]> git.proxmox.com Git - qemu.git/blob - exec.c
qcow2: Ignore reserved bits in refcount table entries
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* log support */
220 #ifdef WIN32
221 static const char *logfilename = "qemu.log";
222 #else
223 static const char *logfilename = "/tmp/qemu.log";
224 #endif
225 FILE *logfile;
226 int loglevel;
227 static int log_append = 0;
228
229 /* statistics */
230 #if !defined(CONFIG_USER_ONLY)
231 static int tlb_flush_count;
232 #endif
233 static int tb_flush_count;
234 static int tb_phys_invalidate_count;
235
236 #ifdef _WIN32
237 static void map_exec(void *addr, long size)
238 {
239 DWORD old_protect;
240 VirtualProtect(addr, size,
241 PAGE_EXECUTE_READWRITE, &old_protect);
242
243 }
244 #else
245 static void map_exec(void *addr, long size)
246 {
247 unsigned long start, end, page_size;
248
249 page_size = getpagesize();
250 start = (unsigned long)addr;
251 start &= ~(page_size - 1);
252
253 end = (unsigned long)addr + size;
254 end += page_size - 1;
255 end &= ~(page_size - 1);
256
257 mprotect((void *)start, end - start,
258 PROT_READ | PROT_WRITE | PROT_EXEC);
259 }
260 #endif
261
262 static void page_init(void)
263 {
264 /* NOTE: we can always suppose that qemu_host_page_size >=
265 TARGET_PAGE_SIZE */
266 #ifdef _WIN32
267 {
268 SYSTEM_INFO system_info;
269
270 GetSystemInfo(&system_info);
271 qemu_real_host_page_size = system_info.dwPageSize;
272 }
273 #else
274 qemu_real_host_page_size = getpagesize();
275 #endif
276 if (qemu_host_page_size == 0)
277 qemu_host_page_size = qemu_real_host_page_size;
278 if (qemu_host_page_size < TARGET_PAGE_SIZE)
279 qemu_host_page_size = TARGET_PAGE_SIZE;
280 qemu_host_page_mask = ~(qemu_host_page_size - 1);
281
282 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
283 {
284 #ifdef HAVE_KINFO_GETVMMAP
285 struct kinfo_vmentry *freep;
286 int i, cnt;
287
288 freep = kinfo_getvmmap(getpid(), &cnt);
289 if (freep) {
290 mmap_lock();
291 for (i = 0; i < cnt; i++) {
292 unsigned long startaddr, endaddr;
293
294 startaddr = freep[i].kve_start;
295 endaddr = freep[i].kve_end;
296 if (h2g_valid(startaddr)) {
297 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
298
299 if (h2g_valid(endaddr)) {
300 endaddr = h2g(endaddr);
301 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
302 } else {
303 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
304 endaddr = ~0ul;
305 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
306 #endif
307 }
308 }
309 }
310 free(freep);
311 mmap_unlock();
312 }
313 #else
314 FILE *f;
315
316 last_brk = (unsigned long)sbrk(0);
317
318 f = fopen("/compat/linux/proc/self/maps", "r");
319 if (f) {
320 mmap_lock();
321
322 do {
323 unsigned long startaddr, endaddr;
324 int n;
325
326 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
327
328 if (n == 2 && h2g_valid(startaddr)) {
329 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
330
331 if (h2g_valid(endaddr)) {
332 endaddr = h2g(endaddr);
333 } else {
334 endaddr = ~0ul;
335 }
336 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
337 }
338 } while (!feof(f));
339
340 fclose(f);
341 mmap_unlock();
342 }
343 #endif
344 }
345 #endif
346 }
347
348 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
349 {
350 PageDesc *pd;
351 void **lp;
352 int i;
353
354 #if defined(CONFIG_USER_ONLY)
355 /* We can't use g_malloc because it may recurse into a locked mutex. */
356 # define ALLOC(P, SIZE) \
357 do { \
358 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
359 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
360 } while (0)
361 #else
362 # define ALLOC(P, SIZE) \
363 do { P = g_malloc0(SIZE); } while (0)
364 #endif
365
366 /* Level 1. Always allocated. */
367 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
368
369 /* Level 2..N-1. */
370 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
371 void **p = *lp;
372
373 if (p == NULL) {
374 if (!alloc) {
375 return NULL;
376 }
377 ALLOC(p, sizeof(void *) * L2_SIZE);
378 *lp = p;
379 }
380
381 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
382 }
383
384 pd = *lp;
385 if (pd == NULL) {
386 if (!alloc) {
387 return NULL;
388 }
389 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
390 *lp = pd;
391 }
392
393 #undef ALLOC
394
395 return pd + (index & (L2_SIZE - 1));
396 }
397
398 static inline PageDesc *page_find(tb_page_addr_t index)
399 {
400 return page_find_alloc(index, 0);
401 }
402
403 #if !defined(CONFIG_USER_ONLY)
404
405 static void phys_map_node_reserve(unsigned nodes)
406 {
407 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
408 typedef PhysPageEntry Node[L2_SIZE];
409 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
410 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
411 phys_map_nodes_nb + nodes);
412 phys_map_nodes = g_renew(Node, phys_map_nodes,
413 phys_map_nodes_nb_alloc);
414 }
415 }
416
417 static uint16_t phys_map_node_alloc(void)
418 {
419 unsigned i;
420 uint16_t ret;
421
422 ret = phys_map_nodes_nb++;
423 assert(ret != PHYS_MAP_NODE_NIL);
424 assert(ret != phys_map_nodes_nb_alloc);
425 for (i = 0; i < L2_SIZE; ++i) {
426 phys_map_nodes[ret][i].is_leaf = 0;
427 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
428 }
429 return ret;
430 }
431
432 static void phys_map_nodes_reset(void)
433 {
434 phys_map_nodes_nb = 0;
435 }
436
437
438 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
439 target_phys_addr_t *nb, uint16_t leaf,
440 int level)
441 {
442 PhysPageEntry *p;
443 int i;
444 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
445
446 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
447 lp->ptr = phys_map_node_alloc();
448 p = phys_map_nodes[lp->ptr];
449 if (level == 0) {
450 for (i = 0; i < L2_SIZE; i++) {
451 p[i].is_leaf = 1;
452 p[i].ptr = phys_section_unassigned;
453 }
454 }
455 } else {
456 p = phys_map_nodes[lp->ptr];
457 }
458 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
459
460 while (*nb && lp < &p[L2_SIZE]) {
461 if ((*index & (step - 1)) == 0 && *nb >= step) {
462 lp->is_leaf = true;
463 lp->ptr = leaf;
464 *index += step;
465 *nb -= step;
466 } else {
467 phys_page_set_level(lp, index, nb, leaf, level - 1);
468 }
469 ++lp;
470 }
471 }
472
473 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
474 uint16_t leaf)
475 {
476 /* Wildly overreserve - it doesn't matter much. */
477 phys_map_node_reserve(3 * P_L2_LEVELS);
478
479 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
480 }
481
482 static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
483 {
484 PhysPageEntry lp = phys_map;
485 PhysPageEntry *p;
486 int i;
487 uint16_t s_index = phys_section_unassigned;
488
489 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
490 if (lp.ptr == PHYS_MAP_NODE_NIL) {
491 goto not_found;
492 }
493 p = phys_map_nodes[lp.ptr];
494 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
495 }
496
497 s_index = lp.ptr;
498 not_found:
499 return &phys_sections[s_index];
500 }
501
502 static target_phys_addr_t section_addr(MemoryRegionSection *section,
503 target_phys_addr_t addr)
504 {
505 addr -= section->offset_within_address_space;
506 addr += section->offset_within_region;
507 return addr;
508 }
509
510 static void tlb_protect_code(ram_addr_t ram_addr);
511 static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
512 target_ulong vaddr);
513 #define mmap_lock() do { } while(0)
514 #define mmap_unlock() do { } while(0)
515 #endif
516
517 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
518
519 #if defined(CONFIG_USER_ONLY)
520 /* Currently it is not recommended to allocate big chunks of data in
521 user mode. It will change when a dedicated libc will be used */
522 #define USE_STATIC_CODE_GEN_BUFFER
523 #endif
524
525 #ifdef USE_STATIC_CODE_GEN_BUFFER
526 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
527 __attribute__((aligned (CODE_GEN_ALIGN)));
528 #endif
529
530 static void code_gen_alloc(unsigned long tb_size)
531 {
532 #ifdef USE_STATIC_CODE_GEN_BUFFER
533 code_gen_buffer = static_code_gen_buffer;
534 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
535 map_exec(code_gen_buffer, code_gen_buffer_size);
536 #else
537 code_gen_buffer_size = tb_size;
538 if (code_gen_buffer_size == 0) {
539 #if defined(CONFIG_USER_ONLY)
540 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
541 #else
542 /* XXX: needs adjustments */
543 code_gen_buffer_size = (unsigned long)(ram_size / 4);
544 #endif
545 }
546 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
547 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
548 /* The code gen buffer location may have constraints depending on
549 the host cpu and OS */
550 #if defined(__linux__)
551 {
552 int flags;
553 void *start = NULL;
554
555 flags = MAP_PRIVATE | MAP_ANONYMOUS;
556 #if defined(__x86_64__)
557 flags |= MAP_32BIT;
558 /* Cannot map more than that */
559 if (code_gen_buffer_size > (800 * 1024 * 1024))
560 code_gen_buffer_size = (800 * 1024 * 1024);
561 #elif defined(__sparc_v9__)
562 // Map the buffer below 2G, so we can use direct calls and branches
563 flags |= MAP_FIXED;
564 start = (void *) 0x60000000UL;
565 if (code_gen_buffer_size > (512 * 1024 * 1024))
566 code_gen_buffer_size = (512 * 1024 * 1024);
567 #elif defined(__arm__)
568 /* Keep the buffer no bigger than 16MB to branch between blocks */
569 if (code_gen_buffer_size > 16 * 1024 * 1024)
570 code_gen_buffer_size = 16 * 1024 * 1024;
571 #elif defined(__s390x__)
572 /* Map the buffer so that we can use direct calls and branches. */
573 /* We have a +- 4GB range on the branches; leave some slop. */
574 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
575 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
576 }
577 start = (void *)0x90000000UL;
578 #endif
579 code_gen_buffer = mmap(start, code_gen_buffer_size,
580 PROT_WRITE | PROT_READ | PROT_EXEC,
581 flags, -1, 0);
582 if (code_gen_buffer == MAP_FAILED) {
583 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
584 exit(1);
585 }
586 }
587 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
588 || defined(__DragonFly__) || defined(__OpenBSD__) \
589 || defined(__NetBSD__)
590 {
591 int flags;
592 void *addr = NULL;
593 flags = MAP_PRIVATE | MAP_ANONYMOUS;
594 #if defined(__x86_64__)
595 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
596 * 0x40000000 is free */
597 flags |= MAP_FIXED;
598 addr = (void *)0x40000000;
599 /* Cannot map more than that */
600 if (code_gen_buffer_size > (800 * 1024 * 1024))
601 code_gen_buffer_size = (800 * 1024 * 1024);
602 #elif defined(__sparc_v9__)
603 // Map the buffer below 2G, so we can use direct calls and branches
604 flags |= MAP_FIXED;
605 addr = (void *) 0x60000000UL;
606 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
607 code_gen_buffer_size = (512 * 1024 * 1024);
608 }
609 #endif
610 code_gen_buffer = mmap(addr, code_gen_buffer_size,
611 PROT_WRITE | PROT_READ | PROT_EXEC,
612 flags, -1, 0);
613 if (code_gen_buffer == MAP_FAILED) {
614 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
615 exit(1);
616 }
617 }
618 #else
619 code_gen_buffer = g_malloc(code_gen_buffer_size);
620 map_exec(code_gen_buffer, code_gen_buffer_size);
621 #endif
622 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
623 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
624 code_gen_buffer_max_size = code_gen_buffer_size -
625 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
626 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
627 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
628 }
629
630 /* Must be called before using the QEMU cpus. 'tb_size' is the size
631 (in bytes) allocated to the translation buffer. Zero means default
632 size. */
633 void tcg_exec_init(unsigned long tb_size)
634 {
635 cpu_gen_init();
636 code_gen_alloc(tb_size);
637 code_gen_ptr = code_gen_buffer;
638 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
639 page_init();
640 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
641 /* There's no guest base to take into account, so go ahead and
642 initialize the prologue now. */
643 tcg_prologue_init(&tcg_ctx);
644 #endif
645 }
646
647 bool tcg_enabled(void)
648 {
649 return code_gen_buffer != NULL;
650 }
651
652 void cpu_exec_init_all(void)
653 {
654 #if !defined(CONFIG_USER_ONLY)
655 memory_map_init();
656 io_mem_init();
657 #endif
658 }
659
660 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
661
662 static int cpu_common_post_load(void *opaque, int version_id)
663 {
664 CPUArchState *env = opaque;
665
666 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
667 version_id is increased. */
668 env->interrupt_request &= ~0x01;
669 tlb_flush(env, 1);
670
671 return 0;
672 }
673
674 static const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .minimum_version_id_old = 1,
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField []) {
681 VMSTATE_UINT32(halted, CPUArchState),
682 VMSTATE_UINT32(interrupt_request, CPUArchState),
683 VMSTATE_END_OF_LIST()
684 }
685 };
686 #endif
687
688 CPUArchState *qemu_get_cpu(int cpu)
689 {
690 CPUArchState *env = first_cpu;
691
692 while (env) {
693 if (env->cpu_index == cpu)
694 break;
695 env = env->next_cpu;
696 }
697
698 return env;
699 }
700
701 void cpu_exec_init(CPUArchState *env)
702 {
703 CPUArchState **penv;
704 int cpu_index;
705
706 #if defined(CONFIG_USER_ONLY)
707 cpu_list_lock();
708 #endif
709 env->next_cpu = NULL;
710 penv = &first_cpu;
711 cpu_index = 0;
712 while (*penv != NULL) {
713 penv = &(*penv)->next_cpu;
714 cpu_index++;
715 }
716 env->cpu_index = cpu_index;
717 env->numa_node = 0;
718 QTAILQ_INIT(&env->breakpoints);
719 QTAILQ_INIT(&env->watchpoints);
720 #ifndef CONFIG_USER_ONLY
721 env->thread_id = qemu_get_thread_id();
722 #endif
723 *penv = env;
724 #if defined(CONFIG_USER_ONLY)
725 cpu_list_unlock();
726 #endif
727 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
728 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
729 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
730 cpu_save, cpu_load, env);
731 #endif
732 }
733
734 /* Allocate a new translation block. Flush the translation buffer if
735 too many translation blocks or too much generated code. */
736 static TranslationBlock *tb_alloc(target_ulong pc)
737 {
738 TranslationBlock *tb;
739
740 if (nb_tbs >= code_gen_max_blocks ||
741 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
742 return NULL;
743 tb = &tbs[nb_tbs++];
744 tb->pc = pc;
745 tb->cflags = 0;
746 return tb;
747 }
748
749 void tb_free(TranslationBlock *tb)
750 {
751 /* In practice this is mostly used for single use temporary TB
752 Ignore the hard cases and just back up if this TB happens to
753 be the last one generated. */
754 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
755 code_gen_ptr = tb->tc_ptr;
756 nb_tbs--;
757 }
758 }
759
760 static inline void invalidate_page_bitmap(PageDesc *p)
761 {
762 if (p->code_bitmap) {
763 g_free(p->code_bitmap);
764 p->code_bitmap = NULL;
765 }
766 p->code_write_count = 0;
767 }
768
769 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
770
771 static void page_flush_tb_1 (int level, void **lp)
772 {
773 int i;
774
775 if (*lp == NULL) {
776 return;
777 }
778 if (level == 0) {
779 PageDesc *pd = *lp;
780 for (i = 0; i < L2_SIZE; ++i) {
781 pd[i].first_tb = NULL;
782 invalidate_page_bitmap(pd + i);
783 }
784 } else {
785 void **pp = *lp;
786 for (i = 0; i < L2_SIZE; ++i) {
787 page_flush_tb_1 (level - 1, pp + i);
788 }
789 }
790 }
791
792 static void page_flush_tb(void)
793 {
794 int i;
795 for (i = 0; i < V_L1_SIZE; i++) {
796 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
797 }
798 }
799
800 /* flush all the translation blocks */
801 /* XXX: tb_flush is currently not thread safe */
802 void tb_flush(CPUArchState *env1)
803 {
804 CPUArchState *env;
805 #if defined(DEBUG_FLUSH)
806 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
807 (unsigned long)(code_gen_ptr - code_gen_buffer),
808 nb_tbs, nb_tbs > 0 ?
