]> git.proxmox.com Git - qemu.git/blob - exec.c
converted bit test operations to TCG
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
35
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include <qemu.h>
41 #endif
42
43 //#define DEBUG_TB_INVALIDATE
44 //#define DEBUG_FLUSH
45 //#define DEBUG_TLB
46 //#define DEBUG_UNASSIGNED
47
48 /* make various TB consistency checks */
49 //#define DEBUG_TB_CHECK
50 //#define DEBUG_TLB_CHECK
51
52 //#define DEBUG_IOPORT
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* TB consistency checks only implemented for usermode emulation. */
57 #undef DEBUG_TB_CHECK
58 #endif
59
60 /* threshold to flush the translated code buffer */
61 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - code_gen_max_block_size())
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #define MMAP_AREA_START 0x00000000
66 #define MMAP_AREA_END 0xa8000000
67
68 #if defined(TARGET_SPARC64)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 41
70 #elif defined(TARGET_SPARC)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 36
72 #elif defined(TARGET_ALPHA)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #define TARGET_VIRT_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_PPC64)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 36
81 #else
82 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83 #define TARGET_PHYS_ADDR_SPACE_BITS 32
84 #endif
85
86 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
87 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
88 int nb_tbs;
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
91
92 uint8_t code_gen_prologue[1024] __attribute__((aligned (32)));
93 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
94 uint8_t *code_gen_ptr;
95
96 ram_addr_t phys_ram_size;
97 int phys_ram_fd;
98 uint8_t *phys_ram_base;
99 uint8_t *phys_ram_dirty;
100 static ram_addr_t phys_ram_alloc_offset = 0;
101
102 CPUState *first_cpu;
103 /* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
105 CPUState *cpu_single_env;
106
107 typedef struct PageDesc {
108 /* list of TBs intersecting this ram page */
109 TranslationBlock *first_tb;
110 /* in order to optimize self modifying code, we count the number
111 of lookups we do to a given page to use a bitmap */
112 unsigned int code_write_count;
113 uint8_t *code_bitmap;
114 #if defined(CONFIG_USER_ONLY)
115 unsigned long flags;
116 #endif
117 } PageDesc;
118
119 typedef struct PhysPageDesc {
120 /* offset in host memory of the page + io_index in the low 12 bits */
121 ram_addr_t phys_offset;
122 } PhysPageDesc;
123
124 #define L2_BITS 10
125 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
126 /* XXX: this is a temporary hack for alpha target.
127 * In the future, this is to be replaced by a multi-level table
128 * to actually be able to handle the complete 64 bits address space.
129 */
130 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
131 #else
132 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
133 #endif
134
135 #define L1_SIZE (1 << L1_BITS)
136 #define L2_SIZE (1 << L2_BITS)
137
138 static void io_mem_init(void);
139
140 unsigned long qemu_real_host_page_size;
141 unsigned long qemu_host_page_bits;
142 unsigned long qemu_host_page_size;
143 unsigned long qemu_host_page_mask;
144
145 /* XXX: for system emulation, it could just be an array */
146 static PageDesc *l1_map[L1_SIZE];
147 PhysPageDesc **l1_phys_map;
148
149 /* io memory support */
150 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
151 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
152 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
153 static int io_mem_nb;
154 #if defined(CONFIG_SOFTMMU)
155 static int io_mem_watch;
156 #endif
157
158 /* log support */
159 char *logfilename = "/tmp/qemu.log";
160 FILE *logfile;
161 int loglevel;
162 static int log_append = 0;
163
164 /* statistics */
165 static int tlb_flush_count;
166 static int tb_flush_count;
167 static int tb_phys_invalidate_count;
168
169 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
170 typedef struct subpage_t {
171 target_phys_addr_t base;
172 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
173 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
174 void *opaque[TARGET_PAGE_SIZE][2][4];
175 } subpage_t;
176
177 #ifdef _WIN32
178 static void map_exec(void *addr, long size)
179 {
180 DWORD old_protect;
181 VirtualProtect(addr, size,
182 PAGE_EXECUTE_READWRITE, &old_protect);
183
184 }
185 #else
186 static void map_exec(void *addr, long size)
187 {
188 unsigned long start, end;
189
190 start = (unsigned long)addr;
191 start &= ~(qemu_real_host_page_size - 1);
192
193 end = (unsigned long)addr + size;
194 end += qemu_real_host_page_size - 1;
195 end &= ~(qemu_real_host_page_size - 1);
196
197 mprotect((void *)start, end - start,
198 PROT_READ | PROT_WRITE | PROT_EXEC);
199 }
200 #endif
201
202 static void page_init(void)
203 {
204 /* NOTE: we can always suppose that qemu_host_page_size >=
205 TARGET_PAGE_SIZE */
206 #ifdef _WIN32
207 {
208 SYSTEM_INFO system_info;
209 DWORD old_protect;
210
211 GetSystemInfo(&system_info);
212 qemu_real_host_page_size = system_info.dwPageSize;
213 }
214 #else
215 qemu_real_host_page_size = getpagesize();
216 #endif
217 map_exec(code_gen_buffer, sizeof(code_gen_buffer));
218 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
219
220 if (qemu_host_page_size == 0)
221 qemu_host_page_size = qemu_real_host_page_size;
222 if (qemu_host_page_size < TARGET_PAGE_SIZE)
223 qemu_host_page_size = TARGET_PAGE_SIZE;
224 qemu_host_page_bits = 0;
225 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
226 qemu_host_page_bits++;
227 qemu_host_page_mask = ~(qemu_host_page_size - 1);
228 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
229 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
230
231 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
232 {
233 long long startaddr, endaddr;
234 FILE *f;
235 int n;
236
237 f = fopen("/proc/self/maps", "r");
238 if (f) {
239 do {
240 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
241 if (n == 2) {
242 startaddr = MIN(startaddr,
243 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
244 endaddr = MIN(endaddr,
245 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
246 page_set_flags(TARGET_PAGE_ALIGN(startaddr),
247 TARGET_PAGE_ALIGN(endaddr),
248 PAGE_RESERVED);
249 }
250 } while (!feof(f));
251 fclose(f);
252 }
253 }
254 #endif
255 }
256
257 static inline PageDesc *page_find_alloc(target_ulong index)
258 {
259 PageDesc **lp, *p;
260
261 lp = &l1_map[index >> L2_BITS];
262 p = *lp;
263 if (!p) {
264 /* allocate if not found */
265 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
266 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
267 *lp = p;
268 }
269 return p + (index & (L2_SIZE - 1));
270 }
271
272 static inline PageDesc *page_find(target_ulong index)
273 {
274 PageDesc *p;
275
276 p = l1_map[index >> L2_BITS];
277 if (!p)
278 return 0;
279 return p + (index & (L2_SIZE - 1));
280 }
281
282 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
283 {
284 void **lp, **p;
285 PhysPageDesc *pd;
286
287 p = (void **)l1_phys_map;
288 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
289
290 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
291 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
292 #endif
293 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
294 p = *lp;
295 if (!p) {
296 /* allocate if not found */
297 if (!alloc)
298 return NULL;
299 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
300 memset(p, 0, sizeof(void *) * L1_SIZE);
301 *lp = p;
302 }
303 #endif
304 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
305 pd = *lp;
306 if (!pd) {
307 int i;
308 /* allocate if not found */
309 if (!alloc)
310 return NULL;
311 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
312 *lp = pd;
313 for (i = 0; i < L2_SIZE; i++)
314 pd[i].phys_offset = IO_MEM_UNASSIGNED;
315 }
316 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
317 }
318
319 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
320 {
321 return phys_page_find_alloc(index, 0);
322 }
323
324 #if !defined(CONFIG_USER_ONLY)
325 static void tlb_protect_code(ram_addr_t ram_addr);
326 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
327 target_ulong vaddr);
328 #endif
329
330 void cpu_exec_init(CPUState *env)
331 {
332 CPUState **penv;
333 int cpu_index;
334
335 if (!code_gen_ptr) {
336 cpu_gen_init();
337 code_gen_ptr = code_gen_buffer;
338 page_init();
339 io_mem_init();
340 }
341 env->next_cpu = NULL;
342 penv = &first_cpu;
343 cpu_index = 0;
344 while (*penv != NULL) {
345 penv = (CPUState **)&(*penv)->next_cpu;
346 cpu_index++;
347 }
348 env->cpu_index = cpu_index;
349 env->nb_watchpoints = 0;
350 *penv = env;
351 }
352
353 static inline void invalidate_page_bitmap(PageDesc *p)
354 {
355 if (p->code_bitmap) {
356 qemu_free(p->code_bitmap);
357 p->code_bitmap = NULL;
358 }
359 p->code_write_count = 0;
360 }
361
362 /* set to NULL all the 'first_tb' fields in all PageDescs */
363 static void page_flush_tb(void)
364 {
365 int i, j;
366 PageDesc *p;
367
368 for(i = 0; i < L1_SIZE; i++) {
369 p = l1_map[i];
370 if (p) {
371 for(j = 0; j < L2_SIZE; j++) {
372 p->first_tb = NULL;
373 invalidate_page_bitmap(p);
374 p++;
375 }
376 }
377 }
378 }
379
380 /* flush all the translation blocks */
381 /* XXX: tb_flush is currently not thread safe */
382 void tb_flush(CPUState *env1)
383 {
384 CPUState *env;
385 #if defined(DEBUG_FLUSH)
386 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
387 (unsigned long)(code_gen_ptr - code_gen_buffer),
388 nb_tbs, nb_tbs > 0 ?
