]> git.proxmox.com Git - qemu.git/blob - exec.c
ram_blocks: Convert to a QLIST
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
61
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
66
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
70
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
73
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
78
79 #define SMC_BITMAP_USE_THRESHOLD 10
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
116 #endif
117
118 CPUState *first_cpu;
119 /* current CPU in the current thread. It is only valid inside
120 cpu_exec() */
121 CPUState *cpu_single_env;
122 /* 0 = Do not count executed instructions.
123 1 = Precise instruction counting.
124 2 = Adaptive rate instruction counting. */
125 int use_icount = 0;
126 /* Current instruction counter. While executing translated code this may
127 include some instructions that have not yet been executed. */
128 int64_t qemu_icount;
129
130 typedef struct PageDesc {
131 /* list of TBs intersecting this ram page */
132 TranslationBlock *first_tb;
133 /* in order to optimize self modifying code, we count the number
134 of lookups we do to a given page to use a bitmap */
135 unsigned int code_write_count;
136 uint8_t *code_bitmap;
137 #if defined(CONFIG_USER_ONLY)
138 unsigned long flags;
139 #endif
140 } PageDesc;
141
142 /* In system mode we want L1_MAP to be based on ram offsets,
143 while in user mode we want it to be based on virtual addresses. */
144 #if !defined(CONFIG_USER_ONLY)
145 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
146 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
147 #else
148 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
149 #endif
150 #else
151 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
152 #endif
153
154 /* Size of the L2 (and L3, etc) page tables. */
155 #define L2_BITS 10
156 #define L2_SIZE (1 << L2_BITS)
157
158 /* The bits remaining after N lower levels of page tables. */
159 #define P_L1_BITS_REM \
160 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
161 #define V_L1_BITS_REM \
162 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163
164 /* Size of the L1 page table. Avoid silly small sizes. */
165 #if P_L1_BITS_REM < 4
166 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
167 #else
168 #define P_L1_BITS P_L1_BITS_REM
169 #endif
170
171 #if V_L1_BITS_REM < 4
172 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
173 #else
174 #define V_L1_BITS V_L1_BITS_REM
175 #endif
176
177 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
178 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
179
180 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
181 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
182
183 unsigned long qemu_real_host_page_size;
184 unsigned long qemu_host_page_bits;
185 unsigned long qemu_host_page_size;
186 unsigned long qemu_host_page_mask;
187
188 /* This is a multi-level map on the virtual address space.
189 The bottom level has pointers to PageDesc. */
190 static void *l1_map[V_L1_SIZE];
191
192 #if !defined(CONFIG_USER_ONLY)
193 typedef struct PhysPageDesc {
194 /* offset in host memory of the page + io_index in the low bits */
195 ram_addr_t phys_offset;
196 ram_addr_t region_offset;
197 } PhysPageDesc;
198
199 /* This is a multi-level map on the physical address space.
200 The bottom level has pointers to PhysPageDesc. */
201 static void *l1_phys_map[P_L1_SIZE];
202
203 static void io_mem_init(void);
204
205 /* io memory support */
206 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
207 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
208 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
209 static char io_mem_used[IO_MEM_NB_ENTRIES];
210 static int io_mem_watch;
211 #endif
212
213 /* log support */
214 #ifdef WIN32
215 static const char *logfilename = "qemu.log";
216 #else
217 static const char *logfilename = "/tmp/qemu.log";
218 #endif
219 FILE *logfile;
220 int loglevel;
221 static int log_append = 0;
222
223 /* statistics */
224 #if !defined(CONFIG_USER_ONLY)
225 static int tlb_flush_count;
226 #endif
227 static int tb_flush_count;
228 static int tb_phys_invalidate_count;
229
230 #ifdef _WIN32
231 static void map_exec(void *addr, long size)
232 {
233 DWORD old_protect;
234 VirtualProtect(addr, size,
235 PAGE_EXECUTE_READWRITE, &old_protect);
236
237 }
238 #else
239 static void map_exec(void *addr, long size)
240 {
241 unsigned long start, end, page_size;
242
243 page_size = getpagesize();
244 start = (unsigned long)addr;
245 start &= ~(page_size - 1);
246
247 end = (unsigned long)addr + size;
248 end += page_size - 1;
249 end &= ~(page_size - 1);
250
251 mprotect((void *)start, end - start,
252 PROT_READ | PROT_WRITE | PROT_EXEC);
253 }
254 #endif
255
256 static void page_init(void)
257 {
258 /* NOTE: we can always suppose that qemu_host_page_size >=
259 TARGET_PAGE_SIZE */
260 #ifdef _WIN32
261 {
262 SYSTEM_INFO system_info;
263
264 GetSystemInfo(&system_info);
265 qemu_real_host_page_size = system_info.dwPageSize;
266 }
267 #else
268 qemu_real_host_page_size = getpagesize();
269 #endif
270 if (qemu_host_page_size == 0)
271 qemu_host_page_size = qemu_real_host_page_size;
272 if (qemu_host_page_size < TARGET_PAGE_SIZE)
273 qemu_host_page_size = TARGET_PAGE_SIZE;
274 qemu_host_page_bits = 0;
275 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
276 qemu_host_page_bits++;
277 qemu_host_page_mask = ~(qemu_host_page_size - 1);
278
279 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
280 {
281 #ifdef HAVE_KINFO_GETVMMAP
282 struct kinfo_vmentry *freep;
283 int i, cnt;
284
285 freep = kinfo_getvmmap(getpid(), &cnt);
286 if (freep) {
287 mmap_lock();
288 for (i = 0; i < cnt; i++) {
289 unsigned long startaddr, endaddr;
290
291 startaddr = freep[i].kve_start;
292 endaddr = freep[i].kve_end;
293 if (h2g_valid(startaddr)) {
294 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
295
296 if (h2g_valid(endaddr)) {
297 endaddr = h2g(endaddr);
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 } else {
300 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
301 endaddr = ~0ul;
302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
303 #endif
304 }
305 }
306 }
307 free(freep);
308 mmap_unlock();
309 }
310 #else
311 FILE *f;
312
313 last_brk = (unsigned long)sbrk(0);
314
315 f = fopen("/compat/linux/proc/self/maps", "r");
316 if (f) {
317 mmap_lock();
318
319 do {
320 unsigned long startaddr, endaddr;
321 int n;
322
323 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
324
325 if (n == 2 && h2g_valid(startaddr)) {
326 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
327
328 if (h2g_valid(endaddr)) {
329 endaddr = h2g(endaddr);
330 } else {
331 endaddr = ~0ul;
332 }
333 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
334 }
335 } while (!feof(f));
336
337 fclose(f);
338 mmap_unlock();
339 }
340 #endif
341 }
342 #endif
343 }
344
345 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
346 {
347 PageDesc *pd;
348 void **lp;
349 int i;
350
351 #if defined(CONFIG_USER_ONLY)
352 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
353 # define ALLOC(P, SIZE) \
354 do { \
355 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
356 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
357 } while (0)
358 #else
359 # define ALLOC(P, SIZE) \
360 do { P = qemu_mallocz(SIZE); } while (0)
361 #endif
362
363 /* Level 1. Always allocated. */
364 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
365
366 /* Level 2..N-1. */
367 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
368 void **p = *lp;
369
370 if (p == NULL) {
371 if (!alloc) {
372 return NULL;
373 }
374 ALLOC(p, sizeof(void *) * L2_SIZE);
375 *lp = p;
376 }
377
378 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
379 }
380
381 pd = *lp;
382 if (pd == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
387 *lp = pd;
388 }
389
390 #undef ALLOC
391
392 return pd + (index & (L2_SIZE - 1));
393 }
394
395 static inline PageDesc *page_find(tb_page_addr_t index)
396 {
397 return page_find_alloc(index, 0);
398 }
399
400 #if !defined(CONFIG_USER_ONLY)
401 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
402 {
403 PhysPageDesc *pd;
404 void **lp;
405 int i;
406
407 /* Level 1. Always allocated. */
408 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
409
410 /* Level 2..N-1. */
411 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
412 void **p = *lp;
413 if (p == NULL) {
414 if (!alloc) {
415 return NULL;
416 }
417 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
418 }
419 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
420 }
421
422 pd = *lp;
423 if (pd == NULL) {
424 int i;
425
426 if (!alloc) {
427 return NULL;
428 }
429
430 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
431
432 for (i = 0; i < L2_SIZE; i++) {
433 pd[i].phys_offset = IO_MEM_UNASSIGNED;
434 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
435 }
436 }
437
438 return pd + (index & (L2_SIZE - 1));
439 }
440
441 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
442 {
443 return phys_page_find_alloc(index, 0);
444 }
445
446 static void tlb_protect_code(ram_addr_t ram_addr);
447 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
448 target_ulong vaddr);
449 #define mmap_lock() do { } while(0)
450 #define mmap_unlock() do { } while(0)
451 #endif
452
453 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
454
455 #if defined(CONFIG_USER_ONLY)
456 /* Currently it is not recommended to allocate big chunks of data in
457 user mode. It will change when a dedicated libc will be used */
458 #define USE_STATIC_CODE_GEN_BUFFER
459 #endif
460
461 #ifdef USE_STATIC_CODE_GEN_BUFFER
462 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
463 __attribute__((aligned (CODE_GEN_ALIGN)));
464 #endif
465
466 static void code_gen_alloc(unsigned long tb_size)
467 {
468 #ifdef USE_STATIC_CODE_GEN_BUFFER
469 code_gen_buffer = static_code_gen_buffer;
470 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
471 map_exec(code_gen_buffer, code_gen_buffer_size);
472 #else
473 code_gen_buffer_size = tb_size;
474 if (code_gen_buffer_size == 0) {
475 #if defined(CONFIG_USER_ONLY)
476 /* in user mode, phys_ram_size is not meaningful */
477 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
478 #else
479 /* XXX: needs adjustments */
480 code_gen_buffer_size = (unsigned long)(ram_size / 4);
481 #endif
482 }
483 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
484 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
485 /* The code gen buffer location may have constraints depending on
486 the host cpu and OS */
487 #if defined(__linux__)
488 {
489 int flags;
490 void *start = NULL;
491
492 flags = MAP_PRIVATE | MAP_ANONYMOUS;
493 #if defined(__x86_64__)
494 flags |= MAP_32BIT;
495 /* Cannot map more than that */
496 if (code_gen_buffer_size > (800 * 1024 * 1024))
497 code_gen_buffer_size = (800 * 1024 * 1024);
498 #elif defined(__sparc_v9__)
499 // Map the buffer below 2G, so we can use direct calls and branches
500 flags |= MAP_FIXED;
501 start = (void *) 0x60000000UL;
502 if (code_gen_buffer_size > (512 * 1024 * 1024))
503 code_gen_buffer_size = (512 * 1024 * 1024);
504 #elif defined(__arm__)
505 /* Map the buffer below 32M, so we can use direct calls and branches */
506 flags |= MAP_FIXED;
507 start = (void *) 0x01000000UL;
508 if (code_gen_buffer_size > 16 * 1024 * 1024)
509 code_gen_buffer_size = 16 * 1024 * 1024;
510 #elif defined(__s390x__)
511 /* Map the buffer so that we can use direct calls and branches. */
512 /* We have a +- 4GB range on the branches; leave some slop. */
513 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
514 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
