]> git.proxmox.com Git - qemu.git/blob - exec.c
Add missing parenthesis in qemu_ram_alloc()
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
35
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
44
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
49
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
53
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
61
62 #define SMC_BITMAP_USE_THRESHOLD 10
63
64 #define MMAP_AREA_START 0x00000000
65 #define MMAP_AREA_END 0xa8000000
66
67 #if defined(TARGET_SPARC64)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 41
69 #elif defined(TARGET_SPARC)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 36
71 #elif defined(TARGET_ALPHA)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #define TARGET_VIRT_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_PPC64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 36
80 #else
81 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
82 #define TARGET_PHYS_ADDR_SPACE_BITS 32
83 #endif
84
85 TranslationBlock *tbs;
86 int code_gen_max_blocks;
87 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
88 int nb_tbs;
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
91
92 #if defined(__arm__) || defined(__sparc_v9__)
93 /* The prologue must be reachable with a direct jump. ARM and Sparc64
94 have limited branch ranges (possibly also PPC) so place it in a
95 section close to code segment. */
96 #define code_gen_section \
97 __attribute__((__section__(".gen_code"))) \
98 __attribute__((aligned (32)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 uint8_t *code_gen_buffer;
106 unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 ram_addr_t phys_ram_size;
113 int phys_ram_fd;
114 uint8_t *phys_ram_base;
115 uint8_t *phys_ram_dirty;
116 static ram_addr_t phys_ram_alloc_offset = 0;
117 #endif
118
119 CPUState *first_cpu;
120 /* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
122 CPUState *cpu_single_env;
123 /* 0 = Do not count executed instructions.
124 1 = Precise instruction counting.
125 2 = Adaptive rate instruction counting. */
126 int use_icount = 0;
127 /* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129 int64_t qemu_icount;
130
131 typedef struct PageDesc {
132 /* list of TBs intersecting this ram page */
133 TranslationBlock *first_tb;
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138 #if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140 #endif
141 } PageDesc;
142
143 typedef struct PhysPageDesc {
144 /* offset in host memory of the page + io_index in the low bits */
145 ram_addr_t phys_offset;
146 } PhysPageDesc;
147
148 #define L2_BITS 10
149 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
150 /* XXX: this is a temporary hack for alpha target.
151 * In the future, this is to be replaced by a multi-level table
152 * to actually be able to handle the complete 64 bits address space.
153 */
154 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
155 #else
156 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
157 #endif
158
159 #define L1_SIZE (1 << L1_BITS)
160 #define L2_SIZE (1 << L2_BITS)
161
162 unsigned long qemu_real_host_page_size;
163 unsigned long qemu_host_page_bits;
164 unsigned long qemu_host_page_size;
165 unsigned long qemu_host_page_mask;
166
167 /* XXX: for system emulation, it could just be an array */
168 static PageDesc *l1_map[L1_SIZE];
169 PhysPageDesc **l1_phys_map;
170
171 #if !defined(CONFIG_USER_ONLY)
172 static void io_mem_init(void);
173
174 /* io memory support */
175 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
176 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
177 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
178 static int io_mem_nb;
179 static int io_mem_watch;
180 #endif
181
182 /* log support */
183 const char *logfilename = "/tmp/qemu.log";
184 FILE *logfile;
185 int loglevel;
186 static int log_append = 0;
187
188 /* statistics */
189 static int tlb_flush_count;
190 static int tb_flush_count;
191 static int tb_phys_invalidate_count;
192
193 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194 typedef struct subpage_t {
195 target_phys_addr_t base;
196 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
197 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
198 void *opaque[TARGET_PAGE_SIZE][2][4];
199 } subpage_t;
200
201 #ifdef _WIN32
202 static void map_exec(void *addr, long size)
203 {
204 DWORD old_protect;
205 VirtualProtect(addr, size,
206 PAGE_EXECUTE_READWRITE, &old_protect);
207
208 }
209 #else
210 static void map_exec(void *addr, long size)
211 {
212 unsigned long start, end, page_size;
213
214 page_size = getpagesize();
215 start = (unsigned long)addr;
216 start &= ~(page_size - 1);
217
218 end = (unsigned long)addr + size;
219 end += page_size - 1;
220 end &= ~(page_size - 1);
221
222 mprotect((void *)start, end - start,
223 PROT_READ | PROT_WRITE | PROT_EXEC);
224 }
225 #endif
226
227 static void page_init(void)
228 {
229 /* NOTE: we can always suppose that qemu_host_page_size >=
230 TARGET_PAGE_SIZE */
231 #ifdef _WIN32
232 {
233 SYSTEM_INFO system_info;
234 DWORD old_protect;
235
236 GetSystemInfo(&system_info);
237 qemu_real_host_page_size = system_info.dwPageSize;
238 }
239 #else
240 qemu_real_host_page_size = getpagesize();
241 #endif
242 if (qemu_host_page_size == 0)
243 qemu_host_page_size = qemu_real_host_page_size;
244 if (qemu_host_page_size < TARGET_PAGE_SIZE)
245 qemu_host_page_size = TARGET_PAGE_SIZE;
246 qemu_host_page_bits = 0;
247 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
248 qemu_host_page_bits++;
249 qemu_host_page_mask = ~(qemu_host_page_size - 1);
250 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
251 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
252
253 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
254 {
255 long long startaddr, endaddr;
256 FILE *f;
257 int n;
258
259 mmap_lock();
260 last_brk = (unsigned long)sbrk(0);
261 f = fopen("/proc/self/maps", "r");
262 if (f) {
263 do {
264 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
265 if (n == 2) {
266 startaddr = MIN(startaddr,
267 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
268 endaddr = MIN(endaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 page_set_flags(startaddr & TARGET_PAGE_MASK,
271 TARGET_PAGE_ALIGN(endaddr),
272 PAGE_RESERVED);
273 }
274 } while (!feof(f));
275 fclose(f);
276 }
277 mmap_unlock();
278 }
279 #endif
280 }
281
282 static inline PageDesc **page_l1_map(target_ulong index)
283 {
284 #if TARGET_LONG_BITS > 32
285 /* Host memory outside guest VM. For 32-bit targets we have already
286 excluded high addresses. */
287 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
288 return NULL;
289 #endif
290 return &l1_map[index >> L2_BITS];
291 }
292
293 static inline PageDesc *page_find_alloc(target_ulong index)
294 {
295 PageDesc **lp, *p;
296 lp = page_l1_map(index);
297 if (!lp)
298 return NULL;
299
300 p = *lp;
301 if (!p) {
302 /* allocate if not found */
303 #if defined(CONFIG_USER_ONLY)
304 unsigned long addr;
305 size_t len = sizeof(PageDesc) * L2_SIZE;
306 /* Don't use qemu_malloc because it may recurse. */
307 p = mmap(0, len, PROT_READ | PROT_WRITE,
308 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
309 *lp = p;
310 addr = h2g(p);
311 if (addr == (target_ulong)addr) {
312 page_set_flags(addr & TARGET_PAGE_MASK,
313 TARGET_PAGE_ALIGN(addr + len),
314 PAGE_RESERVED);
315 }
316 #else
317 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
318 *lp = p;
319 #endif
320 }
321 return p + (index & (L2_SIZE - 1));
322 }
323
324 static inline PageDesc *page_find(target_ulong index)
325 {
326 PageDesc **lp, *p;
327 lp = page_l1_map(index);
328 if (!lp)
329 return NULL;
330
331 p = *lp;
332 if (!p)
333 return 0;
334 return p + (index & (L2_SIZE - 1));
335 }
336
337 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
338 {
339 void **lp, **p;
340 PhysPageDesc *pd;
341
342 p = (void **)l1_phys_map;
343 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
344
345 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
346 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
347 #endif
348 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
349 p = *lp;
350 if (!p) {
351 /* allocate if not found */
352 if (!alloc)
353 return NULL;
354 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
355 memset(p, 0, sizeof(void *) * L1_SIZE);
356 *lp = p;
357 }
358 #endif
359 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
360 pd = *lp;
361 if (!pd) {
362 int i;
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
367 *lp = pd;
368 for (i = 0; i < L2_SIZE; i++)
369 pd[i].phys_offset = IO_MEM_UNASSIGNED;
370 }
371 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
372 }
373
374 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
375 {
376 return phys_page_find_alloc(index, 0);
377 }
378
379 #if !defined(CONFIG_USER_ONLY)
380 static void tlb_protect_code(ram_addr_t ram_addr);
381 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
382 target_ulong vaddr);
383 #define mmap_lock() do { } while(0)
384 #define mmap_unlock() do { } while(0)
385 #endif
386
387 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
388
389 #if defined(CONFIG_USER_ONLY)
390 /* Currently it is not recommanded to allocate big chunks of data in
391 user mode. It will change when a dedicated libc will be used */
392 #define USE_STATIC_CODE_GEN_BUFFER
393 #endif
394
395 #ifdef USE_STATIC_CODE_GEN_BUFFER
396 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
397 #endif
398
399 static void code_gen_alloc(unsigned long tb_size)
400 {
401 #ifdef USE_STATIC_CODE_GEN_BUFFER
402 code_gen_buffer = static_code_gen_buffer;
403 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
404 map_exec(code_gen_buffer, code_gen_buffer_size);
405 #else
406 code_gen_buffer_size = tb_size;
407 if (code_gen_buffer_size == 0) {
408 #if defined(CONFIG_USER_ONLY)
409 /* in user mode, phys_ram_size is not meaningful */
410 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
411 #else
412 /* XXX: needs ajustments */
413 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
414 #endif
415 }
416 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
417 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
418 /* The code gen buffer location may have constraints depending on
419 the host cpu and OS */
420 #if defined(__linux__)
421 {
422 int flags;
423 void *start = NULL;
424
425 flags = MAP_PRIVATE | MAP_ANONYMOUS;
426 #if defined(__x86_64__)
427 flags |= MAP_32BIT;
428 /* Cannot map more than that */
429 if (code_gen_buffer_size > (800 * 1024 * 1024))
430 code_gen_buffer_size = (800 * 1024 * 1024);
431 #elif defined(__sparc_v9__)
432 // Map the buffer below 2G, so we can use direct calls and branches
433 flags |= MAP_FIXED;
434 start = (void *) 0x60000000UL;
435 if (code_gen_buffer_size > (512 * 1024 * 1024))
436 code_gen_buffer_size = (512 * 1024 * 1024);
437 #endif
438 code_gen_buffer = mmap(start, code_gen_buffer_size,
439 PROT_WRITE | PROT_READ | PROT_EXEC,
440 flags, -1, 0);
441 if (code_gen_buffer == MAP_FAILED) {
442 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
443 exit(1);
444 }
445 }
446 #elif defined(__FreeBSD__)
447 {
448 int flags;
449 void *addr = NULL;
450 flags = MAP_PRIVATE | MAP_ANONYMOUS;
451 #if defined(__x86_64__)
452 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
453 * 0x40000000 is free */
454 flags |= MAP_FIXED;
455 addr = (void *)0x40000000;
456 /* Cannot map more than that */
457 if (code_gen_buffer_size > (800 * 1024 * 1024))
458 code_gen_buffer_size = (800 * 1024 * 1024);
459 #endif
460 code_gen_buffer = mmap(addr, code_gen_buffer_size,
461 PROT_WRITE | PROT_READ | PROT_EXEC,
462 flags, -1, 0);
463 if (code_gen_buffer == MAP_FAILED) {
464 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
465 exit(1);
466 }
467 }
468 #else
469 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
470 if (!code_gen_buffer) {
471 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
472 exit(1);
473 }
474 map_exec(code_gen_buffer, code_gen_buffer_size);
475 #endif
476 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
477 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
478 code_gen_buffer_max_size = code_gen_buffer_size -
479 code_gen_max_block_size();
480 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
481 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
482 }
483
484 /* Must be called before using the QEMU cpus. 'tb_size' is the size
485 (in bytes) allocated to the translation buffer. Zero means default
486 size. */
487 void cpu_exec_init_all(unsigned long tb_size)
488 {
489 cpu_gen_init();
490 code_gen_alloc(tb_size);
491 code_gen_ptr = code_gen_buffer;
492 page_init();
493 #if !defined(CONFIG_USER_ONLY)
494 io_mem_init();
495 #endif
496 }
497
498 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
499
500 #define CPU_COMMON_SAVE_VERSION 1
501
502 static void cpu_common_save(QEMUFile *f, void *opaque)
503 {
504 CPUState *env = opaque;
505
506 qemu_put_be32s(f, &env->halted);
507 qemu_put_be32s(f, &env->interrupt_request);
508 }
509
510 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
511 {
512 CPUState *env = opaque;
513
514 if (version_id != CPU_COMMON_SAVE_VERSION)
515 return -EINVAL;
516
517 qemu_get_be32s(f, &env->halted);
518 qemu_get_be32s(f, &env->interrupt_request);
519 tlb_flush(env, 1);
520
521 return 0;
522 }
523 #endif
524
525 void cpu_exec_init(CPUState *env)
526 {
527 CPUState **penv;
528 int cpu_index;
529
530 env->next_cpu = NULL;
531 penv = &first_cpu;
532 cpu_index = 0;
533 while (*penv != NULL) {
534 penv = (CPUState **)&(*penv)->next_cpu;
535 cpu_index++;
536 }
537 env->cpu_index = cpu_index;
538 env->nb_watchpoints = 0;
539 *penv = env;
540 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
541 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
542 cpu_common_save, cpu_common_load, env);
543 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
544 cpu_save, cpu_load, env);
545 #endif
546 }
547
548 static inline void invalidate_page_bitmap(PageDesc *p)
549 {
550 if (p->code_bitmap) {
551 qemu_free(p->code_bitmap);
552 p->code_bitmap = NULL;
553 }
554 p->code_write_count = 0;
555 }
556
557 /* set to NULL all the 'first_tb' fields in all PageDescs */
558 static void page_flush_tb(void)
559 {
560 int i, j;
561 PageDesc *p;
562
563 for(i = 0; i < L1_SIZE; i++) {
564 p = l1_map[i];
565 if (p) {
566 for(j = 0; j < L2_SIZE; j++) {
567 p->first_tb = NULL;
568 invalidate_page_bitmap(p);
569 p++;
570 }
571 }
572 }
573 }
574
575 /* flush all the translation blocks */
576 /* XXX: tb_flush is currently not thread safe */
577 void tb_flush(CPUState *env1)
578 {
579 CPUState *env;
580 #if defined(DEBUG_FLUSH)
581 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
582 (unsigned long)(code_gen_ptr - code_gen_buffer),
583 nb_tbs, nb_tbs > 0 ?
