]> git.proxmox.com Git - qemu.git/blob - exec.c
virtio-scsi: enable MSI-X support
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc_v9__)
545 // Map the buffer below 2G, so we can use direct calls and branches
546 flags |= MAP_FIXED;
547 start = (void *) 0x60000000UL;
548 if (code_gen_buffer_size > (512 * 1024 * 1024))
549 code_gen_buffer_size = (512 * 1024 * 1024);
550 #elif defined(__arm__)
551 /* Keep the buffer no bigger than 16MB to branch between blocks */
552 if (code_gen_buffer_size > 16 * 1024 * 1024)
553 code_gen_buffer_size = 16 * 1024 * 1024;
554 #elif defined(__s390x__)
555 /* Map the buffer so that we can use direct calls and branches. */
556 /* We have a +- 4GB range on the branches; leave some slop. */
557 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
558 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
559 }
560 start = (void *)0x90000000UL;
561 #endif
562 code_gen_buffer = mmap(start, code_gen_buffer_size,
563 PROT_WRITE | PROT_READ | PROT_EXEC,
564 flags, -1, 0);
565 if (code_gen_buffer == MAP_FAILED) {
566 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
567 exit(1);
568 }
569 }
570 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
571 || defined(__DragonFly__) || defined(__OpenBSD__) \
572 || defined(__NetBSD__)
573 {
574 int flags;
575 void *addr = NULL;
576 flags = MAP_PRIVATE | MAP_ANONYMOUS;
577 #if defined(__x86_64__)
578 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
579 * 0x40000000 is free */
580 flags |= MAP_FIXED;
581 addr = (void *)0x40000000;
582 /* Cannot map more than that */
583 if (code_gen_buffer_size > (800 * 1024 * 1024))
584 code_gen_buffer_size = (800 * 1024 * 1024);
585 #elif defined(__sparc_v9__)
586 // Map the buffer below 2G, so we can use direct calls and branches
587 flags |= MAP_FIXED;
588 addr = (void *) 0x60000000UL;
589 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
590 code_gen_buffer_size = (512 * 1024 * 1024);
591 }
592 #endif
593 code_gen_buffer = mmap(addr, code_gen_buffer_size,
594 PROT_WRITE | PROT_READ | PROT_EXEC,
595 flags, -1, 0);
596 if (code_gen_buffer == MAP_FAILED) {
597 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
598 exit(1);
599 }
600 }
601 #else
602 code_gen_buffer = g_malloc(code_gen_buffer_size);
603 map_exec(code_gen_buffer, code_gen_buffer_size);
604 #endif
605 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
606 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
607 code_gen_buffer_max_size = code_gen_buffer_size -
608 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
609 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
610 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
611 }
612
613 /* Must be called before using the QEMU cpus. 'tb_size' is the size
614 (in bytes) allocated to the translation buffer. Zero means default
615 size. */
616 void tcg_exec_init(unsigned long tb_size)
617 {
618 cpu_gen_init();
619 code_gen_alloc(tb_size);
620 code_gen_ptr = code_gen_buffer;
621 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
622 page_init();
623 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
624 /* There's no guest base to take into account, so go ahead and
625 initialize the prologue now. */
626 tcg_prologue_init(&tcg_ctx);
627 #endif
628 }
629
630 bool tcg_enabled(void)
631 {
632 return code_gen_buffer != NULL;
633 }
634
635 void cpu_exec_init_all(void)
636 {
637 #if !defined(CONFIG_USER_ONLY)
638 memory_map_init();
639 io_mem_init();
640 #endif
641 }
642
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644
645 static int cpu_common_post_load(void *opaque, int version_id)
646 {
647 CPUArchState *env = opaque;
648
649 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
650 version_id is increased. */
651 env->interrupt_request &= ~0x01;
652 tlb_flush(env, 1);
653
654 return 0;
655 }
656
657 static const VMStateDescription vmstate_cpu_common = {
658 .name = "cpu_common",
659 .version_id = 1,
660 .minimum_version_id = 1,
661 .minimum_version_id_old = 1,
662 .post_load = cpu_common_post_load,
663 .fields = (VMStateField []) {
664 VMSTATE_UINT32(halted, CPUArchState),
665 VMSTATE_UINT32(interrupt_request, CPUArchState),
666 VMSTATE_END_OF_LIST()
667 }
668 };
669 #endif
670
671 CPUArchState *qemu_get_cpu(int cpu)
672 {
673 CPUArchState *env = first_cpu;
674
675 while (env) {
676 if (env->cpu_index == cpu)
677 break;
678 env = env->next_cpu;
679 }
680
681 return env;
682 }
683
684 void cpu_exec_init(CPUArchState *env)
685 {
686 CPUArchState **penv;
687 int cpu_index;
688
689 #if defined(CONFIG_USER_ONLY)
690 cpu_list_lock();
691 #endif
692 env->next_cpu = NULL;
693 penv = &first_cpu;
694 cpu_index = 0;
695 while (*penv != NULL) {
696 penv = &(*penv)->next_cpu;
697 cpu_index++;
698 }
699 env->cpu_index = cpu_index;
700 env->numa_node = 0;
701 QTAILQ_INIT(&env->breakpoints);
702 QTAILQ_INIT(&env->watchpoints);
703 #ifndef CONFIG_USER_ONLY
704 env->thread_id = qemu_get_thread_id();
705 #endif
706 *penv = env;
707 #if defined(CONFIG_USER_ONLY)
708 cpu_list_unlock();
709 #endif
710 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
711 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
712 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
713 cpu_save, cpu_load, env);
714 #endif
715 }
716
717 /* Allocate a new translation block. Flush the translation buffer if
718 too many translation blocks or too much generated code. */
719 static TranslationBlock *tb_alloc(target_ulong pc)
720 {
721 TranslationBlock *tb;
722
723 if (nb_tbs >= code_gen_max_blocks ||
724 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
725 return NULL;
726 tb = &tbs[nb_tbs++];
727 tb->pc = pc;
728 tb->cflags = 0;
729 return tb;
730 }
731
732 void tb_free(TranslationBlock *tb)
733 {
734 /* In practice this is mostly used for single use temporary TB
735 Ignore the hard cases and just back up if this TB happens to
736 be the last one generated. */
737 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
738 code_gen_ptr = tb->tc_ptr;
739 nb_tbs--;
740 }
741 }
742
743 static inline void invalidate_page_bitmap(PageDesc *p)
744 {
745 if (p->code_bitmap) {
746 g_free(p->code_bitmap);
747 p->code_bitmap = NULL;
748 }
749 p->code_write_count = 0;
750 }
751
752 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
753
754 static void page_flush_tb_1 (int level, void **lp)
755 {
756 int i;
757
758 if (*lp == NULL) {
759 return;
760 }
761 if (level == 0) {
762 PageDesc *pd = *lp;
763 for (i = 0; i < L2_SIZE; ++i) {
764 pd[i].first_tb = NULL;
765 invalidate_page_bitmap(pd + i);
766 }
767 } else {
768 void **pp = *lp;
769 for (i = 0; i < L2_SIZE; ++i) {
770 page_flush_tb_1 (level - 1, pp + i);
771 }
772 }
773 }
774
775 static void page_flush_tb(void)
776 {
777 int i;
778 for (i = 0; i < V_L1_SIZE; i++) {
779 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
780 }
781 }
782
783 /* flush all the translation blocks */
784 /* XXX: tb_flush is currently not thread safe */
785 void tb_flush(CPUArchState *env1)
786 {
787 CPUArchState *env;
788 #if defined(DEBUG_FLUSH)
789 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
790 (unsigned long)(code_gen_ptr - code_gen_buffer),
791 nb_tbs, nb_tbs > 0 ?
792 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
793 #endif
794 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
795 cpu_abort(env1, "Internal error: code buffer overflow\n");
796
797 nb_tbs = 0;
798
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
801 }
802
803 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
804 page_flush_tb();
805
806 code_gen_ptr = code_gen_buffer;
807 /* XXX: flush processor icache at this point if cache flush is
808 expensive */
809 tb_flush_count++;
810 }
811
812 #ifdef DEBUG_TB_CHECK
813
814 static void tb_invalidate_check(target_ulong address)
815 {
816 TranslationBlock *tb;
817 int i;
818 address &= TARGET_PAGE_MASK;
819 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
820 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
821 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
822 address >= tb->pc + tb->size)) {
823 printf("ERROR invalidate: address=" TARGET_FMT_lx
824 " PC=%08lx size=%04x\n",
825 address, (long)tb->pc, tb->size);
826 }
827 }
828 }
829 }
830
831 /* verify that all the pages have correct rights for code */
832 static void tb_page_check(void)
833 {
834 TranslationBlock *tb;
835 int i, flags1, flags2;
836
837 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
838 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
839 flags1 = page_get_flags(tb->pc);
840 flags2 = page_get_flags(tb->pc + tb->size - 1);
841 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
842 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
843 (long)tb->pc, tb->size, flags1, flags2);
844 }
845 }
846 }
847 }
848
849 #endif
850
851 /* invalidate one TB */
852 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
853 int next_offset)
854 {
855 TranslationBlock *tb1;
856 for(;;) {
857 tb1 = *ptb;
858 if (tb1 == tb) {
859 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
860 break;
861 }
862 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
863 }
864 }
865
866 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
867 {
868 TranslationBlock *tb1;
869 unsigned int n1;
870
871 for(;;) {
872 tb1 = *ptb;
873 n1 = (uintptr_t)tb1 & 3;
874 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
875 if (tb1 == tb) {
876 *ptb = tb1->page_next[n1];
877 break;
878 }
879 ptb = &tb1->page_next[n1];
880 }
881 }
882
883 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
884 {
885 TranslationBlock *tb1, **ptb;
886 unsigned int n1;
887
888 ptb = &tb->jmp_next[n];
889 tb1 = *ptb;
890 if (tb1) {
891 /* find tb(n) in circular list */
892 for(;;) {
893 tb1 = *ptb;
894 n1 = (uintptr_t)tb1 & 3;
895 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
896 if (n1 == n && tb1 == tb)
897 break;
898 if (n1 == 2) {
899 ptb = &tb1->jmp_first;
900 } else {
901 ptb = &tb1->jmp_next[n1];
902 }
903 }
904 /* now we can suppress tb(n) from the list */
905 *ptb = tb->jmp_next[n];
906
907 tb->jmp_next[n] = NULL;
908 }
909 }
910
911 /* reset the jump entry 'n' of a TB so that it is not chained to
912 another TB */
913 static inline void tb_reset_jump(TranslationBlock *tb, int n)
914 {
915 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
916 }
917
918 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
919 {
920 CPUArchState *env;
921 PageDesc *p;
922 unsigned int h, n1;
923 tb_page_addr_t phys_pc;
924 TranslationBlock *tb1, *tb2;
925
926 /* remove the TB from the hash list */
927 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
928 h = tb_phys_hash_func(phys_pc);
929 tb_remove(&tb_phys_hash[h], tb,
930 offsetof(TranslationBlock, phys_hash_next));
931
932 /* remove the TB from the page list */
933 if (tb->page_addr[0] != page_addr) {
934 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
935 tb_page_remove(&p->first_tb, tb);
936 invalidate_page_bitmap(p);
937 }
938 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
939 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
940 tb_page_remove(&p->first_tb, tb);
941 invalidate_page_bitmap(p);
942 }
943
944 tb_invalidated_flag = 1;
945
946 /* remove the TB from the hash list */
947 h = tb_jmp_cache_hash_func(tb->pc);
948 for(env = first_cpu; env != NULL; env = env->next_cpu) {
949 if (env->tb_jmp_cache[h] == tb)
950 env->tb_jmp_cache[h] = NULL;
951 }
952
953 /* suppress this TB from the two jump lists */
954 tb_jmp_remove(tb, 0);
955 tb_jmp_remove(tb, 1);
956
957 /* suppress any remaining jumps to this TB */
958 tb1 = tb->jmp_first;
959 for(;;) {
960 n1 = (uintptr_t)tb1 & 3;
961 if (n1 == 2)
962 break;
963 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
964 tb2 = tb1->jmp_next[n1];
965 tb_reset_jump(tb1, n1);
966 tb1->jmp_next[n1] = NULL;
967 tb1 = tb2;
968 }
969 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
970
971 tb_phys_invalidate_count++;
972 }
973
974 static inline void set_bits(uint8_t *tab, int start, int len)
975 {
976 int end, mask, end1;
977
978 end = start + len;
979 tab += start >> 3;
980 mask = 0xff << (start & 7);
981 if ((start & ~7) == (end & ~7)) {
982 if (start < end) {
983 mask &= ~(0xff << (end & 7));
984 *tab |= mask;
985 }
986 } else {
987 *tab++ |= mask;
988 start = (start + 8) & ~7;
989 end1 = end & ~7;
990 while (start < end1) {
991 *tab++ = 0xff;
992 start += 8;
993 }
994 if (start < end) {
995 mask = ~(0xff << (end & 7));
996 *tab |= mask;
997 }
998 }
999 }
1000
1001 static void build_page_bitmap(PageDesc *p)
1002 {
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1005
1006 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE)
1019 tb_end = TARGET_PAGE_SIZE;
1020 } else {
1021 tb_start = 0;
1022 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1023 }
1024 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1025 tb = tb->page_next[n];
1026 }
1027 }
1028
1029 TranslationBlock *tb_gen_code(CPUArchState *env,
1030 target_ulong pc, target_ulong cs_base,
1031 int flags, int cflags)
1032 {
1033 TranslationBlock *tb;
1034 uint8_t *tc_ptr;
1035 tb_page_addr_t phys_pc, phys_page2;
1036 target_ulong virt_page2;
1037 int code_gen_size;
1038
1039 phys_pc = get_page_addr_code(env, pc);
1040 tb = tb_alloc(pc);
1041 if (!tb) {
1042 /* flush must be done */
1043 tb_flush(env);
1044 /* cannot fail at this point */
1045 tb = tb_alloc(pc);
1046 /* Don't forget to invalidate previous TB info. */
1047 tb_invalidated_flag = 1;
1048 }
1049 tc_ptr = code_gen_ptr;
1050 tb->tc_ptr = tc_ptr;
1051 tb->cs_base = cs_base;
1052 tb->flags = flags;
1053 tb->cflags = cflags;
1054 cpu_gen_code(env, tb, &code_gen_size);
1055 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1056 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1057
1058 /* check next page if needed */
1059 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1060 phys_page2 = -1;
1061 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1062 phys_page2 = get_page_addr_code(env, virt_page2);
1063 }
1064 tb_link_page(tb, phys_pc, phys_page2);
1065 return tb;
1066 }
1067
1068 /*
1069 * Invalidate all TBs which intersect with the target physical address range
1070 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1071 * 'is_cpu_write_access' should be true if called from a real cpu write
1072 * access: the virtual CPU will exit the current TB if code is modified inside
1073 * this TB.
