM. */
1991 iotlb = pd & TARGET_PAGE_MASK;
1992 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1993 iotlb |= IO_MEM_NOTDIRTY;
1994 else
1995 iotlb |= IO_MEM_ROM;
1996 } else {
1997 /* IO handlers are currently passed a physical address.
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
2003 iotlb = (pd & ~TARGET_PAGE_MASK);
2004 if (p) {
2005 iotlb += p->region_offset;
2006 } else {
2007 iotlb += paddr;
2008 }
2009 }
2010
2011 code_address = address;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
2014 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2015 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2016 iotlb = io_mem_watch + paddr;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address |= TLB_MMIO;
2020 }
2021 }
2022
2023 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2024 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2025 te = &env->tlb_table[mmu_idx][index];
2026 te->addend = addend - vaddr;
2027 if (prot & PAGE_READ) {
2028 te->addr_read = address;
2029 } else {
2030 te->addr_read = -1;
2031 }
2032
2033 if (prot & PAGE_EXEC) {
2034 te->addr_code = code_address;
2035 } else {
2036 te->addr_code = -1;
2037 }
2038 if (prot & PAGE_WRITE) {
2039 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2040 (pd & IO_MEM_ROMD)) {
2041 /* Write access calls the I/O callback. */
2042 te->addr_write = address | TLB_MMIO;
2043 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2044 !cpu_physical_memory_is_dirty(pd)) {
2045 te->addr_write = address | TLB_NOTDIRTY;
2046 } else {
2047 te->addr_write = address;
2048 }
2049 } else {
2050 te->addr_write = -1;
2051 }
2052 return ret;
2053 }
2054
2055 #else
2056
2057 void tlb_flush(CPUState *env, int flush_global)
2058 {
2059 }
2060
2061 void tlb_flush_page(CPUState *env, target_ulong addr)
2062 {
2063 }
2064
2065 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2066 target_phys_addr_t paddr, int prot,
2067 int mmu_idx, int is_softmmu)
2068 {
2069 return 0;
2070 }
2071
2072 /*
2073 * Walks guest process memory "regions" one by one
2074 * and calls callback function 'fn' for each region.
2075 */
2076 int walk_memory_regions(void *priv,
2077 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2078 {
2079 unsigned long start, end;
2080 PageDesc *p = NULL;
2081 int i, j, prot, prot1;
2082 int rc = 0;
2083
2084 start = end = -1;
2085 prot = 0;
2086
2087 for (i = 0; i <= L1_SIZE; i++) {
2088 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2089 for (j = 0; j < L2_SIZE; j++) {
2090 prot1 = (p == NULL) ? 0 : p[j].flags;
2091 /*
2092 * "region" is one continuous chunk of memory
2093 * that has same protection flags set.
2094 */
2095 if (prot1 != prot) {
2096 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2097 if (start != -1) {
2098 rc = (*fn)(priv, start, end, prot);
2099 /* callback can stop iteration by returning != 0 */
2100 if (rc != 0)
2101 return (rc);
2102 }
2103 if (prot1 != 0)
2104 start = end;
2105 else
2106 start = -1;
2107 prot = prot1;
2108 }
2109 if (p == NULL)
2110 break;
2111 }
2112 }
2113 return (rc);
2114 }
2115
2116 static int dump_region(void *priv, unsigned long start,
2117 unsigned long end, unsigned long prot)
2118 {
2119 FILE *f = (FILE *)priv;
2120
2121 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2122 start, end, end - start,
2123 ((prot & PAGE_READ) ? 'r' : '-'),
2124 ((prot & PAGE_WRITE) ? 'w' : '-'),
2125 ((prot & PAGE_EXEC) ? 'x' : '-'));
2126
2127 return (0);
2128 }
2129
2130 /* dump memory mappings */
2131 void page_dump(FILE *f)
2132 {
2133 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2134 "start", "end", "size", "prot");
2135 walk_memory_regions(f, dump_region);
2136 }
2137
2138 int page_get_flags(target_ulong address)
2139 {
2140 PageDesc *p;
2141
2142 p = page_find(address >> TARGET_PAGE_BITS);
2143 if (!p)
2144 return 0;
2145 return p->flags;
2146 }
2147
2148 /* modify the flags of a page and invalidate the code if
2149 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2150 depending on PAGE_WRITE */
2151 void page_set_flags(target_ulong start, target_ulong end, int flags)
2152 {
2153 PageDesc *p;
2154 target_ulong addr;
2155
2156 /* mmap_lock should already be held. */
2157 start = start & TARGET_PAGE_MASK;
2158 end = TARGET_PAGE_ALIGN(end);
2159 if (flags & PAGE_WRITE)
2160 flags |= PAGE_WRITE_ORG;
2161 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2162 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2163 /* We may be called for host regions that are outside guest
2164 address space. */
2165 if (!p)
2166 return;
2167 /* if the write protection is set, then we invalidate the code
2168 inside */
2169 if (!(p->flags & PAGE_WRITE) &&
2170 (flags & PAGE_WRITE) &&
2171 p->first_tb) {
2172 tb_invalidate_phys_page(addr, 0, NULL);
2173 }
2174 p->flags = flags;
2175 }
2176 }
2177
2178 int page_check_range(target_ulong start, target_ulong len, int flags)
2179 {
2180 PageDesc *p;
2181 target_ulong end;
2182 target_ulong addr;
2183
2184 if (start + len < start)
2185 /* we've wrapped around */
2186 return -1;
2187
2188 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2189 start = start & TARGET_PAGE_MASK;
2190
2191 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2192 p = page_find(addr >> TARGET_PAGE_BITS);
2193 if( !p )
2194 return -1;
2195 if( !(p->flags & PAGE_VALID) )
2196 return -1;
2197
2198 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2199 return -1;
2200 if (flags & PAGE_WRITE) {
2201 if (!(p->flags & PAGE_WRITE_ORG))
2202 return -1;
2203 /* unprotect the page if it was put read-only because it
2204 contains translated code */
2205 if (!(p->flags & PAGE_WRITE)) {
2206 if (!page_unprotect(addr, 0, NULL))
2207 return -1;
2208 }
2209 return 0;
2210 }
2211 }
2212 return 0;
2213 }
2214
2215 /* called from signal handler: invalidate the code and unprotect the
2216 page. Return TRUE if the fault was successfully handled. */
2217 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2218 {
2219 unsigned int page_index, prot, pindex;
2220 PageDesc *p, *p1;
2221 target_ulong host_start, host_end, addr;
2222
2223 /* Technically this isn't safe inside a signal handler. However we
2224 know this only ever happens in a synchronous SEGV handler, so in
2225 practice it seems to be ok. */
2226 mmap_lock();
2227
2228 host_start = address & qemu_host_page_mask;
2229 page_index = host_start >> TARGET_PAGE_BITS;
2230 p1 = page_find(page_index);
2231 if (!p1) {
2232 mmap_unlock();
2233 return 0;
2234 }
2235 host_end = host_start + qemu_host_page_size;
2236 p = p1;
2237 prot = 0;
2238 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2239 prot |= p->flags;
2240 p++;
2241 }
2242 /* if the page was really writable, then we change its
2243 protection back to writable */
2244 if (prot & PAGE_WRITE_ORG) {
2245 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2246 if (!(p1[pindex].flags & PAGE_WRITE)) {
