]> git.proxmox.com Git - qemu.git/blob - exec.c
memory: store MemoryRegionSection pointers in phys_map
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
117
118 static MemoryRegion *system_memory;
119 static MemoryRegion *system_io;
120
121 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
122 static MemoryRegion io_mem_subpage_ram;
123
124 #endif
125
126 CPUState *first_cpu;
127 /* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
129 DEFINE_TLS(CPUState *,cpu_single_env);
130 /* 0 = Do not count executed instructions.
131 1 = Precise instruction counting.
132 2 = Adaptive rate instruction counting. */
133 int use_icount = 0;
134
135 typedef struct PageDesc {
136 /* list of TBs intersecting this ram page */
137 TranslationBlock *first_tb;
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142 #if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144 #endif
145 } PageDesc;
146
147 /* In system mode we want L1_MAP to be based on ram offsets,
148 while in user mode we want it to be based on virtual addresses. */
149 #if !defined(CONFIG_USER_ONLY)
150 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 #else
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
154 #endif
155 #else
156 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
157 #endif
158
159 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_BITS 10
161 #define L2_SIZE (1 << L2_BITS)
162
163 #define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165
166 /* The bits remaining after N lower levels of page tables. */
167 #define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
175
176 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
180 unsigned long qemu_real_host_page_size;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
194
195 typedef struct PhysPageEntry PhysPageEntry;
196
197 static MemoryRegionSection *phys_sections;
198 static unsigned phys_sections_nb, phys_sections_nb_alloc;
199 static uint16_t phys_section_unassigned;
200
201 struct PhysPageEntry {
202 union {
203 uint16_t leaf; /* index into phys_sections */
204 PhysPageEntry *node;
205 } u;
206 };
207
208 /* This is a multi-level map on the physical address space.
209 The bottom level has pointers to PhysPageDesc. */
210 static PhysPageEntry phys_map;
211
212 static void io_mem_init(void);
213 static void memory_map_init(void);
214
215 /* io memory support */
216 MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
217 static char io_mem_used[IO_MEM_NB_ENTRIES];
218 static MemoryRegion io_mem_watch;
219 #endif
220
221 /* log support */
222 #ifdef WIN32
223 static const char *logfilename = "qemu.log";
224 #else
225 static const char *logfilename = "/tmp/qemu.log";
226 #endif
227 FILE *logfile;
228 int loglevel;
229 static int log_append = 0;
230
231 /* statistics */
232 #if !defined(CONFIG_USER_ONLY)
233 static int tlb_flush_count;
234 #endif
235 static int tb_flush_count;
236 static int tb_phys_invalidate_count;
237
238 #ifdef _WIN32
239 static void map_exec(void *addr, long size)
240 {
241 DWORD old_protect;
242 VirtualProtect(addr, size,
243 PAGE_EXECUTE_READWRITE, &old_protect);
244
245 }
246 #else
247 static void map_exec(void *addr, long size)
248 {
249 unsigned long start, end, page_size;
250
251 page_size = getpagesize();
252 start = (unsigned long)addr;
253 start &= ~(page_size - 1);
254
255 end = (unsigned long)addr + size;
256 end += page_size - 1;
257 end &= ~(page_size - 1);
258
259 mprotect((void *)start, end - start,
260 PROT_READ | PROT_WRITE | PROT_EXEC);
261 }
262 #endif
263
264 static void page_init(void)
265 {
266 /* NOTE: we can always suppose that qemu_host_page_size >=
267 TARGET_PAGE_SIZE */
268 #ifdef _WIN32
269 {
270 SYSTEM_INFO system_info;
271
272 GetSystemInfo(&system_info);
273 qemu_real_host_page_size = system_info.dwPageSize;
274 }
275 #else
276 qemu_real_host_page_size = getpagesize();
277 #endif
278 if (qemu_host_page_size == 0)
279 qemu_host_page_size = qemu_real_host_page_size;
280 if (qemu_host_page_size < TARGET_PAGE_SIZE)
281 qemu_host_page_size = TARGET_PAGE_SIZE;
282 qemu_host_page_mask = ~(qemu_host_page_size - 1);
283
284 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
285 {
286 #ifdef HAVE_KINFO_GETVMMAP
287 struct kinfo_vmentry *freep;
288 int i, cnt;
289
290 freep = kinfo_getvmmap(getpid(), &cnt);
291 if (freep) {
292 mmap_lock();
293 for (i = 0; i < cnt; i++) {
294 unsigned long startaddr, endaddr;
295
296 startaddr = freep[i].kve_start;
297 endaddr = freep[i].kve_end;
298 if (h2g_valid(startaddr)) {
299 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
300
301 if (h2g_valid(endaddr)) {
302 endaddr = h2g(endaddr);
303 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
304 } else {
305 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
306 endaddr = ~0ul;
307 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
308 #endif
309 }
310 }
311 }
312 free(freep);
313 mmap_unlock();
314 }
315 #else
316 FILE *f;
317
318 last_brk = (unsigned long)sbrk(0);
319
320 f = fopen("/compat/linux/proc/self/maps", "r");
321 if (f) {
322 mmap_lock();
323
324 do {
325 unsigned long startaddr, endaddr;
326 int n;
327
328 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
329
330 if (n == 2 && h2g_valid(startaddr)) {
331 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
332
333 if (h2g_valid(endaddr)) {
334 endaddr = h2g(endaddr);
335 } else {
336 endaddr = ~0ul;
337 }
338 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
339 }
340 } while (!feof(f));
341
342 fclose(f);
343 mmap_unlock();
344 }
345 #endif
346 }
347 #endif
348 }
349
350 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
351 {
352 PageDesc *pd;
353 void **lp;
354 int i;
355
356 #if defined(CONFIG_USER_ONLY)
357 /* We can't use g_malloc because it may recurse into a locked mutex. */
358 # define ALLOC(P, SIZE) \
359 do { \
360 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
361 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
362 } while (0)
363 #else
364 # define ALLOC(P, SIZE) \
365 do { P = g_malloc0(SIZE); } while (0)
366 #endif
367
368 /* Level 1. Always allocated. */
369 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
370
371 /* Level 2..N-1. */
372 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
373 void **p = *lp;
374
375 if (p == NULL) {
376 if (!alloc) {
377 return NULL;
378 }
379 ALLOC(p, sizeof(void *) * L2_SIZE);
380 *lp = p;
381 }
382
383 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
384 }
385
386 pd = *lp;
387 if (pd == NULL) {
388 if (!alloc) {
389 return NULL;
390 }
391 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
392 *lp = pd;
393 }
394
395 #undef ALLOC
396
397 return pd + (index & (L2_SIZE - 1));
398 }
399
400 static inline PageDesc *page_find(tb_page_addr_t index)
401 {
402 return page_find_alloc(index, 0);
403 }
404
405 #if !defined(CONFIG_USER_ONLY)
406 static uint16_t *phys_page_find_alloc(target_phys_addr_t index, int alloc)
407 {
408 PhysPageEntry *lp, *p;
409 int i, j;
410
411 lp = &phys_map;
412
413 /* Level 1..N. */
414 for (i = P_L2_LEVELS - 1; i >= 0; i--) {
415 if (lp->u.node == NULL) {
416 if (!alloc) {
417 return NULL;
418 }
419 lp->u.node = p = g_malloc0(sizeof(PhysPageEntry) * L2_SIZE);
420 if (i == 0) {
421 for (j = 0; j < L2_SIZE; j++) {
422 p[j].u.leaf = phys_section_unassigned;
423 }
424 }
425 }
426 lp = &lp->u.node[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
427 }
428
429 return &lp->u.leaf;
430 }
431
432 static inline PhysPageDesc phys_page_find(target_phys_addr_t index)
433 {
434 uint16_t *p = phys_page_find_alloc(index, 0);
435 uint16_t s_index = phys_section_unassigned;
436 MemoryRegionSection *section;
437 PhysPageDesc pd;
438
439 if (p) {
440 s_index = *p;
441 }
442 section = &phys_sections[s_index];
443 index <<= TARGET_PAGE_BITS;
444 assert(section->offset_within_address_space <= index
445 && index <= section->offset_within_address_space + section->size-1);
446 pd.phys_offset = section->mr->ram_addr;
447 pd.region_offset = (index - section->offset_within_address_space)
448 + section->offset_within_region;
449 if (memory_region_is_ram(section->mr)) {
450 pd.phys_offset += pd.region_offset;
451 pd.region_offset = 0;
452 } else if (section->mr->rom_device) {
453 pd.phys_offset += pd.region_offset;
454 }
455 if (section->readonly) {
456 pd.phys_offset |= io_mem_rom.ram_addr;
457 }
458 return pd;
459 }
460
461 static void tlb_protect_code(ram_addr_t ram_addr);
462 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
463 target_ulong vaddr);
464 #define mmap_lock() do { } while(0)
465 #define mmap_unlock() do { } while(0)
466 #endif
467
468 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
469
470 #if defined(CONFIG_USER_ONLY)
471 /* Currently it is not recommended to allocate big chunks of data in
472 user mode. It will change when a dedicated libc will be used */
473 #define USE_STATIC_CODE_GEN_BUFFER
474 #endif
475
476 #ifdef USE_STATIC_CODE_GEN_BUFFER
477 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
478 __attribute__((aligned (CODE_GEN_ALIGN)));
479 #endif
480
481 static void code_gen_alloc(unsigned long tb_size)
482 {
483 #ifdef USE_STATIC_CODE_GEN_BUFFER
484 code_gen_buffer = static_code_gen_buffer;
485 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
486 map_exec(code_gen_buffer, code_gen_buffer_size);
487 #else
488 code_gen_buffer_size = tb_size;
489 if (code_gen_buffer_size == 0) {
490 #if defined(CONFIG_USER_ONLY)
491 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
492 #else
493 /* XXX: needs adjustments */
494 code_gen_buffer_size = (unsigned long)(ram_size / 4);
495 #endif
496 }
497 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
498 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
499 /* The code gen buffer location may have constraints depending on
500 the host cpu and OS */
501 #if defined(__linux__)
502 {
503 int flags;
504 void *start = NULL;
505
506 flags = MAP_PRIVATE | MAP_ANONYMOUS;
507 #if defined(__x86_64__)
508 flags |= MAP_32BIT;
509 /* Cannot map more than that */
510 if (code_gen_buffer_size > (800 * 1024 * 1024))
511 code_gen_buffer_size = (800 * 1024 * 1024);
512 #elif defined(__sparc_v9__)
513 // Map the buffer below 2G, so we can use direct calls and branches
514 flags |= MAP_FIXED;
515 start = (void *) 0x60000000UL;
516 if (code_gen_buffer_size > (512 * 1024 * 1024))
517 code_gen_buffer_size = (512 * 1024 * 1024);
518 #elif defined(__arm__)
519 /* Keep the buffer no bigger than 16MB to branch between blocks */
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
522 #elif defined(__s390x__)
523 /* Map the buffer so that we can use direct calls and branches. */
524 /* We have a +- 4GB range on the branches; leave some slop. */
525 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
526 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
527 }
528 start = (void *)0x90000000UL;
529 #endif
530 code_gen_buffer = mmap(start, code_gen_buffer_size,
531 PROT_WRITE | PROT_READ | PROT_EXEC,
532 flags, -1, 0);
533 if (code_gen_buffer == MAP_FAILED) {
534 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
535 exit(1);
536 }
537 }
538 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
539 || defined(__DragonFly__) || defined(__OpenBSD__) \
540 || defined(__NetBSD__)
541 {
542 int flags;
543 void *addr = NULL;
544 flags = MAP_PRIVATE | MAP_ANONYMOUS;
545 #if defined(__x86_64__)
546 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
547 * 0x40000000 is free */
548 flags |= MAP_FIXED;
549 addr = (void *)0x40000000;
550 /* Cannot map more than that */
551 if (code_gen_buffer_size > (800 * 1024 * 1024))
552 code_gen_buffer_size = (800 * 1024 * 1024);
553 #elif defined(__sparc_v9__)
554 // Map the buffer below 2G, so we can use direct calls and branches
555 flags |= MAP_FIXED;
556 addr = (void *) 0x60000000UL;
557 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
558 code_gen_buffer_size = (512 * 1024 * 1024);
559 }
560 #endif
561 code_gen_buffer = mmap(addr, code_gen_buffer_size,
562 PROT_WRITE | PROT_READ | PROT_EXEC,
563 flags, -1, 0);
564 if (code_gen_buffer == MAP_FAILED) {
565 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
566 exit(1);
567 }
568 }
569 #else
570 code_gen_buffer = g_malloc(code_gen_buffer_size);
571 map_exec(code_gen_buffer, code_gen_buffer_size);
572 #endif
573 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
574 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
575 code_gen_buffer_max_size = code_gen_buffer_size -
576 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
577 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
578 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
579 }
580
581 /* Must be called before using the QEMU cpus. 'tb_size' is the size
582 (in bytes) allocated to the translation buffer. Zero means default
583 size. */
584 void tcg_exec_init(unsigned long tb_size)
585 {
586 cpu_gen_init();
587 code_gen_alloc(tb_size);
588 code_gen_ptr = code_gen_buffer;
589 page_init();
590 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
591 /* There's no guest base to take into account, so go ahead and
592 initialize the prologue now. */
593 tcg_prologue_init(&tcg_ctx);
594 #endif
595 }
596
597 bool tcg_enabled(void)
598 {
599 return code_gen_buffer != NULL;
600 }
601
602 void cpu_exec_init_all(void)
603 {
604 #if !defined(CONFIG_USER_ONLY)
605 memory_map_init();
606 io_mem_init();
607 #endif
608 }
609
610 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
611
612 static int cpu_common_post_load(void *opaque, int version_id)
613 {
614 CPUState *env = opaque;
615
616 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
617 version_id is increased. */
618 env->interrupt_request &= ~0x01;
619 tlb_flush(env, 1);
620
621 return 0;
622 }
623
624 static const VMStateDescription vmstate_cpu_common = {
625 .name = "cpu_common",
626 .version_id = 1,
627 .minimum_version_id = 1,
628 .minimum_version_id_old = 1,
629 .post_load = cpu_common_post_load,
630 .fields = (VMStateField []) {
631 VMSTATE_UINT32(halted, CPUState),
632 VMSTATE_UINT32(interrupt_request, CPUState),
633 VMSTATE_END_OF_LIST()
634 }
635 };
636 #endif
637
638 CPUState *qemu_get_cpu(int cpu)
639 {
640 CPUState *env = first_cpu;
641
642 while (env) {
643 if (env->cpu_index == cpu)
644 break;
645 env = env->next_cpu;
646 }
647
648 return env;
649 }
650
651 void cpu_exec_init(CPUState *env)
652 {
653 CPUState **penv;
654 int cpu_index;
655
656 #if defined(CONFIG_USER_ONLY)
657 cpu_list_lock();
658 #endif
659 env->next_cpu = NULL;
660 penv = &first_cpu;
661 cpu_index = 0;
662 while (*penv != NULL) {
663 penv = &(*penv)->next_cpu;
664 cpu_index++;
665 }
666 env->cpu_index = cpu_index;
667 env->numa_node = 0;
668 QTAILQ_INIT(&env->breakpoints);
669 QTAILQ_INIT(&env->watchpoints);
670 #ifndef CONFIG_USER_ONLY
671 env->thread_id = qemu_get_thread_id();
672 #endif
673 *penv = env;
674 #if defined(CONFIG_USER_ONLY)
675 cpu_list_unlock();
676 #endif
677 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
678 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
679 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
680 cpu_save, cpu_load, env);
681 #endif
682 }
683
684 /* Allocate a new translation block. Flush the translation buffer if
685 too many translation blocks or too much generated code. */
686 static TranslationBlock *tb_alloc(target_ulong pc)
687 {
688 TranslationBlock *tb;
689
690 if (nb_tbs >= code_gen_max_blocks ||
691 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
692 return NULL;
693 tb = &tbs[nb_tbs++];
694 tb->pc = pc;
695 tb->cflags = 0;
696 return tb;
697 }
698
699 void tb_free(TranslationBlock *tb)
700 {
701 /* In practice this is mostly used for single use temporary TB
702 Ignore the hard cases and just back up if this TB happens to
703 be the last one generated. */
704 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
705 code_gen_ptr = tb->tc_ptr;
706 nb_tbs--;
707 }
708 }
709
710 static inline void invalidate_page_bitmap(PageDesc *p)
711 {
712 if (p->code_bitmap) {
713 g_free(p->code_bitmap);
714 p->code_bitmap = NULL;
715 }
716 p->code_write_count = 0;
717 }
718
719 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
720
721 static void page_flush_tb_1 (int level, void **lp)
722 {
723 int i;
724
725 if (*lp == NULL) {
726 return;
727 }
728 if (level == 0) {
729 PageDesc *pd = *lp;
730 for (i = 0; i < L2_SIZE; ++i) {
731 pd[i].first_tb = NULL;
732 invalidate_page_bitmap(pd + i);
733 }
734 } else {
735 void **pp = *lp;
736 for (i = 0; i < L2_SIZE; ++i) {
737 page_flush_tb_1 (level - 1, pp + i);
738 }
739 }
740 }
741
742 static void page_flush_tb(void)
743 {
744 int i;
745 for (i = 0; i < V_L1_SIZE; i++) {
746 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
747 }
748 }
749
750 /* flush all the translation blocks */
751 /* XXX: tb_flush is currently not thread safe */
752 void tb_flush(CPUState *env1)
753 {
754 CPUState *env;
755 #if defined(DEBUG_FLUSH)
756 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
757 (unsigned long)(code_gen_ptr - code_gen_buffer),
758 nb_tbs, nb_tbs > 0 ?