515 }
516 start = (void *)0x90000000UL;
517 #endif
518 code_gen_buffer = mmap(start, code_gen_buffer_size,
519 PROT_WRITE | PROT_READ | PROT_EXEC,
520 flags, -1, 0);
521 if (code_gen_buffer == MAP_FAILED) {
522 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
523 exit(1);
524 }
525 }
526 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
527 {
528 int flags;
529 void *addr = NULL;
530 flags = MAP_PRIVATE | MAP_ANONYMOUS;
531 #if defined(__x86_64__)
532 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
533 * 0x40000000 is free */
534 flags |= MAP_FIXED;
535 addr = (void *)0x40000000;
536 /* Cannot map more than that */
537 if (code_gen_buffer_size > (800 * 1024 * 1024))
538 code_gen_buffer_size = (800 * 1024 * 1024);
539 #endif
540 code_gen_buffer = mmap(addr, code_gen_buffer_size,
541 PROT_WRITE | PROT_READ | PROT_EXEC,
542 flags, -1, 0);
543 if (code_gen_buffer == MAP_FAILED) {
544 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
545 exit(1);
546 }
547 }
548 #else
549 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
550 map_exec(code_gen_buffer, code_gen_buffer_size);
551 #endif
552 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
553 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
554 code_gen_buffer_max_size = code_gen_buffer_size -
555 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
556 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
557 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
558 }
559
560 /* Must be called before using the QEMU cpus. 'tb_size' is the size
561 (in bytes) allocated to the translation buffer. Zero means default
562 size. */
563 void cpu_exec_init_all(unsigned long tb_size)
564 {
565 cpu_gen_init();
566 code_gen_alloc(tb_size);
567 code_gen_ptr = code_gen_buffer;
568 page_init();
569 #if !defined(CONFIG_USER_ONLY)
570 io_mem_init();
571 #endif
572 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
573 /* There's no guest base to take into account, so go ahead and
574 initialize the prologue now. */
575 tcg_prologue_init(&tcg_ctx);
576 #endif
577 }
578
579 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
580
581 static int cpu_common_post_load(void *opaque, int version_id)
582 {
583 CPUState *env = opaque;
584
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
588 tlb_flush(env, 1);
589
590 return 0;
591 }
592
593 static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
603 }
604 };
605 #endif
606
607 CPUState *qemu_get_cpu(int cpu)
608 {
609 CPUState *env = first_cpu;
610
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
615 }
616
617 return env;
618 }
619
620 void cpu_exec_init(CPUState *env)
621 {
622 CPUState **penv;
623 int cpu_index;
624
625 #if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627 #endif
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
632 penv = &(*penv)->next_cpu;
633 cpu_index++;
634 }
635 env->cpu_index = cpu_index;
636 env->numa_node = 0;
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
639 *penv = env;
640 #if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642 #endif
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647 #endif
648 }
649
650 static inline void invalidate_page_bitmap(PageDesc *p)
651 {
652 if (p->code_bitmap) {
653 qemu_free(p->code_bitmap);
654 p->code_bitmap = NULL;
655 }
656 p->code_write_count = 0;
657 }
658
659 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
660
661 static void page_flush_tb_1 (int level, void **lp)
662 {
663 int i;
664
665 if (*lp == NULL) {
666 return;
667 }
668 if (level == 0) {
669 PageDesc *pd = *lp;
670 for (i = 0; i < L2_SIZE; ++i) {
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
673 }
674 } else {
675 void **pp = *lp;
676 for (i = 0; i < L2_SIZE; ++i) {
677 page_flush_tb_1 (level - 1, pp + i);
678 }
679 }
680 }
681
682 static void page_flush_tb(void)
683 {
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
687 }
688 }
689
690 /* flush all the translation blocks */
691 /* XXX: tb_flush is currently not thread safe */
692 void tb_flush(CPUState *env1)
693 {
694 CPUState *env;
695 #if defined(DEBUG_FLUSH)
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
700 #endif
701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703
704 nb_tbs = 0;
705
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
708 }
709
710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
711 page_flush_tb();
712
713 code_gen_ptr = code_gen_buffer;
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
716 tb_flush_count++;
717 }
718
719 #ifdef DEBUG_TB_CHECK
720
721 static void tb_invalidate_check(target_ulong address)
722 {
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
732 address, (long)tb->pc, tb->size);
733 }
734 }
735 }
736 }
737
738 /* verify that all the pages have correct rights for code */
739 static void tb_page_check(void)
740 {
741 TranslationBlock *tb;
742 int i, flags1, flags2;
743
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
750 (long)tb->pc, tb->size, flags1, flags2);
751 }
752 }
753 }
754 }
755
756 #endif
757
758 /* invalidate one TB */
759 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
761 {
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
768 }
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
770 }
771 }
772
773 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774 {
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788 }
789
790 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791 {
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
809 }
810 }
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
813
814 tb->jmp_next[n] = NULL;
815 }
816 }
817
818 /* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820 static inline void tb_reset_jump(TranslationBlock *tb, int n)
821 {
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
823 }
824
825 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
826 {
827 CPUState *env;
828 PageDesc *p;
829 unsigned int h, n1;
830 tb_page_addr_t phys_pc;
831 TranslationBlock *tb1, *tb2;
832
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
836 tb_remove(&tb_phys_hash[h], tb,
837 offsetof(TranslationBlock, phys_hash_next));
838
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
844 }
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
849 }
850
851 tb_invalidated_flag = 1;
852
853 /* remove the TB from the hash list */
854 h = tb_jmp_cache_hash_func(tb->pc);
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
858 }
859
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
863
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
875 }
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
877
878 tb_phys_invalidate_count++;
879 }
880
881 static inline void set_bits(uint8_t *tab, int start, int len)
882 {
883 int end, mask, end1;
884
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
892 }
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
900 }
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 }
906 }
907
908 static void build_page_bitmap(PageDesc *p)
909 {
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
912
913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
914
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
933 }
934 }
935
936 TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
939 {
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
944 int code_gen_size;
945
946 phys_pc = get_page_addr_code(env, pc);
947 tb = tb_alloc(pc);
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
952 tb = tb_alloc(pc);
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
955 }
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
961 cpu_gen_code(env, tb, &code_gen_size);
962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
963
964 /* check next page if needed */
965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
966 phys_page2 = -1;
967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
968 phys_page2 = get_page_addr_code(env, virt_page2);
969 }
970 tb_link_page(tb, phys_pc, phys_page2);
971 return tb;
972 }
973
974 /* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
980 int is_cpu_write_access)
981 {
982 TranslationBlock *tb, *tb_next, *saved_tb;
983 CPUState *env = cpu_single_env;
984 tb_page_addr_t tb_start, tb_end;
985 PageDesc *p;
986 int n;
987 #ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994 #endif /* TARGET_HAS_PRECISE_SMC */
995
996 p = page_find(start >> TARGET_PAGE_BITS);
997 if (!p)
998 return;
999 if (!p->code_bitmap &&
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1004 }
1005
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 if (!(tb_end <= start || tb_start >= end)) {
1024 #ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
1028 if (env->mem_io_pc) {
1029 /* now we have a real cpu fault */
1030 current_tb = tb_find_pc(env->mem_io_pc);
1031 }
1032 }
1033 if (current_tb == tb &&
1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
1040
1041 current_tb_modified = 1;
1042 cpu_restore_state(current_tb, env,
1043 env->mem_io_pc, NULL);
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
1046 }
1047 #endif /* TARGET_HAS_PRECISE_SMC */
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1054 }
1055 tb_phys_invalidate(tb, -1);
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1060 }
1061 }
1062 tb = tb_next;
1063 }
1064 #if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
1068 if (is_cpu_write_access) {
1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1070 }
1071 }
1072 #endif
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
1078 env->current_tb = NULL;
1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1080 cpu_resume_from_signal(env, NULL);
1081 }
1082 #endif
1083 }
1084
1085 /* len must be <= 8 and start must be a multiple of len */
1086 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1087 {
1088 PageDesc *p;
1089 int offset, b;
1090 #if 0
1091 if (1) {
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1096 }
1097 #endif
1098 p = page_find(start >> TARGET_PAGE_BITS);
1099 if (!p)
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
1108 tb_invalidate_phys_page_range(start, start + len, 1);
1109 }
1110 }
1111
1112 #if !defined(CONFIG_SOFTMMU)
1113 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1114 unsigned long pc, void *puc)
1115 {
1116 TranslationBlock *tb;
1117 PageDesc *p;
1118 int n;
1119 #ifdef TARGET_HAS_PRECISE_SMC
1120 TranslationBlock *current_tb = NULL;
1121 CPUState *env = cpu_single_env;
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
1126 #endif
1127
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
1130 if (!p)
1131 return;
1132 tb = p->first_tb;
1133 #ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1136 }
1137 #endif
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
1141 #ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
1149
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
1154 }
1155 #endif /* TARGET_HAS_PRECISE_SMC */
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1158 }
1159 p->first_tb = NULL;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
1165 env->current_tb = NULL;
1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1167 cpu_resume_from_signal(env, puc);
1168 }
1169 #endif
1170 }
1171 #endif
1172
1173 /* add the tb in the target page and protect it if necessary */
1174 static inline void tb_alloc_page(TranslationBlock *tb,
1175 unsigned int n, tb_page_addr_t page_addr)
1176 {
1177 PageDesc *p;
1178 TranslationBlock *last_first_tb;
1179
1180 tb->page_addr[n] = page_addr;
1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
1186
1187 #if defined(TARGET_HAS_SMC) || 1
1188
1189 #if defined(CONFIG_USER_ONLY)
1190 if (p->flags & PAGE_WRITE) {
1191 target_ulong addr;
1192 PageDesc *p2;
1193 int prot;
1194