2247 mprotect((void *)g2h(host_start), qemu_host_page_size,
2248 (prot & PAGE_BITS) | PAGE_WRITE);
2249 p1[pindex].flags |= PAGE_WRITE;
2250 /* and since the content will be modified, we must invalidate
2251 the corresponding translated code. */
2252 tb_invalidate_phys_page(address, pc, puc);
2253 #ifdef DEBUG_TB_CHECK
2254 tb_invalidate_check(address);
2255 #endif
2256 mmap_unlock();
2257 return 1;
2258 }
2259 }
2260 mmap_unlock();
2261 return 0;
2262 }
2263
2264 static inline void tlb_set_dirty(CPUState *env,
2265 unsigned long addr, target_ulong vaddr)
2266 {
2267 }
2268 #endif /* defined(CONFIG_USER_ONLY) */
2269
2270 #if !defined(CONFIG_USER_ONLY)
2271
2272 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2273 ram_addr_t memory, ram_addr_t region_offset);
2274 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2275 ram_addr_t orig_memory, ram_addr_t region_offset);
2276 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2277 need_subpage) \
2278 do { \
2279 if (addr > start_addr) \
2280 start_addr2 = 0; \
2281 else { \
2282 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2283 if (start_addr2 > 0) \
2284 need_subpage = 1; \
2285 } \
2286 \
2287 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2288 end_addr2 = TARGET_PAGE_SIZE - 1; \
2289 else { \
2290 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2291 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2292 need_subpage = 1; \
2293 } \
2294 } while (0)
2295
2296 /* register physical memory.
2297 For RAM, 'size' must be a multiple of the target page size.
2298 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2299 io memory page. The address used when calling the IO function is
2300 the offset from the start of the region, plus region_offset. Both
2301 start_addr and region_offset are rounded down to a page boundary
2302 before calculating this offset. This should not be a problem unless
2303 the low bits of start_addr and region_offset differ. */
2304 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2305 ram_addr_t size,
2306 ram_addr_t phys_offset,
2307 ram_addr_t region_offset)
2308 {
2309 target_phys_addr_t addr, end_addr;
2310 PhysPageDesc *p;
2311 CPUState *env;
2312 ram_addr_t orig_size = size;
2313 void *subpage;
2314
2315 if (kvm_enabled())
2316 kvm_set_phys_mem(start_addr, size, phys_offset);
2317
2318 if (phys_offset == IO_MEM_UNASSIGNED) {
2319 region_offset = start_addr;
2320 }
2321 region_offset &= TARGET_PAGE_MASK;
2322 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2323 end_addr = start_addr + (target_phys_addr_t)size;
2324 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2325 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2326 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2327 ram_addr_t orig_memory = p->phys_offset;
2328 target_phys_addr_t start_addr2, end_addr2;
2329 int need_subpage = 0;
2330
2331 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2332 need_subpage);
2333 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2334 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2335 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2336 &p->phys_offset, orig_memory,
2337 p->region_offset);
2338 } else {
2339 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2340 >> IO_MEM_SHIFT];
2341 }
2342 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2343 region_offset);
2344 p->region_offset = 0;
2345 } else {
2346 p->phys_offset = phys_offset;
2347 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2348 (phys_offset & IO_MEM_ROMD))
2349 phys_offset += TARGET_PAGE_SIZE;
2350 }
2351 } else {
2352 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2353 p->phys_offset = phys_offset;
2354 p->region_offset = region_offset;
2355 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2356 (phys_offset & IO_MEM_ROMD)) {
2357 phys_offset += TARGET_PAGE_SIZE;
2358 } else {
2359 target_phys_addr_t start_addr2, end_addr2;
2360 int need_subpage = 0;
2361
2362 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2363 end_addr2, need_subpage);
2364
2365 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2366 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2367 &p->phys_offset, IO_MEM_UNASSIGNED,
2368 addr & TARGET_PAGE_MASK);
2369 subpage_register(subpage, start_addr2, end_addr2,
2370 phys_offset, region_offset);
2371 p->region_offset = 0;
2372 }
2373 }
2374 }
2375 region_offset += TARGET_PAGE_SIZE;
2376 }
2377
2378 /* since each CPU stores ram addresses in its TLB cache, we must
2379 reset the modified entries */
2380 /* XXX: slow ! */
2381 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2382 tlb_flush(env, 1);
2383 }
2384 }
2385
2386 /* XXX: temporary until new memory mapping API */
2387 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2388 {
2389 PhysPageDesc *p;
2390
2391 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2392 if (!p)
2393 return IO_MEM_UNASSIGNED;
2394 return p->phys_offset;
2395 }
2396
2397 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2398 {
2399 if (kvm_enabled())
2400 kvm_coalesce_mmio_region(addr, size);
2401 }
2402
2403 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2404 {
2405 if (kvm_enabled())
2406 kvm_uncoalesce_mmio_region(addr, size);
2407 }
2408
2409 void qemu_flush_coalesced_mmio_buffer(void)
2410 {
2411 if (kvm_enabled())
2412 kvm_flush_coalesced_mmio_buffer();
2413 }
2414
2415 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2416 {
2417 RAMBlock *new_block;
2418
2419 size = TARGET_PAGE_ALIGN(size);
2420 new_block = qemu_malloc(sizeof(*new_block));
2421
2422 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2423 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2424 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2425 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2426 #else
2427 new_block->host = qemu_vmalloc(size);
2428 #endif
2429 #ifdef MADV_MERGEABLE
2430 madvise(new_block->host, size, MADV_MERGEABLE);
2431 #endif
2432 new_block->offset = last_ram_offset;
2433 new_block->length = size;
2434
2435 new_block->next = ram_blocks;
2436 ram_blocks = new_block;
2437
2438 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2439 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2440 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2441 0xff, size >> TARGET_PAGE_BITS);
2442
2443 last_ram_offset += size;
2444
2445 if (kvm_enabled())
2446 kvm_setup_guest_memory(new_block->host, size);
2447
2448 return new_block->offset;
2449 }
2450
2451 void qemu_ram_free(ram_addr_t addr)
2452 {
2453 /* TODO: implement this. */
2454 }
2455
2456 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2457 With the exception of the softmmu code in this file, this should
2458 only be used for local memory (e.g. video ram) that the device owns,
2459 and knows it isn't going to access beyond the end of the block.
