]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge branch 'x86cpu_qom_tcg_v2' of git://github.com/imammedo/qemu
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
559 }
560 start = (void *)0x90000000UL;
561 #endif
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
568 }
569 }
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
573 {
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
592 #endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
601 #else
602 code_gen_buffer = g_malloc(code_gen_buffer_size);
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604 #endif
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
611 }
612
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
616 void tcg_exec_init(unsigned long tb_size)
617 {
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
622 page_init();
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627 #endif
628 }
629
630 bool tcg_enabled(void)
631 {
632 return code_gen_buffer != NULL;
633 }
634
635 void cpu_exec_init_all(void)
636 {
637 #if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640 #endif
641 }
642
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
645 static int cpu_common_post_load(void *opaque, int version_id)
646 {
647 CPUArchState *env = opaque;
648
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
652 tlb_flush(env, 1);
653
654 return 0;
655 }
656
657 static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
666 VMSTATE_END_OF_LIST()
667 }
668 };
669 #endif
670
671 CPUArchState *qemu_get_cpu(int cpu)
672 {
673 CPUArchState *env = first_cpu;
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682 }
683
684 void cpu_exec_init(CPUArchState *env)
685 {
686 CPUArchState **penv;
687 int cpu_index;
688
689 #if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691 #endif
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
696 penv = &(*penv)->next_cpu;
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
700 env->numa_node = 0;
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
703 #ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705 #endif
706 *penv = env;
707 #if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709 #endif
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
713 cpu_save, cpu_load, env);
714 #endif
715 }
716
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock *tb_alloc(target_ulong pc)
720 {
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730 }
731
732 void tb_free(TranslationBlock *tb)
733 {
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741 }
742
743 static inline void invalidate_page_bitmap(PageDesc *p)
744 {
745 if (p->code_bitmap) {
746 g_free(p->code_bitmap);
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750 }
751
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754 static void page_flush_tb_1 (int level, void **lp)
755 {
756 int i;
757
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
763 for (i = 0; i < L2_SIZE; ++i) {
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
766 }
767 } else {
768 void **pp = *lp;
769 for (i = 0; i < L2_SIZE; ++i) {
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773 }
774
775 static void page_flush_tb(void)
776 {
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
780 }
781 }
782
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
786 {
787 CPUArchState *env;
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
793 #endif
794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
797 nb_tbs = 0;
798
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
802
803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
804 page_flush_tb();
805
806 code_gen_ptr = code_gen_buffer;
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
809 tb_flush_count++;
810 }
811
812 #ifdef DEBUG_TB_CHECK
813
814 static void tb_invalidate_check(target_ulong address)
815 {
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address, (long)tb->pc, tb->size);
826 }
827 }
828 }
829 }
830
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
833 {
834 TranslationBlock *tb;
835 int i, flags1, flags2;
836
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb->pc, tb->size, flags1, flags2);
844 }
845 }
846 }
847 }
848
849 #endif
850
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854 {
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864 }
865
866 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867 {
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881 }
882
883 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884 {
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909 }
910
911 /* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913 static inline void tb_reset_jump(TranslationBlock *tb, int n)
914 {
915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
916 }
917
918 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
919 {
920 CPUArchState *env;
921 PageDesc *p;
922 unsigned int h, n1;
923 tb_page_addr_t phys_pc;
924 TranslationBlock *tb1, *tb2;
925
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
929 tb_remove(&tb_phys_hash[h], tb,
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
944 tb_invalidated_flag = 1;
945
946 /* remove the TB from the hash list */
947 h = tb_jmp_cache_hash_func(tb->pc);
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
960 n1 = (uintptr_t)tb1 & 3;
961 if (n1 == 2)
962 break;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
970
971 tb_phys_invalidate_count++;
972 }
973
974 static inline void set_bits(uint8_t *tab, int start, int len)
975 {
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999 }
1000
1001 static void build_page_bitmap(PageDesc *p)
1002 {
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1005
1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027 }
1028
1029 TranslationBlock *tb_gen_code(CPUArchState *env,
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
1032 {
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
1037 int code_gen_size;
1038
1039 phys_pc = get_page_addr_code(env, pc);
1040 tb = tb_alloc(pc);
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
1045 tb = tb_alloc(pc);
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
1054 cpu_gen_code(env, tb, &code_gen_size);
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1057
1058 /* check next page if needed */
1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1060 phys_page2 = -1;
1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1062 phys_page2 = get_page_addr_code(env, virt_page2);
1063 }
1064 tb_link_page(tb, phys_pc, phys_page2);
1065 return tb;
1066 }
1067
1068 /*
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
1074 */
1075 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077 {
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083 }
1084
1085 /*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1093 int is_cpu_write_access)
1094 {
1095 TranslationBlock *tb, *tb_next, *saved_tb;
1096 CPUArchState *env = cpu_single_env;
1097 tb_page_addr_t tb_start, tb_end;
1098 PageDesc *p;
1099 int n;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
1110 if (!p)
1111 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
1141 if (env->mem_io_pc) {
1142 /* now we have a real cpu fault */
1143 current_tb = tb_find_pc(env->mem_io_pc);
1144 }
1145 }
1146 if (current_tb == tb &&
1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1153
1154 current_tb_modified = 1;
1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
1158 }
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
1167 tb_phys_invalidate(tb, -1);
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
1173 }
1174 tb = tb_next;
1175 }
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
1180 if (is_cpu_write_access) {
1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1182 }
1183 }
1184 #endif
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
1190 env->current_tb = NULL;
1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1192 cpu_resume_from_signal(env, NULL);
1193 }
1194 #endif
1195 }
1196
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1199 {
1200 PageDesc *p;
1201 int offset, b;
1202 #if 0
1203 if (1) {
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
1209 }
1210 #endif
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p)
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
1221 tb_invalidate_phys_page_range(start, start + len, 1);
1222 }
1223 }
1224
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1227 uintptr_t pc, void *puc)
1228 {
1229 TranslationBlock *tb;
1230 PageDesc *p;
1231 int n;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock *current_tb = NULL;
1234 CPUArchState *env = cpu_single_env;
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
1239 #endif
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
1243 if (!p)
1244 return;
1245 tb = p->first_tb;
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250 #endif
1251 while (tb != NULL) {
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1262
1263 current_tb_modified = 1;
1264 cpu_restore_state(current_tb, env, pc);
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
1267 }
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
1272 p->first_tb = NULL;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
1278 env->current_tb = NULL;
1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1280 cpu_resume_from_signal(env, puc);
1281 }
1282 #endif
1283 }
1284 #endif
1285
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock *tb,
1288 unsigned int n, tb_page_addr_t page_addr)
1289 {
1290 PageDesc *p;
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293 #endif
1294
1295 tb->page_addr[n] = page_addr;
1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1297 tb->page_next[n] = p->first_tb;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300 #endif
1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1302 invalidate_page_bitmap(p);
1303
1304 #if defined(TARGET_HAS_SMC) || 1
1305
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p->flags & PAGE_WRITE) {
1308 target_ulong addr;
1309 PageDesc *p2;
1310 int prot;
1311
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr &= qemu_host_page_mask;
1315 prot = 0;
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
1324 }
1325 mprotect(g2h(page_addr), qemu_host_page_size,
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1329 page_addr);
1330 #endif
1331 }
1332 #else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected) {
1337 tlb_protect_code(page_addr);
1338 }
1339 #endif
1340
1341 #endif /* TARGET_HAS_SMC */
1342 }
1343
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1348 {
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
1360