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
1197 page_addr &= qemu_host_page_mask;
1198 prot = 0;
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1201
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
1207 }
1208 mprotect(g2h(page_addr), qemu_host_page_size,
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210 #ifdef DEBUG_TB_INVALIDATE
1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1212 page_addr);
1213 #endif
1214 }
1215 #else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
1220 tlb_protect_code(page_addr);
1221 }
1222 #endif
1223
1224 #endif /* TARGET_HAS_SMC */
1225 }
1226
1227 /* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
1229 TranslationBlock *tb_alloc(target_ulong pc)
1230 {
1231 TranslationBlock *tb;
1232
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1235 return NULL;
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
1238 tb->cflags = 0;
1239 return tb;
1240 }
1241
1242 void tb_free(TranslationBlock *tb)
1243 {
1244 /* In practice this is mostly used for single use temporary TB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1250 }
1251 }
1252
1253 /* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
1255 void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1257 {
1258 unsigned int h;
1259 TranslationBlock **ptb;
1260
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
1269
1270 /* add in the page list */
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
1276
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1280
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
1286
1287 #ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289 #endif
1290 mmap_unlock();
1291 }
1292
1293 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1296 {
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
1300
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1319 }
1320 }
1321 return &tbs[m_max];
1322 }
1323
1324 static void tb_reset_jump_recursive(TranslationBlock *tb);
1325
1326 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1327 {
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1330
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1340 }
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1343
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1353 }
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
1356
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1359
1360 /* suppress jumps in the tb on which we could have jumped */
1361 tb_reset_jump_recursive(tb_next);
1362 }
1363 }
1364
1365 static void tb_reset_jump_recursive(TranslationBlock *tb)
1366 {
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1369 }
1370
1371 #if defined(TARGET_HAS_ICE)
1372 #if defined(CONFIG_USER_ONLY)
1373 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374 {
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1376 }
1377 #else
1378 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379 {
1380 target_phys_addr_t addr;
1381 target_ulong pd;
1382 ram_addr_t ram_addr;
1383 PhysPageDesc *p;
1384
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1391 }
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1394 }
1395 #endif
1396 #endif /* TARGET_HAS_ICE */
1397
1398 #if defined(CONFIG_USER_ONLY)
1399 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400
1401 {
1402 }
1403
1404 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1406 {
1407 return -ENOSYS;
1408 }
1409 #else
1410 /* Add a watchpoint. */
1411 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
1413 {
1414 target_ulong len_mask = ~(len - 1);
1415 CPUWatchpoint *wp;
1416
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1422 }
1423 wp = qemu_malloc(sizeof(*wp));
1424
1425 wp->vaddr = addr;
1426 wp->len_mask = len_mask;
1427 wp->flags = flags;
1428
1429 /* keep all GDB-injected watchpoints in front */
1430 if (flags & BP_GDB)
1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1432 else
1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1434
1435 tlb_flush_page(env, addr);
1436
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
1440 }
1441
1442 /* Remove a specific watchpoint. */
1443 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
1445 {
1446 target_ulong len_mask = ~(len - 1);
1447 CPUWatchpoint *wp;
1448
1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1450 if (addr == wp->vaddr && len_mask == wp->len_mask
1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1452 cpu_watchpoint_remove_by_ref(env, wp);
1453 return 0;
1454 }
1455 }
1456 return -ENOENT;
1457 }
1458
1459 /* Remove a specific watchpoint by reference. */
1460 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1461 {
1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1463
1464 tlb_flush_page(env, watchpoint->vaddr);
1465
1466 qemu_free(watchpoint);
1467 }
1468
1469 /* Remove all matching watchpoints. */
1470 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1471 {
1472 CPUWatchpoint *wp, *next;
1473
1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
1477 }
1478 }
1479 #endif
1480
1481 /* Add a breakpoint. */
1482 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
1484 {
1485 #if defined(TARGET_HAS_ICE)
1486 CPUBreakpoint *bp;
1487
1488 bp = qemu_malloc(sizeof(*bp));
1489
1490 bp->pc = pc;
1491 bp->flags = flags;
1492
1493 /* keep all GDB-injected breakpoints in front */
1494 if (flags & BP_GDB)
1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1496 else
1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1498
1499 breakpoint_invalidate(env, pc);
1500
1501 if (breakpoint)
1502 *breakpoint = bp;
1503 return 0;
1504 #else
1505 return -ENOSYS;
1506 #endif
1507 }
1508
1509 /* Remove a specific breakpoint. */
1510 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1511 {
1512 #if defined(TARGET_HAS_ICE)
1513 CPUBreakpoint *bp;
1514
1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1519 }
1520 }
1521 return -ENOENT;
1522 #else
1523 return -ENOSYS;
1524 #endif
1525 }
1526
1527 /* Remove a specific breakpoint by reference. */
1528 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1529 {
1530 #if defined(TARGET_HAS_ICE)
1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1532
1533 breakpoint_invalidate(env, breakpoint->pc);
1534
1535 qemu_free(breakpoint);
1536 #endif
1537 }
1538
1539 /* Remove all matching breakpoints. */
1540 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1541 {
1542 #if defined(TARGET_HAS_ICE)
1543 CPUBreakpoint *bp, *next;
1544
1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
1548 }
1549 #endif
1550 }
1551
1552 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554 void cpu_single_step(CPUState *env, int enabled)
1555 {
1556 #if defined(TARGET_HAS_ICE)
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
1562 /* must flush all the translated code to avoid inconsistencies */
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1565 }
1566 }
1567 #endif
1568 }
1569
1570 /* enable or disable low levels log */
1571 void cpu_set_log(int log_flags)
1572 {
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
1575 logfile = fopen(logfilename, log_append ? "a" : "w");
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1579 }
1580 #if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1582 {
1583 static char logfile_buf[4096];
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1585 }
1586 #elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
1588 setvbuf(logfile, NULL, _IOLBF, 0);
1589 #endif
1590 log_append = 1;
1591 }
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
1595 }
1596 }
1597
1598 void cpu_set_log_filename(const char *filename)
1599 {
1600 logfilename = strdup(filename);
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1604 }
1605 cpu_set_log(loglevel);
1606 }
1607
1608 static void cpu_unlink_tb(CPUState *env)
1609 {
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
1614 TranslationBlock *tb;
1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1616
1617 spin_lock(&interrupt_lock);
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
1621 if (tb) {
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
1624 }
1625 spin_unlock(&interrupt_lock);
1626 }
1627
1628 /* mask must never be zero, except for A20 change call */
1629 void cpu_interrupt(CPUState *env, int mask)
1630 {
1631 int old_mask;
1632
1633 old_mask = env->interrupt_request;
1634 env->interrupt_request |= mask;
1635
1636 #ifndef CONFIG_USER_ONLY
1637 /*
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1640 */
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1644 }
1645 #endif
1646
1647 if (use_icount) {
1648 env->icount_decr.u16.high = 0xffff;
1649 #ifndef CONFIG_USER_ONLY
1650 if (!can_do_io(env)
1651 && (mask & ~old_mask) != 0) {
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1653 }
1654 #endif
1655 } else {
1656 cpu_unlink_tb(env);
1657 }
1658 }
1659
1660 void cpu_reset_interrupt(CPUState *env, int mask)
1661 {
1662 env->interrupt_request &= ~mask;
1663 }
1664
1665 void cpu_exit(CPUState *env)
1666 {
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1669 }
1670
1671 const CPULogItem cpu_log_items[] = {
1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
1676 { CPU_LOG_TB_OP, "op",
1677 "show micro ops for each compiled TB" },
1678 { CPU_LOG_TB_OP_OPT, "op_opt",
1679 "show micro ops "
1680 #ifdef TARGET_I386
1681 "before eflags optimization and "
1682 #endif
1683 "after liveness analysis" },
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
1688 { CPU_LOG_TB_CPU, "cpu",
1689 "show CPU state before block translation" },
1690 #ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
1695 #endif
1696 #ifdef DEBUG_IOPORT
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
1699 #endif
1700 { 0, NULL, NULL },
1701 };
1702
1703 #ifndef CONFIG_USER_ONLY
1704 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1706
1707 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1710 {
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1714 }
1715 }
1716
1717 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1719 {
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1725 }
1726 return 0;
1727 }
1728
1729 static int cpu_notify_migration_log(int enable)
1730 {
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1736 }
1737 return 0;
1738 }
1739
1740 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
1742 {
1743 int i;
1744
1745 if (*lp == NULL) {
1746 return;
1747 }
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
1750 for (i = 0; i < L2_SIZE; ++i) {
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
1754 }
1755 }
1756 } else {
1757 void **pp = *lp;
1758 for (i = 0; i < L2_SIZE; ++i) {
1759 phys_page_for_each_1(client, level - 1, pp + i);
1760 }
1761 }
1762 }
1763
1764 static void phys_page_for_each(CPUPhysMemoryClient *client)
1765 {
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
1770 }
1771 }
1772
1773 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1774 {
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1777 }
1778
1779 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1780 {
1781 QLIST_REMOVE(client, list);
1782 }
1783 #endif
1784
1785 static int cmp1(const char *s1, int n, const char *s2)
1786 {
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1790 }
1791
1792 /* takes a comma separated list of log masks. Return 0 if error. */
1793 int cpu_str_to_log_mask(const char *str)
1794 {
1795 const CPULogItem *item;
1796 int mask;
1797 const char *p, *p1;
1798
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1808 }
1809 } else {
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1813 }
1814 return 0;
1815 }
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1821 }
1822 return mask;
1823 }
1824
1825 void cpu_abort(CPUState *env, const char *fmt, ...)