389 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
390 #endif
391 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > CODE_GEN_BUFFER_SIZE)
392 cpu_abort(env1, "Internal error: code buffer overflow\n");
393
394 nb_tbs = 0;
395
396 for(env = first_cpu; env != NULL; env = env->next_cpu) {
397 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
398 }
399
400 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
401 page_flush_tb();
402
403 code_gen_ptr = code_gen_buffer;
404 /* XXX: flush processor icache at this point if cache flush is
405 expensive */
406 tb_flush_count++;
407 }
408
409 #ifdef DEBUG_TB_CHECK
410
411 static void tb_invalidate_check(target_ulong address)
412 {
413 TranslationBlock *tb;
414 int i;
415 address &= TARGET_PAGE_MASK;
416 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
417 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
418 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
419 address >= tb->pc + tb->size)) {
420 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
421 address, (long)tb->pc, tb->size);
422 }
423 }
424 }
425 }
426
427 /* verify that all the pages have correct rights for code */
428 static void tb_page_check(void)
429 {
430 TranslationBlock *tb;
431 int i, flags1, flags2;
432
433 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
434 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
435 flags1 = page_get_flags(tb->pc);
436 flags2 = page_get_flags(tb->pc + tb->size - 1);
437 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
438 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
439 (long)tb->pc, tb->size, flags1, flags2);
440 }
441 }
442 }
443 }
444
445 void tb_jmp_check(TranslationBlock *tb)
446 {
447 TranslationBlock *tb1;
448 unsigned int n1;
449
450 /* suppress any remaining jumps to this TB */
451 tb1 = tb->jmp_first;
452 for(;;) {
453 n1 = (long)tb1 & 3;
454 tb1 = (TranslationBlock *)((long)tb1 & ~3);
455 if (n1 == 2)
456 break;
457 tb1 = tb1->jmp_next[n1];
458 }
459 /* check end of list */
460 if (tb1 != tb) {
461 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
462 }
463 }
464
465 #endif
466
467 /* invalidate one TB */
468 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
469 int next_offset)
470 {
471 TranslationBlock *tb1;
472 for(;;) {
473 tb1 = *ptb;
474 if (tb1 == tb) {
475 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
476 break;
477 }
478 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
479 }
480 }
481
482 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
483 {
484 TranslationBlock *tb1;
485 unsigned int n1;
486
487 for(;;) {
488 tb1 = *ptb;
489 n1 = (long)tb1 & 3;
490 tb1 = (TranslationBlock *)((long)tb1 & ~3);
491 if (tb1 == tb) {
492 *ptb = tb1->page_next[n1];
493 break;
494 }
495 ptb = &tb1->page_next[n1];
496 }
497 }
498
499 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
500 {
501 TranslationBlock *tb1, **ptb;
502 unsigned int n1;
503
504 ptb = &tb->jmp_next[n];
505 tb1 = *ptb;
506 if (tb1) {
507 /* find tb(n) in circular list */
508 for(;;) {
509 tb1 = *ptb;
510 n1 = (long)tb1 & 3;
511 tb1 = (TranslationBlock *)((long)tb1 & ~3);
512 if (n1 == n && tb1 == tb)
513 break;
514 if (n1 == 2) {
515 ptb = &tb1->jmp_first;
516 } else {
517 ptb = &tb1->jmp_next[n1];
518 }
519 }
520 /* now we can suppress tb(n) from the list */
521 *ptb = tb->jmp_next[n];
522
523 tb->jmp_next[n] = NULL;
524 }
525 }
526
527 /* reset the jump entry 'n' of a TB so that it is not chained to
528 another TB */
529 static inline void tb_reset_jump(TranslationBlock *tb, int n)
530 {
531 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
532 }
533
534 static inline void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
535 {
536 CPUState *env;
537 PageDesc *p;
538 unsigned int h, n1;
539 target_phys_addr_t phys_pc;
540 TranslationBlock *tb1, *tb2;
541
542 /* remove the TB from the hash list */
543 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
544 h = tb_phys_hash_func(phys_pc);
545 tb_remove(&tb_phys_hash[h], tb,
546 offsetof(TranslationBlock, phys_hash_next));
547
548 /* remove the TB from the page list */
549 if (tb->page_addr[0] != page_addr) {
550 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
551 tb_page_remove(&p->first_tb, tb);
552 invalidate_page_bitmap(p);
553 }
554 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
555 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
556 tb_page_remove(&p->first_tb, tb);
557 invalidate_page_bitmap(p);
558 }
559
560 tb_invalidated_flag = 1;
561
562 /* remove the TB from the hash list */
563 h = tb_jmp_cache_hash_func(tb->pc);
564 for(env = first_cpu; env != NULL; env = env->next_cpu) {
565 if (env->tb_jmp_cache[h] == tb)
566 env->tb_jmp_cache[h] = NULL;
567 }
568
569 /* suppress this TB from the two jump lists */
570 tb_jmp_remove(tb, 0);
571 tb_jmp_remove(tb, 1);
572
573 /* suppress any remaining jumps to this TB */
574 tb1 = tb->jmp_first;
575 for(;;) {
576 n1 = (long)tb1 & 3;
577 if (n1 == 2)
578 break;
579 tb1 = (TranslationBlock *)((long)tb1 & ~3);
580 tb2 = tb1->jmp_next[n1];
581 tb_reset_jump(tb1, n1);
582 tb1->jmp_next[n1] = NULL;
583 tb1 = tb2;
584 }
585 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
586
587 tb_phys_invalidate_count++;
588 }
589
590 static inline void set_bits(uint8_t *tab, int start, int len)
591 {
592 int end, mask, end1;
593
594 end = start + len;
595 tab += start >> 3;
596 mask = 0xff << (start & 7);
597 if ((start & ~7) == (end & ~7)) {
598 if (start < end) {
599 mask &= ~(0xff << (end & 7));
600 *tab |= mask;
601 }
602 } else {
603 *tab++ |= mask;
604 start = (start + 8) & ~7;
605 end1 = end & ~7;
606 while (start < end1) {
607 *tab++ = 0xff;
608 start += 8;
609 }
610 if (start < end) {
611 mask = ~(0xff << (end & 7));
612 *tab |= mask;
613 }
614 }
615 }
616
617 static void build_page_bitmap(PageDesc *p)
618 {
619 int n, tb_start, tb_end;
620 TranslationBlock *tb;
621
622 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
623 if (!p->code_bitmap)
624 return;
625 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
626
627 tb = p->first_tb;
628 while (tb != NULL) {
629 n = (long)tb & 3;
630 tb = (TranslationBlock *)((long)tb & ~3);
631 /* NOTE: this is subtle as a TB may span two physical pages */
632 if (n == 0) {
633 /* NOTE: tb_end may be after the end of the page, but
634 it is not a problem */
635 tb_start = tb->pc & ~TARGET_PAGE_MASK;
636 tb_end = tb_start + tb->size;
637 if (tb_end > TARGET_PAGE_SIZE)
638 tb_end = TARGET_PAGE_SIZE;
639 } else {
640 tb_start = 0;
641 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
642 }
643 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
644 tb = tb->page_next[n];
645 }
646 }
647
648 #ifdef TARGET_HAS_PRECISE_SMC
649
650 static void tb_gen_code(CPUState *env,
651 target_ulong pc, target_ulong cs_base, int flags,
652 int cflags)
653 {
654 TranslationBlock *tb;
655 uint8_t *tc_ptr;
656 target_ulong phys_pc, phys_page2, virt_page2;
657 int code_gen_size;
658
659 phys_pc = get_phys_addr_code(env, pc);
660 tb = tb_alloc(pc);
661 if (!tb) {
662 /* flush must be done */
663 tb_flush(env);
664 /* cannot fail at this point */
665 tb = tb_alloc(pc);
666 }
667 tc_ptr = code_gen_ptr;
668 tb->tc_ptr = tc_ptr;
669 tb->cs_base = cs_base;
670 tb->flags = flags;
671 tb->cflags = cflags;
672 cpu_gen_code(env, tb, &code_gen_size);
673 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
674
675 /* check next page if needed */
676 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
677 phys_page2 = -1;
678 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
679 phys_page2 = get_phys_addr_code(env, virt_page2);
680 }
681 tb_link_phys(tb, phys_pc, phys_page2);
682 }
683 #endif
684
685 /* invalidate all TBs which intersect with the target physical page
686 starting in range [start;end[. NOTE: start and end must refer to
687 the same physical page. 'is_cpu_write_access' should be true if called
688 from a real cpu write access: the virtual CPU will exit the current
689 TB if code is modified inside this TB. */
690 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
691 int is_cpu_write_access)
692 {
693 int n, current_tb_modified, current_tb_not_found, current_flags;
694 CPUState *env = cpu_single_env;
695 PageDesc *p;
696 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
697 target_ulong tb_start, tb_end;
698 target_ulong current_pc, current_cs_base;
699
700 p = page_find(start >> TARGET_PAGE_BITS);
701 if (!p)
702 return;
703 if (!p->code_bitmap &&
704 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
705 is_cpu_write_access) {
706 /* build code bitmap */
707 build_page_bitmap(p);
708 }
709
710 /* we remove all the TBs in the range [start, end[ */
711 /* XXX: see if in some cases it could be faster to invalidate all the code */
712 current_tb_not_found = is_cpu_write_access;
713 current_tb_modified = 0;
714 current_tb = NULL; /* avoid warning */
715 current_pc = 0; /* avoid warning */
716 current_cs_base = 0; /* avoid warning */
717 current_flags = 0; /* avoid warning */
718 tb = p->first_tb;
719 while (tb != NULL) {
720 n = (long)tb & 3;
721 tb = (TranslationBlock *)((long)tb & ~3);
722 tb_next = tb->page_next[n];
723 /* NOTE: this is subtle as a TB may span two physical pages */
724 if (n == 0) {
725 /* NOTE: tb_end may be after the end of the page, but
726 it is not a problem */
727 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
728 tb_end = tb_start + tb->size;
729 } else {
730 tb_start = tb->page_addr[1];
731 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
732 }
733 if (!(tb_end <= start || tb_start >= end)) {
734 #ifdef TARGET_HAS_PRECISE_SMC
735 if (current_tb_not_found) {
736 current_tb_not_found = 0;
737 current_tb = NULL;
738 if (env->mem_write_pc) {
739 /* now we have a real cpu fault */
740 current_tb = tb_find_pc(env->mem_write_pc);
741 }
742 }
743 if (current_tb == tb &&
744 !(current_tb->cflags & CF_SINGLE_INSN)) {
745 /* If we are modifying the current TB, we must stop
746 its execution. We could be more precise by checking
747 that the modification is after the current PC, but it
748 would require a specialized function to partially
749 restore the CPU state */
750
751 current_tb_modified = 1;
752 cpu_restore_state(current_tb, env,
753 env->mem_write_pc, NULL);
754 #if defined(TARGET_I386)
755 current_flags = env->hflags;
756 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
757 current_cs_base = (target_ulong)env->segs[R_CS].base;
758 current_pc = current_cs_base + env->eip;
759 #else
760 #error unsupported CPU
761 #endif
762 }
763 #endif /* TARGET_HAS_PRECISE_SMC */
764 /* we need to do that to handle the case where a signal
765 occurs while doing tb_phys_invalidate() */
766 saved_tb = NULL;
767 if (env) {
768 saved_tb = env->current_tb;
769 env->current_tb = NULL;
770 }
771 tb_phys_invalidate(tb, -1);
772 if (env) {
773 env->current_tb = saved_tb;