1074 */
1075 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1076 int is_cpu_write_access)
1077 {
1078 while (start < end) {
1079 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1080 start &= TARGET_PAGE_MASK;
1081 start += TARGET_PAGE_SIZE;
1082 }
1083 }
1084
1085 /*
1086 * Invalidate all TBs which intersect with the target physical address range
1087 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1088 * 'is_cpu_write_access' should be true if called from a real cpu write
1089 * access: the virtual CPU will exit the current TB if code is modified inside
1090 * this TB.
1091 */
1092 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1093 int is_cpu_write_access)
1094 {
1095 TranslationBlock *tb, *tb_next, *saved_tb;
1096 CPUArchState *env = cpu_single_env;
1097 tb_page_addr_t tb_start, tb_end;
1098 PageDesc *p;
1099 int n;
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 int current_tb_not_found = is_cpu_write_access;
1102 TranslationBlock *current_tb = NULL;
1103 int current_tb_modified = 0;
1104 target_ulong current_pc = 0;
1105 target_ulong current_cs_base = 0;
1106 int current_flags = 0;
1107 #endif /* TARGET_HAS_PRECISE_SMC */
1108
1109 p = page_find(start >> TARGET_PAGE_BITS);
1110 if (!p)
1111 return;
1112 if (!p->code_bitmap &&
1113 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1114 is_cpu_write_access) {
1115 /* build code bitmap */
1116 build_page_bitmap(p);
1117 }
1118
1119 /* we remove all the TBs in the range [start, end[ */
1120 /* XXX: see if in some cases it could be faster to invalidate all the code */
1121 tb = p->first_tb;
1122 while (tb != NULL) {
1123 n = (uintptr_t)tb & 3;
1124 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1125 tb_next = tb->page_next[n];
1126 /* NOTE: this is subtle as a TB may span two physical pages */
1127 if (n == 0) {
1128 /* NOTE: tb_end may be after the end of the page, but
1129 it is not a problem */
1130 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1131 tb_end = tb_start + tb->size;
1132 } else {
1133 tb_start = tb->page_addr[1];
1134 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1135 }
1136 if (!(tb_end <= start || tb_start >= end)) {
1137 #ifdef TARGET_HAS_PRECISE_SMC
1138 if (current_tb_not_found) {
1139 current_tb_not_found = 0;
1140 current_tb = NULL;
1141 if (env->mem_io_pc) {
1142 /* now we have a real cpu fault */
1143 current_tb = tb_find_pc(env->mem_io_pc);
1144 }
1145 }
1146 if (current_tb == tb &&
1147 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1148 /* If we are modifying the current TB, we must stop
1149 its execution. We could be more precise by checking
1150 that the modification is after the current PC, but it
1151 would require a specialized function to partially
1152 restore the CPU state */
1153
1154 current_tb_modified = 1;
1155 cpu_restore_state(current_tb, env, env->mem_io_pc);
1156 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1157 &current_flags);
1158 }
1159 #endif /* TARGET_HAS_PRECISE_SMC */
1160 /* we need to do that to handle the case where a signal
1161 occurs while doing tb_phys_invalidate() */
1162 saved_tb = NULL;
1163 if (env) {
1164 saved_tb = env->current_tb;
1165 env->current_tb = NULL;
1166 }
1167 tb_phys_invalidate(tb, -1);
1168 if (env) {
1169 env->current_tb = saved_tb;
1170 if (env->interrupt_request && env->current_tb)
1171 cpu_interrupt(env, env->interrupt_request);
1172 }
1173 }
1174 tb = tb_next;
1175 }
1176 #if !defined(CONFIG_USER_ONLY)
1177 /* if no code remaining, no need to continue to use slow writes */
1178 if (!p->first_tb) {
1179 invalidate_page_bitmap(p);
1180 if (is_cpu_write_access) {
1181 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1182 }
1183 }
1184 #endif
1185 #ifdef TARGET_HAS_PRECISE_SMC
1186 if (current_tb_modified) {
1187 /* we generate a block containing just the instruction
1188 modifying the memory. It will ensure that it cannot modify
1189 itself */
1190 env->current_tb = NULL;
1191 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1192 cpu_resume_from_signal(env, NULL);
1193 }
1194 #endif
1195 }
1196
1197 /* len must be <= 8 and start must be a multiple of len */
1198 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1199 {
1200 PageDesc *p;
1201 int offset, b;
1202 #if 0
1203 if (1) {
1204 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1205 cpu_single_env->mem_io_vaddr, len,
1206 cpu_single_env->eip,
1207 cpu_single_env->eip +
1208 (intptr_t)cpu_single_env->segs[R_CS].base);
1209 }
1210 #endif
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p)
1213 return;
1214 if (p->code_bitmap) {
1215 offset = start & ~TARGET_PAGE_MASK;
1216 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1217 if (b & ((1 << len) - 1))
1218 goto do_invalidate;
1219 } else {
1220 do_invalidate:
1221 tb_invalidate_phys_page_range(start, start + len, 1);
1222 }
1223 }
1224
1225 #if !defined(CONFIG_SOFTMMU)
1226 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1227 uintptr_t pc, void *puc)
1228 {
1229 TranslationBlock *tb;
1230 PageDesc *p;
1231 int n;
1232 #ifdef TARGET_HAS_PRECISE_SMC
1233 TranslationBlock *current_tb = NULL;
1234 CPUArchState *env = cpu_single_env;
1235 int current_tb_modified = 0;
1236 target_ulong current_pc = 0;
1237 target_ulong current_cs_base = 0;
1238 int current_flags = 0;
1239 #endif
1240
1241 addr &= TARGET_PAGE_MASK;
1242 p = page_find(addr >> TARGET_PAGE_BITS);
1243 if (!p)
1244 return;
1245 tb = p->first_tb;
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (tb && pc != 0) {
1248 current_tb = tb_find_pc(pc);
1249 }
1250 #endif
1251 while (tb != NULL) {
1252 n = (uintptr_t)tb & 3;
1253 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 if (current_tb == tb &&
1256 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1257 /* If we are modifying the current TB, we must stop
1258 its execution. We could be more precise by checking
1259 that the modification is after the current PC, but it
1260 would require a specialized function to partially
1261 restore the CPU state */
1262
1263 current_tb_modified = 1;
1264 cpu_restore_state(current_tb, env, pc);
1265 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1266 &current_flags);
1267 }
1268 #endif /* TARGET_HAS_PRECISE_SMC */
1269 tb_phys_invalidate(tb, addr);
1270 tb = tb->page_next[n];
1271 }
1272 p->first_tb = NULL;
1273 #ifdef TARGET_HAS_PRECISE_SMC
1274 if (current_tb_modified) {
1275 /* we generate a block containing just the instruction
1276 modifying the memory. It will ensure that it cannot modify
1277 itself */
1278 env->current_tb = NULL;
1279 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1280 cpu_resume_from_signal(env, puc);
1281 }
1282 #endif
1283 }
1284 #endif
1285
1286 /* add the tb in the target page and protect it if necessary */
1287 static inline void tb_alloc_page(TranslationBlock *tb,
1288 unsigned int n, tb_page_addr_t page_addr)
1289 {
1290 PageDesc *p;
1291 #ifndef CONFIG_USER_ONLY
1292 bool page_already_protected;
1293 #endif
1294
1295 tb->page_addr[n] = page_addr;
1296 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1297 tb->page_next[n] = p->first_tb;
1298 #ifndef CONFIG_USER_ONLY
1299 page_already_protected = p->first_tb != NULL;
1300 #endif
1301 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1302 invalidate_page_bitmap(p);
1303
1304 #if defined(TARGET_HAS_SMC) || 1
1305
1306 #if defined(CONFIG_USER_ONLY)
1307 if (p->flags & PAGE_WRITE) {
1308 target_ulong addr;
1309 PageDesc *p2;
1310 int prot;
1311
1312 /* force the host page as non writable (writes will have a
1313 page fault + mprotect overhead) */
1314 page_addr &= qemu_host_page_mask;
1315 prot = 0;
1316 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1317 addr += TARGET_PAGE_SIZE) {
1318
1319 p2 = page_find (addr >> TARGET_PAGE_BITS);
1320 if (!p2)
1321 continue;
1322 prot |= p2->flags;
1323 p2->flags &= ~PAGE_WRITE;
1324 }
1325 mprotect(g2h(page_addr), qemu_host_page_size,
1326 (prot & PAGE_BITS) & ~PAGE_WRITE);
1327 #ifdef DEBUG_TB_INVALIDATE
1328 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1329 page_addr);
1330 #endif
1331 }
1332 #else
1333 /* if some code is already present, then the pages are already
1334 protected. So we handle the case where only the first TB is
1335 allocated in a physical page */
1336 if (!page_already_protected) {
1337 tlb_protect_code(page_addr);
1338 }
1339 #endif
1340
1341 #endif /* TARGET_HAS_SMC */
1342 }
1343
1344 /* add a new TB and link it to the physical page tables. phys_page2 is
1345 (-1) to indicate that only one page contains the TB. */
1346 void tb_link_page(TranslationBlock *tb,
1347 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1348 {
1349 unsigned int h;
1350 TranslationBlock **ptb;
1351
1352 /* Grab the mmap lock to stop another thread invalidating this TB
1353 before we are done. */
1354 mmap_lock();
1355 /* add in the physical hash table */
1356 h = tb_phys_hash_func(phys_pc);
1357 ptb = &tb_phys_hash[h];
1358 tb->phys_hash_next = *ptb;
1359 *ptb = tb;
1360
1361 /* add in the page list */
1362 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1363 if (phys_page2 != -1)
1364 tb_alloc_page(tb, 1, phys_page2);
1365 else
1366 tb->page_addr[1] = -1;
1367
1368 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1369 tb->jmp_next[0] = NULL;
1370 tb->jmp_next[1] = NULL;
1371
1372 /* init original jump addresses */
1373 if (tb->tb_next_offset[0] != 0xffff)
1374 tb_reset_jump(tb, 0);
1375 if (tb->tb_next_offset[1] != 0xffff)
1376 tb_reset_jump(tb, 1);
1377
1378 #ifdef DEBUG_TB_CHECK
1379 tb_page_check();
1380 #endif
1381 mmap_unlock();
1382 }
1383
1384 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1385 tb[1].tc_ptr. Return NULL if not found */
1386 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1387 {
1388 int m_min, m_max, m;
1389 uintptr_t v;
1390 TranslationBlock *tb;
1391
1392 if (nb_tbs <= 0)
1393 return NULL;
1394 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1395 tc_ptr >= (uintptr_t)code_gen_ptr) {
1396 return NULL;
1397 }
1398 /* binary search (cf Knuth) */
1399 m_min = 0;
1400 m_max = nb_tbs - 1;
1401 while (m_min <= m_max) {
1402 m = (m_min + m_max) >> 1;
1403 tb = &tbs[m];
1404 v = (uintptr_t)tb->tc_ptr;
1405 if (v == tc_ptr)
1406 return tb;
1407 else if (tc_ptr < v) {
1408 m_max = m - 1;
1409 } else {
1410 m_min = m + 1;
1411 }
1412 }
1413 return &tbs[m_max];
1414 }
1415
1416 static void tb_reset_jump_recursive(TranslationBlock *tb);
1417
1418 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1419 {
1420 TranslationBlock *tb1, *tb_next, **ptb;
1421 unsigned int n1;
1422
1423 tb1 = tb->jmp_next[n];
1424 if (tb1 != NULL) {
1425 /* find head of list */
1426 for(;;) {
1427 n1 = (uintptr_t)tb1 & 3;
1428 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1429 if (n1 == 2)
1430 break;
1431 tb1 = tb1->jmp_next[n1];
1432 }
1433 /* we are now sure now that tb jumps to tb1 */
1434 tb_next = tb1;
1435
1436 /* remove tb from the jmp_first list */
1437 ptb = &tb_next->jmp_first;
1438 for(;;) {
1439 tb1 = *ptb;
1440 n1 = (uintptr_t)tb1 & 3;
1441 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1442 if (n1 == n && tb1 == tb)
1443 break;
1444 ptb = &tb1->jmp_next[n1];
1445 }
1446 *ptb = tb->jmp_next[n];
1447 tb->jmp_next[n] = NULL;
1448
1449 /* suppress the jump to next tb in generated code */
1450 tb_reset_jump(tb, n);
1451
1452 /* suppress jumps in the tb on which we could have jumped */
1453 tb_reset_jump_recursive(tb_next);
1454 }
1455 }
1456
1457 static void tb_reset_jump_recursive(TranslationBlock *tb)
1458 {
1459 tb_reset_jump_recursive2(tb, 0);
1460 tb_reset_jump_recursive2(tb, 1);
1461 }
1462
1463 #if defined(TARGET_HAS_ICE)
1464 #if defined(CONFIG_USER_ONLY)
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1466 {
1467 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1468 }
1469 #else
1470 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1471 {
1472 ram_addr_t ram_addr;
1473 MemoryRegionSection *section;
1474
1475 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1476 if (!(memory_region_is_ram(section->mr)
1477 || (section->mr->rom_device && section->mr->readable))) {
1478 return;
1479 }