1826 {
1827 va_list ap;
1828 va_list ap2;
1829
1830 va_start(ap, fmt);
1831 va_copy(ap2, ap);
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835 #ifdef TARGET_I386
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837 #else
1838 cpu_dump_state(env, stderr, fprintf, 0);
1839 #endif
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
1844 #ifdef TARGET_I386
1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1846 #else
1847 log_cpu_state(env, 0);
1848 #endif
1849 qemu_log_flush();
1850 qemu_log_close();
1851 }
1852 va_end(ap2);
1853 va_end(ap);
1854 #if defined(CONFIG_USER_ONLY)
1855 {
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1860 }
1861 #endif
1862 abort();
1863 }
1864
1865 CPUState *cpu_copy(CPUState *env)
1866 {
1867 CPUState *new_env = cpu_init(env->cpu_model_str);
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
1870 #if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873 #endif
1874
1875 memcpy(new_env, env, sizeof(CPUState));
1876
1877 /* Preserve chaining and index. */
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
1880
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
1886 #if defined(TARGET_HAS_ICE)
1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1889 }
1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1893 }
1894 #endif
1895
1896 return new_env;
1897 }
1898
1899 #if !defined(CONFIG_USER_ONLY)
1900
1901 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1902 {
1903 unsigned int i;
1904
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1914 }
1915
1916 static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1921 };
1922
1923 /* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925 void tlb_flush(CPUState *env, int flush_global)
1926 {
1927 int i;
1928
1929 #if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931 #endif
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1935
1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1940 }
1941 }
1942
1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1944
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
1947 tlb_flush_count++;
1948 }
1949
1950 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1951 {
1952 if (addr == (tlb_entry->addr_read &
1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1954 addr == (tlb_entry->addr_write &
1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1956 addr == (tlb_entry->addr_code &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1958 *tlb_entry = s_cputlb_empty_entry;
1959 }
1960 }
1961
1962 void tlb_flush_page(CPUState *env, target_ulong addr)
1963 {
1964 int i;
1965 int mmu_idx;
1966
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1969 #endif
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976 #endif
1977 tlb_flush(env, 1);
1978 return;
1979 }
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
1983
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1988
1989 tlb_flush_jmp_cache(env, addr);
1990 }
1991
1992 /* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
1994 static void tlb_protect_code(ram_addr_t ram_addr)
1995 {
1996 cpu_physical_memory_reset_dirty(ram_addr,
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
1999 }
2000
2001 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2002 tested for self modifying code */
2003 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2004 target_ulong vaddr)
2005 {
2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2007 }
2008
2009 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2010 unsigned long start, unsigned long length)
2011 {
2012 unsigned long addr;
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2015 if ((addr - start) < length) {
2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2017 }
2018 }
2019 }
2020
2021 /* Note: start and end must be within the same ram block. */
2022 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2023 int dirty_flags)
2024 {
2025 CPUState *env;
2026 unsigned long length, start1;
2027 int i;
2028
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2031
2032 length = end - start;
2033 if (length == 0)
2034 return;
2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2036
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2045 }
2046
2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2053 }
2054 }
2055 }
2056
2057 int cpu_physical_memory_set_dirty_tracking(int enable)
2058 {
2059 int ret = 0;
2060 in_migration = enable;
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
2063 }
2064
2065 int cpu_physical_memory_get_dirty_tracking(void)
2066 {
2067 return in_migration;
2068 }
2069
2070 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2072 {
2073 int ret;
2074
2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2076 return ret;
2077 }
2078
2079 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2080 {
2081 ram_addr_t ram_addr;
2082 void *p;
2083
2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
2090 }
2091 }
2092 }
2093
2094 /* update the TLB according to the current state of the dirty bits */
2095 void cpu_tlb_update_dirty(CPUState *env)
2096 {
2097 int i;
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2102 }
2103 }
2104
2105 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2106 {
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
2109 }
2110
2111 /* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2114 {
2115 int i;
2116 int mmu_idx;
2117
2118 vaddr &= TARGET_PAGE_MASK;
2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2122 }
2123
2124 /* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2128 {
2129 target_ulong mask = ~(size - 1);
2130
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2135 }
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2142 }
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2145 }
2146
2147 /* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150 void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
2153 {
2154 PhysPageDesc *p;
2155 unsigned long pd;
2156 unsigned int index;
2157 target_ulong address;
2158 target_ulong code_address;
2159 unsigned long addend;
2160 CPUTLBEntry *te;
2161 CPUWatchpoint *wp;
2162 target_phys_addr_t iotlb;
2163
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2167 }
2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
2171 } else {
2172 pd = p->phys_offset;
2173 }
2174 #if defined(DEBUG_TLB)
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2177 #endif
2178
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2183 }
2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
2193 /* IO handlers are currently passed a physical address.
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2204 }
2205 }
2206
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2212 iotlb = io_mem_watch + paddr;
2213 /* TODO: The memory case can be optimized by not trapping
2214 reads of pages with a write breakpoint. */
2215 address |= TLB_MMIO;
2216 }
2217 }
2218
2219 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2221 te = &env->tlb_table[mmu_idx][index];
2222 te->addend = addend - vaddr;
2223 if (prot & PAGE_READ) {
2224 te->addr_read = address;
2225 } else {
2226 te->addr_read = -1;
2227 }
2228
2229 if (prot & PAGE_EXEC) {
2230 te->addr_code = code_address;
2231 } else {
2232 te->addr_code = -1;
2233 }
2234 if (prot & PAGE_WRITE) {
2235 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2236 (pd & IO_MEM_ROMD)) {
2237 /* Write access calls the I/O callback. */
2238 te->addr_write = address | TLB_MMIO;
2239 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2240 !cpu_physical_memory_is_dirty(pd)) {
2241 te->addr_write = address | TLB_NOTDIRTY;
2242 } else {
2243 te->addr_write = address;
2244 }
2245 } else {
2246 te->addr_write = -1;
2247 }
2248 }
2249
2250 #else
2251
2252 void tlb_flush(CPUState *env, int flush_global)
2253 {
2254 }
2255
2256 void tlb_flush_page(CPUState *env, target_ulong addr)
2257 {
2258 }
2259
2260 /*
2261 * Walks guest process memory "regions" one by one
2262 * and calls callback function 'fn' for each region.
2263 */
2264
2265 struct walk_memory_regions_data
2266 {
2267 walk_memory_regions_fn fn;
2268 void *priv;
2269 unsigned long start;
2270 int prot;
2271 };
2272
2273 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2274 abi_ulong end, int new_prot)
2275 {
2276 if (data->start != -1ul) {
2277 int rc = data->fn(data->priv, data->start, end, data->prot);
2278 if (rc != 0) {
2279 return rc;
2280 }
2281 }
2282
2283 data->start = (new_prot ? end : -1ul);
2284 data->prot = new_prot;
2285
2286 return 0;
2287 }
2288
2289 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2290 abi_ulong base, int level, void **lp)
2291 {
2292 abi_ulong pa;
2293 int i, rc;
2294
2295 if (*lp == NULL) {
2296 return walk_memory_regions_end(data, base, 0);
2297 }
2298
2299 if (level == 0) {
2300 PageDesc *pd = *lp;
2301 for (i = 0; i < L2_SIZE; ++i) {
2302 int prot = pd[i].flags;
2303
2304 pa = base | (i << TARGET_PAGE_BITS);
2305 if (prot != data->prot) {
2306 rc = walk_memory_regions_end(data, pa, prot);
2307 if (rc != 0) {
2308 return rc;
2309 }
2310 }
2311 }
2312 } else {
2313 void **pp = *lp;
2314 for (i = 0; i < L2_SIZE; ++i) {
2315 pa = base | ((abi_ulong)i <<
2316 (TARGET_PAGE_BITS + L2_BITS * level));
2317 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2318 if (rc != 0) {
2319 return rc;
2320 }
2321 }
2322 }
2323
2324 return 0;
2325 }
2326
2327 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2328 {
2329 struct walk_memory_regions_data data;
2330 unsigned long i;
2331
2332 data.fn = fn;
2333 data.priv = priv;
2334 data.start = -1ul;
2335 data.prot = 0;
2336
2337 for (i = 0; i < V_L1_SIZE; i++) {
2338 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2339 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2340 if (rc != 0) {
2341 return rc;
2342 }
2343 }
2344
2345 return walk_memory_regions_end(&data, 0, 0);
2346 }
2347
2348 static int dump_region(void *priv, abi_ulong start,
2349 abi_ulong end, unsigned long prot)
2350 {
2351 FILE *f = (FILE *)priv;
2352
2353 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2354 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2355 start, end, end - start,
2356 ((prot & PAGE_READ) ? 'r' : '-'),
2357 ((prot & PAGE_WRITE) ? 'w' : '-'),
2358 ((prot & PAGE_EXEC) ? 'x' : '-'));
2359
2360 return (0);
2361 }
2362
2363 /* dump memory mappings */
2364 void page_dump(FILE *f)
2365 {
2366 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2367 "start", "end", "size", "prot");
2368 walk_memory_regions(f, dump_region);
2369 }
2370
2371 int page_get_flags(target_ulong address)
2372 {
2373 PageDesc *p;
2374
2375 p = page_find(address >> TARGET_PAGE_BITS);
2376 if (!p)
2377 return 0;
2378 return p->flags;
2379 }
2380
2381 /* Modify the flags of a page and invalidate the code if necessary.
2382 The flag PAGE_WRITE_ORG is positioned automatically depending
2383 on PAGE_WRITE. The mmap_lock should already be held. */
2384 void page_set_flags(target_ulong start, target_ulong end, int flags)
2385 {
2386 target_ulong addr, len;
2387
2388 /* This function should never be called with addresses outside the
2389 guest address space. If this assert fires, it probably indicates
2390 a missing call to h2g_valid. */
2391 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2392 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2393 #endif
2394 assert(start < end);
2395
2396 start = start & TARGET_PAGE_MASK;
2397 end = TARGET_PAGE_ALIGN(end);
2398
2399 if (flags & PAGE_WRITE) {
2400 flags |= PAGE_WRITE_ORG;
2401 }
2402
2403 for (addr = start, len = end - start;
2404 len != 0;
2405 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2406 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2407
2408 /* If the write protection bit is set, then we invalidate
2409 the code inside. */
2410 if (!(p->flags & PAGE_WRITE) &&
2411 (flags & PAGE_WRITE) &&
2412 p->first_tb) {
2413 tb_invalidate_phys_page(addr, 0, NULL);
2414 }
2415 p->flags = flags;
2416 }
2417 }
2418
2419 int page_check_range(target_ulong start, target_ulong len, int flags)
2420 {
2421 PageDesc *p;
2422 target_ulong end;
2423 target_ulong addr;
2424
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
2428 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2430 #endif
2431
2432 if (len == 0) {
2433 return 0;
2434 }
2435 if (start + len - 1 < start) {
2436 /* We've wrapped around. */
2437 return -1;
2438 }
2439
2440 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2441 start = start & TARGET_PAGE_MASK;
2442
2443 for (addr = start, len = end - start;
2444 len != 0;
2445 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2446 p = page_find(addr >> TARGET_PAGE_BITS);
2447 if( !p )
2448 return -1;
2449 if( !(p->flags & PAGE_VALID) )
2450 return -1;
2451
2452 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2453 return -1;
2454 if (flags & PAGE_WRITE) {
2455 if (!(p->flags & PAGE_WRITE_ORG))
2456 return -1;
2457 /* unprotect the page if it was put read-only because it
2458 contains translated code */
2459 if (!(p->flags & PAGE_WRITE)) {
2460 if (!page_unprotect(addr, 0, NULL))
2461 return -1;
2462 }
2463 return 0;
2464 }
2465 }
2466 return 0;
2467 }
2468
2469 /* called from signal handler: invalidate the code and unprotect the
2470 page. Return TRUE if the fault was successfully handled. */
2471 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2472 {
2473 unsigned int prot;
2474 PageDesc *p;
2475 target_ulong host_start, host_end, addr;
2476
2477 /* Technically this isn't safe inside a signal handler. However we
2478 know this only ever happens in a synchronous SEGV handler, so in
2479 practice it seems to be ok. */
2480 mmap_lock();
2481
2482 p = page_find(address >> TARGET_PAGE_BITS);
2483 if (!p) {
2484 mmap_unlock();
2485 return 0;
2486 }
2487
2488 /* if the page was really writable, then we change its
2489 protection back to writable */
2490 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2491 host_start = address & qemu_host_page_mask;
2492 host_end = host_start + qemu_host_page_size;
2493
2494 prot = 0;
2495 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2496 p = page_find(addr >> TARGET_PAGE_BITS);
2497 p->flags |= PAGE_WRITE;
2498 prot |= p->flags;
2499
2500 /* and since the content will be modified, we must invalidate
2501 the corresponding translated code. */
2502 tb_invalidate_phys_page(addr, pc, puc);
2503 #ifdef DEBUG_TB_CHECK
2504 tb_invalidate_check(addr);
2505 #endif
2506 }
2507 mprotect((void *)g2h(host_start), qemu_host_page_size,
2508 prot & PAGE_BITS);
2509
2510 mmap_unlock();
2511 return 1;
2512 }
2513 mmap_unlock();
2514 return 0;
2515 }
2516
2517 static inline void tlb_set_dirty(CPUState *env,
2518 unsigned long addr, target_ulong vaddr)
2519 {
2520 }
2521 #endif /* defined(CONFIG_USER_ONLY) */
2522
2523 #if !defined(CONFIG_USER_ONLY)
2524
2525 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2526 typedef struct subpage_t {
2527 target_phys_addr_t base;
2528 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2529 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2530 } subpage_t;
2531
2532 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2533 ram_addr_t memory, ram_addr_t region_offset);
2534 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2535 ram_addr_t orig_memory,
2536 ram_addr_t region_offset);
2537 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2538 need_subpage) \
2539 do { \
2540 if (addr > start_addr) \
2541 start_addr2 = 0; \
2542 else { \
2543 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2544 if (start_addr2 > 0) \
2545 need_subpage = 1; \
2546 } \
2547 \
2548 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2549 end_addr2 = TARGET_PAGE_SIZE - 1; \
2550 else { \
2551 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2552 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2553 need_subpage = 1; \
2554 } \
2555 } while (0)
2556
2557 /* register physical memory.