809 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
810 #endif
811 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
812 cpu_abort(env1, "Internal error: code buffer overflow\n");
813
814 nb_tbs = 0;
815
816 for(env = first_cpu; env != NULL; env = env->next_cpu) {
817 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
818 }
819
820 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
821 page_flush_tb();
822
823 code_gen_ptr = code_gen_buffer;
824 /* XXX: flush processor icache at this point if cache flush is
825 expensive */
826 tb_flush_count++;
827 }
828
829 #ifdef DEBUG_TB_CHECK
830
831 static void tb_invalidate_check(target_ulong address)
832 {
833 TranslationBlock *tb;
834 int i;
835 address &= TARGET_PAGE_MASK;
836 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
837 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
838 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
839 address >= tb->pc + tb->size)) {
840 printf("ERROR invalidate: address=" TARGET_FMT_lx
841 " PC=%08lx size=%04x\n",
842 address, (long)tb->pc, tb->size);
843 }
844 }
845 }
846 }
847
848 /* verify that all the pages have correct rights for code */
849 static void tb_page_check(void)
850 {
851 TranslationBlock *tb;
852 int i, flags1, flags2;
853
854 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
855 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
856 flags1 = page_get_flags(tb->pc);
857 flags2 = page_get_flags(tb->pc + tb->size - 1);
858 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
859 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
860 (long)tb->pc, tb->size, flags1, flags2);
861 }
862 }
863 }
864 }
865
866 #endif
867
868 /* invalidate one TB */
869 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
870 int next_offset)
871 {
872 TranslationBlock *tb1;
873 for(;;) {
874 tb1 = *ptb;
875 if (tb1 == tb) {
876 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
877 break;
878 }
879 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
880 }
881 }
882
883 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
884 {
885 TranslationBlock *tb1;
886 unsigned int n1;
887
888 for(;;) {
889 tb1 = *ptb;
890 n1 = (uintptr_t)tb1 & 3;
891 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
892 if (tb1 == tb) {
893 *ptb = tb1->page_next[n1];
894 break;
895 }
896 ptb = &tb1->page_next[n1];
897 }
898 }
899
900 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
901 {
902 TranslationBlock *tb1, **ptb;
903 unsigned int n1;
904
905 ptb = &tb->jmp_next[n];
906 tb1 = *ptb;
907 if (tb1) {
908 /* find tb(n) in circular list */
909 for(;;) {
910 tb1 = *ptb;
911 n1 = (uintptr_t)tb1 & 3;
912 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
913 if (n1 == n && tb1 == tb)
914 break;
915 if (n1 == 2) {
916 ptb = &tb1->jmp_first;
917 } else {
918 ptb = &tb1->jmp_next[n1];
919 }
920 }
921 /* now we can suppress tb(n) from the list */
922 *ptb = tb->jmp_next[n];
923
924 tb->jmp_next[n] = NULL;
925 }
926 }
927
928 /* reset the jump entry 'n' of a TB so that it is not chained to
929 another TB */
930 static inline void tb_reset_jump(TranslationBlock *tb, int n)
931 {
932 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
933 }
934
935 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
936 {
937 CPUArchState *env;
938 PageDesc *p;
939 unsigned int h, n1;
940 tb_page_addr_t phys_pc;
941 TranslationBlock *tb1, *tb2;
942
943 /* remove the TB from the hash list */
944 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 h = tb_phys_hash_func(phys_pc);
946 tb_remove(&tb_phys_hash[h], tb,
947 offsetof(TranslationBlock, phys_hash_next));
948
949 /* remove the TB from the page list */
950 if (tb->page_addr[0] != page_addr) {
951 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
952 tb_page_remove(&p->first_tb, tb);
953 invalidate_page_bitmap(p);
954 }
955 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
956 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
957 tb_page_remove(&p->first_tb, tb);
958 invalidate_page_bitmap(p);
959 }
960
961 tb_invalidated_flag = 1;
962
963 /* remove the TB from the hash list */
964 h = tb_jmp_cache_hash_func(tb->pc);
965 for(env = first_cpu; env != NULL; env = env->next_cpu) {
966 if (env->tb_jmp_cache[h] == tb)
967 env->tb_jmp_cache[h] = NULL;
968 }
969
970 /* suppress this TB from the two jump lists */
971 tb_jmp_remove(tb, 0);
972 tb_jmp_remove(tb, 1);
973
974 /* suppress any remaining jumps to this TB */
975 tb1 = tb->jmp_first;
976 for(;;) {
977 n1 = (uintptr_t)tb1 & 3;
978 if (n1 == 2)
979 break;
980 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
981 tb2 = tb1->jmp_next[n1];
982 tb_reset_jump(tb1, n1);
983 tb1->jmp_next[n1] = NULL;
984 tb1 = tb2;
985 }
986 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
987
988 tb_phys_invalidate_count++;
989 }
990
991 static inline void set_bits(uint8_t *tab, int start, int len)
992 {
993 int end, mask, end1;
994
995 end = start + len;
996 tab += start >> 3;
997 mask = 0xff << (start & 7);
998 if ((start & ~7) == (end & ~7)) {
999 if (start < end) {
1000 mask &= ~(0xff << (end & 7));
1001 *tab |= mask;
1002 }
1003 } else {
1004 *tab++ |= mask;
1005 start = (start + 8) & ~7;
1006 end1 = end & ~7;
1007 while (start < end1) {
1008 *tab++ = 0xff;
1009 start += 8;
1010 }
1011 if (start < end) {
1012 mask = ~(0xff << (end & 7));
1013 *tab |= mask;
1014 }
1015 }
1016 }
1017
1018 static void build_page_bitmap(PageDesc *p)
1019 {
1020 int n, tb_start, tb_end;
1021 TranslationBlock *tb;
1022
1023 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1024
1025 tb = p->first_tb;
1026 while (tb != NULL) {
1027 n = (uintptr_t)tb & 3;
1028 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1029 /* NOTE: this is subtle as a TB may span two physical pages */
1030 if (n == 0) {
1031 /* NOTE: tb_end may be after the end of the page, but
1032 it is not a problem */
1033 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1034 tb_end = tb_start + tb->size;
1035 if (tb_end > TARGET_PAGE_SIZE)
1036 tb_end = TARGET_PAGE_SIZE;
1037 } else {
1038 tb_start = 0;
1039 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1040 }
1041 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1042 tb = tb->page_next[n];
1043 }
1044 }
1045
1046 TranslationBlock *tb_gen_code(CPUArchState *env,
1047 target_ulong pc, target_ulong cs_base,
1048 int flags, int cflags)
1049 {
1050 TranslationBlock *tb;
1051 uint8_t *tc_ptr;
1052 tb_page_addr_t phys_pc, phys_page2;
1053 target_ulong virt_page2;
1054 int code_gen_size;
1055
1056 phys_pc = get_page_addr_code(env, pc);
1057 tb = tb_alloc(pc);
1058 if (!tb) {
1059 /* flush must be done */
1060 tb_flush(env);
1061 /* cannot fail at this point */
1062 tb = tb_alloc(pc);
1063 /* Don't forget to invalidate previous TB info. */
1064 tb_invalidated_flag = 1;
1065 }
1066 tc_ptr = code_gen_ptr;
1067 tb->tc_ptr = tc_ptr;
1068 tb->cs_base = cs_base;
1069 tb->flags = flags;
1070 tb->cflags = cflags;
1071 cpu_gen_code(env, tb, &code_gen_size);
1072 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1073 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1074
1075 /* check next page if needed */
1076 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1077 phys_page2 = -1;
1078 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1079 phys_page2 = get_page_addr_code(env, virt_page2);
1080 }
1081 tb_link_page(tb, phys_pc, phys_page2);
1082 return tb;
1083 }
1084
1085 /* invalidate all TBs which intersect with the target physical page
1086 starting in range [start;end[. NOTE: start and end must refer to
1087 the same physical page. 'is_cpu_write_access' should be true if called
1088 from a real cpu write access: the virtual CPU will exit the current
1089 TB if code is modified inside this TB. */
1090 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1091 int is_cpu_write_access)
1092 {
1093 TranslationBlock *tb, *tb_next, *saved_tb;
1094 CPUArchState *env = cpu_single_env;
1095 tb_page_addr_t tb_start, tb_end;
1096 PageDesc *p;
1097 int n;
1098 #ifdef TARGET_HAS_PRECISE_SMC
1099 int current_tb_not_found = is_cpu_write_access;
1100 TranslationBlock *current_tb = NULL;
1101 int current_tb_modified = 0;
1102 target_ulong current_pc = 0;
1103 target_ulong current_cs_base = 0;
1104 int current_flags = 0;
1105 #endif /* TARGET_HAS_PRECISE_SMC */
1106
1107 p = page_find(start >> TARGET_PAGE_BITS);
1108 if (!p)
1109 return;
1110 if (!p->code_bitmap &&
1111 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1112 is_cpu_write_access) {
1113 /* build code bitmap */
1114 build_page_bitmap(p);
1115 }
1116
1117 /* we remove all the TBs in the range [start, end[ */
1118 /* XXX: see if in some cases it could be faster to invalidate all the code */
1119 tb = p->first_tb;
1120 while (tb != NULL) {
1121 n = (uintptr_t)tb & 3;
1122 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1123 tb_next = tb->page_next[n];
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1125 if (n == 0) {
1126 /* NOTE: tb_end may be after the end of the page, but
1127 it is not a problem */
1128 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1129 tb_end = tb_start + tb->size;
1130 } else {
1131 tb_start = tb->page_addr[1];
1132 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1133 }
1134 if (!(tb_end <= start || tb_start >= end)) {
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_not_found) {
1137 current_tb_not_found = 0;
1138 current_tb = NULL;
1139 if (env->mem_io_pc) {
1140 /* now we have a real cpu fault */
1141 current_tb = tb_find_pc(env->mem_io_pc);
1142 }
1143 }
1144 if (current_tb == tb &&
1145 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
1151
1152 current_tb_modified = 1;
1153 cpu_restore_state(current_tb, env, env->mem_io_pc);
1154 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1155 &current_flags);
1156 }
1157 #endif /* TARGET_HAS_PRECISE_SMC */
1158 /* we need to do that to handle the case where a signal
1159 occurs while doing tb_phys_invalidate() */
1160 saved_tb = NULL;
1161 if (env) {
1162 saved_tb = env->current_tb;
1163 env->current_tb = NULL;
1164 }
1165 tb_phys_invalidate(tb, -1);
1166 if (env) {
1167 env->current_tb = saved_tb;
1168 if (env->interrupt_request && env->current_tb)
1169 cpu_interrupt(env, env->interrupt_request);
1170 }
1171 }
1172 tb = tb_next;
1173 }
1174 #if !defined(CONFIG_USER_ONLY)
1175 /* if no code remaining, no need to continue to use slow writes */
1176 if (!p->first_tb) {
1177 invalidate_page_bitmap(p);
1178 if (is_cpu_write_access) {
1179 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1180 }
1181 }
1182 #endif
1183 #ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb_modified) {
1185 /* we generate a block containing just the instruction
1186 modifying the memory. It will ensure that it cannot modify
1187 itself */
1188 env->current_tb = NULL;
1189 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1190 cpu_resume_from_signal(env, NULL);
1191 }
1192 #endif
1193 }
1194
1195 /* len must be <= 8 and start must be a multiple of len */
1196 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1197 {
1198 PageDesc *p;
1199 int offset, b;
1200 #if 0
1201 if (1) {
1202 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1203 cpu_single_env->mem_io_vaddr, len,
1204 cpu_single_env->eip,
1205 cpu_single_env->eip +
1206 (intptr_t)cpu_single_env->segs[R_CS].base);
1207 }
1208 #endif
1209 p = page_find(start >> TARGET_PAGE_BITS);
1210 if (!p)
1211 return;
1212 if (p->code_bitmap) {
1213 offset = start & ~TARGET_PAGE_MASK;
1214 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1215 if (b & ((1 << len) - 1))
1216 goto do_invalidate;
1217 } else {
1218 do_invalidate:
1219 tb_invalidate_phys_page_range(start, start + len, 1);
1220 }
1221 }
1222
1223 #if !defined(CONFIG_SOFTMMU)
1224 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1225 uintptr_t pc, void *puc)
1226 {
1227 TranslationBlock *tb;
1228 PageDesc *p;
1229 int n;
1230 #ifdef TARGET_HAS_PRECISE_SMC
1231 TranslationBlock *current_tb = NULL;
1232 CPUArchState *env = cpu_single_env;
1233 int current_tb_modified = 0;
1234 target_ulong current_pc = 0;
1235 target_ulong current_cs_base = 0;
1236 int current_flags = 0;
1237 #endif
1238
1239 addr &= TARGET_PAGE_MASK;
1240 p = page_find(addr >> TARGET_PAGE_BITS);
1241 if (!p)
1242 return;
1243 tb = p->first_tb;
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (tb && pc != 0) {
1246 current_tb = tb_find_pc(pc);
1247 }
1248 #endif
1249 while (tb != NULL) {
1250 n = (uintptr_t)tb & 3;
1251 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1252 #ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1260
1261 current_tb_modified = 1;
1262 cpu_restore_state(current_tb, env, pc);
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1265 }
1266 #endif /* TARGET_HAS_PRECISE_SMC */
1267 tb_phys_invalidate(tb, addr);
1268 tb = tb->page_next[n];
1269 }
1270 p->first_tb = NULL;
1271 #ifdef TARGET_HAS_PRECISE_SMC
1272 if (current_tb_modified) {
1273 /* we generate a block containing just the instruction
1274 modifying the memory. It will ensure that it cannot modify
1275 itself */
1276 env->current_tb = NULL;
1277 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1278 cpu_resume_from_signal(env, puc);
1279 }
1280 #endif
1281 }
1282 #endif
1283
1284 /* add the tb in the target page and protect it if necessary */
1285 static inline void tb_alloc_page(TranslationBlock *tb,
1286 unsigned int n, tb_page_addr_t page_addr)
1287 {
1288 PageDesc *p;
1289 #ifndef CONFIG_USER_ONLY
1290 bool page_already_protected;
1291 #endif
1292
1293 tb->page_addr[n] = page_addr;
1294 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1295 tb->page_next[n] = p->first_tb;
1296 #ifndef CONFIG_USER_ONLY
1297 page_already_protected = p->first_tb != NULL;
1298 #endif
1299 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1300 invalidate_page_bitmap(p);
1301
1302 #if defined(TARGET_HAS_SMC) || 1
1303
1304 #if defined(CONFIG_USER_ONLY)
1305 if (p->flags & PAGE_WRITE) {
1306 target_ulong addr;
1307 PageDesc *p2;
1308 int prot;
1309
1310 /* force the host page as non writable (writes will have a
1311 page fault + mprotect overhead) */
1312 page_addr &= qemu_host_page_mask;
1313 prot = 0;
1314 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1315 addr += TARGET_PAGE_SIZE) {
1316
1317 p2 = page_find (addr >> TARGET_PAGE_BITS);
1318 if (!p2)
1319 continue;
1320 prot |= p2->flags;
1321 p2->flags &= ~PAGE_WRITE;
1322 }
1323 mprotect(g2h(page_addr), qemu_host_page_size,
1324 (prot & PAGE_BITS) & ~PAGE_WRITE);
1325 #ifdef DEBUG_TB_INVALIDATE
1326 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1327 page_addr);
1328 #endif
1329 }
1330 #else
1331 /* if some code is already present, then the pages are already
1332 protected. So we handle the case where only the first TB is
1333 allocated in a physical page */
1334 if (!page_already_protected) {
1335 tlb_protect_code(page_addr);
1336 }
1337 #endif
1338
1339 #endif /* TARGET_HAS_SMC */