1480 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1481 + memory_region_section_addr(section, addr);
1482 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1483 }
1484
1485 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1486 {
1487 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1488 (pc & ~TARGET_PAGE_MASK));
1489 }
1490 #endif
1491 #endif /* TARGET_HAS_ICE */
1492
1493 #if defined(CONFIG_USER_ONLY)
1494 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1495
1496 {
1497 }
1498
1499 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1500 int flags, CPUWatchpoint **watchpoint)
1501 {
1502 return -ENOSYS;
1503 }
1504 #else
1505 /* Add a watchpoint. */
1506 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1507 int flags, CPUWatchpoint **watchpoint)
1508 {
1509 target_ulong len_mask = ~(len - 1);
1510 CPUWatchpoint *wp;
1511
1512 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1513 if ((len & (len - 1)) || (addr & ~len_mask) ||
1514 len == 0 || len > TARGET_PAGE_SIZE) {
1515 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1516 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1517 return -EINVAL;
1518 }
1519 wp = g_malloc(sizeof(*wp));
1520
1521 wp->vaddr = addr;
1522 wp->len_mask = len_mask;
1523 wp->flags = flags;
1524
1525 /* keep all GDB-injected watchpoints in front */
1526 if (flags & BP_GDB)
1527 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1528 else
1529 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1530
1531 tlb_flush_page(env, addr);
1532
1533 if (watchpoint)
1534 *watchpoint = wp;
1535 return 0;
1536 }
1537
1538 /* Remove a specific watchpoint. */
1539 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1540 int flags)
1541 {
1542 target_ulong len_mask = ~(len - 1);
1543 CPUWatchpoint *wp;
1544
1545 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1546 if (addr == wp->vaddr && len_mask == wp->len_mask
1547 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1548 cpu_watchpoint_remove_by_ref(env, wp);
1549 return 0;
1550 }
1551 }
1552 return -ENOENT;
1553 }
1554
1555 /* Remove a specific watchpoint by reference. */
1556 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1557 {
1558 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1559
1560 tlb_flush_page(env, watchpoint->vaddr);
1561
1562 g_free(watchpoint);
1563 }
1564
1565 /* Remove all matching watchpoints. */
1566 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1567 {
1568 CPUWatchpoint *wp, *next;
1569
1570 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1571 if (wp->flags & mask)
1572 cpu_watchpoint_remove_by_ref(env, wp);
1573 }
1574 }
1575 #endif
1576
1577 /* Add a breakpoint. */
1578 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1579 CPUBreakpoint **breakpoint)
1580 {
1581 #if defined(TARGET_HAS_ICE)
1582 CPUBreakpoint *bp;
1583
1584 bp = g_malloc(sizeof(*bp));
1585
1586 bp->pc = pc;
1587 bp->flags = flags;
1588
1589 /* keep all GDB-injected breakpoints in front */
1590 if (flags & BP_GDB)
1591 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1592 else
1593 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1594
1595 breakpoint_invalidate(env, pc);
1596
1597 if (breakpoint)
1598 *breakpoint = bp;
1599 return 0;
1600 #else
1601 return -ENOSYS;
1602 #endif
1603 }
1604
1605 /* Remove a specific breakpoint. */
1606 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1607 {
1608 #if defined(TARGET_HAS_ICE)
1609 CPUBreakpoint *bp;
1610
1611 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1612 if (bp->pc == pc && bp->flags == flags) {
1613 cpu_breakpoint_remove_by_ref(env, bp);
1614 return 0;
1615 }
1616 }
1617 return -ENOENT;
1618 #else
1619 return -ENOSYS;
1620 #endif
1621 }
1622
1623 /* Remove a specific breakpoint by reference. */
1624 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1625 {
1626 #if defined(TARGET_HAS_ICE)
1627 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1628
1629 breakpoint_invalidate(env, breakpoint->pc);
1630
1631 g_free(breakpoint);
1632 #endif
1633 }
1634
1635 /* Remove all matching breakpoints. */
1636 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1637 {
1638 #if defined(TARGET_HAS_ICE)
1639 CPUBreakpoint *bp, *next;
1640
1641 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1642 if (bp->flags & mask)
1643 cpu_breakpoint_remove_by_ref(env, bp);
1644 }
1645 #endif
1646 }
1647
1648 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1649 CPU loop after each instruction */
1650 void cpu_single_step(CPUArchState *env, int enabled)
1651 {
1652 #if defined(TARGET_HAS_ICE)
1653 if (env->singlestep_enabled != enabled) {
1654 env->singlestep_enabled = enabled;
1655 if (kvm_enabled())
1656 kvm_update_guest_debug(env, 0);
1657 else {
1658 /* must flush all the translated code to avoid inconsistencies */
1659 /* XXX: only flush what is necessary */
1660 tb_flush(env);
1661 }
1662 }
1663 #endif
1664 }
1665
1666 static void cpu_unlink_tb(CPUArchState *env)
1667 {
1668 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1669 problem and hope the cpu will stop of its own accord. For userspace
1670 emulation this often isn't actually as bad as it sounds. Often
1671 signals are used primarily to interrupt blocking syscalls. */
1672 TranslationBlock *tb;
1673 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1674
1675 spin_lock(&interrupt_lock);
1676 tb = env->current_tb;
1677 /* if the cpu is currently executing code, we must unlink it and
1678 all the potentially executing TB */
1679 if (tb) {
1680 env->current_tb = NULL;
1681 tb_reset_jump_recursive(tb);
1682 }
1683 spin_unlock(&interrupt_lock);
1684 }
1685
1686 #ifndef CONFIG_USER_ONLY
1687 /* mask must never be zero, except for A20 change call */
1688 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1689 {
1690 int old_mask;
1691
1692 old_mask = env->interrupt_request;
1693 env->interrupt_request |= mask;
1694
1695 /*
1696 * If called from iothread context, wake the target cpu in
1697 * case its halted.
1698 */
1699 if (!qemu_cpu_is_self(env)) {
1700 qemu_cpu_kick(env);
1701 return;
1702 }
1703
1704 if (use_icount) {
1705 env->icount_decr.u16.high = 0xffff;
1706 if (!can_do_io(env)
1707 && (mask & ~old_mask) != 0) {
1708 cpu_abort(env, "Raised interrupt while not in I/O function");
1709 }
1710 } else {
1711 cpu_unlink_tb(env);
1712 }
1713 }
1714
1715 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1716
1717 #else /* CONFIG_USER_ONLY */
1718
1719 void cpu_interrupt(CPUArchState *env, int mask)
1720 {
1721 env->interrupt_request |= mask;
1722 cpu_unlink_tb(env);
1723 }
1724 #endif /* CONFIG_USER_ONLY */
1725
1726 void cpu_reset_interrupt(CPUArchState *env, int mask)
1727 {
1728 env->interrupt_request &= ~mask;
1729 }
1730
1731 void cpu_exit(CPUArchState *env)
1732 {
1733 env->exit_request = 1;
1734 cpu_unlink_tb(env);
1735 }
1736
1737 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1738 {
1739 va_list ap;
1740 va_list ap2;
1741
1742 va_start(ap, fmt);
1743 va_copy(ap2, ap);
1744 fprintf(stderr, "qemu: fatal: ");
1745 vfprintf(stderr, fmt, ap);
1746 fprintf(stderr, "\n");
1747 #ifdef TARGET_I386
1748 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1749 #else
1750 cpu_dump_state(env, stderr, fprintf, 0);
1751 #endif
1752 if (qemu_log_enabled()) {
1753 qemu_log("qemu: fatal: ");
1754 qemu_log_vprintf(fmt, ap2);
1755 qemu_log("\n");
1756 #ifdef TARGET_I386
1757 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1758 #else
1759 log_cpu_state(env, 0);
1760 #endif
1761 qemu_log_flush();
1762 qemu_log_close();
1763 }
1764 va_end(ap2);
1765 va_end(ap);
1766 #if defined(CONFIG_USER_ONLY)
1767 {
1768 struct sigaction act;
1769 sigfillset(&act.sa_mask);
1770 act.sa_handler = SIG_DFL;
1771 sigaction(SIGABRT, &act, NULL);
1772 }
1773 #endif
1774 abort();
1775 }
1776
1777 CPUArchState *cpu_copy(CPUArchState *env)
1778 {
1779 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1780 CPUArchState *next_cpu = new_env->next_cpu;
1781 int cpu_index = new_env->cpu_index;
1782 #if defined(TARGET_HAS_ICE)
1783 CPUBreakpoint *bp;
1784 CPUWatchpoint *wp;
1785 #endif
1786
1787 memcpy(new_env, env, sizeof(CPUArchState));
1788
1789 /* Preserve chaining and index. */
1790 new_env->next_cpu = next_cpu;
1791 new_env->cpu_index = cpu_index;
1792
1793 /* Clone all break/watchpoints.
1794 Note: Once we support ptrace with hw-debug register access, make sure
1795 BP_CPU break/watchpoints are handled correctly on clone. */
1796 QTAILQ_INIT(&env->breakpoints);
1797 QTAILQ_INIT(&env->watchpoints);
1798 #if defined(TARGET_HAS_ICE)
1799 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1800 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1801 }
1802 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1803 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1804 wp->flags, NULL);
1805 }
1806 #endif
1807
1808 return new_env;
1809 }
1810
1811 #if !defined(CONFIG_USER_ONLY)
1812 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1813 {
1814 unsigned int i;
1815
1816 /* Discard jump cache entries for any tb which might potentially
1817 overlap the flushed page. */
1818 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1819 memset (&env->tb_jmp_cache[i], 0,
1820 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1821
1822 i = tb_jmp_cache_hash_page(addr);
1823 memset (&env->tb_jmp_cache[i], 0,
1824 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1825 }
1826
1827 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1828 uintptr_t length)
1829 {
1830 uintptr_t start1;
1831
1832 /* we modify the TLB cache so that the dirty bit will be set again
1833 when accessing the range */
1834 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1835 /* Check that we don't span multiple blocks - this breaks the
1836 address comparisons below. */
1837 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1838 != (end - 1) - start) {
1839 abort();
1840 }
1841 cpu_tlb_reset_dirty_all(start1, length);
1842
1843 }
1844
1845 /* Note: start and end must be within the same ram block. */
1846 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1847 int dirty_flags)
1848 {
1849 uintptr_t length;
1850
1851 start &= TARGET_PAGE_MASK;
1852 end = TARGET_PAGE_ALIGN(end);
1853
1854 length = end - start;
1855 if (length == 0)
1856 return;
1857 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1858
1859 if (tcg_enabled()) {
1860 tlb_reset_dirty_range_all(start, end, length);
1861 }
1862 }
1863
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1865 {
1866 int ret = 0;
1867 in_migration = enable;
1868 return ret;
1869 }
1870
1871 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1872 MemoryRegionSection *section,
1873 target_ulong vaddr,
1874 target_phys_addr_t paddr,
1875 int prot,
1876 target_ulong *address)
1877 {
1878 target_phys_addr_t iotlb;
1879 CPUWatchpoint *wp;
1880
1881 if (memory_region_is_ram(section->mr)) {
1882 /* Normal RAM. */
1883 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1884 + memory_region_section_addr(section, paddr);
1885 if (!section->readonly) {
1886 iotlb |= phys_section_notdirty;
1887 } else {
1888 iotlb |= phys_section_rom;
1889 }
1890 } else {
1891 /* IO handlers are currently passed a physical address.
1892 It would be nice to pass an offset from the base address
1893 of that region. This would avoid having to special case RAM,
1894 and avoid full address decoding in every device.
1895 We can't use the high bits of pd for this because
1896 IO_MEM_ROMD uses these as a ram address. */
1897 iotlb = section - phys_sections;
1898 iotlb += memory_region_section_addr(section, paddr);
1899 }
1900
1901 /* Make accesses to pages with watchpoints go via the
1902 watchpoint trap routines. */
1903 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1904 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1905 /* Avoid trapping reads of pages with a write breakpoint. */
1906 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1907 iotlb = phys_section_watch + paddr;
1908 *address |= TLB_MMIO;
1909 break;
1910 }
1911 }
1912 }
1913
1914 return iotlb;
1915 }
1916
1917 #else
1918 /*
1919 * Walks guest process memory "regions" one by one
1920 * and calls callback function 'fn' for each region.