759 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
760 #endif
761 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
762 cpu_abort(env1, "Internal error: code buffer overflow\n");
763
764 nb_tbs = 0;
765
766 for(env = first_cpu; env != NULL; env = env->next_cpu) {
767 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
768 }
769
770 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
771 page_flush_tb();
772
773 code_gen_ptr = code_gen_buffer;
774 /* XXX: flush processor icache at this point if cache flush is
775 expensive */
776 tb_flush_count++;
777 }
778
779 #ifdef DEBUG_TB_CHECK
780
781 static void tb_invalidate_check(target_ulong address)
782 {
783 TranslationBlock *tb;
784 int i;
785 address &= TARGET_PAGE_MASK;
786 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
787 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
788 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
789 address >= tb->pc + tb->size)) {
790 printf("ERROR invalidate: address=" TARGET_FMT_lx
791 " PC=%08lx size=%04x\n",
792 address, (long)tb->pc, tb->size);
793 }
794 }
795 }
796 }
797
798 /* verify that all the pages have correct rights for code */
799 static void tb_page_check(void)
800 {
801 TranslationBlock *tb;
802 int i, flags1, flags2;
803
804 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
805 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
806 flags1 = page_get_flags(tb->pc);
807 flags2 = page_get_flags(tb->pc + tb->size - 1);
808 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
809 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
810 (long)tb->pc, tb->size, flags1, flags2);
811 }
812 }
813 }
814 }
815
816 #endif
817
818 /* invalidate one TB */
819 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
820 int next_offset)
821 {
822 TranslationBlock *tb1;
823 for(;;) {
824 tb1 = *ptb;
825 if (tb1 == tb) {
826 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
827 break;
828 }
829 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
830 }
831 }
832
833 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
834 {
835 TranslationBlock *tb1;
836 unsigned int n1;
837
838 for(;;) {
839 tb1 = *ptb;
840 n1 = (long)tb1 & 3;
841 tb1 = (TranslationBlock *)((long)tb1 & ~3);
842 if (tb1 == tb) {
843 *ptb = tb1->page_next[n1];
844 break;
845 }
846 ptb = &tb1->page_next[n1];
847 }
848 }
849
850 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
851 {
852 TranslationBlock *tb1, **ptb;
853 unsigned int n1;
854
855 ptb = &tb->jmp_next[n];
856 tb1 = *ptb;
857 if (tb1) {
858 /* find tb(n) in circular list */
859 for(;;) {
860 tb1 = *ptb;
861 n1 = (long)tb1 & 3;
862 tb1 = (TranslationBlock *)((long)tb1 & ~3);
863 if (n1 == n && tb1 == tb)
864 break;
865 if (n1 == 2) {
866 ptb = &tb1->jmp_first;
867 } else {
868 ptb = &tb1->jmp_next[n1];
869 }
870 }
871 /* now we can suppress tb(n) from the list */
872 *ptb = tb->jmp_next[n];
873
874 tb->jmp_next[n] = NULL;
875 }
876 }
877
878 /* reset the jump entry 'n' of a TB so that it is not chained to
879 another TB */
880 static inline void tb_reset_jump(TranslationBlock *tb, int n)
881 {
882 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
883 }
884
885 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
886 {
887 CPUState *env;
888 PageDesc *p;
889 unsigned int h, n1;
890 tb_page_addr_t phys_pc;
891 TranslationBlock *tb1, *tb2;
892
893 /* remove the TB from the hash list */
894 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
895 h = tb_phys_hash_func(phys_pc);
896 tb_remove(&tb_phys_hash[h], tb,
897 offsetof(TranslationBlock, phys_hash_next));
898
899 /* remove the TB from the page list */
900 if (tb->page_addr[0] != page_addr) {
901 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
902 tb_page_remove(&p->first_tb, tb);
903 invalidate_page_bitmap(p);
904 }
905 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
906 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
907 tb_page_remove(&p->first_tb, tb);
908 invalidate_page_bitmap(p);
909 }
910
911 tb_invalidated_flag = 1;
912
913 /* remove the TB from the hash list */
914 h = tb_jmp_cache_hash_func(tb->pc);
915 for(env = first_cpu; env != NULL; env = env->next_cpu) {
916 if (env->tb_jmp_cache[h] == tb)
917 env->tb_jmp_cache[h] = NULL;
918 }
919
920 /* suppress this TB from the two jump lists */
921 tb_jmp_remove(tb, 0);
922 tb_jmp_remove(tb, 1);
923
924 /* suppress any remaining jumps to this TB */
925 tb1 = tb->jmp_first;
926 for(;;) {
927 n1 = (long)tb1 & 3;
928 if (n1 == 2)
929 break;
930 tb1 = (TranslationBlock *)((long)tb1 & ~3);
931 tb2 = tb1->jmp_next[n1];
932 tb_reset_jump(tb1, n1);
933 tb1->jmp_next[n1] = NULL;
934 tb1 = tb2;
935 }
936 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
937
938 tb_phys_invalidate_count++;
939 }
940
941 static inline void set_bits(uint8_t *tab, int start, int len)
942 {
943 int end, mask, end1;
944
945 end = start + len;
946 tab += start >> 3;
947 mask = 0xff << (start & 7);
948 if ((start & ~7) == (end & ~7)) {
949 if (start < end) {
950 mask &= ~(0xff << (end & 7));
951 *tab |= mask;
952 }
953 } else {
954 *tab++ |= mask;
955 start = (start + 8) & ~7;
956 end1 = end & ~7;
957 while (start < end1) {
958 *tab++ = 0xff;
959 start += 8;
960 }
961 if (start < end) {
962 mask = ~(0xff << (end & 7));
963 *tab |= mask;
964 }
965 }
966 }
967
968 static void build_page_bitmap(PageDesc *p)
969 {
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
972
973 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
974
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (long)tb & 3;
978 tb = (TranslationBlock *)((long)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE)
986 tb_end = TARGET_PAGE_SIZE;
987 } else {
988 tb_start = 0;
989 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
990 }
991 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
992 tb = tb->page_next[n];
993 }
994 }
995
996 TranslationBlock *tb_gen_code(CPUState *env,
997 target_ulong pc, target_ulong cs_base,
998 int flags, int cflags)
999 {
1000 TranslationBlock *tb;
1001 uint8_t *tc_ptr;
1002 tb_page_addr_t phys_pc, phys_page2;
1003 target_ulong virt_page2;
1004 int code_gen_size;
1005
1006 phys_pc = get_page_addr_code(env, pc);
1007 tb = tb_alloc(pc);
1008 if (!tb) {
1009 /* flush must be done */
1010 tb_flush(env);
1011 /* cannot fail at this point */
1012 tb = tb_alloc(pc);
1013 /* Don't forget to invalidate previous TB info. */
1014 tb_invalidated_flag = 1;
1015 }
1016 tc_ptr = code_gen_ptr;
1017 tb->tc_ptr = tc_ptr;
1018 tb->cs_base = cs_base;
1019 tb->flags = flags;
1020 tb->cflags = cflags;
1021 cpu_gen_code(env, tb, &code_gen_size);
1022 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1023
1024 /* check next page if needed */
1025 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1026 phys_page2 = -1;
1027 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1028 phys_page2 = get_page_addr_code(env, virt_page2);
1029 }
1030 tb_link_page(tb, phys_pc, phys_page2);
1031 return tb;
1032 }
1033
1034 /* invalidate all TBs which intersect with the target physical page
1035 starting in range [start;end[. NOTE: start and end must refer to
1036 the same physical page. 'is_cpu_write_access' should be true if called
1037 from a real cpu write access: the virtual CPU will exit the current
1038 TB if code is modified inside this TB. */
1039 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1040 int is_cpu_write_access)
1041 {
1042 TranslationBlock *tb, *tb_next, *saved_tb;
1043 CPUState *env = cpu_single_env;
1044 tb_page_addr_t tb_start, tb_end;
1045 PageDesc *p;
1046 int n;
1047 #ifdef TARGET_HAS_PRECISE_SMC
1048 int current_tb_not_found = is_cpu_write_access;
1049 TranslationBlock *current_tb = NULL;
1050 int current_tb_modified = 0;
1051 target_ulong current_pc = 0;
1052 target_ulong current_cs_base = 0;
1053 int current_flags = 0;
1054 #endif /* TARGET_HAS_PRECISE_SMC */
1055
1056 p = page_find(start >> TARGET_PAGE_BITS);
1057 if (!p)
1058 return;
1059 if (!p->code_bitmap &&
1060 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1061 is_cpu_write_access) {
1062 /* build code bitmap */
1063 build_page_bitmap(p);
1064 }
1065
1066 /* we remove all the TBs in the range [start, end[ */
1067 /* XXX: see if in some cases it could be faster to invalidate all the code */
1068 tb = p->first_tb;
1069 while (tb != NULL) {
1070 n = (long)tb & 3;
1071 tb = (TranslationBlock *)((long)tb & ~3);
1072 tb_next = tb->page_next[n];
1073 /* NOTE: this is subtle as a TB may span two physical pages */
1074 if (n == 0) {
1075 /* NOTE: tb_end may be after the end of the page, but
1076 it is not a problem */
1077 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1078 tb_end = tb_start + tb->size;
1079 } else {
1080 tb_start = tb->page_addr[1];
1081 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1082 }
1083 if (!(tb_end <= start || tb_start >= end)) {
1084 #ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb_not_found) {
1086 current_tb_not_found = 0;
1087 current_tb = NULL;
1088 if (env->mem_io_pc) {
1089 /* now we have a real cpu fault */
1090 current_tb = tb_find_pc(env->mem_io_pc);
1091 }
1092 }
1093 if (current_tb == tb &&
1094 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1095 /* If we are modifying the current TB, we must stop
1096 its execution. We could be more precise by checking
1097 that the modification is after the current PC, but it
1098 would require a specialized function to partially
1099 restore the CPU state */
1100
1101 current_tb_modified = 1;
1102 cpu_restore_state(current_tb, env, env->mem_io_pc);
1103 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1104 &current_flags);
1105 }
1106 #endif /* TARGET_HAS_PRECISE_SMC */
1107 /* we need to do that to handle the case where a signal
1108 occurs while doing tb_phys_invalidate() */
1109 saved_tb = NULL;
1110 if (env) {
1111 saved_tb = env->current_tb;
1112 env->current_tb = NULL;
1113 }
1114 tb_phys_invalidate(tb, -1);
1115 if (env) {
1116 env->current_tb = saved_tb;
1117 if (env->interrupt_request && env->current_tb)
1118 cpu_interrupt(env, env->interrupt_request);
1119 }
1120 }
1121 tb = tb_next;
1122 }
1123 #if !defined(CONFIG_USER_ONLY)
1124 /* if no code remaining, no need to continue to use slow writes */
1125 if (!p->first_tb) {
1126 invalidate_page_bitmap(p);
1127 if (is_cpu_write_access) {
1128 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1129 }
1130 }
1131 #endif
1132 #ifdef TARGET_HAS_PRECISE_SMC
1133 if (current_tb_modified) {
1134 /* we generate a block containing just the instruction
1135 modifying the memory. It will ensure that it cannot modify
1136 itself */
1137 env->current_tb = NULL;
1138 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1139 cpu_resume_from_signal(env, NULL);
1140 }
1141 #endif
1142 }
1143
1144 /* len must be <= 8 and start must be a multiple of len */
1145 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1146 {
1147 PageDesc *p;
1148 int offset, b;
1149 #if 0
1150 if (1) {
1151 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1152 cpu_single_env->mem_io_vaddr, len,
1153 cpu_single_env->eip,
1154 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1155 }
1156 #endif
1157 p = page_find(start >> TARGET_PAGE_BITS);
1158 if (!p)
1159 return;
1160 if (p->code_bitmap) {
1161 offset = start & ~TARGET_PAGE_MASK;
1162 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1163 if (b & ((1 << len) - 1))
1164 goto do_invalidate;
1165 } else {
1166 do_invalidate:
1167 tb_invalidate_phys_page_range(start, start + len, 1);
1168 }
1169 }
1170
1171 #if !defined(CONFIG_SOFTMMU)
1172 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1173 unsigned long pc, void *puc)
1174 {
1175 TranslationBlock *tb;
1176 PageDesc *p;
1177 int n;
1178 #ifdef TARGET_HAS_PRECISE_SMC
1179 TranslationBlock *current_tb = NULL;
1180 CPUState *env = cpu_single_env;
1181 int current_tb_modified = 0;
1182 target_ulong current_pc = 0;
1183 target_ulong current_cs_base = 0;
1184 int current_flags = 0;
1185 #endif
1186
1187 addr &= TARGET_PAGE_MASK;
1188 p = page_find(addr >> TARGET_PAGE_BITS);
1189 if (!p)
1190 return;
1191 tb = p->first_tb;
1192 #ifdef TARGET_HAS_PRECISE_SMC
1193 if (tb && pc != 0) {
1194 current_tb = tb_find_pc(pc);
1195 }
1196 #endif
1197 while (tb != NULL) {
1198 n = (long)tb & 3;
1199 tb = (TranslationBlock *)((long)tb & ~3);
1200 #ifdef TARGET_HAS_PRECISE_SMC
1201 if (current_tb == tb &&
1202 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1203 /* If we are modifying the current TB, we must stop
1204 its execution. We could be more precise by checking
1205 that the modification is after the current PC, but it
1206 would require a specialized function to partially
1207 restore the CPU state */
1208
1209 current_tb_modified = 1;
1210 cpu_restore_state(current_tb, env, pc);
1211 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1212 &current_flags);
1213 }
1214 #endif /* TARGET_HAS_PRECISE_SMC */
1215 tb_phys_invalidate(tb, addr);
1216 tb = tb->page_next[n];
1217 }
1218 p->first_tb = NULL;
1219 #ifdef TARGET_HAS_PRECISE_SMC
1220 if (current_tb_modified) {
1221 /* we generate a block containing just the instruction
1222 modifying the memory. It will ensure that it cannot modify
1223 itself */
1224 env->current_tb = NULL;
1225 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1226 cpu_resume_from_signal(env, puc);
1227 }
1228 #endif
1229 }
1230 #endif
1231
1232 /* add the tb in the target page and protect it if necessary */
1233 static inline void tb_alloc_page(TranslationBlock *tb,
1234 unsigned int n, tb_page_addr_t page_addr)
1235 {
1236 PageDesc *p;
1237 #ifndef CONFIG_USER_ONLY
1238 bool page_already_protected;
1239 #endif
1240
1241 tb->page_addr[n] = page_addr;
1242 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1243 tb->page_next[n] = p->first_tb;
1244 #ifndef CONFIG_USER_ONLY
1245 page_already_protected = p->first_tb != NULL;
1246 #endif
1247 p->first_tb = (TranslationBlock *)((long)tb | n);
1248 invalidate_page_bitmap(p);
1249
1250 #if defined(TARGET_HAS_SMC) || 1
1251
1252 #if defined(CONFIG_USER_ONLY)
1253 if (p->flags & PAGE_WRITE) {
1254 target_ulong addr;
1255 PageDesc *p2;
1256 int prot;
1257