1361 /* add in the page list */
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
1367
1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
1377
1378 #ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380 #endif
1381 mmap_unlock();
1382 }
1383
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1387 {
1388 int m_min, m_max, m;
1389 uintptr_t v;
1390 TranslationBlock *tb;
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
1396 return NULL;
1397 }
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
1404 v = (uintptr_t)tb->tc_ptr;
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
1412 }
1413 return &tbs[m_max];
1414 }
1415
1416 static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419 {
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
1448
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455 }
1456
1457 static void tb_reset_jump_recursive(TranslationBlock *tb)
1458 {
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461 }
1462
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1466 {
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468 }
1469 #else
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1471 {
1472 ram_addr_t ram_addr;
1473 MemoryRegionSection *section;
1474
1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
1478 return;
1479 }
1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1481 + memory_region_section_addr(section, addr);
1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1483 }
1484
1485 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486 {
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1489 }
1490 #endif
1491 #endif /* TARGET_HAS_ICE */
1492
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1495
1496 {
1497 }
1498
1499 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1500 int flags, CPUWatchpoint **watchpoint)
1501 {
1502 return -ENOSYS;
1503 }
1504 #else
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1507 int flags, CPUWatchpoint **watchpoint)
1508 {
1509 target_ulong len_mask = ~(len - 1);
1510 CPUWatchpoint *wp;
1511
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
1519 wp = g_malloc(sizeof(*wp));
1520
1521 wp->vaddr = addr;
1522 wp->len_mask = len_mask;
1523 wp->flags = flags;
1524
1525 /* keep all GDB-injected watchpoints in front */
1526 if (flags & BP_GDB)
1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1528 else
1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1530
1531 tlb_flush_page(env, addr);
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
1536 }
1537
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1540 int flags)
1541 {
1542 target_ulong len_mask = ~(len - 1);
1543 CPUWatchpoint *wp;
1544
1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1546 if (addr == wp->vaddr && len_mask == wp->len_mask
1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1548 cpu_watchpoint_remove_by_ref(env, wp);
1549 return 0;
1550 }
1551 }
1552 return -ENOENT;
1553 }
1554
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1557 {
1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1559
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
1562 g_free(watchpoint);
1563 }
1564
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1567 {
1568 CPUWatchpoint *wp, *next;
1569
1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
1573 }
1574 }
1575 #endif
1576
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1579 CPUBreakpoint **breakpoint)
1580 {
1581 #if defined(TARGET_HAS_ICE)
1582 CPUBreakpoint *bp;
1583
1584 bp = g_malloc(sizeof(*bp));
1585
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
1589 /* keep all GDB-injected breakpoints in front */
1590 if (flags & BP_GDB)
1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1592 else
1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1594
1595 breakpoint_invalidate(env, pc);
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
1599 return 0;
1600 #else
1601 return -ENOSYS;
1602 #endif
1603 }
1604
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1607 {
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp;
1610
1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
1616 }
1617 return -ENOENT;
1618 #else
1619 return -ENOSYS;
1620 #endif
1621 }
1622
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1625 {
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1628
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
1631 g_free(breakpoint);
1632 #endif
1633 }
1634
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1637 {
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint *bp, *next;
1640
1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
1644 }
1645 #endif
1646 }
1647
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState *env, int enabled)
1651 {
1652 #if defined(TARGET_HAS_ICE)
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
1662 }
1663 #endif
1664 }
1665
1666 static void cpu_unlink_tb(CPUArchState *env)
1667 {
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock *tb;
1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1674
1675 spin_lock(&interrupt_lock);
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1679 if (tb) {
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
1682 }
1683 spin_unlock(&interrupt_lock);
1684 }
1685
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1689 {
1690 int old_mask;
1691
1692 old_mask = env->interrupt_request;
1693 env->interrupt_request |= mask;
1694
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
1699 if (!qemu_cpu_is_self(env)) {
1700 qemu_cpu_kick(env);
1701 return;
1702 }
1703
1704 if (use_icount) {
1705 env->icount_decr.u16.high = 0xffff;
1706 if (!can_do_io(env)
1707 && (mask & ~old_mask) != 0) {
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
1710 } else {
1711 cpu_unlink_tb(env);
1712 }
1713 }
1714
1715 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
1717 #else /* CONFIG_USER_ONLY */
1718
1719 void cpu_interrupt(CPUArchState *env, int mask)
1720 {
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723 }
1724 #endif /* CONFIG_USER_ONLY */
1725
1726 void cpu_reset_interrupt(CPUArchState *env, int mask)
1727 {
1728 env->interrupt_request &= ~mask;
1729 }
1730
1731 void cpu_exit(CPUArchState *env)
1732 {
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735 }
1736
1737 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1738 {
1739 va_list ap;
1740 va_list ap2;
1741
1742 va_start(ap, fmt);
1743 va_copy(ap2, ap);
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747 #ifdef TARGET_I386
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749 #else
1750 cpu_dump_state(env, stderr, fprintf, 0);
1751 #endif
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
1756 #ifdef TARGET_I386
1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1758 #else
1759 log_cpu_state(env, 0);
1760 #endif
1761 qemu_log_flush();
1762 qemu_log_close();
1763 }
1764 va_end(ap2);
1765 va_end(ap);
1766 #if defined(CONFIG_USER_ONLY)
1767 {
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1772 }
1773 #endif
1774 abort();
1775 }
1776
1777 CPUArchState *cpu_copy(CPUArchState *env)
1778 {
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
1781 int cpu_index = new_env->cpu_index;
1782 #if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785 #endif
1786
1787 memcpy(new_env, env, sizeof(CPUArchState));
1788
1789 /* Preserve chaining and index. */
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
1792
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1801 }
1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1805 }
1806 #endif
1807
1808 return new_env;
1809 }
1810
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1813 {
1814 unsigned int i;
1815
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1821
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1825 }
1826
1827 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1828 uintptr_t length)
1829 {
1830 uintptr_t start1;
1831
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1838 != (end - 1) - start) {
1839 abort();
1840 }
1841 cpu_tlb_reset_dirty_all(start1, length);
1842
1843 }
1844
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1847 int dirty_flags)
1848 {
1849 uintptr_t length;
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1858
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start, end, length);
1861 }
1862 }
1863
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1865 {
1866 int ret = 0;
1867 in_migration = enable;
1868 return ret;
1869 }
1870
1871 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1872 MemoryRegionSection *section,
1873 target_ulong vaddr,
1874 target_phys_addr_t paddr,
1875 int prot,
1876 target_ulong *address)
1877 {
1878 target_phys_addr_t iotlb;
1879 CPUWatchpoint *wp;
1880
1881 if (memory_region_is_ram(section->mr)) {
1882 /* Normal RAM. */
1883 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1884 + memory_region_section_addr(section, paddr);
1885 if (!section->readonly) {
1886 iotlb |= phys_section_notdirty;
1887 } else {
1888 iotlb |= phys_section_rom;
1889 }
1890 } else {
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb = section - phys_sections;
1898 iotlb += memory_region_section_addr(section, paddr);
1899 }
1900
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1904 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1907 iotlb = phys_section_watch + paddr;
1908 *address |= TLB_MMIO;
1909 break;
1910 }
1911 }
1912 }
1913
1914 return iotlb;
1915 }
1916
1917 #else
1918 /*
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1921 */
1922
1923 struct walk_memory_regions_data
1924 {
1925 walk_memory_regions_fn fn;
1926 void *priv;
1927 uintptr_t start;
1928 int prot;
1929 };
1930
1931 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1932 abi_ulong end, int new_prot)
1933 {
1934 if (data->start != -1ul) {
1935 int rc = data->fn(data->priv, data->start, end, data->prot);
1936 if (rc != 0) {
1937 return rc;
1938 }
1939 }
1940
1941 data->start = (new_prot ? end : -1ul);
1942 data->prot = new_prot;
1943
1944 return 0;
1945 }
1946
1947 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1948 abi_ulong base, int level, void **lp)
1949 {
1950 abi_ulong pa;
1951 int i, rc;
1952
1953 if (*lp == NULL) {
1954 return walk_memory_regions_end(data, base, 0);
1955 }
1956
1957 if (level == 0) {
1958 PageDesc *pd = *lp;
1959 for (i = 0; i < L2_SIZE; ++i) {
1960 int prot = pd[i].flags;
1961
1962 pa = base | (i << TARGET_PAGE_BITS);
1963 if (prot != data->prot) {
1964 rc = walk_memory_regions_end(data, pa, prot);
1965 if (rc != 0) {
1966 return rc;
1967 }
1968 }
1969 }
1970 } else {
1971 void **pp = *lp;
1972 for (i = 0; i < L2_SIZE; ++i) {