584 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
585 #endif
586 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
587 cpu_abort(env1, "Internal error: code buffer overflow\n");
588
589 nb_tbs = 0;
590
591 for(env = first_cpu; env != NULL; env = env->next_cpu) {
592 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
593 }
594
595 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
596 page_flush_tb();
597
598 code_gen_ptr = code_gen_buffer;
599 /* XXX: flush processor icache at this point if cache flush is
600 expensive */
601 tb_flush_count++;
602 }
603
604 #ifdef DEBUG_TB_CHECK
605
606 static void tb_invalidate_check(target_ulong address)
607 {
608 TranslationBlock *tb;
609 int i;
610 address &= TARGET_PAGE_MASK;
611 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
612 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
613 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
614 address >= tb->pc + tb->size)) {
615 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
616 address, (long)tb->pc, tb->size);
617 }
618 }
619 }
620 }
621
622 /* verify that all the pages have correct rights for code */
623 static void tb_page_check(void)
624 {
625 TranslationBlock *tb;
626 int i, flags1, flags2;
627
628 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
629 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
630 flags1 = page_get_flags(tb->pc);
631 flags2 = page_get_flags(tb->pc + tb->size - 1);
632 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
633 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
634 (long)tb->pc, tb->size, flags1, flags2);
635 }
636 }
637 }
638 }
639
640 void tb_jmp_check(TranslationBlock *tb)
641 {
642 TranslationBlock *tb1;
643 unsigned int n1;
644
645 /* suppress any remaining jumps to this TB */
646 tb1 = tb->jmp_first;
647 for(;;) {
648 n1 = (long)tb1 & 3;
649 tb1 = (TranslationBlock *)((long)tb1 & ~3);
650 if (n1 == 2)
651 break;
652 tb1 = tb1->jmp_next[n1];
653 }
654 /* check end of list */
655 if (tb1 != tb) {
656 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
657 }
658 }
659
660 #endif
661
662 /* invalidate one TB */
663 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
664 int next_offset)
665 {
666 TranslationBlock *tb1;
667 for(;;) {
668 tb1 = *ptb;
669 if (tb1 == tb) {
670 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
671 break;
672 }
673 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
674 }
675 }
676
677 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
678 {
679 TranslationBlock *tb1;
680 unsigned int n1;
681
682 for(;;) {
683 tb1 = *ptb;
684 n1 = (long)tb1 & 3;
685 tb1 = (TranslationBlock *)((long)tb1 & ~3);
686 if (tb1 == tb) {
687 *ptb = tb1->page_next[n1];
688 break;
689 }
690 ptb = &tb1->page_next[n1];
691 }
692 }
693
694 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
695 {
696 TranslationBlock *tb1, **ptb;
697 unsigned int n1;
698
699 ptb = &tb->jmp_next[n];
700 tb1 = *ptb;
701 if (tb1) {
702 /* find tb(n) in circular list */
703 for(;;) {
704 tb1 = *ptb;
705 n1 = (long)tb1 & 3;
706 tb1 = (TranslationBlock *)((long)tb1 & ~3);
707 if (n1 == n && tb1 == tb)
708 break;
709 if (n1 == 2) {
710 ptb = &tb1->jmp_first;
711 } else {
712 ptb = &tb1->jmp_next[n1];
713 }
714 }
715 /* now we can suppress tb(n) from the list */
716 *ptb = tb->jmp_next[n];
717
718 tb->jmp_next[n] = NULL;
719 }
720 }
721
722 /* reset the jump entry 'n' of a TB so that it is not chained to
723 another TB */
724 static inline void tb_reset_jump(TranslationBlock *tb, int n)
725 {
726 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
727 }
728
729 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
730 {
731 CPUState *env;
732 PageDesc *p;
733 unsigned int h, n1;
734 target_phys_addr_t phys_pc;
735 TranslationBlock *tb1, *tb2;
736
737 /* remove the TB from the hash list */
738 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
739 h = tb_phys_hash_func(phys_pc);
740 tb_remove(&tb_phys_hash[h], tb,
741 offsetof(TranslationBlock, phys_hash_next));
742
743 /* remove the TB from the page list */
744 if (tb->page_addr[0] != page_addr) {
745 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
746 tb_page_remove(&p->first_tb, tb);
747 invalidate_page_bitmap(p);
748 }
749 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
750 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
751 tb_page_remove(&p->first_tb, tb);
752 invalidate_page_bitmap(p);
753 }
754
755 tb_invalidated_flag = 1;
756
757 /* remove the TB from the hash list */
758 h = tb_jmp_cache_hash_func(tb->pc);
759 for(env = first_cpu; env != NULL; env = env->next_cpu) {
760 if (env->tb_jmp_cache[h] == tb)
761 env->tb_jmp_cache[h] = NULL;
762 }
763
764 /* suppress this TB from the two jump lists */
765 tb_jmp_remove(tb, 0);
766 tb_jmp_remove(tb, 1);
767
768 /* suppress any remaining jumps to this TB */
769 tb1 = tb->jmp_first;
770 for(;;) {
771 n1 = (long)tb1 & 3;
772 if (n1 == 2)
773 break;
774 tb1 = (TranslationBlock *)((long)tb1 & ~3);
775 tb2 = tb1->jmp_next[n1];
776 tb_reset_jump(tb1, n1);
777 tb1->jmp_next[n1] = NULL;
778 tb1 = tb2;
779 }
780 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
781
782 tb_phys_invalidate_count++;
783 }
784
785 static inline void set_bits(uint8_t *tab, int start, int len)
786 {
787 int end, mask, end1;
788
789 end = start + len;
790 tab += start >> 3;
791 mask = 0xff << (start & 7);
792 if ((start & ~7) == (end & ~7)) {
793 if (start < end) {
794 mask &= ~(0xff << (end & 7));
795 *tab |= mask;
796 }
797 } else {
798 *tab++ |= mask;
799 start = (start + 8) & ~7;
800 end1 = end & ~7;
801 while (start < end1) {
802 *tab++ = 0xff;
803 start += 8;
804 }
805 if (start < end) {
806 mask = ~(0xff << (end & 7));
807 *tab |= mask;
808 }
809 }
810 }
811
812 static void build_page_bitmap(PageDesc *p)
813 {
814 int n, tb_start, tb_end;
815 TranslationBlock *tb;
816
817 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
818 if (!p->code_bitmap)
819 return;
820
821 tb = p->first_tb;
822 while (tb != NULL) {
823 n = (long)tb & 3;
824 tb = (TranslationBlock *)((long)tb & ~3);
825 /* NOTE: this is subtle as a TB may span two physical pages */
826 if (n == 0) {
827 /* NOTE: tb_end may be after the end of the page, but
828 it is not a problem */
829 tb_start = tb->pc & ~TARGET_PAGE_MASK;
830 tb_end = tb_start + tb->size;
831 if (tb_end > TARGET_PAGE_SIZE)
832 tb_end = TARGET_PAGE_SIZE;
833 } else {
834 tb_start = 0;
835 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
836 }
837 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
838 tb = tb->page_next[n];
839 }
840 }
841
842 TranslationBlock *tb_gen_code(CPUState *env,
843 target_ulong pc, target_ulong cs_base,
844 int flags, int cflags)
845 {
846 TranslationBlock *tb;
847 uint8_t *tc_ptr;
848 target_ulong phys_pc, phys_page2, virt_page2;
849 int code_gen_size;
850
851 phys_pc = get_phys_addr_code(env, pc);
852 tb = tb_alloc(pc);
853 if (!tb) {
854 /* flush must be done */
855 tb_flush(env);
856 /* cannot fail at this point */
857 tb = tb_alloc(pc);
858 /* Don't forget to invalidate previous TB info. */
859 tb_invalidated_flag = 1;
860 }
861 tc_ptr = code_gen_ptr;
862 tb->tc_ptr = tc_ptr;
863 tb->cs_base = cs_base;
864 tb->flags = flags;
865 tb->cflags = cflags;
866 cpu_gen_code(env, tb, &code_gen_size);
867 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
868
869 /* check next page if needed */
870 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
871 phys_page2 = -1;
872 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
873 phys_page2 = get_phys_addr_code(env, virt_page2);
874 }
875 tb_link_phys(tb, phys_pc, phys_page2);
876 return tb;
877 }
878
879 /* invalidate all TBs which intersect with the target physical page
880 starting in range [start;end[. NOTE: start and end must refer to
881 the same physical page. 'is_cpu_write_access' should be true if called
882 from a real cpu write access: the virtual CPU will exit the current
883 TB if code is modified inside this TB. */
884 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
885 int is_cpu_write_access)
886 {
887 int n, current_tb_modified, current_tb_not_found, current_flags;
888 CPUState *env = cpu_single_env;
889 PageDesc *p;
890 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
891 target_ulong tb_start, tb_end;
892 target_ulong current_pc, current_cs_base;
893
894 p = page_find(start >> TARGET_PAGE_BITS);
895 if (!p)
896 return;
897 if (!p->code_bitmap &&
898 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
899 is_cpu_write_access) {
900 /* build code bitmap */
901 build_page_bitmap(p);
902 }
903
904 /* we remove all the TBs in the range [start, end[ */
905 /* XXX: see if in some cases it could be faster to invalidate all the code */
906 current_tb_not_found = is_cpu_write_access;
907 current_tb_modified = 0;
908 current_tb = NULL; /* avoid warning */
909 current_pc = 0; /* avoid warning */
910 current_cs_base = 0; /* avoid warning */
911 current_flags = 0; /* avoid warning */
912 tb = p->first_tb;
913 while (tb != NULL) {
914 n = (long)tb & 3;
915 tb = (TranslationBlock *)((long)tb & ~3);
916 tb_next = tb->page_next[n];
917 /* NOTE: this is subtle as a TB may span two physical pages */
918 if (n == 0) {
919 /* NOTE: tb_end may be after the end of the page, but
920 it is not a problem */
921 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
922 tb_end = tb_start + tb->size;