1921 */
1922
1923 struct walk_memory_regions_data
1924 {
1925 walk_memory_regions_fn fn;
1926 void *priv;
1927 uintptr_t start;
1928 int prot;
1929 };
1930
1931 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1932 abi_ulong end, int new_prot)
1933 {
1934 if (data->start != -1ul) {
1935 int rc = data->fn(data->priv, data->start, end, data->prot);
1936 if (rc != 0) {
1937 return rc;
1938 }
1939 }
1940
1941 data->start = (new_prot ? end : -1ul);
1942 data->prot = new_prot;
1943
1944 return 0;
1945 }
1946
1947 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1948 abi_ulong base, int level, void **lp)
1949 {
1950 abi_ulong pa;
1951 int i, rc;
1952
1953 if (*lp == NULL) {
1954 return walk_memory_regions_end(data, base, 0);
1955 }
1956
1957 if (level == 0) {
1958 PageDesc *pd = *lp;
1959 for (i = 0; i < L2_SIZE; ++i) {
1960 int prot = pd[i].flags;
1961
1962 pa = base | (i << TARGET_PAGE_BITS);
1963 if (prot != data->prot) {
1964 rc = walk_memory_regions_end(data, pa, prot);
1965 if (rc != 0) {
1966 return rc;
1967 }
1968 }
1969 }
1970 } else {
1971 void **pp = *lp;
1972 for (i = 0; i < L2_SIZE; ++i) {
1973 pa = base | ((abi_ulong)i <<
1974 (TARGET_PAGE_BITS + L2_BITS * level));
1975 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1976 if (rc != 0) {
1977 return rc;
1978 }
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1986 {
1987 struct walk_memory_regions_data data;
1988 uintptr_t i;
1989
1990 data.fn = fn;
1991 data.priv = priv;
1992 data.start = -1ul;
1993 data.prot = 0;
1994
1995 for (i = 0; i < V_L1_SIZE; i++) {
1996 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1997 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1998 if (rc != 0) {
1999 return rc;
2000 }
2001 }
2002
2003 return walk_memory_regions_end(&data, 0, 0);
2004 }
2005
2006 static int dump_region(void *priv, abi_ulong start,
2007 abi_ulong end, unsigned long prot)
2008 {
2009 FILE *f = (FILE *)priv;
2010
2011 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2012 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2013 start, end, end - start,
2014 ((prot & PAGE_READ) ? 'r' : '-'),
2015 ((prot & PAGE_WRITE) ? 'w' : '-'),
2016 ((prot & PAGE_EXEC) ? 'x' : '-'));
2017
2018 return (0);
2019 }
2020
2021 /* dump memory mappings */
2022 void page_dump(FILE *f)
2023 {
2024 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2025 "start", "end", "size", "prot");
2026 walk_memory_regions(f, dump_region);
2027 }
2028
2029 int page_get_flags(target_ulong address)
2030 {
2031 PageDesc *p;
2032
2033 p = page_find(address >> TARGET_PAGE_BITS);
2034 if (!p)
2035 return 0;
2036 return p->flags;
2037 }
2038
2039 /* Modify the flags of a page and invalidate the code if necessary.
2040 The flag PAGE_WRITE_ORG is positioned automatically depending
2041 on PAGE_WRITE. The mmap_lock should already be held. */
2042 void page_set_flags(target_ulong start, target_ulong end, int flags)
2043 {
2044 target_ulong addr, len;
2045
2046 /* This function should never be called with addresses outside the
2047 guest address space. If this assert fires, it probably indicates
2048 a missing call to h2g_valid. */
2049 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2050 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2051 #endif
2052 assert(start < end);
2053
2054 start = start & TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2056
2057 if (flags & PAGE_WRITE) {
2058 flags |= PAGE_WRITE_ORG;
2059 }
2060
2061 for (addr = start, len = end - start;
2062 len != 0;
2063 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2064 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2065
2066 /* If the write protection bit is set, then we invalidate
2067 the code inside. */
2068 if (!(p->flags & PAGE_WRITE) &&
2069 (flags & PAGE_WRITE) &&
2070 p->first_tb) {
2071 tb_invalidate_phys_page(addr, 0, NULL);
2072 }
2073 p->flags = flags;
2074 }
2075 }
2076
2077 int page_check_range(target_ulong start, target_ulong len, int flags)
2078 {
2079 PageDesc *p;
2080 target_ulong end;
2081 target_ulong addr;
2082
2083 /* This function should never be called with addresses outside the
2084 guest address space. If this assert fires, it probably indicates
2085 a missing call to h2g_valid. */
2086 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2087 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2088 #endif
2089
2090 if (len == 0) {
2091 return 0;
2092 }
2093 if (start + len - 1 < start) {
2094 /* We've wrapped around. */
2095 return -1;
2096 }
2097
2098 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2099 start = start & TARGET_PAGE_MASK;
2100
2101 for (addr = start, len = end - start;
2102 len != 0;
2103 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2104 p = page_find(addr >> TARGET_PAGE_BITS);
2105 if( !p )
2106 return -1;
2107 if( !(p->flags & PAGE_VALID) )
2108 return -1;
2109
2110 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2111 return -1;
2112 if (flags & PAGE_WRITE) {
2113 if (!(p->flags & PAGE_WRITE_ORG))
2114 return -1;
2115 /* unprotect the page if it was put read-only because it
2116 contains translated code */
2117 if (!(p->flags & PAGE_WRITE)) {
2118 if (!page_unprotect(addr, 0, NULL))
2119 return -1;
2120 }
2121 return 0;
2122 }
2123 }
2124 return 0;
2125 }
2126
2127 /* called from signal handler: invalidate the code and unprotect the
2128 page. Return TRUE if the fault was successfully handled. */
2129 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2130 {
2131 unsigned int prot;
2132 PageDesc *p;
2133 target_ulong host_start, host_end, addr;
2134
2135 /* Technically this isn't safe inside a signal handler. However we
2136 know this only ever happens in a synchronous SEGV handler, so in
2137 practice it seems to be ok. */
2138 mmap_lock();
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p) {
2142 mmap_unlock();
2143 return 0;
2144 }
2145
2146 /* if the page was really writable, then we change its
2147 protection back to writable */
2148 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2149 host_start = address & qemu_host_page_mask;
2150 host_end = host_start + qemu_host_page_size;
2151
2152 prot = 0;
2153 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2154 p = page_find(addr >> TARGET_PAGE_BITS);
2155 p->flags |= PAGE_WRITE;
2156 prot |= p->flags;
2157
2158 /* and since the content will be modified, we must invalidate
2159 the corresponding translated code. */
2160 tb_invalidate_phys_page(addr, pc, puc);
2161 #ifdef DEBUG_TB_CHECK
2162 tb_invalidate_check(addr);
2163 #endif
2164 }
2165 mprotect((void *)g2h(host_start), qemu_host_page_size,
2166 prot & PAGE_BITS);
2167
2168 mmap_unlock();
2169 return 1;
2170 }
2171 mmap_unlock();
2172 return 0;
2173 }
2174 #endif /* defined(CONFIG_USER_ONLY) */
2175
2176 #if !defined(CONFIG_USER_ONLY)
2177
2178 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2179 typedef struct subpage_t {
2180 MemoryRegion iomem;
2181 target_phys_addr_t base;
2182 uint16_t sub_section[TARGET_PAGE_SIZE];
2183 } subpage_t;
2184
2185 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2186 uint16_t section);
2187 static subpage_t *subpage_init(target_phys_addr_t base);
2188 static void destroy_page_desc(uint16_t section_index)
2189 {
2190 MemoryRegionSection *section = &phys_sections[section_index];
2191 MemoryRegion *mr = section->mr;
2192
2193 if (mr->subpage) {
2194 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2195 memory_region_destroy(&subpage->iomem);
2196 g_free(subpage);
2197 }
2198 }
2199
2200 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2201 {
2202 unsigned i;
2203 PhysPageEntry *p;
2204
2205 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2206 return;
2207 }
2208
2209 p = phys_map_nodes[lp->ptr];
2210 for (i = 0; i < L2_SIZE; ++i) {
2211 if (!p[i].is_leaf) {
2212 destroy_l2_mapping(&p[i], level - 1);
2213 } else {
2214 destroy_page_desc(p[i].ptr);
2215 }
2216 }
2217 lp->is_leaf = 0;
2218 lp->ptr = PHYS_MAP_NODE_NIL;
2219 }
2220
2221 static void destroy_all_mappings(void)
2222 {
2223 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2224 phys_map_nodes_reset();
2225 }
2226
2227 static uint16_t phys_section_add(MemoryRegionSection *section)
2228 {
2229 if (phys_sections_nb == phys_sections_nb_alloc) {
2230 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2231 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2232 phys_sections_nb_alloc);
2233 }
2234 phys_sections[phys_sections_nb] = *section;
2235 return phys_sections_nb++;
2236 }
2237
2238 static void phys_sections_clear(void)
2239 {
2240 phys_sections_nb = 0;
2241 }
2242
2243 /* register physical memory.
2244 For RAM, 'size' must be a multiple of the target page size.
2245 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2246 io memory page. The address used when calling the IO function is
2247 the offset from the start of the region, plus region_offset. Both
2248 start_addr and region_offset are rounded down to a page boundary
2249 before calculating this offset. This should not be a problem unless
2250 the low bits of start_addr and region_offset differ. */
2251 static void register_subpage(MemoryRegionSection *section)
2252 {
2253 subpage_t *subpage;
2254 target_phys_addr_t base = section->offset_within_address_space
2255 & TARGET_PAGE_MASK;
2256 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2257 MemoryRegionSection subsection = {
2258 .offset_within_address_space = base,
2259 .size = TARGET_PAGE_SIZE,
2260 };
2261 target_phys_addr_t start, end;
2262
2263 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2264
2265 if (!(existing->mr->subpage)) {
2266 subpage = subpage_init(base);
2267 subsection.mr = &subpage->iomem;
2268 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2269 phys_section_add(&subsection));
2270 } else {
2271 subpage = container_of(existing->mr, subpage_t, iomem);
2272 }
2273 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2274 end = start + section->size;
2275 subpage_register(subpage, start, end, phys_section_add(section));
2276 }
2277
2278
2279 static void register_multipage(MemoryRegionSection *section)
2280 {
2281 target_phys_addr_t start_addr = section->offset_within_address_space;
2282 ram_addr_t size = section->size;
2283 target_phys_addr_t addr;
2284 uint16_t section_index = phys_section_add(section);
2285
2286 assert(size);
2287
2288 addr = start_addr;
2289 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2290 section_index);
2291 }
2292
2293 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2294 bool readonly)
2295 {
2296 MemoryRegionSection now = *section, remain = *section;
2297
2298 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2299 || (now.size < TARGET_PAGE_SIZE)) {
2300 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2301 - now.offset_within_address_space,
2302 now.size);
2303 register_subpage(&now);
2304 remain.size -= now.size;
2305 remain.offset_within_address_space += now.size;
2306 remain.offset_within_region += now.size;
2307 }
2308 now = remain;
2309 now.size &= TARGET_PAGE_MASK;
2310 if (now.size) {
2311 register_multipage(&now);
2312 remain.size -= now.size;
2313 remain.offset_within_address_space += now.size;
2314 remain.offset_within_region += now.size;
2315 }
2316 now = remain;
2317 if (now.size) {
2318 register_subpage(&now);
2319 }
2320 }
2321
2322
2323 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2324 {
2325 if (kvm_enabled())
2326 kvm_coalesce_mmio_region(addr, size);
2327 }
2328
2329 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2330 {
2331 if (kvm_enabled())
2332 kvm_uncoalesce_mmio_region(addr, size);
2333 }
2334
2335 void qemu_flush_coalesced_mmio_buffer(void)
2336 {
2337 if (kvm_enabled())
2338 kvm_flush_coalesced_mmio_buffer();
2339 }
2340
2341 #if defined(__linux__) && !defined(TARGET_S390X)
2342
2343 #include <sys/vfs.h>
2344
2345 #define HUGETLBFS_MAGIC 0x958458f6
2346
2347 static long gethugepagesize(const char *path)
2348 {
2349 struct statfs fs;
2350 int ret;
2351
2352 do {
2353 ret = statfs(path, &fs);
2354 } while (ret != 0 && errno == EINTR);
2355
2356 if (ret != 0) {
2357 perror(path);
2358 return 0;
2359 }
2360
2361 if (fs.f_type != HUGETLBFS_MAGIC)
2362 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2363
2364 return fs.f_bsize;
2365 }
2366
2367 static void *file_ram_alloc(RAMBlock *block,
2368 ram_addr_t memory,
2369 const char *path)
2370 {
2371 char *filename;
2372 void *area;
2373 int fd;
2374 #ifdef MAP_POPULATE
2375 int flags;
2376 #endif
2377 unsigned long hpagesize;
2378
2379 hpagesize = gethugepagesize(path);
2380 if (!hpagesize) {
2381 return NULL;
2382 }
2383
2384 if (memory < hpagesize) {
2385 return NULL;
2386 }
2387
2388 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2389 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2390 return NULL;
2391 }
2392
2393 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2394 return NULL;
2395 }
2396
2397 fd = mkstemp(filename);
2398 if (fd < 0) {
2399 perror("unable to create backing store for hugepages");
2400 free(filename);
2401 return NULL;
2402 }
2403 unlink(filename);
2404 free(filename);
2405
2406 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2407
2408 /*
2409 * ftruncate is not supported by hugetlbfs in older
2410 * hosts, so don't bother bailing out on errors.