2460
2461 It should not be used for general purpose DMA.
2462 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2463 */
2464 void *qemu_get_ram_ptr(ram_addr_t addr)
2465 {
2466 RAMBlock *prev;
2467 RAMBlock **prevp;
2468 RAMBlock *block;
2469
2470 prev = NULL;
2471 prevp = &ram_blocks;
2472 block = ram_blocks;
2473 while (block && (block->offset > addr
2474 || block->offset + block->length <= addr)) {
2475 if (prev)
2476 prevp = &prev->next;
2477 prev = block;
2478 block = block->next;
2479 }
2480 if (!block) {
2481 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2482 abort();
2483 }
2484 /* Move this entry to to start of the list. */
2485 if (prev) {
2486 prev->next = block->next;
2487 block->next = *prevp;
2488 *prevp = block;
2489 }
2490 return block->host + (addr - block->offset);
2491 }
2492
2493 /* Some of the softmmu routines need to translate from a host pointer
2494 (typically a TLB entry) back to a ram offset. */
2495 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2496 {
2497 RAMBlock *prev;
2498 RAMBlock **prevp;
2499 RAMBlock *block;
2500 uint8_t *host = ptr;
2501
2502 prev = NULL;
2503 prevp = &ram_blocks;
2504 block = ram_blocks;
2505 while (block && (block->host > host
2506 || block->host + block->length <= host)) {
2507 if (prev)
2508 prevp = &prev->next;
2509 prev = block;
2510 block = block->next;
2511 }
2512 if (!block) {
2513 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2514 abort();
2515 }
2516 return block->offset + (host - block->host);
2517 }
2518
2519 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2520 {
2521 #ifdef DEBUG_UNASSIGNED
2522 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2523 #endif
2524 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2525 do_unassigned_access(addr, 0, 0, 0, 1);
2526 #endif
2527 return 0;
2528 }
2529
2530 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2531 {
2532 #ifdef DEBUG_UNASSIGNED
2533 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2534 #endif
2535 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2536 do_unassigned_access(addr, 0, 0, 0, 2);
2537 #endif
2538 return 0;
2539 }
2540
2541 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2542 {
2543 #ifdef DEBUG_UNASSIGNED
2544 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2545 #endif
2546 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2547 do_unassigned_access(addr, 0, 0, 0, 4);
2548 #endif
2549 return 0;
2550 }
2551
2552 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2553 {
2554 #ifdef DEBUG_UNASSIGNED
2555 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2556 #endif
2557 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2558 do_unassigned_access(addr, 1, 0, 0, 1);
2559 #endif
2560 }
2561
2562 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2563 {
2564 #ifdef DEBUG_UNASSIGNED
2565 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2566 #endif
2567 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2568 do_unassigned_access(addr, 1, 0, 0, 2);
2569 #endif
2570 }
2571
2572 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2573 {
2574 #ifdef DEBUG_UNASSIGNED
2575 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2576 #endif
2577 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2578 do_unassigned_access(addr, 1, 0, 0, 4);
2579 #endif
2580 }
2581
2582 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2583 unassigned_mem_readb,
2584 unassigned_mem_readw,
2585 unassigned_mem_readl,
2586 };
2587
2588 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2589 unassigned_mem_writeb,
2590 unassigned_mem_writew,
2591 unassigned_mem_writel,
2592 };
2593
2594 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2595 uint32_t val)
2596 {
2597 int dirty_flags;
2598 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2599 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2600 #if !defined(CONFIG_USER_ONLY)
2601 tb_invalidate_phys_page_fast(ram_addr, 1);
2602 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2603 #endif
2604 }
2605 stb_p(qemu_get_ram_ptr(ram_addr), val);
2606 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2607 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2608 /* we remove the notdirty callback only if the code has been
2609 flushed */
2610 if (dirty_flags == 0xff)
2611 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2612 }
2613
2614 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2615 uint32_t val)
2616 {
2617 int dirty_flags;
2618 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2619 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2620 #if !defined(CONFIG_USER_ONLY)
2621 tb_invalidate_phys_page_fast(ram_addr, 2);
2622 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2623 #endif
2624 }
2625 stw_p(qemu_get_ram_ptr(ram_addr), val);
2626 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2627 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2628 /* we remove the notdirty callback only if the code has been
2629 flushed */
2630 if (dirty_flags == 0xff)
2631 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2632 }
2633
2634 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2635 uint32_t val)
2636 {
2637 int dirty_flags;
2638 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2639 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2640 #if !defined(CONFIG_USER_ONLY)
2641 tb_invalidate_phys_page_fast(ram_addr, 4);
2642 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2643 #endif
2644 }
2645 stl_p(qemu_get_ram_ptr(ram_addr), val);
2646 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2647 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2648 /* we remove the notdirty callback only if the code has been
2649 flushed */
2650 if (dirty_flags == 0xff)
2651 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2652 }
2653
2654 static CPUReadMemoryFunc * const error_mem_read[3] = {
2655 NULL, /* never used */
2656 NULL, /* never used */
2657 NULL, /* never used */
2658 };
2659
2660 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2661 notdirty_mem_writeb,
2662 notdirty_mem_writew,
2663 notdirty_mem_writel,
2664 };
2665
2666 /* Generate a debug exception if a watchpoint has been hit. */
2667 static void check_watchpoint(int offset, int len_mask, int flags)
2668 {
2669 CPUState *env = cpu_single_env;
2670 target_ulong pc, cs_base;
2671 TranslationBlock *tb;
2672 target_ulong vaddr;
2673 CPUWatchpoint *wp;
2674 int cpu_flags;
2675
2676 if (env->watchpoint_hit) {
2677 /* We re-entered the check after replacing the TB. Now raise
2678 * the debug interrupt so that is will trigger after the
2679 * current instruction. */
2680 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2681 return;
2682 }
2683 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2684 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2685 if ((vaddr == (wp->vaddr & len_mask) ||