1340 }
1341
1342 /* add a new TB and link it to the physical page tables. phys_page2 is
1343 (-1) to indicate that only one page contains the TB. */
1344 void tb_link_page(TranslationBlock *tb,
1345 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1346 {
1347 unsigned int h;
1348 TranslationBlock **ptb;
1349
1350 /* Grab the mmap lock to stop another thread invalidating this TB
1351 before we are done. */
1352 mmap_lock();
1353 /* add in the physical hash table */
1354 h = tb_phys_hash_func(phys_pc);
1355 ptb = &tb_phys_hash[h];
1356 tb->phys_hash_next = *ptb;
1357 *ptb = tb;
1358
1359 /* add in the page list */
1360 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1361 if (phys_page2 != -1)
1362 tb_alloc_page(tb, 1, phys_page2);
1363 else
1364 tb->page_addr[1] = -1;
1365
1366 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1367 tb->jmp_next[0] = NULL;
1368 tb->jmp_next[1] = NULL;
1369
1370 /* init original jump addresses */
1371 if (tb->tb_next_offset[0] != 0xffff)
1372 tb_reset_jump(tb, 0);
1373 if (tb->tb_next_offset[1] != 0xffff)
1374 tb_reset_jump(tb, 1);
1375
1376 #ifdef DEBUG_TB_CHECK
1377 tb_page_check();
1378 #endif
1379 mmap_unlock();
1380 }
1381
1382 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1383 tb[1].tc_ptr. Return NULL if not found */
1384 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1385 {
1386 int m_min, m_max, m;
1387 uintptr_t v;
1388 TranslationBlock *tb;
1389
1390 if (nb_tbs <= 0)
1391 return NULL;
1392 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1393 tc_ptr >= (uintptr_t)code_gen_ptr) {
1394 return NULL;
1395 }
1396 /* binary search (cf Knuth) */
1397 m_min = 0;
1398 m_max = nb_tbs - 1;
1399 while (m_min <= m_max) {
1400 m = (m_min + m_max) >> 1;
1401 tb = &tbs[m];
1402 v = (uintptr_t)tb->tc_ptr;
1403 if (v == tc_ptr)
1404 return tb;
1405 else if (tc_ptr < v) {
1406 m_max = m - 1;
1407 } else {
1408 m_min = m + 1;
1409 }
1410 }
1411 return &tbs[m_max];
1412 }
1413
1414 static void tb_reset_jump_recursive(TranslationBlock *tb);
1415
1416 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1417 {
1418 TranslationBlock *tb1, *tb_next, **ptb;
1419 unsigned int n1;
1420
1421 tb1 = tb->jmp_next[n];
1422 if (tb1 != NULL) {
1423 /* find head of list */
1424 for(;;) {
1425 n1 = (uintptr_t)tb1 & 3;
1426 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1427 if (n1 == 2)
1428 break;
1429 tb1 = tb1->jmp_next[n1];
1430 }
1431 /* we are now sure now that tb jumps to tb1 */
1432 tb_next = tb1;
1433
1434 /* remove tb from the jmp_first list */
1435 ptb = &tb_next->jmp_first;
1436 for(;;) {
1437 tb1 = *ptb;
1438 n1 = (uintptr_t)tb1 & 3;
1439 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1440 if (n1 == n && tb1 == tb)
1441 break;
1442 ptb = &tb1->jmp_next[n1];
1443 }
1444 *ptb = tb->jmp_next[n];
1445 tb->jmp_next[n] = NULL;
1446
1447 /* suppress the jump to next tb in generated code */
1448 tb_reset_jump(tb, n);
1449
1450 /* suppress jumps in the tb on which we could have jumped */
1451 tb_reset_jump_recursive(tb_next);
1452 }
1453 }
1454
1455 static void tb_reset_jump_recursive(TranslationBlock *tb)
1456 {
1457 tb_reset_jump_recursive2(tb, 0);
1458 tb_reset_jump_recursive2(tb, 1);
1459 }
1460
1461 #if defined(TARGET_HAS_ICE)
1462 #if defined(CONFIG_USER_ONLY)
1463 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1464 {
1465 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1466 }
1467 #else
1468 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1469 {
1470 ram_addr_t ram_addr;
1471 MemoryRegionSection *section;
1472
1473 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1474 if (!(memory_region_is_ram(section->mr)
1475 || (section->mr->rom_device && section->mr->readable))) {
1476 return;
1477 }
1478 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1479 + section_addr(section, addr);
1480 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1481 }
1482
1483 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1484 {
1485 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc));
1486 }
1487 #endif
1488 #endif /* TARGET_HAS_ICE */
1489
1490 #if defined(CONFIG_USER_ONLY)
1491 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1492
1493 {
1494 }
1495
1496 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1497 int flags, CPUWatchpoint **watchpoint)
1498 {
1499 return -ENOSYS;
1500 }
1501 #else
1502 /* Add a watchpoint. */
1503 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1504 int flags, CPUWatchpoint **watchpoint)
1505 {
1506 target_ulong len_mask = ~(len - 1);
1507 CPUWatchpoint *wp;
1508
1509 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1510 if ((len & (len - 1)) || (addr & ~len_mask) ||
1511 len == 0 || len > TARGET_PAGE_SIZE) {
1512 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1513 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1514 return -EINVAL;
1515 }
1516 wp = g_malloc(sizeof(*wp));
1517
1518 wp->vaddr = addr;
1519 wp->len_mask = len_mask;
1520 wp->flags = flags;
1521
1522 /* keep all GDB-injected watchpoints in front */
1523 if (flags & BP_GDB)
1524 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1525 else
1526 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1527
1528 tlb_flush_page(env, addr);
1529
1530 if (watchpoint)
1531 *watchpoint = wp;
1532 return 0;
1533 }
1534
1535 /* Remove a specific watchpoint. */
1536 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1537 int flags)
1538 {
1539 target_ulong len_mask = ~(len - 1);
1540 CPUWatchpoint *wp;
1541
1542 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1543 if (addr == wp->vaddr && len_mask == wp->len_mask
1544 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1545 cpu_watchpoint_remove_by_ref(env, wp);
1546 return 0;
1547 }
1548 }
1549 return -ENOENT;
1550 }
1551
1552 /* Remove a specific watchpoint by reference. */
1553 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1554 {
1555 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1556
1557 tlb_flush_page(env, watchpoint->vaddr);
1558
1559 g_free(watchpoint);
1560 }
1561
1562 /* Remove all matching watchpoints. */
1563 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1564 {
1565 CPUWatchpoint *wp, *next;
1566
1567 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1568 if (wp->flags & mask)
1569 cpu_watchpoint_remove_by_ref(env, wp);
1570 }
1571 }
1572 #endif
1573
1574 /* Add a breakpoint. */
1575 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1576 CPUBreakpoint **breakpoint)
1577 {
1578 #if defined(TARGET_HAS_ICE)
1579 CPUBreakpoint *bp;
1580
1581 bp = g_malloc(sizeof(*bp));
1582
1583 bp->pc = pc;
1584 bp->flags = flags;
1585
1586 /* keep all GDB-injected breakpoints in front */
1587 if (flags & BP_GDB)
1588 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1589 else
1590 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1591
1592 breakpoint_invalidate(env, pc);
1593
1594 if (breakpoint)
1595 *breakpoint = bp;
1596 return 0;
1597 #else
1598 return -ENOSYS;
1599 #endif
1600 }
1601
1602 /* Remove a specific breakpoint. */
1603 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1604 {
1605 #if defined(TARGET_HAS_ICE)
1606 CPUBreakpoint *bp;
1607
1608 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1609 if (bp->pc == pc && bp->flags == flags) {
1610 cpu_breakpoint_remove_by_ref(env, bp);
1611 return 0;
1612 }
1613 }
1614 return -ENOENT;
1615 #else
1616 return -ENOSYS;
1617 #endif
1618 }
1619
1620 /* Remove a specific breakpoint by reference. */
1621 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1622 {
1623 #if defined(TARGET_HAS_ICE)
1624 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1625
1626 breakpoint_invalidate(env, breakpoint->pc);
1627
1628 g_free(breakpoint);
1629 #endif
1630 }
1631
1632 /* Remove all matching breakpoints. */
1633 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1634 {
1635 #if defined(TARGET_HAS_ICE)
1636 CPUBreakpoint *bp, *next;
1637
1638 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1639 if (bp->flags & mask)
1640 cpu_breakpoint_remove_by_ref(env, bp);
1641 }
1642 #endif
1643 }
1644
1645 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1646 CPU loop after each instruction */
1647 void cpu_single_step(CPUArchState *env, int enabled)
1648 {
1649 #if defined(TARGET_HAS_ICE)
1650 if (env->singlestep_enabled != enabled) {
1651 env->singlestep_enabled = enabled;
1652 if (kvm_enabled())
1653 kvm_update_guest_debug(env, 0);
1654 else {
1655 /* must flush all the translated code to avoid inconsistencies */
1656 /* XXX: only flush what is necessary */
1657 tb_flush(env);
1658 }
1659 }
1660 #endif
1661 }
1662
1663 /* enable or disable low levels log */
1664 void cpu_set_log(int log_flags)
1665 {
1666 loglevel = log_flags;
1667 if (loglevel && !logfile) {
1668 logfile = fopen(logfilename, log_append ? "a" : "w");
1669 if (!logfile) {
1670 perror(logfilename);
1671 _exit(1);
1672 }
1673 #if !defined(CONFIG_SOFTMMU)
1674 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1675 {
1676 static char logfile_buf[4096];
1677 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1678 }
1679 #elif defined(_WIN32)
1680 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1681 setvbuf(logfile, NULL, _IONBF, 0);
1682 #else
1683 setvbuf(logfile, NULL, _IOLBF, 0);
1684 #endif
1685 log_append = 1;
1686 }
1687 if (!loglevel && logfile) {
1688 fclose(logfile);
1689 logfile = NULL;
1690 }
1691 }
1692
1693 void cpu_set_log_filename(const char *filename)
1694 {
1695 logfilename = strdup(filename);
1696 if (logfile) {
1697 fclose(logfile);
1698 logfile = NULL;
1699 }
1700 cpu_set_log(loglevel);
1701 }
1702
1703 static void cpu_unlink_tb(CPUArchState *env)
1704 {
1705 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1706 problem and hope the cpu will stop of its own accord. For userspace
1707 emulation this often isn't actually as bad as it sounds. Often
1708 signals are used primarily to interrupt blocking syscalls. */
1709 TranslationBlock *tb;
1710 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1711
1712 spin_lock(&interrupt_lock);
1713 tb = env->current_tb;
1714 /* if the cpu is currently executing code, we must unlink it and
1715 all the potentially executing TB */
1716 if (tb) {
1717 env->current_tb = NULL;
1718 tb_reset_jump_recursive(tb);
1719 }
1720 spin_unlock(&interrupt_lock);
1721 }
1722
1723 #ifndef CONFIG_USER_ONLY
1724 /* mask must never be zero, except for A20 change call */
1725 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1726 {
1727 int old_mask;
1728
1729 old_mask = env->interrupt_request;
1730 env->interrupt_request |= mask;
1731
1732 /*
1733 * If called from iothread context, wake the target cpu in
1734 * case its halted.
1735 */
1736 if (!qemu_cpu_is_self(env)) {
1737 qemu_cpu_kick(env);
1738 return;
1739 }
1740
1741 if (use_icount) {
1742 env->icount_decr.u16.high = 0xffff;
1743 if (!can_do_io(env)
1744 && (mask & ~old_mask) != 0) {
1745 cpu_abort(env, "Raised interrupt while not in I/O function");
1746 }
1747 } else {
1748 cpu_unlink_tb(env);
1749 }
1750 }
1751
1752 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1753
1754 #else /* CONFIG_USER_ONLY */
1755
1756 void cpu_interrupt(CPUArchState *env, int mask)
1757 {
1758 env->interrupt_request |= mask;
1759 cpu_unlink_tb(env);
1760 }
1761 #endif /* CONFIG_USER_ONLY */
1762
1763 void cpu_reset_interrupt(CPUArchState *env, int mask)
1764 {
1765 env->interrupt_request &= ~mask;
1766 }
1767
1768 void cpu_exit(CPUArchState *env)
1769 {
1770 env->exit_request = 1;
1771 cpu_unlink_tb(env);
1772 }
1773
1774 const CPULogItem cpu_log_items[] = {
1775 { CPU_LOG_TB_OUT_ASM, "out_asm",
1776 "show generated host assembly code for each compiled TB" },
1777 { CPU_LOG_TB_IN_ASM, "in_asm",
1778 "show target assembly code for each compiled TB" },
1779 { CPU_LOG_TB_OP, "op",
1780 "show micro ops for each compiled TB" },
1781 { CPU_LOG_TB_OP_OPT, "op_opt",
1782 "show micro ops "
1783 #ifdef TARGET_I386
1784 "before eflags optimization and "
1785 #endif
1786 "after liveness analysis" },
1787 { CPU_LOG_INT, "int",
1788 "show interrupts/exceptions in short format" },
1789 { CPU_LOG_EXEC, "exec",
1790 "show trace before each executed TB (lots of logs)" },
1791 { CPU_LOG_TB_CPU, "cpu",
1792 "show CPU state before block translation" },
1793 #ifdef TARGET_I386
1794 { CPU_LOG_PCALL, "pcall",
1795 "show protected mode far calls/returns/exceptions" },
1796 { CPU_LOG_RESET, "cpu_reset",
1797 "show CPU state before CPU resets" },
1798 #endif
1799 #ifdef DEBUG_IOPORT
1800 { CPU_LOG_IOPORT, "ioport",
1801 "show all i/o ports accesses" },
1802 #endif
1803 { 0, NULL, NULL },
1804 };
1805
1806 static int cmp1(const char *s1, int n, const char *s2)
1807 {
1808 if (strlen(s2) != n)
1809 return 0;
1810 return memcmp(s1, s2, n) == 0;
1811 }
1812
1813 /* takes a comma separated list of log masks. Return 0 if error. */
1814 int cpu_str_to_log_mask(const char *str)
1815 {
1816 const CPULogItem *item;
1817 int mask;
1818 const char *p, *p1;
1819
1820 p = str;
1821 mask = 0;
1822 for(;;) {
1823 p1 = strchr(p, ',');
1824 if (!p1)
1825 p1 = p + strlen(p);
1826 if(cmp1(p,p1-p,"all")) {
1827 for(item = cpu_log_items; item->mask != 0; item++) {
1828 mask |= item->mask;
1829 }
1830 } else {
1831 for(item = cpu_log_items; item->mask != 0; item++) {
1832 if (cmp1(p, p1 - p, item->name))
1833 goto found;
1834 }
1835 return 0;
1836 }
1837 found:
1838 mask |= item->mask;
1839 if (*p1 != ',')
1840 break;
1841 p = p1 + 1;
1842 }
1843 return mask;
1844 }
1845
1846 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1847 {
1848 va_list ap;
1849 va_list ap2;
1850
1851 va_start(ap, fmt);
1852 va_copy(ap2, ap);
1853 fprintf(stderr, "qemu: fatal: ");
1854 vfprintf(stderr, fmt, ap);
1855 fprintf(stderr, "\n");
1856 #ifdef TARGET_I386
1857 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1858 #else
1859 cpu_dump_state(env, stderr, fprintf, 0);
1860 #endif
1861 if (qemu_log_enabled()) {
1862 qemu_log("qemu: fatal: ");
1863 qemu_log_vprintf(fmt, ap2);
1864 qemu_log("\n");
1865 #ifdef TARGET_I386
1866 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1867 #else
1868 log_cpu_state(env, 0);
1869 #endif
1870 qemu_log_flush();
1871 qemu_log_close();
1872 }
1873 va_end(ap2);
1874 va_end(ap);
1875 #if defined(CONFIG_USER_ONLY)
1876 {
1877 struct sigaction act;
1878 sigfillset(&act.sa_mask);
1879 act.sa_handler = SIG_DFL;
1880 sigaction(SIGABRT, &act, NULL);
1881 }
1882 #endif
1883 abort();
1884 }
1885
1886 CPUArchState *cpu_copy(CPUArchState *env)
1887 {
1888 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1889 CPUArchState *next_cpu = new_env->next_cpu;
1890 int cpu_index = new_env->cpu_index;
1891 #if defined(TARGET_HAS_ICE)
1892 CPUBreakpoint *bp;
1893 CPUWatchpoint *wp;
1894 #endif
1895
1896 memcpy(new_env, env, sizeof(CPUArchState));
1897
1898 /* Preserve chaining and index. */
1899 new_env->next_cpu = next_cpu;
1900 new_env->cpu_index = cpu_index;
1901
1902 /* Clone all break/watchpoints.