1973 pa = base | ((abi_ulong)i <<
1974 (TARGET_PAGE_BITS + L2_BITS * level));
1975 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1976 if (rc != 0) {
1977 return rc;
1978 }
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1986 {
1987 struct walk_memory_regions_data data;
1988 uintptr_t i;
1989
1990 data.fn = fn;
1991 data.priv = priv;
1992 data.start = -1ul;
1993 data.prot = 0;
1994
1995 for (i = 0; i < V_L1_SIZE; i++) {
1996 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1997 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1998 if (rc != 0) {
1999 return rc;
2000 }
2001 }
2002
2003 return walk_memory_regions_end(&data, 0, 0);
2004 }
2005
2006 static int dump_region(void *priv, abi_ulong start,
2007 abi_ulong end, unsigned long prot)
2008 {
2009 FILE *f = (FILE *)priv;
2010
2011 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2013 start, end, end - start,
2014 ((prot & PAGE_READ) ? 'r' : '-'),
2015 ((prot & PAGE_WRITE) ? 'w' : '-'),
2016 ((prot & PAGE_EXEC) ? 'x' : '-'));
2017
2018 return (0);
2019 }
2020
2021 /* dump memory mappings */
2022 void page_dump(FILE *f)
2023 {
2024 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f, dump_region);
2027 }
2028
2029 int page_get_flags(target_ulong address)
2030 {
2031 PageDesc *p;
2032
2033 p = page_find(address >> TARGET_PAGE_BITS);
2034 if (!p)
2035 return 0;
2036 return p->flags;
2037 }
2038
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start, target_ulong end, int flags)
2043 {
2044 target_ulong addr, len;
2045
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 #endif
2052 assert(start < end);
2053
2054 start = start & TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2056
2057 if (flags & PAGE_WRITE) {
2058 flags |= PAGE_WRITE_ORG;
2059 }
2060
2061 for (addr = start, len = end - start;
2062 len != 0;
2063 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2064 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2065
2066 /* If the write protection bit is set, then we invalidate
2067 the code inside. */
2068 if (!(p->flags & PAGE_WRITE) &&
2069 (flags & PAGE_WRITE) &&
2070 p->first_tb) {
2071 tb_invalidate_phys_page(addr, 0, NULL);
2072 }
2073 p->flags = flags;
2074 }
2075 }
2076
2077 int page_check_range(target_ulong start, target_ulong len, int flags)
2078 {
2079 PageDesc *p;
2080 target_ulong end;
2081 target_ulong addr;
2082
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2088 #endif
2089
2090 if (len == 0) {
2091 return 0;
2092 }
2093 if (start + len - 1 < start) {
2094 /* We've wrapped around. */
2095 return -1;
2096 }
2097
2098 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2099 start = start & TARGET_PAGE_MASK;
2100
2101 for (addr = start, len = end - start;
2102 len != 0;
2103 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2104 p = page_find(addr >> TARGET_PAGE_BITS);
2105 if( !p )
2106 return -1;
2107 if( !(p->flags & PAGE_VALID) )
2108 return -1;
2109
2110 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2111 return -1;
2112 if (flags & PAGE_WRITE) {
2113 if (!(p->flags & PAGE_WRITE_ORG))
2114 return -1;
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p->flags & PAGE_WRITE)) {
2118 if (!page_unprotect(addr, 0, NULL))
2119 return -1;
2120 }
2121 return 0;
2122 }
2123 }
2124 return 0;
2125 }
2126
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2130 {
2131 unsigned int prot;
2132 PageDesc *p;
2133 target_ulong host_start, host_end, addr;
2134
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2138 mmap_lock();
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p) {
2142 mmap_unlock();
2143 return 0;
2144 }
2145
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2149 host_start = address & qemu_host_page_mask;
2150 host_end = host_start + qemu_host_page_size;
2151
2152 prot = 0;
2153 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2154 p = page_find(addr >> TARGET_PAGE_BITS);
2155 p->flags |= PAGE_WRITE;
2156 prot |= p->flags;
2157
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr, pc, puc);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr);
2163 #endif
2164 }
2165 mprotect((void *)g2h(host_start), qemu_host_page_size,
2166 prot & PAGE_BITS);
2167
2168 mmap_unlock();
2169 return 1;
2170 }
2171 mmap_unlock();
2172 return 0;
2173 }
2174 #endif /* defined(CONFIG_USER_ONLY) */
2175
2176 #if !defined(CONFIG_USER_ONLY)
2177
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t {
2180 MemoryRegion iomem;
2181 target_phys_addr_t base;
2182 uint16_t sub_section[TARGET_PAGE_SIZE];
2183 } subpage_t;
2184
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section);
2187 static subpage_t *subpage_init(target_phys_addr_t base);
2188 static void destroy_page_desc(uint16_t section_index)
2189 {
2190 MemoryRegionSection *section = &phys_sections[section_index];
2191 MemoryRegion *mr = section->mr;
2192
2193 if (mr->subpage) {
2194 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2195 memory_region_destroy(&subpage->iomem);
2196 g_free(subpage);
2197 }
2198 }
2199
2200 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2201 {
2202 unsigned i;
2203 PhysPageEntry *p;
2204
2205 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2206 return;
2207 }
2208
2209 p = phys_map_nodes[lp->ptr];
2210 for (i = 0; i < L2_SIZE; ++i) {
2211 if (!p[i].is_leaf) {
2212 destroy_l2_mapping(&p[i], level - 1);
2213 } else {
2214 destroy_page_desc(p[i].ptr);
2215 }
2216 }
2217 lp->is_leaf = 0;
2218 lp->ptr = PHYS_MAP_NODE_NIL;
2219 }
2220
2221 static void destroy_all_mappings(void)
2222 {
2223 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2224 phys_map_nodes_reset();
2225 }
2226
2227 static uint16_t phys_section_add(MemoryRegionSection *section)
2228 {
2229 if (phys_sections_nb == phys_sections_nb_alloc) {
2230 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2231 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2232 phys_sections_nb_alloc);
2233 }
2234 phys_sections[phys_sections_nb] = *section;
2235 return phys_sections_nb++;
2236 }
2237
2238 static void phys_sections_clear(void)
2239 {
2240 phys_sections_nb = 0;
2241 }
2242
2243 static void register_subpage(MemoryRegionSection *section)
2244 {
2245 subpage_t *subpage;
2246 target_phys_addr_t base = section->offset_within_address_space
2247 & TARGET_PAGE_MASK;
2248 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2249 MemoryRegionSection subsection = {
2250 .offset_within_address_space = base,
2251 .size = TARGET_PAGE_SIZE,
2252 };
2253 target_phys_addr_t start, end;
2254
2255 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2256
2257 if (!(existing->mr->subpage)) {
2258 subpage = subpage_init(base);
2259 subsection.mr = &subpage->iomem;
2260 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2261 phys_section_add(&subsection));
2262 } else {
2263 subpage = container_of(existing->mr, subpage_t, iomem);
2264 }
2265 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2266 end = start + section->size - 1;
2267 subpage_register(subpage, start, end, phys_section_add(section));
2268 }
2269
2270
2271 static void register_multipage(MemoryRegionSection *section)
2272 {
2273 target_phys_addr_t start_addr = section->offset_within_address_space;
2274 ram_addr_t size = section->size;
2275 target_phys_addr_t addr;
2276 uint16_t section_index = phys_section_add(section);
2277
2278 assert(size);
2279
2280 addr = start_addr;
2281 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2282 section_index);
2283 }
2284
2285 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2286 bool readonly)
2287 {
2288 MemoryRegionSection now = *section, remain = *section;
2289
2290 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2291 || (now.size < TARGET_PAGE_SIZE)) {
2292 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2293 - now.offset_within_address_space,
2294 now.size);
2295 register_subpage(&now);
2296 remain.size -= now.size;
2297 remain.offset_within_address_space += now.size;
2298 remain.offset_within_region += now.size;
2299 }
2300 while (remain.size >= TARGET_PAGE_SIZE) {
2301 now = remain;
2302 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2303 now.size = TARGET_PAGE_SIZE;
2304 register_subpage(&now);
2305 } else {
2306 now.size &= TARGET_PAGE_MASK;
2307 register_multipage(&now);
2308 }
2309 remain.size -= now.size;
2310 remain.offset_within_address_space += now.size;
2311 remain.offset_within_region += now.size;
2312 }
2313 now = remain;
2314 if (now.size) {
2315 register_subpage(&now);
2316 }
2317 }
2318
2319
2320 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2321 {
2322 if (kvm_enabled())
2323 kvm_coalesce_mmio_region(addr, size);
2324 }
2325
2326 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2327 {
2328 if (kvm_enabled())
2329 kvm_uncoalesce_mmio_region(addr, size);
2330 }
2331
2332 void qemu_flush_coalesced_mmio_buffer(void)
2333 {
2334 if (kvm_enabled())
2335 kvm_flush_coalesced_mmio_buffer();
2336 }
2337
2338 #if defined(__linux__) && !defined(TARGET_S390X)
2339
2340 #include <sys/vfs.h>
2341
2342 #define HUGETLBFS_MAGIC 0x958458f6
2343
2344 static long gethugepagesize(const char *path)
2345 {
2346 struct statfs fs;
2347 int ret;
2348
2349 do {
2350 ret = statfs(path, &fs);
2351 } while (ret != 0 && errno == EINTR);
2352
2353 if (ret != 0) {
2354 perror(path);
2355 return 0;
2356 }
2357
2358 if (fs.f_type != HUGETLBFS_MAGIC)
2359 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2360
2361 return fs.f_bsize;
2362 }
2363
2364 static void *file_ram_alloc(RAMBlock *block,
2365 ram_addr_t memory,
2366 const char *path)
2367 {
2368 char *filename;
2369 void *area;
2370 int fd;
2371 #ifdef MAP_POPULATE
2372 int flags;
2373 #endif
2374 unsigned long hpagesize;
2375
2376 hpagesize = gethugepagesize(path);
2377 if (!hpagesize) {
2378 return NULL;
2379 }
2380
2381 if (memory < hpagesize) {
2382 return NULL;
2383 }
2384
2385 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2386 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2387 return NULL;
2388 }
2389
2390 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2391 return NULL;
2392 }
2393
2394 fd = mkstemp(filename);
2395 if (fd < 0) {
2396 perror("unable to create backing store for hugepages");
2397 free(filename);
2398 return NULL;
2399 }
2400 unlink(filename);
2401 free(filename);
2402
2403 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2404
2405 /*
2406 * ftruncate is not supported by hugetlbfs in older
2407 * hosts, so don't bother bailing out on errors.
2408 * If anything goes wrong with it under other filesystems,
2409 * mmap will fail.
2410 */
2411 if (ftruncate(fd, memory))
2412 perror("ftruncate");
2413
2414 #ifdef MAP_POPULATE