2686 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2687 wp->flags |= BP_WATCHPOINT_HIT;
2688 if (!env->watchpoint_hit) {
2689 env->watchpoint_hit = wp;
2690 tb = tb_find_pc(env->mem_io_pc);
2691 if (!tb) {
2692 cpu_abort(env, "check_watchpoint: could not find TB for "
2693 "pc=%p", (void *)env->mem_io_pc);
2694 }
2695 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2696 tb_phys_invalidate(tb, -1);
2697 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2698 env->exception_index = EXCP_DEBUG;
2699 } else {
2700 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2701 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2702 }
2703 cpu_resume_from_signal(env, NULL);
2704 }
2705 } else {
2706 wp->flags &= ~BP_WATCHPOINT_HIT;
2707 }
2708 }
2709 }
2710
2711 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2712 so these check for a hit then pass through to the normal out-of-line
2713 phys routines. */
2714 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2715 {
2716 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2717 return ldub_phys(addr);
2718 }
2719
2720 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2721 {
2722 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2723 return lduw_phys(addr);
2724 }
2725
2726 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2727 {
2728 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2729 return ldl_phys(addr);
2730 }
2731
2732 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2733 uint32_t val)
2734 {
2735 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2736 stb_phys(addr, val);
2737 }
2738
2739 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2740 uint32_t val)
2741 {
2742 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2743 stw_phys(addr, val);
2744 }
2745
2746 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2747 uint32_t val)
2748 {
2749 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2750 stl_phys(addr, val);
2751 }
2752
2753 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2754 watch_mem_readb,
2755 watch_mem_readw,
2756 watch_mem_readl,
2757 };
2758
2759 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2760 watch_mem_writeb,
2761 watch_mem_writew,
2762 watch_mem_writel,
2763 };
2764
2765 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2766 unsigned int len)
2767 {
2768 uint32_t ret;
2769 unsigned int idx;
2770
2771 idx = SUBPAGE_IDX(addr);
2772 #if defined(DEBUG_SUBPAGE)
2773 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2774 mmio, len, addr, idx);
2775 #endif
2776 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2777 addr + mmio->region_offset[idx][0][len]);
2778
2779 return ret;
2780 }
2781
2782 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2783 uint32_t value, unsigned int len)
2784 {
2785 unsigned int idx;
2786
2787 idx = SUBPAGE_IDX(addr);
2788 #if defined(DEBUG_SUBPAGE)
2789 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2790 mmio, len, addr, idx, value);
2791 #endif
2792 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2793 addr + mmio->region_offset[idx][1][len],
2794 value);
2795 }
2796
2797 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2798 {
2799 #if defined(DEBUG_SUBPAGE)
2800 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2801 #endif
2802
2803 return subpage_readlen(opaque, addr, 0);
2804 }
2805
2806 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2807 uint32_t value)
2808 {
2809 #if defined(DEBUG_SUBPAGE)
2810 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2811 #endif
2812 subpage_writelen(opaque, addr, value, 0);
2813 }
2814
2815 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2816 {
2817 #if defined(DEBUG_SUBPAGE)
2818 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2819 #endif
2820
2821 return subpage_readlen(opaque, addr, 1);
2822 }
2823
2824 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2825 uint32_t value)
2826 {
2827 #if defined(DEBUG_SUBPAGE)
2828 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2829 #endif
2830 subpage_writelen(opaque, addr, value, 1);
2831 }
2832
2833 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2834 {
2835 #if defined(DEBUG_SUBPAGE)
2836 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2837 #endif
2838
2839 return subpage_readlen(opaque, addr, 2);
2840 }
2841
2842 static void subpage_writel (void *opaque,
2843 target_phys_addr_t addr, uint32_t value)
2844 {
2845 #if defined(DEBUG_SUBPAGE)
2846 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2847 #endif
2848 subpage_writelen(opaque, addr, value, 2);
2849 }
2850
2851 static CPUReadMemoryFunc * const subpage_read[] = {
2852 &subpage_readb,
2853 &subpage_readw,
2854 &subpage_readl,
2855 };
2856
2857 static CPUWriteMemoryFunc * const subpage_write[] = {
2858 &subpage_writeb,
2859 &subpage_writew,
2860 &subpage_writel,
2861 };
2862
2863 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2864 ram_addr_t memory, ram_addr_t region_offset)
2865 {
2866 int idx, eidx;
2867 unsigned int i;
2868
2869 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2870 return -1;
2871 idx = SUBPAGE_IDX(start);
2872 eidx = SUBPAGE_IDX(end);
2873 #if defined(DEBUG_SUBPAGE)
2874 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2875 mmio, start, end, idx, eidx, memory);
2876 #endif
2877 memory >>= IO_MEM_SHIFT;
2878 for (; idx <= eidx; idx++) {
2879 for (i = 0; i < 4; i++) {
2880 if (io_mem_read[memory][i]) {
2881 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2882 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2883 mmio->region_offset[idx][0][i] = region_offset;
2884 }
2885 if (io_mem_write[memory][i]) {
2886 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2887 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2888 mmio->region_offset[idx][1][i] = region_offset;
2889 }
2890 }
2891 }
2892
2893 return 0;
2894 }
2895
2896 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2897 ram_addr_t orig_memory, ram_addr_t region_offset)
2898 {
2899 subpage_t *mmio;
2900 int subpage_memory;
2901
2902 mmio = qemu_mallocz(sizeof(subpage_t));
2903
2904 mmio->base = base;
2905 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2906 #if defined(DEBUG_SUBPAGE)
2907 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2908 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2909 #endif
2910 *phys = subpage_memory | IO_MEM_SUBPAGE;
2911 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2912 region_offset);
2913
2914 return mmio;
2915 }
2916
2917 static int get_free_io_mem_idx(void)
2918 {
2919 int i;
2920
2921 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2922 if (!io_mem_used[i]) {
2923 io_mem_used[i] = 1;
2924 return i;
2925 }
2926 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
2927 return -1;
2928 }
2929
2930 /* mem_read and mem_write are arrays of functions containing the
2931 function to access byte (index 0), word (index 1) and dword (index
2932 2). Functions can be omitted with a NULL function pointer.