1258 /* force the host page as non writable (writes will have a
1259 page fault + mprotect overhead) */
1260 page_addr &= qemu_host_page_mask;
1261 prot = 0;
1262 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1263 addr += TARGET_PAGE_SIZE) {
1264
1265 p2 = page_find (addr >> TARGET_PAGE_BITS);
1266 if (!p2)
1267 continue;
1268 prot |= p2->flags;
1269 p2->flags &= ~PAGE_WRITE;
1270 }
1271 mprotect(g2h(page_addr), qemu_host_page_size,
1272 (prot & PAGE_BITS) & ~PAGE_WRITE);
1273 #ifdef DEBUG_TB_INVALIDATE
1274 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1275 page_addr);
1276 #endif
1277 }
1278 #else
1279 /* if some code is already present, then the pages are already
1280 protected. So we handle the case where only the first TB is
1281 allocated in a physical page */
1282 if (!page_already_protected) {
1283 tlb_protect_code(page_addr);
1284 }
1285 #endif
1286
1287 #endif /* TARGET_HAS_SMC */
1288 }
1289
1290 /* add a new TB and link it to the physical page tables. phys_page2 is
1291 (-1) to indicate that only one page contains the TB. */
1292 void tb_link_page(TranslationBlock *tb,
1293 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1294 {
1295 unsigned int h;
1296 TranslationBlock **ptb;
1297
1298 /* Grab the mmap lock to stop another thread invalidating this TB
1299 before we are done. */
1300 mmap_lock();
1301 /* add in the physical hash table */
1302 h = tb_phys_hash_func(phys_pc);
1303 ptb = &tb_phys_hash[h];
1304 tb->phys_hash_next = *ptb;
1305 *ptb = tb;
1306
1307 /* add in the page list */
1308 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1309 if (phys_page2 != -1)
1310 tb_alloc_page(tb, 1, phys_page2);
1311 else
1312 tb->page_addr[1] = -1;
1313
1314 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1315 tb->jmp_next[0] = NULL;
1316 tb->jmp_next[1] = NULL;
1317
1318 /* init original jump addresses */
1319 if (tb->tb_next_offset[0] != 0xffff)
1320 tb_reset_jump(tb, 0);
1321 if (tb->tb_next_offset[1] != 0xffff)
1322 tb_reset_jump(tb, 1);
1323
1324 #ifdef DEBUG_TB_CHECK
1325 tb_page_check();
1326 #endif
1327 mmap_unlock();
1328 }
1329
1330 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1331 tb[1].tc_ptr. Return NULL if not found */
1332 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1333 {
1334 int m_min, m_max, m;
1335 unsigned long v;
1336 TranslationBlock *tb;
1337
1338 if (nb_tbs <= 0)
1339 return NULL;
1340 if (tc_ptr < (unsigned long)code_gen_buffer ||
1341 tc_ptr >= (unsigned long)code_gen_ptr)
1342 return NULL;
1343 /* binary search (cf Knuth) */
1344 m_min = 0;
1345 m_max = nb_tbs - 1;
1346 while (m_min <= m_max) {
1347 m = (m_min + m_max) >> 1;
1348 tb = &tbs[m];
1349 v = (unsigned long)tb->tc_ptr;
1350 if (v == tc_ptr)
1351 return tb;
1352 else if (tc_ptr < v) {
1353 m_max = m - 1;
1354 } else {
1355 m_min = m + 1;
1356 }
1357 }
1358 return &tbs[m_max];
1359 }
1360
1361 static void tb_reset_jump_recursive(TranslationBlock *tb);
1362
1363 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1364 {
1365 TranslationBlock *tb1, *tb_next, **ptb;
1366 unsigned int n1;
1367
1368 tb1 = tb->jmp_next[n];
1369 if (tb1 != NULL) {
1370 /* find head of list */
1371 for(;;) {
1372 n1 = (long)tb1 & 3;
1373 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1374 if (n1 == 2)
1375 break;
1376 tb1 = tb1->jmp_next[n1];
1377 }
1378 /* we are now sure now that tb jumps to tb1 */
1379 tb_next = tb1;
1380
1381 /* remove tb from the jmp_first list */
1382 ptb = &tb_next->jmp_first;
1383 for(;;) {
1384 tb1 = *ptb;
1385 n1 = (long)tb1 & 3;
1386 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1387 if (n1 == n && tb1 == tb)
1388 break;
1389 ptb = &tb1->jmp_next[n1];
1390 }
1391 *ptb = tb->jmp_next[n];
1392 tb->jmp_next[n] = NULL;
1393
1394 /* suppress the jump to next tb in generated code */
1395 tb_reset_jump(tb, n);
1396
1397 /* suppress jumps in the tb on which we could have jumped */
1398 tb_reset_jump_recursive(tb_next);
1399 }
1400 }
1401
1402 static void tb_reset_jump_recursive(TranslationBlock *tb)
1403 {
1404 tb_reset_jump_recursive2(tb, 0);
1405 tb_reset_jump_recursive2(tb, 1);
1406 }
1407
1408 #if defined(TARGET_HAS_ICE)
1409 #if defined(CONFIG_USER_ONLY)
1410 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1411 {
1412 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1413 }
1414 #else
1415 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1416 {
1417 target_phys_addr_t addr;
1418 target_ulong pd;
1419 ram_addr_t ram_addr;
1420 PhysPageDesc p;
1421
1422 addr = cpu_get_phys_page_debug(env, pc);
1423 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1424 pd = p.phys_offset;
1425 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1426 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1427 }
1428 #endif
1429 #endif /* TARGET_HAS_ICE */
1430
1431 #if defined(CONFIG_USER_ONLY)
1432 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1433
1434 {
1435 }
1436
1437 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags, CPUWatchpoint **watchpoint)
1439 {
1440 return -ENOSYS;
1441 }
1442 #else
1443 /* Add a watchpoint. */
1444 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1445 int flags, CPUWatchpoint **watchpoint)
1446 {
1447 target_ulong len_mask = ~(len - 1);
1448 CPUWatchpoint *wp;
1449
1450 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1451 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1452 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1453 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1454 return -EINVAL;
1455 }
1456 wp = g_malloc(sizeof(*wp));
1457
1458 wp->vaddr = addr;
1459 wp->len_mask = len_mask;
1460 wp->flags = flags;
1461
1462 /* keep all GDB-injected watchpoints in front */
1463 if (flags & BP_GDB)
1464 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1465 else
1466 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1467
1468 tlb_flush_page(env, addr);
1469
1470 if (watchpoint)
1471 *watchpoint = wp;
1472 return 0;
1473 }
1474
1475 /* Remove a specific watchpoint. */
1476 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1477 int flags)
1478 {
1479 target_ulong len_mask = ~(len - 1);
1480 CPUWatchpoint *wp;
1481
1482 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1483 if (addr == wp->vaddr && len_mask == wp->len_mask
1484 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1485 cpu_watchpoint_remove_by_ref(env, wp);
1486 return 0;
1487 }
1488 }
1489 return -ENOENT;
1490 }
1491
1492 /* Remove a specific watchpoint by reference. */
1493 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1494 {
1495 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1496
1497 tlb_flush_page(env, watchpoint->vaddr);
1498
1499 g_free(watchpoint);
1500 }
1501
1502 /* Remove all matching watchpoints. */
1503 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1504 {
1505 CPUWatchpoint *wp, *next;
1506
1507 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1508 if (wp->flags & mask)
1509 cpu_watchpoint_remove_by_ref(env, wp);
1510 }
1511 }
1512 #endif
1513
1514 /* Add a breakpoint. */
1515 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1516 CPUBreakpoint **breakpoint)
1517 {
1518 #if defined(TARGET_HAS_ICE)
1519 CPUBreakpoint *bp;
1520
1521 bp = g_malloc(sizeof(*bp));
1522
1523 bp->pc = pc;
1524 bp->flags = flags;
1525
1526 /* keep all GDB-injected breakpoints in front */
1527 if (flags & BP_GDB)
1528 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1529 else
1530 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1531
1532 breakpoint_invalidate(env, pc);
1533
1534 if (breakpoint)
1535 *breakpoint = bp;
1536 return 0;
1537 #else
1538 return -ENOSYS;
1539 #endif
1540 }
1541
1542 /* Remove a specific breakpoint. */
1543 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1544 {
1545 #if defined(TARGET_HAS_ICE)
1546 CPUBreakpoint *bp;
1547
1548 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1549 if (bp->pc == pc && bp->flags == flags) {
1550 cpu_breakpoint_remove_by_ref(env, bp);
1551 return 0;
1552 }
1553 }
1554 return -ENOENT;
1555 #else
1556 return -ENOSYS;
1557 #endif
1558 }
1559
1560 /* Remove a specific breakpoint by reference. */
1561 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1562 {
1563 #if defined(TARGET_HAS_ICE)
1564 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1565
1566 breakpoint_invalidate(env, breakpoint->pc);
1567
1568 g_free(breakpoint);
1569 #endif
1570 }
1571
1572 /* Remove all matching breakpoints. */
1573 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1574 {
1575 #if defined(TARGET_HAS_ICE)
1576 CPUBreakpoint *bp, *next;
1577
1578 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1579 if (bp->flags & mask)
1580 cpu_breakpoint_remove_by_ref(env, bp);
1581 }
1582 #endif
1583 }
1584
1585 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1586 CPU loop after each instruction */
1587 void cpu_single_step(CPUState *env, int enabled)
1588 {
1589 #if defined(TARGET_HAS_ICE)
1590 if (env->singlestep_enabled != enabled) {
1591 env->singlestep_enabled = enabled;
1592 if (kvm_enabled())
1593 kvm_update_guest_debug(env, 0);
1594 else {
1595 /* must flush all the translated code to avoid inconsistencies */
1596 /* XXX: only flush what is necessary */
1597 tb_flush(env);
1598 }
1599 }
1600 #endif
1601 }
1602
1603 /* enable or disable low levels log */
1604 void cpu_set_log(int log_flags)
1605 {
1606 loglevel = log_flags;
1607 if (loglevel && !logfile) {
1608 logfile = fopen(logfilename, log_append ? "a" : "w");
1609 if (!logfile) {
1610 perror(logfilename);
1611 _exit(1);
1612 }
1613 #if !defined(CONFIG_SOFTMMU)
1614 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1615 {
1616 static char logfile_buf[4096];
1617 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1618 }
1619 #elif defined(_WIN32)
1620 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1621 setvbuf(logfile, NULL, _IONBF, 0);
1622 #else
1623 setvbuf(logfile, NULL, _IOLBF, 0);
1624 #endif
1625 log_append = 1;
1626 }
1627 if (!loglevel && logfile) {
1628 fclose(logfile);
1629 logfile = NULL;
1630 }
1631 }
1632
1633 void cpu_set_log_filename(const char *filename)
1634 {
1635 logfilename = strdup(filename);
1636 if (logfile) {
1637 fclose(logfile);
1638 logfile = NULL;
1639 }
1640 cpu_set_log(loglevel);
1641 }
1642
1643 static void cpu_unlink_tb(CPUState *env)
1644 {
1645 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1646 problem and hope the cpu will stop of its own accord. For userspace
1647 emulation this often isn't actually as bad as it sounds. Often
1648 signals are used primarily to interrupt blocking syscalls. */
1649 TranslationBlock *tb;
1650 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1651
1652 spin_lock(&interrupt_lock);
1653 tb = env->current_tb;
1654 /* if the cpu is currently executing code, we must unlink it and
1655 all the potentially executing TB */
1656 if (tb) {
1657 env->current_tb = NULL;
1658 tb_reset_jump_recursive(tb);
1659 }
1660 spin_unlock(&interrupt_lock);
1661 }
1662
1663 #ifndef CONFIG_USER_ONLY
1664 /* mask must never be zero, except for A20 change call */
1665 static void tcg_handle_interrupt(CPUState *env, int mask)
1666 {
1667 int old_mask;
1668
1669 old_mask = env->interrupt_request;
1670 env->interrupt_request |= mask;
1671
1672 /*
1673 * If called from iothread context, wake the target cpu in
1674 * case its halted.
1675 */
1676 if (!qemu_cpu_is_self(env)) {
1677 qemu_cpu_kick(env);
1678 return;
1679 }
1680
1681 if (use_icount) {
1682 env->icount_decr.u16.high = 0xffff;
1683 if (!can_do_io(env)
1684 && (mask & ~old_mask) != 0) {
1685 cpu_abort(env, "Raised interrupt while not in I/O function");
1686 }
1687 } else {
1688 cpu_unlink_tb(env);
1689 }
1690 }
1691
1692 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1693
1694 #else /* CONFIG_USER_ONLY */
1695
1696 void cpu_interrupt(CPUState *env, int mask)
1697 {
1698 env->interrupt_request |= mask;
1699 cpu_unlink_tb(env);
1700 }
1701 #endif /* CONFIG_USER_ONLY */
1702
1703 void cpu_reset_interrupt(CPUState *env, int mask)
1704 {
1705 env->interrupt_request &= ~mask;
1706 }
1707
1708 void cpu_exit(CPUState *env)
1709 {
1710 env->exit_request = 1;
1711 cpu_unlink_tb(env);
1712 }
1713
1714 const CPULogItem cpu_log_items[] = {
1715 { CPU_LOG_TB_OUT_ASM, "out_asm",
1716 "show generated host assembly code for each compiled TB" },
1717 { CPU_LOG_TB_IN_ASM, "in_asm",
1718 "show target assembly code for each compiled TB" },
1719 { CPU_LOG_TB_OP, "op",
1720 "show micro ops for each compiled TB" },
1721 { CPU_LOG_TB_OP_OPT, "op_opt",
1722 "show micro ops "
1723 #ifdef TARGET_I386
1724 "before eflags optimization and "
1725 #endif
1726 "after liveness analysis" },
1727 { CPU_LOG_INT, "int",
1728 "show interrupts/exceptions in short format" },
1729 { CPU_LOG_EXEC, "exec",
1730 "show trace before each executed TB (lots of logs)" },
1731 { CPU_LOG_TB_CPU, "cpu",
1732 "show CPU state before block translation" },
1733 #ifdef TARGET_I386
1734 { CPU_LOG_PCALL, "pcall",
1735 "show protected mode far calls/returns/exceptions" },
1736 { CPU_LOG_RESET, "cpu_reset",
1737 "show CPU state before CPU resets" },
1738 #endif
1739 #ifdef DEBUG_IOPORT
1740 { CPU_LOG_IOPORT, "ioport",
1741 "show all i/o ports accesses" },
1742 #endif
1743 { 0, NULL, NULL },
1744 };
1745
1746 static int cmp1(const char *s1, int n, const char *s2)
1747 {
1748 if (strlen(s2) != n)
1749 return 0;
1750 return memcmp(s1, s2, n) == 0;
1751 }
1752
1753 /* takes a comma separated list of log masks. Return 0 if error. */
1754 int cpu_str_to_log_mask(const char *str)
1755 {
1756 const CPULogItem *item;
1757 int mask;
1758 const char *p, *p1;
1759
1760 p = str;
1761 mask = 0;
1762 for(;;) {
1763 p1 = strchr(p, ',');
1764 if (!p1)
1765 p1 = p + strlen(p);
1766 if(cmp1(p,p1-p,"all")) {
1767 for(item = cpu_log_items; item->mask != 0; item++) {
1768 mask |= item->mask;
1769 }
1770 } else {
1771 for(item = cpu_log_items; item->mask != 0; item++) {
1772 if (cmp1(p, p1 - p, item->name))
1773 goto found;
1774 }
1775 return 0;
1776 }
1777 found:
1778 mask |= item->mask;
1779 if (*p1 != ',')
1780 break;
1781 p = p1 + 1;
1782 }
1783 return mask;
1784 }
1785
1786 void cpu_abort(CPUState *env, const char *fmt, ...)