1903 Note: Once we support ptrace with hw-debug register access, make sure
1904 BP_CPU break/watchpoints are handled correctly on clone. */
1905 QTAILQ_INIT(&env->breakpoints);
1906 QTAILQ_INIT(&env->watchpoints);
1907 #if defined(TARGET_HAS_ICE)
1908 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1909 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1910 }
1911 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1912 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1913 wp->flags, NULL);
1914 }
1915 #endif
1916
1917 return new_env;
1918 }
1919
1920 #if !defined(CONFIG_USER_ONLY)
1921
1922 static inline void tlb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1923 {
1924 unsigned int i;
1925
1926 /* Discard jump cache entries for any tb which might potentially
1927 overlap the flushed page. */
1928 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1929 memset (&env->tb_jmp_cache[i], 0,
1930 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1931
1932 i = tb_jmp_cache_hash_page(addr);
1933 memset (&env->tb_jmp_cache[i], 0,
1934 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1935 }
1936
1937 static CPUTLBEntry s_cputlb_empty_entry = {
1938 .addr_read = -1,
1939 .addr_write = -1,
1940 .addr_code = -1,
1941 .addend = -1,
1942 };
1943
1944 /* NOTE:
1945 * If flush_global is true (the usual case), flush all tlb entries.
1946 * If flush_global is false, flush (at least) all tlb entries not
1947 * marked global.
1948 *
1949 * Since QEMU doesn't currently implement a global/not-global flag
1950 * for tlb entries, at the moment tlb_flush() will also flush all
1951 * tlb entries in the flush_global == false case. This is OK because
1952 * CPU architectures generally permit an implementation to drop
1953 * entries from the TLB at any time, so flushing more entries than
1954 * required is only an efficiency issue, not a correctness issue.
1955 */
1956 void tlb_flush(CPUArchState *env, int flush_global)
1957 {
1958 int i;
1959
1960 #if defined(DEBUG_TLB)
1961 printf("tlb_flush:\n");
1962 #endif
1963 /* must reset current TB so that interrupts cannot modify the
1964 links while we are modifying them */
1965 env->current_tb = NULL;
1966
1967 for(i = 0; i < CPU_TLB_SIZE; i++) {
1968 int mmu_idx;
1969 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1970 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1971 }
1972 }
1973
1974 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1975
1976 env->tlb_flush_addr = -1;
1977 env->tlb_flush_mask = 0;
1978 tlb_flush_count++;
1979 }
1980
1981 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1982 {
1983 if (addr == (tlb_entry->addr_read &
1984 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1985 addr == (tlb_entry->addr_write &
1986 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1987 addr == (tlb_entry->addr_code &
1988 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1989 *tlb_entry = s_cputlb_empty_entry;
1990 }
1991 }
1992
1993 void tlb_flush_page(CPUArchState *env, target_ulong addr)
1994 {
1995 int i;
1996 int mmu_idx;
1997
1998 #if defined(DEBUG_TLB)
1999 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
2000 #endif
2001 /* Check if we need to flush due to large pages. */
2002 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2003 #if defined(DEBUG_TLB)
2004 printf("tlb_flush_page: forced full flush ("
2005 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2006 env->tlb_flush_addr, env->tlb_flush_mask);
2007 #endif
2008 tlb_flush(env, 1);
2009 return;
2010 }
2011 /* must reset current TB so that interrupts cannot modify the
2012 links while we are modifying them */
2013 env->current_tb = NULL;
2014
2015 addr &= TARGET_PAGE_MASK;
2016 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2017 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2018 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2019
2020 tlb_flush_jmp_cache(env, addr);
2021 }
2022
2023 /* update the TLBs so that writes to code in the virtual page 'addr'
2024 can be detected */
2025 static void tlb_protect_code(ram_addr_t ram_addr)
2026 {
2027 cpu_physical_memory_reset_dirty(ram_addr,
2028 ram_addr + TARGET_PAGE_SIZE,
2029 CODE_DIRTY_FLAG);
2030 }
2031
2032 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2033 tested for self modifying code */
2034 static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
2035 target_ulong vaddr)
2036 {
2037 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2038 }
2039
2040 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
2041 {
2042 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
2043 }
2044
2045 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2046 uintptr_t start, uintptr_t length)
2047 {
2048 uintptr_t addr;
2049 if (tlb_is_dirty_ram(tlb_entry)) {
2050 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2051 if ((addr - start) < length) {
2052 tlb_entry->addr_write |= TLB_NOTDIRTY;
2053 }
2054 }
2055 }
2056
2057 /* Note: start and end must be within the same ram block. */
2058 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2059 int dirty_flags)
2060 {
2061 CPUArchState *env;
2062 uintptr_t length, start1;
2063 int i;
2064
2065 start &= TARGET_PAGE_MASK;
2066 end = TARGET_PAGE_ALIGN(end);
2067
2068 length = end - start;
2069 if (length == 0)
2070 return;
2071 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2072
2073 /* we modify the TLB cache so that the dirty bit will be set again
2074 when accessing the range */
2075 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
2076 /* Check that we don't span multiple blocks - this breaks the
2077 address comparisons below. */
2078 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
2079 != (end - 1) - start) {
2080 abort();
2081 }
2082
2083 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2084 int mmu_idx;
2085 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2086 for(i = 0; i < CPU_TLB_SIZE; i++)
2087 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2088 start1, length);
2089 }
2090 }
2091 }
2092
2093 int cpu_physical_memory_set_dirty_tracking(int enable)
2094 {
2095 int ret = 0;
2096 in_migration = enable;
2097 return ret;
2098 }
2099
2100 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2101 {
2102 ram_addr_t ram_addr;
2103 void *p;
2104
2105 if (tlb_is_dirty_ram(tlb_entry)) {
2106 p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2107 + tlb_entry->addend);
2108 ram_addr = qemu_ram_addr_from_host_nofail(p);
2109 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2110 tlb_entry->addr_write |= TLB_NOTDIRTY;
2111 }
2112 }
2113 }
2114
2115 /* update the TLB according to the current state of the dirty bits */
2116 void cpu_tlb_update_dirty(CPUArchState *env)
2117 {
2118 int i;
2119 int mmu_idx;
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2121 for(i = 0; i < CPU_TLB_SIZE; i++)
2122 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2123 }
2124 }
2125
2126 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2127 {
2128 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2129 tlb_entry->addr_write = vaddr;
2130 }
2131
2132 /* update the TLB corresponding to virtual page vaddr
2133 so that it is no longer dirty */
2134 static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
2135 {
2136 int i;
2137 int mmu_idx;
2138
2139 vaddr &= TARGET_PAGE_MASK;
2140 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2141 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2142 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2143 }
2144
2145 /* Our TLB does not support large pages, so remember the area covered by
2146 large pages and trigger a full TLB flush if these are invalidated. */
2147 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
2148 target_ulong size)
2149 {
2150 target_ulong mask = ~(size - 1);
2151
2152 if (env->tlb_flush_addr == (target_ulong)-1) {
2153 env->tlb_flush_addr = vaddr & mask;
2154 env->tlb_flush_mask = mask;
2155 return;
2156 }
2157 /* Extend the existing region to include the new page.
2158 This is a compromise between unnecessary flushes and the cost
2159 of maintaining a full variable size TLB. */
2160 mask &= env->tlb_flush_mask;
2161 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2162 mask <<= 1;
2163 }
2164 env->tlb_flush_addr &= mask;
2165 env->tlb_flush_mask = mask;
2166 }
2167
2168 static bool is_ram_rom(MemoryRegionSection *s)
2169 {
2170 return memory_region_is_ram(s->mr);
2171 }
2172
2173 static bool is_romd(MemoryRegionSection *s)
2174 {
2175 MemoryRegion *mr = s->mr;
2176
2177 return mr->rom_device && mr->readable;
2178 }
2179
2180 static bool is_ram_rom_romd(MemoryRegionSection *s)
2181 {
2182 return is_ram_rom(s) || is_romd(s);
2183 }
2184
2185 /* Add a new TLB entry. At most one entry for a given virtual address
2186 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2187 supplied size is only used by tlb_flush_page. */
2188 void tlb_set_page(CPUArchState *env, target_ulong vaddr,
2189 target_phys_addr_t paddr, int prot,
2190 int mmu_idx, target_ulong size)
2191 {
2192 MemoryRegionSection *section;
2193 unsigned int index;
2194 target_ulong address;
2195 target_ulong code_address;
2196 uintptr_t addend;
2197 CPUTLBEntry *te;
2198 CPUWatchpoint *wp;
2199 target_phys_addr_t iotlb;
2200
2201 assert(size >= TARGET_PAGE_SIZE);
2202 if (size != TARGET_PAGE_SIZE) {
2203 tlb_add_large_page(env, vaddr, size);
2204 }
2205 section = phys_page_find(paddr >> TARGET_PAGE_BITS);
2206 #if defined(DEBUG_TLB)
2207 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2208 " prot=%x idx=%d pd=0x%08lx\n",
2209 vaddr, paddr, prot, mmu_idx, pd);
2210 #endif
2211
2212 address = vaddr;
2213 if (!is_ram_rom_romd(section)) {
2214 /* IO memory case (romd handled later) */
2215 address |= TLB_MMIO;
2216 }
2217 if (is_ram_rom_romd(section)) {
2218 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
2219 + section_addr(section, paddr);
2220 } else {
2221 addend = 0;
2222 }
2223 if (is_ram_rom(section)) {
2224 /* Normal RAM. */
2225 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2226 + section_addr(section, paddr);
2227 if (!section->readonly)
2228 iotlb |= phys_section_notdirty;
2229 else
2230 iotlb |= phys_section_rom;
2231 } else {
2232 /* IO handlers are currently passed a physical address.
2233 It would be nice to pass an offset from the base address
2234 of that region. This would avoid having to special case RAM,
2235 and avoid full address decoding in every device.
2236 We can't use the high bits of pd for this because
2237 IO_MEM_ROMD uses these as a ram address. */
2238 iotlb = section - phys_sections;
2239 iotlb += section_addr(section, paddr);
2240 }
2241
2242 code_address = address;
2243 /* Make accesses to pages with watchpoints go via the
2244 watchpoint trap routines. */
2245 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2246 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2247 /* Avoid trapping reads of pages with a write breakpoint. */
2248 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2249 iotlb = phys_section_watch + paddr;
2250 address |= TLB_MMIO;
2251 break;
2252 }
2253 }
2254 }
2255
2256 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2257 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2258 te = &env->tlb_table[mmu_idx][index];
2259 te->addend = addend - vaddr;
2260 if (prot & PAGE_READ) {
2261 te->addr_read = address;
2262 } else {
2263 te->addr_read = -1;
2264 }
2265
2266 if (prot & PAGE_EXEC) {
2267 te->addr_code = code_address;
2268 } else {
2269 te->addr_code = -1;
2270 }
2271 if (prot & PAGE_WRITE) {
2272 if ((memory_region_is_ram(section->mr) && section->readonly)
2273 || is_romd(section)) {
2274 /* Write access calls the I/O callback. */
2275 te->addr_write = address | TLB_MMIO;
2276 } else if (memory_region_is_ram(section->mr)
2277 && !cpu_physical_memory_is_dirty(
2278 section->mr->ram_addr
2279 + section_addr(section, paddr))) {
2280 te->addr_write = address | TLB_NOTDIRTY;
2281 } else {
2282 te->addr_write = address;
2283 }
2284 } else {
2285 te->addr_write = -1;
2286 }
2287 }
2288
2289 #else
2290
2291 void tlb_flush(CPUArchState *env, int flush_global)
2292 {
2293 }
2294
2295 void tlb_flush_page(CPUArchState *env, target_ulong addr)
2296 {
2297 }
2298
2299 /*
2300 * Walks guest process memory "regions" one by one
2301 * and calls callback function 'fn' for each region.
2302 */
2303
2304 struct walk_memory_regions_data
2305 {
2306 walk_memory_regions_fn fn;
2307 void *priv;
2308 uintptr_t start;
2309 int prot;
2310 };
2311
2312 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2313 abi_ulong end, int new_prot)
2314 {
2315 if (data->start != -1ul) {
2316 int rc = data->fn(data->priv, data->start, end, data->prot);
2317 if (rc != 0) {
2318 return rc;
2319 }
2320 }
2321
2322 data->start = (new_prot ? end : -1ul);
2323 data->prot = new_prot;
2324
2325 return 0;
2326 }
2327
2328 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2329 abi_ulong base, int level, void **lp)
2330 {
2331 abi_ulong pa;
2332 int i, rc;
2333
2334 if (*lp == NULL) {
2335 return walk_memory_regions_end(data, base, 0);
2336 }
2337
2338 if (level == 0) {
2339 PageDesc *pd = *lp;
2340 for (i = 0; i < L2_SIZE; ++i) {
2341 int prot = pd[i].flags;
2342
2343 pa = base | (i << TARGET_PAGE_BITS);
2344 if (prot != data->prot) {
2345 rc = walk_memory_regions_end(data, pa, prot);
2346 if (rc != 0) {
2347 return rc;
2348 }
2349 }
2350 }
2351 } else {
2352 void **pp = *lp;
2353 for (i = 0; i < L2_SIZE; ++i) {
2354 pa = base | ((abi_ulong)i <<
2355 (TARGET_PAGE_BITS + L2_BITS * level));
2356 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2357 if (rc != 0) {
2358 return rc;
2359 }
2360 }
2361 }
2362
2363 return 0;
2364 }
2365
2366 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2367 {
2368 struct walk_memory_regions_data data;
2369 uintptr_t i;
2370
2371 data.fn = fn;
2372 data.priv = priv;
2373 data.start = -1ul;
2374 data.prot = 0;
2375
2376 for (i = 0; i < V_L1_SIZE; i++) {
2377 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2378 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2379 if (rc != 0) {
2380 return rc;
2381 }
2382 }
2383
2384 return walk_memory_regions_end(&data, 0, 0);
2385 }
2386
2387 static int dump_region(void *priv, abi_ulong start,
2388 abi_ulong end, unsigned long prot)
2389 {
2390 FILE *f = (FILE *)priv;
2391
2392 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2393 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2394 start, end, end - start,
2395 ((prot & PAGE_READ) ? 'r' : '-'),
2396 ((prot & PAGE_WRITE) ? 'w' : '-'),
2397 ((prot & PAGE_EXEC) ? 'x' : '-'));
2398
2399 return (0);
2400 }
2401
2402 /* dump memory mappings */
2403 void page_dump(FILE *f)
2404 {
2405 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2406 "start", "end", "size", "prot");
2407 walk_memory_regions(f, dump_region);
2408 }
2409
2410 int page_get_flags(target_ulong address)
2411 {
2412 PageDesc *p;
2413
2414 p = page_find(address >> TARGET_PAGE_BITS);
2415 if (!p)
2416 return 0;
2417 return p->flags;
2418 }
2419
2420 /* Modify the flags of a page and invalidate the code if necessary.