2933 If io_index is non zero, the corresponding io zone is
2934 modified. If it is zero, a new io zone is allocated. The return
2935 value can be used with cpu_register_physical_memory(). (-1) is
2936 returned if error. */
2937 static int cpu_register_io_memory_fixed(int io_index,
2938 CPUReadMemoryFunc * const *mem_read,
2939 CPUWriteMemoryFunc * const *mem_write,
2940 void *opaque)
2941 {
2942 int i, subwidth = 0;
2943
2944 if (io_index <= 0) {
2945 io_index = get_free_io_mem_idx();
2946 if (io_index == -1)
2947 return io_index;
2948 } else {
2949 io_index >>= IO_MEM_SHIFT;
2950 if (io_index >= IO_MEM_NB_ENTRIES)
2951 return -1;
2952 }
2953
2954 for(i = 0;i < 3; i++) {
2955 if (!mem_read[i] || !mem_write[i])
2956 subwidth = IO_MEM_SUBWIDTH;
2957 io_mem_read[io_index][i] = mem_read[i];
2958 io_mem_write[io_index][i] = mem_write[i];
2959 }
2960 io_mem_opaque[io_index] = opaque;
2961 return (io_index << IO_MEM_SHIFT) | subwidth;
2962 }
2963
2964 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2965 CPUWriteMemoryFunc * const *mem_write,
2966 void *opaque)
2967 {
2968 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2969 }
2970
2971 void cpu_unregister_io_memory(int io_table_address)
2972 {
2973 int i;
2974 int io_index = io_table_address >> IO_MEM_SHIFT;
2975
2976 for (i=0;i < 3; i++) {
2977 io_mem_read[io_index][i] = unassigned_mem_read[i];
2978 io_mem_write[io_index][i] = unassigned_mem_write[i];
2979 }
2980 io_mem_opaque[io_index] = NULL;
2981 io_mem_used[io_index] = 0;
2982 }
2983
2984 static void io_mem_init(void)
2985 {
2986 int i;
2987
2988 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2989 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2990 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2991 for (i=0; i<5; i++)
2992 io_mem_used[i] = 1;
2993
2994 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2995 watch_mem_write, NULL);
2996 }
2997
2998 #endif /* !defined(CONFIG_USER_ONLY) */
2999
3000 /* physical memory access (slow version, mainly for debug) */
3001 #if defined(CONFIG_USER_ONLY)
3002 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3003 int len, int is_write)
3004 {
3005 int l, flags;
3006 target_ulong page;
3007 void * p;
3008
3009 while (len > 0) {
3010 page = addr & TARGET_PAGE_MASK;
3011 l = (page + TARGET_PAGE_SIZE) - addr;
3012 if (l > len)
3013 l = len;
3014 flags = page_get_flags(page);
3015 if (!(flags & PAGE_VALID))
3016 return;
3017 if (is_write) {
3018 if (!(flags & PAGE_WRITE))
3019 return;
3020 /* XXX: this code should not depend on lock_user */
3021 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3022 /* FIXME - should this return an error rather than just fail? */
3023 return;
3024 memcpy(p, buf, l);
3025 unlock_user(p, addr, l);
3026 } else {
3027 if (!(flags & PAGE_READ))
3028 return;
3029 /* XXX: this code should not depend on lock_user */
3030 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3031 /* FIXME - should this return an error rather than just fail? */
3032 return;
3033 memcpy(buf, p, l);
3034 unlock_user(p, addr, 0);
3035 }
3036 len -= l;
3037 buf += l;
3038 addr += l;
3039 }
3040 }
3041
3042 #else
3043 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3044 int len, int is_write)
3045 {
3046 int l, io_index;
3047 uint8_t *ptr;
3048 uint32_t val;
3049 target_phys_addr_t page;
3050 unsigned long pd;
3051 PhysPageDesc *p;
3052
3053 while (len > 0) {
3054 page = addr & TARGET_PAGE_MASK;
3055 l = (page + TARGET_PAGE_SIZE) - addr;
3056 if (l > len)
3057 l = len;
3058 p = phys_page_find(page >> TARGET_PAGE_BITS);
3059 if (!p) {
3060 pd = IO_MEM_UNASSIGNED;
3061 } else {
3062 pd = p->phys_offset;
3063 }
3064
3065 if (is_write) {
3066 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3067 target_phys_addr_t addr1 = addr;
3068 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3069 if (p)
3070 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3071 /* XXX: could force cpu_single_env to NULL to avoid
3072 potential bugs */
3073 if (l >= 4 && ((addr1 & 3) == 0)) {
3074 /* 32 bit write access */
3075 val = ldl_p(buf);
3076 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3077 l = 4;
3078 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3079 /* 16 bit write access */
3080 val = lduw_p(buf);
3081 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3082 l = 2;
3083 } else {
3084 /* 8 bit write access */
3085 val = ldub_p(buf);
3086 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3087 l = 1;
3088 }
3089 } else {
3090 unsigned long addr1;
3091 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3092 /* RAM case */
3093 ptr = qemu_get_ram_ptr(addr1);
3094 memcpy(ptr, buf, l);
3095 if (!cpu_physical_memory_is_dirty(addr1)) {
3096 /* invalidate code */
3097 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3098 /* set dirty bit */
3099 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3100 (0xff & ~CODE_DIRTY_FLAG);
3101 }
3102 }
3103 } else {