2415 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2416 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2417 * to sidestep this quirk.
2418 */
2419 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2420 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2421 #else
2422 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2423 #endif
2424 if (area == MAP_FAILED) {
2425 perror("file_ram_alloc: can't mmap RAM pages");
2426 close(fd);
2427 return (NULL);
2428 }
2429 block->fd = fd;
2430 return area;
2431 }
2432 #endif
2433
2434 static ram_addr_t find_ram_offset(ram_addr_t size)
2435 {
2436 RAMBlock *block, *next_block;
2437 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2438
2439 if (QLIST_EMPTY(&ram_list.blocks))
2440 return 0;
2441
2442 QLIST_FOREACH(block, &ram_list.blocks, next) {
2443 ram_addr_t end, next = RAM_ADDR_MAX;
2444
2445 end = block->offset + block->length;
2446
2447 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2448 if (next_block->offset >= end) {
2449 next = MIN(next, next_block->offset);
2450 }
2451 }
2452 if (next - end >= size && next - end < mingap) {
2453 offset = end;
2454 mingap = next - end;
2455 }
2456 }
2457
2458 if (offset == RAM_ADDR_MAX) {
2459 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2460 (uint64_t)size);
2461 abort();
2462 }
2463
2464 return offset;
2465 }
2466
2467 static ram_addr_t last_ram_offset(void)
2468 {
2469 RAMBlock *block;
2470 ram_addr_t last = 0;
2471
2472 QLIST_FOREACH(block, &ram_list.blocks, next)
2473 last = MAX(last, block->offset + block->length);
2474
2475 return last;
2476 }
2477
2478 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2479 {
2480 RAMBlock *new_block, *block;
2481
2482 new_block = NULL;
2483 QLIST_FOREACH(block, &ram_list.blocks, next) {
2484 if (block->offset == addr) {
2485 new_block = block;
2486 break;
2487 }
2488 }
2489 assert(new_block);
2490 assert(!new_block->idstr[0]);
2491
2492 if (dev) {
2493 char *id = qdev_get_dev_path(dev);
2494 if (id) {
2495 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2496 g_free(id);
2497 }
2498 }
2499 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2500
2501 QLIST_FOREACH(block, &ram_list.blocks, next) {
2502 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2503 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2504 new_block->idstr);
2505 abort();
2506 }
2507 }
2508 }
2509
2510 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2511 MemoryRegion *mr)
2512 {
2513 RAMBlock *new_block;
2514
2515 size = TARGET_PAGE_ALIGN(size);
2516 new_block = g_malloc0(sizeof(*new_block));
2517
2518 new_block->mr = mr;
2519 new_block->offset = find_ram_offset(size);
2520 if (host) {
2521 new_block->host = host;
2522 new_block->flags |= RAM_PREALLOC_MASK;
2523 } else {
2524 if (mem_path) {
2525 #if defined (__linux__) && !defined(TARGET_S390X)
2526 new_block->host = file_ram_alloc(new_block, size, mem_path);
2527 if (!new_block->host) {
2528 new_block->host = qemu_vmalloc(size);
2529 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2530 }
2531 #else
2532 fprintf(stderr, "-mem-path option unsupported\n");
2533 exit(1);
2534 #endif
2535 } else {
2536 if (xen_enabled()) {
2537 xen_ram_alloc(new_block->offset, size, mr);
2538 } else if (kvm_enabled()) {
2539 /* some s390/kvm configurations have special constraints */
2540 new_block->host = kvm_vmalloc(size);
2541 } else {
2542 new_block->host = qemu_vmalloc(size);
2543 }
2544 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2545 }
2546 }
2547 new_block->length = size;
2548
2549 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2550
2551 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2552 last_ram_offset() >> TARGET_PAGE_BITS);
2553 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2554
2555 if (kvm_enabled())
2556 kvm_setup_guest_memory(new_block->host, size);
2557
2558 return new_block->offset;
2559 }
2560
2561 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2562 {
2563 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2564 }
2565
2566 void qemu_ram_free_from_ptr(ram_addr_t addr)
2567 {
2568 RAMBlock *block;
2569
2570 QLIST_FOREACH(block, &ram_list.blocks, next) {
2571 if (addr == block->offset) {
2572 QLIST_REMOVE(block, next);
2573 g_free(block);
2574 return;
2575 }
2576 }
2577 }
2578
2579 void qemu_ram_free(ram_addr_t addr)
2580 {
2581 RAMBlock *block;
2582
2583 QLIST_FOREACH(block, &ram_list.blocks, next) {
2584 if (addr == block->offset) {
2585 QLIST_REMOVE(block, next);
2586 if (block->flags & RAM_PREALLOC_MASK) {
2587 ;
2588 } else if (mem_path) {
2589 #if defined (__linux__) && !defined(TARGET_S390X)
2590 if (block->fd) {
2591 munmap(block->host, block->length);
2592 close(block->fd);
2593 } else {
2594 qemu_vfree(block->host);
2595 }
2596 #else
2597 abort();
2598 #endif
2599 } else {
2600 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2601 munmap(block->host, block->length);
2602 #else
2603 if (xen_enabled()) {
2604 xen_invalidate_map_cache_entry(block->host);
2605 } else {
2606 qemu_vfree(block->host);
2607 }
2608 #endif
2609 }
2610 g_free(block);
2611 return;
2612 }
2613 }
2614
2615 }
2616
2617 #ifndef _WIN32
2618 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2619 {
2620 RAMBlock *block;
2621 ram_addr_t offset;
2622 int flags;
2623 void *area, *vaddr;
2624
2625 QLIST_FOREACH(block, &ram_list.blocks, next) {
2626 offset = addr - block->offset;
2627 if (offset < block->length) {
2628 vaddr = block->host + offset;
2629 if (block->flags & RAM_PREALLOC_MASK) {
2630 ;
2631 } else {
2632 flags = MAP_FIXED;
2633 munmap(vaddr, length);
2634 if (mem_path) {
2635 #if defined(__linux__) && !defined(TARGET_S390X)
2636 if (block->fd) {
2637 #ifdef MAP_POPULATE
2638 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2639 MAP_PRIVATE;
2640 #else
2641 flags |= MAP_PRIVATE;
2642 #endif
2643 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2644 flags, block->fd, offset);
2645 } else {
2646 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2647 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2648 flags, -1, 0);
2649 }
2650 #else
2651 abort();
2652 #endif
2653 } else {
2654 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2655 flags |= MAP_SHARED | MAP_ANONYMOUS;
2656 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2657 flags, -1, 0);
2658 #else
2659 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2660 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2661 flags, -1, 0);
2662 #endif
2663 }
2664 if (area != vaddr) {
2665 fprintf(stderr, "Could not remap addr: "
2666 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2667 length, addr);
2668 exit(1);
2669 }
2670 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2671 }
2672 return;
2673 }
2674 }
2675 }
2676 #endif /* !_WIN32 */
2677
2678 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2679 With the exception of the softmmu code in this file, this should
2680 only be used for local memory (e.g. video ram) that the device owns,
2681 and knows it isn't going to access beyond the end of the block.
2682
2683 It should not be used for general purpose DMA.
2684 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2685 */
2686 void *qemu_get_ram_ptr(ram_addr_t addr)
2687 {
2688 RAMBlock *block;
2689
2690 QLIST_FOREACH(block, &ram_list.blocks, next) {
2691 if (addr - block->offset < block->length) {
2692 /* Move this entry to to start of the list. */
2693 if (block != QLIST_FIRST(&ram_list.blocks)) {
2694 QLIST_REMOVE(block, next);
2695 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2696 }
2697 if (xen_enabled()) {
2698 /* We need to check if the requested address is in the RAM
2699 * because we don't want to map the entire memory in QEMU.
2700 * In that case just map until the end of the page.
2701 */
2702 if (block->offset == 0) {
2703 return xen_map_cache(addr, 0, 0);
2704 } else if (block->host == NULL) {
2705 block->host =
2706 xen_map_cache(block->offset, block->length, 1);
2707 }
2708 }
2709 return block->host + (addr - block->offset);
2710 }
2711 }
2712
2713 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2714 abort();
2715
2716 return NULL;
2717 }
2718
2719 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2720 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2721 */
2722 void *qemu_safe_ram_ptr(ram_addr_t addr)
2723 {
2724 RAMBlock *block;
2725
2726 QLIST_FOREACH(block, &ram_list.blocks, next) {
2727 if (addr - block->offset < block->length) {
2728 if (xen_enabled()) {
2729 /* We need to check if the requested address is in the RAM
2730 * because we don't want to map the entire memory in QEMU.
2731 * In that case just map until the end of the page.
2732 */
2733 if (block->offset == 0) {
2734 return xen_map_cache(addr, 0, 0);
2735 } else if (block->host == NULL) {
2736 block->host =
2737 xen_map_cache(block->offset, block->length, 1);
2738 }
2739 }
2740 return block->host + (addr - block->offset);
2741 }
2742 }
2743
2744 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2745 abort();
2746
2747 return NULL;
2748 }
2749
2750 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2751 * but takes a size argument */
2752 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2753 {
2754 if (*size == 0) {
2755 return NULL;
2756 }
2757 if (xen_enabled()) {
2758 return xen_map_cache(addr, *size, 1);
2759 } else {
2760 RAMBlock *block;
2761
2762 QLIST_FOREACH(block, &ram_list.blocks, next) {
2763 if (addr - block->offset < block->length) {
2764 if (addr - block->offset + *size > block->length)
2765 *size = block->length - addr + block->offset;
2766 return block->host + (addr - block->offset);
2767 }
2768 }
2769
2770 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2771 abort();
2772 }
2773 }
2774
2775 void qemu_put_ram_ptr(void *addr)
2776 {
2777 trace_qemu_put_ram_ptr(addr);
2778 }
2779
2780 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2781 {
2782 RAMBlock *block;
2783 uint8_t *host = ptr;
2784
2785 if (xen_enabled()) {
2786 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2787 return 0;
2788 }
2789
2790 QLIST_FOREACH(block, &ram_list.blocks, next) {
2791 /* This case append when the block is not mapped. */
2792 if (block->host == NULL) {
2793 continue;
2794 }
2795 if (host - block->host < block->length) {
2796 *ram_addr = block->offset + (host - block->host);
2797 return 0;
2798 }
2799 }
2800
2801 return -1;
2802 }
2803
2804 /* Some of the softmmu routines need to translate from a host pointer
2805 (typically a TLB entry) back to a ram offset. */
2806 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2807 {
2808 ram_addr_t ram_addr;
2809
2810 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2811 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2812 abort();