2421 The flag PAGE_WRITE_ORG is positioned automatically depending
2422 on PAGE_WRITE. The mmap_lock should already be held. */
2423 void page_set_flags(target_ulong start, target_ulong end, int flags)
2424 {
2425 target_ulong addr, len;
2426
2427 /* This function should never be called with addresses outside the
2428 guest address space. If this assert fires, it probably indicates
2429 a missing call to h2g_valid. */
2430 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2431 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2432 #endif
2433 assert(start < end);
2434
2435 start = start & TARGET_PAGE_MASK;
2436 end = TARGET_PAGE_ALIGN(end);
2437
2438 if (flags & PAGE_WRITE) {
2439 flags |= PAGE_WRITE_ORG;
2440 }
2441
2442 for (addr = start, len = end - start;
2443 len != 0;
2444 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2445 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2446
2447 /* If the write protection bit is set, then we invalidate
2448 the code inside. */
2449 if (!(p->flags & PAGE_WRITE) &&
2450 (flags & PAGE_WRITE) &&
2451 p->first_tb) {
2452 tb_invalidate_phys_page(addr, 0, NULL);
2453 }
2454 p->flags = flags;
2455 }
2456 }
2457
2458 int page_check_range(target_ulong start, target_ulong len, int flags)
2459 {
2460 PageDesc *p;
2461 target_ulong end;
2462 target_ulong addr;
2463
2464 /* This function should never be called with addresses outside the
2465 guest address space. If this assert fires, it probably indicates
2466 a missing call to h2g_valid. */
2467 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2468 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2469 #endif
2470
2471 if (len == 0) {
2472 return 0;
2473 }
2474 if (start + len - 1 < start) {
2475 /* We've wrapped around. */
2476 return -1;
2477 }
2478
2479 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2480 start = start & TARGET_PAGE_MASK;
2481
2482 for (addr = start, len = end - start;
2483 len != 0;
2484 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2485 p = page_find(addr >> TARGET_PAGE_BITS);
2486 if( !p )
2487 return -1;
2488 if( !(p->flags & PAGE_VALID) )
2489 return -1;
2490
2491 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2492 return -1;
2493 if (flags & PAGE_WRITE) {
2494 if (!(p->flags & PAGE_WRITE_ORG))
2495 return -1;
2496 /* unprotect the page if it was put read-only because it
2497 contains translated code */
2498 if (!(p->flags & PAGE_WRITE)) {
2499 if (!page_unprotect(addr, 0, NULL))
2500 return -1;
2501 }
2502 return 0;
2503 }
2504 }
2505 return 0;
2506 }
2507
2508 /* called from signal handler: invalidate the code and unprotect the
2509 page. Return TRUE if the fault was successfully handled. */
2510 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2511 {
2512 unsigned int prot;
2513 PageDesc *p;
2514 target_ulong host_start, host_end, addr;
2515
2516 /* Technically this isn't safe inside a signal handler. However we
2517 know this only ever happens in a synchronous SEGV handler, so in
2518 practice it seems to be ok. */
2519 mmap_lock();
2520
2521 p = page_find(address >> TARGET_PAGE_BITS);
2522 if (!p) {
2523 mmap_unlock();
2524 return 0;
2525 }
2526
2527 /* if the page was really writable, then we change its
2528 protection back to writable */
2529 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2530 host_start = address & qemu_host_page_mask;
2531 host_end = host_start + qemu_host_page_size;
2532
2533 prot = 0;
2534 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2535 p = page_find(addr >> TARGET_PAGE_BITS);
2536 p->flags |= PAGE_WRITE;
2537 prot |= p->flags;
2538
2539 /* and since the content will be modified, we must invalidate
2540 the corresponding translated code. */
2541 tb_invalidate_phys_page(addr, pc, puc);
2542 #ifdef DEBUG_TB_CHECK
2543 tb_invalidate_check(addr);
2544 #endif
2545 }
2546 mprotect((void *)g2h(host_start), qemu_host_page_size,
2547 prot & PAGE_BITS);
2548
2549 mmap_unlock();
2550 return 1;
2551 }
2552 mmap_unlock();
2553 return 0;
2554 }
2555
2556 static inline void tlb_set_dirty(CPUArchState *env,
2557 uintptr_t addr, target_ulong vaddr)
2558 {
2559 }
2560 #endif /* defined(CONFIG_USER_ONLY) */
2561
2562 #if !defined(CONFIG_USER_ONLY)
2563
2564 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2565 typedef struct subpage_t {
2566 MemoryRegion iomem;
2567 target_phys_addr_t base;
2568 uint16_t sub_section[TARGET_PAGE_SIZE];
2569 } subpage_t;
2570
2571 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2572 uint16_t section);
2573 static subpage_t *subpage_init(target_phys_addr_t base);
2574 static void destroy_page_desc(uint16_t section_index)
2575 {
2576 MemoryRegionSection *section = &phys_sections[section_index];
2577 MemoryRegion *mr = section->mr;
2578
2579 if (mr->subpage) {
2580 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2581 memory_region_destroy(&subpage->iomem);
2582 g_free(subpage);
2583 }
2584 }
2585
2586 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2587 {
2588 unsigned i;
2589 PhysPageEntry *p;
2590
2591 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2592 return;
2593 }
2594
2595 p = phys_map_nodes[lp->ptr];
2596 for (i = 0; i < L2_SIZE; ++i) {
2597 if (!p[i].is_leaf) {
2598 destroy_l2_mapping(&p[i], level - 1);
2599 } else {
2600 destroy_page_desc(p[i].ptr);
2601 }
2602 }
2603 lp->is_leaf = 0;
2604 lp->ptr = PHYS_MAP_NODE_NIL;
2605 }
2606
2607 static void destroy_all_mappings(void)
2608 {
2609 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2610 phys_map_nodes_reset();
2611 }
2612
2613 static uint16_t phys_section_add(MemoryRegionSection *section)
2614 {
2615 if (phys_sections_nb == phys_sections_nb_alloc) {
2616 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2617 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2618 phys_sections_nb_alloc);
2619 }
2620 phys_sections[phys_sections_nb] = *section;
2621 return phys_sections_nb++;
2622 }
2623
2624 static void phys_sections_clear(void)
2625 {
2626 phys_sections_nb = 0;
2627 }
2628
2629 /* register physical memory.
2630 For RAM, 'size' must be a multiple of the target page size.
2631 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2632 io memory page. The address used when calling the IO function is
2633 the offset from the start of the region, plus region_offset. Both
2634 start_addr and region_offset are rounded down to a page boundary
2635 before calculating this offset. This should not be a problem unless
2636 the low bits of start_addr and region_offset differ. */
2637 static void register_subpage(MemoryRegionSection *section)
2638 {
2639 subpage_t *subpage;
2640 target_phys_addr_t base = section->offset_within_address_space
2641 & TARGET_PAGE_MASK;
2642 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2643 MemoryRegionSection subsection = {
2644 .offset_within_address_space = base,
2645 .size = TARGET_PAGE_SIZE,
2646 };
2647 target_phys_addr_t start, end;
2648
2649 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2650
2651 if (!(existing->mr->subpage)) {
2652 subpage = subpage_init(base);
2653 subsection.mr = &subpage->iomem;
2654 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2655 phys_section_add(&subsection));
2656 } else {
2657 subpage = container_of(existing->mr, subpage_t, iomem);
2658 }
2659 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2660 end = start + section->size;
2661 subpage_register(subpage, start, end, phys_section_add(section));
2662 }
2663
2664
2665 static void register_multipage(MemoryRegionSection *section)
2666 {
2667 target_phys_addr_t start_addr = section->offset_within_address_space;
2668 ram_addr_t size = section->size;
2669 target_phys_addr_t addr;
2670 uint16_t section_index = phys_section_add(section);
2671
2672 assert(size);
2673
2674 addr = start_addr;
2675 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2676 section_index);
2677 }
2678
2679 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2680 bool readonly)
2681 {
2682 MemoryRegionSection now = *section, remain = *section;
2683
2684 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2685 || (now.size < TARGET_PAGE_SIZE)) {
2686 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2687 - now.offset_within_address_space,
2688 now.size);
2689 register_subpage(&now);
2690 remain.size -= now.size;
2691 remain.offset_within_address_space += now.size;
2692 remain.offset_within_region += now.size;
2693 }
2694 now = remain;
2695 now.size &= TARGET_PAGE_MASK;
2696 if (now.size) {
2697 register_multipage(&now);
2698 remain.size -= now.size;
2699 remain.offset_within_address_space += now.size;
2700 remain.offset_within_region += now.size;
2701 }
2702 now = remain;
2703 if (now.size) {
2704 register_subpage(&now);
2705 }
2706 }
2707
2708
2709 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2710 {
2711 if (kvm_enabled())
2712 kvm_coalesce_mmio_region(addr, size);
2713 }
2714
2715 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2716 {
2717 if (kvm_enabled())
2718 kvm_uncoalesce_mmio_region(addr, size);
2719 }
2720
2721 void qemu_flush_coalesced_mmio_buffer(void)
2722 {
2723 if (kvm_enabled())
2724 kvm_flush_coalesced_mmio_buffer();
2725 }
2726
2727 #if defined(__linux__) && !defined(TARGET_S390X)
2728
2729 #include <sys/vfs.h>
2730
2731 #define HUGETLBFS_MAGIC 0x958458f6
2732
2733 static long gethugepagesize(const char *path)
2734 {
2735 struct statfs fs;
2736 int ret;
2737
2738 do {
2739 ret = statfs(path, &fs);
2740 } while (ret != 0 && errno == EINTR);
2741
2742 if (ret != 0) {
2743 perror(path);
2744 return 0;
2745 }
2746
2747 if (fs.f_type != HUGETLBFS_MAGIC)
2748 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2749
2750 return fs.f_bsize;
2751 }
2752
2753 static void *file_ram_alloc(RAMBlock *block,
2754 ram_addr_t memory,
2755 const char *path)
2756 {
2757 char *filename;
2758 void *area;
2759 int fd;
2760 #ifdef MAP_POPULATE
2761 int flags;
2762 #endif
2763 unsigned long hpagesize;
2764
2765 hpagesize = gethugepagesize(path);
2766 if (!hpagesize) {
2767 return NULL;
2768 }
2769
2770 if (memory < hpagesize) {
2771 return NULL;
2772 }
2773
2774 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2775 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2776 return NULL;
2777 }
2778
2779 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2780 return NULL;
2781 }
2782
2783 fd = mkstemp(filename);
2784 if (fd < 0) {
2785 perror("unable to create backing store for hugepages");
2786 free(filename);
2787 return NULL;
2788 }
2789 unlink(filename);
2790 free(filename);
2791
2792 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2793
2794 /*
2795 * ftruncate is not supported by hugetlbfs in older
2796 * hosts, so don't bother bailing out on errors.
2797 * If anything goes wrong with it under other filesystems,
2798 * mmap will fail.
2799 */
2800 if (ftruncate(fd, memory))
2801 perror("ftruncate");
2802
2803 #ifdef MAP_POPULATE
2804 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2805 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2806 * to sidestep this quirk.
2807 */
2808 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2809 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2810 #else
2811 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2812 #endif
2813 if (area == MAP_FAILED) {
2814 perror("file_ram_alloc: can't mmap RAM pages");
2815 close(fd);
2816 return (NULL);
2817 }
2818 block->fd = fd;
2819 return area;
2820 }
2821 #endif
2822
2823 static ram_addr_t find_ram_offset(ram_addr_t size)
2824 {
2825 RAMBlock *block, *next_block;
2826 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2827
2828 if (QLIST_EMPTY(&ram_list.blocks))
2829 return 0;
2830
2831 QLIST_FOREACH(block, &ram_list.blocks, next) {
2832 ram_addr_t end, next = RAM_ADDR_MAX;
2833
2834 end = block->offset + block->length;
2835
2836 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2837 if (next_block->offset >= end) {
2838 next = MIN(next, next_block->offset);
2839 }
2840 }
2841 if (next - end >= size && next - end < mingap) {
2842 offset = end;
2843 mingap = next - end;
2844 }
2845 }
2846
2847 if (offset == RAM_ADDR_MAX) {
2848 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2849 (uint64_t)size);
2850 abort();
2851 }
2852
2853 return offset;
2854 }
2855
2856 static ram_addr_t last_ram_offset(void)
2857 {
2858 RAMBlock *block;
2859 ram_addr_t last = 0;
2860
2861 QLIST_FOREACH(block, &ram_list.blocks, next)
2862 last = MAX(last, block->offset + block->length);
2863
2864 return last;
2865 }
2866
2867 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2868 {
2869 RAMBlock *new_block, *block;
2870
2871 new_block = NULL;
2872 QLIST_FOREACH(block, &ram_list.blocks, next) {
2873 if (block->offset == addr) {
2874 new_block = block;
2875 break;
2876 }
2877 }
2878 assert(new_block);
2879 assert(!new_block->idstr[0]);
2880
2881 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2882 char *id = dev->parent_bus->info->get_dev_path(dev);
2883 if (id) {
2884 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2885 g_free(id);
2886 }
2887 }
2888 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2889
2890 QLIST_FOREACH(block, &ram_list.blocks, next) {
2891 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2892 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2893 new_block->idstr);
2894 abort();
2895 }
2896 }
2897 }
2898
2899 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2900 MemoryRegion *mr)
2901 {
2902 RAMBlock *new_block;
2903
2904 size = TARGET_PAGE_ALIGN(size);
2905 new_block = g_malloc0(sizeof(*new_block));
2906
2907 new_block->mr = mr;
2908 new_block->offset = find_ram_offset(size);
2909 if (host) {
2910 new_block->host = host;
2911 new_block->flags |= RAM_PREALLOC_MASK;
2912 } else {
2913 if (mem_path) {
2914 #if defined (__linux__) && !defined(TARGET_S390X)
2915 new_block->host = file_ram_alloc(new_block, size, mem_path);
2916 if (!new_block->host) {
2917 new_block->host = qemu_vmalloc(size);
2918 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2919 }
2920 #else
2921 fprintf(stderr, "-mem-path option unsupported\n");
2922 exit(1);
2923 #endif
2924 } else {
2925 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2926 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2927 an system defined value, which is at least 256GB. Larger systems
2928 have larger values. We put the guest between the end of data
2929 segment (system break) and this value. We use 32GB as a base to
2930 have enough room for the system break to grow. */
2931 new_block->host = mmap((void*)0x800000000, size,
2932 PROT_EXEC|PROT_READ|PROT_WRITE,
2933 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2934 if (new_block->host == MAP_FAILED) {
2935 fprintf(stderr, "Allocating RAM failed\n");
2936 abort();
2937 }
2938 #else
2939 if (xen_enabled()) {
2940 xen_ram_alloc(new_block->offset, size, mr);
2941 } else {
2942 new_block->host = qemu_vmalloc(size);
2943 }
2944 #endif
2945 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2946 }
2947 }
2948 new_block->length = size;
2949
2950 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2951
2952 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2953 last_ram_offset() >> TARGET_PAGE_BITS);
2954 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2955 0xff, size >> TARGET_PAGE_BITS);
2956
2957 if (kvm_enabled())
2958 kvm_setup_guest_memory(new_block->host, size);
2959
2960 return new_block->offset;
2961 }
2962
2963 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2964 {
2965 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2966 }
2967
2968 void qemu_ram_free_from_ptr(ram_addr_t addr)
2969 {
2970 RAMBlock *block;
2971
2972 QLIST_FOREACH(block, &ram_list.blocks, next) {
2973 if (addr == block->offset) {
2974 QLIST_REMOVE(block, next);
2975 g_free(block);
2976 return;
2977 }
2978 }
2979 }
2980
2981 void qemu_ram_free(ram_addr_t addr)
2982 {
2983 RAMBlock *block;
2984
2985 QLIST_FOREACH(block, &ram_list.blocks, next) {
2986 if (addr == block->offset) {
2987 QLIST_REMOVE(block, next);
2988 if (block->flags & RAM_PREALLOC_MASK) {
2989 ;
2990 } else if (mem_path) {
2991 #if defined (__linux__) && !defined(TARGET_S390X)
2992 if (block->fd) {
2993 munmap(block->host, block->length);
2994 close(block->fd);
2995 } else {
2996 qemu_vfree(block->host);
2997 }
2998 #else
2999 abort();
3000 #endif
3001 } else {
3002 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3003 munmap(block->host, block->length);
3004 #else
3005 if (xen_enabled()) {
3006 xen_invalidate_map_cache_entry(block->host);
3007 } else {
3008 qemu_vfree(block->host);
3009 }
3010 #endif
3011 }
3012 g_free(block);
3013 return;
3014 }
3015 }
3016
3017 }
3018
3019 #ifndef _WIN32
3020 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3021 {
3022 RAMBlock *block;
3023 ram_addr_t offset;
3024 int flags;
3025 void *area, *vaddr;
3026
3027 QLIST_FOREACH(block, &ram_list.blocks, next) {
3028 offset = addr - block->offset;
3029 if (offset < block->length) {
3030 vaddr = block->host + offset;
3031 if (block->flags & RAM_PREALLOC_MASK) {
3032 ;
3033 } else {
3034 flags = MAP_FIXED;
3035 munmap(vaddr, length);
3036 if (mem_path) {
3037 #if defined(__linux__) && !defined(TARGET_S390X)
3038 if (block->fd) {
3039 #ifdef MAP_POPULATE
3040 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3041 MAP_PRIVATE;
3042 #else
3043 flags |= MAP_PRIVATE;
3044 #endif
3045 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3046 flags, block->fd, offset);
3047 } else {
3048 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3049 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3050 flags, -1, 0);
3051 }
3052 #else
3053 abort();
3054 #endif
3055 } else {
3056 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3057 flags |= MAP_SHARED | MAP_ANONYMOUS;
3058 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3059 flags, -1, 0);
3060 #else
3061 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3062 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3063 flags, -1, 0);
3064 #endif
3065 }
3066 if (area != vaddr) {
3067 fprintf(stderr, "Could not remap addr: "
3068 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3069 length, addr);
3070 exit(1);
3071 }
3072 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3073 }
3074 return;
3075 }
3076 }
3077 }
3078 #endif /* !_WIN32 */
3079
3080 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3081 With the exception of the softmmu code in this file, this should
3082 only be used for local memory (e.g. video ram) that the device owns,
3083 and knows it isn't going to access beyond the end of the block.