3104 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3105 !(pd & IO_MEM_ROMD)) {
3106 target_phys_addr_t addr1 = addr;
3107 /* I/O case */
3108 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3109 if (p)
3110 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3111 if (l >= 4 && ((addr1 & 3) == 0)) {
3112 /* 32 bit read access */
3113 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3114 stl_p(buf, val);
3115 l = 4;
3116 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3117 /* 16 bit read access */
3118 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3119 stw_p(buf, val);
3120 l = 2;
3121 } else {
3122 /* 8 bit read access */
3123 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3124 stb_p(buf, val);
3125 l = 1;
3126 }
3127 } else {
3128 /* RAM case */
3129 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3130 (addr & ~TARGET_PAGE_MASK);
3131 memcpy(buf, ptr, l);
3132 }
3133 }
3134 len -= l;
3135 buf += l;
3136 addr += l;
3137 }
3138 }
3139
3140 /* used for ROM loading : can write in RAM and ROM */
3141 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3142 const uint8_t *buf, int len)
3143 {
3144 int l;
3145 uint8_t *ptr;
3146 target_phys_addr_t page;
3147 unsigned long pd;
3148 PhysPageDesc *p;
3149
3150 while (len > 0) {
3151 page = addr & TARGET_PAGE_MASK;
3152 l = (page + TARGET_PAGE_SIZE) - addr;
3153 if (l > len)
3154 l = len;
3155 p = phys_page_find(page >> TARGET_PAGE_BITS);
3156 if (!p) {
3157 pd = IO_MEM_UNASSIGNED;
3158 } else {
3159 pd = p->phys_offset;
3160 }
3161
3162 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3163 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3164 !(pd & IO_MEM_ROMD)) {
3165 /* do nothing */
3166 } else {
3167 unsigned long addr1;
3168 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3169 /* ROM/RAM case */
3170 ptr = qemu_get_ram_ptr(addr1);
3171 memcpy(ptr, buf, l);
3172 }
3173 len -= l;
3174 buf += l;
3175 addr += l;
3176 }
3177 }
3178
3179 typedef struct {
3180 void *buffer;
3181 target_phys_addr_t addr;
3182 target_phys_addr_t len;
3183 } BounceBuffer;
3184
3185 static BounceBuffer bounce;
3186
3187 typedef struct MapClient {
3188 void *opaque;
3189 void (*callback)(void *opaque);
3190 QLIST_ENTRY(MapClient) link;
3191 } MapClient;
3192
3193 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3194 = QLIST_HEAD_INITIALIZER(map_client_list);
3195
3196 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3197 {
3198 MapClient *client = qemu_malloc(sizeof(*client));
3199
3200 client->opaque = opaque;
3201 client->callback = callback;
3202 QLIST_INSERT_HEAD(&map_client_list, client, link);
3203 return client;
3204 }
3205
3206 void cpu_unregister_map_client(void *_client)
3207 {
3208 MapClient *client = (MapClient *)_client;
3209
3210 QLIST_REMOVE(client, link);
3211 qemu_free(client);
3212 }
3213
3214 static void cpu_notify_map_clients(void)
3215 {
3216 MapClient *client;
3217
3218 while (!QLIST_EMPTY(&map_client_list)) {
3219 client = QLIST_FIRST(&map_client_list);
3220 client->callback(client->opaque);
3221 cpu_unregister_map_client(client);
3222 }
3223 }
3224
3225 /* Map a physical memory region into a host virtual address.
3226 * May map a subset of the requested range, given by and returned in *plen.
3227 * May return NULL if resources needed to perform the mapping are exhausted.
3228 * Use only for reads OR writes - not for read-modify-write operations.
3229 * Use cpu_register_map_client() to know when retrying the map operation is
3230 * likely to succeed.
3231 */
3232 void *cpu_physical_memory_map(target_phys_addr_t addr,
3233 target_phys_addr_t *plen,
3234 int is_write)
3235 {
3236 target_phys_addr_t len = *plen;
3237 target_phys_addr_t done = 0;
3238 int l;
3239 uint8_t *ret = NULL;
3240 uint8_t *ptr;
3241 target_phys_addr_t page;
3242 unsigned long pd;
3243 PhysPageDesc *p;
3244 unsigned long addr1;
3245
3246 while (len > 0) {
3247 page = addr & TARGET_PAGE_MASK;
3248 l = (page + TARGET_PAGE_SIZE) - addr;
3249 if (l > len)
3250 l = len;
3251 p = phys_page_find(page >> TARGET_PAGE_BITS);
3252 if (!p) {
3253 pd = IO_MEM_UNASSIGNED;
3254 } else {
3255 pd = p->phys_offset;
3256 }
3257
3258 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3259 if (done || bounce.buffer) {
3260 break;
3261 }
3262 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3263 bounce.addr = addr;
3264 bounce.len = l;
3265 if (!is_write) {
3266 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3267 }
3268 ptr = bounce.buffer;
3269 } else {
3270 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3271 ptr = qemu_get_ram_ptr(addr1);
3272 }
3273 if (!done) {
3274 ret = ptr;
3275 } else if (ret + done != ptr) {
3276 break;
3277 }
3278
3279 len -= l;
3280 addr += l;
3281 done += l;
3282 }
3283 *plen = done;
3284 return ret;
3285 }
3286
3287 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3288 * Will also mark the memory as dirty if is_write == 1. access_len gives
3289 * the amount of memory that was actually read or written by the caller.