1787 {
1788 va_list ap;
1789 va_list ap2;
1790
1791 va_start(ap, fmt);
1792 va_copy(ap2, ap);
1793 fprintf(stderr, "qemu: fatal: ");
1794 vfprintf(stderr, fmt, ap);
1795 fprintf(stderr, "\n");
1796 #ifdef TARGET_I386
1797 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1798 #else
1799 cpu_dump_state(env, stderr, fprintf, 0);
1800 #endif
1801 if (qemu_log_enabled()) {
1802 qemu_log("qemu: fatal: ");
1803 qemu_log_vprintf(fmt, ap2);
1804 qemu_log("\n");
1805 #ifdef TARGET_I386
1806 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1807 #else
1808 log_cpu_state(env, 0);
1809 #endif
1810 qemu_log_flush();
1811 qemu_log_close();
1812 }
1813 va_end(ap2);
1814 va_end(ap);
1815 #if defined(CONFIG_USER_ONLY)
1816 {
1817 struct sigaction act;
1818 sigfillset(&act.sa_mask);
1819 act.sa_handler = SIG_DFL;
1820 sigaction(SIGABRT, &act, NULL);
1821 }
1822 #endif
1823 abort();
1824 }
1825
1826 CPUState *cpu_copy(CPUState *env)
1827 {
1828 CPUState *new_env = cpu_init(env->cpu_model_str);
1829 CPUState *next_cpu = new_env->next_cpu;
1830 int cpu_index = new_env->cpu_index;
1831 #if defined(TARGET_HAS_ICE)
1832 CPUBreakpoint *bp;
1833 CPUWatchpoint *wp;
1834 #endif
1835
1836 memcpy(new_env, env, sizeof(CPUState));
1837
1838 /* Preserve chaining and index. */
1839 new_env->next_cpu = next_cpu;
1840 new_env->cpu_index = cpu_index;
1841
1842 /* Clone all break/watchpoints.
1843 Note: Once we support ptrace with hw-debug register access, make sure
1844 BP_CPU break/watchpoints are handled correctly on clone. */
1845 QTAILQ_INIT(&env->breakpoints);
1846 QTAILQ_INIT(&env->watchpoints);
1847 #if defined(TARGET_HAS_ICE)
1848 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1849 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1850 }
1851 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1852 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1853 wp->flags, NULL);
1854 }
1855 #endif
1856
1857 return new_env;
1858 }
1859
1860 #if !defined(CONFIG_USER_ONLY)
1861
1862 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1863 {
1864 unsigned int i;
1865
1866 /* Discard jump cache entries for any tb which might potentially
1867 overlap the flushed page. */
1868 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1869 memset (&env->tb_jmp_cache[i], 0,
1870 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1871
1872 i = tb_jmp_cache_hash_page(addr);
1873 memset (&env->tb_jmp_cache[i], 0,
1874 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1875 }
1876
1877 static CPUTLBEntry s_cputlb_empty_entry = {
1878 .addr_read = -1,
1879 .addr_write = -1,
1880 .addr_code = -1,
1881 .addend = -1,
1882 };
1883
1884 /* NOTE:
1885 * If flush_global is true (the usual case), flush all tlb entries.
1886 * If flush_global is false, flush (at least) all tlb entries not
1887 * marked global.
1888 *
1889 * Since QEMU doesn't currently implement a global/not-global flag
1890 * for tlb entries, at the moment tlb_flush() will also flush all
1891 * tlb entries in the flush_global == false case. This is OK because
1892 * CPU architectures generally permit an implementation to drop
1893 * entries from the TLB at any time, so flushing more entries than
1894 * required is only an efficiency issue, not a correctness issue.
1895 */
1896 void tlb_flush(CPUState *env, int flush_global)
1897 {
1898 int i;
1899
1900 #if defined(DEBUG_TLB)
1901 printf("tlb_flush:\n");
1902 #endif
1903 /* must reset current TB so that interrupts cannot modify the
1904 links while we are modifying them */
1905 env->current_tb = NULL;
1906
1907 for(i = 0; i < CPU_TLB_SIZE; i++) {
1908 int mmu_idx;
1909 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1910 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1911 }
1912 }
1913
1914 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1915
1916 env->tlb_flush_addr = -1;
1917 env->tlb_flush_mask = 0;
1918 tlb_flush_count++;
1919 }
1920
1921 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1922 {
1923 if (addr == (tlb_entry->addr_read &
1924 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1925 addr == (tlb_entry->addr_write &
1926 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1927 addr == (tlb_entry->addr_code &
1928 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1929 *tlb_entry = s_cputlb_empty_entry;
1930 }
1931 }
1932
1933 void tlb_flush_page(CPUState *env, target_ulong addr)
1934 {
1935 int i;
1936 int mmu_idx;
1937
1938 #if defined(DEBUG_TLB)
1939 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1940 #endif
1941 /* Check if we need to flush due to large pages. */
1942 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1943 #if defined(DEBUG_TLB)
1944 printf("tlb_flush_page: forced full flush ("
1945 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1946 env->tlb_flush_addr, env->tlb_flush_mask);
1947 #endif
1948 tlb_flush(env, 1);
1949 return;
1950 }
1951 /* must reset current TB so that interrupts cannot modify the
1952 links while we are modifying them */
1953 env->current_tb = NULL;
1954
1955 addr &= TARGET_PAGE_MASK;
1956 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1957 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1958 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1959
1960 tlb_flush_jmp_cache(env, addr);
1961 }
1962
1963 /* update the TLBs so that writes to code in the virtual page 'addr'
1964 can be detected */
1965 static void tlb_protect_code(ram_addr_t ram_addr)
1966 {
1967 cpu_physical_memory_reset_dirty(ram_addr,
1968 ram_addr + TARGET_PAGE_SIZE,
1969 CODE_DIRTY_FLAG);
1970 }
1971
1972 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1973 tested for self modifying code */
1974 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1975 target_ulong vaddr)
1976 {
1977 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1978 }
1979
1980 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1981 unsigned long start, unsigned long length)
1982 {
1983 unsigned long addr;
1984 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
1985 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1986 if ((addr - start) < length) {
1987 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1988 }
1989 }
1990 }
1991
1992 /* Note: start and end must be within the same ram block. */
1993 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1994 int dirty_flags)
1995 {
1996 CPUState *env;
1997 unsigned long length, start1;
1998 int i;
1999
2000 start &= TARGET_PAGE_MASK;
2001 end = TARGET_PAGE_ALIGN(end);
2002
2003 length = end - start;
2004 if (length == 0)
2005 return;
2006 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2007
2008 /* we modify the TLB cache so that the dirty bit will be set again
2009 when accessing the range */
2010 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2011 /* Check that we don't span multiple blocks - this breaks the
2012 address comparisons below. */
2013 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2014 != (end - 1) - start) {
2015 abort();
2016 }
2017
2018 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2019 int mmu_idx;
2020 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2021 for(i = 0; i < CPU_TLB_SIZE; i++)
2022 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2023 start1, length);
2024 }
2025 }
2026 }
2027
2028 int cpu_physical_memory_set_dirty_tracking(int enable)
2029 {
2030 int ret = 0;
2031 in_migration = enable;
2032 return ret;
2033 }
2034
2035 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2036 {
2037 ram_addr_t ram_addr;
2038 void *p;
2039
2040 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
2041 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2042 + tlb_entry->addend);
2043 ram_addr = qemu_ram_addr_from_host_nofail(p);
2044 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2045 tlb_entry->addr_write |= TLB_NOTDIRTY;
2046 }
2047 }
2048 }
2049
2050 /* update the TLB according to the current state of the dirty bits */
2051 void cpu_tlb_update_dirty(CPUState *env)
2052 {
2053 int i;
2054 int mmu_idx;
2055 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2056 for(i = 0; i < CPU_TLB_SIZE; i++)
2057 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2058 }
2059 }
2060
2061 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2062 {
2063 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2064 tlb_entry->addr_write = vaddr;
2065 }
2066
2067 /* update the TLB corresponding to virtual page vaddr
2068 so that it is no longer dirty */
2069 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2070 {
2071 int i;
2072 int mmu_idx;
2073
2074 vaddr &= TARGET_PAGE_MASK;
2075 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2076 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2077 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2078 }
2079
2080 /* Our TLB does not support large pages, so remember the area covered by
2081 large pages and trigger a full TLB flush if these are invalidated. */
2082 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2083 target_ulong size)
2084 {
2085 target_ulong mask = ~(size - 1);
2086
2087 if (env->tlb_flush_addr == (target_ulong)-1) {
2088 env->tlb_flush_addr = vaddr & mask;
2089 env->tlb_flush_mask = mask;
2090 return;
2091 }
2092 /* Extend the existing region to include the new page.
2093 This is a compromise between unnecessary flushes and the cost
2094 of maintaining a full variable size TLB. */
2095 mask &= env->tlb_flush_mask;
2096 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2097 mask <<= 1;
2098 }
2099 env->tlb_flush_addr &= mask;
2100 env->tlb_flush_mask = mask;
2101 }
2102
2103 static bool is_ram_rom(ram_addr_t pd)
2104 {
2105 pd &= ~TARGET_PAGE_MASK;
2106 return pd == io_mem_ram.ram_addr || pd == io_mem_rom.ram_addr;
2107 }
2108
2109 static bool is_romd(ram_addr_t pd)
2110 {
2111 MemoryRegion *mr;
2112
2113 pd &= ~TARGET_PAGE_MASK;
2114 mr = io_mem_region[pd];
2115 return mr->rom_device && mr->readable;
2116 }
2117
2118 static bool is_ram_rom_romd(ram_addr_t pd)
2119 {
2120 return is_ram_rom(pd) || is_romd(pd);
2121 }
2122
2123 /* Add a new TLB entry. At most one entry for a given virtual address
2124 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2125 supplied size is only used by tlb_flush_page. */
2126 void tlb_set_page(CPUState *env, target_ulong vaddr,
2127 target_phys_addr_t paddr, int prot,
2128 int mmu_idx, target_ulong size)
2129 {
2130 PhysPageDesc p;
2131 unsigned long pd;
2132 unsigned int index;
2133 target_ulong address;
2134 target_ulong code_address;
2135 unsigned long addend;
2136 CPUTLBEntry *te;
2137 CPUWatchpoint *wp;
2138 target_phys_addr_t iotlb;
2139
2140 assert(size >= TARGET_PAGE_SIZE);
2141 if (size != TARGET_PAGE_SIZE) {
2142 tlb_add_large_page(env, vaddr, size);
2143 }
2144 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2145 pd = p.phys_offset;
2146 #if defined(DEBUG_TLB)
2147 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2148 " prot=%x idx=%d pd=0x%08lx\n",
2149 vaddr, paddr, prot, mmu_idx, pd);
2150 #endif
2151
2152 address = vaddr;
2153 if (!is_ram_rom_romd(pd)) {
2154 /* IO memory case (romd handled later) */
2155 address |= TLB_MMIO;
2156 }
2157 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2158 if (is_ram_rom(pd)) {
2159 /* Normal RAM. */
2160 iotlb = pd & TARGET_PAGE_MASK;
2161 if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr)
2162 iotlb |= io_mem_notdirty.ram_addr;
2163 else
2164 iotlb |= io_mem_rom.ram_addr;
2165 } else {
2166 /* IO handlers are currently passed a physical address.
2167 It would be nice to pass an offset from the base address
2168 of that region. This would avoid having to special case RAM,
2169 and avoid full address decoding in every device.
2170 We can't use the high bits of pd for this because
2171 IO_MEM_ROMD uses these as a ram address. */
2172 iotlb = (pd & ~TARGET_PAGE_MASK);
2173 iotlb += p.region_offset;
2174 }
2175
2176 code_address = address;
2177 /* Make accesses to pages with watchpoints go via the
2178 watchpoint trap routines. */
2179 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2180 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2181 /* Avoid trapping reads of pages with a write breakpoint. */
2182 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2183 iotlb = io_mem_watch.ram_addr + paddr;
2184 address |= TLB_MMIO;
2185 break;
2186 }
2187 }
2188 }
2189
2190 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2191 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2192 te = &env->tlb_table[mmu_idx][index];
2193 te->addend = addend - vaddr;
2194 if (prot & PAGE_READ) {
2195 te->addr_read = address;
2196 } else {
2197 te->addr_read = -1;
2198 }
2199
2200 if (prot & PAGE_EXEC) {
2201 te->addr_code = code_address;
2202 } else {
2203 te->addr_code = -1;
2204 }
2205 if (prot & PAGE_WRITE) {
2206 if ((pd & ~TARGET_PAGE_MASK) == io_mem_rom.ram_addr || is_romd(pd)) {
2207 /* Write access calls the I/O callback. */
2208 te->addr_write = address | TLB_MMIO;
2209 } else if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr &&
2210 !cpu_physical_memory_is_dirty(pd)) {
2211 te->addr_write = address | TLB_NOTDIRTY;
2212 } else {
2213 te->addr_write = address;
2214 }
2215 } else {
2216 te->addr_write = -1;
2217 }
2218 }
2219
2220 #else
2221
2222 void tlb_flush(CPUState *env, int flush_global)
2223 {
2224 }
2225
2226 void tlb_flush_page(CPUState *env, target_ulong addr)
2227 {
2228 }
2229
2230 /*
2231 * Walks guest process memory "regions" one by one
2232 * and calls callback function 'fn' for each region.
2233 */
2234
2235 struct walk_memory_regions_data
2236 {
2237 walk_memory_regions_fn fn;
2238 void *priv;
2239 unsigned long start;
2240 int prot;
2241 };
2242
2243 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2244 abi_ulong end, int new_prot)
2245 {
2246 if (data->start != -1ul) {
2247 int rc = data->fn(data->priv, data->start, end, data->prot);
2248 if (rc != 0) {
2249 return rc;
2250 }
2251 }
2252
2253 data->start = (new_prot ? end : -1ul);
2254 data->prot = new_prot;
2255
2256 return 0;
2257 }
2258
2259 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2260 abi_ulong base, int level, void **lp)
2261 {
2262 abi_ulong pa;
2263 int i, rc;
2264
2265 if (*lp == NULL) {
2266 return walk_memory_regions_end(data, base, 0);
2267 }
2268
2269 if (level == 0) {
2270 PageDesc *pd = *lp;
2271 for (i = 0; i < L2_SIZE; ++i) {
2272 int prot = pd[i].flags;
2273
2274 pa = base | (i << TARGET_PAGE_BITS);
2275 if (prot != data->prot) {
2276 rc = walk_memory_regions_end(data, pa, prot);
2277 if (rc != 0) {
2278 return rc;
2279 }
2280 }
2281 }
2282 } else {
2283 void **pp = *lp;
2284 for (i = 0; i < L2_SIZE; ++i) {
2285 pa = base | ((abi_ulong)i <<
2286 (TARGET_PAGE_BITS + L2_BITS * level));
2287 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2288 if (rc != 0) {
2289 return rc;
2290 }
2291 }
2292 }
2293
2294 return 0;
2295 }
2296
2297 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2298 {
2299 struct walk_memory_regions_data data;
2300 unsigned long i;
2301
2302 data.fn = fn;
2303 data.priv = priv;
2304 data.start = -1ul;
2305 data.prot = 0;
2306
2307 for (i = 0; i < V_L1_SIZE; i++) {
2308 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2309 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2310 if (rc != 0) {
2311 return rc;
2312 }
2313 }
2314
2315 return walk_memory_regions_end(&data, 0, 0);
2316 }
2317
2318 static int dump_region(void *priv, abi_ulong start,
2319 abi_ulong end, unsigned long prot)
2320 {
2321 FILE *f = (FILE *)priv;
2322
2323 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2324 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2325 start, end, end - start,
2326 ((prot & PAGE_READ) ? 'r' : '-'),
2327 ((prot & PAGE_WRITE) ? 'w' : '-'),
2328 ((prot & PAGE_EXEC) ? 'x' : '-'));
2329
2330 return (0);
2331 }
2332
2333 /* dump memory mappings */
2334 void page_dump(FILE *f)
2335 {
2336 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2337 "start", "end", "size", "prot");
2338 walk_memory_regions(f, dump_region);
2339 }
2340
2341 int page_get_flags(target_ulong address)
2342 {
2343 PageDesc *p;
2344
2345 p = page_find(address >> TARGET_PAGE_BITS);
2346 if (!p)
2347 return 0;
2348 return p->flags;
2349 }
2350
2351 /* Modify the flags of a page and invalidate the code if necessary.
