]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: Remove unused global variable phys_ram_fd
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 static int in_migration;
57
58 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
59
60 static MemoryRegion *system_memory;
61 static MemoryRegion *system_io;
62
63 AddressSpace address_space_io;
64 AddressSpace address_space_memory;
65
66 MemoryRegion io_mem_rom, io_mem_notdirty;
67 static MemoryRegion io_mem_unassigned;
68
69 #endif
70
71 CPUArchState *first_cpu;
72 /* current CPU in the current thread. It is only valid inside
73 cpu_exec() */
74 DEFINE_TLS(CPUArchState *,cpu_single_env);
75 /* 0 = Do not count executed instructions.
76 1 = Precise instruction counting.
77 2 = Adaptive rate instruction counting. */
78 int use_icount;
79
80 #if !defined(CONFIG_USER_ONLY)
81
82 typedef struct PhysPageEntry PhysPageEntry;
83
84 struct PhysPageEntry {
85 uint16_t is_leaf : 1;
86 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
87 uint16_t ptr : 15;
88 };
89
90 typedef PhysPageEntry Node[L2_SIZE];
91
92 struct AddressSpaceDispatch {
93 /* This is a multi-level map on the physical address space.
94 * The bottom level has pointers to MemoryRegionSections.
95 */
96 PhysPageEntry phys_map;
97 Node *nodes;
98 MemoryRegionSection *sections;
99 AddressSpace *as;
100 };
101
102 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
103 typedef struct subpage_t {
104 MemoryRegion iomem;
105 AddressSpace *as;
106 hwaddr base;
107 uint16_t sub_section[TARGET_PAGE_SIZE];
108 } subpage_t;
109
110 #define PHYS_SECTION_UNASSIGNED 0
111 #define PHYS_SECTION_NOTDIRTY 1
112 #define PHYS_SECTION_ROM 2
113 #define PHYS_SECTION_WATCH 3
114
115 typedef struct PhysPageMap {
116 unsigned sections_nb;
117 unsigned sections_nb_alloc;
118 unsigned nodes_nb;
119 unsigned nodes_nb_alloc;
120 Node *nodes;
121 MemoryRegionSection *sections;
122 } PhysPageMap;
123
124 static PhysPageMap *prev_map;
125 static PhysPageMap next_map;
126
127 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
128
129 static void io_mem_init(void);
130 static void memory_map_init(void);
131 static void *qemu_safe_ram_ptr(ram_addr_t addr);
132
133 static MemoryRegion io_mem_watch;
134 #endif
135
136 #if !defined(CONFIG_USER_ONLY)
137
138 static void phys_map_node_reserve(unsigned nodes)
139 {
140 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
141 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
142 16);
143 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
144 next_map.nodes_nb + nodes);
145 next_map.nodes = g_renew(Node, next_map.nodes,
146 next_map.nodes_nb_alloc);
147 }
148 }
149
150 static uint16_t phys_map_node_alloc(void)
151 {
152 unsigned i;
153 uint16_t ret;
154
155 ret = next_map.nodes_nb++;
156 assert(ret != PHYS_MAP_NODE_NIL);
157 assert(ret != next_map.nodes_nb_alloc);
158 for (i = 0; i < L2_SIZE; ++i) {
159 next_map.nodes[ret][i].is_leaf = 0;
160 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
161 }
162 return ret;
163 }
164
165 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
166 hwaddr *nb, uint16_t leaf,
167 int level)
168 {
169 PhysPageEntry *p;
170 int i;
171 hwaddr step = (hwaddr)1 << (level * L2_BITS);
172
173 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
174 lp->ptr = phys_map_node_alloc();
175 p = next_map.nodes[lp->ptr];
176 if (level == 0) {
177 for (i = 0; i < L2_SIZE; i++) {
178 p[i].is_leaf = 1;
179 p[i].ptr = PHYS_SECTION_UNASSIGNED;
180 }
181 }
182 } else {
183 p = next_map.nodes[lp->ptr];
184 }
185 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
186
187 while (*nb && lp < &p[L2_SIZE]) {
188 if ((*index & (step - 1)) == 0 && *nb >= step) {
189 lp->is_leaf = true;
190 lp->ptr = leaf;
191 *index += step;
192 *nb -= step;
193 } else {
194 phys_page_set_level(lp, index, nb, leaf, level - 1);