3290 */
3291 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3292 int is_write, target_phys_addr_t access_len)
3293 {
3294 if (buffer != bounce.buffer) {
3295 if (is_write) {
3296 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3297 while (access_len) {
3298 unsigned l;
3299 l = TARGET_PAGE_SIZE;
3300 if (l > access_len)
3301 l = access_len;
3302 if (!cpu_physical_memory_is_dirty(addr1)) {
3303 /* invalidate code */
3304 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3305 /* set dirty bit */
3306 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3307 (0xff & ~CODE_DIRTY_FLAG);
3308 }
3309 addr1 += l;
3310 access_len -= l;
3311 }
3312 }
3313 return;
3314 }
3315 if (is_write) {
3316 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3317 }
3318 qemu_vfree(bounce.buffer);
3319 bounce.buffer = NULL;
3320 cpu_notify_map_clients();
3321 }
3322
3323 /* warning: addr must be aligned */
3324 uint32_t ldl_phys(target_phys_addr_t addr)
3325 {
3326 int io_index;
3327 uint8_t *ptr;
3328 uint32_t val;
3329 unsigned long pd;
3330 PhysPageDesc *p;
3331
3332 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3333 if (!p) {
3334 pd = IO_MEM_UNASSIGNED;
3335 } else {
3336 pd = p->phys_offset;
3337 }
3338
3339 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3340 !(pd & IO_MEM_ROMD)) {
3341 /* I/O case */
3342 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3343 if (p)
3344 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3345 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3346 } else {
3347 /* RAM case */
3348 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3349 (addr & ~TARGET_PAGE_MASK);
3350 val = ldl_p(ptr);
3351 }
3352 return val;
3353 }
3354
3355 /* warning: addr must be aligned */
3356 uint64_t ldq_phys(target_phys_addr_t addr)
3357 {
3358 int io_index;
3359 uint8_t *ptr;
3360 uint64_t val;
3361 unsigned long pd;
3362 PhysPageDesc *p;
3363
3364 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3365 if (!p) {
3366 pd = IO_MEM_UNASSIGNED;
3367 } else {
3368 pd = p->phys_offset;
3369 }
3370
3371 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3372 !(pd & IO_MEM_ROMD)) {
3373 /* I/O case */
3374 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3375 if (p)
3376 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3377 #ifdef TARGET_WORDS_BIGENDIAN
3378 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3379 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3380 #else
3381 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3382 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3383 #endif
3384 } else {
3385 /* RAM case */
3386 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3387 (addr & ~TARGET_PAGE_MASK);
3388 val = ldq_p(ptr);
3389 }
3390 return val;
3391 }
3392
3393 /* XXX: optimize */
3394 uint32_t ldub_phys(target_phys_addr_t addr)
3395 {
3396 uint8_t val;
3397 cpu_physical_memory_read(addr, &val, 1);
3398 return val;
3399 }
3400
3401 /* XXX: optimize */
3402 uint32_t lduw_phys(target_phys_addr_t addr)
3403 {
3404 uint16_t val;
3405 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3406 return tswap16(val);
3407 }
3408
3409 /* warning: addr must be aligned. The ram page is not masked as dirty
3410 and the code inside is not invalidated. It is useful if the dirty
3411 bits are used to track modified PTEs */
3412 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3413 {
3414 int io_index;
3415 uint8_t *ptr;
3416 unsigned long pd;
3417 PhysPageDesc *p;
3418
3419 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3420 if (!p) {
3421 pd = IO_MEM_UNASSIGNED;
3422 } else {
3423 pd = p->phys_offset;
3424 }
3425
3426 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3427 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3428 if (p)
3429 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3430 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3431 } else {
3432 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3433 ptr = qemu_get_ram_ptr(addr1);
3434 stl_p(ptr, val);
3435
3436 if (unlikely(in_migration)) {
3437 if (!cpu_physical_memory_is_dirty(addr1)) {
3438 /* invalidate code */
3439 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3440 /* set dirty bit */
3441 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3442 (0xff & ~CODE_DIRTY_FLAG);
3443 }
3444 }
3445 }
3446 }
3447
3448 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3449 {
3450 int io_index;
3451 uint8_t *ptr;
3452 unsigned long pd;
3453 PhysPageDesc *p;
3454
3455 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3456 if (!p) {
3457 pd = IO_MEM_UNASSIGNED;
3458 } else {
3459 pd = p->phys_offset;
3460 }
3461
3462 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3463 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3464 if (p)
3465 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3466 #ifdef TARGET_WORDS_BIGENDIAN
3467 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3468 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3469 #else
3470 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3471 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3472 #endif
3473 } else {
3474 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3475 (addr & ~TARGET_PAGE_MASK);
3476 stq_p(ptr, val);
3477 }
3478 }
3479
3480 /* warning: addr must be aligned */
3481 void stl_phys(target_phys_addr_t addr, uint32_t val)
3482 {
3483 int io_index;
3484 uint8_t *ptr;
3485 unsigned long pd;
3486 PhysPageDesc *p;
3487
3488 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3489 if (!p) {
3490 pd = IO_MEM_UNASSIGNED;
3491 } else {
3492 pd = p->phys_offset;
3493 }
3494
3495 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3496 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3497 if (p)
3498 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3499 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3500 } else {
3501 unsigned long addr1;
3502 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3503 /* RAM case */
3504 ptr = qemu_get_ram_ptr(addr1);
3505 stl_p(ptr, val);
3506 if (!cpu_physical_memory_is_dirty(addr1)) {
3507 /* invalidate code */