3084
3085 It should not be used for general purpose DMA.
3086 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3087 */
3088 void *qemu_get_ram_ptr(ram_addr_t addr)
3089 {
3090 RAMBlock *block;
3091
3092 QLIST_FOREACH(block, &ram_list.blocks, next) {
3093 if (addr - block->offset < block->length) {
3094 /* Move this entry to to start of the list. */
3095 if (block != QLIST_FIRST(&ram_list.blocks)) {
3096 QLIST_REMOVE(block, next);
3097 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3098 }
3099 if (xen_enabled()) {
3100 /* We need to check if the requested address is in the RAM
3101 * because we don't want to map the entire memory in QEMU.
3102 * In that case just map until the end of the page.
3103 */
3104 if (block->offset == 0) {
3105 return xen_map_cache(addr, 0, 0);
3106 } else if (block->host == NULL) {
3107 block->host =
3108 xen_map_cache(block->offset, block->length, 1);
3109 }
3110 }
3111 return block->host + (addr - block->offset);
3112 }
3113 }
3114
3115 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3116 abort();
3117
3118 return NULL;
3119 }
3120
3121 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3122 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3123 */
3124 void *qemu_safe_ram_ptr(ram_addr_t addr)
3125 {
3126 RAMBlock *block;
3127
3128 QLIST_FOREACH(block, &ram_list.blocks, next) {
3129 if (addr - block->offset < block->length) {
3130 if (xen_enabled()) {
3131 /* We need to check if the requested address is in the RAM
3132 * because we don't want to map the entire memory in QEMU.
3133 * In that case just map until the end of the page.
3134 */
3135 if (block->offset == 0) {
3136 return xen_map_cache(addr, 0, 0);
3137 } else if (block->host == NULL) {
3138 block->host =
3139 xen_map_cache(block->offset, block->length, 1);
3140 }
3141 }
3142 return block->host + (addr - block->offset);
3143 }
3144 }
3145
3146 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3147 abort();
3148
3149 return NULL;
3150 }
3151
3152 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3153 * but takes a size argument */
3154 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3155 {
3156 if (*size == 0) {
3157 return NULL;
3158 }
3159 if (xen_enabled()) {
3160 return xen_map_cache(addr, *size, 1);
3161 } else {
3162 RAMBlock *block;
3163
3164 QLIST_FOREACH(block, &ram_list.blocks, next) {
3165 if (addr - block->offset < block->length) {
3166 if (addr - block->offset + *size > block->length)
3167 *size = block->length - addr + block->offset;
3168 return block->host + (addr - block->offset);
3169 }
3170 }
3171
3172 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3173 abort();
3174 }
3175 }
3176
3177 void qemu_put_ram_ptr(void *addr)
3178 {
3179 trace_qemu_put_ram_ptr(addr);
3180 }
3181
3182 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3183 {
3184 RAMBlock *block;
3185 uint8_t *host = ptr;
3186
3187 if (xen_enabled()) {
3188 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3189 return 0;
3190 }
3191
3192 QLIST_FOREACH(block, &ram_list.blocks, next) {
3193 /* This case append when the block is not mapped. */
3194 if (block->host == NULL) {
3195 continue;
3196 }
3197 if (host - block->host < block->length) {
3198 *ram_addr = block->offset + (host - block->host);
3199 return 0;
3200 }
3201 }
3202
3203 return -1;
3204 }
3205
3206 /* Some of the softmmu routines need to translate from a host pointer
3207 (typically a TLB entry) back to a ram offset. */
3208 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3209 {
3210 ram_addr_t ram_addr;
3211
3212 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3213 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3214 abort();
3215 }
3216 return ram_addr;
3217 }
3218
3219 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3220 unsigned size)
3221 {
3222 #ifdef DEBUG_UNASSIGNED
3223 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3224 #endif
3225 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3226 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
3227 #endif
3228 return 0;
3229 }
3230
3231 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3232 uint64_t val, unsigned size)
3233 {
3234 #ifdef DEBUG_UNASSIGNED
3235 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
3236 #endif
3237 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3238 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
3239 #endif
3240 }
3241
3242 static const MemoryRegionOps unassigned_mem_ops = {
3243 .read = unassigned_mem_read,
3244 .write = unassigned_mem_write,
3245 .endianness = DEVICE_NATIVE_ENDIAN,
3246 };
3247
3248 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3249 unsigned size)
3250 {
3251 abort();
3252 }
3253
3254 static void error_mem_write(void *opaque, target_phys_addr_t addr,
3255 uint64_t value, unsigned size)
3256 {
3257 abort();
3258 }
3259
3260 static const MemoryRegionOps error_mem_ops = {
3261 .read = error_mem_read,
3262 .write = error_mem_write,
3263 .endianness = DEVICE_NATIVE_ENDIAN,
3264 };
3265
3266 static const MemoryRegionOps rom_mem_ops = {
3267 .read = error_mem_read,
3268 .write = unassigned_mem_write,
3269 .endianness = DEVICE_NATIVE_ENDIAN,
3270 };
3271
3272 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3273 uint64_t val, unsigned size)
3274 {
3275 int dirty_flags;
3276 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3277 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3278 #if !defined(CONFIG_USER_ONLY)
3279 tb_invalidate_phys_page_fast(ram_addr, size);
3280 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3281 #endif
3282 }
3283 switch (size) {
3284 case 1:
3285 stb_p(qemu_get_ram_ptr(ram_addr), val);
3286 break;
3287 case 2:
3288 stw_p(qemu_get_ram_ptr(ram_addr), val);
3289 break;
3290 case 4:
3291 stl_p(qemu_get_ram_ptr(ram_addr), val);
3292 break;
3293 default:
3294 abort();
3295 }
3296 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3297 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3298 /* we remove the notdirty callback only if the code has been
3299 flushed */
3300 if (dirty_flags == 0xff)
3301 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3302 }
3303
3304 static const MemoryRegionOps notdirty_mem_ops = {
3305 .read = error_mem_read,
3306 .write = notdirty_mem_write,
3307 .endianness = DEVICE_NATIVE_ENDIAN,
3308 };
3309
3310 /* Generate a debug exception if a watchpoint has been hit. */
3311 static void check_watchpoint(int offset, int len_mask, int flags)
3312 {
3313 CPUArchState *env = cpu_single_env;
3314 target_ulong pc, cs_base;
3315 TranslationBlock *tb;
3316 target_ulong vaddr;
3317 CPUWatchpoint *wp;
3318 int cpu_flags;
3319
3320 if (env->watchpoint_hit) {
3321 /* We re-entered the check after replacing the TB. Now raise
3322 * the debug interrupt so that is will trigger after the
3323 * current instruction. */
3324 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3325 return;
3326 }
3327 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3328 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3329 if ((vaddr == (wp->vaddr & len_mask) ||
3330 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3331 wp->flags |= BP_WATCHPOINT_HIT;
3332 if (!env->watchpoint_hit) {
3333 env->watchpoint_hit = wp;
3334 tb = tb_find_pc(env->mem_io_pc);
3335 if (!tb) {
3336 cpu_abort(env, "check_watchpoint: could not find TB for "
3337 "pc=%p", (void *)env->mem_io_pc);
3338 }
3339 cpu_restore_state(tb, env, env->mem_io_pc);
3340 tb_phys_invalidate(tb, -1);
3341 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3342 env->exception_index = EXCP_DEBUG;
3343 cpu_loop_exit(env);
3344 } else {
3345 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3346 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3347 cpu_resume_from_signal(env, NULL);
3348 }
3349 }
3350 } else {
3351 wp->flags &= ~BP_WATCHPOINT_HIT;
3352 }
3353 }
3354 }
3355
3356 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3357 so these check for a hit then pass through to the normal out-of-line
3358 phys routines. */
3359 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3360 unsigned size)
3361 {
3362 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3363 switch (size) {
3364 case 1: return ldub_phys(addr);
3365 case 2: return lduw_phys(addr);
3366 case 4: return ldl_phys(addr);
3367 default: abort();
3368 }
3369 }
3370
3371 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3372 uint64_t val, unsigned size)
3373 {
3374 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3375 switch (size) {
3376 case 1:
3377 stb_phys(addr, val);
3378 break;
3379 case 2:
3380 stw_phys(addr, val);
3381 break;
3382 case 4:
3383 stl_phys(addr, val);
3384 break;
3385 default: abort();
3386 }
3387 }
3388
3389 static const MemoryRegionOps watch_mem_ops = {
3390 .read = watch_mem_read,
3391 .write = watch_mem_write,
3392 .endianness = DEVICE_NATIVE_ENDIAN,
3393 };
3394
3395 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3396 unsigned len)
3397 {
3398 subpage_t *mmio = opaque;
3399 unsigned int idx = SUBPAGE_IDX(addr);
3400 MemoryRegionSection *section;
3401 #if defined(DEBUG_SUBPAGE)
3402 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3403 mmio, len, addr, idx);
3404 #endif
3405
3406 section = &phys_sections[mmio->sub_section[idx]];
3407 addr += mmio->base;
3408 addr -= section->offset_within_address_space;
3409 addr += section->offset_within_region;
3410 return io_mem_read(section->mr, addr, len);
3411 }
3412
3413 static void subpage_write(void *opaque, target_phys_addr_t addr,
3414 uint64_t value, unsigned len)
3415 {
3416 subpage_t *mmio = opaque;
3417 unsigned int idx = SUBPAGE_IDX(addr);
3418 MemoryRegionSection *section;
3419 #if defined(DEBUG_SUBPAGE)
3420 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3421 " idx %d value %"PRIx64"\n",
3422 __func__, mmio, len, addr, idx, value);
3423 #endif
3424
3425 section = &phys_sections[mmio->sub_section[idx]];
3426 addr += mmio->base;
3427 addr -= section->offset_within_address_space;
3428 addr += section->offset_within_region;
3429 io_mem_write(section->mr, addr, value, len);
3430 }
3431
3432 static const MemoryRegionOps subpage_ops = {
3433 .read = subpage_read,
3434 .write = subpage_write,
3435 .endianness = DEVICE_NATIVE_ENDIAN,
3436 };
3437
3438 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3439 unsigned size)
3440 {
3441 ram_addr_t raddr = addr;
3442 void *ptr = qemu_get_ram_ptr(raddr);
3443 switch (size) {
3444 case 1: return ldub_p(ptr);
3445 case 2: return lduw_p(ptr);
3446 case 4: return ldl_p(ptr);
3447 default: abort();
3448 }
3449 }
3450
3451 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3452 uint64_t value, unsigned size)
3453 {
3454 ram_addr_t raddr = addr;
3455 void *ptr = qemu_get_ram_ptr(raddr);
3456 switch (size) {
3457 case 1: return stb_p(ptr, value);
3458 case 2: return stw_p(ptr, value);
3459 case 4: return stl_p(ptr, value);
3460 default: abort();
3461 }
3462 }
3463
3464 static const MemoryRegionOps subpage_ram_ops = {
3465 .read = subpage_ram_read,
3466 .write = subpage_ram_write,
3467 .endianness = DEVICE_NATIVE_ENDIAN,
3468 };
3469
3470 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3471 uint16_t section)
3472 {
3473 int idx, eidx;
3474
3475 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3476 return -1;
3477 idx = SUBPAGE_IDX(start);
3478 eidx = SUBPAGE_IDX(end);
3479 #if defined(DEBUG_SUBPAGE)
3480 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3481 mmio, start, end, idx, eidx, memory);
3482 #endif
3483 if (memory_region_is_ram(phys_sections[section].mr)) {
3484 MemoryRegionSection new_section = phys_sections[section];
3485 new_section.mr = &io_mem_subpage_ram;
3486 section = phys_section_add(&new_section);
3487 }
3488 for (; idx <= eidx; idx++) {
3489 mmio->sub_section[idx] = section;
3490 }
3491
3492 return 0;
3493 }
3494
3495 static subpage_t *subpage_init(target_phys_addr_t base)
3496 {
3497 subpage_t *mmio;
3498
3499 mmio = g_malloc0(sizeof(subpage_t));
3500
3501 mmio->base = base;
3502 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3503 "subpage", TARGET_PAGE_SIZE);
3504 mmio->iomem.subpage = true;
3505 #if defined(DEBUG_SUBPAGE)
3506 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3507 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3508 #endif
3509 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3510
3511 return mmio;
3512 }
3513
3514 static uint16_t dummy_section(MemoryRegion *mr)
3515 {
3516 MemoryRegionSection section = {
3517 .mr = mr,
3518 .offset_within_address_space = 0,
3519 .offset_within_region = 0,
3520 .size = UINT64_MAX,
3521 };
3522
3523 return phys_section_add(&section);
3524 }
3525
3526 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3527 {
3528 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3529 }
3530
3531 static void io_mem_init(void)
3532 {
3533 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3534 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3535 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3536 "unassigned", UINT64_MAX);
3537 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3538 "notdirty", UINT64_MAX);
3539 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3540 "subpage-ram", UINT64_MAX);
3541 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3542 "watch", UINT64_MAX);
3543 }
3544
3545 static void core_begin(MemoryListener *listener)
3546 {
3547 destroy_all_mappings();
3548 phys_sections_clear();
3549 phys_map.ptr = PHYS_MAP_NODE_NIL;
3550 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3551 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3552 phys_section_rom = dummy_section(&io_mem_rom);
3553 phys_section_watch = dummy_section(&io_mem_watch);
3554 }
3555
3556 static void core_commit(MemoryListener *listener)
3557 {
3558 CPUArchState *env;
3559
3560 /* since each CPU stores ram addresses in its TLB cache, we must
3561 reset the modified entries */
3562 /* XXX: slow ! */
3563 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3564 tlb_flush(env, 1);
3565 }
3566 }
3567
3568 static void core_region_add(MemoryListener *listener,
3569 MemoryRegionSection *section)
3570 {
3571 cpu_register_physical_memory_log(section, section->readonly);
3572 }
3573
3574 static void core_region_del(MemoryListener *listener,
3575 MemoryRegionSection *section)
3576 {
3577 }
3578
3579 static void core_region_nop(MemoryListener *listener,
3580 MemoryRegionSection *section)
3581 {
3582 cpu_register_physical_memory_log(section, section->readonly);
3583 }