2352 The flag PAGE_WRITE_ORG is positioned automatically depending
2353 on PAGE_WRITE. The mmap_lock should already be held. */
2354 void page_set_flags(target_ulong start, target_ulong end, int flags)
2355 {
2356 target_ulong addr, len;
2357
2358 /* This function should never be called with addresses outside the
2359 guest address space. If this assert fires, it probably indicates
2360 a missing call to h2g_valid. */
2361 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2362 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2363 #endif
2364 assert(start < end);
2365
2366 start = start & TARGET_PAGE_MASK;
2367 end = TARGET_PAGE_ALIGN(end);
2368
2369 if (flags & PAGE_WRITE) {
2370 flags |= PAGE_WRITE_ORG;
2371 }
2372
2373 for (addr = start, len = end - start;
2374 len != 0;
2375 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2376 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2377
2378 /* If the write protection bit is set, then we invalidate
2379 the code inside. */
2380 if (!(p->flags & PAGE_WRITE) &&
2381 (flags & PAGE_WRITE) &&
2382 p->first_tb) {
2383 tb_invalidate_phys_page(addr, 0, NULL);
2384 }
2385 p->flags = flags;
2386 }
2387 }
2388
2389 int page_check_range(target_ulong start, target_ulong len, int flags)
2390 {
2391 PageDesc *p;
2392 target_ulong end;
2393 target_ulong addr;
2394
2395 /* This function should never be called with addresses outside the
2396 guest address space. If this assert fires, it probably indicates
2397 a missing call to h2g_valid. */
2398 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2399 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2400 #endif
2401
2402 if (len == 0) {
2403 return 0;
2404 }
2405 if (start + len - 1 < start) {
2406 /* We've wrapped around. */
2407 return -1;
2408 }
2409
2410 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2411 start = start & TARGET_PAGE_MASK;
2412
2413 for (addr = start, len = end - start;
2414 len != 0;
2415 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2416 p = page_find(addr >> TARGET_PAGE_BITS);
2417 if( !p )
2418 return -1;
2419 if( !(p->flags & PAGE_VALID) )
2420 return -1;
2421
2422 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2423 return -1;
2424 if (flags & PAGE_WRITE) {
2425 if (!(p->flags & PAGE_WRITE_ORG))
2426 return -1;
2427 /* unprotect the page if it was put read-only because it
2428 contains translated code */
2429 if (!(p->flags & PAGE_WRITE)) {
2430 if (!page_unprotect(addr, 0, NULL))
2431 return -1;
2432 }
2433 return 0;
2434 }
2435 }
2436 return 0;
2437 }
2438
2439 /* called from signal handler: invalidate the code and unprotect the
2440 page. Return TRUE if the fault was successfully handled. */
2441 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2442 {
2443 unsigned int prot;
2444 PageDesc *p;
2445 target_ulong host_start, host_end, addr;
2446
2447 /* Technically this isn't safe inside a signal handler. However we
2448 know this only ever happens in a synchronous SEGV handler, so in
2449 practice it seems to be ok. */
2450 mmap_lock();
2451
2452 p = page_find(address >> TARGET_PAGE_BITS);
2453 if (!p) {
2454 mmap_unlock();
2455 return 0;
2456 }
2457
2458 /* if the page was really writable, then we change its
2459 protection back to writable */
2460 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2461 host_start = address & qemu_host_page_mask;
2462 host_end = host_start + qemu_host_page_size;
2463
2464 prot = 0;
2465 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2466 p = page_find(addr >> TARGET_PAGE_BITS);
2467 p->flags |= PAGE_WRITE;
2468 prot |= p->flags;
2469
2470 /* and since the content will be modified, we must invalidate
2471 the corresponding translated code. */
2472 tb_invalidate_phys_page(addr, pc, puc);
2473 #ifdef DEBUG_TB_CHECK
2474 tb_invalidate_check(addr);
2475 #endif
2476 }
2477 mprotect((void *)g2h(host_start), qemu_host_page_size,
2478 prot & PAGE_BITS);
2479
2480 mmap_unlock();
2481 return 1;
2482 }
2483 mmap_unlock();
2484 return 0;
2485 }
2486
2487 static inline void tlb_set_dirty(CPUState *env,
2488 unsigned long addr, target_ulong vaddr)
2489 {
2490 }
2491 #endif /* defined(CONFIG_USER_ONLY) */
2492
2493 #if !defined(CONFIG_USER_ONLY)
2494
2495 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2496 typedef struct subpage_t {
2497 MemoryRegion iomem;
2498 target_phys_addr_t base;
2499 uint16_t sub_section[TARGET_PAGE_SIZE];
2500 } subpage_t;
2501
2502 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2503 uint16_t section);
2504 static subpage_t *subpage_init (target_phys_addr_t base, uint16_t *section,
2505 uint16_t orig_section);
2506 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2507 need_subpage) \
2508 do { \
2509 if (addr > start_addr) \
2510 start_addr2 = 0; \
2511 else { \
2512 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2513 if (start_addr2 > 0) \
2514 need_subpage = 1; \
2515 } \
2516 \
2517 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2518 end_addr2 = TARGET_PAGE_SIZE - 1; \
2519 else { \
2520 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2521 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2522 need_subpage = 1; \
2523 } \
2524 } while (0)
2525
2526 static void destroy_page_desc(uint16_t section_index)
2527 {
2528 MemoryRegionSection *section = &phys_sections[section_index];
2529 MemoryRegion *mr = section->mr;
2530
2531 if (mr->subpage) {
2532 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2533 memory_region_destroy(&subpage->iomem);
2534 g_free(subpage);
2535 }
2536 }
2537
2538 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2539 {
2540 unsigned i;
2541 PhysPageEntry *p = lp->u.node;
2542
2543 if (!p) {
2544 return;
2545 }
2546
2547 for (i = 0; i < L2_SIZE; ++i) {
2548 if (level > 0) {
2549 destroy_l2_mapping(&p[i], level - 1);
2550 } else {
2551 destroy_page_desc(p[i].u.leaf);
2552 }
2553 }
2554 g_free(p);
2555 lp->u.node = NULL;
2556 }
2557
2558 static void destroy_all_mappings(void)
2559 {
2560 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2561 }
2562
2563 static uint16_t phys_section_add(MemoryRegionSection *section)
2564 {
2565 if (phys_sections_nb == phys_sections_nb_alloc) {
2566 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2567 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2568 phys_sections_nb_alloc);
2569 }
2570 phys_sections[phys_sections_nb] = *section;
2571 return phys_sections_nb++;
2572 }
2573
2574 static void phys_sections_clear(void)
2575 {
2576 phys_sections_nb = 0;
2577 }
2578
2579 /* register physical memory.
2580 For RAM, 'size' must be a multiple of the target page size.
2581 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2582 io memory page. The address used when calling the IO function is
2583 the offset from the start of the region, plus region_offset. Both
2584 start_addr and region_offset are rounded down to a page boundary
2585 before calculating this offset. This should not be a problem unless
2586 the low bits of start_addr and region_offset differ. */
2587 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2588 bool readonly)
2589 {
2590 target_phys_addr_t start_addr = section->offset_within_address_space;
2591 ram_addr_t size = section->size;
2592 target_phys_addr_t addr, end_addr;
2593 uint16_t *p;
2594 CPUState *env;
2595 ram_addr_t orig_size = size;
2596 subpage_t *subpage;
2597 uint16_t section_index = phys_section_add(section);
2598
2599 assert(size);
2600
2601 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2602 end_addr = start_addr + (target_phys_addr_t)size;
2603
2604 addr = start_addr;
2605 do {
2606 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 0);
2607 if (p && *p != phys_section_unassigned) {
2608 uint16_t orig_memory= *p;
2609 target_phys_addr_t start_addr2, end_addr2;
2610 int need_subpage = 0;
2611 MemoryRegion *mr = phys_sections[orig_memory].mr;
2612
2613 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2614 need_subpage);
2615 if (need_subpage) {
2616 if (!(mr->subpage)) {
2617 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2618 p, orig_memory);
2619 } else {
2620 subpage = container_of(mr, subpage_t, iomem);
2621 }
2622 subpage_register(subpage, start_addr2, end_addr2,
2623 section_index);
2624 } else {
2625 *p = section_index;
2626 }
2627 } else {
2628 MemoryRegion *mr = section->mr;
2629 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2630 *p = section_index;
2631 if (!(memory_region_is_ram(mr) || mr->rom_device)) {
2632 target_phys_addr_t start_addr2, end_addr2;
2633 int need_subpage = 0;
2634
2635 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2636 end_addr2, need_subpage);
2637
2638 if (need_subpage) {
2639 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2640 p, phys_section_unassigned);
2641 subpage_register(subpage, start_addr2, end_addr2,
2642 section_index);
2643 }
2644 }
2645 }
2646 addr += TARGET_PAGE_SIZE;
2647 } while (addr != end_addr);
2648
2649 /* since each CPU stores ram addresses in its TLB cache, we must
2650 reset the modified entries */
2651 /* XXX: slow ! */
2652 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2653 tlb_flush(env, 1);
2654 }
2655 }
2656
2657 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2658 {
2659 if (kvm_enabled())
2660 kvm_coalesce_mmio_region(addr, size);
2661 }
2662
2663 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2664 {
2665 if (kvm_enabled())
2666 kvm_uncoalesce_mmio_region(addr, size);
2667 }
2668
2669 void qemu_flush_coalesced_mmio_buffer(void)
2670 {
2671 if (kvm_enabled())
2672 kvm_flush_coalesced_mmio_buffer();
2673 }
2674
2675 #if defined(__linux__) && !defined(TARGET_S390X)
2676
2677 #include <sys/vfs.h>
2678
2679 #define HUGETLBFS_MAGIC 0x958458f6
2680
2681 static long gethugepagesize(const char *path)
2682 {
2683 struct statfs fs;
2684 int ret;
2685
2686 do {
2687 ret = statfs(path, &fs);
2688 } while (ret != 0 && errno == EINTR);
2689
2690 if (ret != 0) {
2691 perror(path);
2692 return 0;
2693 }
2694
2695 if (fs.f_type != HUGETLBFS_MAGIC)
2696 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2697
2698 return fs.f_bsize;
2699 }
2700
2701 static void *file_ram_alloc(RAMBlock *block,
2702 ram_addr_t memory,
2703 const char *path)
2704 {
2705 char *filename;
2706 void *area;
2707 int fd;
2708 #ifdef MAP_POPULATE
2709 int flags;
2710 #endif
2711 unsigned long hpagesize;
2712
2713 hpagesize = gethugepagesize(path);
2714 if (!hpagesize) {
2715 return NULL;
2716 }
2717
2718 if (memory < hpagesize) {
2719 return NULL;
2720 }
2721
2722 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2723 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2724 return NULL;
2725 }
2726
2727 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2728 return NULL;
2729 }
2730
2731 fd = mkstemp(filename);
2732 if (fd < 0) {
2733 perror("unable to create backing store for hugepages");
2734 free(filename);
2735 return NULL;
2736 }
2737 unlink(filename);
2738 free(filename);
2739
2740 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2741
2742 /*
2743 * ftruncate is not supported by hugetlbfs in older
2744 * hosts, so don't bother bailing out on errors.
2745 * If anything goes wrong with it under other filesystems,
2746 * mmap will fail.
2747 */
2748 if (ftruncate(fd, memory))
2749 perror("ftruncate");
2750
2751 #ifdef MAP_POPULATE
2752 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2753 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2754 * to sidestep this quirk.
2755 */
2756 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2757 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2758 #else
2759 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2760 #endif
2761 if (area == MAP_FAILED) {
2762 perror("file_ram_alloc: can't mmap RAM pages");
2763 close(fd);
2764 return (NULL);
2765 }
2766 block->fd = fd;
2767 return area;
2768 }
2769 #endif
2770
2771 static ram_addr_t find_ram_offset(ram_addr_t size)
2772 {
2773 RAMBlock *block, *next_block;
2774 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2775
2776 if (QLIST_EMPTY(&ram_list.blocks))
2777 return 0;
2778
2779 QLIST_FOREACH(block, &ram_list.blocks, next) {
2780 ram_addr_t end, next = RAM_ADDR_MAX;
2781
2782 end = block->offset + block->length;
2783
2784 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2785 if (next_block->offset >= end) {
2786 next = MIN(next, next_block->offset);
2787 }
2788 }
2789 if (next - end >= size && next - end < mingap) {
2790 offset = end;
2791 mingap = next - end;
2792 }
2793 }
2794
2795 if (offset == RAM_ADDR_MAX) {
2796 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2797 (uint64_t)size);
2798 abort();
2799 }
2800
2801 return offset;
2802 }
2803
2804 static ram_addr_t last_ram_offset(void)
2805 {
2806 RAMBlock *block;
2807 ram_addr_t last = 0;
2808
2809 QLIST_FOREACH(block, &ram_list.blocks, next)
2810 last = MAX(last, block->offset + block->length);
2811
2812 return last;
2813 }
2814
2815 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2816 {
2817 RAMBlock *new_block, *block;
2818
2819 new_block = NULL;
2820 QLIST_FOREACH(block, &ram_list.blocks, next) {
2821 if (block->offset == addr) {
2822 new_block = block;
2823 break;
2824 }
2825 }
2826 assert(new_block);
2827 assert(!new_block->idstr[0]);
2828
2829 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2830 char *id = dev->parent_bus->info->get_dev_path(dev);
2831 if (id) {
2832 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2833 g_free(id);
2834 }
2835 }
2836 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2837
2838 QLIST_FOREACH(block, &ram_list.blocks, next) {
2839 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2840 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2841 new_block->idstr);
2842 abort();
2843 }
2844 }
2845 }
2846
2847 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2848 MemoryRegion *mr)
2849 {
2850 RAMBlock *new_block;
2851
2852 size = TARGET_PAGE_ALIGN(size);
2853 new_block = g_malloc0(sizeof(*new_block));
2854
2855 new_block->mr = mr;
2856 new_block->offset = find_ram_offset(size);
2857 if (host) {
2858 new_block->host = host;
2859 new_block->flags |= RAM_PREALLOC_MASK;
2860 } else {
2861 if (mem_path) {
2862 #if defined (__linux__) && !defined(TARGET_S390X)
2863 new_block->host = file_ram_alloc(new_block, size, mem_path);
2864 if (!new_block->host) {
2865 new_block->host = qemu_vmalloc(size);
2866 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2867 }
2868 #else
2869 fprintf(stderr, "-mem-path option unsupported\n");
2870 exit(1);
2871 #endif
2872 } else {
2873 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2874 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2875 an system defined value, which is at least 256GB. Larger systems
2876 have larger values. We put the guest between the end of data
2877 segment (system break) and this value. We use 32GB as a base to
2878 have enough room for the system break to grow. */
2879 new_block->host = mmap((void*)0x800000000, size,
2880 PROT_EXEC|PROT_READ|PROT_WRITE,
2881 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2882 if (new_block->host == MAP_FAILED) {
2883 fprintf(stderr, "Allocating RAM failed\n");
2884 abort();
2885 }
2886 #else
2887 if (xen_enabled()) {
2888 xen_ram_alloc(new_block->offset, size, mr);
2889 } else {
2890 new_block->host = qemu_vmalloc(size);
2891 }
2892 #endif
2893 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2894 }
2895 }
2896 new_block->length = size;
2897
2898 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2899
2900 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2901 last_ram_offset() >> TARGET_PAGE_BITS);
2902 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2903 0xff, size >> TARGET_PAGE_BITS);
2904
2905 if (kvm_enabled())
2906 kvm_setup_guest_memory(new_block->host, size);
2907
2908 return new_block->offset;
2909 }
2910
2911 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2912 {
2913 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2914 }
2915
2916 void qemu_ram_free_from_ptr(ram_addr_t addr)
2917 {
2918 RAMBlock *block;
2919
2920 QLIST_FOREACH(block, &ram_list.blocks, next) {
2921 if (addr == block->offset) {
2922 QLIST_REMOVE(block, next);
2923 g_free(block);
2924 return;
2925 }
2926 }
2927 }
2928
2929 void qemu_ram_free(ram_addr_t addr)
2930 {
2931 RAMBlock *block;
2932
2933 QLIST_FOREACH(block, &ram_list.blocks, next) {
2934 if (addr == block->offset) {
2935 QLIST_REMOVE(block, next);
2936 if (block->flags & RAM_PREALLOC_MASK) {
2937 ;
2938 } else if (mem_path) {
2939 #if defined (__linux__) && !defined(TARGET_S390X)
2940 if (block->fd) {
2941 munmap(block->host, block->length);
2942 close(block->fd);
2943 } else {
2944 qemu_vfree(block->host);
2945 }
2946 #else
2947 abort();
2948 #endif
2949 } else {
2950 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2951 munmap(block->host, block->length);
2952 #else
2953 if (xen_enabled()) {
2954 xen_invalidate_map_cache_entry(block->host);
2955 } else {
2956 qemu_vfree(block->host);
2957 }
2958 #endif
2959 }
2960 g_free(block);
2961 return;
2962 }
2963 }
2964
2965 }
2966
2967 #ifndef _WIN32
2968 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2969 {
2970 RAMBlock *block;
2971 ram_addr_t offset;
2972 int flags;
2973 void *area, *vaddr;
2974
2975 QLIST_FOREACH(block, &ram_list.blocks, next) {
2976 offset = addr - block->offset;
2977 if (offset < block->length) {
2978 vaddr = block->host + offset;
2979 if (block->flags & RAM_PREALLOC_MASK) {
2980 ;
2981 } else {
2982 flags = MAP_FIXED;
2983 munmap(vaddr, length);
2984 if (mem_path) {
2985 #if defined(__linux__) && !defined(TARGET_S390X)
2986 if (block->fd) {
2987 #ifdef MAP_POPULATE
2988 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2989 MAP_PRIVATE;
2990 #else
2991 flags |= MAP_PRIVATE;
2992 #endif
2993 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2994 flags, block->fd, offset);
2995 } else {
2996 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2997 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2998 flags, -1, 0);
2999 }
3000 #else
3001 abort();
3002 #endif
3003 } else {
3004 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3005 flags |= MAP_SHARED | MAP_ANONYMOUS;
3006 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3007 flags, -1, 0);
3008 #else
3009 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3010 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3011 flags, -1, 0);
3012 #endif
3013 }
3014 if (area != vaddr) {
3015 fprintf(stderr, "Could not remap addr: "
3016 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3017 length, addr);
3018 exit(1);
3019 }
3020 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3021 }
3022 return;
3023 }
3024 }
3025 }
3026 #endif /* !_WIN32 */
3027
3028 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3029 With the exception of the softmmu code in this file, this should
3030 only be used for local memory (e.g. video ram) that the device owns,
3031 and knows it isn't going to access beyond the end of the block.