3508 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3509 /* set dirty bit */
3510 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3511 (0xff & ~CODE_DIRTY_FLAG);
3512 }
3513 }
3514 }
3515
3516 /* XXX: optimize */
3517 void stb_phys(target_phys_addr_t addr, uint32_t val)
3518 {
3519 uint8_t v = val;
3520 cpu_physical_memory_write(addr, &v, 1);
3521 }
3522
3523 /* XXX: optimize */
3524 void stw_phys(target_phys_addr_t addr, uint32_t val)
3525 {
3526 uint16_t v = tswap16(val);
3527 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3528 }
3529
3530 /* XXX: optimize */
3531 void stq_phys(target_phys_addr_t addr, uint64_t val)
3532 {
3533 val = tswap64(val);
3534 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3535 }
3536
3537 #endif
3538
3539 /* virtual memory access for debug (includes writing to ROM) */
3540 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3541 uint8_t *buf, int len, int is_write)
3542 {
3543 int l;
3544 target_phys_addr_t phys_addr;
3545 target_ulong page;
3546
3547 while (len > 0) {
3548 page = addr & TARGET_PAGE_MASK;
3549 phys_addr = cpu_get_phys_page_debug(env, page);
3550 /* if no physical page mapped, return an error */
3551 if (phys_addr == -1)
3552 return -1;
3553 l = (page + TARGET_PAGE_SIZE) - addr;
3554 if (l > len)
3555 l = len;
3556 phys_addr += (addr & ~TARGET_PAGE_MASK);
3557 #if !defined(CONFIG_USER_ONLY)
3558 if (is_write)
3559 cpu_physical_memory_write_rom(phys_addr, buf, l);
3560 else
3561 #endif
3562 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3563 len -= l;
3564 buf += l;
3565 addr += l;
3566 }
3567 return 0;
3568 }
3569
3570 /* in deterministic execution mode, instructions doing device I/Os
3571 must be at the end of the TB */
3572 void cpu_io_recompile(CPUState *env, void *retaddr)
3573 {
3574 TranslationBlock *tb;
3575 uint32_t n, cflags;
3576 target_ulong pc, cs_base;
3577 uint64_t flags;
3578
3579 tb = tb_find_pc((unsigned long)retaddr);
3580 if (!tb) {
3581 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3582 retaddr);
3583 }
3584 n = env->icount_decr.u16.low + tb->icount;
3585 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3586 /* Calculate how many instructions had been executed before the fault
3587 occurred. */
3588 n = n - env->icount_decr.u16.low;
3589 /* Generate a new TB ending on the I/O insn. */
3590 n++;
3591 /* On MIPS and SH, delay slot instructions can only be restarted if
3592 they were already the first instruction in the TB. If this is not
3593 the first instruction in a TB then re-execute the preceding
3594 branch. */
3595 #if defined(TARGET_MIPS)
3596 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3597 env->active_tc.PC -= 4;
3598 env->icount_decr.u16.low++;
3599 env->hflags &= ~MIPS_HFLAG_BMASK;
3600 }
3601 #elif defined(TARGET_SH4)
3602 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3603 && n > 1) {
3604 env->pc -= 2;
3605 env->icount_decr.u16.low++;
3606 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3607 }
3608 #endif
3609 /* This should never happen. */
3610 if (n > CF_COUNT_MASK)
3611 cpu_abort(env, "TB too big during recompile");
3612
3613 cflags = n | CF_LAST_IO;
3614 pc = tb->pc;
3615 cs_base = tb->cs_base;
3616 flags = tb->flags;
3617 tb_phys_invalidate(tb, -1);
3618 /* FIXME: In theory this could raise an exception. In practice
3619 we have already translated the block once so it's probably ok. */
3620 tb_gen_code(env, pc, cs_base, flags, cflags);
3621 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3622 the first in the TB) then we end up generating a whole new TB and
3623 repeating the fault, which is horribly inefficient.
3624 Better would be to execute just this insn uncached, or generate a
3625 second new TB. */
3626 cpu_resume_from_signal(env, NULL);
3627 }
3628
3629 void dump_exec_info(FILE *f,
3630 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3631 {
3632 int i, target_code_size, max_target_code_size;
3633 int direct_jmp_count, direct_jmp2_count, cross_page;
3634 TranslationBlock *tb;
3635
3636 target_code_size = 0;
3637 max_target_code_size = 0;
3638 cross_page = 0;
3639 direct_jmp_count = 0;
3640 direct_jmp2_count = 0;
3641 for(i = 0; i < nb_tbs; i++) {
3642 tb = &tbs[i];
3643 target_code_size += tb->size;
3644 if (tb->size > max_target_code_size)
3645 max_target_code_size = tb->size;
3646 if (tb->page_addr[1] != -1)
3647 cross_page++;
3648 if (tb->tb_next_offset[0] != 0xffff) {
3649 direct_jmp_count++;
3650 if (tb->tb_next_offset[1] != 0xffff) {
3651 direct_jmp2_count++;
3652 }
3653 }
3654 }
3655 /* XXX: avoid using doubles ? */
3656 cpu_fprintf(f, "Translation buffer state:\n");
3657 cpu_fprintf(f, "gen code size %ld/%ld\n",
3658 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3659 cpu_fprintf(f, "TB count %d/%d\n",
3660 nb_tbs, code_gen_max_blocks);
3661 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3662 nb_tbs ? target_code_size / nb_tbs : 0,
3663 max_target_code_size);
3664 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3665 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3666 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3667 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3668 cross_page,
3669 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3670 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3671 direct_jmp_count,
3672 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3673 direct_jmp2_count,
3674 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3675 cpu_fprintf(f, "\nStatistics:\n");
3676 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3677 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3678 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3679 tcg_dump_info(f, cpu_fprintf);
3680 }
3681
3682 #if !defined(CONFIG_USER_ONLY)
3683
3684 #define MMUSUFFIX _cmmu
3685 #define GETPC() NULL
3686 #define env cpu_single_env
3687 #define SOFTMMU_CODE_ACCESS
3688
3689 #define SHIFT 0
3690 #include "softmmu_template.h"
3691
3692 #define SHIFT 1
3693 #include "softmmu_template.h"
3694
3695 #define SHIFT 2
3696 #include "softmmu_template.h"
3697
3698 #define SHIFT 3
3699 #include "softmmu_template.h"
3700
3701 #undef env
3702
3703 #endif