2558 For RAM, 'size' must be a multiple of the target page size.
2559 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2560 io memory page. The address used when calling the IO function is
2561 the offset from the start of the region, plus region_offset. Both
2562 start_addr and region_offset are rounded down to a page boundary
2563 before calculating this offset. This should not be a problem unless
2564 the low bits of start_addr and region_offset differ. */
2565 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2566 ram_addr_t size,
2567 ram_addr_t phys_offset,
2568 ram_addr_t region_offset)
2569 {
2570 target_phys_addr_t addr, end_addr;
2571 PhysPageDesc *p;
2572 CPUState *env;
2573 ram_addr_t orig_size = size;
2574 subpage_t *subpage;
2575
2576 cpu_notify_set_memory(start_addr, size, phys_offset);
2577
2578 if (phys_offset == IO_MEM_UNASSIGNED) {
2579 region_offset = start_addr;
2580 }
2581 region_offset &= TARGET_PAGE_MASK;
2582 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2583 end_addr = start_addr + (target_phys_addr_t)size;
2584 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2585 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2586 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2587 ram_addr_t orig_memory = p->phys_offset;
2588 target_phys_addr_t start_addr2, end_addr2;
2589 int need_subpage = 0;
2590
2591 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2592 need_subpage);
2593 if (need_subpage) {
2594 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2595 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2596 &p->phys_offset, orig_memory,
2597 p->region_offset);
2598 } else {
2599 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2600 >> IO_MEM_SHIFT];
2601 }
2602 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2603 region_offset);
2604 p->region_offset = 0;
2605 } else {
2606 p->phys_offset = phys_offset;
2607 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2608 (phys_offset & IO_MEM_ROMD))
2609 phys_offset += TARGET_PAGE_SIZE;
2610 }
2611 } else {
2612 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2613 p->phys_offset = phys_offset;
2614 p->region_offset = region_offset;
2615 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2616 (phys_offset & IO_MEM_ROMD)) {
2617 phys_offset += TARGET_PAGE_SIZE;
2618 } else {
2619 target_phys_addr_t start_addr2, end_addr2;
2620 int need_subpage = 0;
2621
2622 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2623 end_addr2, need_subpage);
2624
2625 if (need_subpage) {
2626 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2627 &p->phys_offset, IO_MEM_UNASSIGNED,
2628 addr & TARGET_PAGE_MASK);
2629 subpage_register(subpage, start_addr2, end_addr2,
2630 phys_offset, region_offset);
2631 p->region_offset = 0;
2632 }
2633 }
2634 }
2635 region_offset += TARGET_PAGE_SIZE;
2636 }
2637
2638 /* since each CPU stores ram addresses in its TLB cache, we must
2639 reset the modified entries */
2640 /* XXX: slow ! */
2641 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2642 tlb_flush(env, 1);
2643 }
2644 }
2645
2646 /* XXX: temporary until new memory mapping API */
2647 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2648 {
2649 PhysPageDesc *p;
2650
2651 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2652 if (!p)
2653 return IO_MEM_UNASSIGNED;
2654 return p->phys_offset;
2655 }
2656
2657 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2658 {
2659 if (kvm_enabled())
2660 kvm_coalesce_mmio_region(addr, size);
2661 }
2662
2663 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2664 {
2665 if (kvm_enabled())
2666 kvm_uncoalesce_mmio_region(addr, size);
2667 }
2668
2669 void qemu_flush_coalesced_mmio_buffer(void)
2670 {
2671 if (kvm_enabled())
2672 kvm_flush_coalesced_mmio_buffer();
2673 }
2674
2675 #if defined(__linux__) && !defined(TARGET_S390X)
2676
2677 #include <sys/vfs.h>
2678
2679 #define HUGETLBFS_MAGIC 0x958458f6
2680
2681 static long gethugepagesize(const char *path)
2682 {
2683 struct statfs fs;
2684 int ret;
2685
2686 do {
2687 ret = statfs(path, &fs);
2688 } while (ret != 0 && errno == EINTR);
2689
2690 if (ret != 0) {
2691 perror(path);
2692 return 0;
2693 }
2694
2695 if (fs.f_type != HUGETLBFS_MAGIC)
2696 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2697
2698 return fs.f_bsize;
2699 }
2700
2701 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2702 {
2703 char *filename;
2704 void *area;
2705 int fd;
2706 #ifdef MAP_POPULATE
2707 int flags;
2708 #endif
2709 unsigned long hpagesize;
2710
2711 hpagesize = gethugepagesize(path);
2712 if (!hpagesize) {
2713 return NULL;
2714 }
2715
2716 if (memory < hpagesize) {
2717 return NULL;
2718 }
2719
2720 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2721 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2722 return NULL;
2723 }
2724
2725 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2726 return NULL;
2727 }
2728
2729 fd = mkstemp(filename);
2730 if (fd < 0) {
2731 perror("unable to create backing store for hugepages");
2732 free(filename);
2733 return NULL;
2734 }
2735 unlink(filename);
2736 free(filename);
2737
2738 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2739
2740 /*
2741 * ftruncate is not supported by hugetlbfs in older
2742 * hosts, so don't bother bailing out on errors.
2743 * If anything goes wrong with it under other filesystems,
2744 * mmap will fail.
2745 */
2746 if (ftruncate(fd, memory))
2747 perror("ftruncate");
2748
2749 #ifdef MAP_POPULATE
2750 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2751 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2752 * to sidestep this quirk.
2753 */
2754 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2755 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2756 #else
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2758 #endif
2759 if (area == MAP_FAILED) {
2760 perror("file_ram_alloc: can't mmap RAM pages");
2761 close(fd);
2762 return (NULL);
2763 }
2764 return area;
2765 }
2766 #endif
2767
2768 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2769 {
2770 RAMBlock *new_block;
2771
2772 size = TARGET_PAGE_ALIGN(size);
2773 new_block = qemu_malloc(sizeof(*new_block));
2774
2775 if (mem_path) {
2776 #if defined (__linux__) && !defined(TARGET_S390X)
2777 new_block->host = file_ram_alloc(size, mem_path);
2778 if (!new_block->host) {
2779 new_block->host = qemu_vmalloc(size);
2780 #ifdef MADV_MERGEABLE
2781 madvise(new_block->host, size, MADV_MERGEABLE);
2782 #endif
2783 }
2784 #else
2785 fprintf(stderr, "-mem-path option unsupported\n");
2786 exit(1);
2787 #endif
2788 } else {
2789 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2790 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2791 new_block->host = mmap((void*)0x1000000, size,
2792 PROT_EXEC|PROT_READ|PROT_WRITE,
2793 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2794 #else
2795 new_block->host = qemu_vmalloc(size);
2796 #endif
2797 #ifdef MADV_MERGEABLE
2798 madvise(new_block->host, size, MADV_MERGEABLE);
2799 #endif
2800 }
2801 new_block->offset = ram_list.last_offset;
2802 new_block->length = size;
2803
2804 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2805
2806 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2807 (ram_list.last_offset + size) >> TARGET_PAGE_BITS);
2808 memset(ram_list.phys_dirty + (ram_list.last_offset >> TARGET_PAGE_BITS),
2809 0xff, size >> TARGET_PAGE_BITS);
2810
2811 ram_list.last_offset += size;
2812
2813 if (kvm_enabled())
2814 kvm_setup_guest_memory(new_block->host, size);
2815
2816 return new_block->offset;
2817 }
2818
2819 void qemu_ram_free(ram_addr_t addr)
2820 {
2821 /* TODO: implement this. */
2822 }
2823
2824 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2825 With the exception of the softmmu code in this file, this should
2826 only be used for local memory (e.g. video ram) that the device owns,
2827 and knows it isn't going to access beyond the end of the block.