195 }
196 ++lp;
197 }
198 }
199
200 static void phys_page_set(AddressSpaceDispatch *d,
201 hwaddr index, hwaddr nb,
202 uint16_t leaf)
203 {
204 /* Wildly overreserve - it doesn't matter much. */
205 phys_map_node_reserve(3 * P_L2_LEVELS);
206
207 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
208 }
209
210 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
211 Node *nodes, MemoryRegionSection *sections)
212 {
213 PhysPageEntry *p;
214 int i;
215
216 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
217 if (lp.ptr == PHYS_MAP_NODE_NIL) {
218 return &sections[PHYS_SECTION_UNASSIGNED];
219 }
220 p = nodes[lp.ptr];
221 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
222 }
223 return &sections[lp.ptr];
224 }
225
226 bool memory_region_is_unassigned(MemoryRegion *mr)
227 {
228 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
229 && mr != &io_mem_watch;
230 }
231
232 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
233 hwaddr addr,
234 bool resolve_subpage)
235 {
236 MemoryRegionSection *section;
237 subpage_t *subpage;
238
239 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
240 d->nodes, d->sections);
241 if (resolve_subpage && section->mr->subpage) {
242 subpage = container_of(section->mr, subpage_t, iomem);
243 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
244 }
245 return section;
246 }
247
248 static MemoryRegionSection *
249 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
250 hwaddr *plen, bool resolve_subpage)
251 {
252 MemoryRegionSection *section;
253 Int128 diff;
254
255 section = address_space_lookup_region(d, addr, resolve_subpage);
256 /* Compute offset within MemoryRegionSection */
257 addr -= section->offset_within_address_space;
258
259 /* Compute offset within MemoryRegion */
260 *xlat = addr + section->offset_within_region;
261
262 diff = int128_sub(section->mr->size, int128_make64(addr));
263 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
264 return section;
265 }
266
267 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
268 hwaddr *xlat, hwaddr *plen,
269 bool is_write)
270 {
271 IOMMUTLBEntry iotlb;
272 MemoryRegionSection *section;
273 MemoryRegion *mr;
274 hwaddr len = *plen;
275
276 for (;;) {
277 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
278 mr = section->mr;
279
280 if (!mr->iommu_ops) {
281 break;
282 }
283
284 iotlb = mr->iommu_ops->translate(mr, addr);
285 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
286 | (addr & iotlb.addr_mask));
287 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
288 if (!(iotlb.perm & (1 << is_write))) {
289 mr = &io_mem_unassigned;
290 break;
291 }
292
293 as = iotlb.target_as;
294 }
295
296 *plen = len;
297 *xlat = addr;
298 return mr;
299 }
300
301 MemoryRegionSection *
302 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
303 hwaddr *plen)
304 {
305 MemoryRegionSection *section;
306 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
307
308 assert(!section->mr->iommu_ops);
309 return section;
310 }
311 #endif
312
313 void cpu_exec_init_all(void)
314 {
315 #if !defined(CONFIG_USER_ONLY)
316 qemu_mutex_init(&ram_list.mutex);
317 memory_map_init();
318 io_mem_init();
319 #endif
320 }
321
322 #if !defined(CONFIG_USER_ONLY)
323
324 static int cpu_common_post_load(void *opaque, int version_id)
325 {
326 CPUState *cpu = opaque;
327
328 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
329 version_id is increased. */
330 cpu->interrupt_request &= ~0x01;
331 tlb_flush(cpu->env_ptr, 1);
332
333 return 0;
334 }
335
336 const VMStateDescription vmstate_cpu_common = {
337 .name = "cpu_common",
338 .version_id = 1,
339 .minimum_version_id = 1,
340 .minimum_version_id_old = 1,
341 .post_load = cpu_common_post_load,
342 .fields = (VMStateField []) {
343 VMSTATE_UINT32(halted, CPUState),