923 } else {
924 tb_start = tb->page_addr[1];
925 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
926 }
927 if (!(tb_end <= start || tb_start >= end)) {
928 #ifdef TARGET_HAS_PRECISE_SMC
929 if (current_tb_not_found) {
930 current_tb_not_found = 0;
931 current_tb = NULL;
932 if (env->mem_io_pc) {
933 /* now we have a real cpu fault */
934 current_tb = tb_find_pc(env->mem_io_pc);
935 }
936 }
937 if (current_tb == tb &&
938 (current_tb->cflags & CF_COUNT_MASK) != 1) {
939 /* If we are modifying the current TB, we must stop
940 its execution. We could be more precise by checking
941 that the modification is after the current PC, but it
942 would require a specialized function to partially
943 restore the CPU state */
944
945 current_tb_modified = 1;
946 cpu_restore_state(current_tb, env,
947 env->mem_io_pc, NULL);
948 #if defined(TARGET_I386)
949 current_flags = env->hflags;
950 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
951 current_cs_base = (target_ulong)env->segs[R_CS].base;
952 current_pc = current_cs_base + env->eip;
953 #else
954 #error unsupported CPU
955 #endif
956 }
957 #endif /* TARGET_HAS_PRECISE_SMC */
958 /* we need to do that to handle the case where a signal
959 occurs while doing tb_phys_invalidate() */
960 saved_tb = NULL;
961 if (env) {
962 saved_tb = env->current_tb;
963 env->current_tb = NULL;
964 }
965 tb_phys_invalidate(tb, -1);
966 if (env) {
967 env->current_tb = saved_tb;
968 if (env->interrupt_request && env->current_tb)
969 cpu_interrupt(env, env->interrupt_request);
970 }
971 }
972 tb = tb_next;
973 }
974 #if !defined(CONFIG_USER_ONLY)
975 /* if no code remaining, no need to continue to use slow writes */
976 if (!p->first_tb) {
977 invalidate_page_bitmap(p);
978 if (is_cpu_write_access) {
979 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
980 }
981 }
982 #endif
983 #ifdef TARGET_HAS_PRECISE_SMC
984 if (current_tb_modified) {
985 /* we generate a block containing just the instruction
986 modifying the memory. It will ensure that it cannot modify
987 itself */
988 env->current_tb = NULL;
989 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
990 cpu_resume_from_signal(env, NULL);
991 }
992 #endif
993 }
994
995 /* len must be <= 8 and start must be a multiple of len */
996 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
997 {
998 PageDesc *p;
999 int offset, b;
1000 #if 0
1001 if (1) {
1002 if (loglevel) {
1003 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1004 cpu_single_env->mem_io_vaddr, len,
1005 cpu_single_env->eip,
1006 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1007 }
1008 }
1009 #endif
1010 p = page_find(start >> TARGET_PAGE_BITS);
1011 if (!p)
1012 return;
1013 if (p->code_bitmap) {
1014 offset = start & ~TARGET_PAGE_MASK;
1015 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1016 if (b & ((1 << len) - 1))
1017 goto do_invalidate;
1018 } else {
1019 do_invalidate:
1020 tb_invalidate_phys_page_range(start, start + len, 1);
1021 }
1022 }
1023
1024 #if !defined(CONFIG_SOFTMMU)
1025 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1026 unsigned long pc, void *puc)
1027 {
1028 int n, current_flags, current_tb_modified;
1029 target_ulong current_pc, current_cs_base;
1030 PageDesc *p;
1031 TranslationBlock *tb, *current_tb;
1032 #ifdef TARGET_HAS_PRECISE_SMC
1033 CPUState *env = cpu_single_env;
1034 #endif
1035
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
1038 if (!p)
1039 return;
1040 tb = p->first_tb;
1041 current_tb_modified = 0;
1042 current_tb = NULL;
1043 current_pc = 0; /* avoid warning */
1044 current_cs_base = 0; /* avoid warning */
1045 current_flags = 0; /* avoid warning */
1046 #ifdef TARGET_HAS_PRECISE_SMC
1047 if (tb && pc != 0) {
1048 current_tb = tb_find_pc(pc);
1049 }
1050 #endif
1051 while (tb != NULL) {
1052 n = (long)tb & 3;
1053 tb = (TranslationBlock *)((long)tb & ~3);
1054 #ifdef TARGET_HAS_PRECISE_SMC
1055 if (current_tb == tb &&
1056 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1057 /* If we are modifying the current TB, we must stop
1058 its execution. We could be more precise by checking
1059 that the modification is after the current PC, but it
1060 would require a specialized function to partially
1061 restore the CPU state */
1062
1063 current_tb_modified = 1;
1064 cpu_restore_state(current_tb, env, pc, puc);
1065 #if defined(TARGET_I386)
1066 current_flags = env->hflags;
1067 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1068 current_cs_base = (target_ulong)env->segs[R_CS].base;
1069 current_pc = current_cs_base + env->eip;
1070 #else
1071 #error unsupported CPU
1072 #endif
1073 }
1074 #endif /* TARGET_HAS_PRECISE_SMC */
1075 tb_phys_invalidate(tb, addr);
1076 tb = tb->page_next[n];
1077 }
1078 p->first_tb = NULL;
1079 #ifdef TARGET_HAS_PRECISE_SMC
1080 if (current_tb_modified) {
1081 /* we generate a block containing just the instruction
1082 modifying the memory. It will ensure that it cannot modify
1083 itself */
1084 env->current_tb = NULL;
1085 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1086 cpu_resume_from_signal(env, puc);
1087 }
1088 #endif
1089 }
1090 #endif
1091
1092 /* add the tb in the target page and protect it if necessary */
1093 static inline void tb_alloc_page(TranslationBlock *tb,
1094 unsigned int n, target_ulong page_addr)
1095 {
1096 PageDesc *p;
1097 TranslationBlock *last_first_tb;
1098
1099 tb->page_addr[n] = page_addr;
1100 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1101 tb->page_next[n] = p->first_tb;
1102 last_first_tb = p->first_tb;
1103 p->first_tb = (TranslationBlock *)((long)tb | n);
1104 invalidate_page_bitmap(p);
1105
1106 #if defined(TARGET_HAS_SMC) || 1
1107
1108 #if defined(CONFIG_USER_ONLY)
1109 if (p->flags & PAGE_WRITE) {
1110 target_ulong addr;
1111 PageDesc *p2;
1112 int prot;
1113
1114 /* force the host page as non writable (writes will have a
1115 page fault + mprotect overhead) */
1116 page_addr &= qemu_host_page_mask;
1117 prot = 0;
1118 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1119 addr += TARGET_PAGE_SIZE) {
1120
1121 p2 = page_find (addr >> TARGET_PAGE_BITS);
1122 if (!p2)
1123 continue;
1124 prot |= p2->flags;
1125 p2->flags &= ~PAGE_WRITE;
1126 page_get_flags(addr);
1127 }
1128 mprotect(g2h(page_addr), qemu_host_page_size,
1129 (prot & PAGE_BITS) & ~PAGE_WRITE);
1130 #ifdef DEBUG_TB_INVALIDATE
1131 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1132 page_addr);
1133 #endif
1134 }
1135 #else
1136 /* if some code is already present, then the pages are already
1137 protected. So we handle the case where only the first TB is
1138 allocated in a physical page */
1139 if (!last_first_tb) {
1140 tlb_protect_code(page_addr);
1141 }
1142 #endif
1143
1144 #endif /* TARGET_HAS_SMC */
1145 }
1146
1147 /* Allocate a new translation block. Flush the translation buffer if
1148 too many translation blocks or too much generated code. */
1149 TranslationBlock *tb_alloc(target_ulong pc)
1150 {
1151 TranslationBlock *tb;
1152
1153 if (nb_tbs >= code_gen_max_blocks ||
1154 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1155 return NULL;
1156 tb = &tbs[nb_tbs++];
1157 tb->pc = pc;
1158 tb->cflags = 0;
1159 return tb;
1160 }
1161
1162 void tb_free(TranslationBlock *tb)
1163 {
1164 /* In practice this is mostly used for single use temporary TB
1165 Ignore the hard cases and just back up if this TB happens to
1166 be the last one generated. */
1167 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1168 code_gen_ptr = tb->tc_ptr;
1169 nb_tbs--;
1170 }
1171 }
1172
1173 /* add a new TB and link it to the physical page tables. phys_page2 is
1174 (-1) to indicate that only one page contains the TB. */
1175 void tb_link_phys(TranslationBlock *tb,
1176 target_ulong phys_pc, target_ulong phys_page2)
1177 {
1178 unsigned int h;
1179 TranslationBlock **ptb;
1180
1181 /* Grab the mmap lock to stop another thread invalidating this TB
1182 before we are done. */
1183 mmap_lock();
1184 /* add in the physical hash table */
1185 h = tb_phys_hash_func(phys_pc);
1186 ptb = &tb_phys_hash[h];
1187 tb->phys_hash_next = *ptb;
1188 *ptb = tb;
1189
1190 /* add in the page list */
1191 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1192 if (phys_page2 != -1)
1193 tb_alloc_page(tb, 1, phys_page2);
1194 else
1195 tb->page_addr[1] = -1;
1196
1197 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1198 tb->jmp_next[0] = NULL;
1199 tb->jmp_next[1] = NULL;
1200
1201 /* init original jump addresses */
1202 if (tb->tb_next_offset[0] != 0xffff)
1203 tb_reset_jump(tb, 0);
1204 if (tb->tb_next_offset[1] != 0xffff)
1205 tb_reset_jump(tb, 1);
1206
1207 #ifdef DEBUG_TB_CHECK
1208 tb_page_check();
1209 #endif
1210 mmap_unlock();
1211 }
1212
1213 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1214 tb[1].tc_ptr. Return NULL if not found */
1215 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1216 {
1217 int m_min, m_max, m;
1218 unsigned long v;
1219 TranslationBlock *tb;
1220
1221 if (nb_tbs <= 0)
1222 return NULL;
1223 if (tc_ptr < (unsigned long)code_gen_buffer ||
1224 tc_ptr >= (unsigned long)code_gen_ptr)
1225 return NULL;
1226 /* binary search (cf Knuth) */
1227 m_min = 0;
1228 m_max = nb_tbs - 1;
1229 while (m_min <= m_max) {
1230 m = (m_min + m_max) >> 1;
1231 tb = &tbs[m];
1232 v = (unsigned long)tb->tc_ptr;
1233 if (v == tc_ptr)
1234 return tb;
1235 else if (tc_ptr < v) {