774 if (env->interrupt_request && env->current_tb)
775 cpu_interrupt(env, env->interrupt_request);
776 }
777 }
778 tb = tb_next;
779 }
780 #if !defined(CONFIG_USER_ONLY)
781 /* if no code remaining, no need to continue to use slow writes */
782 if (!p->first_tb) {
783 invalidate_page_bitmap(p);
784 if (is_cpu_write_access) {
785 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
786 }
787 }
788 #endif
789 #ifdef TARGET_HAS_PRECISE_SMC
790 if (current_tb_modified) {
791 /* we generate a block containing just the instruction
792 modifying the memory. It will ensure that it cannot modify
793 itself */
794 env->current_tb = NULL;
795 tb_gen_code(env, current_pc, current_cs_base, current_flags,
796 CF_SINGLE_INSN);
797 cpu_resume_from_signal(env, NULL);
798 }
799 #endif
800 }
801
802 /* len must be <= 8 and start must be a multiple of len */
803 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
804 {
805 PageDesc *p;
806 int offset, b;
807 #if 0
808 if (1) {
809 if (loglevel) {
810 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
811 cpu_single_env->mem_write_vaddr, len,
812 cpu_single_env->eip,
813 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
814 }
815 }
816 #endif
817 p = page_find(start >> TARGET_PAGE_BITS);
818 if (!p)
819 return;
820 if (p->code_bitmap) {
821 offset = start & ~TARGET_PAGE_MASK;
822 b = p->code_bitmap[offset >> 3] >> (offset & 7);
823 if (b & ((1 << len) - 1))
824 goto do_invalidate;
825 } else {
826 do_invalidate:
827 tb_invalidate_phys_page_range(start, start + len, 1);
828 }
829 }
830
831 #if !defined(CONFIG_SOFTMMU)
832 static void tb_invalidate_phys_page(target_phys_addr_t addr,
833 unsigned long pc, void *puc)
834 {
835 int n, current_flags, current_tb_modified;
836 target_ulong current_pc, current_cs_base;
837 PageDesc *p;
838 TranslationBlock *tb, *current_tb;
839 #ifdef TARGET_HAS_PRECISE_SMC
840 CPUState *env = cpu_single_env;
841 #endif
842
843 addr &= TARGET_PAGE_MASK;
844 p = page_find(addr >> TARGET_PAGE_BITS);
845 if (!p)
846 return;
847 tb = p->first_tb;
848 current_tb_modified = 0;
849 current_tb = NULL;
850 current_pc = 0; /* avoid warning */
851 current_cs_base = 0; /* avoid warning */
852 current_flags = 0; /* avoid warning */
853 #ifdef TARGET_HAS_PRECISE_SMC
854 if (tb && pc != 0) {
855 current_tb = tb_find_pc(pc);
856 }
857 #endif
858 while (tb != NULL) {
859 n = (long)tb & 3;
860 tb = (TranslationBlock *)((long)tb & ~3);
861 #ifdef TARGET_HAS_PRECISE_SMC
862 if (current_tb == tb &&
863 !(current_tb->cflags & CF_SINGLE_INSN)) {
864 /* If we are modifying the current TB, we must stop
865 its execution. We could be more precise by checking
866 that the modification is after the current PC, but it
867 would require a specialized function to partially
868 restore the CPU state */
869
870 current_tb_modified = 1;
871 cpu_restore_state(current_tb, env, pc, puc);
872 #if defined(TARGET_I386)
873 current_flags = env->hflags;
874 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
875 current_cs_base = (target_ulong)env->segs[R_CS].base;
876 current_pc = current_cs_base + env->eip;
877 #else
878 #error unsupported CPU
879 #endif
880 }
881 #endif /* TARGET_HAS_PRECISE_SMC */
882 tb_phys_invalidate(tb, addr);
883 tb = tb->page_next[n];
884 }
885 p->first_tb = NULL;
886 #ifdef TARGET_HAS_PRECISE_SMC
887 if (current_tb_modified) {
888 /* we generate a block containing just the instruction
889 modifying the memory. It will ensure that it cannot modify
890 itself */
891 env->current_tb = NULL;
892 tb_gen_code(env, current_pc, current_cs_base, current_flags,
893 CF_SINGLE_INSN);
894 cpu_resume_from_signal(env, puc);
895 }
896 #endif
897 }
898 #endif
899
900 /* add the tb in the target page and protect it if necessary */
901 static inline void tb_alloc_page(TranslationBlock *tb,
902 unsigned int n, target_ulong page_addr)
903 {
904 PageDesc *p;
905 TranslationBlock *last_first_tb;
906
907 tb->page_addr[n] = page_addr;
908 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
909 tb->page_next[n] = p->first_tb;
910 last_first_tb = p->first_tb;
911 p->first_tb = (TranslationBlock *)((long)tb | n);
912 invalidate_page_bitmap(p);
913
914 #if defined(TARGET_HAS_SMC) || 1
915
916 #if defined(CONFIG_USER_ONLY)
917 if (p->flags & PAGE_WRITE) {
918 target_ulong addr;
919 PageDesc *p2;
920 int prot;
921
922 /* force the host page as non writable (writes will have a
923 page fault + mprotect overhead) */
924 page_addr &= qemu_host_page_mask;
925 prot = 0;
926 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
927 addr += TARGET_PAGE_SIZE) {
928
929 p2 = page_find (addr >> TARGET_PAGE_BITS);
930 if (!p2)
931 continue;
932 prot |= p2->flags;
933 p2->flags &= ~PAGE_WRITE;
934 page_get_flags(addr);
935 }
936 mprotect(g2h(page_addr), qemu_host_page_size,
937 (prot & PAGE_BITS) & ~PAGE_WRITE);
938 #ifdef DEBUG_TB_INVALIDATE
939 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
940 page_addr);
941 #endif
942 }
943 #else
944 /* if some code is already present, then the pages are already
945 protected. So we handle the case where only the first TB is
946 allocated in a physical page */
947 if (!last_first_tb) {
948 tlb_protect_code(page_addr);
949 }
950 #endif
951
952 #endif /* TARGET_HAS_SMC */
953 }
954
955 /* Allocate a new translation block. Flush the translation buffer if
956 too many translation blocks or too much generated code. */
957 TranslationBlock *tb_alloc(target_ulong pc)
958 {
959 TranslationBlock *tb;
960
961 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
962 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
963 return NULL;
964 tb = &tbs[nb_tbs++];
965 tb->pc = pc;
966 tb->cflags = 0;
967 return tb;
968 }
969
970 /* add a new TB and link it to the physical page tables. phys_page2 is
971 (-1) to indicate that only one page contains the TB. */
972 void tb_link_phys(TranslationBlock *tb,
973 target_ulong phys_pc, target_ulong phys_page2)
974 {
975 unsigned int h;
976 TranslationBlock **ptb;
977
978 /* add in the physical hash table */
979 h = tb_phys_hash_func(phys_pc);
980 ptb = &tb_phys_hash[h];
981 tb->phys_hash_next = *ptb;
982 *ptb = tb;
983
984 /* add in the page list */
985 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
986 if (phys_page2 != -1)
987 tb_alloc_page(tb, 1, phys_page2);
988 else
989 tb->page_addr[1] = -1;
990
991 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
992 tb->jmp_next[0] = NULL;
993 tb->jmp_next[1] = NULL;
994
995 /* init original jump addresses */
996 if (tb->tb_next_offset[0] != 0xffff)
997 tb_reset_jump(tb, 0);
998 if (tb->tb_next_offset[1] != 0xffff)
999 tb_reset_jump(tb, 1);
1000
1001 #ifdef DEBUG_TB_CHECK
1002 tb_page_check();
1003 #endif
1004 }
1005
1006 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1007 tb[1].tc_ptr. Return NULL if not found */
1008 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1009 {
1010 int m_min, m_max, m;
1011 unsigned long v;
1012 TranslationBlock *tb;
1013
1014 if (nb_tbs <= 0)
1015 return NULL;
1016 if (tc_ptr < (unsigned long)code_gen_buffer ||
1017 tc_ptr >= (unsigned long)code_gen_ptr)
1018 return NULL;
1019 /* binary search (cf Knuth) */
1020 m_min = 0;
1021 m_max = nb_tbs - 1;
1022 while (m_min <= m_max) {
1023 m = (m_min + m_max) >> 1;
1024 tb = &tbs[m];
1025 v = (unsigned long)tb->tc_ptr;
1026 if (v == tc_ptr)
1027 return tb;
1028 else if (tc_ptr < v) {
1029 m_max = m - 1;
1030 } else {
1031 m_min = m + 1;
1032 }
1033 }
1034 return &tbs[m_max];
1035 }
1036
1037 static void tb_reset_jump_recursive(TranslationBlock *tb);
1038
1039 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1040 {
1041 TranslationBlock *tb1, *tb_next, **ptb;
1042 unsigned int n1;
1043
1044 tb1 = tb->jmp_next[n];
1045 if (tb1 != NULL) {
1046 /* find head of list */
1047 for(;;) {
1048 n1 = (long)tb1 & 3;
1049 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1050 if (n1 == 2)
1051 break;
1052 tb1 = tb1->jmp_next[n1];
1053 }
1054 /* we are now sure now that tb jumps to tb1 */
1055 tb_next = tb1;
1056
1057 /* remove tb from the jmp_first list */
1058 ptb = &tb_next->jmp_first;
1059 for(;;) {
1060 tb1 = *ptb;
1061 n1 = (long)tb1 & 3;
1062 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1063 if (n1 == n && tb1 == tb)
1064 break;
1065 ptb = &tb1->jmp_next[n1];
1066 }
1067 *ptb = tb->jmp_next[n];
1068 tb->jmp_next[n] = NULL;
1069
1070 /* suppress the jump to next tb in generated code */
1071 tb_reset_jump(tb, n);
1072
1073 /* suppress jumps in the tb on which we could have jumped */
1074 tb_reset_jump_recursive(tb_next);
1075 }
1076 }
1077
1078 static void tb_reset_jump_recursive(TranslationBlock *tb)
1079 {
1080 tb_reset_jump_recursive2(tb, 0);
1081 tb_reset_jump_recursive2(tb, 1);
1082 }
1083
1084 #if defined(TARGET_HAS_ICE)
1085 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1086 {
1087 target_phys_addr_t addr;
1088 target_ulong pd;
1089 ram_addr_t ram_addr;
1090 PhysPageDesc *p;
1091
1092 addr = cpu_get_phys_page_debug(env, pc);
1093 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1094 if (!p) {
1095 pd = IO_MEM_UNASSIGNED;
1096 } else {
1097 pd = p->phys_offset;
1098 }
1099 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1100 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1101 }
1102 #endif
1103
1104 /* Add a watchpoint. */
1105 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1106 {
1107 int i;
1108
1109 for (i = 0; i < env->nb_watchpoints; i++) {
1110 if (addr == env->watchpoint[i].vaddr)
1111 return 0;
1112 }
1113 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1114 return -1;
1115
1116 i = env->nb_watchpoints++;
1117 env->watchpoint[i].vaddr = addr;
1118 tlb_flush_page(env, addr);
1119 /* FIXME: This flush is needed because of the hack to make memory ops
1120 terminate the TB. It can be removed once the proper IO trap and
1121 re-execute bits are in. */
1122 tb_flush(env);
1123 return i;
1124 }
1125
1126 /* Remove a watchpoint. */
1127 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1128 {
1129 int i;
1130
1131 for (i = 0; i < env->nb_watchpoints; i++) {
1132 if (addr == env->watchpoint[i].vaddr) {
1133 env->nb_watchpoints--;
1134 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1135 tlb_flush_page(env, addr);
1136 return 0;
1137 }
1138 }
1139 return -1;
1140 }
1141
1142 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1143 breakpoint is reached */
1144 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1145 {
1146 #if defined(TARGET_HAS_ICE)
1147 int i;
1148
1149 for(i = 0; i < env->nb_breakpoints; i++) {
1150 if (env->breakpoints[i] == pc)
1151 return 0;
1152 }
1153
1154 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1155 return -1;
1156 env->breakpoints[env->nb_breakpoints++] = pc;
1157
1158 breakpoint_invalidate(env, pc);
1159 return 0;
1160 #else
1161 return -1;
1162 #endif
1163 }
1164
1165 /* remove a breakpoint */