2828
2829 It should not be used for general purpose DMA.
2830 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2831 */
2832 void *qemu_get_ram_ptr(ram_addr_t addr)
2833 {
2834 RAMBlock *block;
2835
2836 QLIST_FOREACH(block, &ram_list.blocks, next) {
2837 if (addr - block->offset < block->length) {
2838 QLIST_REMOVE(block, next);
2839 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2840 return block->host + (addr - block->offset);
2841 }
2842 }
2843
2844 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2845 abort();
2846
2847 return NULL;
2848 }
2849
2850 /* Some of the softmmu routines need to translate from a host pointer
2851 (typically a TLB entry) back to a ram offset. */
2852 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2853 {
2854 RAMBlock *block;
2855 uint8_t *host = ptr;
2856
2857 QLIST_FOREACH(block, &ram_list.blocks, next) {
2858 if (host - block->host < block->length) {
2859 return block->offset + (host - block->host);
2860 }
2861 }
2862
2863 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2864 abort();
2865
2866 return 0;
2867 }
2868
2869 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2870 {
2871 #ifdef DEBUG_UNASSIGNED
2872 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2873 #endif
2874 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2875 do_unassigned_access(addr, 0, 0, 0, 1);
2876 #endif
2877 return 0;
2878 }
2879
2880 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2881 {
2882 #ifdef DEBUG_UNASSIGNED
2883 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2884 #endif
2885 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2886 do_unassigned_access(addr, 0, 0, 0, 2);
2887 #endif
2888 return 0;
2889 }
2890
2891 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2892 {
2893 #ifdef DEBUG_UNASSIGNED
2894 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2895 #endif
2896 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2897 do_unassigned_access(addr, 0, 0, 0, 4);
2898 #endif
2899 return 0;
2900 }
2901
2902 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2903 {
2904 #ifdef DEBUG_UNASSIGNED
2905 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2906 #endif
2907 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2908 do_unassigned_access(addr, 1, 0, 0, 1);
2909 #endif
2910 }
2911
2912 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2913 {
2914 #ifdef DEBUG_UNASSIGNED
2915 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2916 #endif
2917 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2918 do_unassigned_access(addr, 1, 0, 0, 2);
2919 #endif
2920 }
2921
2922 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2923 {
2924 #ifdef DEBUG_UNASSIGNED
2925 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2926 #endif
2927 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2928 do_unassigned_access(addr, 1, 0, 0, 4);
2929 #endif
2930 }
2931
2932 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2933 unassigned_mem_readb,
2934 unassigned_mem_readw,
2935 unassigned_mem_readl,
2936 };
2937
2938 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2939 unassigned_mem_writeb,
2940 unassigned_mem_writew,
2941 unassigned_mem_writel,
2942 };
2943
2944 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2945 uint32_t val)
2946 {
2947 int dirty_flags;
2948 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2949 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2950 #if !defined(CONFIG_USER_ONLY)
2951 tb_invalidate_phys_page_fast(ram_addr, 1);
2952 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2953 #endif
2954 }
2955 stb_p(qemu_get_ram_ptr(ram_addr), val);
2956 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2957 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2958 /* we remove the notdirty callback only if the code has been
2959 flushed */
2960 if (dirty_flags == 0xff)
2961 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2962 }
2963
2964 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2965 uint32_t val)
2966 {
2967 int dirty_flags;
2968 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2969 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2970 #if !defined(CONFIG_USER_ONLY)
2971 tb_invalidate_phys_page_fast(ram_addr, 2);
2972 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2973 #endif
2974 }
2975 stw_p(qemu_get_ram_ptr(ram_addr), val);
2976 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2977 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2978 /* we remove the notdirty callback only if the code has been
2979 flushed */
2980 if (dirty_flags == 0xff)
2981 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2982 }
2983
2984 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2985 uint32_t val)
2986 {
2987 int dirty_flags;
2988 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2989 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2990 #if !defined(CONFIG_USER_ONLY)
2991 tb_invalidate_phys_page_fast(ram_addr, 4);
2992 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2993 #endif
2994 }
2995 stl_p(qemu_get_ram_ptr(ram_addr), val);
2996 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2997 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2998 /* we remove the notdirty callback only if the code has been
2999 flushed */
3000 if (dirty_flags == 0xff)
3001 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3002 }
3003
3004 static CPUReadMemoryFunc * const error_mem_read[3] = {
3005 NULL, /* never used */
3006 NULL, /* never used */
3007 NULL, /* never used */
3008 };
3009
3010 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3011 notdirty_mem_writeb,
3012 notdirty_mem_writew,
3013 notdirty_mem_writel,
3014 };
3015
3016 /* Generate a debug exception if a watchpoint has been hit. */
3017 static void check_watchpoint(int offset, int len_mask, int flags)
3018 {
3019 CPUState *env = cpu_single_env;
3020 target_ulong pc, cs_base;
3021 TranslationBlock *tb;
3022 target_ulong vaddr;
3023 CPUWatchpoint *wp;
3024 int cpu_flags;
3025
3026 if (env->watchpoint_hit) {
3027 /* We re-entered the check after replacing the TB. Now raise
3028 * the debug interrupt so that is will trigger after the
3029 * current instruction. */
3030 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3031 return;
3032 }
3033 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3034 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3035 if ((vaddr == (wp->vaddr & len_mask) ||
3036 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3037 wp->flags |= BP_WATCHPOINT_HIT;
3038 if (!env->watchpoint_hit) {
3039 env->watchpoint_hit = wp;
3040 tb = tb_find_pc(env->mem_io_pc);
3041 if (!tb) {
3042 cpu_abort(env, "check_watchpoint: could not find TB for "
3043 "pc=%p", (void *)env->mem_io_pc);
3044 }
3045 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3046 tb_phys_invalidate(tb, -1);
3047 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3048 env->exception_index = EXCP_DEBUG;
3049 } else {
3050 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3051 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3052 }
3053 cpu_resume_from_signal(env, NULL);
3054 }
3055 } else {
3056 wp->flags &= ~BP_WATCHPOINT_HIT;
3057 }
3058 }
3059 }
3060
3061 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3062 so these check for a hit then pass through to the normal out-of-line
3063 phys routines. */
3064 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3065 {
3066 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3067 return ldub_phys(addr);
3068 }
3069
3070 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3071 {
3072 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3073 return lduw_phys(addr);
3074 }
3075
3076 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3077 {
3078 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3079 return ldl_phys(addr);
3080 }
3081
3082 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3083 uint32_t val)
3084 {
3085 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3086 stb_phys(addr, val);
3087 }
3088
3089 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3090 uint32_t val)
3091 {
3092 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3093 stw_phys(addr, val);
3094 }
3095
3096 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3097 uint32_t val)
3098 {
3099 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3100 stl_phys(addr, val);
3101 }
3102
3103 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3104 watch_mem_readb,
3105 watch_mem_readw,
3106 watch_mem_readl,
3107 };
3108
3109 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3110 watch_mem_writeb,
3111 watch_mem_writew,
3112 watch_mem_writel,
3113 };
3114
3115 static inline uint32_t subpage_readlen (subpage_t *mmio,
3116 target_phys_addr_t addr,
3117 unsigned int len)
3118 {
3119 unsigned int idx = SUBPAGE_IDX(addr);
3120 #if defined(DEBUG_SUBPAGE)
3121 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3122 mmio, len, addr, idx);
3123 #endif
3124
3125 addr += mmio->region_offset[idx];
3126 idx = mmio->sub_io_index[idx];
3127 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3128 }
3129
3130 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3131 uint32_t value, unsigned int len)
3132 {
3133 unsigned int idx = SUBPAGE_IDX(addr);
3134 #if defined(DEBUG_SUBPAGE)
3135 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3136 __func__, mmio, len, addr, idx, value);
3137 #endif
3138
3139 addr += mmio->region_offset[idx];
3140 idx = mmio->sub_io_index[idx];
3141 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3142 }
3143
3144 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3145 {
3146 return subpage_readlen(opaque, addr, 0);
3147 }
3148
3149 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3150 uint32_t value)
3151 {
3152 subpage_writelen(opaque, addr, value, 0);
3153 }
3154
3155 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3156 {
3157 return subpage_readlen(opaque, addr, 1);
3158 }
3159
3160 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3161 uint32_t value)
3162 {
3163 subpage_writelen(opaque, addr, value, 1);
3164 }
3165
3166 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3167 {
3168 return subpage_readlen(opaque, addr, 2);
3169 }
3170
3171 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3172 uint32_t value)
3173 {
3174 subpage_writelen(opaque, addr, value, 2);
3175 }
3176
3177 static CPUReadMemoryFunc * const subpage_read[] = {
3178 &subpage_readb,
3179 &subpage_readw,
3180 &subpage_readl,
3181 };
3182
3183 static CPUWriteMemoryFunc * const subpage_write[] = {
3184 &subpage_writeb,
3185 &subpage_writew,
3186 &subpage_writel,
3187 };
3188
3189 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3190 ram_addr_t memory, ram_addr_t region_offset)
3191 {
3192 int idx, eidx;
3193
3194 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3195 return -1;
3196 idx = SUBPAGE_IDX(start);
3197 eidx = SUBPAGE_IDX(end);
3198 #if defined(DEBUG_SUBPAGE)
3199 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3200 mmio, start, end, idx, eidx, memory);
3201 #endif
3202 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3203 for (; idx <= eidx; idx++) {
3204 mmio->sub_io_index[idx] = memory;
3205 mmio->region_offset[idx] = region_offset;
3206 }
3207
3208 return 0;
3209 }
3210
3211 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3212 ram_addr_t orig_memory,
3213 ram_addr_t region_offset)
3214 {
3215 subpage_t *mmio;
3216 int subpage_memory;
3217
3218 mmio = qemu_mallocz(sizeof(subpage_t));
3219
3220 mmio->base = base;
3221 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3222 #if defined(DEBUG_SUBPAGE)
3223 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3224 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3225 #endif
3226 *phys = subpage_memory | IO_MEM_SUBPAGE;
3227 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3228
3229 return mmio;
3230 }
3231
3232 static int get_free_io_mem_idx(void)
3233 {
3234 int i;
3235
3236 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3237 if (!io_mem_used[i]) {
3238 io_mem_used[i] = 1;
3239 return i;
3240 }
3241 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3242 return -1;
3243 }
3244
3245 /* mem_read and mem_write are arrays of functions containing the
3246 function to access byte (index 0), word (index 1) and dword (index
3247 2). Functions can be omitted with a NULL function pointer.