3584
3585 static void core_log_start(MemoryListener *listener,
3586 MemoryRegionSection *section)
3587 {
3588 }
3589
3590 static void core_log_stop(MemoryListener *listener,
3591 MemoryRegionSection *section)
3592 {
3593 }
3594
3595 static void core_log_sync(MemoryListener *listener,
3596 MemoryRegionSection *section)
3597 {
3598 }
3599
3600 static void core_log_global_start(MemoryListener *listener)
3601 {
3602 cpu_physical_memory_set_dirty_tracking(1);
3603 }
3604
3605 static void core_log_global_stop(MemoryListener *listener)
3606 {
3607 cpu_physical_memory_set_dirty_tracking(0);
3608 }
3609
3610 static void core_eventfd_add(MemoryListener *listener,
3611 MemoryRegionSection *section,
3612 bool match_data, uint64_t data, int fd)
3613 {
3614 }
3615
3616 static void core_eventfd_del(MemoryListener *listener,
3617 MemoryRegionSection *section,
3618 bool match_data, uint64_t data, int fd)
3619 {
3620 }
3621
3622 static void io_begin(MemoryListener *listener)
3623 {
3624 }
3625
3626 static void io_commit(MemoryListener *listener)
3627 {
3628 }
3629
3630 static void io_region_add(MemoryListener *listener,
3631 MemoryRegionSection *section)
3632 {
3633 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3634
3635 mrio->mr = section->mr;
3636 mrio->offset = section->offset_within_region;
3637 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3638 section->offset_within_address_space, section->size);
3639 ioport_register(&mrio->iorange);
3640 }
3641
3642 static void io_region_del(MemoryListener *listener,
3643 MemoryRegionSection *section)
3644 {
3645 isa_unassign_ioport(section->offset_within_address_space, section->size);
3646 }
3647
3648 static void io_region_nop(MemoryListener *listener,
3649 MemoryRegionSection *section)
3650 {
3651 }
3652
3653 static void io_log_start(MemoryListener *listener,
3654 MemoryRegionSection *section)
3655 {
3656 }
3657
3658 static void io_log_stop(MemoryListener *listener,
3659 MemoryRegionSection *section)
3660 {
3661 }
3662
3663 static void io_log_sync(MemoryListener *listener,
3664 MemoryRegionSection *section)
3665 {
3666 }
3667
3668 static void io_log_global_start(MemoryListener *listener)
3669 {
3670 }
3671
3672 static void io_log_global_stop(MemoryListener *listener)
3673 {
3674 }
3675
3676 static void io_eventfd_add(MemoryListener *listener,
3677 MemoryRegionSection *section,
3678 bool match_data, uint64_t data, int fd)
3679 {
3680 }
3681
3682 static void io_eventfd_del(MemoryListener *listener,
3683 MemoryRegionSection *section,
3684 bool match_data, uint64_t data, int fd)
3685 {
3686 }
3687
3688 static MemoryListener core_memory_listener = {
3689 .begin = core_begin,
3690 .commit = core_commit,
3691 .region_add = core_region_add,
3692 .region_del = core_region_del,
3693 .region_nop = core_region_nop,
3694 .log_start = core_log_start,
3695 .log_stop = core_log_stop,
3696 .log_sync = core_log_sync,
3697 .log_global_start = core_log_global_start,
3698 .log_global_stop = core_log_global_stop,
3699 .eventfd_add = core_eventfd_add,
3700 .eventfd_del = core_eventfd_del,
3701 .priority = 0,
3702 };
3703
3704 static MemoryListener io_memory_listener = {
3705 .begin = io_begin,
3706 .commit = io_commit,
3707 .region_add = io_region_add,
3708 .region_del = io_region_del,
3709 .region_nop = io_region_nop,
3710 .log_start = io_log_start,
3711 .log_stop = io_log_stop,
3712 .log_sync = io_log_sync,
3713 .log_global_start = io_log_global_start,
3714 .log_global_stop = io_log_global_stop,
3715 .eventfd_add = io_eventfd_add,
3716 .eventfd_del = io_eventfd_del,
3717 .priority = 0,
3718 };
3719
3720 static void memory_map_init(void)
3721 {
3722 system_memory = g_malloc(sizeof(*system_memory));
3723 memory_region_init(system_memory, "system", INT64_MAX);
3724 set_system_memory_map(system_memory);
3725
3726 system_io = g_malloc(sizeof(*system_io));
3727 memory_region_init(system_io, "io", 65536);
3728 set_system_io_map(system_io);
3729
3730 memory_listener_register(&core_memory_listener, system_memory);
3731 memory_listener_register(&io_memory_listener, system_io);
3732 }
3733
3734 MemoryRegion *get_system_memory(void)
3735 {
3736 return system_memory;
3737 }
3738
3739 MemoryRegion *get_system_io(void)
3740 {
3741 return system_io;
3742 }
3743
3744 #endif /* !defined(CONFIG_USER_ONLY) */
3745
3746 /* physical memory access (slow version, mainly for debug) */
3747 #if defined(CONFIG_USER_ONLY)
3748 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3749 uint8_t *buf, int len, int is_write)
3750 {
3751 int l, flags;
3752 target_ulong page;
3753 void * p;
3754
3755 while (len > 0) {
3756 page = addr & TARGET_PAGE_MASK;
3757 l = (page + TARGET_PAGE_SIZE) - addr;
3758 if (l > len)
3759 l = len;
3760 flags = page_get_flags(page);
3761 if (!(flags & PAGE_VALID))
3762 return -1;
3763 if (is_write) {
3764 if (!(flags & PAGE_WRITE))
3765 return -1;
3766 /* XXX: this code should not depend on lock_user */
3767 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3768 return -1;
3769 memcpy(p, buf, l);
3770 unlock_user(p, addr, l);
3771 } else {
3772 if (!(flags & PAGE_READ))
3773 return -1;
3774 /* XXX: this code should not depend on lock_user */
3775 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3776 return -1;
3777 memcpy(buf, p, l);
3778 unlock_user(p, addr, 0);
3779 }
3780 len -= l;
3781 buf += l;
3782 addr += l;
3783 }
3784 return 0;
3785 }
3786
3787 #else
3788 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3789 int len, int is_write)
3790 {
3791 int l;
3792 uint8_t *ptr;
3793 uint32_t val;
3794 target_phys_addr_t page;
3795 MemoryRegionSection *section;
3796
3797 while (len > 0) {
3798 page = addr & TARGET_PAGE_MASK;
3799 l = (page + TARGET_PAGE_SIZE) - addr;
3800 if (l > len)
3801 l = len;
3802 section = phys_page_find(page >> TARGET_PAGE_BITS);
3803
3804 if (is_write) {
3805 if (!memory_region_is_ram(section->mr)) {
3806 target_phys_addr_t addr1;
3807 addr1 = section_addr(section, addr);
3808 /* XXX: could force cpu_single_env to NULL to avoid
3809 potential bugs */
3810 if (l >= 4 && ((addr1 & 3) == 0)) {
3811 /* 32 bit write access */
3812 val = ldl_p(buf);
3813 io_mem_write(section->mr, addr1, val, 4);
3814 l = 4;
3815 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3816 /* 16 bit write access */
3817 val = lduw_p(buf);
3818 io_mem_write(section->mr, addr1, val, 2);
3819 l = 2;
3820 } else {
3821 /* 8 bit write access */
3822 val = ldub_p(buf);
3823 io_mem_write(section->mr, addr1, val, 1);
3824 l = 1;
3825 }
3826 } else if (!section->readonly) {
3827 ram_addr_t addr1;
3828 addr1 = memory_region_get_ram_addr(section->mr)
3829 + section_addr(section, addr);
3830 /* RAM case */
3831 ptr = qemu_get_ram_ptr(addr1);
3832 memcpy(ptr, buf, l);
3833 if (!cpu_physical_memory_is_dirty(addr1)) {
3834 /* invalidate code */
3835 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3836 /* set dirty bit */
3837 cpu_physical_memory_set_dirty_flags(
3838 addr1, (0xff & ~CODE_DIRTY_FLAG));
3839 }
3840 qemu_put_ram_ptr(ptr);
3841 }
3842 } else {
3843 if (!is_ram_rom_romd(section)) {
3844 target_phys_addr_t addr1;
3845 /* I/O case */
3846 addr1 = section_addr(section, addr);
3847 if (l >= 4 && ((addr1 & 3) == 0)) {
3848 /* 32 bit read access */
3849 val = io_mem_read(section->mr, addr1, 4);
3850 stl_p(buf, val);
3851 l = 4;
3852 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3853 /* 16 bit read access */
3854 val = io_mem_read(section->mr, addr1, 2);
3855 stw_p(buf, val);
3856 l = 2;
3857 } else {
3858 /* 8 bit read access */
3859 val = io_mem_read(section->mr, addr1, 1);
3860 stb_p(buf, val);
3861 l = 1;
3862 }
3863 } else {
3864 /* RAM case */
3865 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3866 + section_addr(section, addr));
3867 memcpy(buf, ptr, l);
3868 qemu_put_ram_ptr(ptr);
3869 }
3870 }
3871 len -= l;
3872 buf += l;
3873 addr += l;
3874 }
3875 }
3876
3877 /* used for ROM loading : can write in RAM and ROM */
3878 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3879 const uint8_t *buf, int len)
3880 {
3881 int l;
3882 uint8_t *ptr;
3883 target_phys_addr_t page;
3884 MemoryRegionSection *section;
3885
3886 while (len > 0) {
3887 page = addr & TARGET_PAGE_MASK;
3888 l = (page + TARGET_PAGE_SIZE) - addr;
3889 if (l > len)
3890 l = len;
3891 section = phys_page_find(page >> TARGET_PAGE_BITS);
3892
3893 if (!is_ram_rom_romd(section)) {
3894 /* do nothing */
3895 } else {
3896 unsigned long addr1;
3897 addr1 = memory_region_get_ram_addr(section->mr)
3898 + section_addr(section, addr);
3899 /* ROM/RAM case */
3900 ptr = qemu_get_ram_ptr(addr1);
3901 memcpy(ptr, buf, l);
3902 qemu_put_ram_ptr(ptr);
3903 }
3904 len -= l;
3905 buf += l;
3906 addr += l;
3907 }
3908 }
3909
3910 typedef struct {
3911 void *buffer;
3912 target_phys_addr_t addr;
3913 target_phys_addr_t len;
3914 } BounceBuffer;
3915
3916 static BounceBuffer bounce;
3917
3918 typedef struct MapClient {
3919 void *opaque;
3920 void (*callback)(void *opaque);
3921 QLIST_ENTRY(MapClient) link;
3922 } MapClient;
3923
3924 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3925 = QLIST_HEAD_INITIALIZER(map_client_list);
3926
3927 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3928 {
3929 MapClient *client = g_malloc(sizeof(*client));
3930
3931 client->opaque = opaque;
3932 client->callback = callback;
3933 QLIST_INSERT_HEAD(&map_client_list, client, link);
3934 return client;
3935 }
3936
3937 void cpu_unregister_map_client(void *_client)
3938 {
3939 MapClient *client = (MapClient *)_client;
3940
3941 QLIST_REMOVE(client, link);
3942 g_free(client);
3943 }
3944
3945 static void cpu_notify_map_clients(void)
3946 {
3947 MapClient *client;
3948
3949 while (!QLIST_EMPTY(&map_client_list)) {
3950 client = QLIST_FIRST(&map_client_list);
3951 client->callback(client->opaque);
3952 cpu_unregister_map_client(client);
3953 }
3954 }
3955
3956 /* Map a physical memory region into a host virtual address.
3957 * May map a subset of the requested range, given by and returned in *plen.
3958 * May return NULL if resources needed to perform the mapping are exhausted.
3959 * Use only for reads OR writes - not for read-modify-write operations.
3960 * Use cpu_register_map_client() to know when retrying the map operation is
3961 * likely to succeed.
3962 */
3963 void *cpu_physical_memory_map(target_phys_addr_t addr,
3964 target_phys_addr_t *plen,
3965 int is_write)
3966 {
3967 target_phys_addr_t len = *plen;
3968 target_phys_addr_t todo = 0;
3969 int l;
3970 target_phys_addr_t page;
3971 MemoryRegionSection *section;
3972 ram_addr_t raddr = RAM_ADDR_MAX;
3973 ram_addr_t rlen;
3974 void *ret;
3975
3976 while (len > 0) {
3977 page = addr & TARGET_PAGE_MASK;
3978 l = (page + TARGET_PAGE_SIZE) - addr;
3979 if (l > len)
3980 l = len;
3981 section = phys_page_find(page >> TARGET_PAGE_BITS);
3982
3983 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3984 if (todo || bounce.buffer) {
3985 break;
3986 }
3987 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3988 bounce.addr = addr;
3989 bounce.len = l;
3990 if (!is_write) {
3991 cpu_physical_memory_read(addr, bounce.buffer, l);
3992 }
3993
3994 *plen = l;
3995 return bounce.buffer;
3996 }
3997 if (!todo) {
3998 raddr = memory_region_get_ram_addr(section->mr)
3999 + section_addr(section, addr);
4000 }
4001
4002 len -= l;
4003 addr += l;
4004 todo += l;
4005 }
4006 rlen = todo;
4007 ret = qemu_ram_ptr_length(raddr, &rlen);
4008 *plen = rlen;
4009 return ret;
4010 }
4011
4012 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4013 * Will also mark the memory as dirty if is_write == 1. access_len gives
4014 * the amount of memory that was actually read or written by the caller.
4015 */
4016 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4017 int is_write, target_phys_addr_t access_len)
4018 {
4019 if (buffer != bounce.buffer) {
4020 if (is_write) {
4021 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4022 while (access_len) {
4023 unsigned l;
4024 l = TARGET_PAGE_SIZE;
4025 if (l > access_len)
4026 l = access_len;
4027 if (!cpu_physical_memory_is_dirty(addr1)) {
4028 /* invalidate code */
4029 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4030 /* set dirty bit */
4031 cpu_physical_memory_set_dirty_flags(
4032 addr1, (0xff & ~CODE_DIRTY_FLAG));
4033 }
4034 addr1 += l;
4035 access_len -= l;
4036 }
4037 }
4038 if (xen_enabled()) {
4039 xen_invalidate_map_cache_entry(buffer);
4040 }
4041 return;
4042 }
4043 if (is_write) {
4044 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4045 }
4046 qemu_vfree(bounce.buffer);
4047 bounce.buffer = NULL;
4048 cpu_notify_map_clients();
4049 }
4050
4051 /* warning: addr must be aligned */
4052 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4053 enum device_endian endian)
4054 {
4055 uint8_t *ptr;
4056 uint32_t val;
4057 MemoryRegionSection *section;
4058
4059 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4060
4061 if (!is_ram_rom_romd(section)) {
4062 /* I/O case */
4063 addr = section_addr(section, addr);
4064 val = io_mem_read(section->mr, addr, 4);
4065 #if defined(TARGET_WORDS_BIGENDIAN)
4066 if (endian == DEVICE_LITTLE_ENDIAN) {
4067 val = bswap32(val);
4068 }
4069 #else
4070 if (endian == DEVICE_BIG_ENDIAN) {
4071 val = bswap32(val);
4072 }
4073 #endif
4074 } else {
4075 /* RAM case */
4076 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4077 & TARGET_PAGE_MASK)
4078 + section_addr(section, addr));
4079 switch (endian) {
4080 case DEVICE_LITTLE_ENDIAN:
4081 val = ldl_le_p(ptr);
4082 break;
4083 case DEVICE_BIG_ENDIAN:
4084 val = ldl_be_p(ptr);
4085 break;
4086 default:
4087 val = ldl_p(ptr);
4088 break;
4089 }
4090 }
4091 return val;
4092 }
4093
4094 uint32_t ldl_phys(target_phys_addr_t addr)
4095 {
4096 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4097 }
4098
4099 uint32_t ldl_le_phys(target_phys_addr_t addr)
4100 {
4101 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4102 }
4103
4104 uint32_t ldl_be_phys(target_phys_addr_t addr)
4105 {
4106 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4107 }
4108
4109 /* warning: addr must be aligned */
4110 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4111 enum device_endian endian)
4112 {
4113 uint8_t *ptr;
4114 uint64_t val;
4115 MemoryRegionSection *section;
4116
4117 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4118
4119 if (!is_ram_rom_romd(section)) {
4120 /* I/O case */
4121 addr = section_addr(section, addr);
4122
4123 /* XXX This is broken when device endian != cpu endian.