1166 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1167 {
1168 #if defined(TARGET_HAS_ICE)
1169 int i;
1170 for(i = 0; i < env->nb_breakpoints; i++) {
1171 if (env->breakpoints[i] == pc)
1172 goto found;
1173 }
1174 return -1;
1175 found:
1176 env->nb_breakpoints--;
1177 if (i < env->nb_breakpoints)
1178 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1179
1180 breakpoint_invalidate(env, pc);
1181 return 0;
1182 #else
1183 return -1;
1184 #endif
1185 }
1186
1187 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1188 CPU loop after each instruction */
1189 void cpu_single_step(CPUState *env, int enabled)
1190 {
1191 #if defined(TARGET_HAS_ICE)
1192 if (env->singlestep_enabled != enabled) {
1193 env->singlestep_enabled = enabled;
1194 /* must flush all the translated code to avoid inconsistancies */
1195 /* XXX: only flush what is necessary */
1196 tb_flush(env);
1197 }
1198 #endif
1199 }
1200
1201 /* enable or disable low levels log */
1202 void cpu_set_log(int log_flags)
1203 {
1204 loglevel = log_flags;
1205 if (loglevel && !logfile) {
1206 logfile = fopen(logfilename, log_append ? "a" : "w");
1207 if (!logfile) {
1208 perror(logfilename);
1209 _exit(1);
1210 }
1211 #if !defined(CONFIG_SOFTMMU)
1212 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1213 {
1214 static uint8_t logfile_buf[4096];
1215 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1216 }
1217 #else
1218 setvbuf(logfile, NULL, _IOLBF, 0);
1219 #endif
1220 log_append = 1;
1221 }
1222 if (!loglevel && logfile) {
1223 fclose(logfile);
1224 logfile = NULL;
1225 }
1226 }
1227
1228 void cpu_set_log_filename(const char *filename)
1229 {
1230 logfilename = strdup(filename);
1231 if (logfile) {
1232 fclose(logfile);
1233 logfile = NULL;
1234 }
1235 cpu_set_log(loglevel);
1236 }
1237
1238 /* mask must never be zero, except for A20 change call */
1239 void cpu_interrupt(CPUState *env, int mask)
1240 {
1241 TranslationBlock *tb;
1242 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1243
1244 env->interrupt_request |= mask;
1245 /* if the cpu is currently executing code, we must unlink it and
1246 all the potentially executing TB */
1247 tb = env->current_tb;
1248 if (tb && !testandset(&interrupt_lock)) {
1249 env->current_tb = NULL;
1250 tb_reset_jump_recursive(tb);
1251 resetlock(&interrupt_lock);
1252 }
1253 }
1254
1255 void cpu_reset_interrupt(CPUState *env, int mask)
1256 {
1257 env->interrupt_request &= ~mask;
1258 }
1259
1260 CPULogItem cpu_log_items[] = {
1261 { CPU_LOG_TB_OUT_ASM, "out_asm",
1262 "show generated host assembly code for each compiled TB" },
1263 { CPU_LOG_TB_IN_ASM, "in_asm",
1264 "show target assembly code for each compiled TB" },
1265 { CPU_LOG_TB_OP, "op",
1266 "show micro ops for each compiled TB" },
1267 { CPU_LOG_TB_OP_OPT, "op_opt",
1268 "show micro ops "
1269 #ifdef TARGET_I386
1270 "before eflags optimization and "
1271 #endif
1272 "after liveness analysis" },
1273 { CPU_LOG_INT, "int",
1274 "show interrupts/exceptions in short format" },
1275 { CPU_LOG_EXEC, "exec",
1276 "show trace before each executed TB (lots of logs)" },
1277 { CPU_LOG_TB_CPU, "cpu",
1278 "show CPU state before block translation" },
1279 #ifdef TARGET_I386
1280 { CPU_LOG_PCALL, "pcall",
1281 "show protected mode far calls/returns/exceptions" },
1282 #endif
1283 #ifdef DEBUG_IOPORT
1284 { CPU_LOG_IOPORT, "ioport",
1285 "show all i/o ports accesses" },
1286 #endif
1287 { 0, NULL, NULL },
1288 };
1289
1290 static int cmp1(const char *s1, int n, const char *s2)
1291 {
1292 if (strlen(s2) != n)
1293 return 0;
1294 return memcmp(s1, s2, n) == 0;
1295 }
1296
1297 /* takes a comma separated list of log masks. Return 0 if error. */
1298 int cpu_str_to_log_mask(const char *str)
1299 {
1300 CPULogItem *item;
1301 int mask;
1302 const char *p, *p1;
1303
1304 p = str;
1305 mask = 0;
1306 for(;;) {
1307 p1 = strchr(p, ',');
1308 if (!p1)
1309 p1 = p + strlen(p);
1310 if(cmp1(p,p1-p,"all")) {
1311 for(item = cpu_log_items; item->mask != 0; item++) {
1312 mask |= item->mask;
1313 }
1314 } else {
1315 for(item = cpu_log_items; item->mask != 0; item++) {
1316 if (cmp1(p, p1 - p, item->name))
1317 goto found;
1318 }
1319 return 0;
1320 }
1321 found:
1322 mask |= item->mask;
1323 if (*p1 != ',')
1324 break;
1325 p = p1 + 1;
1326 }
1327 return mask;
1328 }
1329
1330 void cpu_abort(CPUState *env, const char *fmt, ...)
1331 {
1332 va_list ap;
1333 va_list ap2;
1334
1335 va_start(ap, fmt);
1336 va_copy(ap2, ap);
1337 fprintf(stderr, "qemu: fatal: ");
1338 vfprintf(stderr, fmt, ap);
1339 fprintf(stderr, "\n");
1340 #ifdef TARGET_I386
1341 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1342 #else
1343 cpu_dump_state(env, stderr, fprintf, 0);
1344 #endif
1345 if (logfile) {
1346 fprintf(logfile, "qemu: fatal: ");
1347 vfprintf(logfile, fmt, ap2);
1348 fprintf(logfile, "\n");
1349 #ifdef TARGET_I386
1350 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1351 #else
1352 cpu_dump_state(env, logfile, fprintf, 0);
1353 #endif
1354 fflush(logfile);
1355 fclose(logfile);
1356 }
1357 va_end(ap2);
1358 va_end(ap);
1359 abort();
1360 }
1361
1362 CPUState *cpu_copy(CPUState *env)
1363 {
1364 CPUState *new_env = cpu_init(env->cpu_model_str);
1365 /* preserve chaining and index */
1366 CPUState *next_cpu = new_env->next_cpu;
1367 int cpu_index = new_env->cpu_index;
1368 memcpy(new_env, env, sizeof(CPUState));
1369 new_env->next_cpu = next_cpu;
1370 new_env->cpu_index = cpu_index;
1371 return new_env;
1372 }
1373
1374 #if !defined(CONFIG_USER_ONLY)
1375
1376 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1377 {
1378 unsigned int i;
1379
1380 /* Discard jump cache entries for any tb which might potentially
1381 overlap the flushed page. */
1382 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1383 memset (&env->tb_jmp_cache[i], 0,
1384 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1385
1386 i = tb_jmp_cache_hash_page(addr);
1387 memset (&env->tb_jmp_cache[i], 0,
1388 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1389 }
1390
1391 /* NOTE: if flush_global is true, also flush global entries (not
1392 implemented yet) */
1393 void tlb_flush(CPUState *env, int flush_global)
1394 {
1395 int i;
1396
1397 #if defined(DEBUG_TLB)
1398 printf("tlb_flush:\n");
1399 #endif
1400 /* must reset current TB so that interrupts cannot modify the
1401 links while we are modifying them */
1402 env->current_tb = NULL;
1403
1404 for(i = 0; i < CPU_TLB_SIZE; i++) {
1405 env->tlb_table[0][i].addr_read = -1;
1406 env->tlb_table[0][i].addr_write = -1;
1407 env->tlb_table[0][i].addr_code = -1;
1408 env->tlb_table[1][i].addr_read = -1;
1409 env->tlb_table[1][i].addr_write = -1;
1410 env->tlb_table[1][i].addr_code = -1;
1411 #if (NB_MMU_MODES >= 3)
1412 env->tlb_table[2][i].addr_read = -1;
1413 env->tlb_table[2][i].addr_write = -1;
1414 env->tlb_table[2][i].addr_code = -1;
1415 #if (NB_MMU_MODES == 4)
1416 env->tlb_table[3][i].addr_read = -1;
1417 env->tlb_table[3][i].addr_write = -1;
1418 env->tlb_table[3][i].addr_code = -1;
1419 #endif
1420 #endif
1421 }
1422
1423 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1424
1425 #if !defined(CONFIG_SOFTMMU)
1426 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1427 #endif
1428 #ifdef USE_KQEMU
1429 if (env->kqemu_enabled) {
1430 kqemu_flush(env, flush_global);
1431 }
1432 #endif
1433 tlb_flush_count++;
1434 }
1435
1436 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1437 {
1438 if (addr == (tlb_entry->addr_read &
1439 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1440 addr == (tlb_entry->addr_write &
1441 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1442 addr == (tlb_entry->addr_code &
1443 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1444 tlb_entry->addr_read = -1;
1445 tlb_entry->addr_write = -1;
1446 tlb_entry->addr_code = -1;
1447 }
1448 }
1449
1450 void tlb_flush_page(CPUState *env, target_ulong addr)
1451 {
1452 int i;
1453
1454 #if defined(DEBUG_TLB)
1455 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1456 #endif
1457 /* must reset current TB so that interrupts cannot modify the
1458 links while we are modifying them */
1459 env->current_tb = NULL;
1460
1461 addr &= TARGET_PAGE_MASK;
1462 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1463 tlb_flush_entry(&env->tlb_table[0][i], addr);
1464 tlb_flush_entry(&env->tlb_table[1][i], addr);
1465 #if (NB_MMU_MODES >= 3)
1466 tlb_flush_entry(&env->tlb_table[2][i], addr);
1467 #if (NB_MMU_MODES == 4)
1468 tlb_flush_entry(&env->tlb_table[3][i], addr);
1469 #endif
1470 #endif
1471
1472 tlb_flush_jmp_cache(env, addr);
1473
1474 #if !defined(CONFIG_SOFTMMU)
1475 if (addr < MMAP_AREA_END)
1476 munmap((void *)addr, TARGET_PAGE_SIZE);
1477 #endif
1478 #ifdef USE_KQEMU
1479 if (env->kqemu_enabled) {
1480 kqemu_flush_page(env, addr);
1481 }
1482 #endif
1483 }
1484
1485 /* update the TLBs so that writes to code in the virtual page 'addr'
1486 can be detected */
1487 static void tlb_protect_code(ram_addr_t ram_addr)
1488 {
1489 cpu_physical_memory_reset_dirty(ram_addr,
1490 ram_addr + TARGET_PAGE_SIZE,
1491 CODE_DIRTY_FLAG);
1492 }
1493
1494 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1495 tested for self modifying code */
1496 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1497 target_ulong vaddr)
1498 {
1499 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1500 }
1501
1502 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1503 unsigned long start, unsigned long length)
1504 {
1505 unsigned long addr;
1506 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1507 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1508 if ((addr - start) < length) {
1509 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1510 }
1511 }
1512 }
1513
1514 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1515 int dirty_flags)
1516 {
1517 CPUState *env;
1518 unsigned long length, start1;
1519 int i, mask, len;
1520 uint8_t *p;
1521
1522 start &= TARGET_PAGE_MASK;
1523 end = TARGET_PAGE_ALIGN(end);
1524
1525 length = end - start;
1526 if (length == 0)
1527 return;
1528 len = length >> TARGET_PAGE_BITS;
1529 #ifdef USE_KQEMU
1530 /* XXX: should not depend on cpu context */
1531 env = first_cpu;
1532 if (env->kqemu_enabled) {
1533 ram_addr_t addr;
1534 addr = start;
1535 for(i = 0; i < len; i++) {
1536 kqemu_set_notdirty(env, addr);
1537 addr += TARGET_PAGE_SIZE;
1538 }
1539 }
1540 #endif
1541 mask = ~dirty_flags;
1542 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1543 for(i = 0; i < len; i++)
1544 p[i] &= mask;
1545
1546 /* we modify the TLB cache so that the dirty bit will be set again
1547 when accessing the range */
1548 start1 = start + (unsigned long)phys_ram_base;
1549 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1550 for(i = 0; i < CPU_TLB_SIZE; i++)
1551 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1552 for(i = 0; i < CPU_TLB_SIZE; i++)