2411 * If anything goes wrong with it under other filesystems,
2412 * mmap will fail.
2413 */
2414 if (ftruncate(fd, memory))
2415 perror("ftruncate");
2416
2417 #ifdef MAP_POPULATE
2418 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2419 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2420 * to sidestep this quirk.
2421 */
2422 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2423 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2424 #else
2425 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2426 #endif
2427 if (area == MAP_FAILED) {
2428 perror("file_ram_alloc: can't mmap RAM pages");
2429 close(fd);
2430 return (NULL);
2431 }
2432 block->fd = fd;
2433 return area;
2434 }
2435 #endif
2436
2437 static ram_addr_t find_ram_offset(ram_addr_t size)
2438 {
2439 RAMBlock *block, *next_block;
2440 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2441
2442 if (QLIST_EMPTY(&ram_list.blocks))
2443 return 0;
2444
2445 QLIST_FOREACH(block, &ram_list.blocks, next) {
2446 ram_addr_t end, next = RAM_ADDR_MAX;
2447
2448 end = block->offset + block->length;
2449
2450 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2451 if (next_block->offset >= end) {
2452 next = MIN(next, next_block->offset);
2453 }
2454 }
2455 if (next - end >= size && next - end < mingap) {
2456 offset = end;
2457 mingap = next - end;
2458 }
2459 }
2460
2461 if (offset == RAM_ADDR_MAX) {
2462 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2463 (uint64_t)size);
2464 abort();
2465 }
2466
2467 return offset;
2468 }
2469
2470 static ram_addr_t last_ram_offset(void)
2471 {
2472 RAMBlock *block;
2473 ram_addr_t last = 0;
2474
2475 QLIST_FOREACH(block, &ram_list.blocks, next)
2476 last = MAX(last, block->offset + block->length);
2477
2478 return last;
2479 }
2480
2481 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2482 {
2483 RAMBlock *new_block, *block;
2484
2485 new_block = NULL;
2486 QLIST_FOREACH(block, &ram_list.blocks, next) {
2487 if (block->offset == addr) {
2488 new_block = block;
2489 break;
2490 }
2491 }
2492 assert(new_block);
2493 assert(!new_block->idstr[0]);
2494
2495 if (dev) {
2496 char *id = qdev_get_dev_path(dev);
2497 if (id) {
2498 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2499 g_free(id);
2500 }
2501 }
2502 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2503
2504 QLIST_FOREACH(block, &ram_list.blocks, next) {
2505 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2506 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2507 new_block->idstr);
2508 abort();
2509 }
2510 }
2511 }
2512
2513 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2514 MemoryRegion *mr)
2515 {
2516 RAMBlock *new_block;
2517
2518 size = TARGET_PAGE_ALIGN(size);
2519 new_block = g_malloc0(sizeof(*new_block));
2520
2521 new_block->mr = mr;
2522 new_block->offset = find_ram_offset(size);
2523 if (host) {
2524 new_block->host = host;
2525 new_block->flags |= RAM_PREALLOC_MASK;
2526 } else {
2527 if (mem_path) {
2528 #if defined (__linux__) && !defined(TARGET_S390X)
2529 new_block->host = file_ram_alloc(new_block, size, mem_path);
2530 if (!new_block->host) {
2531 new_block->host = qemu_vmalloc(size);
2532 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2533 }
2534 #else
2535 fprintf(stderr, "-mem-path option unsupported\n");
2536 exit(1);
2537 #endif
2538 } else {
2539 if (xen_enabled()) {
2540 xen_ram_alloc(new_block->offset, size, mr);
2541 } else if (kvm_enabled()) {
2542 /* some s390/kvm configurations have special constraints */
2543 new_block->host = kvm_vmalloc(size);
2544 } else {
2545 new_block->host = qemu_vmalloc(size);
2546 }
2547 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2548 }
2549 }
2550 new_block->length = size;
2551
2552 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2553
2554 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2555 last_ram_offset() >> TARGET_PAGE_BITS);
2556 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2557
2558 if (kvm_enabled())
2559 kvm_setup_guest_memory(new_block->host, size);
2560
2561 return new_block->offset;
2562 }
2563
2564 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2565 {
2566 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2567 }
2568
2569 void qemu_ram_free_from_ptr(ram_addr_t addr)
2570 {
2571 RAMBlock *block;
2572
2573 QLIST_FOREACH(block, &ram_list.blocks, next) {
2574 if (addr == block->offset) {
2575 QLIST_REMOVE(block, next);
2576 g_free(block);
2577 return;
2578 }
2579 }
2580 }
2581
2582 void qemu_ram_free(ram_addr_t addr)
2583 {
2584 RAMBlock *block;
2585
2586 QLIST_FOREACH(block, &ram_list.blocks, next) {
2587 if (addr == block->offset) {
2588 QLIST_REMOVE(block, next);
2589 if (block->flags & RAM_PREALLOC_MASK) {
2590 ;
2591 } else if (mem_path) {
2592 #if defined (__linux__) && !defined(TARGET_S390X)
2593 if (block->fd) {
2594 munmap(block->host, block->length);
2595 close(block->fd);
2596 } else {
2597 qemu_vfree(block->host);
2598 }
2599 #else
2600 abort();
2601 #endif
2602 } else {
2603 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2604 munmap(block->host, block->length);
2605 #else
2606 if (xen_enabled()) {
2607 xen_invalidate_map_cache_entry(block->host);
2608 } else {
2609 qemu_vfree(block->host);
2610 }
2611 #endif
2612 }
2613 g_free(block);
2614 return;
2615 }
2616 }
2617
2618 }
2619
2620 #ifndef _WIN32
2621 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2622 {
2623 RAMBlock *block;
2624 ram_addr_t offset;
2625 int flags;
2626 void *area, *vaddr;
2627
2628 QLIST_FOREACH(block, &ram_list.blocks, next) {
2629 offset = addr - block->offset;
2630 if (offset < block->length) {
2631 vaddr = block->host + offset;
2632 if (block->flags & RAM_PREALLOC_MASK) {
2633 ;
2634 } else {
2635 flags = MAP_FIXED;
2636 munmap(vaddr, length);
2637 if (mem_path) {
2638 #if defined(__linux__) && !defined(TARGET_S390X)
2639 if (block->fd) {
2640 #ifdef MAP_POPULATE
2641 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2642 MAP_PRIVATE;
2643 #else
2644 flags |= MAP_PRIVATE;
2645 #endif
2646 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2647 flags, block->fd, offset);
2648 } else {
2649 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2650 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2651 flags, -1, 0);
2652 }
2653 #else
2654 abort();
2655 #endif
2656 } else {
2657 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2658 flags |= MAP_SHARED | MAP_ANONYMOUS;
2659 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2660 flags, -1, 0);
2661 #else
2662 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2663 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2664 flags, -1, 0);
2665 #endif
2666 }
2667 if (area != vaddr) {
2668 fprintf(stderr, "Could not remap addr: "
2669 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2670 length, addr);
2671 exit(1);
2672 }
2673 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2674 }
2675 return;
2676 }
2677 }
2678 }
2679 #endif /* !_WIN32 */
2680
2681 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2682 With the exception of the softmmu code in this file, this should
2683 only be used for local memory (e.g. video ram) that the device owns,
2684 and knows it isn't going to access beyond the end of the block.
2685
2686 It should not be used for general purpose DMA.
2687 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2688 */
2689 void *qemu_get_ram_ptr(ram_addr_t addr)
2690 {
2691 RAMBlock *block;
2692
2693 QLIST_FOREACH(block, &ram_list.blocks, next) {
2694 if (addr - block->offset < block->length) {
2695 /* Move this entry to to start of the list. */
2696 if (block != QLIST_FIRST(&ram_list.blocks)) {
2697 QLIST_REMOVE(block, next);
2698 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2699 }
2700 if (xen_enabled()) {
2701 /* We need to check if the requested address is in the RAM
2702 * because we don't want to map the entire memory in QEMU.
2703 * In that case just map until the end of the page.
2704 */
2705 if (block->offset == 0) {
2706 return xen_map_cache(addr, 0, 0);
2707 } else if (block->host == NULL) {
2708 block->host =
2709 xen_map_cache(block->offset, block->length, 1);
2710 }
2711 }
2712 return block->host + (addr - block->offset);
2713 }
2714 }
2715
2716 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2717 abort();
2718
2719 return NULL;
2720 }
2721
2722 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2723 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2724 */
2725 void *qemu_safe_ram_ptr(ram_addr_t addr)
2726 {
2727 RAMBlock *block;
2728
2729 QLIST_FOREACH(block, &ram_list.blocks, next) {
2730 if (addr - block->offset < block->length) {
2731 if (xen_enabled()) {
2732 /* We need to check if the requested address is in the RAM
2733 * because we don't want to map the entire memory in QEMU.
2734 * In that case just map until the end of the page.
2735 */
2736 if (block->offset == 0) {
2737 return xen_map_cache(addr, 0, 0);
2738 } else if (block->host == NULL) {
2739 block->host =
2740 xen_map_cache(block->offset, block->length, 1);
2741 }
2742 }
2743 return block->host + (addr - block->offset);
2744 }
2745 }
2746
2747 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2748 abort();
2749
2750 return NULL;
2751 }
2752
2753 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2754 * but takes a size argument */
2755 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2756 {
2757 if (*size == 0) {
2758 return NULL;
2759 }
2760 if (xen_enabled()) {
2761 return xen_map_cache(addr, *size, 1);
2762 } else {
2763 RAMBlock *block;
2764
2765 QLIST_FOREACH(block, &ram_list.blocks, next) {
2766 if (addr - block->offset < block->length) {
2767 if (addr - block->offset + *size > block->length)
2768 *size = block->length - addr + block->offset;
2769 return block->host + (addr - block->offset);
2770 }
2771 }
2772
2773 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2774 abort();
2775 }
2776 }
2777
2778 void qemu_put_ram_ptr(void *addr)
2779 {
2780 trace_qemu_put_ram_ptr(addr);
2781 }
2782
2783 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2784 {
2785 RAMBlock *block;
2786 uint8_t *host = ptr;
2787
2788 if (xen_enabled()) {
2789 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2790 return 0;
2791 }
2792
2793 QLIST_FOREACH(block, &ram_list.blocks, next) {
2794 /* This case append when the block is not mapped. */
2795 if (block->host == NULL) {
2796 continue;
2797 }
2798 if (host - block->host < block->length) {
2799 *ram_addr = block->offset + (host - block->host);
2800 return 0;
2801 }
2802 }
2803
2804 return -1;
2805 }
2806
2807 /* Some of the softmmu routines need to translate from a host pointer
2808 (typically a TLB entry) back to a ram offset. */
2809 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2810 {
2811 ram_addr_t ram_addr;
2812
2813 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2814 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2815 abort();
2816 }
2817 return ram_addr;
2818 }
2819
2820 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2821 unsigned size)
2822 {
2823 #ifdef DEBUG_UNASSIGNED
2824 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2825 #endif
2826 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2827 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2828 #endif
2829 return 0;
2830 }
2831
2832 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2833 uint64_t val, unsigned size)
2834 {
2835 #ifdef DEBUG_UNASSIGNED
2836 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2837 #endif
2838 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2839 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2840 #endif
2841 }
2842
2843 static const MemoryRegionOps unassigned_mem_ops = {
2844 .read = unassigned_mem_read,
2845 .write = unassigned_mem_write,
2846 .endianness = DEVICE_NATIVE_ENDIAN,
2847 };
2848
2849 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2850 unsigned size)
2851 {
2852 abort();
2853 }
2854
2855 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2856 uint64_t value, unsigned size)
2857 {
2858 abort();
2859 }
2860
2861 static const MemoryRegionOps error_mem_ops = {
2862 .read = error_mem_read,
2863 .write = error_mem_write,