3032
3033 It should not be used for general purpose DMA.
3034 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3035 */
3036 void *qemu_get_ram_ptr(ram_addr_t addr)
3037 {
3038 RAMBlock *block;
3039
3040 QLIST_FOREACH(block, &ram_list.blocks, next) {
3041 if (addr - block->offset < block->length) {
3042 /* Move this entry to to start of the list. */
3043 if (block != QLIST_FIRST(&ram_list.blocks)) {
3044 QLIST_REMOVE(block, next);
3045 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3046 }
3047 if (xen_enabled()) {
3048 /* We need to check if the requested address is in the RAM
3049 * because we don't want to map the entire memory in QEMU.
3050 * In that case just map until the end of the page.
3051 */
3052 if (block->offset == 0) {
3053 return xen_map_cache(addr, 0, 0);
3054 } else if (block->host == NULL) {
3055 block->host =
3056 xen_map_cache(block->offset, block->length, 1);
3057 }
3058 }
3059 return block->host + (addr - block->offset);
3060 }
3061 }
3062
3063 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3064 abort();
3065
3066 return NULL;
3067 }
3068
3069 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3070 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3071 */
3072 void *qemu_safe_ram_ptr(ram_addr_t addr)
3073 {
3074 RAMBlock *block;
3075
3076 QLIST_FOREACH(block, &ram_list.blocks, next) {
3077 if (addr - block->offset < block->length) {
3078 if (xen_enabled()) {
3079 /* We need to check if the requested address is in the RAM
3080 * because we don't want to map the entire memory in QEMU.
3081 * In that case just map until the end of the page.
3082 */
3083 if (block->offset == 0) {
3084 return xen_map_cache(addr, 0, 0);
3085 } else if (block->host == NULL) {
3086 block->host =
3087 xen_map_cache(block->offset, block->length, 1);
3088 }
3089 }
3090 return block->host + (addr - block->offset);
3091 }
3092 }
3093
3094 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3095 abort();
3096
3097 return NULL;
3098 }
3099
3100 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3101 * but takes a size argument */
3102 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3103 {
3104 if (*size == 0) {
3105 return NULL;
3106 }
3107 if (xen_enabled()) {
3108 return xen_map_cache(addr, *size, 1);
3109 } else {
3110 RAMBlock *block;
3111
3112 QLIST_FOREACH(block, &ram_list.blocks, next) {
3113 if (addr - block->offset < block->length) {
3114 if (addr - block->offset + *size > block->length)
3115 *size = block->length - addr + block->offset;
3116 return block->host + (addr - block->offset);
3117 }
3118 }
3119
3120 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3121 abort();
3122 }
3123 }
3124
3125 void qemu_put_ram_ptr(void *addr)
3126 {
3127 trace_qemu_put_ram_ptr(addr);
3128 }
3129
3130 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3131 {
3132 RAMBlock *block;
3133 uint8_t *host = ptr;
3134
3135 if (xen_enabled()) {
3136 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3137 return 0;
3138 }
3139
3140 QLIST_FOREACH(block, &ram_list.blocks, next) {
3141 /* This case append when the block is not mapped. */
3142 if (block->host == NULL) {
3143 continue;
3144 }
3145 if (host - block->host < block->length) {
3146 *ram_addr = block->offset + (host - block->host);
3147 return 0;
3148 }
3149 }
3150
3151 return -1;
3152 }
3153
3154 /* Some of the softmmu routines need to translate from a host pointer
3155 (typically a TLB entry) back to a ram offset. */
3156 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3157 {
3158 ram_addr_t ram_addr;
3159
3160 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3161 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3162 abort();
3163 }
3164 return ram_addr;
3165 }
3166
3167 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3168 unsigned size)
3169 {
3170 #ifdef DEBUG_UNASSIGNED
3171 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3172 #endif
3173 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3174 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
3175 #endif
3176 return 0;
3177 }
3178
3179 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3180 uint64_t val, unsigned size)
3181 {
3182 #ifdef DEBUG_UNASSIGNED
3183 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
3184 #endif
3185 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3186 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
3187 #endif
3188 }
3189
3190 static const MemoryRegionOps unassigned_mem_ops = {
3191 .read = unassigned_mem_read,
3192 .write = unassigned_mem_write,
3193 .endianness = DEVICE_NATIVE_ENDIAN,
3194 };
3195
3196 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3197 unsigned size)
3198 {
3199 abort();
3200 }
3201
3202 static void error_mem_write(void *opaque, target_phys_addr_t addr,
3203 uint64_t value, unsigned size)
3204 {
3205 abort();
3206 }
3207
3208 static const MemoryRegionOps error_mem_ops = {
3209 .read = error_mem_read,
3210 .write = error_mem_write,
3211 .endianness = DEVICE_NATIVE_ENDIAN,
3212 };
3213
3214 static const MemoryRegionOps rom_mem_ops = {
3215 .read = error_mem_read,
3216 .write = unassigned_mem_write,
3217 .endianness = DEVICE_NATIVE_ENDIAN,
3218 };
3219
3220 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3221 uint64_t val, unsigned size)
3222 {
3223 int dirty_flags;
3224 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3225 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3226 #if !defined(CONFIG_USER_ONLY)
3227 tb_invalidate_phys_page_fast(ram_addr, size);
3228 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3229 #endif
3230 }
3231 switch (size) {
3232 case 1:
3233 stb_p(qemu_get_ram_ptr(ram_addr), val);
3234 break;
3235 case 2:
3236 stw_p(qemu_get_ram_ptr(ram_addr), val);
3237 break;
3238 case 4:
3239 stl_p(qemu_get_ram_ptr(ram_addr), val);
3240 break;
3241 default:
3242 abort();
3243 }
3244 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3245 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3246 /* we remove the notdirty callback only if the code has been
3247 flushed */
3248 if (dirty_flags == 0xff)
3249 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3250 }
3251
3252 static const MemoryRegionOps notdirty_mem_ops = {
3253 .read = error_mem_read,
3254 .write = notdirty_mem_write,
3255 .endianness = DEVICE_NATIVE_ENDIAN,
3256 };
3257
3258 /* Generate a debug exception if a watchpoint has been hit. */
3259 static void check_watchpoint(int offset, int len_mask, int flags)
3260 {
3261 CPUState *env = cpu_single_env;
3262 target_ulong pc, cs_base;
3263 TranslationBlock *tb;
3264 target_ulong vaddr;
3265 CPUWatchpoint *wp;
3266 int cpu_flags;
3267
3268 if (env->watchpoint_hit) {
3269 /* We re-entered the check after replacing the TB. Now raise
3270 * the debug interrupt so that is will trigger after the
3271 * current instruction. */
3272 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3273 return;
3274 }
3275 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3276 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3277 if ((vaddr == (wp->vaddr & len_mask) ||
3278 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3279 wp->flags |= BP_WATCHPOINT_HIT;
3280 if (!env->watchpoint_hit) {
3281 env->watchpoint_hit = wp;
3282 tb = tb_find_pc(env->mem_io_pc);
3283 if (!tb) {
3284 cpu_abort(env, "check_watchpoint: could not find TB for "
3285 "pc=%p", (void *)env->mem_io_pc);
3286 }
3287 cpu_restore_state(tb, env, env->mem_io_pc);
3288 tb_phys_invalidate(tb, -1);
3289 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3290 env->exception_index = EXCP_DEBUG;
3291 } else {
3292 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3293 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3294 }
3295 cpu_resume_from_signal(env, NULL);
3296 }
3297 } else {
3298 wp->flags &= ~BP_WATCHPOINT_HIT;
3299 }
3300 }
3301 }
3302
3303 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3304 so these check for a hit then pass through to the normal out-of-line
3305 phys routines. */
3306 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3307 unsigned size)
3308 {
3309 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3310 switch (size) {
3311 case 1: return ldub_phys(addr);
3312 case 2: return lduw_phys(addr);
3313 case 4: return ldl_phys(addr);
3314 default: abort();
3315 }
3316 }
3317
3318 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3319 uint64_t val, unsigned size)
3320 {
3321 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3322 switch (size) {
3323 case 1: stb_phys(addr, val);
3324 case 2: stw_phys(addr, val);
3325 case 4: stl_phys(addr, val);
3326 default: abort();
3327 }
3328 }
3329
3330 static const MemoryRegionOps watch_mem_ops = {
3331 .read = watch_mem_read,
3332 .write = watch_mem_write,
3333 .endianness = DEVICE_NATIVE_ENDIAN,
3334 };
3335
3336 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3337 unsigned len)
3338 {
3339 subpage_t *mmio = opaque;
3340 unsigned int idx = SUBPAGE_IDX(addr);
3341 MemoryRegionSection *section;
3342 #if defined(DEBUG_SUBPAGE)
3343 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3344 mmio, len, addr, idx);
3345 #endif
3346
3347 section = &phys_sections[mmio->sub_section[idx]];
3348 addr += mmio->base;
3349 addr -= section->offset_within_address_space;
3350 addr += section->offset_within_region;
3351 return io_mem_read(section->mr->ram_addr, addr, len);
3352 }
3353
3354 static void subpage_write(void *opaque, target_phys_addr_t addr,
3355 uint64_t value, unsigned len)
3356 {
3357 subpage_t *mmio = opaque;
3358 unsigned int idx = SUBPAGE_IDX(addr);
3359 MemoryRegionSection *section;
3360 #if defined(DEBUG_SUBPAGE)
3361 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3362 " idx %d value %"PRIx64"\n",
3363 __func__, mmio, len, addr, idx, value);
3364 #endif
3365
3366 section = &phys_sections[mmio->sub_section[idx]];
3367 addr += mmio->base;
3368 addr -= section->offset_within_address_space;
3369 addr += section->offset_within_region;
3370 io_mem_write(section->mr->ram_addr, addr, value, len);
3371 }
3372
3373 static const MemoryRegionOps subpage_ops = {
3374 .read = subpage_read,
3375 .write = subpage_write,
3376 .endianness = DEVICE_NATIVE_ENDIAN,
3377 };
3378
3379 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3380 unsigned size)
3381 {
3382 ram_addr_t raddr = addr;
3383 void *ptr = qemu_get_ram_ptr(raddr);
3384 switch (size) {
3385 case 1: return ldub_p(ptr);
3386 case 2: return lduw_p(ptr);
3387 case 4: return ldl_p(ptr);
3388 default: abort();
3389 }
3390 }
3391
3392 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3393 uint64_t value, unsigned size)
3394 {
3395 ram_addr_t raddr = addr;
3396 void *ptr = qemu_get_ram_ptr(raddr);
3397 switch (size) {
3398 case 1: return stb_p(ptr, value);
3399 case 2: return stw_p(ptr, value);
3400 case 4: return stl_p(ptr, value);
3401 default: abort();
3402 }
3403 }
3404
3405 static const MemoryRegionOps subpage_ram_ops = {
3406 .read = subpage_ram_read,
3407 .write = subpage_ram_write,
3408 .endianness = DEVICE_NATIVE_ENDIAN,
3409 };
3410
3411 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3412 uint16_t section)
3413 {
3414 int idx, eidx;
3415
3416 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3417 return -1;
3418 idx = SUBPAGE_IDX(start);
3419 eidx = SUBPAGE_IDX(end);
3420 #if defined(DEBUG_SUBPAGE)
3421 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3422 mmio, start, end, idx, eidx, memory);
3423 #endif
3424 if (memory_region_is_ram(phys_sections[section].mr)) {
3425 MemoryRegionSection new_section = phys_sections[section];
3426 new_section.mr = &io_mem_subpage_ram;
3427 section = phys_section_add(&new_section);
3428 }
3429 for (; idx <= eidx; idx++) {
3430 mmio->sub_section[idx] = section;
3431 }
3432
3433 return 0;
3434 }
3435
3436 static subpage_t *subpage_init (target_phys_addr_t base, uint16_t *section_ind,
3437 uint16_t orig_section)
3438 {
3439 subpage_t *mmio;
3440 MemoryRegionSection section = {
3441 .offset_within_address_space = base,
3442 .size = TARGET_PAGE_SIZE,
3443 };
3444
3445 mmio = g_malloc0(sizeof(subpage_t));
3446
3447 mmio->base = base;
3448 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3449 "subpage", TARGET_PAGE_SIZE);
3450 mmio->iomem.subpage = true;
3451 section.mr = &mmio->iomem;
3452 #if defined(DEBUG_SUBPAGE)
3453 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3454 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3455 #endif
3456 *section_ind = phys_section_add(&section);
3457 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_section);
3458
3459 return mmio;
3460 }
3461
3462 static int get_free_io_mem_idx(void)
3463 {
3464 int i;
3465
3466 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3467 if (!io_mem_used[i]) {
3468 io_mem_used[i] = 1;
3469 return i;
3470 }
3471 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3472 return -1;
3473 }
3474
3475 /* mem_read and mem_write are arrays of functions containing the
3476 function to access byte (index 0), word (index 1) and dword (index
3477 2). Functions can be omitted with a NULL function pointer.