1553 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1554 #if (NB_MMU_MODES >= 3)
1555 for(i = 0; i < CPU_TLB_SIZE; i++)
1556 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1557 #if (NB_MMU_MODES == 4)
1558 for(i = 0; i < CPU_TLB_SIZE; i++)
1559 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1560 #endif
1561 #endif
1562 }
1563
1564 #if !defined(CONFIG_SOFTMMU)
1565 /* XXX: this is expensive */
1566 {
1567 VirtPageDesc *p;
1568 int j;
1569 target_ulong addr;
1570
1571 for(i = 0; i < L1_SIZE; i++) {
1572 p = l1_virt_map[i];
1573 if (p) {
1574 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1575 for(j = 0; j < L2_SIZE; j++) {
1576 if (p->valid_tag == virt_valid_tag &&
1577 p->phys_addr >= start && p->phys_addr < end &&
1578 (p->prot & PROT_WRITE)) {
1579 if (addr < MMAP_AREA_END) {
1580 mprotect((void *)addr, TARGET_PAGE_SIZE,
1581 p->prot & ~PROT_WRITE);
1582 }
1583 }
1584 addr += TARGET_PAGE_SIZE;
1585 p++;
1586 }
1587 }
1588 }
1589 }
1590 #endif
1591 }
1592
1593 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1594 {
1595 ram_addr_t ram_addr;
1596
1597 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1598 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1599 tlb_entry->addend - (unsigned long)phys_ram_base;
1600 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1601 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1602 }
1603 }
1604 }
1605
1606 /* update the TLB according to the current state of the dirty bits */
1607 void cpu_tlb_update_dirty(CPUState *env)
1608 {
1609 int i;
1610 for(i = 0; i < CPU_TLB_SIZE; i++)
1611 tlb_update_dirty(&env->tlb_table[0][i]);
1612 for(i = 0; i < CPU_TLB_SIZE; i++)
1613 tlb_update_dirty(&env->tlb_table[1][i]);
1614 #if (NB_MMU_MODES >= 3)
1615 for(i = 0; i < CPU_TLB_SIZE; i++)
1616 tlb_update_dirty(&env->tlb_table[2][i]);
1617 #if (NB_MMU_MODES == 4)
1618 for(i = 0; i < CPU_TLB_SIZE; i++)
1619 tlb_update_dirty(&env->tlb_table[3][i]);
1620 #endif
1621 #endif
1622 }
1623
1624 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1625 unsigned long start)
1626 {
1627 unsigned long addr;
1628 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1629 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1630 if (addr == start) {
1631 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1632 }
1633 }
1634 }
1635
1636 /* update the TLB corresponding to virtual page vaddr and phys addr
1637 addr so that it is no longer dirty */
1638 static inline void tlb_set_dirty(CPUState *env,
1639 unsigned long addr, target_ulong vaddr)
1640 {
1641 int i;
1642
1643 addr &= TARGET_PAGE_MASK;
1644 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1645 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1646 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1647 #if (NB_MMU_MODES >= 3)
1648 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1649 #if (NB_MMU_MODES == 4)
1650 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1651 #endif
1652 #endif
1653 }
1654
1655 /* add a new TLB entry. At most one entry for a given virtual address
1656 is permitted. Return 0 if OK or 2 if the page could not be mapped
1657 (can only happen in non SOFTMMU mode for I/O pages or pages
1658 conflicting with the host address space). */
1659 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1660 target_phys_addr_t paddr, int prot,
1661 int mmu_idx, int is_softmmu)
1662 {
1663 PhysPageDesc *p;
1664 unsigned long pd;
1665 unsigned int index;
1666 target_ulong address;
1667 target_phys_addr_t addend;
1668 int ret;
1669 CPUTLBEntry *te;
1670 int i;
1671
1672 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1673 if (!p) {
1674 pd = IO_MEM_UNASSIGNED;
1675 } else {
1676 pd = p->phys_offset;
1677 }
1678 #if defined(DEBUG_TLB)
1679 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1680 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1681 #endif
1682
1683 ret = 0;
1684 #if !defined(CONFIG_SOFTMMU)
1685 if (is_softmmu)
1686 #endif
1687 {
1688 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1689 /* IO memory case */
1690 address = vaddr | pd;
1691 addend = paddr;
1692 } else {
1693 /* standard memory */
1694 address = vaddr;
1695 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1696 }
1697
1698 /* Make accesses to pages with watchpoints go via the
1699 watchpoint trap routines. */
1700 for (i = 0; i < env->nb_watchpoints; i++) {
1701 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1702 if (address & ~TARGET_PAGE_MASK) {
1703 env->watchpoint[i].addend = 0;
1704 address = vaddr | io_mem_watch;
1705 } else {
1706 env->watchpoint[i].addend = pd - paddr +
1707 (unsigned long) phys_ram_base;
1708 /* TODO: Figure out how to make read watchpoints coexist
1709 with code. */
1710 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1711 }
1712 }
1713 }
1714
1715 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1716 addend -= vaddr;
1717 te = &env->tlb_table[mmu_idx][index];
1718 te->addend = addend;
1719 if (prot & PAGE_READ) {
1720 te->addr_read = address;
1721 } else {
1722 te->addr_read = -1;
1723 }
1724
1725 if (te->addr_code != -1) {
1726 tlb_flush_jmp_cache(env, te->addr_code);
1727 }
1728 if (prot & PAGE_EXEC) {
1729 te->addr_code = address;
1730 } else {
1731 te->addr_code = -1;
1732 }
1733 if (prot & PAGE_WRITE) {
1734 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1735 (pd & IO_MEM_ROMD)) {
1736 /* write access calls the I/O callback */
1737 te->addr_write = vaddr |
1738 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1739 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1740 !cpu_physical_memory_is_dirty(pd)) {
1741 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1742 } else {
1743 te->addr_write = address;
1744 }
1745 } else {
1746 te->addr_write = -1;
1747 }
1748 }
1749 #if !defined(CONFIG_SOFTMMU)
1750 else {
1751 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1752 /* IO access: no mapping is done as it will be handled by the
1753 soft MMU */
1754 if (!(env->hflags & HF_SOFTMMU_MASK))
1755 ret = 2;
1756 } else {
1757 void *map_addr;
1758
1759 if (vaddr >= MMAP_AREA_END) {
1760 ret = 2;
1761 } else {
1762 if (prot & PROT_WRITE) {
1763 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1764 #if defined(TARGET_HAS_SMC) || 1
1765 first_tb ||
1766 #endif
1767 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1768 !cpu_physical_memory_is_dirty(pd))) {
1769 /* ROM: we do as if code was inside */
1770 /* if code is present, we only map as read only and save the
1771 original mapping */
1772 VirtPageDesc *vp;
1773
1774 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1775 vp->phys_addr = pd;
1776 vp->prot = prot;
1777 vp->valid_tag = virt_valid_tag;
1778 prot &= ~PAGE_WRITE;
1779 }
1780 }
1781 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1782 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1783 if (map_addr == MAP_FAILED) {
1784 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1785 paddr, vaddr);
1786 }
1787 }
1788 }
1789 }
1790 #endif
1791 return ret;
1792 }
1793
1794 /* called from signal handler: invalidate the code and unprotect the
1795 page. Return TRUE if the fault was succesfully handled. */
1796 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1797 {
1798 #if !defined(CONFIG_SOFTMMU)
1799 VirtPageDesc *vp;
1800
1801 #if defined(DEBUG_TLB)
1802 printf("page_unprotect: addr=0x%08x\n", addr);
1803 #endif
1804 addr &= TARGET_PAGE_MASK;
1805
1806 /* if it is not mapped, no need to worry here */
1807 if (addr >= MMAP_AREA_END)
1808 return 0;
1809 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1810 if (!vp)
1811 return 0;
1812 /* NOTE: in this case, validate_tag is _not_ tested as it
1813 validates only the code TLB */
1814 if (vp->valid_tag != virt_valid_tag)
1815 return 0;
1816 if (!(vp->prot & PAGE_WRITE))
1817 return 0;
1818 #if defined(DEBUG_TLB)
1819 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1820 addr, vp->phys_addr, vp->prot);
1821 #endif
1822 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1823 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1824 (unsigned long)addr, vp->prot);
1825 /* set the dirty bit */
1826 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1827 /* flush the code inside */
1828 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1829 return 1;
1830 #else
1831 return 0;
1832 #endif
1833 }
1834
1835 #else
1836
1837 void tlb_flush(CPUState *env, int flush_global)
1838 {
1839 }
1840
1841 void tlb_flush_page(CPUState *env, target_ulong addr)
1842 {
1843 }
1844
1845 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1846 target_phys_addr_t paddr, int prot,
1847 int mmu_idx, int is_softmmu)
1848 {
1849 return 0;
1850 }
1851
1852 /* dump memory mappings */
1853 void page_dump(FILE *f)
1854 {
1855 unsigned long start, end;
1856 int i, j, prot, prot1;
1857 PageDesc *p;
1858
1859 fprintf(f, "%-8s %-8s %-8s %s\n",
1860 "start", "end", "size", "prot");
1861 start = -1;
1862 end = -1;
1863 prot = 0;
1864 for(i = 0; i <= L1_SIZE; i++) {
1865 if (i < L1_SIZE)
1866 p = l1_map[i];
1867 else
1868 p = NULL;
1869 for(j = 0;j < L2_SIZE; j++) {
1870 if (!p)
1871 prot1 = 0;
1872 else
1873 prot1 = p[j].flags;
1874 if (prot1 != prot) {
1875 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1876 if (start != -1) {
1877 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1878 start, end, end - start,
1879 prot & PAGE_READ ? 'r' : '-',
1880 prot & PAGE_WRITE ? 'w' : '-',
1881 prot & PAGE_EXEC ? 'x' : '-');
1882 }
1883 if (prot1 != 0)
1884 start = end;
1885 else
1886 start = -1;
1887 prot = prot1;
1888 }
1889 if (!p)
1890 break;
1891 }
1892 }
1893 }
1894
1895 int page_get_flags(target_ulong address)
1896 {
1897 PageDesc *p;
1898
1899 p = page_find(address >> TARGET_PAGE_BITS);
1900 if (!p)
1901 return 0;
1902 return p->flags;
1903 }
1904
1905 /* modify the flags of a page and invalidate the code if
1906 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1907 depending on PAGE_WRITE */
1908 void page_set_flags(target_ulong start, target_ulong end, int flags)
1909 {
1910 PageDesc *p;
1911 target_ulong addr;
1912
1913 start = start & TARGET_PAGE_MASK;
1914 end = TARGET_PAGE_ALIGN(end);
1915 if (flags & PAGE_WRITE)
1916 flags |= PAGE_WRITE_ORG;
1917 spin_lock(&tb_lock);
1918 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1919 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1920 /* if the write protection is set, then we invalidate the code
1921 inside */
1922 if (!(p->flags & PAGE_WRITE) &&
1923 (flags & PAGE_WRITE) &&
1924 p->first_tb) {
1925 tb_invalidate_phys_page(addr, 0, NULL);
1926 }
1927 p->flags = flags;
1928 }
1929 spin_unlock(&tb_lock);
1930 }
1931
1932 int page_check_range(target_ulong start, target_ulong len, int flags)
1933 {
1934 PageDesc *p;
1935 target_ulong end;
1936 target_ulong addr;
1937
1938 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1939 start = start & TARGET_PAGE_MASK;