2864 .endianness = DEVICE_NATIVE_ENDIAN,
2865 };
2866
2867 static const MemoryRegionOps rom_mem_ops = {
2868 .read = error_mem_read,
2869 .write = unassigned_mem_write,
2870 .endianness = DEVICE_NATIVE_ENDIAN,
2871 };
2872
2873 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2874 uint64_t val, unsigned size)
2875 {
2876 int dirty_flags;
2877 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2878 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2879 #if !defined(CONFIG_USER_ONLY)
2880 tb_invalidate_phys_page_fast(ram_addr, size);
2881 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2882 #endif
2883 }
2884 switch (size) {
2885 case 1:
2886 stb_p(qemu_get_ram_ptr(ram_addr), val);
2887 break;
2888 case 2:
2889 stw_p(qemu_get_ram_ptr(ram_addr), val);
2890 break;
2891 case 4:
2892 stl_p(qemu_get_ram_ptr(ram_addr), val);
2893 break;
2894 default:
2895 abort();
2896 }
2897 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2898 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2899 /* we remove the notdirty callback only if the code has been
2900 flushed */
2901 if (dirty_flags == 0xff)
2902 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2903 }
2904
2905 static const MemoryRegionOps notdirty_mem_ops = {
2906 .read = error_mem_read,
2907 .write = notdirty_mem_write,
2908 .endianness = DEVICE_NATIVE_ENDIAN,
2909 };
2910
2911 /* Generate a debug exception if a watchpoint has been hit. */
2912 static void check_watchpoint(int offset, int len_mask, int flags)
2913 {
2914 CPUArchState *env = cpu_single_env;
2915 target_ulong pc, cs_base;
2916 TranslationBlock *tb;
2917 target_ulong vaddr;
2918 CPUWatchpoint *wp;
2919 int cpu_flags;
2920
2921 if (env->watchpoint_hit) {
2922 /* We re-entered the check after replacing the TB. Now raise
2923 * the debug interrupt so that is will trigger after the
2924 * current instruction. */
2925 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2926 return;
2927 }
2928 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2929 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2930 if ((vaddr == (wp->vaddr & len_mask) ||
2931 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2932 wp->flags |= BP_WATCHPOINT_HIT;
2933 if (!env->watchpoint_hit) {
2934 env->watchpoint_hit = wp;
2935 tb = tb_find_pc(env->mem_io_pc);
2936 if (!tb) {
2937 cpu_abort(env, "check_watchpoint: could not find TB for "
2938 "pc=%p", (void *)env->mem_io_pc);
2939 }
2940 cpu_restore_state(tb, env, env->mem_io_pc);
2941 tb_phys_invalidate(tb, -1);
2942 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2943 env->exception_index = EXCP_DEBUG;
2944 cpu_loop_exit(env);
2945 } else {
2946 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2947 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2948 cpu_resume_from_signal(env, NULL);
2949 }
2950 }
2951 } else {
2952 wp->flags &= ~BP_WATCHPOINT_HIT;
2953 }
2954 }
2955 }
2956
2957 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2958 so these check for a hit then pass through to the normal out-of-line
2959 phys routines. */
2960 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2961 unsigned size)
2962 {
2963 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2964 switch (size) {
2965 case 1: return ldub_phys(addr);
2966 case 2: return lduw_phys(addr);
2967 case 4: return ldl_phys(addr);
2968 default: abort();
2969 }
2970 }
2971
2972 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2973 uint64_t val, unsigned size)
2974 {
2975 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2976 switch (size) {
2977 case 1:
2978 stb_phys(addr, val);
2979 break;
2980 case 2:
2981 stw_phys(addr, val);
2982 break;
2983 case 4:
2984 stl_phys(addr, val);
2985 break;
2986 default: abort();
2987 }
2988 }
2989
2990 static const MemoryRegionOps watch_mem_ops = {
2991 .read = watch_mem_read,
2992 .write = watch_mem_write,
2993 .endianness = DEVICE_NATIVE_ENDIAN,
2994 };
2995
2996 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
2997 unsigned len)
2998 {
2999 subpage_t *mmio = opaque;
3000 unsigned int idx = SUBPAGE_IDX(addr);
3001 MemoryRegionSection *section;
3002 #if defined(DEBUG_SUBPAGE)
3003 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3004 mmio, len, addr, idx);
3005 #endif
3006
3007 section = &phys_sections[mmio->sub_section[idx]];
3008 addr += mmio->base;
3009 addr -= section->offset_within_address_space;
3010 addr += section->offset_within_region;
3011 return io_mem_read(section->mr, addr, len);
3012 }
3013
3014 static void subpage_write(void *opaque, target_phys_addr_t addr,
3015 uint64_t value, unsigned len)
3016 {
3017 subpage_t *mmio = opaque;
3018 unsigned int idx = SUBPAGE_IDX(addr);
3019 MemoryRegionSection *section;
3020 #if defined(DEBUG_SUBPAGE)
3021 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3022 " idx %d value %"PRIx64"\n",
3023 __func__, mmio, len, addr, idx, value);
3024 #endif
3025
3026 section = &phys_sections[mmio->sub_section[idx]];
3027 addr += mmio->base;
3028 addr -= section->offset_within_address_space;
3029 addr += section->offset_within_region;
3030 io_mem_write(section->mr, addr, value, len);
3031 }
3032
3033 static const MemoryRegionOps subpage_ops = {
3034 .read = subpage_read,
3035 .write = subpage_write,
3036 .endianness = DEVICE_NATIVE_ENDIAN,
3037 };
3038
3039 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3040 unsigned size)
3041 {
3042 ram_addr_t raddr = addr;
3043 void *ptr = qemu_get_ram_ptr(raddr);
3044 switch (size) {
3045 case 1: return ldub_p(ptr);
3046 case 2: return lduw_p(ptr);
3047 case 4: return ldl_p(ptr);
3048 default: abort();
3049 }
3050 }
3051
3052 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3053 uint64_t value, unsigned size)
3054 {
3055 ram_addr_t raddr = addr;
3056 void *ptr = qemu_get_ram_ptr(raddr);
3057 switch (size) {
3058 case 1: return stb_p(ptr, value);
3059 case 2: return stw_p(ptr, value);
3060 case 4: return stl_p(ptr, value);
3061 default: abort();
3062 }
3063 }
3064
3065 static const MemoryRegionOps subpage_ram_ops = {
3066 .read = subpage_ram_read,
3067 .write = subpage_ram_write,
3068 .endianness = DEVICE_NATIVE_ENDIAN,
3069 };
3070
3071 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3072 uint16_t section)
3073 {
3074 int idx, eidx;
3075
3076 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3077 return -1;
3078 idx = SUBPAGE_IDX(start);
3079 eidx = SUBPAGE_IDX(end);
3080 #if defined(DEBUG_SUBPAGE)
3081 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3082 mmio, start, end, idx, eidx, memory);
3083 #endif
3084 if (memory_region_is_ram(phys_sections[section].mr)) {
3085 MemoryRegionSection new_section = phys_sections[section];
3086 new_section.mr = &io_mem_subpage_ram;
3087 section = phys_section_add(&new_section);
3088 }
3089 for (; idx <= eidx; idx++) {
3090 mmio->sub_section[idx] = section;
3091 }
3092
3093 return 0;
3094 }
3095
3096 static subpage_t *subpage_init(target_phys_addr_t base)
3097 {
3098 subpage_t *mmio;
3099
3100 mmio = g_malloc0(sizeof(subpage_t));
3101
3102 mmio->base = base;
3103 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3104 "subpage", TARGET_PAGE_SIZE);
3105 mmio->iomem.subpage = true;
3106 #if defined(DEBUG_SUBPAGE)
3107 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3108 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3109 #endif
3110 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3111
3112 return mmio;
3113 }
3114
3115 static uint16_t dummy_section(MemoryRegion *mr)
3116 {
3117 MemoryRegionSection section = {
3118 .mr = mr,
3119 .offset_within_address_space = 0,
3120 .offset_within_region = 0,
3121 .size = UINT64_MAX,
3122 };
3123
3124 return phys_section_add(&section);
3125 }
3126
3127 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3128 {
3129 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3130 }
3131
3132 static void io_mem_init(void)
3133 {
3134 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3135 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3136 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3137 "unassigned", UINT64_MAX);
3138 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3139 "notdirty", UINT64_MAX);
3140 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3141 "subpage-ram", UINT64_MAX);
3142 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3143 "watch", UINT64_MAX);
3144 }
3145
3146 static void core_begin(MemoryListener *listener)
3147 {
3148 destroy_all_mappings();
3149 phys_sections_clear();
3150 phys_map.ptr = PHYS_MAP_NODE_NIL;
3151 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3152 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3153 phys_section_rom = dummy_section(&io_mem_rom);
3154 phys_section_watch = dummy_section(&io_mem_watch);
3155 }
3156
3157 static void core_commit(MemoryListener *listener)
3158 {
3159 CPUArchState *env;
3160
3161 /* since each CPU stores ram addresses in its TLB cache, we must
3162 reset the modified entries */
3163 /* XXX: slow ! */
3164 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3165 tlb_flush(env, 1);
3166 }
3167 }
3168
3169 static void core_region_add(MemoryListener *listener,
3170 MemoryRegionSection *section)
3171 {
3172 cpu_register_physical_memory_log(section, section->readonly);
3173 }
3174
3175 static void core_region_del(MemoryListener *listener,
3176 MemoryRegionSection *section)
3177 {
3178 }
3179
3180 static void core_region_nop(MemoryListener *listener,
3181 MemoryRegionSection *section)
3182 {
3183 cpu_register_physical_memory_log(section, section->readonly);
3184 }
3185
3186 static void core_log_start(MemoryListener *listener,
3187 MemoryRegionSection *section)
3188 {
3189 }
3190
3191 static void core_log_stop(MemoryListener *listener,
3192 MemoryRegionSection *section)
3193 {
3194 }
3195
3196 static void core_log_sync(MemoryListener *listener,
3197 MemoryRegionSection *section)
3198 {
3199 }
3200
3201 static void core_log_global_start(MemoryListener *listener)
3202 {
3203 cpu_physical_memory_set_dirty_tracking(1);
3204 }
3205
3206 static void core_log_global_stop(MemoryListener *listener)
3207 {
3208 cpu_physical_memory_set_dirty_tracking(0);
3209 }
3210
3211 static void core_eventfd_add(MemoryListener *listener,
3212 MemoryRegionSection *section,
3213 bool match_data, uint64_t data, EventNotifier *e)
3214 {
3215 }
3216
3217 static void core_eventfd_del(MemoryListener *listener,
3218 MemoryRegionSection *section,
3219 bool match_data, uint64_t data, EventNotifier *e)
3220 {
3221 }
3222
3223 static void io_begin(MemoryListener *listener)
3224 {
3225 }
3226
3227 static void io_commit(MemoryListener *listener)
3228 {
3229 }
3230
3231 static void io_region_add(MemoryListener *listener,
3232 MemoryRegionSection *section)
3233 {
3234 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3235
3236 mrio->mr = section->mr;
3237 mrio->offset = section->offset_within_region;
3238 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3239 section->offset_within_address_space, section->size);
3240 ioport_register(&mrio->iorange);
3241 }
3242
3243 static void io_region_del(MemoryListener *listener,
3244 MemoryRegionSection *section)
3245 {
3246 isa_unassign_ioport(section->offset_within_address_space, section->size);
3247 }
3248
3249 static void io_region_nop(MemoryListener *listener,
3250 MemoryRegionSection *section)
3251 {
3252 }
3253
3254 static void io_log_start(MemoryListener *listener,
3255 MemoryRegionSection *section)
3256 {
3257 }
3258
3259 static void io_log_stop(MemoryListener *listener,
3260 MemoryRegionSection *section)
3261 {
3262 }
3263
3264 static void io_log_sync(MemoryListener *listener,
3265 MemoryRegionSection *section)
3266 {
3267 }
3268
3269 static void io_log_global_start(MemoryListener *listener)
3270 {
3271 }
3272
3273 static void io_log_global_stop(MemoryListener *listener)
3274 {
3275 }
3276
3277 static void io_eventfd_add(MemoryListener *listener,
3278 MemoryRegionSection *section,
3279 bool match_data, uint64_t data, EventNotifier *e)
3280 {
3281 }
3282
3283 static void io_eventfd_del(MemoryListener *listener,
3284 MemoryRegionSection *section,
3285 bool match_data, uint64_t data, EventNotifier *e)
3286 {
3287 }
3288
3289 static MemoryListener core_memory_listener = {