1236 m_max = m - 1;
1237 } else {
1238 m_min = m + 1;
1239 }
1240 }
1241 return &tbs[m_max];
1242 }
1243
1244 static void tb_reset_jump_recursive(TranslationBlock *tb);
1245
1246 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1247 {
1248 TranslationBlock *tb1, *tb_next, **ptb;
1249 unsigned int n1;
1250
1251 tb1 = tb->jmp_next[n];
1252 if (tb1 != NULL) {
1253 /* find head of list */
1254 for(;;) {
1255 n1 = (long)tb1 & 3;
1256 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1257 if (n1 == 2)
1258 break;
1259 tb1 = tb1->jmp_next[n1];
1260 }
1261 /* we are now sure now that tb jumps to tb1 */
1262 tb_next = tb1;
1263
1264 /* remove tb from the jmp_first list */
1265 ptb = &tb_next->jmp_first;
1266 for(;;) {
1267 tb1 = *ptb;
1268 n1 = (long)tb1 & 3;
1269 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1270 if (n1 == n && tb1 == tb)
1271 break;
1272 ptb = &tb1->jmp_next[n1];
1273 }
1274 *ptb = tb->jmp_next[n];
1275 tb->jmp_next[n] = NULL;
1276
1277 /* suppress the jump to next tb in generated code */
1278 tb_reset_jump(tb, n);
1279
1280 /* suppress jumps in the tb on which we could have jumped */
1281 tb_reset_jump_recursive(tb_next);
1282 }
1283 }
1284
1285 static void tb_reset_jump_recursive(TranslationBlock *tb)
1286 {
1287 tb_reset_jump_recursive2(tb, 0);
1288 tb_reset_jump_recursive2(tb, 1);
1289 }
1290
1291 #if defined(TARGET_HAS_ICE)
1292 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1293 {
1294 target_phys_addr_t addr;
1295 target_ulong pd;
1296 ram_addr_t ram_addr;
1297 PhysPageDesc *p;
1298
1299 addr = cpu_get_phys_page_debug(env, pc);
1300 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1301 if (!p) {
1302 pd = IO_MEM_UNASSIGNED;
1303 } else {
1304 pd = p->phys_offset;
1305 }
1306 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1307 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1308 }
1309 #endif
1310
1311 /* Add a watchpoint. */
1312 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
1313 {
1314 int i;
1315
1316 for (i = 0; i < env->nb_watchpoints; i++) {
1317 if (addr == env->watchpoint[i].vaddr)
1318 return 0;
1319 }
1320 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1321 return -1;
1322
1323 i = env->nb_watchpoints++;
1324 env->watchpoint[i].vaddr = addr;
1325 env->watchpoint[i].type = type;
1326 tlb_flush_page(env, addr);
1327 /* FIXME: This flush is needed because of the hack to make memory ops
1328 terminate the TB. It can be removed once the proper IO trap and
1329 re-execute bits are in. */
1330 tb_flush(env);
1331 return i;
1332 }
1333
1334 /* Remove a watchpoint. */
1335 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1336 {
1337 int i;
1338
1339 for (i = 0; i < env->nb_watchpoints; i++) {
1340 if (addr == env->watchpoint[i].vaddr) {
1341 env->nb_watchpoints--;
1342 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1343 tlb_flush_page(env, addr);
1344 return 0;
1345 }
1346 }
1347 return -1;
1348 }
1349
1350 /* Remove all watchpoints. */
1351 void cpu_watchpoint_remove_all(CPUState *env) {
1352 int i;
1353
1354 for (i = 0; i < env->nb_watchpoints; i++) {
1355 tlb_flush_page(env, env->watchpoint[i].vaddr);
1356 }
1357 env->nb_watchpoints = 0;
1358 }
1359
1360 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1361 breakpoint is reached */
1362 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1363 {
1364 #if defined(TARGET_HAS_ICE)
1365 int i;
1366
1367 for(i = 0; i < env->nb_breakpoints; i++) {
1368 if (env->breakpoints[i] == pc)
1369 return 0;
1370 }
1371
1372 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1373 return -1;
1374 env->breakpoints[env->nb_breakpoints++] = pc;
1375
1376 breakpoint_invalidate(env, pc);
1377 return 0;
1378 #else
1379 return -1;
1380 #endif
1381 }
1382
1383 /* remove all breakpoints */
1384 void cpu_breakpoint_remove_all(CPUState *env) {
1385 #if defined(TARGET_HAS_ICE)
1386 int i;
1387 for(i = 0; i < env->nb_breakpoints; i++) {
1388 breakpoint_invalidate(env, env->breakpoints[i]);
1389 }
1390 env->nb_breakpoints = 0;
1391 #endif
1392 }
1393
1394 /* remove a breakpoint */
1395 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1396 {
1397 #if defined(TARGET_HAS_ICE)
1398 int i;
1399 for(i = 0; i < env->nb_breakpoints; i++) {
1400 if (env->breakpoints[i] == pc)
1401 goto found;
1402 }
1403 return -1;
1404 found:
1405 env->nb_breakpoints--;
1406 if (i < env->nb_breakpoints)
1407 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1408
1409 breakpoint_invalidate(env, pc);
1410 return 0;
1411 #else
1412 return -1;
1413 #endif
1414 }
1415
1416 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1417 CPU loop after each instruction */
1418 void cpu_single_step(CPUState *env, int enabled)
1419 {
1420 #if defined(TARGET_HAS_ICE)
1421 if (env->singlestep_enabled != enabled) {
1422 env->singlestep_enabled = enabled;
1423 /* must flush all the translated code to avoid inconsistancies */
1424 /* XXX: only flush what is necessary */
1425 tb_flush(env);
1426 }
1427 #endif
1428 }
1429
1430 /* enable or disable low levels log */
1431 void cpu_set_log(int log_flags)
1432 {
1433 loglevel = log_flags;
1434 if (loglevel && !logfile) {
1435 logfile = fopen(logfilename, log_append ? "a" : "w");
1436 if (!logfile) {
1437 perror(logfilename);
1438 _exit(1);
1439 }
1440 #if !defined(CONFIG_SOFTMMU)
1441 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1442 {
1443 static char logfile_buf[4096];
1444 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1445 }
1446 #else
1447 setvbuf(logfile, NULL, _IOLBF, 0);
1448 #endif
1449 log_append = 1;
1450 }
1451 if (!loglevel && logfile) {
1452 fclose(logfile);
1453 logfile = NULL;
1454 }
1455 }
1456
1457 void cpu_set_log_filename(const char *filename)
1458 {
1459 logfilename = strdup(filename);
1460 if (logfile) {
1461 fclose(logfile);
1462 logfile = NULL;
1463 }
1464 cpu_set_log(loglevel);
1465 }
1466
1467 /* mask must never be zero, except for A20 change call */
1468 void cpu_interrupt(CPUState *env, int mask)
1469 {
1470 #if !defined(USE_NPTL)
1471 TranslationBlock *tb;
1472 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1473 #endif
1474 int old_mask;
1475
1476 old_mask = env->interrupt_request;
1477 /* FIXME: This is probably not threadsafe. A different thread could
1478 be in the middle of a read-modify-write operation. */
1479 env->interrupt_request |= mask;
1480 #if defined(USE_NPTL)
1481 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1482 problem and hope the cpu will stop of its own accord. For userspace
1483 emulation this often isn't actually as bad as it sounds. Often
1484 signals are used primarily to interrupt blocking syscalls. */
1485 #else
1486 if (use_icount) {
1487 env->icount_decr.u16.high = 0xffff;
1488 #ifndef CONFIG_USER_ONLY
1489 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1490 an async event happened and we need to process it. */
1491 if (!can_do_io(env)
1492 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1493 cpu_abort(env, "Raised interrupt while not in I/O function");
1494 }
1495 #endif
1496 } else {
1497 tb = env->current_tb;
1498 /* if the cpu is currently executing code, we must unlink it and
1499 all the potentially executing TB */
1500 if (tb && !testandset(&interrupt_lock)) {
1501 env->current_tb = NULL;
1502 tb_reset_jump_recursive(tb);
1503 resetlock(&interrupt_lock);
1504 }
1505 }
1506 #endif
1507 }
1508
1509 void cpu_reset_interrupt(CPUState *env, int mask)
1510 {
1511 env->interrupt_request &= ~mask;
1512 }
1513
1514 CPULogItem cpu_log_items[] = {
1515 { CPU_LOG_TB_OUT_ASM, "out_asm",
1516 "show generated host assembly code for each compiled TB" },
1517 { CPU_LOG_TB_IN_ASM, "in_asm",
1518 "show target assembly code for each compiled TB" },
1519 { CPU_LOG_TB_OP, "op",
1520 "show micro ops for each compiled TB" },
1521 { CPU_LOG_TB_OP_OPT, "op_opt",
1522 "show micro ops "
1523 #ifdef TARGET_I386
1524 "before eflags optimization and "
1525 #endif
1526 "after liveness analysis" },
1527 { CPU_LOG_INT, "int",
1528 "show interrupts/exceptions in short format" },
1529 { CPU_LOG_EXEC, "exec",
1530 "show trace before each executed TB (lots of logs)" },
1531 { CPU_LOG_TB_CPU, "cpu",
1532 "show CPU state before block translation" },
1533 #ifdef TARGET_I386
1534 { CPU_LOG_PCALL, "pcall",
1535 "show protected mode far calls/returns/exceptions" },
1536 #endif
1537 #ifdef DEBUG_IOPORT
1538 { CPU_LOG_IOPORT, "ioport",
1539 "show all i/o ports accesses" },
1540 #endif
1541 { 0, NULL, NULL },
1542 };
1543
1544 static int cmp1(const char *s1, int n, const char *s2)
1545 {
1546 if (strlen(s2) != n)
1547 return 0;
1548 return memcmp(s1, s2, n) == 0;
1549 }
1550
1551 /* takes a comma separated list of log masks. Return 0 if error. */
1552 int cpu_str_to_log_mask(const char *str)
1553 {
1554 CPULogItem *item;
1555 int mask;
1556 const char *p, *p1;
1557
1558 p = str;
1559 mask = 0;
1560 for(;;) {
1561 p1 = strchr(p, ',');
1562 if (!p1)
1563 p1 = p + strlen(p);
1564 if(cmp1(p,p1-p,"all")) {
1565 for(item = cpu_log_items; item->mask != 0; item++) {
1566 mask |= item->mask;
1567 }
1568 } else {
1569 for(item = cpu_log_items; item->mask != 0; item++) {
1570 if (cmp1(p, p1 - p, item->name))
1571 goto found;
1572 }
1573 return 0;
1574 }
1575 found:
1576 mask |= item->mask;
1577 if (*p1 != ',')
1578 break;
1579 p = p1 + 1;
1580 }
1581 return mask;
1582 }
1583
1584 void cpu_abort(CPUState *env, const char *fmt, ...)