2813 }
2814 return ram_addr;
2815 }
2816
2817 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2818 unsigned size)
2819 {
2820 #ifdef DEBUG_UNASSIGNED
2821 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2822 #endif
2823 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2824 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2825 #endif
2826 return 0;
2827 }
2828
2829 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2830 uint64_t val, unsigned size)
2831 {
2832 #ifdef DEBUG_UNASSIGNED
2833 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2834 #endif
2835 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2836 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2837 #endif
2838 }
2839
2840 static const MemoryRegionOps unassigned_mem_ops = {
2841 .read = unassigned_mem_read,
2842 .write = unassigned_mem_write,
2843 .endianness = DEVICE_NATIVE_ENDIAN,
2844 };
2845
2846 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2847 unsigned size)
2848 {
2849 abort();
2850 }
2851
2852 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2853 uint64_t value, unsigned size)
2854 {
2855 abort();
2856 }
2857
2858 static const MemoryRegionOps error_mem_ops = {
2859 .read = error_mem_read,
2860 .write = error_mem_write,
2861 .endianness = DEVICE_NATIVE_ENDIAN,
2862 };
2863
2864 static const MemoryRegionOps rom_mem_ops = {
2865 .read = error_mem_read,
2866 .write = unassigned_mem_write,
2867 .endianness = DEVICE_NATIVE_ENDIAN,
2868 };
2869
2870 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2871 uint64_t val, unsigned size)
2872 {
2873 int dirty_flags;
2874 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2875 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2876 #if !defined(CONFIG_USER_ONLY)
2877 tb_invalidate_phys_page_fast(ram_addr, size);
2878 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2879 #endif
2880 }
2881 switch (size) {
2882 case 1:
2883 stb_p(qemu_get_ram_ptr(ram_addr), val);
2884 break;
2885 case 2:
2886 stw_p(qemu_get_ram_ptr(ram_addr), val);
2887 break;
2888 case 4:
2889 stl_p(qemu_get_ram_ptr(ram_addr), val);
2890 break;
2891 default:
2892 abort();
2893 }
2894 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2895 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2896 /* we remove the notdirty callback only if the code has been
2897 flushed */
2898 if (dirty_flags == 0xff)
2899 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2900 }
2901
2902 static const MemoryRegionOps notdirty_mem_ops = {
2903 .read = error_mem_read,
2904 .write = notdirty_mem_write,
2905 .endianness = DEVICE_NATIVE_ENDIAN,
2906 };
2907
2908 /* Generate a debug exception if a watchpoint has been hit. */
2909 static void check_watchpoint(int offset, int len_mask, int flags)
2910 {
2911 CPUArchState *env = cpu_single_env;
2912 target_ulong pc, cs_base;
2913 TranslationBlock *tb;
2914 target_ulong vaddr;
2915 CPUWatchpoint *wp;
2916 int cpu_flags;
2917
2918 if (env->watchpoint_hit) {
2919 /* We re-entered the check after replacing the TB. Now raise
2920 * the debug interrupt so that is will trigger after the
2921 * current instruction. */
2922 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2923 return;
2924 }
2925 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2926 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2927 if ((vaddr == (wp->vaddr & len_mask) ||
2928 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2929 wp->flags |= BP_WATCHPOINT_HIT;
2930 if (!env->watchpoint_hit) {
2931 env->watchpoint_hit = wp;
2932 tb = tb_find_pc(env->mem_io_pc);
2933 if (!tb) {
2934 cpu_abort(env, "check_watchpoint: could not find TB for "
2935 "pc=%p", (void *)env->mem_io_pc);
2936 }
2937 cpu_restore_state(tb, env, env->mem_io_pc);
2938 tb_phys_invalidate(tb, -1);
2939 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2940 env->exception_index = EXCP_DEBUG;
2941 cpu_loop_exit(env);
2942 } else {
2943 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2944 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2945 cpu_resume_from_signal(env, NULL);
2946 }
2947 }
2948 } else {
2949 wp->flags &= ~BP_WATCHPOINT_HIT;
2950 }
2951 }
2952 }
2953
2954 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2955 so these check for a hit then pass through to the normal out-of-line
2956 phys routines. */
2957 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2958 unsigned size)
2959 {
2960 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2961 switch (size) {
2962 case 1: return ldub_phys(addr);
2963 case 2: return lduw_phys(addr);
2964 case 4: return ldl_phys(addr);
2965 default: abort();
2966 }
2967 }
2968
2969 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2970 uint64_t val, unsigned size)
2971 {
2972 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2973 switch (size) {
2974 case 1:
2975 stb_phys(addr, val);
2976 break;
2977 case 2:
2978 stw_phys(addr, val);
2979 break;
2980 case 4:
2981 stl_phys(addr, val);
2982 break;
2983 default: abort();
2984 }
2985 }
2986
2987 static const MemoryRegionOps watch_mem_ops = {
2988 .read = watch_mem_read,
2989 .write = watch_mem_write,
2990 .endianness = DEVICE_NATIVE_ENDIAN,
2991 };
2992
2993 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
2994 unsigned len)
2995 {
2996 subpage_t *mmio = opaque;
2997 unsigned int idx = SUBPAGE_IDX(addr);
2998 MemoryRegionSection *section;
2999 #if defined(DEBUG_SUBPAGE)
3000 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3001 mmio, len, addr, idx);
3002 #endif
3003
3004 section = &phys_sections[mmio->sub_section[idx]];
3005 addr += mmio->base;
3006 addr -= section->offset_within_address_space;
3007 addr += section->offset_within_region;
3008 return io_mem_read(section->mr, addr, len);
3009 }
3010
3011 static void subpage_write(void *opaque, target_phys_addr_t addr,
3012 uint64_t value, unsigned len)
3013 {
3014 subpage_t *mmio = opaque;
3015 unsigned int idx = SUBPAGE_IDX(addr);
3016 MemoryRegionSection *section;
3017 #if defined(DEBUG_SUBPAGE)
3018 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3019 " idx %d value %"PRIx64"\n",
3020 __func__, mmio, len, addr, idx, value);
3021 #endif
3022
3023 section = &phys_sections[mmio->sub_section[idx]];
3024 addr += mmio->base;
3025 addr -= section->offset_within_address_space;
3026 addr += section->offset_within_region;
3027 io_mem_write(section->mr, addr, value, len);
3028 }
3029
3030 static const MemoryRegionOps subpage_ops = {
3031 .read = subpage_read,
3032 .write = subpage_write,
3033 .endianness = DEVICE_NATIVE_ENDIAN,
3034 };
3035
3036 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3037 unsigned size)
3038 {
3039 ram_addr_t raddr = addr;
3040 void *ptr = qemu_get_ram_ptr(raddr);
3041 switch (size) {
3042 case 1: return ldub_p(ptr);
3043 case 2: return lduw_p(ptr);
3044 case 4: return ldl_p(ptr);
3045 default: abort();
3046 }
3047 }
3048
3049 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3050 uint64_t value, unsigned size)
3051 {
3052 ram_addr_t raddr = addr;
3053 void *ptr = qemu_get_ram_ptr(raddr);
3054 switch (size) {
3055 case 1: return stb_p(ptr, value);
3056 case 2: return stw_p(ptr, value);
3057 case 4: return stl_p(ptr, value);
3058 default: abort();
3059 }
3060 }
3061
3062 static const MemoryRegionOps subpage_ram_ops = {
3063 .read = subpage_ram_read,
3064 .write = subpage_ram_write,
3065 .endianness = DEVICE_NATIVE_ENDIAN,
3066 };
3067
3068 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3069 uint16_t section)
3070 {
3071 int idx, eidx;
3072
3073 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3074 return -1;
3075 idx = SUBPAGE_IDX(start);
3076 eidx = SUBPAGE_IDX(end);
3077 #if defined(DEBUG_SUBPAGE)
3078 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3079 mmio, start, end, idx, eidx, memory);
3080 #endif
3081 if (memory_region_is_ram(phys_sections[section].mr)) {
3082 MemoryRegionSection new_section = phys_sections[section];
3083 new_section.mr = &io_mem_subpage_ram;
3084 section = phys_section_add(&new_section);
3085 }
3086 for (; idx <= eidx; idx++) {
3087 mmio->sub_section[idx] = section;
3088 }
3089
3090 return 0;
3091 }
3092
3093 static subpage_t *subpage_init(target_phys_addr_t base)
3094 {
3095 subpage_t *mmio;
3096
3097 mmio = g_malloc0(sizeof(subpage_t));
3098
3099 mmio->base = base;
3100 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3101 "subpage", TARGET_PAGE_SIZE);
3102 mmio->iomem.subpage = true;
3103 #if defined(DEBUG_SUBPAGE)
3104 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3105 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3106 #endif
3107 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3108
3109 return mmio;
3110 }
3111
3112 static uint16_t dummy_section(MemoryRegion *mr)
3113 {
3114 MemoryRegionSection section = {
3115 .mr = mr,
3116 .offset_within_address_space = 0,
3117 .offset_within_region = 0,
3118 .size = UINT64_MAX,
3119 };
3120
3121 return phys_section_add(&section);
3122 }
3123
3124 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3125 {
3126 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3127 }
3128
3129 static void io_mem_init(void)
3130 {
3131 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3132 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3133 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3134 "unassigned", UINT64_MAX);
3135 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3136 "notdirty", UINT64_MAX);
3137 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3138 "subpage-ram", UINT64_MAX);
3139 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3140 "watch", UINT64_MAX);
3141 }
3142
3143 static void core_begin(MemoryListener *listener)
3144 {
3145 destroy_all_mappings();
3146 phys_sections_clear();
3147 phys_map.ptr = PHYS_MAP_NODE_NIL;
3148 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3149 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3150 phys_section_rom = dummy_section(&io_mem_rom);
3151 phys_section_watch = dummy_section(&io_mem_watch);
3152 }
3153
3154 static void core_commit(MemoryListener *listener)
3155 {
3156 CPUArchState *env;
3157
3158 /* since each CPU stores ram addresses in its TLB cache, we must
3159 reset the modified entries */
3160 /* XXX: slow ! */
3161 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3162 tlb_flush(env, 1);
3163 }
3164 }
3165
3166 static void core_region_add(MemoryListener *listener,
3167 MemoryRegionSection *section)
3168 {
3169 cpu_register_physical_memory_log(section, section->readonly);
3170 }
3171
3172 static void core_region_del(MemoryListener *listener,
3173 MemoryRegionSection *section)
3174 {
3175 }