1940
1941 if( end < start )
1942 /* we've wrapped around */
1943 return -1;
1944 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1945 p = page_find(addr >> TARGET_PAGE_BITS);
1946 if( !p )
1947 return -1;
1948 if( !(p->flags & PAGE_VALID) )
1949 return -1;
1950
1951 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1952 return -1;
1953 if (flags & PAGE_WRITE) {
1954 if (!(p->flags & PAGE_WRITE_ORG))
1955 return -1;
1956 /* unprotect the page if it was put read-only because it
1957 contains translated code */
1958 if (!(p->flags & PAGE_WRITE)) {
1959 if (!page_unprotect(addr, 0, NULL))
1960 return -1;
1961 }
1962 return 0;
1963 }
1964 }
1965 return 0;
1966 }
1967
1968 /* called from signal handler: invalidate the code and unprotect the
1969 page. Return TRUE if the fault was succesfully handled. */
1970 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1971 {
1972 unsigned int page_index, prot, pindex;
1973 PageDesc *p, *p1;
1974 target_ulong host_start, host_end, addr;
1975
1976 host_start = address & qemu_host_page_mask;
1977 page_index = host_start >> TARGET_PAGE_BITS;
1978 p1 = page_find(page_index);
1979 if (!p1)
1980 return 0;
1981 host_end = host_start + qemu_host_page_size;
1982 p = p1;
1983 prot = 0;
1984 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1985 prot |= p->flags;
1986 p++;
1987 }
1988 /* if the page was really writable, then we change its
1989 protection back to writable */
1990 if (prot & PAGE_WRITE_ORG) {
1991 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1992 if (!(p1[pindex].flags & PAGE_WRITE)) {
1993 mprotect((void *)g2h(host_start), qemu_host_page_size,
1994 (prot & PAGE_BITS) | PAGE_WRITE);
1995 p1[pindex].flags |= PAGE_WRITE;
1996 /* and since the content will be modified, we must invalidate
1997 the corresponding translated code. */
1998 tb_invalidate_phys_page(address, pc, puc);
1999 #ifdef DEBUG_TB_CHECK
2000 tb_invalidate_check(address);
2001 #endif
2002 return 1;
2003 }
2004 }
2005 return 0;
2006 }
2007
2008 static inline void tlb_set_dirty(CPUState *env,
2009 unsigned long addr, target_ulong vaddr)
2010 {
2011 }
2012 #endif /* defined(CONFIG_USER_ONLY) */
2013
2014 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2015 ram_addr_t memory);
2016 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2017 ram_addr_t orig_memory);
2018 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2019 need_subpage) \
2020 do { \
2021 if (addr > start_addr) \
2022 start_addr2 = 0; \
2023 else { \
2024 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2025 if (start_addr2 > 0) \
2026 need_subpage = 1; \
2027 } \
2028 \
2029 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2030 end_addr2 = TARGET_PAGE_SIZE - 1; \
2031 else { \
2032 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2033 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2034 need_subpage = 1; \
2035 } \
2036 } while (0)
2037
2038 /* register physical memory. 'size' must be a multiple of the target
2039 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2040 io memory page */
2041 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2042 ram_addr_t size,
2043 ram_addr_t phys_offset)
2044 {
2045 target_phys_addr_t addr, end_addr;
2046 PhysPageDesc *p;
2047 CPUState *env;
2048 ram_addr_t orig_size = size;
2049 void *subpage;
2050
2051 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2052 end_addr = start_addr + (target_phys_addr_t)size;
2053 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2054 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2055 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2056 ram_addr_t orig_memory = p->phys_offset;
2057 target_phys_addr_t start_addr2, end_addr2;
2058 int need_subpage = 0;
2059
2060 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2061 need_subpage);
2062 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2063 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2064 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2065 &p->phys_offset, orig_memory);
2066 } else {
2067 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2068 >> IO_MEM_SHIFT];
2069 }
2070 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2071 } else {
2072 p->phys_offset = phys_offset;
2073 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2074 (phys_offset & IO_MEM_ROMD))
2075 phys_offset += TARGET_PAGE_SIZE;
2076 }
2077 } else {
2078 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2079 p->phys_offset = phys_offset;
2080 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2081 (phys_offset & IO_MEM_ROMD))
2082 phys_offset += TARGET_PAGE_SIZE;
2083 else {
2084 target_phys_addr_t start_addr2, end_addr2;
2085 int need_subpage = 0;
2086
2087 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2088 end_addr2, need_subpage);
2089
2090 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2091 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2092 &p->phys_offset, IO_MEM_UNASSIGNED);
2093 subpage_register(subpage, start_addr2, end_addr2,
2094 phys_offset);
2095 }
2096 }
2097 }
2098 }
2099
2100 /* since each CPU stores ram addresses in its TLB cache, we must
2101 reset the modified entries */
2102 /* XXX: slow ! */
2103 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2104 tlb_flush(env, 1);
2105 }
2106 }
2107
2108 /* XXX: temporary until new memory mapping API */
2109 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2110 {
2111 PhysPageDesc *p;
2112
2113 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2114 if (!p)
2115 return IO_MEM_UNASSIGNED;
2116 return p->phys_offset;
2117 }
2118
2119 /* XXX: better than nothing */
2120 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2121 {
2122 ram_addr_t addr;
2123 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2124 fprintf(stderr, "Not enough memory (requested_size = %lu, max memory = %ld)\n",
2125 size, phys_ram_size);
2126 abort();
2127 }
2128 addr = phys_ram_alloc_offset;
2129 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2130 return addr;
2131 }
2132
2133 void qemu_ram_free(ram_addr_t addr)
2134 {
2135 }
2136
2137 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2138 {
2139 #ifdef DEBUG_UNASSIGNED
2140 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2141 #endif
2142 #ifdef TARGET_SPARC
2143 do_unassigned_access(addr, 0, 0, 0);
2144 #elif TARGET_CRIS
2145 do_unassigned_access(addr, 0, 0, 0);
2146 #endif
2147 return 0;
2148 }
2149
2150 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2151 {
2152 #ifdef DEBUG_UNASSIGNED
2153 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2154 #endif
2155 #ifdef TARGET_SPARC
2156 do_unassigned_access(addr, 1, 0, 0);
2157 #elif TARGET_CRIS
2158 do_unassigned_access(addr, 1, 0, 0);
2159 #endif
2160 }
2161
2162 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2163 unassigned_mem_readb,
2164 unassigned_mem_readb,
2165 unassigned_mem_readb,
2166 };
2167
2168 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2169 unassigned_mem_writeb,
2170 unassigned_mem_writeb,
2171 unassigned_mem_writeb,
2172 };
2173
2174 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2175 {
2176 unsigned long ram_addr;
2177 int dirty_flags;
2178 ram_addr = addr - (unsigned long)phys_ram_base;
2179 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2180 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2181 #if !defined(CONFIG_USER_ONLY)
2182 tb_invalidate_phys_page_fast(ram_addr, 1);
2183 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2184 #endif
2185 }
2186 stb_p((uint8_t *)(long)addr, val);
2187 #ifdef USE_KQEMU
2188 if (cpu_single_env->kqemu_enabled &&
2189 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2190 kqemu_modify_page(cpu_single_env, ram_addr);
2191 #endif
2192 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2193 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2194 /* we remove the notdirty callback only if the code has been
2195 flushed */
2196 if (dirty_flags == 0xff)
2197 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2198 }
2199
2200 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2201 {
2202 unsigned long ram_addr;
2203 int dirty_flags;
2204 ram_addr = addr - (unsigned long)phys_ram_base;
2205 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2206 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2207 #if !defined(CONFIG_USER_ONLY)
2208 tb_invalidate_phys_page_fast(ram_addr, 2);
2209 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2210 #endif
2211 }
2212 stw_p((uint8_t *)(long)addr, val);
2213 #ifdef USE_KQEMU
2214 if (cpu_single_env->kqemu_enabled &&
2215 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2216 kqemu_modify_page(cpu_single_env, ram_addr);
2217 #endif
2218 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2219 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2220 /* we remove the notdirty callback only if the code has been
2221 flushed */
2222 if (dirty_flags == 0xff)
2223 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2224 }
2225
2226 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2227 {
2228 unsigned long ram_addr;
2229 int dirty_flags;
2230 ram_addr = addr - (unsigned long)phys_ram_base;
2231 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2232 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2233 #if !defined(CONFIG_USER_ONLY)
2234 tb_invalidate_phys_page_fast(ram_addr, 4);
2235 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2236 #endif
2237 }
2238 stl_p((uint8_t *)(long)addr, val);
2239 #ifdef USE_KQEMU
2240 if (cpu_single_env->kqemu_enabled &&
2241 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2242 kqemu_modify_page(cpu_single_env, ram_addr);
2243 #endif
2244 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2245 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2246 /* we remove the notdirty callback only if the code has been
2247 flushed */
2248 if (dirty_flags == 0xff)
2249 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2250 }
2251
2252 static CPUReadMemoryFunc *error_mem_read[3] = {
2253 NULL, /* never used */
2254 NULL, /* never used */
2255 NULL, /* never used */
2256 };
2257
2258 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2259 notdirty_mem_writeb,
2260 notdirty_mem_writew,
2261 notdirty_mem_writel,
2262 };
2263
2264 #if defined(CONFIG_SOFTMMU)
2265 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2266 so these check for a hit then pass through to the normal out-of-line
2267 phys routines. */
2268 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2269 {
2270 return ldub_phys(addr);
2271 }
2272
2273 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2274 {
2275 return lduw_phys(addr);
2276 }
2277
2278 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2279 {
2280 return ldl_phys(addr);
2281 }
2282
2283 /* Generate a debug exception if a watchpoint has been hit.