3248 If io_index is non zero, the corresponding io zone is
3249 modified. If it is zero, a new io zone is allocated. The return
3250 value can be used with cpu_register_physical_memory(). (-1) is
3251 returned if error. */
3252 static int cpu_register_io_memory_fixed(int io_index,
3253 CPUReadMemoryFunc * const *mem_read,
3254 CPUWriteMemoryFunc * const *mem_write,
3255 void *opaque)
3256 {
3257 int i;
3258
3259 if (io_index <= 0) {
3260 io_index = get_free_io_mem_idx();
3261 if (io_index == -1)
3262 return io_index;
3263 } else {
3264 io_index >>= IO_MEM_SHIFT;
3265 if (io_index >= IO_MEM_NB_ENTRIES)
3266 return -1;
3267 }
3268
3269 for (i = 0; i < 3; ++i) {
3270 io_mem_read[io_index][i]
3271 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3272 }
3273 for (i = 0; i < 3; ++i) {
3274 io_mem_write[io_index][i]
3275 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3276 }
3277 io_mem_opaque[io_index] = opaque;
3278
3279 return (io_index << IO_MEM_SHIFT);
3280 }
3281
3282 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3283 CPUWriteMemoryFunc * const *mem_write,
3284 void *opaque)
3285 {
3286 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3287 }
3288
3289 void cpu_unregister_io_memory(int io_table_address)
3290 {
3291 int i;
3292 int io_index = io_table_address >> IO_MEM_SHIFT;
3293
3294 for (i=0;i < 3; i++) {
3295 io_mem_read[io_index][i] = unassigned_mem_read[i];
3296 io_mem_write[io_index][i] = unassigned_mem_write[i];
3297 }
3298 io_mem_opaque[io_index] = NULL;
3299 io_mem_used[io_index] = 0;
3300 }
3301
3302 static void io_mem_init(void)
3303 {
3304 int i;
3305
3306 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3307 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3308 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3309 for (i=0; i<5; i++)
3310 io_mem_used[i] = 1;
3311
3312 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3313 watch_mem_write, NULL);
3314 }
3315
3316 #endif /* !defined(CONFIG_USER_ONLY) */
3317
3318 /* physical memory access (slow version, mainly for debug) */
3319 #if defined(CONFIG_USER_ONLY)
3320 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3321 uint8_t *buf, int len, int is_write)
3322 {
3323 int l, flags;
3324 target_ulong page;
3325 void * p;
3326
3327 while (len > 0) {
3328 page = addr & TARGET_PAGE_MASK;
3329 l = (page + TARGET_PAGE_SIZE) - addr;
3330 if (l > len)
3331 l = len;
3332 flags = page_get_flags(page);
3333 if (!(flags & PAGE_VALID))
3334 return -1;
3335 if (is_write) {
3336 if (!(flags & PAGE_WRITE))
3337 return -1;
3338 /* XXX: this code should not depend on lock_user */
3339 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3340 return -1;
3341 memcpy(p, buf, l);
3342 unlock_user(p, addr, l);
3343 } else {
3344 if (!(flags & PAGE_READ))
3345 return -1;
3346 /* XXX: this code should not depend on lock_user */
3347 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3348 return -1;
3349 memcpy(buf, p, l);
3350 unlock_user(p, addr, 0);
3351 }
3352 len -= l;
3353 buf += l;
3354 addr += l;
3355 }
3356 return 0;
3357 }
3358
3359 #else
3360 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3361 int len, int is_write)
3362 {
3363 int l, io_index;
3364 uint8_t *ptr;
3365 uint32_t val;
3366 target_phys_addr_t page;
3367 unsigned long pd;
3368 PhysPageDesc *p;
3369
3370 while (len > 0) {
3371 page = addr & TARGET_PAGE_MASK;
3372 l = (page + TARGET_PAGE_SIZE) - addr;
3373 if (l > len)
3374 l = len;
3375 p = phys_page_find(page >> TARGET_PAGE_BITS);
3376 if (!p) {
3377 pd = IO_MEM_UNASSIGNED;
3378 } else {
3379 pd = p->phys_offset;
3380 }
3381
3382 if (is_write) {
3383 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3384 target_phys_addr_t addr1 = addr;
3385 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3386 if (p)
3387 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3388 /* XXX: could force cpu_single_env to NULL to avoid
3389 potential bugs */
3390 if (l >= 4 && ((addr1 & 3) == 0)) {
3391 /* 32 bit write access */
3392 val = ldl_p(buf);
3393 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3394 l = 4;
3395 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3396 /* 16 bit write access */
3397 val = lduw_p(buf);
3398 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3399 l = 2;
3400 } else {
3401 /* 8 bit write access */
3402 val = ldub_p(buf);
3403 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3404 l = 1;
3405 }
3406 } else {
3407 unsigned long addr1;
3408 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3409 /* RAM case */
3410 ptr = qemu_get_ram_ptr(addr1);
3411 memcpy(ptr, buf, l);
3412 if (!cpu_physical_memory_is_dirty(addr1)) {
3413 /* invalidate code */
3414 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3415 /* set dirty bit */
3416 cpu_physical_memory_set_dirty_flags(
3417 addr1, (0xff & ~CODE_DIRTY_FLAG));
3418 }
3419 }
3420 } else {
3421 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3422 !(pd & IO_MEM_ROMD)) {
3423 target_phys_addr_t addr1 = addr;
3424 /* I/O case */
3425 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3426 if (p)
3427 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3428 if (l >= 4 && ((addr1 & 3) == 0)) {
3429 /* 32 bit read access */
3430 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3431 stl_p(buf, val);
3432 l = 4;
3433 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3434 /* 16 bit read access */
3435 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3436 stw_p(buf, val);
3437 l = 2;
3438 } else {
3439 /* 8 bit read access */
3440 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3441 stb_p(buf, val);
3442 l = 1;
3443 }
3444 } else {
3445 /* RAM case */
3446 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3447 (addr & ~TARGET_PAGE_MASK);
3448 memcpy(buf, ptr, l);
3449 }
3450 }
3451 len -= l;
3452 buf += l;
3453 addr += l;
3454 }
3455 }
3456
3457 /* used for ROM loading : can write in RAM and ROM */
3458 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3459 const uint8_t *buf, int len)
3460 {
3461 int l;
3462 uint8_t *ptr;
3463 target_phys_addr_t page;
3464 unsigned long pd;
3465 PhysPageDesc *p;
3466
3467 while (len > 0) {
3468 page = addr & TARGET_PAGE_MASK;
3469 l = (page + TARGET_PAGE_SIZE) - addr;
3470 if (l > len)
3471 l = len;
3472 p = phys_page_find(page >> TARGET_PAGE_BITS);
3473 if (!p) {
3474 pd = IO_MEM_UNASSIGNED;
3475 } else {
3476 pd = p->phys_offset;
3477 }
3478
3479 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3480 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3481 !(pd & IO_MEM_ROMD)) {
3482 /* do nothing */
3483 } else {
3484 unsigned long addr1;
3485 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3486 /* ROM/RAM case */
3487 ptr = qemu_get_ram_ptr(addr1);
3488 memcpy(ptr, buf, l);
3489 }
3490 len -= l;
3491 buf += l;
3492 addr += l;
3493 }
3494 }
3495
3496 typedef struct {
3497 void *buffer;
3498 target_phys_addr_t addr;
3499 target_phys_addr_t len;
3500 } BounceBuffer;
3501
3502 static BounceBuffer bounce;
3503
3504 typedef struct MapClient {
3505 void *opaque;
3506 void (*callback)(void *opaque);
3507 QLIST_ENTRY(MapClient) link;
3508 } MapClient;
3509
3510 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3511 = QLIST_HEAD_INITIALIZER(map_client_list);
3512
3513 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3514 {
3515 MapClient *client = qemu_malloc(sizeof(*client));
3516
3517 client->opaque = opaque;
3518 client->callback = callback;
3519 QLIST_INSERT_HEAD(&map_client_list, client, link);
3520 return client;
3521 }
3522
3523 void cpu_unregister_map_client(void *_client)
3524 {
3525 MapClient *client = (MapClient *)_client;
3526
3527 QLIST_REMOVE(client, link);
3528 qemu_free(client);
3529 }
3530
3531 static void cpu_notify_map_clients(void)
3532 {
3533 MapClient *client;
3534
3535 while (!QLIST_EMPTY(&map_client_list)) {
3536 client = QLIST_FIRST(&map_client_list);
3537 client->callback(client->opaque);
3538 cpu_unregister_map_client(client);
3539 }
3540 }
3541
3542 /* Map a physical memory region into a host virtual address.
3543 * May map a subset of the requested range, given by and returned in *plen.
3544 * May return NULL if resources needed to perform the mapping are exhausted.
3545 * Use only for reads OR writes - not for read-modify-write operations.
3546 * Use cpu_register_map_client() to know when retrying the map operation is
3547 * likely to succeed.
3548 */
3549 void *cpu_physical_memory_map(target_phys_addr_t addr,
3550 target_phys_addr_t *plen,
3551 int is_write)
3552 {
3553 target_phys_addr_t len = *plen;
3554 target_phys_addr_t done = 0;
3555 int l;
3556 uint8_t *ret = NULL;
3557 uint8_t *ptr;
3558 target_phys_addr_t page;
3559 unsigned long pd;
3560 PhysPageDesc *p;
3561 unsigned long addr1;
3562
3563 while (len > 0) {
3564 page = addr & TARGET_PAGE_MASK;
3565 l = (page + TARGET_PAGE_SIZE) - addr;
3566 if (l > len)
3567 l = len;
3568 p = phys_page_find(page >> TARGET_PAGE_BITS);
3569 if (!p) {
3570 pd = IO_MEM_UNASSIGNED;
3571 } else {
3572 pd = p->phys_offset;
3573 }
3574
3575 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3576 if (done || bounce.buffer) {
3577 break;
3578 }
3579 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3580 bounce.addr = addr;
3581 bounce.len = l;
3582 if (!is_write) {
3583 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3584 }
3585 ptr = bounce.buffer;
3586 } else {
3587 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3588 ptr = qemu_get_ram_ptr(addr1);
3589 }
3590 if (!done) {
3591 ret = ptr;
3592 } else if (ret + done != ptr) {
3593 break;
3594 }
3595
3596 len -= l;
3597 addr += l;
3598 done += l;
3599 }
3600 *plen = done;
3601 return ret;
3602 }
3603
3604 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3605 * Will also mark the memory as dirty if is_write == 1. access_len gives
3606 * the amount of memory that was actually read or written by the caller.