1585 {
1586 va_list ap;
1587 va_list ap2;
1588
1589 va_start(ap, fmt);
1590 va_copy(ap2, ap);
1591 fprintf(stderr, "qemu: fatal: ");
1592 vfprintf(stderr, fmt, ap);
1593 fprintf(stderr, "\n");
1594 #ifdef TARGET_I386
1595 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1596 #else
1597 cpu_dump_state(env, stderr, fprintf, 0);
1598 #endif
1599 if (logfile) {
1600 fprintf(logfile, "qemu: fatal: ");
1601 vfprintf(logfile, fmt, ap2);
1602 fprintf(logfile, "\n");
1603 #ifdef TARGET_I386
1604 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1605 #else
1606 cpu_dump_state(env, logfile, fprintf, 0);
1607 #endif
1608 fflush(logfile);
1609 fclose(logfile);
1610 }
1611 va_end(ap2);
1612 va_end(ap);
1613 abort();
1614 }
1615
1616 CPUState *cpu_copy(CPUState *env)
1617 {
1618 CPUState *new_env = cpu_init(env->cpu_model_str);
1619 /* preserve chaining and index */
1620 CPUState *next_cpu = new_env->next_cpu;
1621 int cpu_index = new_env->cpu_index;
1622 memcpy(new_env, env, sizeof(CPUState));
1623 new_env->next_cpu = next_cpu;
1624 new_env->cpu_index = cpu_index;
1625 return new_env;
1626 }
1627
1628 #if !defined(CONFIG_USER_ONLY)
1629
1630 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1631 {
1632 unsigned int i;
1633
1634 /* Discard jump cache entries for any tb which might potentially
1635 overlap the flushed page. */
1636 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1637 memset (&env->tb_jmp_cache[i], 0,
1638 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1639
1640 i = tb_jmp_cache_hash_page(addr);
1641 memset (&env->tb_jmp_cache[i], 0,
1642 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1643 }
1644
1645 /* NOTE: if flush_global is true, also flush global entries (not
1646 implemented yet) */
1647 void tlb_flush(CPUState *env, int flush_global)
1648 {
1649 int i;
1650
1651 #if defined(DEBUG_TLB)
1652 printf("tlb_flush:\n");
1653 #endif
1654 /* must reset current TB so that interrupts cannot modify the
1655 links while we are modifying them */
1656 env->current_tb = NULL;
1657
1658 for(i = 0; i < CPU_TLB_SIZE; i++) {
1659 env->tlb_table[0][i].addr_read = -1;
1660 env->tlb_table[0][i].addr_write = -1;
1661 env->tlb_table[0][i].addr_code = -1;
1662 env->tlb_table[1][i].addr_read = -1;
1663 env->tlb_table[1][i].addr_write = -1;
1664 env->tlb_table[1][i].addr_code = -1;
1665 #if (NB_MMU_MODES >= 3)
1666 env->tlb_table[2][i].addr_read = -1;
1667 env->tlb_table[2][i].addr_write = -1;
1668 env->tlb_table[2][i].addr_code = -1;
1669 #if (NB_MMU_MODES == 4)
1670 env->tlb_table[3][i].addr_read = -1;
1671 env->tlb_table[3][i].addr_write = -1;
1672 env->tlb_table[3][i].addr_code = -1;
1673 #endif
1674 #endif
1675 }
1676
1677 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1678
1679 #ifdef USE_KQEMU
1680 if (env->kqemu_enabled) {
1681 kqemu_flush(env, flush_global);
1682 }
1683 #endif
1684 tlb_flush_count++;
1685 }
1686
1687 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1688 {
1689 if (addr == (tlb_entry->addr_read &
1690 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1691 addr == (tlb_entry->addr_write &
1692 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1693 addr == (tlb_entry->addr_code &
1694 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1695 tlb_entry->addr_read = -1;
1696 tlb_entry->addr_write = -1;
1697 tlb_entry->addr_code = -1;
1698 }
1699 }
1700
1701 void tlb_flush_page(CPUState *env, target_ulong addr)
1702 {
1703 int i;
1704
1705 #if defined(DEBUG_TLB)
1706 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1707 #endif
1708 /* must reset current TB so that interrupts cannot modify the
1709 links while we are modifying them */
1710 env->current_tb = NULL;
1711
1712 addr &= TARGET_PAGE_MASK;
1713 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1714 tlb_flush_entry(&env->tlb_table[0][i], addr);
1715 tlb_flush_entry(&env->tlb_table[1][i], addr);
1716 #if (NB_MMU_MODES >= 3)
1717 tlb_flush_entry(&env->tlb_table[2][i], addr);
1718 #if (NB_MMU_MODES == 4)
1719 tlb_flush_entry(&env->tlb_table[3][i], addr);
1720 #endif
1721 #endif
1722
1723 tlb_flush_jmp_cache(env, addr);
1724
1725 #ifdef USE_KQEMU
1726 if (env->kqemu_enabled) {
1727 kqemu_flush_page(env, addr);
1728 }
1729 #endif
1730 }
1731
1732 /* update the TLBs so that writes to code in the virtual page 'addr'
1733 can be detected */
1734 static void tlb_protect_code(ram_addr_t ram_addr)
1735 {
1736 cpu_physical_memory_reset_dirty(ram_addr,
1737 ram_addr + TARGET_PAGE_SIZE,
1738 CODE_DIRTY_FLAG);
1739 }
1740
1741 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1742 tested for self modifying code */
1743 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1744 target_ulong vaddr)
1745 {
1746 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1747 }
1748
1749 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1750 unsigned long start, unsigned long length)
1751 {
1752 unsigned long addr;
1753 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1754 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1755 if ((addr - start) < length) {
1756 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1757 }
1758 }
1759 }
1760
1761 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1762 int dirty_flags)
1763 {
1764 CPUState *env;
1765 unsigned long length, start1;
1766 int i, mask, len;
1767 uint8_t *p;
1768
1769 start &= TARGET_PAGE_MASK;
1770 end = TARGET_PAGE_ALIGN(end);
1771
1772 length = end - start;
1773 if (length == 0)
1774 return;
1775 len = length >> TARGET_PAGE_BITS;
1776 #ifdef USE_KQEMU
1777 /* XXX: should not depend on cpu context */
1778 env = first_cpu;
1779 if (env->kqemu_enabled) {
1780 ram_addr_t addr;
1781 addr = start;
1782 for(i = 0; i < len; i++) {
1783 kqemu_set_notdirty(env, addr);
1784 addr += TARGET_PAGE_SIZE;
1785 }
1786 }
1787 #endif
1788 mask = ~dirty_flags;
1789 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1790 for(i = 0; i < len; i++)
1791 p[i] &= mask;
1792
1793 /* we modify the TLB cache so that the dirty bit will be set again
1794 when accessing the range */
1795 start1 = start + (unsigned long)phys_ram_base;
1796 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1797 for(i = 0; i < CPU_TLB_SIZE; i++)
1798 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1799 for(i = 0; i < CPU_TLB_SIZE; i++)
1800 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1801 #if (NB_MMU_MODES >= 3)
1802 for(i = 0; i < CPU_TLB_SIZE; i++)
1803 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1804 #if (NB_MMU_MODES == 4)
1805 for(i = 0; i < CPU_TLB_SIZE; i++)
1806 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1807 #endif
1808 #endif
1809 }
1810 }
1811
1812 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1813 {
1814 ram_addr_t ram_addr;
1815
1816 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1817 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1818 tlb_entry->addend - (unsigned long)phys_ram_base;
1819 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1820 tlb_entry->addr_write |= TLB_NOTDIRTY;
1821 }
1822 }
1823 }
1824
1825 /* update the TLB according to the current state of the dirty bits */
1826 void cpu_tlb_update_dirty(CPUState *env)
1827 {
1828 int i;
1829 for(i = 0; i < CPU_TLB_SIZE; i++)
1830 tlb_update_dirty(&env->tlb_table[0][i]);
1831 for(i = 0; i < CPU_TLB_SIZE; i++)
1832 tlb_update_dirty(&env->tlb_table[1][i]);
1833 #if (NB_MMU_MODES >= 3)
1834 for(i = 0; i < CPU_TLB_SIZE; i++)
1835 tlb_update_dirty(&env->tlb_table[2][i]);
1836 #if (NB_MMU_MODES == 4)
1837 for(i = 0; i < CPU_TLB_SIZE; i++)
1838 tlb_update_dirty(&env->tlb_table[3][i]);
1839 #endif
1840 #endif
1841 }
1842
1843 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1844 {
1845 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1846 tlb_entry->addr_write = vaddr;
1847 }
1848
1849 /* update the TLB corresponding to virtual page vaddr
1850 so that it is no longer dirty */
1851 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1852 {
1853 int i;
1854
1855 vaddr &= TARGET_PAGE_MASK;
1856 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1857 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1858 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1859 #if (NB_MMU_MODES >= 3)
1860 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1861 #if (NB_MMU_MODES == 4)
1862 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1863 #endif
1864 #endif
1865 }
1866
1867 /* add a new TLB entry. At most one entry for a given virtual address
1868 is permitted. Return 0 if OK or 2 if the page could not be mapped
1869 (can only happen in non SOFTMMU mode for I/O pages or pages
1870 conflicting with the host address space). */
1871 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1872 target_phys_addr_t paddr, int prot,
1873 int mmu_idx, int is_softmmu)
1874 {
1875 PhysPageDesc *p;
1876 unsigned long pd;
1877 unsigned int index;
1878 target_ulong address;
1879 target_ulong code_address;
1880 target_phys_addr_t addend;
1881 int ret;
1882 CPUTLBEntry *te;
1883 int i;
1884 target_phys_addr_t iotlb;
1885
1886 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1887 if (!p) {
1888 pd = IO_MEM_UNASSIGNED;
1889 } else {
1890 pd = p->phys_offset;
1891 }
1892 #if defined(DEBUG_TLB)
1893 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1894 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1895 #endif
1896
1897 ret = 0;
1898 address = vaddr;
1899 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1900 /* IO memory case (romd handled later) */
1901 address |= TLB_MMIO;
1902 }
1903 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1904 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1905 /* Normal RAM. */
1906 iotlb = pd & TARGET_PAGE_MASK;
1907 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1908 iotlb |= IO_MEM_NOTDIRTY;
1909 else
1910 iotlb |= IO_MEM_ROM;
1911 } else {
1912 /* IO handlers are currently passed a phsical address.
1913 It would be nice to pass an offset from the base address
1914 of that region. This would avoid having to special case RAM,
1915 and avoid full address decoding in every device.