2284 Returns the real physical address of the access. addr will be a host
2285 address in case of a RAM location. */
2286 static target_ulong check_watchpoint(target_phys_addr_t addr)
2287 {
2288 CPUState *env = cpu_single_env;
2289 target_ulong watch;
2290 target_ulong retaddr;
2291 int i;
2292
2293 retaddr = addr;
2294 for (i = 0; i < env->nb_watchpoints; i++) {
2295 watch = env->watchpoint[i].vaddr;
2296 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2297 retaddr = addr - env->watchpoint[i].addend;
2298 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2299 cpu_single_env->watchpoint_hit = i + 1;
2300 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2301 break;
2302 }
2303 }
2304 }
2305 return retaddr;
2306 }
2307
2308 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2309 uint32_t val)
2310 {
2311 addr = check_watchpoint(addr);
2312 stb_phys(addr, val);
2313 }
2314
2315 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2316 uint32_t val)
2317 {
2318 addr = check_watchpoint(addr);
2319 stw_phys(addr, val);
2320 }
2321
2322 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2323 uint32_t val)
2324 {
2325 addr = check_watchpoint(addr);
2326 stl_phys(addr, val);
2327 }
2328
2329 static CPUReadMemoryFunc *watch_mem_read[3] = {
2330 watch_mem_readb,
2331 watch_mem_readw,
2332 watch_mem_readl,
2333 };
2334
2335 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2336 watch_mem_writeb,
2337 watch_mem_writew,
2338 watch_mem_writel,
2339 };
2340 #endif
2341
2342 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2343 unsigned int len)
2344 {
2345 uint32_t ret;
2346 unsigned int idx;
2347
2348 idx = SUBPAGE_IDX(addr - mmio->base);
2349 #if defined(DEBUG_SUBPAGE)
2350 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2351 mmio, len, addr, idx);
2352 #endif
2353 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2354
2355 return ret;
2356 }
2357
2358 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2359 uint32_t value, unsigned int len)
2360 {
2361 unsigned int idx;
2362
2363 idx = SUBPAGE_IDX(addr - mmio->base);
2364 #if defined(DEBUG_SUBPAGE)
2365 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2366 mmio, len, addr, idx, value);
2367 #endif
2368 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2369 }
2370
2371 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2372 {
2373 #if defined(DEBUG_SUBPAGE)
2374 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2375 #endif
2376
2377 return subpage_readlen(opaque, addr, 0);
2378 }
2379
2380 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2381 uint32_t value)
2382 {
2383 #if defined(DEBUG_SUBPAGE)
2384 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2385 #endif
2386 subpage_writelen(opaque, addr, value, 0);
2387 }
2388
2389 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2390 {
2391 #if defined(DEBUG_SUBPAGE)
2392 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2393 #endif
2394
2395 return subpage_readlen(opaque, addr, 1);
2396 }
2397
2398 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2399 uint32_t value)
2400 {
2401 #if defined(DEBUG_SUBPAGE)
2402 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2403 #endif
2404 subpage_writelen(opaque, addr, value, 1);
2405 }
2406
2407 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2408 {
2409 #if defined(DEBUG_SUBPAGE)
2410 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2411 #endif
2412
2413 return subpage_readlen(opaque, addr, 2);
2414 }
2415
2416 static void subpage_writel (void *opaque,
2417 target_phys_addr_t addr, uint32_t value)
2418 {
2419 #if defined(DEBUG_SUBPAGE)
2420 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2421 #endif
2422 subpage_writelen(opaque, addr, value, 2);
2423 }
2424
2425 static CPUReadMemoryFunc *subpage_read[] = {
2426 &subpage_readb,
2427 &subpage_readw,
2428 &subpage_readl,
2429 };
2430
2431 static CPUWriteMemoryFunc *subpage_write[] = {
2432 &subpage_writeb,
2433 &subpage_writew,
2434 &subpage_writel,
2435 };
2436
2437 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2438 ram_addr_t memory)
2439 {
2440 int idx, eidx;
2441 unsigned int i;
2442
2443 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2444 return -1;
2445 idx = SUBPAGE_IDX(start);
2446 eidx = SUBPAGE_IDX(end);
2447 #if defined(DEBUG_SUBPAGE)
2448 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2449 mmio, start, end, idx, eidx, memory);
2450 #endif
2451 memory >>= IO_MEM_SHIFT;
2452 for (; idx <= eidx; idx++) {
2453 for (i = 0; i < 4; i++) {
2454 if (io_mem_read[memory][i]) {
2455 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2456 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2457 }
2458 if (io_mem_write[memory][i]) {
2459 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2460 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2461 }
2462 }
2463 }
2464
2465 return 0;
2466 }
2467
2468 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2469 ram_addr_t orig_memory)
2470 {
2471 subpage_t *mmio;
2472 int subpage_memory;
2473
2474 mmio = qemu_mallocz(sizeof(subpage_t));
2475 if (mmio != NULL) {
2476 mmio->base = base;
2477 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2478 #if defined(DEBUG_SUBPAGE)
2479 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2480 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2481 #endif
2482 *phys = subpage_memory | IO_MEM_SUBPAGE;
2483 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2484 }
2485
2486 return mmio;
2487 }
2488
2489 static void io_mem_init(void)
2490 {
2491 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2492 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2493 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2494 io_mem_nb = 5;
2495
2496 #if defined(CONFIG_SOFTMMU)
2497 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2498 watch_mem_write, NULL);
2499 #endif
2500 /* alloc dirty bits array */
2501 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2502 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2503 }
2504
2505 /* mem_read and mem_write are arrays of functions containing the
2506 function to access byte (index 0), word (index 1) and dword (index
2507 2). Functions can be omitted with a NULL function pointer. The
2508 registered functions may be modified dynamically later.
2509 If io_index is non zero, the corresponding io zone is
2510 modified. If it is zero, a new io zone is allocated. The return
2511 value can be used with cpu_register_physical_memory(). (-1) is
2512 returned if error. */
2513 int cpu_register_io_memory(int io_index,
2514 CPUReadMemoryFunc **mem_read,
2515 CPUWriteMemoryFunc **mem_write,
2516 void *opaque)
2517 {
2518 int i, subwidth = 0;
2519
2520 if (io_index <= 0) {
2521 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2522 return -1;
2523 io_index = io_mem_nb++;
2524 } else {
2525 if (io_index >= IO_MEM_NB_ENTRIES)
2526 return -1;
2527 }
2528
2529 for(i = 0;i < 3; i++) {
2530 if (!mem_read[i] || !mem_write[i])
2531 subwidth = IO_MEM_SUBWIDTH;
2532 io_mem_read[io_index][i] = mem_read[i];
2533 io_mem_write[io_index][i] = mem_write[i];
2534 }
2535 io_mem_opaque[io_index] = opaque;
2536 return (io_index << IO_MEM_SHIFT) | subwidth;
2537 }
2538
2539 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2540 {
2541 return io_mem_write[io_index >> IO_MEM_SHIFT];
2542 }
2543
2544 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2545 {
2546 return io_mem_read[io_index >> IO_MEM_SHIFT];
2547 }
2548
2549 /* physical memory access (slow version, mainly for debug) */
2550 #if defined(CONFIG_USER_ONLY)
2551 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2552 int len, int is_write)
2553 {
2554 int l, flags;
2555 target_ulong page;
2556 void * p;
2557
2558 while (len > 0) {
2559 page = addr & TARGET_PAGE_MASK;
2560 l = (page + TARGET_PAGE_SIZE) - addr;
2561 if (l > len)
2562 l = len;
2563 flags = page_get_flags(page);
2564 if (!(flags & PAGE_VALID))
2565 return;
2566 if (is_write) {
2567 if (!(flags & PAGE_WRITE))
2568 return;
2569 /* XXX: this code should not depend on lock_user */
2570 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2571 /* FIXME - should this return an error rather than just fail? */
2572 return;
2573 memcpy(p, buf, l);
2574 unlock_user(p, addr, l);
2575 } else {
2576 if (!(flags & PAGE_READ))
2577 return;
2578 /* XXX: this code should not depend on lock_user */
2579 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2580 /* FIXME - should this return an error rather than just fail? */
2581 return;
2582 memcpy(buf, p, l);
2583 unlock_user(p, addr, 0);
2584 }
2585 len -= l;
2586 buf += l;
2587 addr += l;
2588 }
2589 }
2590
2591 #else
2592 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2593 int len, int is_write)
2594 {
2595 int l, io_index;
2596 uint8_t *ptr;
2597 uint32_t val;
2598 target_phys_addr_t page;
2599 unsigned long pd;
2600 PhysPageDesc *p;
2601
2602 while (len > 0) {
2603 page = addr & TARGET_PAGE_MASK;
2604 l = (page + TARGET_PAGE_SIZE) - addr;
2605 if (l > len)
2606 l = len;
2607 p = phys_page_find(page >> TARGET_PAGE_BITS);
2608 if (!p) {
2609 pd = IO_MEM_UNASSIGNED;
2610 } else {
2611 pd = p->phys_offset;
2612 }
2613
2614 if (is_write) {
2615 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2616 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2617 /* XXX: could force cpu_single_env to NULL to avoid
2618 potential bugs */
2619 if (l >= 4 && ((addr & 3) == 0)) {
2620 /* 32 bit write access */
2621 val = ldl_p(buf);
2622 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2623 l = 4;
2624 } else if (l >= 2 && ((addr & 1) == 0)) {
2625 /* 16 bit write access */
2626 val = lduw_p(buf);
2627 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2628 l = 2;
2629 } else {
2630 /* 8 bit write access */
2631 val = ldub_p(buf);
2632 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2633 l = 1;
2634 }
2635 } else {
2636 unsigned long addr1;
2637 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2638 /* RAM case */
2639 ptr = phys_ram_base + addr1;
2640 memcpy(ptr, buf, l);
2641 if (!cpu_physical_memory_is_dirty(addr1)) {
2642 /* invalidate code */
2643 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2644 /* set dirty bit */
2645 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2646 (0xff & ~CODE_DIRTY_FLAG);
2647 }
2648 }
2649 } else {
2650 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2651 !(pd & IO_MEM_ROMD)) {
2652 /* I/O case */
2653 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2654 if (l >= 4 && ((addr & 3) == 0)) {
2655 /* 32 bit read access */
2656 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2657 stl_p(buf, val);
2658 l = 4;
2659 } else if (l >= 2 && ((addr & 1) == 0)) {
2660 /* 16 bit read access */
2661 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2662 stw_p(buf, val);
2663 l = 2;
2664 } else {
2665 /* 8 bit read access */
2666 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2667 stb_p(buf, val);
2668 l = 1;
2669 }
2670 } else {
2671 /* RAM case */
2672 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2673 (addr & ~TARGET_PAGE_MASK);