3478 If io_index is non zero, the corresponding io zone is
3479 modified. If it is zero, a new io zone is allocated. The return
3480 value can be used with cpu_register_physical_memory(). (-1) is
3481 returned if error. */
3482 static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
3483 {
3484 if (io_index <= 0) {
3485 io_index = get_free_io_mem_idx();
3486 if (io_index == -1)
3487 return io_index;
3488 } else {
3489 if (io_index >= IO_MEM_NB_ENTRIES)
3490 return -1;
3491 }
3492
3493 io_mem_region[io_index] = mr;
3494
3495 return io_index;
3496 }
3497
3498 int cpu_register_io_memory(MemoryRegion *mr)
3499 {
3500 return cpu_register_io_memory_fixed(0, mr);
3501 }
3502
3503 void cpu_unregister_io_memory(int io_index)
3504 {
3505 io_mem_region[io_index] = NULL;
3506 io_mem_used[io_index] = 0;
3507 }
3508
3509 static uint16_t dummy_section(MemoryRegion *mr)
3510 {
3511 MemoryRegionSection section = {
3512 .mr = mr,
3513 .offset_within_address_space = 0,
3514 .offset_within_region = 0,
3515 .size = UINT64_MAX,
3516 };
3517
3518 return phys_section_add(&section);
3519 }
3520
3521 static void io_mem_init(void)
3522 {
3523 int i;
3524
3525 /* Must be first: */
3526 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3527 assert(io_mem_ram.ram_addr == 0);
3528 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3529 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3530 "unassigned", UINT64_MAX);
3531 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3532 "notdirty", UINT64_MAX);
3533 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3534 "subpage-ram", UINT64_MAX);
3535 for (i=0; i<5; i++)
3536 io_mem_used[i] = 1;
3537
3538 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3539 "watch", UINT64_MAX);
3540 }
3541
3542 static void core_begin(MemoryListener *listener)
3543 {
3544 destroy_all_mappings();
3545 phys_sections_clear();
3546 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3547 }
3548
3549 static void core_commit(MemoryListener *listener)
3550 {
3551 }
3552
3553 static void core_region_add(MemoryListener *listener,
3554 MemoryRegionSection *section)
3555 {
3556 cpu_register_physical_memory_log(section, section->readonly);
3557 }
3558
3559 static void core_region_del(MemoryListener *listener,
3560 MemoryRegionSection *section)
3561 {
3562 }
3563
3564 static void core_region_nop(MemoryListener *listener,
3565 MemoryRegionSection *section)
3566 {
3567 cpu_register_physical_memory_log(section, section->readonly);
3568 }
3569
3570 static void core_log_start(MemoryListener *listener,
3571 MemoryRegionSection *section)
3572 {
3573 }
3574
3575 static void core_log_stop(MemoryListener *listener,
3576 MemoryRegionSection *section)
3577 {
3578 }
3579
3580 static void core_log_sync(MemoryListener *listener,
3581 MemoryRegionSection *section)
3582 {
3583 }
3584
3585 static void core_log_global_start(MemoryListener *listener)
3586 {
3587 cpu_physical_memory_set_dirty_tracking(1);
3588 }
3589
3590 static void core_log_global_stop(MemoryListener *listener)
3591 {
3592 cpu_physical_memory_set_dirty_tracking(0);
3593 }
3594
3595 static void core_eventfd_add(MemoryListener *listener,
3596 MemoryRegionSection *section,
3597 bool match_data, uint64_t data, int fd)
3598 {
3599 }
3600
3601 static void core_eventfd_del(MemoryListener *listener,
3602 MemoryRegionSection *section,
3603 bool match_data, uint64_t data, int fd)
3604 {
3605 }
3606
3607 static void io_begin(MemoryListener *listener)
3608 {
3609 }
3610
3611 static void io_commit(MemoryListener *listener)
3612 {
3613 }
3614
3615 static void io_region_add(MemoryListener *listener,
3616 MemoryRegionSection *section)
3617 {
3618 iorange_init(&section->mr->iorange, &memory_region_iorange_ops,
3619 section->offset_within_address_space, section->size);
3620 ioport_register(&section->mr->iorange);
3621 }
3622
3623 static void io_region_del(MemoryListener *listener,
3624 MemoryRegionSection *section)
3625 {
3626 isa_unassign_ioport(section->offset_within_address_space, section->size);
3627 }
3628
3629 static void io_region_nop(MemoryListener *listener,
3630 MemoryRegionSection *section)
3631 {
3632 }
3633
3634 static void io_log_start(MemoryListener *listener,
3635 MemoryRegionSection *section)
3636 {
3637 }
3638
3639 static void io_log_stop(MemoryListener *listener,
3640 MemoryRegionSection *section)
3641 {
3642 }
3643
3644 static void io_log_sync(MemoryListener *listener,
3645 MemoryRegionSection *section)
3646 {
3647 }
3648
3649 static void io_log_global_start(MemoryListener *listener)
3650 {
3651 }
3652
3653 static void io_log_global_stop(MemoryListener *listener)
3654 {
3655 }
3656
3657 static void io_eventfd_add(MemoryListener *listener,
3658 MemoryRegionSection *section,
3659 bool match_data, uint64_t data, int fd)
3660 {
3661 }
3662
3663 static void io_eventfd_del(MemoryListener *listener,
3664 MemoryRegionSection *section,
3665 bool match_data, uint64_t data, int fd)
3666 {
3667 }
3668
3669 static MemoryListener core_memory_listener = {
3670 .begin = core_begin,
3671 .commit = core_commit,
3672 .region_add = core_region_add,
3673 .region_del = core_region_del,
3674 .region_nop = core_region_nop,
3675 .log_start = core_log_start,
3676 .log_stop = core_log_stop,
3677 .log_sync = core_log_sync,
3678 .log_global_start = core_log_global_start,
3679 .log_global_stop = core_log_global_stop,
3680 .eventfd_add = core_eventfd_add,
3681 .eventfd_del = core_eventfd_del,
3682 .priority = 0,
3683 };
3684
3685 static MemoryListener io_memory_listener = {
3686 .begin = io_begin,
3687 .commit = io_commit,
3688 .region_add = io_region_add,
3689 .region_del = io_region_del,
3690 .region_nop = io_region_nop,
3691 .log_start = io_log_start,
3692 .log_stop = io_log_stop,
3693 .log_sync = io_log_sync,
3694 .log_global_start = io_log_global_start,
3695 .log_global_stop = io_log_global_stop,
3696 .eventfd_add = io_eventfd_add,
3697 .eventfd_del = io_eventfd_del,
3698 .priority = 0,
3699 };
3700
3701 static void memory_map_init(void)
3702 {
3703 system_memory = g_malloc(sizeof(*system_memory));
3704 memory_region_init(system_memory, "system", INT64_MAX);
3705 set_system_memory_map(system_memory);
3706
3707 system_io = g_malloc(sizeof(*system_io));
3708 memory_region_init(system_io, "io", 65536);
3709 set_system_io_map(system_io);
3710
3711 memory_listener_register(&core_memory_listener, system_memory);
3712 memory_listener_register(&io_memory_listener, system_io);
3713 }
3714
3715 MemoryRegion *get_system_memory(void)
3716 {
3717 return system_memory;
3718 }
3719
3720 MemoryRegion *get_system_io(void)
3721 {
3722 return system_io;
3723 }
3724
3725 #endif /* !defined(CONFIG_USER_ONLY) */
3726
3727 /* physical memory access (slow version, mainly for debug) */
3728 #if defined(CONFIG_USER_ONLY)
3729 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3730 uint8_t *buf, int len, int is_write)
3731 {
3732 int l, flags;
3733 target_ulong page;
3734 void * p;
3735
3736 while (len > 0) {
3737 page = addr & TARGET_PAGE_MASK;
3738 l = (page + TARGET_PAGE_SIZE) - addr;
3739 if (l > len)
3740 l = len;
3741 flags = page_get_flags(page);
3742 if (!(flags & PAGE_VALID))
3743 return -1;
3744 if (is_write) {
3745 if (!(flags & PAGE_WRITE))
3746 return -1;
3747 /* XXX: this code should not depend on lock_user */
3748 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3749 return -1;
3750 memcpy(p, buf, l);
3751 unlock_user(p, addr, l);
3752 } else {
3753 if (!(flags & PAGE_READ))
3754 return -1;
3755 /* XXX: this code should not depend on lock_user */
3756 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3757 return -1;
3758 memcpy(buf, p, l);
3759 unlock_user(p, addr, 0);
3760 }
3761 len -= l;
3762 buf += l;
3763 addr += l;
3764 }
3765 return 0;
3766 }
3767
3768 #else
3769 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3770 int len, int is_write)
3771 {
3772 int l, io_index;
3773 uint8_t *ptr;
3774 uint32_t val;
3775 target_phys_addr_t page;
3776 ram_addr_t pd;
3777 PhysPageDesc p;
3778
3779 while (len > 0) {
3780 page = addr & TARGET_PAGE_MASK;
3781 l = (page + TARGET_PAGE_SIZE) - addr;
3782 if (l > len)
3783 l = len;
3784 p = phys_page_find(page >> TARGET_PAGE_BITS);
3785 pd = p.phys_offset;
3786
3787 if (is_write) {
3788 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
3789 target_phys_addr_t addr1;
3790 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3791 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3792 /* XXX: could force cpu_single_env to NULL to avoid
3793 potential bugs */
3794 if (l >= 4 && ((addr1 & 3) == 0)) {
3795 /* 32 bit write access */
3796 val = ldl_p(buf);
3797 io_mem_write(io_index, addr1, val, 4);
3798 l = 4;
3799 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3800 /* 16 bit write access */
3801 val = lduw_p(buf);
3802 io_mem_write(io_index, addr1, val, 2);
3803 l = 2;
3804 } else {
3805 /* 8 bit write access */
3806 val = ldub_p(buf);
3807 io_mem_write(io_index, addr1, val, 1);
3808 l = 1;
3809 }
3810 } else {
3811 ram_addr_t addr1;
3812 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3813 /* RAM case */
3814 ptr = qemu_get_ram_ptr(addr1);
3815 memcpy(ptr, buf, l);
3816 if (!cpu_physical_memory_is_dirty(addr1)) {
3817 /* invalidate code */
3818 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3819 /* set dirty bit */
3820 cpu_physical_memory_set_dirty_flags(
3821 addr1, (0xff & ~CODE_DIRTY_FLAG));
3822 }
3823 qemu_put_ram_ptr(ptr);
3824 }
3825 } else {
3826 if (!is_ram_rom_romd(pd)) {
3827 target_phys_addr_t addr1;
3828 /* I/O case */
3829 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
3830 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3831 if (l >= 4 && ((addr1 & 3) == 0)) {
3832 /* 32 bit read access */
3833 val = io_mem_read(io_index, addr1, 4);
3834 stl_p(buf, val);
3835 l = 4;
3836 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3837 /* 16 bit read access */
3838 val = io_mem_read(io_index, addr1, 2);
3839 stw_p(buf, val);
3840 l = 2;
3841 } else {
3842 /* 8 bit read access */
3843 val = io_mem_read(io_index, addr1, 1);
3844 stb_p(buf, val);
3845 l = 1;
3846 }
3847 } else {
3848 /* RAM case */
3849 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3850 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3851 qemu_put_ram_ptr(ptr);
3852 }
3853 }
3854 len -= l;
3855 buf += l;
3856 addr += l;
3857 }
3858 }
3859
3860 /* used for ROM loading : can write in RAM and ROM */
3861 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3862 const uint8_t *buf, int len)
3863 {
3864 int l;
3865 uint8_t *ptr;
3866 target_phys_addr_t page;
3867 unsigned long pd;
3868 PhysPageDesc p;
3869
3870 while (len > 0) {
3871 page = addr & TARGET_PAGE_MASK;
3872 l = (page + TARGET_PAGE_SIZE) - addr;
3873 if (l > len)
3874 l = len;
3875 p = phys_page_find(page >> TARGET_PAGE_BITS);
3876 pd = p.phys_offset;
3877
3878 if (!is_ram_rom_romd(pd)) {
3879 /* do nothing */
3880 } else {
3881 unsigned long addr1;
3882 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3883 /* ROM/RAM case */
3884 ptr = qemu_get_ram_ptr(addr1);
3885 memcpy(ptr, buf, l);
3886 qemu_put_ram_ptr(ptr);
3887 }
3888 len -= l;
3889 buf += l;
3890 addr += l;
3891 }
3892 }
3893
3894 typedef struct {
3895 void *buffer;
3896 target_phys_addr_t addr;
3897 target_phys_addr_t len;
3898 } BounceBuffer;
3899
3900 static BounceBuffer bounce;
3901
3902 typedef struct MapClient {
3903 void *opaque;
3904 void (*callback)(void *opaque);
3905 QLIST_ENTRY(MapClient) link;
3906 } MapClient;
3907
3908 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3909 = QLIST_HEAD_INITIALIZER(map_client_list);
3910
3911 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3912 {
3913 MapClient *client = g_malloc(sizeof(*client));
3914
3915 client->opaque = opaque;
3916 client->callback = callback;
3917 QLIST_INSERT_HEAD(&map_client_list, client, link);
3918 return client;
3919 }
3920
3921 void cpu_unregister_map_client(void *_client)
3922 {
3923 MapClient *client = (MapClient *)_client;
3924
3925 QLIST_REMOVE(client, link);
3926 g_free(client);
3927 }
3928
3929 static void cpu_notify_map_clients(void)
3930 {
3931 MapClient *client;
3932
3933 while (!QLIST_EMPTY(&map_client_list)) {
3934 client = QLIST_FIRST(&map_client_list);
3935 client->callback(client->opaque);
3936 cpu_unregister_map_client(client);
3937 }
3938 }
3939
3940 /* Map a physical memory region into a host virtual address.
3941 * May map a subset of the requested range, given by and returned in *plen.
3942 * May return NULL if resources needed to perform the mapping are exhausted.
3943 * Use only for reads OR writes - not for read-modify-write operations.
3944 * Use cpu_register_map_client() to know when retrying the map operation is
3945 * likely to succeed.
3946 */
3947 void *cpu_physical_memory_map(target_phys_addr_t addr,
3948 target_phys_addr_t *plen,
3949 int is_write)
3950 {
3951 target_phys_addr_t len = *plen;
3952 target_phys_addr_t todo = 0;
3953 int l;
3954 target_phys_addr_t page;
3955 unsigned long pd;
3956 PhysPageDesc p;
3957 ram_addr_t raddr = RAM_ADDR_MAX;
3958 ram_addr_t rlen;
3959 void *ret;
3960
3961 while (len > 0) {
3962 page = addr & TARGET_PAGE_MASK;
3963 l = (page + TARGET_PAGE_SIZE) - addr;
3964 if (l > len)
3965 l = len;
3966 p = phys_page_find(page >> TARGET_PAGE_BITS);
3967 pd = p.phys_offset;
3968
3969 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
3970 if (todo || bounce.buffer) {
3971 break;
3972 }
3973 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3974 bounce.addr = addr;
3975 bounce.len = l;
3976 if (!is_write) {
3977 cpu_physical_memory_read(addr, bounce.buffer, l);
3978 }
3979
3980 *plen = l;
3981 return bounce.buffer;
3982 }
3983 if (!todo) {
3984 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3985 }
3986
3987 len -= l;
3988 addr += l;
3989 todo += l;
3990 }
3991 rlen = todo;
3992 ret = qemu_ram_ptr_length(raddr, &rlen);
3993 *plen = rlen;
3994 return ret;
3995 }
3996
3997 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3998 * Will also mark the memory as dirty if is_write == 1. access_len gives
3999 * the amount of memory that was actually read or written by the caller.
4000 */
4001 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4002 int is_write, target_phys_addr_t access_len)
4003 {
4004 if (buffer != bounce.buffer) {
4005 if (is_write) {
4006 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4007 while (access_len) {
4008 unsigned l;
4009 l = TARGET_PAGE_SIZE;
4010 if (l > access_len)
4011 l = access_len;
4012 if (!cpu_physical_memory_is_dirty(addr1)) {
4013 /* invalidate code */
4014 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4015 /* set dirty bit */
4016 cpu_physical_memory_set_dirty_flags(
4017 addr1, (0xff & ~CODE_DIRTY_FLAG));
4018 }
4019 addr1 += l;
4020 access_len -= l;
4021 }
4022 }
4023 if (xen_enabled()) {
4024 xen_invalidate_map_cache_entry(buffer);
4025 }
4026 return;
4027 }
4028 if (is_write) {
4029 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4030 }
4031 qemu_vfree(bounce.buffer);
4032 bounce.buffer = NULL;
4033 cpu_notify_map_clients();
4034 }
4035
4036 /* warning: addr must be aligned */
4037 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4038 enum device_endian endian)
4039 {
4040 int io_index;
4041 uint8_t *ptr;
4042 uint32_t val;
4043 unsigned long pd;
4044 PhysPageDesc p;
4045
4046 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4047 pd = p.phys_offset;
4048
4049 if (!is_ram_rom_romd(pd)) {
4050 /* I/O case */
4051 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4052 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4053 val = io_mem_read(io_index, addr, 4);
4054 #if defined(TARGET_WORDS_BIGENDIAN)
4055 if (endian == DEVICE_LITTLE_ENDIAN) {
4056 val = bswap32(val);
4057 }
4058 #else
4059 if (endian == DEVICE_BIG_ENDIAN) {
4060 val = bswap32(val);
4061 }
4062 #endif
4063 } else {
4064 /* RAM case */
4065 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4066 (addr & ~TARGET_PAGE_MASK);
4067 switch (endian) {
4068 case DEVICE_LITTLE_ENDIAN:
4069 val = ldl_le_p(ptr);
4070 break;
4071 case DEVICE_BIG_ENDIAN:
4072 val = ldl_be_p(ptr);
4073 break;
4074 default:
4075 val = ldl_p(ptr);
4076 break;
4077 }
4078 }
4079 return val;
4080 }
4081
4082 uint32_t ldl_phys(target_phys_addr_t addr)
4083 {
4084 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4085 }
4086
4087 uint32_t ldl_le_phys(target_phys_addr_t addr)
4088 {
4089 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4090 }
4091
4092 uint32_t ldl_be_phys(target_phys_addr_t addr)
4093 {
4094 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4095 }
4096
4097 /* warning: addr must be aligned */
4098 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4099 enum device_endian endian)
4100 {
4101 int io_index;
4102 uint8_t *ptr;
4103 uint64_t val;
4104 unsigned long pd;
4105 PhysPageDesc p;
4106
4107 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4108 pd = p.phys_offset;
4109
4110 if (!is_ram_rom_romd(pd)) {
4111 /* I/O case */
4112 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4113 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4114
4115 /* XXX This is broken when device endian != cpu endian.