1916 We can't use the high bits of pd for this because
1917 IO_MEM_ROMD uses these as a ram address. */
1918 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1919 }
1920
1921 code_address = address;
1922 /* Make accesses to pages with watchpoints go via the
1923 watchpoint trap routines. */
1924 for (i = 0; i < env->nb_watchpoints; i++) {
1925 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1926 iotlb = io_mem_watch + paddr;
1927 /* TODO: The memory case can be optimized by not trapping
1928 reads of pages with a write breakpoint. */
1929 address |= TLB_MMIO;
1930 }
1931 }
1932
1933 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1934 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1935 te = &env->tlb_table[mmu_idx][index];
1936 te->addend = addend - vaddr;
1937 if (prot & PAGE_READ) {
1938 te->addr_read = address;
1939 } else {
1940 te->addr_read = -1;
1941 }
1942
1943 if (prot & PAGE_EXEC) {
1944 te->addr_code = code_address;
1945 } else {
1946 te->addr_code = -1;
1947 }
1948 if (prot & PAGE_WRITE) {
1949 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1950 (pd & IO_MEM_ROMD)) {
1951 /* Write access calls the I/O callback. */
1952 te->addr_write = address | TLB_MMIO;
1953 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1954 !cpu_physical_memory_is_dirty(pd)) {
1955 te->addr_write = address | TLB_NOTDIRTY;
1956 } else {
1957 te->addr_write = address;
1958 }
1959 } else {
1960 te->addr_write = -1;
1961 }
1962 return ret;
1963 }
1964
1965 #else
1966
1967 void tlb_flush(CPUState *env, int flush_global)
1968 {
1969 }
1970
1971 void tlb_flush_page(CPUState *env, target_ulong addr)
1972 {
1973 }
1974
1975 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1976 target_phys_addr_t paddr, int prot,
1977 int mmu_idx, int is_softmmu)
1978 {
1979 return 0;
1980 }
1981
1982 /* dump memory mappings */
1983 void page_dump(FILE *f)
1984 {
1985 unsigned long start, end;
1986 int i, j, prot, prot1;
1987 PageDesc *p;
1988
1989 fprintf(f, "%-8s %-8s %-8s %s\n",
1990 "start", "end", "size", "prot");
1991 start = -1;
1992 end = -1;
1993 prot = 0;
1994 for(i = 0; i <= L1_SIZE; i++) {
1995 if (i < L1_SIZE)
1996 p = l1_map[i];
1997 else
1998 p = NULL;
1999 for(j = 0;j < L2_SIZE; j++) {
2000 if (!p)
2001 prot1 = 0;
2002 else
2003 prot1 = p[j].flags;
2004 if (prot1 != prot) {
2005 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2006 if (start != -1) {
2007 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2008 start, end, end - start,
2009 prot & PAGE_READ ? 'r' : '-',
2010 prot & PAGE_WRITE ? 'w' : '-',
2011 prot & PAGE_EXEC ? 'x' : '-');
2012 }
2013 if (prot1 != 0)
2014 start = end;
2015 else
2016 start = -1;
2017 prot = prot1;
2018 }
2019 if (!p)
2020 break;
2021 }
2022 }
2023 }
2024
2025 int page_get_flags(target_ulong address)
2026 {
2027 PageDesc *p;
2028
2029 p = page_find(address >> TARGET_PAGE_BITS);
2030 if (!p)
2031 return 0;
2032 return p->flags;
2033 }
2034
2035 /* modify the flags of a page and invalidate the code if
2036 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2037 depending on PAGE_WRITE */
2038 void page_set_flags(target_ulong start, target_ulong end, int flags)
2039 {
2040 PageDesc *p;
2041 target_ulong addr;
2042
2043 /* mmap_lock should already be held. */
2044 start = start & TARGET_PAGE_MASK;
2045 end = TARGET_PAGE_ALIGN(end);
2046 if (flags & PAGE_WRITE)
2047 flags |= PAGE_WRITE_ORG;
2048 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2049 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2050 /* We may be called for host regions that are outside guest
2051 address space. */
2052 if (!p)
2053 return;
2054 /* if the write protection is set, then we invalidate the code
2055 inside */
2056 if (!(p->flags & PAGE_WRITE) &&
2057 (flags & PAGE_WRITE) &&
2058 p->first_tb) {
2059 tb_invalidate_phys_page(addr, 0, NULL);
2060 }
2061 p->flags = flags;
2062 }
2063 }
2064
2065 int page_check_range(target_ulong start, target_ulong len, int flags)
2066 {
2067 PageDesc *p;
2068 target_ulong end;
2069 target_ulong addr;
2070
2071 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2072 start = start & TARGET_PAGE_MASK;
2073
2074 if( end < start )
2075 /* we've wrapped around */
2076 return -1;
2077 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2078 p = page_find(addr >> TARGET_PAGE_BITS);
2079 if( !p )
2080 return -1;
2081 if( !(p->flags & PAGE_VALID) )
2082 return -1;
2083
2084 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2085 return -1;
2086 if (flags & PAGE_WRITE) {
2087 if (!(p->flags & PAGE_WRITE_ORG))
2088 return -1;
2089 /* unprotect the page if it was put read-only because it
2090 contains translated code */
2091 if (!(p->flags & PAGE_WRITE)) {
2092 if (!page_unprotect(addr, 0, NULL))
2093 return -1;
2094 }
2095 return 0;
2096 }
2097 }
2098 return 0;
2099 }
2100
2101 /* called from signal handler: invalidate the code and unprotect the
2102 page. Return TRUE if the fault was succesfully handled. */
2103 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2104 {
2105 unsigned int page_index, prot, pindex;
2106 PageDesc *p, *p1;
2107 target_ulong host_start, host_end, addr;
2108
2109 /* Technically this isn't safe inside a signal handler. However we
2110 know this only ever happens in a synchronous SEGV handler, so in
2111 practice it seems to be ok. */
2112 mmap_lock();
2113
2114 host_start = address & qemu_host_page_mask;
2115 page_index = host_start >> TARGET_PAGE_BITS;
2116 p1 = page_find(page_index);
2117 if (!p1) {
2118 mmap_unlock();
2119 return 0;
2120 }
2121 host_end = host_start + qemu_host_page_size;
2122 p = p1;
2123 prot = 0;
2124 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2125 prot |= p->flags;
2126 p++;
2127 }
2128 /* if the page was really writable, then we change its
2129 protection back to writable */
2130 if (prot & PAGE_WRITE_ORG) {
2131 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2132 if (!(p1[pindex].flags & PAGE_WRITE)) {
2133 mprotect((void *)g2h(host_start), qemu_host_page_size,
2134 (prot & PAGE_BITS) | PAGE_WRITE);
2135 p1[pindex].flags |= PAGE_WRITE;
2136 /* and since the content will be modified, we must invalidate
2137 the corresponding translated code. */
2138 tb_invalidate_phys_page(address, pc, puc);
2139 #ifdef DEBUG_TB_CHECK
2140 tb_invalidate_check(address);
2141 #endif
2142 mmap_unlock();
2143 return 1;
2144 }
2145 }
2146 mmap_unlock();
2147 return 0;
2148 }
2149
2150 static inline void tlb_set_dirty(CPUState *env,
2151 unsigned long addr, target_ulong vaddr)
2152 {
2153 }
2154 #endif /* defined(CONFIG_USER_ONLY) */
2155
2156 #if !defined(CONFIG_USER_ONLY)
2157 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2158 ram_addr_t memory);
2159 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2160 ram_addr_t orig_memory);
2161 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2162 need_subpage) \
2163 do { \
2164 if (addr > start_addr) \
2165 start_addr2 = 0; \
2166 else { \
2167 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2168 if (start_addr2 > 0) \
2169 need_subpage = 1; \
2170 } \
2171 \
2172 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2173 end_addr2 = TARGET_PAGE_SIZE - 1; \
2174 else { \
2175 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2176 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2177 need_subpage = 1; \
2178 } \
2179 } while (0)
2180
2181 /* register physical memory. 'size' must be a multiple of the target
2182 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2183 io memory page */
2184 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2185 ram_addr_t size,
2186 ram_addr_t phys_offset)
2187 {
2188 target_phys_addr_t addr, end_addr;
2189 PhysPageDesc *p;
2190 CPUState *env;
2191 ram_addr_t orig_size = size;
2192 void *subpage;
2193
2194 #ifdef USE_KQEMU
2195 /* XXX: should not depend on cpu context */
2196 env = first_cpu;
2197 if (env->kqemu_enabled) {
2198 kqemu_set_phys_mem(start_addr, size, phys_offset);
2199 }
2200 #endif
2201 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2202 end_addr = start_addr + (target_phys_addr_t)size;
2203 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2204 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2205 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2206 ram_addr_t orig_memory = p->phys_offset;
2207 target_phys_addr_t start_addr2, end_addr2;
2208 int need_subpage = 0;
2209
2210 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2211 need_subpage);
2212 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2213 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2214 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2215 &p->phys_offset, orig_memory);
2216 } else {
2217 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2218 >> IO_MEM_SHIFT];
2219 }
2220 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2221 } else {
2222 p->phys_offset = phys_offset;
2223 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2224 (phys_offset & IO_MEM_ROMD))
2225 phys_offset += TARGET_PAGE_SIZE;
2226 }
2227 } else {
2228 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2229 p->phys_offset = phys_offset;
2230 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2231 (phys_offset & IO_MEM_ROMD))
2232 phys_offset += TARGET_PAGE_SIZE;
2233 else {
2234 target_phys_addr_t start_addr2, end_addr2;
2235 int need_subpage = 0;
2236
2237 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2238 end_addr2, need_subpage);
2239
2240 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2241 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2242 &p->phys_offset, IO_MEM_UNASSIGNED);
2243 subpage_register(subpage, start_addr2, end_addr2,
2244 phys_offset);
2245 }
2246 }
2247 }
2248 }
2249
2250 /* since each CPU stores ram addresses in its TLB cache, we must
2251 reset the modified entries */
2252 /* XXX: slow ! */
2253 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2254 tlb_flush(env, 1);
2255 }
2256 }
2257
2258 /* XXX: temporary until new memory mapping API */
2259 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2260 {
2261 PhysPageDesc *p;
2262
2263 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2264 if (!p)
2265 return IO_MEM_UNASSIGNED;
2266 return p->phys_offset;
2267 }
2268
2269 /* XXX: better than nothing */
2270 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2271 {
2272 ram_addr_t addr;
2273 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2274 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2275 (uint64_t)size, (uint64_t)phys_ram_size);
2276 abort();
2277 }
2278 addr = phys_ram_alloc_offset;
2279 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2280 return addr;
2281 }
2282
2283 void qemu_ram_free(ram_addr_t addr)
2284 {
2285 }
2286
2287 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2288 {
2289 #ifdef DEBUG_UNASSIGNED
2290 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2291 #endif
2292 #ifdef TARGET_SPARC
2293 do_unassigned_access(addr, 0, 0, 0);
2294 #elif defined(TARGET_CRIS)
2295 do_unassigned_access(addr, 0, 0, 0);
2296 #endif
2297 return 0;
2298 }
2299
2300 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2301 {
2302 #ifdef DEBUG_UNASSIGNED
2303 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2304 #endif
2305 #ifdef TARGET_SPARC
2306 do_unassigned_access(addr, 1, 0, 0);
2307 #elif defined(TARGET_CRIS)
2308 do_unassigned_access(addr, 1, 0, 0);
2309 #endif
2310 }
2311
2312 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2313 unassigned_mem_readb,
2314 unassigned_mem_readb,
2315 unassigned_mem_readb,
2316 };
2317
2318 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2319 unassigned_mem_writeb,
2320 unassigned_mem_writeb,
2321 unassigned_mem_writeb,
2322 };
2323
2324 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2325 uint32_t val)
2326 {
2327 int dirty_flags;
2328 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2329 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2330 #if !defined(CONFIG_USER_ONLY)
2331 tb_invalidate_phys_page_fast(ram_addr, 1);
2332 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2333 #endif
2334 }
2335 stb_p(phys_ram_base + ram_addr, val);
2336 #ifdef USE_KQEMU
2337 if (cpu_single_env->kqemu_enabled &&
2338 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2339 kqemu_modify_page(cpu_single_env, ram_addr);
2340 #endif
2341 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2342 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2343 /* we remove the notdirty callback only if the code has been
2344 flushed */
2345 if (dirty_flags == 0xff)
2346 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2347 }
2348
2349 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2350 uint32_t val)