3607 */
3608 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3609 int is_write, target_phys_addr_t access_len)
3610 {
3611 if (buffer != bounce.buffer) {
3612 if (is_write) {
3613 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3614 while (access_len) {
3615 unsigned l;
3616 l = TARGET_PAGE_SIZE;
3617 if (l > access_len)
3618 l = access_len;
3619 if (!cpu_physical_memory_is_dirty(addr1)) {
3620 /* invalidate code */
3621 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3622 /* set dirty bit */
3623 cpu_physical_memory_set_dirty_flags(
3624 addr1, (0xff & ~CODE_DIRTY_FLAG));
3625 }
3626 addr1 += l;
3627 access_len -= l;
3628 }
3629 }
3630 return;
3631 }
3632 if (is_write) {
3633 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3634 }
3635 qemu_vfree(bounce.buffer);
3636 bounce.buffer = NULL;
3637 cpu_notify_map_clients();
3638 }
3639
3640 /* warning: addr must be aligned */
3641 uint32_t ldl_phys(target_phys_addr_t addr)
3642 {
3643 int io_index;
3644 uint8_t *ptr;
3645 uint32_t val;
3646 unsigned long pd;
3647 PhysPageDesc *p;
3648
3649 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3650 if (!p) {
3651 pd = IO_MEM_UNASSIGNED;
3652 } else {
3653 pd = p->phys_offset;
3654 }
3655
3656 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3657 !(pd & IO_MEM_ROMD)) {
3658 /* I/O case */
3659 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3660 if (p)
3661 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3662 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3663 } else {
3664 /* RAM case */
3665 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3666 (addr & ~TARGET_PAGE_MASK);
3667 val = ldl_p(ptr);
3668 }
3669 return val;
3670 }
3671
3672 /* warning: addr must be aligned */
3673 uint64_t ldq_phys(target_phys_addr_t addr)
3674 {
3675 int io_index;
3676 uint8_t *ptr;
3677 uint64_t val;
3678 unsigned long pd;
3679 PhysPageDesc *p;
3680
3681 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3682 if (!p) {
3683 pd = IO_MEM_UNASSIGNED;
3684 } else {
3685 pd = p->phys_offset;
3686 }
3687
3688 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3689 !(pd & IO_MEM_ROMD)) {
3690 /* I/O case */
3691 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3692 if (p)
3693 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3694 #ifdef TARGET_WORDS_BIGENDIAN
3695 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3696 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3697 #else
3698 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3699 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3700 #endif
3701 } else {
3702 /* RAM case */
3703 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3704 (addr & ~TARGET_PAGE_MASK);
3705 val = ldq_p(ptr);
3706 }
3707 return val;
3708 }
3709
3710 /* XXX: optimize */
3711 uint32_t ldub_phys(target_phys_addr_t addr)
3712 {
3713 uint8_t val;
3714 cpu_physical_memory_read(addr, &val, 1);
3715 return val;
3716 }
3717
3718 /* warning: addr must be aligned */
3719 uint32_t lduw_phys(target_phys_addr_t addr)
3720 {
3721 int io_index;
3722 uint8_t *ptr;
3723 uint64_t val;
3724 unsigned long pd;
3725 PhysPageDesc *p;
3726
3727 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3728 if (!p) {
3729 pd = IO_MEM_UNASSIGNED;
3730 } else {
3731 pd = p->phys_offset;
3732 }
3733
3734 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3735 !(pd & IO_MEM_ROMD)) {
3736 /* I/O case */
3737 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3738 if (p)
3739 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3740 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3741 } else {
3742 /* RAM case */
3743 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3744 (addr & ~TARGET_PAGE_MASK);
3745 val = lduw_p(ptr);
3746 }
3747 return val;
3748 }
3749
3750 /* warning: addr must be aligned. The ram page is not masked as dirty
3751 and the code inside is not invalidated. It is useful if the dirty
3752 bits are used to track modified PTEs */
3753 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3754 {
3755 int io_index;
3756 uint8_t *ptr;
3757 unsigned long pd;
3758 PhysPageDesc *p;
3759
3760 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3761 if (!p) {
3762 pd = IO_MEM_UNASSIGNED;
3763 } else {
3764 pd = p->phys_offset;
3765 }
3766
3767 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3768 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3769 if (p)
3770 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3771 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3772 } else {
3773 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3774 ptr = qemu_get_ram_ptr(addr1);
3775 stl_p(ptr, val);
3776
3777 if (unlikely(in_migration)) {
3778 if (!cpu_physical_memory_is_dirty(addr1)) {
3779 /* invalidate code */
3780 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3781 /* set dirty bit */
3782 cpu_physical_memory_set_dirty_flags(
3783 addr1, (0xff & ~CODE_DIRTY_FLAG));
3784 }
3785 }
3786 }
3787 }
3788
3789 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3790 {
3791 int io_index;
3792 uint8_t *ptr;
3793 unsigned long pd;
3794 PhysPageDesc *p;
3795
3796 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3797 if (!p) {
3798 pd = IO_MEM_UNASSIGNED;
3799 } else {
3800 pd = p->phys_offset;
3801 }
3802
3803 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3804 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3805 if (p)
3806 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3807 #ifdef TARGET_WORDS_BIGENDIAN
3808 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3809 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3810 #else
3811 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3812 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3813 #endif
3814 } else {
3815 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3816 (addr & ~TARGET_PAGE_MASK);
3817 stq_p(ptr, val);
3818 }
3819 }
3820
3821 /* warning: addr must be aligned */
3822 void stl_phys(target_phys_addr_t addr, uint32_t val)
3823 {
3824 int io_index;
3825 uint8_t *ptr;
3826 unsigned long pd;
3827 PhysPageDesc *p;
3828
3829 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3830 if (!p) {
3831 pd = IO_MEM_UNASSIGNED;
3832 } else {
3833 pd = p->phys_offset;
3834 }
3835
3836 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3837 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3838 if (p)
3839 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3840 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3841 } else {
3842 unsigned long addr1;
3843 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3844 /* RAM case */
3845 ptr = qemu_get_ram_ptr(addr1);
3846 stl_p(ptr, val);
3847 if (!cpu_physical_memory_is_dirty(addr1)) {
3848 /* invalidate code */
3849 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3850 /* set dirty bit */
3851 cpu_physical_memory_set_dirty_flags(addr1,
3852 (0xff & ~CODE_DIRTY_FLAG));
3853 }
3854 }
3855 }
3856
3857 /* XXX: optimize */
3858 void stb_phys(target_phys_addr_t addr, uint32_t val)
3859 {
3860 uint8_t v = val;
3861 cpu_physical_memory_write(addr, &v, 1);
3862 }
3863
3864 /* warning: addr must be aligned */
3865 void stw_phys(target_phys_addr_t addr, uint32_t val)
3866 {
3867 int io_index;
3868 uint8_t *ptr;
3869 unsigned long pd;
3870 PhysPageDesc *p;
3871
3872 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3873 if (!p) {
3874 pd = IO_MEM_UNASSIGNED;
3875 } else {
3876 pd = p->phys_offset;
3877 }
3878
3879 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3880 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3881 if (p)
3882 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3883 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3884 } else {
3885 unsigned long addr1;
3886 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3887 /* RAM case */
3888 ptr = qemu_get_ram_ptr(addr1);
3889 stw_p(ptr, val);
3890 if (!cpu_physical_memory_is_dirty(addr1)) {
3891 /* invalidate code */
3892 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
3893 /* set dirty bit */
3894 cpu_physical_memory_set_dirty_flags(addr1,
3895 (0xff & ~CODE_DIRTY_FLAG));
3896 }
3897 }
3898 }
3899
3900 /* XXX: optimize */
3901 void stq_phys(target_phys_addr_t addr, uint64_t val)
3902 {
3903 val = tswap64(val);
3904 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3905 }
3906
3907 /* virtual memory access for debug (includes writing to ROM) */
3908 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3909 uint8_t *buf, int len, int is_write)
3910 {
3911 int l;
3912 target_phys_addr_t phys_addr;
3913 target_ulong page;
3914
3915 while (len > 0) {
3916 page = addr & TARGET_PAGE_MASK;
3917 phys_addr = cpu_get_phys_page_debug(env, page);
3918 /* if no physical page mapped, return an error */
3919 if (phys_addr == -1)
3920 return -1;
3921 l = (page + TARGET_PAGE_SIZE) - addr;
3922 if (l > len)
3923 l = len;
3924 phys_addr += (addr & ~TARGET_PAGE_MASK);
3925 if (is_write)
3926 cpu_physical_memory_write_rom(phys_addr, buf, l);
3927 else
3928 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3929 len -= l;
3930 buf += l;
3931 addr += l;
3932 }
3933 return 0;
3934 }
3935 #endif
3936
3937 /* in deterministic execution mode, instructions doing device I/Os
3938 must be at the end of the TB */
3939 void cpu_io_recompile(CPUState *env, void *retaddr)
3940 {
3941 TranslationBlock *tb;
3942 uint32_t n, cflags;
3943 target_ulong pc, cs_base;
3944 uint64_t flags;
3945
3946 tb = tb_find_pc((unsigned long)retaddr);
3947 if (!tb) {
3948 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3949 retaddr);
3950 }
3951 n = env->icount_decr.u16.low + tb->icount;
3952 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3953 /* Calculate how many instructions had been executed before the fault
3954 occurred. */
3955 n = n - env->icount_decr.u16.low;
3956 /* Generate a new TB ending on the I/O insn. */
3957 n++;
3958 /* On MIPS and SH, delay slot instructions can only be restarted if
3959 they were already the first instruction in the TB. If this is not
3960 the first instruction in a TB then re-execute the preceding
3961 branch. */
3962 #if defined(TARGET_MIPS)
3963 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3964 env->active_tc.PC -= 4;
3965 env->icount_decr.u16.low++;
3966 env->hflags &= ~MIPS_HFLAG_BMASK;
3967 }
3968 #elif defined(TARGET_SH4)
3969 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3970 && n > 1) {
3971 env->pc -= 2;
3972 env->icount_decr.u16.low++;
3973 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3974 }
3975 #endif
3976 /* This should never happen. */
3977 if (n > CF_COUNT_MASK)
3978 cpu_abort(env, "TB too big during recompile");
3979
3980 cflags = n | CF_LAST_IO;
3981 pc = tb->pc;
3982 cs_base = tb->cs_base;
3983 flags = tb->flags;
3984 tb_phys_invalidate(tb, -1);
3985 /* FIXME: In theory this could raise an exception. In practice
3986 we have already translated the block once so it's probably ok. */
3987 tb_gen_code(env, pc, cs_base, flags, cflags);
3988 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3989 the first in the TB) then we end up generating a whole new TB and
3990 repeating the fault, which is horribly inefficient.
3991 Better would be to execute just this insn uncached, or generate a
3992 second new TB. */
3993 cpu_resume_from_signal(env, NULL);
3994 }
3995
3996 #if !defined(CONFIG_USER_ONLY)
3997
3998 void dump_exec_info(FILE *f,
3999 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4000 {
4001 int i, target_code_size, max_target_code_size;
4002 int direct_jmp_count, direct_jmp2_count, cross_page;
4003 TranslationBlock *tb;
4004
4005 target_code_size = 0;
4006 max_target_code_size = 0;
4007 cross_page = 0;
4008 direct_jmp_count = 0;
4009 direct_jmp2_count = 0;
4010 for(i = 0; i < nb_tbs; i++) {
4011 tb = &tbs[i];
4012 target_code_size += tb->size;
4013 if (tb->size > max_target_code_size)
4014 max_target_code_size = tb->size;
4015 if (tb->page_addr[1] != -1)
4016 cross_page++;
4017 if (tb->tb_next_offset[0] != 0xffff) {
4018 direct_jmp_count++;
4019 if (tb->tb_next_offset[1] != 0xffff) {
4020 direct_jmp2_count++;
4021 }
4022 }
4023 }
4024 /* XXX: avoid using doubles ? */
4025 cpu_fprintf(f, "Translation buffer state:\n");
4026 cpu_fprintf(f, "gen code size %ld/%ld\n",
4027 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4028 cpu_fprintf(f, "TB count %d/%d\n",
4029 nb_tbs, code_gen_max_blocks);
4030 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4031 nb_tbs ? target_code_size / nb_tbs : 0,
4032 max_target_code_size);
4033 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4034 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4035 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4036 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4037 cross_page,
4038 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4039 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4040 direct_jmp_count,
4041 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4042 direct_jmp2_count,
4043 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4044 cpu_fprintf(f, "\nStatistics:\n");
4045 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4046 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4047 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4048 tcg_dump_info(f, cpu_fprintf);
4049 }
4050
4051 #define MMUSUFFIX _cmmu
4052 #define GETPC() NULL
4053 #define env cpu_single_env
4054 #define SOFTMMU_CODE_ACCESS
4055
4056 #define SHIFT 0
4057 #include "softmmu_template.h"
4058
4059 #define SHIFT 1
4060 #include "softmmu_template.h"
4061
4062 #define SHIFT 2
4063 #include "softmmu_template.h"
4064
4065 #define SHIFT 3
4066 #include "softmmu_template.h"
4067
4068 #undef env
4069
4070 #endif