4116 Fix and add "endian" variable check */
4117 #ifdef TARGET_WORDS_BIGENDIAN
4118 val = io_mem_read(io_index, addr, 4) << 32;
4119 val |= io_mem_read(io_index, addr + 4, 4);
4120 #else
4121 val = io_mem_read(io_index, addr, 4);
4122 val |= io_mem_read(io_index, addr + 4, 4) << 32;
4123 #endif
4124 } else {
4125 /* RAM case */
4126 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4127 (addr & ~TARGET_PAGE_MASK);
4128 switch (endian) {
4129 case DEVICE_LITTLE_ENDIAN:
4130 val = ldq_le_p(ptr);
4131 break;
4132 case DEVICE_BIG_ENDIAN:
4133 val = ldq_be_p(ptr);
4134 break;
4135 default:
4136 val = ldq_p(ptr);
4137 break;
4138 }
4139 }
4140 return val;
4141 }
4142
4143 uint64_t ldq_phys(target_phys_addr_t addr)
4144 {
4145 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4146 }
4147
4148 uint64_t ldq_le_phys(target_phys_addr_t addr)
4149 {
4150 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4151 }
4152
4153 uint64_t ldq_be_phys(target_phys_addr_t addr)
4154 {
4155 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4156 }
4157
4158 /* XXX: optimize */
4159 uint32_t ldub_phys(target_phys_addr_t addr)
4160 {
4161 uint8_t val;
4162 cpu_physical_memory_read(addr, &val, 1);
4163 return val;
4164 }
4165
4166 /* warning: addr must be aligned */
4167 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4168 enum device_endian endian)
4169 {
4170 int io_index;
4171 uint8_t *ptr;
4172 uint64_t val;
4173 unsigned long pd;
4174 PhysPageDesc p;
4175
4176 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4177 pd = p.phys_offset;
4178
4179 if (!is_ram_rom_romd(pd)) {
4180 /* I/O case */
4181 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4182 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4183 val = io_mem_read(io_index, addr, 2);
4184 #if defined(TARGET_WORDS_BIGENDIAN)
4185 if (endian == DEVICE_LITTLE_ENDIAN) {
4186 val = bswap16(val);
4187 }
4188 #else
4189 if (endian == DEVICE_BIG_ENDIAN) {
4190 val = bswap16(val);
4191 }
4192 #endif
4193 } else {
4194 /* RAM case */
4195 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4196 (addr & ~TARGET_PAGE_MASK);
4197 switch (endian) {
4198 case DEVICE_LITTLE_ENDIAN:
4199 val = lduw_le_p(ptr);
4200 break;
4201 case DEVICE_BIG_ENDIAN:
4202 val = lduw_be_p(ptr);
4203 break;
4204 default:
4205 val = lduw_p(ptr);
4206 break;
4207 }
4208 }
4209 return val;
4210 }
4211
4212 uint32_t lduw_phys(target_phys_addr_t addr)
4213 {
4214 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4215 }
4216
4217 uint32_t lduw_le_phys(target_phys_addr_t addr)
4218 {
4219 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4220 }
4221
4222 uint32_t lduw_be_phys(target_phys_addr_t addr)
4223 {
4224 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4225 }
4226
4227 /* warning: addr must be aligned. The ram page is not masked as dirty
4228 and the code inside is not invalidated. It is useful if the dirty
4229 bits are used to track modified PTEs */
4230 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4231 {
4232 int io_index;
4233 uint8_t *ptr;
4234 unsigned long pd;
4235 PhysPageDesc p;
4236
4237 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4238 pd = p.phys_offset;
4239
4240 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4241 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4242 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4243 io_mem_write(io_index, addr, val, 4);
4244 } else {
4245 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4246 ptr = qemu_get_ram_ptr(addr1);
4247 stl_p(ptr, val);
4248
4249 if (unlikely(in_migration)) {
4250 if (!cpu_physical_memory_is_dirty(addr1)) {
4251 /* invalidate code */
4252 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4253 /* set dirty bit */
4254 cpu_physical_memory_set_dirty_flags(
4255 addr1, (0xff & ~CODE_DIRTY_FLAG));
4256 }
4257 }
4258 }
4259 }
4260
4261 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4262 {
4263 int io_index;
4264 uint8_t *ptr;
4265 unsigned long pd;
4266 PhysPageDesc p;
4267
4268 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4269 pd = p.phys_offset;
4270
4271 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4272 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4273 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4274 #ifdef TARGET_WORDS_BIGENDIAN
4275 io_mem_write(io_index, addr, val >> 32, 4);
4276 io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
4277 #else
4278 io_mem_write(io_index, addr, (uint32_t)val, 4);
4279 io_mem_write(io_index, addr + 4, val >> 32, 4);
4280 #endif
4281 } else {
4282 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4283 (addr & ~TARGET_PAGE_MASK);
4284 stq_p(ptr, val);
4285 }
4286 }
4287
4288 /* warning: addr must be aligned */
4289 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4290 enum device_endian endian)
4291 {
4292 int io_index;
4293 uint8_t *ptr;
4294 unsigned long pd;
4295 PhysPageDesc p;
4296
4297 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4298 pd = p.phys_offset;
4299
4300 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4301 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4302 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4303 #if defined(TARGET_WORDS_BIGENDIAN)
4304 if (endian == DEVICE_LITTLE_ENDIAN) {
4305 val = bswap32(val);
4306 }
4307 #else
4308 if (endian == DEVICE_BIG_ENDIAN) {
4309 val = bswap32(val);
4310 }
4311 #endif
4312 io_mem_write(io_index, addr, val, 4);
4313 } else {
4314 unsigned long addr1;
4315 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4316 /* RAM case */
4317 ptr = qemu_get_ram_ptr(addr1);
4318 switch (endian) {
4319 case DEVICE_LITTLE_ENDIAN:
4320 stl_le_p(ptr, val);
4321 break;
4322 case DEVICE_BIG_ENDIAN:
4323 stl_be_p(ptr, val);
4324 break;
4325 default:
4326 stl_p(ptr, val);
4327 break;
4328 }
4329 if (!cpu_physical_memory_is_dirty(addr1)) {
4330 /* invalidate code */
4331 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4332 /* set dirty bit */
4333 cpu_physical_memory_set_dirty_flags(addr1,
4334 (0xff & ~CODE_DIRTY_FLAG));
4335 }
4336 }
4337 }
4338
4339 void stl_phys(target_phys_addr_t addr, uint32_t val)
4340 {
4341 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4342 }
4343
4344 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4345 {
4346 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4347 }
4348
4349 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4350 {
4351 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4352 }
4353
4354 /* XXX: optimize */
4355 void stb_phys(target_phys_addr_t addr, uint32_t val)
4356 {
4357 uint8_t v = val;
4358 cpu_physical_memory_write(addr, &v, 1);
4359 }
4360
4361 /* warning: addr must be aligned */
4362 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4363 enum device_endian endian)
4364 {
4365 int io_index;
4366 uint8_t *ptr;
4367 unsigned long pd;
4368 PhysPageDesc p;
4369
4370 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4371 pd = p.phys_offset;
4372
4373 if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
4374 io_index = pd & (IO_MEM_NB_ENTRIES - 1);
4375 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4376 #if defined(TARGET_WORDS_BIGENDIAN)
4377 if (endian == DEVICE_LITTLE_ENDIAN) {
4378 val = bswap16(val);
4379 }
4380 #else
4381 if (endian == DEVICE_BIG_ENDIAN) {
4382 val = bswap16(val);
4383 }
4384 #endif
4385 io_mem_write(io_index, addr, val, 2);
4386 } else {
4387 unsigned long addr1;
4388 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4389 /* RAM case */
4390 ptr = qemu_get_ram_ptr(addr1);
4391 switch (endian) {
4392 case DEVICE_LITTLE_ENDIAN:
4393 stw_le_p(ptr, val);
4394 break;
4395 case DEVICE_BIG_ENDIAN:
4396 stw_be_p(ptr, val);
4397 break;
4398 default:
4399 stw_p(ptr, val);
4400 break;
4401 }
4402 if (!cpu_physical_memory_is_dirty(addr1)) {
4403 /* invalidate code */
4404 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4405 /* set dirty bit */
4406 cpu_physical_memory_set_dirty_flags(addr1,
4407 (0xff & ~CODE_DIRTY_FLAG));
4408 }
4409 }
4410 }
4411
4412 void stw_phys(target_phys_addr_t addr, uint32_t val)
4413 {
4414 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4415 }
4416
4417 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4418 {
4419 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4420 }
4421
4422 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4423 {
4424 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4425 }
4426
4427 /* XXX: optimize */
4428 void stq_phys(target_phys_addr_t addr, uint64_t val)
4429 {
4430 val = tswap64(val);
4431 cpu_physical_memory_write(addr, &val, 8);
4432 }
4433
4434 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4435 {
4436 val = cpu_to_le64(val);
4437 cpu_physical_memory_write(addr, &val, 8);
4438 }
4439
4440 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4441 {
4442 val = cpu_to_be64(val);
4443 cpu_physical_memory_write(addr, &val, 8);
4444 }
4445
4446 /* virtual memory access for debug (includes writing to ROM) */
4447 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4448 uint8_t *buf, int len, int is_write)
4449 {
4450 int l;
4451 target_phys_addr_t phys_addr;
4452 target_ulong page;
4453
4454 while (len > 0) {
4455 page = addr & TARGET_PAGE_MASK;
4456 phys_addr = cpu_get_phys_page_debug(env, page);
4457 /* if no physical page mapped, return an error */
4458 if (phys_addr == -1)
4459 return -1;
4460 l = (page + TARGET_PAGE_SIZE) - addr;
4461 if (l > len)
4462 l = len;
4463 phys_addr += (addr & ~TARGET_PAGE_MASK);
4464 if (is_write)
4465 cpu_physical_memory_write_rom(phys_addr, buf, l);
4466 else
4467 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4468 len -= l;
4469 buf += l;
4470 addr += l;
4471 }
4472 return 0;
4473 }
4474 #endif
4475
4476 /* in deterministic execution mode, instructions doing device I/Os
4477 must be at the end of the TB */
4478 void cpu_io_recompile(CPUState *env, void *retaddr)
4479 {
4480 TranslationBlock *tb;
4481 uint32_t n, cflags;
4482 target_ulong pc, cs_base;
4483 uint64_t flags;
4484
4485 tb = tb_find_pc((unsigned long)retaddr);
4486 if (!tb) {
4487 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4488 retaddr);
4489 }
4490 n = env->icount_decr.u16.low + tb->icount;
4491 cpu_restore_state(tb, env, (unsigned long)retaddr);
4492 /* Calculate how many instructions had been executed before the fault
4493 occurred. */
4494 n = n - env->icount_decr.u16.low;
4495 /* Generate a new TB ending on the I/O insn. */
4496 n++;
4497 /* On MIPS and SH, delay slot instructions can only be restarted if
4498 they were already the first instruction in the TB. If this is not
4499 the first instruction in a TB then re-execute the preceding
4500 branch. */
4501 #if defined(TARGET_MIPS)
4502 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4503 env->active_tc.PC -= 4;
4504 env->icount_decr.u16.low++;
4505 env->hflags &= ~MIPS_HFLAG_BMASK;
4506 }
4507 #elif defined(TARGET_SH4)
4508 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4509 && n > 1) {
4510 env->pc -= 2;
4511 env->icount_decr.u16.low++;
4512 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4513 }
4514 #endif
4515 /* This should never happen. */
4516 if (n > CF_COUNT_MASK)
4517 cpu_abort(env, "TB too big during recompile");
4518
4519 cflags = n | CF_LAST_IO;
4520 pc = tb->pc;
4521 cs_base = tb->cs_base;
4522 flags = tb->flags;
4523 tb_phys_invalidate(tb, -1);
4524 /* FIXME: In theory this could raise an exception. In practice
4525 we have already translated the block once so it's probably ok. */
4526 tb_gen_code(env, pc, cs_base, flags, cflags);
4527 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4528 the first in the TB) then we end up generating a whole new TB and
4529 repeating the fault, which is horribly inefficient.
4530 Better would be to execute just this insn uncached, or generate a
4531 second new TB. */
4532 cpu_resume_from_signal(env, NULL);
4533 }
4534
4535 #if !defined(CONFIG_USER_ONLY)
4536
4537 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4538 {
4539 int i, target_code_size, max_target_code_size;
4540 int direct_jmp_count, direct_jmp2_count, cross_page;
4541 TranslationBlock *tb;
4542
4543 target_code_size = 0;
4544 max_target_code_size = 0;
4545 cross_page = 0;
4546 direct_jmp_count = 0;
4547 direct_jmp2_count = 0;
4548 for(i = 0; i < nb_tbs; i++) {
4549 tb = &tbs[i];
4550 target_code_size += tb->size;
4551 if (tb->size > max_target_code_size)
4552 max_target_code_size = tb->size;
4553 if (tb->page_addr[1] != -1)
4554 cross_page++;
4555 if (tb->tb_next_offset[0] != 0xffff) {
4556 direct_jmp_count++;
4557 if (tb->tb_next_offset[1] != 0xffff) {
4558 direct_jmp2_count++;
4559 }
4560 }
4561 }
4562 /* XXX: avoid using doubles ? */
4563 cpu_fprintf(f, "Translation buffer state:\n");
4564 cpu_fprintf(f, "gen code size %td/%ld\n",
4565 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4566 cpu_fprintf(f, "TB count %d/%d\n",
4567 nb_tbs, code_gen_max_blocks);
4568 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4569 nb_tbs ? target_code_size / nb_tbs : 0,
4570 max_target_code_size);
4571 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4572 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4573 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4574 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4575 cross_page,
4576 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4577 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4578 direct_jmp_count,
4579 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4580 direct_jmp2_count,
4581 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4582 cpu_fprintf(f, "\nStatistics:\n");
4583 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4584 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4585 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4586 tcg_dump_info(f, cpu_fprintf);
4587 }
4588
4589 /* NOTE: this function can trigger an exception */
4590 /* NOTE2: the returned address is not exactly the physical address: it
4591 is the offset relative to phys_ram_base */
4592 tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4593 {
4594 int mmu_idx, page_index, pd;
4595 void *p;
4596
4597 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4598 mmu_idx = cpu_mmu_index(env1);
4599 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4600 (addr & TARGET_PAGE_MASK))) {
4601 ldub_code(addr);
4602 }
4603 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
4604 if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
4605 && !is_romd(pd)) {
4606 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4607 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4608 #else
4609 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4610 #endif
4611 }
4612 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4613 return qemu_ram_addr_from_host_nofail(p);
4614 }
4615
4616 /*
4617 * A helper function for the _utterly broken_ virtio device model to find out if
4618 * it's running on a big endian machine. Don't do this at home kids!
4619 */
4620 bool virtio_is_big_endian(void);
4621 bool virtio_is_big_endian(void)
4622 {
4623 #if defined(TARGET_WORDS_BIGENDIAN)
4624 return true;
4625 #else
4626 return false;
4627 #endif
4628 }
4629
4630 #define MMUSUFFIX _cmmu
4631 #undef GETPC
4632 #define GETPC() NULL
4633 #define env cpu_single_env
4634 #define SOFTMMU_CODE_ACCESS
4635
4636 #define SHIFT 0
4637 #include "softmmu_template.h"
4638
4639 #define SHIFT 1
4640 #include "softmmu_template.h"
4641
4642 #define SHIFT 2
4643 #include "softmmu_template.h"
4644
4645 #define SHIFT 3
4646 #include "softmmu_template.h"
4647
4648 #undef env
4649
4650 #endif