2351 {
2352 int dirty_flags;
2353 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2354 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2355 #if !defined(CONFIG_USER_ONLY)
2356 tb_invalidate_phys_page_fast(ram_addr, 2);
2357 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2358 #endif
2359 }
2360 stw_p(phys_ram_base + ram_addr, val);
2361 #ifdef USE_KQEMU
2362 if (cpu_single_env->kqemu_enabled &&
2363 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2364 kqemu_modify_page(cpu_single_env, ram_addr);
2365 #endif
2366 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2367 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2368 /* we remove the notdirty callback only if the code has been
2369 flushed */
2370 if (dirty_flags == 0xff)
2371 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2372 }
2373
2374 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2375 uint32_t val)
2376 {
2377 int dirty_flags;
2378 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2379 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2380 #if !defined(CONFIG_USER_ONLY)
2381 tb_invalidate_phys_page_fast(ram_addr, 4);
2382 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2383 #endif
2384 }
2385 stl_p(phys_ram_base + ram_addr, val);
2386 #ifdef USE_KQEMU
2387 if (cpu_single_env->kqemu_enabled &&
2388 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2389 kqemu_modify_page(cpu_single_env, ram_addr);
2390 #endif
2391 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2392 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2393 /* we remove the notdirty callback only if the code has been
2394 flushed */
2395 if (dirty_flags == 0xff)
2396 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2397 }
2398
2399 static CPUReadMemoryFunc *error_mem_read[3] = {
2400 NULL, /* never used */
2401 NULL, /* never used */
2402 NULL, /* never used */
2403 };
2404
2405 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2406 notdirty_mem_writeb,
2407 notdirty_mem_writew,
2408 notdirty_mem_writel,
2409 };
2410
2411 /* Generate a debug exception if a watchpoint has been hit. */
2412 static void check_watchpoint(int offset, int flags)
2413 {
2414 CPUState *env = cpu_single_env;
2415 target_ulong vaddr;
2416 int i;
2417
2418 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2419 for (i = 0; i < env->nb_watchpoints; i++) {
2420 if (vaddr == env->watchpoint[i].vaddr
2421 && (env->watchpoint[i].type & flags)) {
2422 env->watchpoint_hit = i + 1;
2423 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2424 break;
2425 }
2426 }
2427 }
2428
2429 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2430 so these check for a hit then pass through to the normal out-of-line
2431 phys routines. */
2432 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2433 {
2434 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2435 return ldub_phys(addr);
2436 }
2437
2438 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2439 {
2440 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2441 return lduw_phys(addr);
2442 }
2443
2444 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2445 {
2446 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2447 return ldl_phys(addr);
2448 }
2449
2450 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2451 uint32_t val)
2452 {
2453 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2454 stb_phys(addr, val);
2455 }
2456
2457 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2458 uint32_t val)
2459 {
2460 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2461 stw_phys(addr, val);
2462 }
2463
2464 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2465 uint32_t val)
2466 {
2467 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2468 stl_phys(addr, val);
2469 }
2470
2471 static CPUReadMemoryFunc *watch_mem_read[3] = {
2472 watch_mem_readb,
2473 watch_mem_readw,
2474 watch_mem_readl,
2475 };
2476
2477 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2478 watch_mem_writeb,
2479 watch_mem_writew,
2480 watch_mem_writel,
2481 };
2482
2483 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2484 unsigned int len)
2485 {
2486 uint32_t ret;
2487 unsigned int idx;
2488
2489 idx = SUBPAGE_IDX(addr - mmio->base);
2490 #if defined(DEBUG_SUBPAGE)
2491 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2492 mmio, len, addr, idx);
2493 #endif
2494 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2495
2496 return ret;
2497 }
2498
2499 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2500 uint32_t value, unsigned int len)
2501 {
2502 unsigned int idx;
2503
2504 idx = SUBPAGE_IDX(addr - mmio->base);
2505 #if defined(DEBUG_SUBPAGE)
2506 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2507 mmio, len, addr, idx, value);
2508 #endif
2509 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2510 }
2511
2512 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2513 {
2514 #if defined(DEBUG_SUBPAGE)
2515 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2516 #endif
2517
2518 return subpage_readlen(opaque, addr, 0);
2519 }
2520
2521 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2522 uint32_t value)
2523 {
2524 #if defined(DEBUG_SUBPAGE)
2525 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2526 #endif
2527 subpage_writelen(opaque, addr, value, 0);
2528 }
2529
2530 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2531 {
2532 #if defined(DEBUG_SUBPAGE)
2533 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2534 #endif
2535
2536 return subpage_readlen(opaque, addr, 1);
2537 }
2538
2539 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2540 uint32_t value)
2541 {
2542 #if defined(DEBUG_SUBPAGE)
2543 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2544 #endif
2545 subpage_writelen(opaque, addr, value, 1);
2546 }
2547
2548 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2549 {
2550 #if defined(DEBUG_SUBPAGE)
2551 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2552 #endif
2553
2554 return subpage_readlen(opaque, addr, 2);
2555 }
2556
2557 static void subpage_writel (void *opaque,
2558 target_phys_addr_t addr, uint32_t value)
2559 {
2560 #if defined(DEBUG_SUBPAGE)
2561 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2562 #endif
2563 subpage_writelen(opaque, addr, value, 2);
2564 }
2565
2566 static CPUReadMemoryFunc *subpage_read[] = {
2567 &subpage_readb,
2568 &subpage_readw,
2569 &subpage_readl,
2570 };
2571
2572 static CPUWriteMemoryFunc *subpage_write[] = {
2573 &subpage_writeb,
2574 &subpage_writew,
2575 &subpage_writel,
2576 };
2577
2578 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2579 ram_addr_t memory)
2580 {
2581 int idx, eidx;
2582 unsigned int i;
2583
2584 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2585 return -1;
2586 idx = SUBPAGE_IDX(start);
2587 eidx = SUBPAGE_IDX(end);
2588 #if defined(DEBUG_SUBPAGE)
2589 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2590 mmio, start, end, idx, eidx, memory);
2591 #endif
2592 memory >>= IO_MEM_SHIFT;
2593 for (; idx <= eidx; idx++) {
2594 for (i = 0; i < 4; i++) {
2595 if (io_mem_read[memory][i]) {
2596 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2597 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2598 }
2599 if (io_mem_write[memory][i]) {
2600 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2601 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2602 }
2603 }
2604 }
2605
2606 return 0;
2607 }
2608
2609 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2610 ram_addr_t orig_memory)
2611 {
2612 subpage_t *mmio;
2613 int subpage_memory;
2614
2615 mmio = qemu_mallocz(sizeof(subpage_t));
2616 if (mmio != NULL) {
2617 mmio->base = base;
2618 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2619 #if defined(DEBUG_SUBPAGE)
2620 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2621 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2622 #endif
2623 *phys = subpage_memory | IO_MEM_SUBPAGE;
2624 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2625 }
2626
2627 return mmio;
2628 }
2629
2630 static void io_mem_init(void)
2631 {
2632 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2633 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2634 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2635 io_mem_nb = 5;
2636
2637 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2638 watch_mem_write, NULL);
2639 /* alloc dirty bits array */
2640 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2641 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2642 }
2643
2644 /* mem_read and mem_write are arrays of functions containing the
2645 function to access byte (index 0), word (index 1) and dword (index
2646 2). Functions can be omitted with a NULL function pointer. The
2647 registered functions may be modified dynamically later.
2648 If io_index is non zero, the corresponding io zone is
2649 modified. If it is zero, a new io zone is allocated. The return
2650 value can be used with cpu_register_physical_memory(). (-1) is
2651 returned if error. */
2652 int cpu_register_io_memory(int io_index,
2653 CPUReadMemoryFunc **mem_read,
2654 CPUWriteMemoryFunc **mem_write,
2655 void *opaque)
2656 {
2657 int i, subwidth = 0;
2658
2659 if (io_index <= 0) {
2660 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2661 return -1;
2662 io_index = io_mem_nb++;
2663 } else {
2664 if (io_index >= IO_MEM_NB_ENTRIES)
2665 return -1;
2666 }
2667
2668 for(i = 0;i < 3; i++) {
2669 if (!mem_read[i] || !mem_write[i])
2670 subwidth = IO_MEM_SUBWIDTH;
2671 io_mem_read[io_index][i] = mem_read[i];
2672 io_mem_write[io_index][i] = mem_write[i];
2673 }
2674 io_mem_opaque[io_index] = opaque;
2675 return (io_index << IO_MEM_SHIFT) | subwidth;
2676 }
2677
2678 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2679 {
2680 return io_mem_write[io_index >> IO_MEM_SHIFT];
2681 }
2682
2683 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2684 {
2685 return io_mem_read[io_index >> IO_MEM_SHIFT];
2686 }
2687
2688 #endif /* !defined(CONFIG_USER_ONLY) */
2689
2690 /* physical memory access (slow version, mainly for debug) */
2691 #if defined(CONFIG_USER_ONLY)
2692 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2693 int len, int is_write)
2694 {
2695 int l, flags;
2696 target_ulong page;
2697 void * p;
2698
2699 while (len > 0) {
2700 page = addr & TARGET_PAGE_MASK;
2701 l = (page + TARGET_PAGE_SIZE) - addr;
2702 if (l > len)
2703 l = len;
2704 flags = page_get_flags(page);
2705 if (!(flags & PAGE_VALID))
2706 return;
2707 if (is_write) {
2708 if (!(flags & PAGE_WRITE))
2709 return;
2710 /* XXX: this code should not depend on lock_user */
2711 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2712 /* FIXME - should this return an error rather than just fail? */
2713 return;
2714 memcpy(p, buf, l);
2715 unlock_user(p, addr, l);
2716 } else {
2717 if (!(flags & PAGE_READ))
2718 return;
2719 /* XXX: this code should not depend on lock_user */
2720 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2721 /* FIXME - should this return an error rather than just fail? */
2722 return;
2723 memcpy(buf, p, l);
2724 unlock_user(p, addr, 0);
2725 }
2726 len -= l;
2727 buf += l;
2728 addr += l;
2729 }
2730 }
2731
2732 #else
2733 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2734 int len, int is_write)
2735 {
2736 int l, io_index;
2737 uint8_t *ptr;
2738 uint32_t val;
2739 target_phys_addr_t page;
2740 unsigned long pd;
2741 PhysPageDesc *p;
2742
2743 while (len > 0) {
2744 page = addr & TARGET_PAGE_MASK;
2745 l = (page + TARGET_PAGE_SIZE) - addr;
2746 if (l > len)
2747 l = len;
2748 p = phys_page_find(page >> TARGET_PAGE_BITS);
2749 if (!p) {
2750 pd = IO_MEM_UNASSIGNED;
2751 } else {
2752 pd = p->phys_offset;
2753 }
2754
2755 if (is_write) {
2756 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2757 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2758 /* XXX: could force cpu_single_env to NULL to avoid
2759 potential bugs */
2760 if (l >= 4 && ((addr & 3) == 0)) {
2761 /* 32 bit write access */
2762 val = ldl_p(buf);
2763 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2764 l = 4;
2765 } else if (l >= 2 && ((addr & 1) == 0)) {
2766 /* 16 bit write access */
2767 val = lduw_p(buf);
2768 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2769 l = 2;
2770 } else {
2771 /* 8 bit write access */
2772 val = ldub_p(buf);
2773 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2774 l = 1;
2775 }
2776 } else {
2777 unsigned long addr1;
2778 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2779 /* RAM case */
2780 ptr = phys_ram_base + addr1;
2781 memcpy(ptr, buf, l);
2782 if (!cpu_physical_memory_is_dirty(addr1)) {