4124 Fix and add "endian" variable check */
4125 #ifdef TARGET_WORDS_BIGENDIAN
4126 val = io_mem_read(section->mr, addr, 4) << 32;
4127 val |= io_mem_read(section->mr, addr + 4, 4);
4128 #else
4129 val = io_mem_read(section->mr, addr, 4);
4130 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
4131 #endif
4132 } else {
4133 /* RAM case */
4134 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4135 & TARGET_PAGE_MASK)
4136 + section_addr(section, addr));
4137 switch (endian) {
4138 case DEVICE_LITTLE_ENDIAN:
4139 val = ldq_le_p(ptr);
4140 break;
4141 case DEVICE_BIG_ENDIAN:
4142 val = ldq_be_p(ptr);
4143 break;
4144 default:
4145 val = ldq_p(ptr);
4146 break;
4147 }
4148 }
4149 return val;
4150 }
4151
4152 uint64_t ldq_phys(target_phys_addr_t addr)
4153 {
4154 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4155 }
4156
4157 uint64_t ldq_le_phys(target_phys_addr_t addr)
4158 {
4159 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4160 }
4161
4162 uint64_t ldq_be_phys(target_phys_addr_t addr)
4163 {
4164 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4165 }
4166
4167 /* XXX: optimize */
4168 uint32_t ldub_phys(target_phys_addr_t addr)
4169 {
4170 uint8_t val;
4171 cpu_physical_memory_read(addr, &val, 1);
4172 return val;
4173 }
4174
4175 /* warning: addr must be aligned */
4176 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4177 enum device_endian endian)
4178 {
4179 uint8_t *ptr;
4180 uint64_t val;
4181 MemoryRegionSection *section;
4182
4183 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4184
4185 if (!is_ram_rom_romd(section)) {
4186 /* I/O case */
4187 addr = section_addr(section, addr);
4188 val = io_mem_read(section->mr, addr, 2);
4189 #if defined(TARGET_WORDS_BIGENDIAN)
4190 if (endian == DEVICE_LITTLE_ENDIAN) {
4191 val = bswap16(val);
4192 }
4193 #else
4194 if (endian == DEVICE_BIG_ENDIAN) {
4195 val = bswap16(val);
4196 }
4197 #endif
4198 } else {
4199 /* RAM case */
4200 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4201 & TARGET_PAGE_MASK)
4202 + section_addr(section, addr));
4203 switch (endian) {
4204 case DEVICE_LITTLE_ENDIAN:
4205 val = lduw_le_p(ptr);
4206 break;
4207 case DEVICE_BIG_ENDIAN:
4208 val = lduw_be_p(ptr);
4209 break;
4210 default:
4211 val = lduw_p(ptr);
4212 break;
4213 }
4214 }
4215 return val;
4216 }
4217
4218 uint32_t lduw_phys(target_phys_addr_t addr)
4219 {
4220 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4221 }
4222
4223 uint32_t lduw_le_phys(target_phys_addr_t addr)
4224 {
4225 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4226 }
4227
4228 uint32_t lduw_be_phys(target_phys_addr_t addr)
4229 {
4230 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4231 }
4232
4233 /* warning: addr must be aligned. The ram page is not masked as dirty
4234 and the code inside is not invalidated. It is useful if the dirty
4235 bits are used to track modified PTEs */
4236 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4237 {
4238 uint8_t *ptr;
4239 MemoryRegionSection *section;
4240
4241 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4242
4243 if (!memory_region_is_ram(section->mr) || section->readonly) {
4244 addr = section_addr(section, addr);
4245 if (memory_region_is_ram(section->mr)) {
4246 section = &phys_sections[phys_section_rom];
4247 }
4248 io_mem_write(section->mr, addr, val, 4);
4249 } else {
4250 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
4251 & TARGET_PAGE_MASK)
4252 + section_addr(section, addr);
4253 ptr = qemu_get_ram_ptr(addr1);
4254 stl_p(ptr, val);
4255
4256 if (unlikely(in_migration)) {
4257 if (!cpu_physical_memory_is_dirty(addr1)) {
4258 /* invalidate code */
4259 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4260 /* set dirty bit */
4261 cpu_physical_memory_set_dirty_flags(
4262 addr1, (0xff & ~CODE_DIRTY_FLAG));
4263 }
4264 }
4265 }
4266 }
4267
4268 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4269 {
4270 uint8_t *ptr;
4271 MemoryRegionSection *section;
4272
4273 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4274
4275 if (!memory_region_is_ram(section->mr) || section->readonly) {
4276 addr = section_addr(section, addr);
4277 if (memory_region_is_ram(section->mr)) {
4278 section = &phys_sections[phys_section_rom];
4279 }
4280 #ifdef TARGET_WORDS_BIGENDIAN
4281 io_mem_write(section->mr, addr, val >> 32, 4);
4282 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
4283 #else
4284 io_mem_write(section->mr, addr, (uint32_t)val, 4);
4285 io_mem_write(section->mr, addr + 4, val >> 32, 4);
4286 #endif
4287 } else {
4288 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4289 & TARGET_PAGE_MASK)
4290 + section_addr(section, addr));
4291 stq_p(ptr, val);
4292 }
4293 }
4294
4295 /* warning: addr must be aligned */
4296 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4297 enum device_endian endian)
4298 {
4299 uint8_t *ptr;
4300 MemoryRegionSection *section;
4301
4302 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4303
4304 if (!memory_region_is_ram(section->mr) || section->readonly) {
4305 addr = section_addr(section, addr);
4306 if (memory_region_is_ram(section->mr)) {
4307 section = &phys_sections[phys_section_rom];
4308 }
4309 #if defined(TARGET_WORDS_BIGENDIAN)
4310 if (endian == DEVICE_LITTLE_ENDIAN) {
4311 val = bswap32(val);
4312 }
4313 #else
4314 if (endian == DEVICE_BIG_ENDIAN) {
4315 val = bswap32(val);
4316 }
4317 #endif
4318 io_mem_write(section->mr, addr, val, 4);
4319 } else {
4320 unsigned long addr1;
4321 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4322 + section_addr(section, addr);
4323 /* RAM case */
4324 ptr = qemu_get_ram_ptr(addr1);
4325 switch (endian) {
4326 case DEVICE_LITTLE_ENDIAN:
4327 stl_le_p(ptr, val);
4328 break;
4329 case DEVICE_BIG_ENDIAN:
4330 stl_be_p(ptr, val);
4331 break;
4332 default:
4333 stl_p(ptr, val);
4334 break;
4335 }
4336 if (!cpu_physical_memory_is_dirty(addr1)) {
4337 /* invalidate code */
4338 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4339 /* set dirty bit */
4340 cpu_physical_memory_set_dirty_flags(addr1,
4341 (0xff & ~CODE_DIRTY_FLAG));
4342 }
4343 }
4344 }
4345
4346 void stl_phys(target_phys_addr_t addr, uint32_t val)
4347 {
4348 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4349 }
4350
4351 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4352 {
4353 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4354 }
4355
4356 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4357 {
4358 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4359 }
4360
4361 /* XXX: optimize */
4362 void stb_phys(target_phys_addr_t addr, uint32_t val)
4363 {
4364 uint8_t v = val;
4365 cpu_physical_memory_write(addr, &v, 1);
4366 }
4367
4368 /* warning: addr must be aligned */
4369 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4370 enum device_endian endian)
4371 {
4372 uint8_t *ptr;
4373 MemoryRegionSection *section;
4374
4375 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4376
4377 if (!memory_region_is_ram(section->mr) || section->readonly) {
4378 addr = section_addr(section, addr);
4379 if (memory_region_is_ram(section->mr)) {
4380 section = &phys_sections[phys_section_rom];
4381 }
4382 #if defined(TARGET_WORDS_BIGENDIAN)
4383 if (endian == DEVICE_LITTLE_ENDIAN) {
4384 val = bswap16(val);
4385 }
4386 #else
4387 if (endian == DEVICE_BIG_ENDIAN) {
4388 val = bswap16(val);
4389 }
4390 #endif
4391 io_mem_write(section->mr, addr, val, 2);
4392 } else {
4393 unsigned long addr1;
4394 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4395 + section_addr(section, addr);
4396 /* RAM case */
4397 ptr = qemu_get_ram_ptr(addr1);
4398 switch (endian) {
4399 case DEVICE_LITTLE_ENDIAN:
4400 stw_le_p(ptr, val);
4401 break;
4402 case DEVICE_BIG_ENDIAN:
4403 stw_be_p(ptr, val);
4404 break;
4405 default:
4406 stw_p(ptr, val);
4407 break;
4408 }
4409 if (!cpu_physical_memory_is_dirty(addr1)) {
4410 /* invalidate code */
4411 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4412 /* set dirty bit */
4413 cpu_physical_memory_set_dirty_flags(addr1,
4414 (0xff & ~CODE_DIRTY_FLAG));
4415 }
4416 }
4417 }
4418
4419 void stw_phys(target_phys_addr_t addr, uint32_t val)
4420 {
4421 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4422 }
4423
4424 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4425 {
4426 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4427 }
4428
4429 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4430 {
4431 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4432 }
4433
4434 /* XXX: optimize */
4435 void stq_phys(target_phys_addr_t addr, uint64_t val)
4436 {
4437 val = tswap64(val);
4438 cpu_physical_memory_write(addr, &val, 8);
4439 }
4440
4441 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4442 {
4443 val = cpu_to_le64(val);
4444 cpu_physical_memory_write(addr, &val, 8);
4445 }
4446
4447 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4448 {
4449 val = cpu_to_be64(val);
4450 cpu_physical_memory_write(addr, &val, 8);
4451 }
4452
4453 /* virtual memory access for debug (includes writing to ROM) */
4454 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4455 uint8_t *buf, int len, int is_write)
4456 {
4457 int l;
4458 target_phys_addr_t phys_addr;
4459 target_ulong page;
4460
4461 while (len > 0) {
4462 page = addr & TARGET_PAGE_MASK;
4463 phys_addr = cpu_get_phys_page_debug(env, page);
4464 /* if no physical page mapped, return an error */
4465 if (phys_addr == -1)
4466 return -1;
4467 l = (page + TARGET_PAGE_SIZE) - addr;
4468 if (l > len)
4469 l = len;
4470 phys_addr += (addr & ~TARGET_PAGE_MASK);
4471 if (is_write)
4472 cpu_physical_memory_write_rom(phys_addr, buf, l);
4473 else
4474 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4475 len -= l;
4476 buf += l;
4477 addr += l;
4478 }
4479 return 0;
4480 }
4481 #endif
4482
4483 /* in deterministic execution mode, instructions doing device I/Os
4484 must be at the end of the TB */
4485 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4486 {
4487 TranslationBlock *tb;
4488 uint32_t n, cflags;
4489 target_ulong pc, cs_base;
4490 uint64_t flags;
4491
4492 tb = tb_find_pc(retaddr);
4493 if (!tb) {
4494 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4495 (void *)retaddr);
4496 }
4497 n = env->icount_decr.u16.low + tb->icount;
4498 cpu_restore_state(tb, env, retaddr);
4499 /* Calculate how many instructions had been executed before the fault
4500 occurred. */
4501 n = n - env->icount_decr.u16.low;
4502 /* Generate a new TB ending on the I/O insn. */
4503 n++;
4504 /* On MIPS and SH, delay slot instructions can only be restarted if
4505 they were already the first instruction in the TB. If this is not
4506 the first instruction in a TB then re-execute the preceding
4507 branch. */
4508 #if defined(TARGET_MIPS)
4509 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4510 env->active_tc.PC -= 4;
4511 env->icount_decr.u16.low++;
4512 env->hflags &= ~MIPS_HFLAG_BMASK;
4513 }
4514 #elif defined(TARGET_SH4)
4515 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4516 && n > 1) {
4517 env->pc -= 2;
4518 env->icount_decr.u16.low++;
4519 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4520 }
4521 #endif
4522 /* This should never happen. */
4523 if (n > CF_COUNT_MASK)
4524 cpu_abort(env, "TB too big during recompile");
4525
4526 cflags = n | CF_LAST_IO;
4527 pc = tb->pc;
4528 cs_base = tb->cs_base;
4529 flags = tb->flags;
4530 tb_phys_invalidate(tb, -1);
4531 /* FIXME: In theory this could raise an exception. In practice
4532 we have already translated the block once so it's probably ok. */
4533 tb_gen_code(env, pc, cs_base, flags, cflags);
4534 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4535 the first in the TB) then we end up generating a whole new TB and
4536 repeating the fault, which is horribly inefficient.
4537 Better would be to execute just this insn uncached, or generate a
4538 second new TB. */
4539 cpu_resume_from_signal(env, NULL);
4540 }
4541
4542 #if !defined(CONFIG_USER_ONLY)
4543
4544 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4545 {
4546 int i, target_code_size, max_target_code_size;
4547 int direct_jmp_count, direct_jmp2_count, cross_page;
4548 TranslationBlock *tb;
4549
4550 target_code_size = 0;
4551 max_target_code_size = 0;
4552 cross_page = 0;
4553 direct_jmp_count = 0;
4554 direct_jmp2_count = 0;
4555 for(i = 0; i < nb_tbs; i++) {
4556 tb = &tbs[i];
4557 target_code_size += tb->size;
4558 if (tb->size > max_target_code_size)
4559 max_target_code_size = tb->size;
4560 if (tb->page_addr[1] != -1)
4561 cross_page++;
4562 if (tb->tb_next_offset[0] != 0xffff) {
4563 direct_jmp_count++;
4564 if (tb->tb_next_offset[1] != 0xffff) {
4565 direct_jmp2_count++;
4566 }
4567 }
4568 }
4569 /* XXX: avoid using doubles ? */
4570 cpu_fprintf(f, "Translation buffer state:\n");
4571 cpu_fprintf(f, "gen code size %td/%ld\n",
4572 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4573 cpu_fprintf(f, "TB count %d/%d\n",
4574 nb_tbs, code_gen_max_blocks);
4575 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4576 nb_tbs ? target_code_size / nb_tbs : 0,
4577 max_target_code_size);
4578 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4579 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4580 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4581 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4582 cross_page,
4583 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4584 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4585 direct_jmp_count,
4586 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4587 direct_jmp2_count,
4588 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4589 cpu_fprintf(f, "\nStatistics:\n");
4590 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4591 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4592 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4593 tcg_dump_info(f, cpu_fprintf);
4594 }
4595
4596 /* NOTE: this function can trigger an exception */
4597 /* NOTE2: the returned address is not exactly the physical address: it
4598 is the offset relative to phys_ram_base */
4599 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
4600 {
4601 int mmu_idx, page_index, pd;
4602 void *p;
4603 MemoryRegion *mr;
4604
4605 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4606 mmu_idx = cpu_mmu_index(env1);
4607 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4608 (addr & TARGET_PAGE_MASK))) {
4609 #ifdef CONFIG_TCG_PASS_AREG0
4610 cpu_ldub_code(env1, addr);
4611 #else
4612 ldub_code(addr);
4613 #endif
4614 }
4615 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
4616 mr = iotlb_to_region(pd);
4617 if (mr != &io_mem_ram && mr != &io_mem_rom
4618 && mr != &io_mem_notdirty && !mr->rom_device
4619 && mr != &io_mem_watch) {
4620 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4621 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4622 #else
4623 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4624 #endif
4625 }
4626 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4627 return qemu_ram_addr_from_host_nofail(p);
4628 }
4629
4630 /*
4631 * A helper function for the _utterly broken_ virtio device model to find out if
4632 * it's running on a big endian machine. Don't do this at home kids!
4633 */
4634 bool virtio_is_big_endian(void);
4635 bool virtio_is_big_endian(void)
4636 {
4637 #if defined(TARGET_WORDS_BIGENDIAN)
4638 return true;
4639 #else
4640 return false;
4641 #endif
4642 }
4643
4644 #define MMUSUFFIX _cmmu
4645 #undef GETPC
4646 #define GETPC() ((uintptr_t)0)
4647 #define env cpu_single_env
4648 #define SOFTMMU_CODE_ACCESS
4649
4650 #define SHIFT 0
4651 #include "softmmu_template.h"
4652
4653 #define SHIFT 1
4654 #include "softmmu_template.h"
4655
4656 #define SHIFT 2
4657 #include "softmmu_template.h"
4658
4659 #define SHIFT 3
4660 #include "softmmu_template.h"
4661
4662 #undef env
4663
4664 #endif