344 VMSTATE_UINT32(interrupt_request, CPUState),
345 VMSTATE_END_OF_LIST()
346 }
347 };
348
349 #endif
350
351 CPUState *qemu_get_cpu(int index)
352 {
353 CPUArchState *env = first_cpu;
354 CPUState *cpu = NULL;
355
356 while (env) {
357 cpu = ENV_GET_CPU(env);
358 if (cpu->cpu_index == index) {
359 break;
360 }
361 env = env->next_cpu;
362 }
363
364 return env ? cpu : NULL;
365 }
366
367 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
368 {
369 CPUArchState *env = first_cpu;
370
371 while (env) {
372 func(ENV_GET_CPU(env), data);
373 env = env->next_cpu;
374 }
375 }
376
377 void cpu_exec_init(CPUArchState *env)
378 {
379 CPUState *cpu = ENV_GET_CPU(env);
380 CPUClass *cc = CPU_GET_CLASS(cpu);
381 CPUArchState **penv;
382 int cpu_index;
383
384 #if defined(CONFIG_USER_ONLY)
385 cpu_list_lock();
386 #endif
387 env->next_cpu = NULL;
388 penv = &first_cpu;
389 cpu_index = 0;
390 while (*penv != NULL) {
391 penv = &(*penv)->next_cpu;
392 cpu_index++;
393 }
394 cpu->cpu_index = cpu_index;
395 cpu->numa_node = 0;
396 QTAILQ_INIT(&env->breakpoints);
397 QTAILQ_INIT(&env->watchpoints);
398 #ifndef CONFIG_USER_ONLY
399 cpu->thread_id = qemu_get_thread_id();
400 #endif
401 *penv = env;
402 #if defined(CONFIG_USER_ONLY)
403 cpu_list_unlock();
404 #endif
405 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
406 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
407 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
408 cpu_save, cpu_load, env);
409 assert(cc->vmsd == NULL);
410 #endif
411 if (cc->vmsd != NULL) {
412 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
413 }
414 }
415
416 #if defined(TARGET_HAS_ICE)
417 #if defined(CONFIG_USER_ONLY)
418 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
419 {
420 tb_invalidate_phys_page_range(pc, pc + 1, 0);
421 }
422 #else
423 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
424 {
425 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
426 (pc & ~TARGET_PAGE_MASK));
427 }
428 #endif
429 #endif /* TARGET_HAS_ICE */
430
431 #if defined(CONFIG_USER_ONLY)
432 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
433
434 {
435 }
436
437 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
438 int flags, CPUWatchpoint **watchpoint)
439 {
440 return -ENOSYS;
441 }
442 #else
443 /* Add a watchpoint. */
444 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
445 int flags, CPUWatchpoint **watchpoint)
446 {
447 target_ulong len_mask = ~(len - 1);
448 CPUWatchpoint *wp;
449
450 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
451 if ((len & (len - 1)) || (addr & ~len_mask) ||
452 len == 0 || len > TARGET_PAGE_SIZE) {
453 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
454 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
455 return -EINVAL;
456 }
457 wp = g_malloc(sizeof(*wp));
458
459 wp->vaddr = addr;
460 wp->len_mask = len_mask;
461 wp->flags = flags;
462
463 /* keep all GDB-injected watchpoints in front */
464 if (flags & BP_GDB)
465 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
466 else
467 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
468
469 tlb_flush_page(env, addr);
470
471 if (watchpoint)
472 *watchpoint = wp;
473 return 0;
474 }
475
476 /* Remove a specific watchpoint. */
477 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
478 int flags)
479 {
480 target_ulong len_mask = ~(len - 1);
481 CPUWatchpoint *wp;
482
483 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
484 if (addr == wp->vaddr && len_mask == wp->len_mask
485 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
486 cpu_watchpoint_remove_by_ref(env, wp);
487 return 0;
488 }
489 }
490 return -ENOENT;
491 }
492
493 /* Remove a specific watchpoint by reference. */
494 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
495 {