2783 /* invalidate code */
2784 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2785 /* set dirty bit */
2786 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2787 (0xff & ~CODE_DIRTY_FLAG);
2788 }
2789 }
2790 } else {
2791 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2792 !(pd & IO_MEM_ROMD)) {
2793 /* I/O case */
2794 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2795 if (l >= 4 && ((addr & 3) == 0)) {
2796 /* 32 bit read access */
2797 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2798 stl_p(buf, val);
2799 l = 4;
2800 } else if (l >= 2 && ((addr & 1) == 0)) {
2801 /* 16 bit read access */
2802 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2803 stw_p(buf, val);
2804 l = 2;
2805 } else {
2806 /* 8 bit read access */
2807 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2808 stb_p(buf, val);
2809 l = 1;
2810 }
2811 } else {
2812 /* RAM case */
2813 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2814 (addr & ~TARGET_PAGE_MASK);
2815 memcpy(buf, ptr, l);
2816 }
2817 }
2818 len -= l;
2819 buf += l;
2820 addr += l;
2821 }
2822 }
2823
2824 /* used for ROM loading : can write in RAM and ROM */
2825 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2826 const uint8_t *buf, int len)
2827 {
2828 int l;
2829 uint8_t *ptr;
2830 target_phys_addr_t page;
2831 unsigned long pd;
2832 PhysPageDesc *p;
2833
2834 while (len > 0) {
2835 page = addr & TARGET_PAGE_MASK;
2836 l = (page + TARGET_PAGE_SIZE) - addr;
2837 if (l > len)
2838 l = len;
2839 p = phys_page_find(page >> TARGET_PAGE_BITS);
2840 if (!p) {
2841 pd = IO_MEM_UNASSIGNED;
2842 } else {
2843 pd = p->phys_offset;
2844 }
2845
2846 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2847 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2848 !(pd & IO_MEM_ROMD)) {
2849 /* do nothing */
2850 } else {
2851 unsigned long addr1;
2852 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2853 /* ROM/RAM case */
2854 ptr = phys_ram_base + addr1;
2855 memcpy(ptr, buf, l);
2856 }
2857 len -= l;
2858 buf += l;
2859 addr += l;
2860 }
2861 }
2862
2863
2864 /* warning: addr must be aligned */
2865 uint32_t ldl_phys(target_phys_addr_t addr)
2866 {
2867 int io_index;
2868 uint8_t *ptr;
2869 uint32_t val;
2870 unsigned long pd;
2871 PhysPageDesc *p;
2872
2873 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2874 if (!p) {
2875 pd = IO_MEM_UNASSIGNED;
2876 } else {
2877 pd = p->phys_offset;
2878 }
2879
2880 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2881 !(pd & IO_MEM_ROMD)) {
2882 /* I/O case */
2883 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2884 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2885 } else {
2886 /* RAM case */
2887 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2888 (addr & ~TARGET_PAGE_MASK);
2889 val = ldl_p(ptr);
2890 }
2891 return val;
2892 }
2893
2894 /* warning: addr must be aligned */
2895 uint64_t ldq_phys(target_phys_addr_t addr)
2896 {
2897 int io_index;
2898 uint8_t *ptr;
2899 uint64_t val;
2900 unsigned long pd;
2901 PhysPageDesc *p;
2902
2903 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2904 if (!p) {
2905 pd = IO_MEM_UNASSIGNED;
2906 } else {
2907 pd = p->phys_offset;
2908 }
2909
2910 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2911 !(pd & IO_MEM_ROMD)) {
2912 /* I/O case */
2913 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2914 #ifdef TARGET_WORDS_BIGENDIAN
2915 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2916 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2917 #else
2918 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2919 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2920 #endif
2921 } else {
2922 /* RAM case */
2923 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2924 (addr & ~TARGET_PAGE_MASK);
2925 val = ldq_p(ptr);
2926 }
2927 return val;
2928 }
2929
2930 /* XXX: optimize */
2931 uint32_t ldub_phys(target_phys_addr_t addr)
2932 {
2933 uint8_t val;
2934 cpu_physical_memory_read(addr, &val, 1);
2935 return val;
2936 }
2937
2938 /* XXX: optimize */
2939 uint32_t lduw_phys(target_phys_addr_t addr)
2940 {
2941 uint16_t val;
2942 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2943 return tswap16(val);
2944 }
2945
2946 /* warning: addr must be aligned. The ram page is not masked as dirty
2947 and the code inside is not invalidated. It is useful if the dirty
2948 bits are used to track modified PTEs */
2949 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2950 {
2951 int io_index;
2952 uint8_t *ptr;
2953 unsigned long pd;
2954 PhysPageDesc *p;
2955
2956 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2957 if (!p) {
2958 pd = IO_MEM_UNASSIGNED;
2959 } else {
2960 pd = p->phys_offset;
2961 }
2962
2963 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2964 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2965 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2966 } else {
2967 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2968 (addr & ~TARGET_PAGE_MASK);
2969 stl_p(ptr, val);
2970 }
2971 }
2972
2973 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2974 {
2975 int io_index;
2976 uint8_t *ptr;
2977 unsigned long pd;
2978 PhysPageDesc *p;
2979
2980 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2981 if (!p) {
2982 pd = IO_MEM_UNASSIGNED;
2983 } else {
2984 pd = p->phys_offset;
2985 }
2986
2987 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2988 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2989 #ifdef TARGET_WORDS_BIGENDIAN
2990 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2991 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2992 #else
2993 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2994 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2995 #endif
2996 } else {
2997 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2998 (addr & ~TARGET_PAGE_MASK);
2999 stq_p(ptr, val);
3000 }
3001 }
3002
3003 /* warning: addr must be aligned */
3004 void stl_phys(target_phys_addr_t addr, uint32_t val)
3005 {
3006 int io_index;
3007 uint8_t *ptr;
3008 unsigned long pd;
3009 PhysPageDesc *p;
3010
3011 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3012 if (!p) {
3013 pd = IO_MEM_UNASSIGNED;
3014 } else {
3015 pd = p->phys_offset;
3016 }
3017
3018 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3019 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3020 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3021 } else {
3022 unsigned long addr1;
3023 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3024 /* RAM case */
3025 ptr = phys_ram_base + addr1;
3026 stl_p(ptr, val);
3027 if (!cpu_physical_memory_is_dirty(addr1)) {
3028 /* invalidate code */
3029 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3030 /* set dirty bit */
3031 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3032 (0xff & ~CODE_DIRTY_FLAG);
3033 }
3034 }
3035 }
3036
3037 /* XXX: optimize */
3038 void stb_phys(target_phys_addr_t addr, uint32_t val)
3039 {
3040 uint8_t v = val;
3041 cpu_physical_memory_write(addr, &v, 1);
3042 }
3043
3044 /* XXX: optimize */
3045 void stw_phys(target_phys_addr_t addr, uint32_t val)
3046 {
3047 uint16_t v = tswap16(val);
3048 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3049 }
3050
3051 /* XXX: optimize */
3052 void stq_phys(target_phys_addr_t addr, uint64_t val)
3053 {
3054 val = tswap64(val);
3055 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3056 }
3057
3058 #endif
3059
3060 /* virtual memory access for debug */
3061 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3062 uint8_t *buf, int len, int is_write)
3063 {
3064 int l;
3065 target_phys_addr_t phys_addr;
3066 target_ulong page;
3067
3068 while (len > 0) {
3069 page = addr & TARGET_PAGE_MASK;
3070 phys_addr = cpu_get_phys_page_debug(env, page);
3071 /* if no physical page mapped, return an error */
3072 if (phys_addr == -1)
3073 return -1;
3074 l = (page + TARGET_PAGE_SIZE) - addr;
3075 if (l > len)
3076 l = len;
3077 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3078 buf, l, is_write);
3079 len -= l;
3080 buf += l;
3081 addr += l;
3082 }
3083 return 0;
3084 }
3085
3086 /* in deterministic execution mode, instructions doing device I/Os
3087 must be at the end of the TB */
3088 void cpu_io_recompile(CPUState *env, void *retaddr)
3089 {
3090 TranslationBlock *tb;
3091 uint32_t n, cflags;
3092 target_ulong pc, cs_base;
3093 uint64_t flags;
3094
3095 tb = tb_find_pc((unsigned long)retaddr);
3096 if (!tb) {
3097 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3098 retaddr);
3099 }
3100 n = env->icount_decr.u16.low + tb->icount;
3101 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3102 /* Calculate how many instructions had been executed before the fault
3103 occurred. */
3104 n = n - env->icount_decr.u16.low;
3105 /* Generate a new TB ending on the I/O insn. */
3106 n++;
3107 /* On MIPS and SH, delay slot instructions can only be restarted if
3108 they were already the first instruction in the TB. If this is not
3109 the first instruction in a TB then re-execute the preceding
3110 branch. */
3111 #if defined(TARGET_MIPS)
3112 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3113 env->active_tc.PC -= 4;
3114 env->icount_decr.u16.low++;
3115 env->hflags &= ~MIPS_HFLAG_BMASK;
3116 }
3117 #elif defined(TARGET_SH4)
3118 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3119 && n > 1) {
3120 env->pc -= 2;
3121 env->icount_decr.u16.low++;
3122 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3123 }
3124 #endif
3125 /* This should never happen. */
3126 if (n > CF_COUNT_MASK)
3127 cpu_abort(env, "TB too big during recompile");
3128
3129 cflags = n | CF_LAST_IO;
3130 pc = tb->pc;
3131 cs_base = tb->cs_base;
3132 flags = tb->flags;
3133 tb_phys_invalidate(tb, -1);
3134 /* FIXME: In theory this could raise an exception. In practice
3135 we have already translated the block once so it's probably ok. */
3136 tb_gen_code(env, pc, cs_base, flags, cflags);
3137 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3138 the first in the TB) then we end up generating a whole new TB and
3139 repeating the fault, which is horribly inefficient.
3140 Better would be to execute just this insn uncached, or generate a
3141 second new TB. */
3142 cpu_resume_from_signal(env, NULL);
3143 }
3144
3145 void dump_exec_info(FILE *f,
3146 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3147 {
3148 int i, target_code_size, max_target_code_size;
3149 int direct_jmp_count, direct_jmp2_count, cross_page;
3150 TranslationBlock *tb;
3151
3152 target_code_size = 0;
3153 max_target_code_size = 0;
3154 cross_page = 0;
3155 direct_jmp_count = 0;
3156 direct_jmp2_count = 0;
3157 for(i = 0; i < nb_tbs; i++) {
3158 tb = &tbs[i];
3159 target_code_size += tb->size;
3160 if (tb->size > max_target_code_size)
3161 max_target_code_size = tb->size;
3162 if (tb->page_addr[1] != -1)
3163 cross_page++;
3164 if (tb->tb_next_offset[0] != 0xffff) {
3165 direct_jmp_count++;
3166 if (tb->tb_next_offset[1] != 0xffff) {
3167 direct_jmp2_count++;
3168 }
3169 }
3170 }
3171 /* XXX: avoid using doubles ? */
3172 cpu_fprintf(f, "Translation buffer state:\n");
3173 cpu_fprintf(f, "gen code size %ld/%ld\n",
3174 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3175 cpu_fprintf(f, "TB count %d/%d\n",
3176 nb_tbs, code_gen_max_blocks);
3177 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3178 nb_tbs ? target_code_size / nb_tbs : 0,
3179 max_target_code_size);
3180 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3181 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3182 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3183 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3184 cross_page,
3185 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3186 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3187 direct_jmp_count,
3188 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3189 direct_jmp2_count,
3190 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3191 cpu_fprintf(f, "\nStatistics:\n");
3192 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3193 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3194 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3195 tcg_dump_info(f, cpu_fprintf);
3196 }
3197
3198 #if !defined(CONFIG_USER_ONLY)
3199
3200 #define MMUSUFFIX _cmmu
3201 #define GETPC() NULL
3202 #define env cpu_single_env
3203 #define SOFTMMU_CODE_ACCESS
3204
3205 #define SHIFT 0
3206 #include "softmmu_template.h"
3207
3208 #define SHIFT 1
3209 #include "softmmu_template.h"
3210
3211 #define SHIFT 2
3212 #include "softmmu_template.h"
3213
3214 #define SHIFT 3
3215 #include "softmmu_template.h"
3216
3217 #undef env
3218
3219 #endif