3176
3177 static void core_region_nop(MemoryListener *listener,
3178 MemoryRegionSection *section)
3179 {
3180 cpu_register_physical_memory_log(section, section->readonly);
3181 }
3182
3183 static void core_log_start(MemoryListener *listener,
3184 MemoryRegionSection *section)
3185 {
3186 }
3187
3188 static void core_log_stop(MemoryListener *listener,
3189 MemoryRegionSection *section)
3190 {
3191 }
3192
3193 static void core_log_sync(MemoryListener *listener,
3194 MemoryRegionSection *section)
3195 {
3196 }
3197
3198 static void core_log_global_start(MemoryListener *listener)
3199 {
3200 cpu_physical_memory_set_dirty_tracking(1);
3201 }
3202
3203 static void core_log_global_stop(MemoryListener *listener)
3204 {
3205 cpu_physical_memory_set_dirty_tracking(0);
3206 }
3207
3208 static void core_eventfd_add(MemoryListener *listener,
3209 MemoryRegionSection *section,
3210 bool match_data, uint64_t data, EventNotifier *e)
3211 {
3212 }
3213
3214 static void core_eventfd_del(MemoryListener *listener,
3215 MemoryRegionSection *section,
3216 bool match_data, uint64_t data, EventNotifier *e)
3217 {
3218 }
3219
3220 static void io_begin(MemoryListener *listener)
3221 {
3222 }
3223
3224 static void io_commit(MemoryListener *listener)
3225 {
3226 }
3227
3228 static void io_region_add(MemoryListener *listener,
3229 MemoryRegionSection *section)
3230 {
3231 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3232
3233 mrio->mr = section->mr;
3234 mrio->offset = section->offset_within_region;
3235 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3236 section->offset_within_address_space, section->size);
3237 ioport_register(&mrio->iorange);
3238 }
3239
3240 static void io_region_del(MemoryListener *listener,
3241 MemoryRegionSection *section)
3242 {
3243 isa_unassign_ioport(section->offset_within_address_space, section->size);
3244 }
3245
3246 static void io_region_nop(MemoryListener *listener,
3247 MemoryRegionSection *section)
3248 {
3249 }
3250
3251 static void io_log_start(MemoryListener *listener,
3252 MemoryRegionSection *section)
3253 {
3254 }
3255
3256 static void io_log_stop(MemoryListener *listener,
3257 MemoryRegionSection *section)
3258 {
3259 }
3260
3261 static void io_log_sync(MemoryListener *listener,
3262 MemoryRegionSection *section)
3263 {
3264 }
3265
3266 static void io_log_global_start(MemoryListener *listener)
3267 {
3268 }
3269
3270 static void io_log_global_stop(MemoryListener *listener)
3271 {
3272 }
3273
3274 static void io_eventfd_add(MemoryListener *listener,
3275 MemoryRegionSection *section,
3276 bool match_data, uint64_t data, EventNotifier *e)
3277 {
3278 }
3279
3280 static void io_eventfd_del(MemoryListener *listener,
3281 MemoryRegionSection *section,
3282 bool match_data, uint64_t data, EventNotifier *e)
3283 {
3284 }
3285
3286 static MemoryListener core_memory_listener = {
3287 .begin = core_begin,
3288 .commit = core_commit,
3289 .region_add = core_region_add,
3290 .region_del = core_region_del,
3291 .region_nop = core_region_nop,
3292 .log_start = core_log_start,
3293 .log_stop = core_log_stop,
3294 .log_sync = core_log_sync,
3295 .log_global_start = core_log_global_start,
3296 .log_global_stop = core_log_global_stop,
3297 .eventfd_add = core_eventfd_add,
3298 .eventfd_del = core_eventfd_del,
3299 .priority = 0,
3300 };
3301
3302 static MemoryListener io_memory_listener = {
3303 .begin = io_begin,
3304 .commit = io_commit,
3305 .region_add = io_region_add,
3306 .region_del = io_region_del,
3307 .region_nop = io_region_nop,
3308 .log_start = io_log_start,
3309 .log_stop = io_log_stop,
3310 .log_sync = io_log_sync,
3311 .log_global_start = io_log_global_start,
3312 .log_global_stop = io_log_global_stop,
3313 .eventfd_add = io_eventfd_add,
3314 .eventfd_del = io_eventfd_del,
3315 .priority = 0,
3316 };
3317
3318 static void memory_map_init(void)
3319 {
3320 system_memory = g_malloc(sizeof(*system_memory));
3321 memory_region_init(system_memory, "system", INT64_MAX);
3322 set_system_memory_map(system_memory);
3323
3324 system_io = g_malloc(sizeof(*system_io));
3325 memory_region_init(system_io, "io", 65536);
3326 set_system_io_map(system_io);
3327
3328 memory_listener_register(&core_memory_listener, system_memory);
3329 memory_listener_register(&io_memory_listener, system_io);
3330 }
3331
3332 MemoryRegion *get_system_memory(void)
3333 {
3334 return system_memory;
3335 }
3336
3337 MemoryRegion *get_system_io(void)
3338 {
3339 return system_io;
3340 }
3341
3342 #endif /* !defined(CONFIG_USER_ONLY) */
3343
3344 /* physical memory access (slow version, mainly for debug) */
3345 #if defined(CONFIG_USER_ONLY)
3346 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3347 uint8_t *buf, int len, int is_write)
3348 {
3349 int l, flags;
3350 target_ulong page;
3351 void * p;
3352
3353 while (len > 0) {
3354 page = addr & TARGET_PAGE_MASK;
3355 l = (page + TARGET_PAGE_SIZE) - addr;
3356 if (l > len)
3357 l = len;
3358 flags = page_get_flags(page);
3359 if (!(flags & PAGE_VALID))
3360 return -1;
3361 if (is_write) {
3362 if (!(flags & PAGE_WRITE))
3363 return -1;
3364 /* XXX: this code should not depend on lock_user */
3365 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3366 return -1;
3367 memcpy(p, buf, l);
3368 unlock_user(p, addr, l);
3369 } else {
3370 if (!(flags & PAGE_READ))
3371 return -1;
3372 /* XXX: this code should not depend on lock_user */
3373 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3374 return -1;
3375 memcpy(buf, p, l);
3376 unlock_user(p, addr, 0);
3377 }
3378 len -= l;
3379 buf += l;
3380 addr += l;
3381 }
3382 return 0;
3383 }
3384
3385 #else
3386 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3387 int len, int is_write)
3388 {
3389 int l;
3390 uint8_t *ptr;
3391 uint32_t val;
3392 target_phys_addr_t page;
3393 MemoryRegionSection *section;
3394
3395 while (len > 0) {
3396 page = addr & TARGET_PAGE_MASK;
3397 l = (page + TARGET_PAGE_SIZE) - addr;
3398 if (l > len)
3399 l = len;
3400 section = phys_page_find(page >> TARGET_PAGE_BITS);
3401
3402 if (is_write) {
3403 if (!memory_region_is_ram(section->mr)) {
3404 target_phys_addr_t addr1;
3405 addr1 = memory_region_section_addr(section, addr);
3406 /* XXX: could force cpu_single_env to NULL to avoid
3407 potential bugs */
3408 if (l >= 4 && ((addr1 & 3) == 0)) {
3409 /* 32 bit write access */
3410 val = ldl_p(buf);
3411 io_mem_write(section->mr, addr1, val, 4);
3412 l = 4;
3413 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3414 /* 16 bit write access */
3415 val = lduw_p(buf);
3416 io_mem_write(section->mr, addr1, val, 2);
3417 l = 2;
3418 } else {
3419 /* 8 bit write access */
3420 val = ldub_p(buf);
3421 io_mem_write(section->mr, addr1, val, 1);
3422 l = 1;
3423 }
3424 } else if (!section->readonly) {
3425 ram_addr_t addr1;
3426 addr1 = memory_region_get_ram_addr(section->mr)
3427 + memory_region_section_addr(section, addr);
3428 /* RAM case */
3429 ptr = qemu_get_ram_ptr(addr1);
3430 memcpy(ptr, buf, l);
3431 if (!cpu_physical_memory_is_dirty(addr1)) {
3432 /* invalidate code */
3433 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3434 /* set dirty bit */
3435 cpu_physical_memory_set_dirty_flags(
3436 addr1, (0xff & ~CODE_DIRTY_FLAG));
3437 }
3438 qemu_put_ram_ptr(ptr);
3439 }
3440 } else {
3441 if (!(memory_region_is_ram(section->mr) ||
3442 memory_region_is_romd(section->mr))) {
3443 target_phys_addr_t addr1;
3444 /* I/O case */
3445 addr1 = memory_region_section_addr(section, addr);
3446 if (l >= 4 && ((addr1 & 3) == 0)) {
3447 /* 32 bit read access */
3448 val = io_mem_read(section->mr, addr1, 4);
3449 stl_p(buf, val);
3450 l = 4;
3451 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3452 /* 16 bit read access */
3453 val = io_mem_read(section->mr, addr1, 2);
3454 stw_p(buf, val);
3455 l = 2;
3456 } else {
3457 /* 8 bit read access */
3458 val = io_mem_read(section->mr, addr1, 1);
3459 stb_p(buf, val);
3460 l = 1;
3461 }
3462 } else {
3463 /* RAM case */
3464 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3465 + memory_region_section_addr(section,
3466 addr));
3467 memcpy(buf, ptr, l);
3468 qemu_put_ram_ptr(ptr);
3469 }
3470 }
3471 len -= l;
3472 buf += l;
3473 addr += l;
3474 }
3475 }
3476
3477 /* used for ROM loading : can write in RAM and ROM */
3478 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3479 const uint8_t *buf, int len)
3480 {
3481 int l;
3482 uint8_t *ptr;
3483 target_phys_addr_t page;
3484 MemoryRegionSection *section;
3485
3486 while (len > 0) {
3487 page = addr & TARGET_PAGE_MASK;
3488 l = (page + TARGET_PAGE_SIZE) - addr;
3489 if (l > len)
3490 l = len;
3491 section = phys_page_find(page >> TARGET_PAGE_BITS);
3492
3493 if (!(memory_region_is_ram(section->mr) ||
3494 memory_region_is_romd(section->mr))) {
3495 /* do nothing */
3496 } else {
3497 unsigned long addr1;
3498 addr1 = memory_region_get_ram_addr(section->mr)
3499 + memory_region_section_addr(section, addr);
3500 /* ROM/RAM case */
3501 ptr = qemu_get_ram_ptr(addr1);
3502 memcpy(ptr, buf, l);
3503 qemu_put_ram_ptr(ptr);
3504 }
3505 len -= l;
3506 buf += l;
3507 addr += l;
3508 }
3509 }
3510
3511 typedef struct {
3512 void *buffer;
3513 target_phys_addr_t addr;
3514 target_phys_addr_t len;
3515 } BounceBuffer;
3516
3517 static BounceBuffer bounce;
3518
3519 typedef struct MapClient {
3520 void *opaque;
3521 void (*callback)(void *opaque);
3522 QLIST_ENTRY(MapClient) link;
3523 } MapClient;
3524
3525 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3526 = QLIST_HEAD_INITIALIZER(map_client_list);
3527
3528 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3529 {
3530 MapClient *client = g_malloc(sizeof(*client));
3531
3532 client->opaque = opaque;
3533 client->callback = callback;
3534 QLIST_INSERT_HEAD(&map_client_list, client, link);
3535 return client;
3536 }
3537
3538 void cpu_unregister_map_client(void *_client)
3539 {
3540 MapClient *client = (MapClient *)_client;
3541
3542 QLIST_REMOVE(client, link);
3543 g_free(client);
3544 }
3545
3546 static void cpu_notify_map_clients(void)
3547 {
3548 MapClient *client;
3549
3550 while (!QLIST_EMPTY(&map_client_list)) {
3551 client = QLIST_FIRST(&map_client_list);
3552 client->callback(client->opaque);
3553 cpu_unregister_map_client(client);
3554 }
3555 }
3556
3557 /* Map a physical memory region into a host virtual address.
3558 * May map a subset of the requested range, given by and returned in *plen.
3559 * May return NULL if resources needed to perform the mapping are exhausted.
3560 * Use only for reads OR writes - not for read-modify-write operations.
3561 * Use cpu_register_map_client() to know when retrying the map operation is
3562 * likely to succeed.