496 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
497
498 tlb_flush_page(env, watchpoint->vaddr);
499
500 g_free(watchpoint);
501 }
502
503 /* Remove all matching watchpoints. */
504 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
505 {
506 CPUWatchpoint *wp, *next;
507
508 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
509 if (wp->flags & mask)
510 cpu_watchpoint_remove_by_ref(env, wp);
511 }
512 }
513 #endif
514
515 /* Add a breakpoint. */
516 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
517 CPUBreakpoint **breakpoint)
518 {
519 #if defined(TARGET_HAS_ICE)
520 CPUBreakpoint *bp;
521
522 bp = g_malloc(sizeof(*bp));
523
524 bp->pc = pc;
525 bp->flags = flags;
526
527 /* keep all GDB-injected breakpoints in front */
528 if (flags & BP_GDB)
529 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
530 else
531 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
532
533 breakpoint_invalidate(env, pc);
534
535 if (breakpoint)
536 *breakpoint = bp;
537 return 0;
538 #else
539 return -ENOSYS;
540 #endif
541 }
542
543 /* Remove a specific breakpoint. */
544 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
545 {
546 #if defined(TARGET_HAS_ICE)
547 CPUBreakpoint *bp;
548
549 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
550 if (bp->pc == pc && bp->flags == flags) {
551 cpu_breakpoint_remove_by_ref(env, bp);
552 return 0;
553 }
554 }
555 return -ENOENT;
556 #else
557 return -ENOSYS;
558 #endif
559 }
560
561 /* Remove a specific breakpoint by reference. */
562 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
563 {
564 #if defined(TARGET_HAS_ICE)
565 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
566
567 breakpoint_invalidate(env, breakpoint->pc);
568
569 g_free(breakpoint);
570 #endif
571 }
572
573 /* Remove all matching breakpoints. */
574 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
575 {
576 #if defined(TARGET_HAS_ICE)
577 CPUBreakpoint *bp, *next;
578
579 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
580 if (bp->flags & mask)
581 cpu_breakpoint_remove_by_ref(env, bp);
582 }
583 #endif
584 }
585
586 /* enable or disable single step mode. EXCP_DEBUG is returned by the
587 CPU loop after each instruction */
588 void cpu_single_step(CPUArchState *env, int enabled)
589 {
590 #if defined(TARGET_HAS_ICE)
591 if (env->singlestep_enabled != enabled) {
592 env->singlestep_enabled = enabled;
593 if (kvm_enabled())
594 kvm_update_guest_debug(env, 0);
595 else {
596 /* must flush all the translated code to avoid inconsistencies */
597 /* XXX: only flush what is necessary */
598 tb_flush(env);
599 }
600 }
601 #endif
602 }
603
604 void cpu_abort(CPUArchState *env, const char *fmt, ...)
605 {
606 CPUState *cpu = ENV_GET_CPU(env);
607 va_list ap;
608 va_list ap2;
609
610 va_start(ap, fmt);
611 va_copy(ap2, ap);
612 fprintf(stderr, "qemu: fatal: ");
613 vfprintf(stderr, fmt, ap);
614 fprintf(stderr, "\n");
615 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
616 if (qemu_log_enabled()) {
617 qemu_log("qemu: fatal: ");
618 qemu_log_vprintf(fmt, ap2);
619 qemu_log("\n");
620 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
621 qemu_log_flush();
622 qemu_log_close();
623 }
624 va_end(ap2);
625 va_end(ap);
626 #if defined(CONFIG_USER_ONLY)
627 {
628 struct sigaction act;
629 sigfillset(&act.sa_mask);
630 act.sa_handler = SIG_DFL;
631 sigaction(SIGABRT, &act, NULL);
632 }
633 #endif
634 abort();
635 }
636
637 CPUArchState *cpu_copy(CPUArchState *env)
638 {
639 CPUArchState *new_env = cpu_init(env->cpu_model_str);
640 CPUArchState *next_cpu = new_env->next_cpu;
641 #if defined(TARGET_HAS_ICE)
642 CPUBreakpoint *bp;
643 CPUWatchpoint *wp;
644 #endif
645
646 memcpy(new_env, env, sizeof(CPUArchState));
647
648 /* Preserve chaining. */
649 new_env->next_cpu = next_cpu;
650
651 /* Clone all break/watchpoints.