3290 .begin = core_begin,
3291 .commit = core_commit,
3292 .region_add = core_region_add,
3293 .region_del = core_region_del,
3294 .region_nop = core_region_nop,
3295 .log_start = core_log_start,
3296 .log_stop = core_log_stop,
3297 .log_sync = core_log_sync,
3298 .log_global_start = core_log_global_start,
3299 .log_global_stop = core_log_global_stop,
3300 .eventfd_add = core_eventfd_add,
3301 .eventfd_del = core_eventfd_del,
3302 .priority = 0,
3303 };
3304
3305 static MemoryListener io_memory_listener = {
3306 .begin = io_begin,
3307 .commit = io_commit,
3308 .region_add = io_region_add,
3309 .region_del = io_region_del,
3310 .region_nop = io_region_nop,
3311 .log_start = io_log_start,
3312 .log_stop = io_log_stop,
3313 .log_sync = io_log_sync,
3314 .log_global_start = io_log_global_start,
3315 .log_global_stop = io_log_global_stop,
3316 .eventfd_add = io_eventfd_add,
3317 .eventfd_del = io_eventfd_del,
3318 .priority = 0,
3319 };
3320
3321 static void memory_map_init(void)
3322 {
3323 system_memory = g_malloc(sizeof(*system_memory));
3324 memory_region_init(system_memory, "system", INT64_MAX);
3325 set_system_memory_map(system_memory);
3326
3327 system_io = g_malloc(sizeof(*system_io));
3328 memory_region_init(system_io, "io", 65536);
3329 set_system_io_map(system_io);
3330
3331 memory_listener_register(&core_memory_listener, system_memory);
3332 memory_listener_register(&io_memory_listener, system_io);
3333 }
3334
3335 MemoryRegion *get_system_memory(void)
3336 {
3337 return system_memory;
3338 }
3339
3340 MemoryRegion *get_system_io(void)
3341 {
3342 return system_io;
3343 }
3344
3345 #endif /* !defined(CONFIG_USER_ONLY) */
3346
3347 /* physical memory access (slow version, mainly for debug) */
3348 #if defined(CONFIG_USER_ONLY)
3349 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3350 uint8_t *buf, int len, int is_write)
3351 {
3352 int l, flags;
3353 target_ulong page;
3354 void * p;
3355
3356 while (len > 0) {
3357 page = addr & TARGET_PAGE_MASK;
3358 l = (page + TARGET_PAGE_SIZE) - addr;
3359 if (l > len)
3360 l = len;
3361 flags = page_get_flags(page);
3362 if (!(flags & PAGE_VALID))
3363 return -1;
3364 if (is_write) {
3365 if (!(flags & PAGE_WRITE))
3366 return -1;
3367 /* XXX: this code should not depend on lock_user */
3368 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3369 return -1;
3370 memcpy(p, buf, l);
3371 unlock_user(p, addr, l);
3372 } else {
3373 if (!(flags & PAGE_READ))
3374 return -1;
3375 /* XXX: this code should not depend on lock_user */
3376 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3377 return -1;
3378 memcpy(buf, p, l);
3379 unlock_user(p, addr, 0);
3380 }
3381 len -= l;
3382 buf += l;
3383 addr += l;
3384 }
3385 return 0;
3386 }
3387
3388 #else
3389 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3390 int len, int is_write)
3391 {
3392 int l;
3393 uint8_t *ptr;
3394 uint32_t val;
3395 target_phys_addr_t page;
3396 MemoryRegionSection *section;
3397
3398 while (len > 0) {
3399 page = addr & TARGET_PAGE_MASK;
3400 l = (page + TARGET_PAGE_SIZE) - addr;
3401 if (l > len)
3402 l = len;
3403 section = phys_page_find(page >> TARGET_PAGE_BITS);
3404
3405 if (is_write) {
3406 if (!memory_region_is_ram(section->mr)) {
3407 target_phys_addr_t addr1;
3408 addr1 = memory_region_section_addr(section, addr);
3409 /* XXX: could force cpu_single_env to NULL to avoid
3410 potential bugs */
3411 if (l >= 4 && ((addr1 & 3) == 0)) {
3412 /* 32 bit write access */
3413 val = ldl_p(buf);
3414 io_mem_write(section->mr, addr1, val, 4);
3415 l = 4;
3416 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3417 /* 16 bit write access */
3418 val = lduw_p(buf);
3419 io_mem_write(section->mr, addr1, val, 2);
3420 l = 2;
3421 } else {
3422 /* 8 bit write access */
3423 val = ldub_p(buf);
3424 io_mem_write(section->mr, addr1, val, 1);
3425 l = 1;
3426 }
3427 } else if (!section->readonly) {
3428 ram_addr_t addr1;
3429 addr1 = memory_region_get_ram_addr(section->mr)
3430 + memory_region_section_addr(section, addr);
3431 /* RAM case */
3432 ptr = qemu_get_ram_ptr(addr1);
3433 memcpy(ptr, buf, l);
3434 if (!cpu_physical_memory_is_dirty(addr1)) {
3435 /* invalidate code */
3436 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3437 /* set dirty bit */
3438 cpu_physical_memory_set_dirty_flags(
3439 addr1, (0xff & ~CODE_DIRTY_FLAG));
3440 }
3441 qemu_put_ram_ptr(ptr);
3442 }
3443 } else {
3444 if (!(memory_region_is_ram(section->mr) ||
3445 memory_region_is_romd(section->mr))) {
3446 target_phys_addr_t addr1;
3447 /* I/O case */
3448 addr1 = memory_region_section_addr(section, addr);
3449 if (l >= 4 && ((addr1 & 3) == 0)) {
3450 /* 32 bit read access */
3451 val = io_mem_read(section->mr, addr1, 4);
3452 stl_p(buf, val);
3453 l = 4;
3454 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3455 /* 16 bit read access */
3456 val = io_mem_read(section->mr, addr1, 2);
3457 stw_p(buf, val);
3458 l = 2;
3459 } else {
3460 /* 8 bit read access */
3461 val = io_mem_read(section->mr, addr1, 1);
3462 stb_p(buf, val);
3463 l = 1;
3464 }
3465 } else {
3466 /* RAM case */
3467 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3468 + memory_region_section_addr(section,
3469 addr));
3470 memcpy(buf, ptr, l);
3471 qemu_put_ram_ptr(ptr);
3472 }
3473 }
3474 len -= l;
3475 buf += l;
3476 addr += l;
3477 }
3478 }
3479
3480 /* used for ROM loading : can write in RAM and ROM */
3481 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3482 const uint8_t *buf, int len)
3483 {
3484 int l;
3485 uint8_t *ptr;
3486 target_phys_addr_t page;
3487 MemoryRegionSection *section;
3488
3489 while (len > 0) {
3490 page = addr & TARGET_PAGE_MASK;
3491 l = (page + TARGET_PAGE_SIZE) - addr;
3492 if (l > len)
3493 l = len;
3494 section = phys_page_find(page >> TARGET_PAGE_BITS);
3495
3496 if (!(memory_region_is_ram(section->mr) ||
3497 memory_region_is_romd(section->mr))) {
3498 /* do nothing */
3499 } else {
3500 unsigned long addr1;
3501 addr1 = memory_region_get_ram_addr(section->mr)
3502 + memory_region_section_addr(section, addr);
3503 /* ROM/RAM case */
3504 ptr = qemu_get_ram_ptr(addr1);
3505 memcpy(ptr, buf, l);
3506 qemu_put_ram_ptr(ptr);
3507 }
3508 len -= l;
3509 buf += l;
3510 addr += l;
3511 }
3512 }
3513
3514 typedef struct {
3515 void *buffer;
3516 target_phys_addr_t addr;
3517 target_phys_addr_t len;
3518 } BounceBuffer;
3519
3520 static BounceBuffer bounce;
3521
3522 typedef struct MapClient {
3523 void *opaque;
3524 void (*callback)(void *opaque);
3525 QLIST_ENTRY(MapClient) link;
3526 } MapClient;
3527
3528 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3529 = QLIST_HEAD_INITIALIZER(map_client_list);
3530
3531 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3532 {
3533 MapClient *client = g_malloc(sizeof(*client));
3534
3535 client->opaque = opaque;
3536 client->callback = callback;
3537 QLIST_INSERT_HEAD(&map_client_list, client, link);
3538 return client;
3539 }
3540
3541 void cpu_unregister_map_client(void *_client)
3542 {
3543 MapClient *client = (MapClient *)_client;
3544
3545 QLIST_REMOVE(client, link);
3546 g_free(client);
3547 }
3548
3549 static void cpu_notify_map_clients(void)
3550 {
3551 MapClient *client;
3552
3553 while (!QLIST_EMPTY(&map_client_list)) {
3554 client = QLIST_FIRST(&map_client_list);
3555 client->callback(client->opaque);
3556 cpu_unregister_map_client(client);
3557 }
3558 }
3559
3560 /* Map a physical memory region into a host virtual address.
3561 * May map a subset of the requested range, given by and returned in *plen.
3562 * May return NULL if resources needed to perform the mapping are exhausted.
3563 * Use only for reads OR writes - not for read-modify-write operations.
3564 * Use cpu_register_map_client() to know when retrying the map operation is
3565 * likely to succeed.
3566 */
3567 void *cpu_physical_memory_map(target_phys_addr_t addr,
3568 target_phys_addr_t *plen,
3569 int is_write)
3570 {
3571 target_phys_addr_t len = *plen;
3572 target_phys_addr_t todo = 0;
3573 int l;
3574 target_phys_addr_t page;
3575 MemoryRegionSection *section;
3576 ram_addr_t raddr = RAM_ADDR_MAX;
3577 ram_addr_t rlen;
3578 void *ret;
3579
3580 while (len > 0) {
3581 page = addr & TARGET_PAGE_MASK;
3582 l = (page + TARGET_PAGE_SIZE) - addr;
3583 if (l > len)
3584 l = len;
3585 section = phys_page_find(page >> TARGET_PAGE_BITS);
3586
3587 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3588 if (todo || bounce.buffer) {
3589 break;
3590 }
3591 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3592 bounce.addr = addr;
3593 bounce.len = l;
3594 if (!is_write) {
3595 cpu_physical_memory_read(addr, bounce.buffer, l);
3596 }
3597
3598 *plen = l;
3599 return bounce.buffer;
3600 }
3601 if (!todo) {
3602 raddr = memory_region_get_ram_addr(section->mr)
3603 + memory_region_section_addr(section, addr);
3604 }
3605
3606 len -= l;
3607 addr += l;
3608 todo += l;
3609 }
3610 rlen = todo;
3611 ret = qemu_ram_ptr_length(raddr, &rlen);
3612 *plen = rlen;
3613 return ret;
3614 }
3615
3616 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3617 * Will also mark the memory as dirty if is_write == 1. access_len gives
3618 * the amount of memory that was actually read or written by the caller.
3619 */
3620 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3621 int is_write, target_phys_addr_t access_len)
3622 {
3623 if (buffer != bounce.buffer) {
3624 if (is_write) {
3625 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3626 while (access_len) {
3627 unsigned l;
3628 l = TARGET_PAGE_SIZE;
3629 if (l > access_len)
3630 l = access_len;
3631 if (!cpu_physical_memory_is_dirty(addr1)) {
3632 /* invalidate code */
3633 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3634 /* set dirty bit */
3635 cpu_physical_memory_set_dirty_flags(
3636 addr1, (0xff & ~CODE_DIRTY_FLAG));
3637 }
3638 addr1 += l;
3639 access_len -= l;
3640 }
3641 }
3642 if (xen_enabled()) {
3643 xen_invalidate_map_cache_entry(buffer);
3644 }
3645 return;
3646 }
3647 if (is_write) {
3648 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3649 }
3650 qemu_vfree(bounce.buffer);
3651 bounce.buffer = NULL;
3652 cpu_notify_map_clients();
3653 }
3654
3655 /* warning: addr must be aligned */
3656 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3657 enum device_endian endian)
3658 {
3659 uint8_t *ptr;
3660 uint32_t val;
3661 MemoryRegionSection *section;
3662
3663 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3664
3665 if (!(memory_region_is_ram(section->mr) ||
3666 memory_region_is_romd(section->mr))) {
3667 /* I/O case */
3668 addr = memory_region_section_addr(section, addr);
3669 val = io_mem_read(section->mr, addr, 4);
3670 #if defined(TARGET_WORDS_BIGENDIAN)
3671 if (endian == DEVICE_LITTLE_ENDIAN) {
3672 val = bswap32(val);
3673 }
3674 #else
3675 if (endian == DEVICE_BIG_ENDIAN) {
3676 val = bswap32(val);
3677 }
3678 #endif
3679 } else {
3680 /* RAM case */
3681 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3682 & TARGET_PAGE_MASK)
3683 + memory_region_section_addr(section, addr));
3684 switch (endian) {
3685 case DEVICE_LITTLE_ENDIAN:
3686 val = ldl_le_p(ptr);
3687 break;
3688 case DEVICE_BIG_ENDIAN:
3689 val = ldl_be_p(ptr);
3690 break;
3691 default:
3692 val = ldl_p(ptr);
3693 break;
3694 }
3695 }
3696 return val;
3697 }
3698
3699 uint32_t ldl_phys(target_phys_addr_t addr)
3700 {
3701 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3702 }
3703
3704 uint32_t ldl_le_phys(target_phys_addr_t addr)
3705 {
3706 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3707 }
3708
3709 uint32_t ldl_be_phys(target_phys_addr_t addr)
3710 {
3711 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3712 }
3713
3714 /* warning: addr must be aligned */
3715 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3716 enum device_endian endian)
3717 {
3718 uint8_t *ptr;
3719 uint64_t val;
3720 MemoryRegionSection *section;
3721
3722 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3723
3724 if (!(memory_region_is_ram(section->mr) ||
3725 memory_region_is_romd(section->mr))) {
3726 /* I/O case */
3727 addr = memory_region_section_addr(section, addr);
3728
3729 /* XXX This is broken when device endian != cpu endian.