3563 */
3564 void *cpu_physical_memory_map(target_phys_addr_t addr,
3565 target_phys_addr_t *plen,
3566 int is_write)
3567 {
3568 target_phys_addr_t len = *plen;
3569 target_phys_addr_t todo = 0;
3570 int l;
3571 target_phys_addr_t page;
3572 MemoryRegionSection *section;
3573 ram_addr_t raddr = RAM_ADDR_MAX;
3574 ram_addr_t rlen;
3575 void *ret;
3576
3577 while (len > 0) {
3578 page = addr & TARGET_PAGE_MASK;
3579 l = (page + TARGET_PAGE_SIZE) - addr;
3580 if (l > len)
3581 l = len;
3582 section = phys_page_find(page >> TARGET_PAGE_BITS);
3583
3584 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3585 if (todo || bounce.buffer) {
3586 break;
3587 }
3588 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3589 bounce.addr = addr;
3590 bounce.len = l;
3591 if (!is_write) {
3592 cpu_physical_memory_read(addr, bounce.buffer, l);
3593 }
3594
3595 *plen = l;
3596 return bounce.buffer;
3597 }
3598 if (!todo) {
3599 raddr = memory_region_get_ram_addr(section->mr)
3600 + memory_region_section_addr(section, addr);
3601 }
3602
3603 len -= l;
3604 addr += l;
3605 todo += l;
3606 }
3607 rlen = todo;
3608 ret = qemu_ram_ptr_length(raddr, &rlen);
3609 *plen = rlen;
3610 return ret;
3611 }
3612
3613 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3614 * Will also mark the memory as dirty if is_write == 1. access_len gives
3615 * the amount of memory that was actually read or written by the caller.
3616 */
3617 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3618 int is_write, target_phys_addr_t access_len)
3619 {
3620 if (buffer != bounce.buffer) {
3621 if (is_write) {
3622 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3623 while (access_len) {
3624 unsigned l;
3625 l = TARGET_PAGE_SIZE;
3626 if (l > access_len)
3627 l = access_len;
3628 if (!cpu_physical_memory_is_dirty(addr1)) {
3629 /* invalidate code */
3630 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3631 /* set dirty bit */
3632 cpu_physical_memory_set_dirty_flags(
3633 addr1, (0xff & ~CODE_DIRTY_FLAG));
3634 }
3635 addr1 += l;
3636 access_len -= l;
3637 }
3638 }
3639 if (xen_enabled()) {
3640 xen_invalidate_map_cache_entry(buffer);
3641 }
3642 return;
3643 }
3644 if (is_write) {
3645 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3646 }
3647 qemu_vfree(bounce.buffer);
3648 bounce.buffer = NULL;
3649 cpu_notify_map_clients();
3650 }
3651
3652 /* warning: addr must be aligned */
3653 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3654 enum device_endian endian)
3655 {
3656 uint8_t *ptr;
3657 uint32_t val;
3658 MemoryRegionSection *section;
3659
3660 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3661
3662 if (!(memory_region_is_ram(section->mr) ||
3663 memory_region_is_romd(section->mr))) {
3664 /* I/O case */
3665 addr = memory_region_section_addr(section, addr);
3666 val = io_mem_read(section->mr, addr, 4);
3667 #if defined(TARGET_WORDS_BIGENDIAN)
3668 if (endian == DEVICE_LITTLE_ENDIAN) {
3669 val = bswap32(val);
3670 }
3671 #else
3672 if (endian == DEVICE_BIG_ENDIAN) {
3673 val = bswap32(val);
3674 }
3675 #endif
3676 } else {
3677 /* RAM case */
3678 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3679 & TARGET_PAGE_MASK)
3680 + memory_region_section_addr(section, addr));
3681 switch (endian) {
3682 case DEVICE_LITTLE_ENDIAN:
3683 val = ldl_le_p(ptr);
3684 break;
3685 case DEVICE_BIG_ENDIAN:
3686 val = ldl_be_p(ptr);
3687 break;
3688 default:
3689 val = ldl_p(ptr);
3690 break;
3691 }
3692 }
3693 return val;
3694 }
3695
3696 uint32_t ldl_phys(target_phys_addr_t addr)
3697 {
3698 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3699 }
3700
3701 uint32_t ldl_le_phys(target_phys_addr_t addr)
3702 {
3703 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3704 }
3705
3706 uint32_t ldl_be_phys(target_phys_addr_t addr)
3707 {
3708 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3709 }
3710
3711 /* warning: addr must be aligned */
3712 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3713 enum device_endian endian)
3714 {
3715 uint8_t *ptr;
3716 uint64_t val;
3717 MemoryRegionSection *section;
3718
3719 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3720
3721 if (!(memory_region_is_ram(section->mr) ||
3722 memory_region_is_romd(section->mr))) {
3723 /* I/O case */
3724 addr = memory_region_section_addr(section, addr);
3725
3726 /* XXX This is broken when device endian != cpu endian.
3727 Fix and add "endian" variable check */
3728 #ifdef TARGET_WORDS_BIGENDIAN
3729 val = io_mem_read(section->mr, addr, 4) << 32;
3730 val |= io_mem_read(section->mr, addr + 4, 4);
3731 #else
3732 val = io_mem_read(section->mr, addr, 4);
3733 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3734 #endif
3735 } else {
3736 /* RAM case */
3737 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3738 & TARGET_PAGE_MASK)
3739 + memory_region_section_addr(section, addr));
3740 switch (endian) {
3741 case DEVICE_LITTLE_ENDIAN:
3742 val = ldq_le_p(ptr);
3743 break;
3744 case DEVICE_BIG_ENDIAN:
3745 val = ldq_be_p(ptr);
3746 break;
3747 default:
3748 val = ldq_p(ptr);
3749 break;
3750 }
3751 }
3752 return val;
3753 }
3754
3755 uint64_t ldq_phys(target_phys_addr_t addr)
3756 {
3757 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3758 }
3759
3760 uint64_t ldq_le_phys(target_phys_addr_t addr)
3761 {
3762 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3763 }
3764
3765 uint64_t ldq_be_phys(target_phys_addr_t addr)
3766 {
3767 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3768 }
3769
3770 /* XXX: optimize */
3771 uint32_t ldub_phys(target_phys_addr_t addr)
3772 {
3773 uint8_t val;
3774 cpu_physical_memory_read(addr, &val, 1);
3775 return val;
3776 }
3777
3778 /* warning: addr must be aligned */
3779 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3780 enum device_endian endian)
3781 {
3782 uint8_t *ptr;
3783 uint64_t val;
3784 MemoryRegionSection *section;
3785
3786 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3787
3788 if (!(memory_region_is_ram(section->mr) ||
3789 memory_region_is_romd(section->mr))) {
3790 /* I/O case */
3791 addr = memory_region_section_addr(section, addr);
3792 val = io_mem_read(section->mr, addr, 2);
3793 #if defined(TARGET_WORDS_BIGENDIAN)
3794 if (endian == DEVICE_LITTLE_ENDIAN) {
3795 val = bswap16(val);
3796 }
3797 #else
3798 if (endian == DEVICE_BIG_ENDIAN) {
3799 val = bswap16(val);
3800 }
3801 #endif
3802 } else {
3803 /* RAM case */
3804 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3805 & TARGET_PAGE_MASK)
3806 + memory_region_section_addr(section, addr));
3807 switch (endian) {
3808 case DEVICE_LITTLE_ENDIAN:
3809 val = lduw_le_p(ptr);
3810 break;
3811 case DEVICE_BIG_ENDIAN:
3812 val = lduw_be_p(ptr);
3813 break;
3814 default:
3815 val = lduw_p(ptr);
3816 break;
3817 }
3818 }
3819 return val;
3820 }
3821
3822 uint32_t lduw_phys(target_phys_addr_t addr)
3823 {
3824 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3825 }
3826
3827 uint32_t lduw_le_phys(target_phys_addr_t addr)
3828 {
3829 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3830 }
3831
3832 uint32_t lduw_be_phys(target_phys_addr_t addr)
3833 {
3834 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3835 }
3836
3837 /* warning: addr must be aligned. The ram page is not masked as dirty
3838 and the code inside is not invalidated. It is useful if the dirty
3839 bits are used to track modified PTEs */
3840 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3841 {
3842 uint8_t *ptr;
3843 MemoryRegionSection *section;
3844
3845 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3846
3847 if (!memory_region_is_ram(section->mr) || section->readonly) {
3848 addr = memory_region_section_addr(section, addr);
3849 if (memory_region_is_ram(section->mr)) {
3850 section = &phys_sections[phys_section_rom];
3851 }
3852 io_mem_write(section->mr, addr, val, 4);
3853 } else {
3854 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3855 & TARGET_PAGE_MASK)
3856 + memory_region_section_addr(section, addr);
3857 ptr = qemu_get_ram_ptr(addr1);
3858 stl_p(ptr, val);
3859
3860 if (unlikely(in_migration)) {
3861 if (!cpu_physical_memory_is_dirty(addr1)) {
3862 /* invalidate code */
3863 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3864 /* set dirty bit */
3865 cpu_physical_memory_set_dirty_flags(
3866 addr1, (0xff & ~CODE_DIRTY_FLAG));
3867 }
3868 }
3869 }
3870 }
3871
3872 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3873 {
3874 uint8_t *ptr;
3875 MemoryRegionSection *section;
3876
3877 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3878
3879 if (!memory_region_is_ram(section->mr) || section->readonly) {
3880 addr = memory_region_section_addr(section, addr);
3881 if (memory_region_is_ram(section->mr)) {
3882 section = &phys_sections[phys_section_rom];
3883 }
3884 #ifdef TARGET_WORDS_BIGENDIAN
3885 io_mem_write(section->mr, addr, val >> 32, 4);
3886 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3887 #else
3888 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3889 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3890 #endif
3891 } else {
3892 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3893 & TARGET_PAGE_MASK)
3894 + memory_region_section_addr(section, addr));
3895 stq_p(ptr, val);
3896 }
3897 }
3898
3899 /* warning: addr must be aligned */
3900 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3901 enum device_endian endian)
3902 {
3903 uint8_t *ptr;
3904 MemoryRegionSection *section;
3905
3906 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3907
3908 if (!memory_region_is_ram(section->mr) || section->readonly) {