2674 memcpy(buf, ptr, l);
2675 }
2676 }
2677 len -= l;
2678 buf += l;
2679 addr += l;
2680 }
2681 }
2682
2683 /* used for ROM loading : can write in RAM and ROM */
2684 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2685 const uint8_t *buf, int len)
2686 {
2687 int l;
2688 uint8_t *ptr;
2689 target_phys_addr_t page;
2690 unsigned long pd;
2691 PhysPageDesc *p;
2692
2693 while (len > 0) {
2694 page = addr & TARGET_PAGE_MASK;
2695 l = (page + TARGET_PAGE_SIZE) - addr;
2696 if (l > len)
2697 l = len;
2698 p = phys_page_find(page >> TARGET_PAGE_BITS);
2699 if (!p) {
2700 pd = IO_MEM_UNASSIGNED;
2701 } else {
2702 pd = p->phys_offset;
2703 }
2704
2705 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2706 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2707 !(pd & IO_MEM_ROMD)) {
2708 /* do nothing */
2709 } else {
2710 unsigned long addr1;
2711 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2712 /* ROM/RAM case */
2713 ptr = phys_ram_base + addr1;
2714 memcpy(ptr, buf, l);
2715 }
2716 len -= l;
2717 buf += l;
2718 addr += l;
2719 }
2720 }
2721
2722
2723 /* warning: addr must be aligned */
2724 uint32_t ldl_phys(target_phys_addr_t addr)
2725 {
2726 int io_index;
2727 uint8_t *ptr;
2728 uint32_t val;
2729 unsigned long pd;
2730 PhysPageDesc *p;
2731
2732 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2733 if (!p) {
2734 pd = IO_MEM_UNASSIGNED;
2735 } else {
2736 pd = p->phys_offset;
2737 }
2738
2739 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2740 !(pd & IO_MEM_ROMD)) {
2741 /* I/O case */
2742 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2743 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2744 } else {
2745 /* RAM case */
2746 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2747 (addr & ~TARGET_PAGE_MASK);
2748 val = ldl_p(ptr);
2749 }
2750 return val;
2751 }
2752
2753 /* warning: addr must be aligned */
2754 uint64_t ldq_phys(target_phys_addr_t addr)
2755 {
2756 int io_index;
2757 uint8_t *ptr;
2758 uint64_t val;
2759 unsigned long pd;
2760 PhysPageDesc *p;
2761
2762 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2763 if (!p) {
2764 pd = IO_MEM_UNASSIGNED;
2765 } else {
2766 pd = p->phys_offset;
2767 }
2768
2769 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2770 !(pd & IO_MEM_ROMD)) {
2771 /* I/O case */
2772 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2773 #ifdef TARGET_WORDS_BIGENDIAN
2774 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2775 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2776 #else
2777 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2778 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2779 #endif
2780 } else {
2781 /* RAM case */
2782 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2783 (addr & ~TARGET_PAGE_MASK);
2784 val = ldq_p(ptr);
2785 }
2786 return val;
2787 }
2788
2789 /* XXX: optimize */
2790 uint32_t ldub_phys(target_phys_addr_t addr)
2791 {
2792 uint8_t val;
2793 cpu_physical_memory_read(addr, &val, 1);
2794 return val;
2795 }
2796
2797 /* XXX: optimize */
2798 uint32_t lduw_phys(target_phys_addr_t addr)
2799 {
2800 uint16_t val;
2801 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2802 return tswap16(val);
2803 }
2804
2805 /* warning: addr must be aligned. The ram page is not masked as dirty
2806 and the code inside is not invalidated. It is useful if the dirty
2807 bits are used to track modified PTEs */
2808 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2809 {
2810 int io_index;
2811 uint8_t *ptr;
2812 unsigned long pd;
2813 PhysPageDesc *p;
2814
2815 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2816 if (!p) {
2817 pd = IO_MEM_UNASSIGNED;
2818 } else {
2819 pd = p->phys_offset;
2820 }
2821
2822 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2823 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2824 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2825 } else {
2826 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2827 (addr & ~TARGET_PAGE_MASK);
2828 stl_p(ptr, val);
2829 }
2830 }
2831
2832 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2833 {
2834 int io_index;
2835 uint8_t *ptr;
2836 unsigned long pd;
2837 PhysPageDesc *p;
2838
2839 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2840 if (!p) {
2841 pd = IO_MEM_UNASSIGNED;
2842 } else {
2843 pd = p->phys_offset;
2844 }
2845
2846 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2847 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2848 #ifdef TARGET_WORDS_BIGENDIAN
2849 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2850 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2851 #else
2852 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2853 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2854 #endif
2855 } else {
2856 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2857 (addr & ~TARGET_PAGE_MASK);
2858 stq_p(ptr, val);
2859 }
2860 }
2861
2862 /* warning: addr must be aligned */
2863 void stl_phys(target_phys_addr_t addr, uint32_t val)
2864 {
2865 int io_index;
2866 uint8_t *ptr;
2867 unsigned long pd;
2868 PhysPageDesc *p;
2869
2870 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2871 if (!p) {
2872 pd = IO_MEM_UNASSIGNED;
2873 } else {
2874 pd = p->phys_offset;
2875 }
2876
2877 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2878 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2879 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2880 } else {
2881 unsigned long addr1;
2882 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2883 /* RAM case */
2884 ptr = phys_ram_base + addr1;
2885 stl_p(ptr, val);
2886 if (!cpu_physical_memory_is_dirty(addr1)) {
2887 /* invalidate code */
2888 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2889 /* set dirty bit */
2890 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2891 (0xff & ~CODE_DIRTY_FLAG);
2892 }
2893 }
2894 }
2895
2896 /* XXX: optimize */
2897 void stb_phys(target_phys_addr_t addr, uint32_t val)
2898 {
2899 uint8_t v = val;
2900 cpu_physical_memory_write(addr, &v, 1);
2901 }
2902
2903 /* XXX: optimize */
2904 void stw_phys(target_phys_addr_t addr, uint32_t val)
2905 {
2906 uint16_t v = tswap16(val);
2907 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2908 }
2909
2910 /* XXX: optimize */
2911 void stq_phys(target_phys_addr_t addr, uint64_t val)
2912 {
2913 val = tswap64(val);
2914 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2915 }
2916
2917 #endif
2918
2919 /* virtual memory access for debug */
2920 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2921 uint8_t *buf, int len, int is_write)
2922 {
2923 int l;
2924 target_phys_addr_t phys_addr;
2925 target_ulong page;
2926
2927 while (len > 0) {
2928 page = addr & TARGET_PAGE_MASK;
2929 phys_addr = cpu_get_phys_page_debug(env, page);
2930 /* if no physical page mapped, return an error */
2931 if (phys_addr == -1)
2932 return -1;
2933 l = (page + TARGET_PAGE_SIZE) - addr;
2934 if (l > len)
2935 l = len;
2936 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2937 buf, l, is_write);
2938 len -= l;
2939 buf += l;
2940 addr += l;
2941 }
2942 return 0;
2943 }
2944
2945 void dump_exec_info(FILE *f,
2946 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2947 {
2948 int i, target_code_size, max_target_code_size;
2949 int direct_jmp_count, direct_jmp2_count, cross_page;
2950 TranslationBlock *tb;
2951
2952 target_code_size = 0;
2953 max_target_code_size = 0;
2954 cross_page = 0;
2955 direct_jmp_count = 0;
2956 direct_jmp2_count = 0;
2957 for(i = 0; i < nb_tbs; i++) {
2958 tb = &tbs[i];
2959 target_code_size += tb->size;
2960 if (tb->size > max_target_code_size)
2961 max_target_code_size = tb->size;
2962 if (tb->page_addr[1] != -1)
2963 cross_page++;
2964 if (tb->tb_next_offset[0] != 0xffff) {
2965 direct_jmp_count++;
2966 if (tb->tb_next_offset[1] != 0xffff) {
2967 direct_jmp2_count++;
2968 }
2969 }
2970 }
2971 /* XXX: avoid using doubles ? */
2972 cpu_fprintf(f, "Translation buffer state:\n");
2973 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2974 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2975 nb_tbs ? target_code_size / nb_tbs : 0,
2976 max_target_code_size);
2977 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2978 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2979 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2980 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2981 cross_page,
2982 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2983 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2984 direct_jmp_count,
2985 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2986 direct_jmp2_count,
2987 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2988 cpu_fprintf(f, "\nStatistics:\n");
2989 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2990 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2991 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2992 #ifdef CONFIG_PROFILER
2993 {
2994 int64_t tot;
2995 tot = dyngen_interm_time + dyngen_code_time;
2996 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
2997 tot, tot / 2.4e9);
2998 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
2999 dyngen_tb_count,
3000 dyngen_tb_count1 - dyngen_tb_count,
3001 dyngen_tb_count1 ? (double)(dyngen_tb_count1 - dyngen_tb_count) / dyngen_tb_count1 * 100.0 : 0);
3002 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
3003 dyngen_tb_count ? (double)dyngen_op_count / dyngen_tb_count : 0, dyngen_op_count_max);
3004 cpu_fprintf(f, "old ops/total ops %0.1f%%\n",
3005 dyngen_op_count ? (double)dyngen_old_op_count / dyngen_op_count * 100.0 : 0);
3006 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3007 dyngen_tb_count ?
3008 (double)dyngen_tcg_del_op_count / dyngen_tb_count : 0);
3009 cpu_fprintf(f, "cycles/op %0.1f\n",
3010 dyngen_op_count ? (double)tot / dyngen_op_count : 0);
3011 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3012 dyngen_code_in_len ? (double)tot / dyngen_code_in_len : 0);
3013 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3014 dyngen_code_out_len ? (double)tot / dyngen_code_out_len : 0);
3015 if (tot == 0)
3016 tot = 1;
3017 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3018 (double)dyngen_interm_time / tot * 100.0);
3019 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3020 (double)dyngen_code_time / tot * 100.0);
3021 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3022 dyngen_restore_count);
3023 cpu_fprintf(f, " avg cycles %0.1f\n",
3024 dyngen_restore_count ? (double)dyngen_restore_time / dyngen_restore_count : 0);
3025 {
3026 extern void dump_op_count(void);
3027 dump_op_count();
3028 }
3029 }
3030 #endif
3031 }
3032
3033 #if !defined(CONFIG_USER_ONLY)
3034
3035 #define MMUSUFFIX _cmmu
3036 #define GETPC() NULL
3037 #define env cpu_single_env
3038 #define SOFTMMU_CODE_ACCESS
3039
3040 #define SHIFT 0
3041 #include "softmmu_template.h"
3042
3043 #define SHIFT 1
3044 #include "softmmu_template.h"
3045
3046 #define SHIFT 2
3047 #include "softmmu_template.h"
3048
3049 #define SHIFT 3
3050 #include "softmmu_template.h"
3051
3052 #undef env
3053
3054 #endif