3730 Fix and add "endian" variable check */
3731 #ifdef TARGET_WORDS_BIGENDIAN
3732 val = io_mem_read(section->mr, addr, 4) << 32;
3733 val |= io_mem_read(section->mr, addr + 4, 4);
3734 #else
3735 val = io_mem_read(section->mr, addr, 4);
3736 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3737 #endif
3738 } else {
3739 /* RAM case */
3740 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3741 & TARGET_PAGE_MASK)
3742 + memory_region_section_addr(section, addr));
3743 switch (endian) {
3744 case DEVICE_LITTLE_ENDIAN:
3745 val = ldq_le_p(ptr);
3746 break;
3747 case DEVICE_BIG_ENDIAN:
3748 val = ldq_be_p(ptr);
3749 break;
3750 default:
3751 val = ldq_p(ptr);
3752 break;
3753 }
3754 }
3755 return val;
3756 }
3757
3758 uint64_t ldq_phys(target_phys_addr_t addr)
3759 {
3760 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3761 }
3762
3763 uint64_t ldq_le_phys(target_phys_addr_t addr)
3764 {
3765 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3766 }
3767
3768 uint64_t ldq_be_phys(target_phys_addr_t addr)
3769 {
3770 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3771 }
3772
3773 /* XXX: optimize */
3774 uint32_t ldub_phys(target_phys_addr_t addr)
3775 {
3776 uint8_t val;
3777 cpu_physical_memory_read(addr, &val, 1);
3778 return val;
3779 }
3780
3781 /* warning: addr must be aligned */
3782 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3783 enum device_endian endian)
3784 {
3785 uint8_t *ptr;
3786 uint64_t val;
3787 MemoryRegionSection *section;
3788
3789 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3790
3791 if (!(memory_region_is_ram(section->mr) ||
3792 memory_region_is_romd(section->mr))) {
3793 /* I/O case */
3794 addr = memory_region_section_addr(section, addr);
3795 val = io_mem_read(section->mr, addr, 2);
3796 #if defined(TARGET_WORDS_BIGENDIAN)
3797 if (endian == DEVICE_LITTLE_ENDIAN) {
3798 val = bswap16(val);
3799 }
3800 #else
3801 if (endian == DEVICE_BIG_ENDIAN) {
3802 val = bswap16(val);
3803 }
3804 #endif
3805 } else {
3806 /* RAM case */
3807 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3808 & TARGET_PAGE_MASK)
3809 + memory_region_section_addr(section, addr));
3810 switch (endian) {
3811 case DEVICE_LITTLE_ENDIAN:
3812 val = lduw_le_p(ptr);
3813 break;
3814 case DEVICE_BIG_ENDIAN:
3815 val = lduw_be_p(ptr);
3816 break;
3817 default:
3818 val = lduw_p(ptr);
3819 break;
3820 }
3821 }
3822 return val;
3823 }
3824
3825 uint32_t lduw_phys(target_phys_addr_t addr)
3826 {
3827 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3828 }
3829
3830 uint32_t lduw_le_phys(target_phys_addr_t addr)
3831 {
3832 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3833 }
3834
3835 uint32_t lduw_be_phys(target_phys_addr_t addr)
3836 {
3837 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3838 }
3839
3840 /* warning: addr must be aligned. The ram page is not masked as dirty
3841 and the code inside is not invalidated. It is useful if the dirty
3842 bits are used to track modified PTEs */
3843 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3844 {
3845 uint8_t *ptr;
3846 MemoryRegionSection *section;
3847
3848 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3849
3850 if (!memory_region_is_ram(section->mr) || section->readonly) {
3851 addr = memory_region_section_addr(section, addr);
3852 if (memory_region_is_ram(section->mr)) {
3853 section = &phys_sections[phys_section_rom];
3854 }
3855 io_mem_write(section->mr, addr, val, 4);
3856 } else {
3857 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3858 & TARGET_PAGE_MASK)
3859 + memory_region_section_addr(section, addr);
3860 ptr = qemu_get_ram_ptr(addr1);
3861 stl_p(ptr, val);
3862
3863 if (unlikely(in_migration)) {
3864 if (!cpu_physical_memory_is_dirty(addr1)) {
3865 /* invalidate code */
3866 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3867 /* set dirty bit */
3868 cpu_physical_memory_set_dirty_flags(
3869 addr1, (0xff & ~CODE_DIRTY_FLAG));
3870 }
3871 }
3872 }
3873 }
3874
3875 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3876 {
3877 uint8_t *ptr;
3878 MemoryRegionSection *section;
3879
3880 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3881
3882 if (!memory_region_is_ram(section->mr) || section->readonly) {
3883 addr = memory_region_section_addr(section, addr);
3884 if (memory_region_is_ram(section->mr)) {
3885 section = &phys_sections[phys_section_rom];
3886 }
3887 #ifdef TARGET_WORDS_BIGENDIAN
3888 io_mem_write(section->mr, addr, val >> 32, 4);
3889 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3890 #else
3891 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3892 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3893 #endif
3894 } else {
3895 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3896 & TARGET_PAGE_MASK)
3897 + memory_region_section_addr(section, addr));
3898 stq_p(ptr, val);
3899 }
3900 }
3901
3902 /* warning: addr must be aligned */
3903 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3904 enum device_endian endian)
3905 {
3906 uint8_t *ptr;
3907 MemoryRegionSection *section;
3908
3909 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3910
3911 if (!memory_region_is_ram(section->mr) || section->readonly) {
3912 addr = memory_region_section_addr(section, addr);
3913 if (memory_region_is_ram(section->mr)) {
3914 section = &phys_sections[phys_section_rom];
3915 }
3916 #if defined(TARGET_WORDS_BIGENDIAN)
3917 if (endian == DEVICE_LITTLE_ENDIAN) {
3918 val = bswap32(val);
3919 }
3920 #else
3921 if (endian == DEVICE_BIG_ENDIAN) {
3922 val = bswap32(val);
3923 }
3924 #endif
3925 io_mem_write(section->mr, addr, val, 4);
3926 } else {
3927 unsigned long addr1;
3928 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3929 + memory_region_section_addr(section, addr);
3930 /* RAM case */
3931 ptr = qemu_get_ram_ptr(addr1);
3932 switch (endian) {
3933 case DEVICE_LITTLE_ENDIAN:
3934 stl_le_p(ptr, val);
3935 break;
3936 case DEVICE_BIG_ENDIAN:
3937 stl_be_p(ptr, val);
3938 break;
3939 default:
3940 stl_p(ptr, val);
3941 break;
3942 }
3943 if (!cpu_physical_memory_is_dirty(addr1)) {
3944 /* invalidate code */
3945 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3946 /* set dirty bit */
3947 cpu_physical_memory_set_dirty_flags(addr1,
3948 (0xff & ~CODE_DIRTY_FLAG));
3949 }
3950 }
3951 }
3952
3953 void stl_phys(target_phys_addr_t addr, uint32_t val)
3954 {
3955 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3956 }
3957
3958 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3959 {
3960 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3961 }
3962
3963 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3964 {
3965 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3966 }
3967
3968 /* XXX: optimize */
3969 void stb_phys(target_phys_addr_t addr, uint32_t val)
3970 {
3971 uint8_t v = val;
3972 cpu_physical_memory_write(addr, &v, 1);
3973 }
3974
3975 /* warning: addr must be aligned */
3976 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3977 enum device_endian endian)
3978 {
3979 uint8_t *ptr;
3980 MemoryRegionSection *section;
3981
3982 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3983
3984 if (!memory_region_is_ram(section->mr) || section->readonly) {
3985 addr = memory_region_section_addr(section, addr);
3986 if (memory_region_is_ram(section->mr)) {
3987 section = &phys_sections[phys_section_rom];
3988 }
3989 #if defined(TARGET_WORDS_BIGENDIAN)
3990 if (endian == DEVICE_LITTLE_ENDIAN) {
3991 val = bswap16(val);
3992 }
3993 #else
3994 if (endian == DEVICE_BIG_ENDIAN) {
3995 val = bswap16(val);
3996 }
3997 #endif
3998 io_mem_write(section->mr, addr, val, 2);
3999 } else {
4000 unsigned long addr1;
4001 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4002 + memory_region_section_addr(section, addr);
4003 /* RAM case */
4004 ptr = qemu_get_ram_ptr(addr1);
4005 switch (endian) {
4006 case DEVICE_LITTLE_ENDIAN:
4007 stw_le_p(ptr, val);
4008 break;
4009 case DEVICE_BIG_ENDIAN:
4010 stw_be_p(ptr, val);
4011 break;
4012 default:
4013 stw_p(ptr, val);
4014 break;
4015 }
4016 if (!cpu_physical_memory_is_dirty(addr1)) {
4017 /* invalidate code */
4018 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4019 /* set dirty bit */
4020 cpu_physical_memory_set_dirty_flags(addr1,
4021 (0xff & ~CODE_DIRTY_FLAG));
4022 }
4023 }
4024 }
4025
4026 void stw_phys(target_phys_addr_t addr, uint32_t val)
4027 {
4028 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4029 }
4030
4031 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4032 {
4033 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4034 }
4035
4036 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4037 {
4038 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4039 }
4040
4041 /* XXX: optimize */
4042 void stq_phys(target_phys_addr_t addr, uint64_t val)
4043 {
4044 val = tswap64(val);
4045 cpu_physical_memory_write(addr, &val, 8);
4046 }
4047
4048 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4049 {
4050 val = cpu_to_le64(val);
4051 cpu_physical_memory_write(addr, &val, 8);
4052 }
4053
4054 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4055 {
4056 val = cpu_to_be64(val);
4057 cpu_physical_memory_write(addr, &val, 8);
4058 }
4059
4060 /* virtual memory access for debug (includes writing to ROM) */
4061 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4062 uint8_t *buf, int len, int is_write)
4063 {
4064 int l;
4065 target_phys_addr_t phys_addr;
4066 target_ulong page;
4067
4068 while (len > 0) {
4069 page = addr & TARGET_PAGE_MASK;
4070 phys_addr = cpu_get_phys_page_debug(env, page);
4071 /* if no physical page mapped, return an error */
4072 if (phys_addr == -1)
4073 return -1;
4074 l = (page + TARGET_PAGE_SIZE) - addr;
4075 if (l > len)
4076 l = len;
4077 phys_addr += (addr & ~TARGET_PAGE_MASK);
4078 if (is_write)
4079 cpu_physical_memory_write_rom(phys_addr, buf, l);
4080 else
4081 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4082 len -= l;
4083 buf += l;
4084 addr += l;
4085 }
4086 return 0;
4087 }
4088 #endif
4089
4090 /* in deterministic execution mode, instructions doing device I/Os
4091 must be at the end of the TB */
4092 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4093 {
4094 TranslationBlock *tb;
4095 uint32_t n, cflags;
4096 target_ulong pc, cs_base;
4097 uint64_t flags;
4098
4099 tb = tb_find_pc(retaddr);
4100 if (!tb) {
4101 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4102 (void *)retaddr);
4103 }
4104 n = env->icount_decr.u16.low + tb->icount;
4105 cpu_restore_state(tb, env, retaddr);
4106 /* Calculate how many instructions had been executed before the fault
4107 occurred. */
4108 n = n - env->icount_decr.u16.low;
4109 /* Generate a new TB ending on the I/O insn. */
4110 n++;
4111 /* On MIPS and SH, delay slot instructions can only be restarted if
4112 they were already the first instruction in the TB. If this is not
4113 the first instruction in a TB then re-execute the preceding
4114 branch. */
4115 #if defined(TARGET_MIPS)
4116 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4117 env->active_tc.PC -= 4;
4118 env->icount_decr.u16.low++;
4119 env->hflags &= ~MIPS_HFLAG_BMASK;
4120 }
4121 #elif defined(TARGET_SH4)
4122 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4123 && n > 1) {
4124 env->pc -= 2;
4125 env->icount_decr.u16.low++;
4126 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4127 }
4128 #endif
4129 /* This should never happen. */
4130 if (n > CF_COUNT_MASK)
4131 cpu_abort(env, "TB too big during recompile");
4132
4133 cflags = n | CF_LAST_IO;
4134 pc = tb->pc;
4135 cs_base = tb->cs_base;
4136 flags = tb->flags;
4137 tb_phys_invalidate(tb, -1);
4138 /* FIXME: In theory this could raise an exception. In practice
4139 we have already translated the block once so it's probably ok. */
4140 tb_gen_code(env, pc, cs_base, flags, cflags);
4141 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4142 the first in the TB) then we end up generating a whole new TB and
4143 repeating the fault, which is horribly inefficient.
4144 Better would be to execute just this insn uncached, or generate a
4145 second new TB. */
4146 cpu_resume_from_signal(env, NULL);
4147 }
4148
4149 #if !defined(CONFIG_USER_ONLY)
4150
4151 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4152 {
4153 int i, target_code_size, max_target_code_size;
4154 int direct_jmp_count, direct_jmp2_count, cross_page;
4155 TranslationBlock *tb;
4156
4157 target_code_size = 0;
4158 max_target_code_size = 0;
4159 cross_page = 0;
4160 direct_jmp_count = 0;
4161 direct_jmp2_count = 0;
4162 for(i = 0; i < nb_tbs; i++) {
4163 tb = &tbs[i];
4164 target_code_size += tb->size;
4165 if (tb->size > max_target_code_size)
4166 max_target_code_size = tb->size;
4167 if (tb->page_addr[1] != -1)
4168 cross_page++;
4169 if (tb->tb_next_offset[0] != 0xffff) {
4170 direct_jmp_count++;
4171 if (tb->tb_next_offset[1] != 0xffff) {
4172 direct_jmp2_count++;
4173 }
4174 }
4175 }
4176 /* XXX: avoid using doubles ? */
4177 cpu_fprintf(f, "Translation buffer state:\n");
4178 cpu_fprintf(f, "gen code size %td/%ld\n",
4179 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4180 cpu_fprintf(f, "TB count %d/%d\n",
4181 nb_tbs, code_gen_max_blocks);
4182 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4183 nb_tbs ? target_code_size / nb_tbs : 0,
4184 max_target_code_size);
4185 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4186 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4187 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4188 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4189 cross_page,
4190 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4191 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4192 direct_jmp_count,
4193 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4194 direct_jmp2_count,
4195 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4196 cpu_fprintf(f, "\nStatistics:\n");
4197 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4198 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4199 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4200 tcg_dump_info(f, cpu_fprintf);
4201 }
4202
4203 /*
4204 * A helper function for the _utterly broken_ virtio device model to find out if
4205 * it's running on a big endian machine. Don't do this at home kids!
4206 */
4207 bool virtio_is_big_endian(void);
4208 bool virtio_is_big_endian(void)
4209 {
4210 #if defined(TARGET_WORDS_BIGENDIAN)
4211 return true;
4212 #else
4213 return false;
4214 #endif
4215 }
4216
4217 #endif
4218
4219 #ifndef CONFIG_USER_ONLY
4220 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4221 {
4222 MemoryRegionSection *section;
4223
4224 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4225
4226 return !(memory_region_is_ram(section->mr) ||
4227 memory_region_is_romd(section->mr));
4228 }
4229 #endif