3909 addr = memory_region_section_addr(section, addr);
3910 if (memory_region_is_ram(section->mr)) {
3911 section = &phys_sections[phys_section_rom];
3912 }
3913 #if defined(TARGET_WORDS_BIGENDIAN)
3914 if (endian == DEVICE_LITTLE_ENDIAN) {
3915 val = bswap32(val);
3916 }
3917 #else
3918 if (endian == DEVICE_BIG_ENDIAN) {
3919 val = bswap32(val);
3920 }
3921 #endif
3922 io_mem_write(section->mr, addr, val, 4);
3923 } else {
3924 unsigned long addr1;
3925 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3926 + memory_region_section_addr(section, addr);
3927 /* RAM case */
3928 ptr = qemu_get_ram_ptr(addr1);
3929 switch (endian) {
3930 case DEVICE_LITTLE_ENDIAN:
3931 stl_le_p(ptr, val);
3932 break;
3933 case DEVICE_BIG_ENDIAN:
3934 stl_be_p(ptr, val);
3935 break;
3936 default:
3937 stl_p(ptr, val);
3938 break;
3939 }
3940 if (!cpu_physical_memory_is_dirty(addr1)) {
3941 /* invalidate code */
3942 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3943 /* set dirty bit */
3944 cpu_physical_memory_set_dirty_flags(addr1,
3945 (0xff & ~CODE_DIRTY_FLAG));
3946 }
3947 }
3948 }
3949
3950 void stl_phys(target_phys_addr_t addr, uint32_t val)
3951 {
3952 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3953 }
3954
3955 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3956 {
3957 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3958 }
3959
3960 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3961 {
3962 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3963 }
3964
3965 /* XXX: optimize */
3966 void stb_phys(target_phys_addr_t addr, uint32_t val)
3967 {
3968 uint8_t v = val;
3969 cpu_physical_memory_write(addr, &v, 1);
3970 }
3971
3972 /* warning: addr must be aligned */
3973 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3974 enum device_endian endian)
3975 {
3976 uint8_t *ptr;
3977 MemoryRegionSection *section;
3978
3979 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3980
3981 if (!memory_region_is_ram(section->mr) || section->readonly) {
3982 addr = memory_region_section_addr(section, addr);
3983 if (memory_region_is_ram(section->mr)) {
3984 section = &phys_sections[phys_section_rom];
3985 }
3986 #if defined(TARGET_WORDS_BIGENDIAN)
3987 if (endian == DEVICE_LITTLE_ENDIAN) {
3988 val = bswap16(val);
3989 }
3990 #else
3991 if (endian == DEVICE_BIG_ENDIAN) {
3992 val = bswap16(val);
3993 }
3994 #endif
3995 io_mem_write(section->mr, addr, val, 2);
3996 } else {
3997 unsigned long addr1;
3998 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3999 + memory_region_section_addr(section, addr);
4000 /* RAM case */
4001 ptr = qemu_get_ram_ptr(addr1);
4002 switch (endian) {
4003 case DEVICE_LITTLE_ENDIAN:
4004 stw_le_p(ptr, val);
4005 break;
4006 case DEVICE_BIG_ENDIAN:
4007 stw_be_p(ptr, val);
4008 break;
4009 default:
4010 stw_p(ptr, val);
4011 break;
4012 }
4013 if (!cpu_physical_memory_is_dirty(addr1)) {
4014 /* invalidate code */
4015 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4016 /* set dirty bit */
4017 cpu_physical_memory_set_dirty_flags(addr1,
4018 (0xff & ~CODE_DIRTY_FLAG));
4019 }
4020 }
4021 }
4022
4023 void stw_phys(target_phys_addr_t addr, uint32_t val)
4024 {
4025 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4026 }
4027
4028 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4029 {
4030 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4031 }
4032
4033 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4034 {
4035 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4036 }
4037
4038 /* XXX: optimize */
4039 void stq_phys(target_phys_addr_t addr, uint64_t val)
4040 {
4041 val = tswap64(val);
4042 cpu_physical_memory_write(addr, &val, 8);
4043 }
4044
4045 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4046 {
4047 val = cpu_to_le64(val);
4048 cpu_physical_memory_write(addr, &val, 8);
4049 }
4050
4051 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4052 {
4053 val = cpu_to_be64(val);
4054 cpu_physical_memory_write(addr, &val, 8);
4055 }
4056
4057 /* virtual memory access for debug (includes writing to ROM) */
4058 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4059 uint8_t *buf, int len, int is_write)
4060 {
4061 int l;
4062 target_phys_addr_t phys_addr;
4063 target_ulong page;
4064
4065 while (len > 0) {
4066 page = addr & TARGET_PAGE_MASK;
4067 phys_addr = cpu_get_phys_page_debug(env, page);
4068 /* if no physical page mapped, return an error */
4069 if (phys_addr == -1)
4070 return -1;
4071 l = (page + TARGET_PAGE_SIZE) - addr;
4072 if (l > len)
4073 l = len;
4074 phys_addr += (addr & ~TARGET_PAGE_MASK);
4075 if (is_write)
4076 cpu_physical_memory_write_rom(phys_addr, buf, l);
4077 else
4078 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4079 len -= l;
4080 buf += l;
4081 addr += l;
4082 }
4083 return 0;
4084 }
4085 #endif
4086
4087 /* in deterministic execution mode, instructions doing device I/Os
4088 must be at the end of the TB */
4089 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4090 {
4091 TranslationBlock *tb;
4092 uint32_t n, cflags;
4093 target_ulong pc, cs_base;
4094 uint64_t flags;
4095
4096 tb = tb_find_pc(retaddr);
4097 if (!tb) {
4098 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4099 (void *)retaddr);
4100 }
4101 n = env->icount_decr.u16.low + tb->icount;
4102 cpu_restore_state(tb, env, retaddr);
4103 /* Calculate how many instructions had been executed before the fault
4104 occurred. */
4105 n = n - env->icount_decr.u16.low;
4106 /* Generate a new TB ending on the I/O insn. */
4107 n++;
4108 /* On MIPS and SH, delay slot instructions can only be restarted if
4109 they were already the first instruction in the TB. If this is not
4110 the first instruction in a TB then re-execute the preceding
4111 branch. */
4112 #if defined(TARGET_MIPS)
4113 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4114 env->active_tc.PC -= 4;
4115 env->icount_decr.u16.low++;
4116 env->hflags &= ~MIPS_HFLAG_BMASK;
4117 }
4118 #elif defined(TARGET_SH4)
4119 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4120 && n > 1) {
4121 env->pc -= 2;
4122 env->icount_decr.u16.low++;
4123 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4124 }
4125 #endif
4126 /* This should never happen. */
4127 if (n > CF_COUNT_MASK)
4128 cpu_abort(env, "TB too big during recompile");
4129
4130 cflags = n | CF_LAST_IO;
4131 pc = tb->pc;
4132 cs_base = tb->cs_base;
4133 flags = tb->flags;
4134 tb_phys_invalidate(tb, -1);
4135 /* FIXME: In theory this could raise an exception. In practice
4136 we have already translated the block once so it's probably ok. */
4137 tb_gen_code(env, pc, cs_base, flags, cflags);
4138 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4139 the first in the TB) then we end up generating a whole new TB and
4140 repeating the fault, which is horribly inefficient.
4141 Better would be to execute just this insn uncached, or generate a
4142 second new TB. */
4143 cpu_resume_from_signal(env, NULL);
4144 }
4145
4146 #if !defined(CONFIG_USER_ONLY)
4147
4148 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4149 {
4150 int i, target_code_size, max_target_code_size;
4151 int direct_jmp_count, direct_jmp2_count, cross_page;
4152 TranslationBlock *tb;
4153
4154 target_code_size = 0;
4155 max_target_code_size = 0;
4156 cross_page = 0;
4157 direct_jmp_count = 0;
4158 direct_jmp2_count = 0;
4159 for(i = 0; i < nb_tbs; i++) {
4160 tb = &tbs[i];
4161 target_code_size += tb->size;
4162 if (tb->size > max_target_code_size)
4163 max_target_code_size = tb->size;
4164 if (tb->page_addr[1] != -1)
4165 cross_page++;
4166 if (tb->tb_next_offset[0] != 0xffff) {
4167 direct_jmp_count++;
4168 if (tb->tb_next_offset[1] != 0xffff) {
4169 direct_jmp2_count++;
4170 }
4171 }
4172 }
4173 /* XXX: avoid using doubles ? */
4174 cpu_fprintf(f, "Translation buffer state:\n");
4175 cpu_fprintf(f, "gen code size %td/%ld\n",
4176 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4177 cpu_fprintf(f, "TB count %d/%d\n",
4178 nb_tbs, code_gen_max_blocks);
4179 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4180 nb_tbs ? target_code_size / nb_tbs : 0,
4181 max_target_code_size);
4182 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4183 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4184 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4185 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4186 cross_page,
4187 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4188 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4189 direct_jmp_count,
4190 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4191 direct_jmp2_count,
4192 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4193 cpu_fprintf(f, "\nStatistics:\n");
4194 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4195 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4196 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4197 tcg_dump_info(f, cpu_fprintf);
4198 }
4199
4200 /*
4201 * A helper function for the _utterly broken_ virtio device model to find out if
4202 * it's running on a big endian machine. Don't do this at home kids!
4203 */
4204 bool virtio_is_big_endian(void);
4205 bool virtio_is_big_endian(void)
4206 {
4207 #if defined(TARGET_WORDS_BIGENDIAN)
4208 return true;
4209 #else
4210 return false;
4211 #endif
4212 }
4213
4214 #endif
4215
4216 #ifndef CONFIG_USER_ONLY
4217 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4218 {
4219 MemoryRegionSection *section;
4220
4221 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4222
4223 return !(memory_region_is_ram(section->mr) ||
4224 memory_region_is_romd(section->mr));
4225 }
4226 #endif