652 Note: Once we support ptrace with hw-debug register access, make sure
653 BP_CPU break/watchpoints are handled correctly on clone. */
654 QTAILQ_INIT(&env->breakpoints);
655 QTAILQ_INIT(&env->watchpoints);
656 #if defined(TARGET_HAS_ICE)
657 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
658 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
659 }
660 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
661 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
662 wp->flags, NULL);
663 }
664 #endif
665
666 return new_env;
667 }
668
669 #if !defined(CONFIG_USER_ONLY)
670 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
671 uintptr_t length)
672 {
673 uintptr_t start1;
674
675 /* we modify the TLB cache so that the dirty bit will be set again
676 when accessing the range */
677 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
678 /* Check that we don't span multiple blocks - this breaks the
679 address comparisons below. */
680 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
681 != (end - 1) - start) {
682 abort();
683 }
684 cpu_tlb_reset_dirty_all(start1, length);
685
686 }
687
688 /* Note: start and end must be within the same ram block. */
689 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
690 int dirty_flags)
691 {
692 uintptr_t length;
693
694 start &= TARGET_PAGE_MASK;
695 end = TARGET_PAGE_ALIGN(end);
696
697 length = end - start;
698 if (length == 0)
699 return;
700 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
701
702 if (tcg_enabled()) {
703 tlb_reset_dirty_range_all(start, end, length);
704 }
705 }
706
707 static int cpu_physical_memory_set_dirty_tracking(int enable)
708 {
709 int ret = 0;
710 in_migration = enable;
711 return ret;
712 }
713
714 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
715 MemoryRegionSection *section,
716 target_ulong vaddr,
717 hwaddr paddr, hwaddr xlat,
718 int prot,
719 target_ulong *address)
720 {
721 hwaddr iotlb;
722 CPUWatchpoint *wp;
723
724 if (memory_region_is_ram(section->mr)) {
725 /* Normal RAM. */
726 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
727 + xlat;
728 if (!section->readonly) {
729 iotlb |= PHYS_SECTION_NOTDIRTY;
730 } else {
731 iotlb |= PHYS_SECTION_ROM;
732 }
733 } else {
734 iotlb = section - address_space_memory.dispatch->sections;
735 iotlb += xlat;
736 }
737
738 /* Make accesses to pages with watchpoints go via the
739 watchpoint trap routines. */
740 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
741 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
742 /* Avoid trapping reads of pages with a write breakpoint. */
743 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
744 iotlb = PHYS_SECTION_WATCH + paddr;
745 *address |= TLB_MMIO;
746 break;
747 }
748 }
749 }
750
751 return iotlb;
752 }
753 #endif /* defined(CONFIG_USER_ONLY) */
754
755 #if !defined(CONFIG_USER_ONLY)
756
757 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
758 uint16_t section);
759 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
760
761 static uint16_t phys_section_add(MemoryRegionSection *section)
762 {
763 /* The physical section number is ORed with a page-aligned
764 * pointer to produce the iotlb entries. Thus it should
765 * never overflow into the page-aligned value.
766 */
767 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
768
769 if (next_map.sections_nb == next_map.sections_nb_alloc) {
770 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
771 16);
772 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
773 next_map.sections_nb_alloc);
774 }
775 next_map.sections[next_map.sections_nb] = *section;
776 memory_region_ref(section->mr);
777 return next_map.sections_nb++;
778 }
779
780 static void phys_section_destroy(MemoryRegion *mr)
781 {
782 memory_region_unref(mr);
783
784 if (mr->subpage) {
785 subpage_t *subpage = container_of(mr, subpage_t, iomem);
786 memory_region_destroy(&subpage->iomem);
787 g_free(subpage);
788 }
789 }
790
791 static void phys_sections_free(PhysPageMap *map)
792 {
793 while (map->sections_nb > 0) {
794 MemoryRegionSection *section = &map->sections[--map->sections_nb];
795 phys_section_destroy(section->mr);
796 }
797 g_free(map->sections);
798 g_free(map->nodes);
799 g_free(map);
800 }
801
802 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
803 {
804 subpage_t *subpage;
805 hwaddr base = section->offset_within_address_space
806 & TARGET_PAGE_MASK;
807 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
808 next_map.nodes, next_map.sections);
809 MemoryRegionSection subsection = {
810 .offset_within_address_space = base,
811 .size = int128_make64(TARGET_PAGE_SIZE),
812 };
813 hwaddr start, end;
814
815 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
816
817 if (!(existing->mr->subpage)) {
818 subpage = subpage_init(d->as, base);
819 subsection.mr = &subpage->iomem;
820 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
821 phys_section_add(&subsection));
822 } else {
823 subpage = container_of(existing->mr, subpage_t, iomem);
824 }
825 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
826 end = start + int128_get64(section->size) - 1;
827 subpage_register(subpage, start, end, phys_section_add(section));
828 }
829
830
831 static void register_multipage(AddressSpaceDispatch *d,
832 MemoryRegionSection *section)
833 {
834 hwaddr start_addr = section->offset_within_address_space;
835 uint16_t section_index = phys_section_add(section);
836 uint64_t num_pages = int128_get64(int128_rshift(section->size,
837 TARGET_PAGE_BITS));
838
839 assert(num_pages);
840 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
841 }
842
843 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
844 {
845 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
846 AddressSpaceDispatch *d = as->next_dispatch;
847 MemoryRegionSection now = *section, remain = *section;
848 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
849
850 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
851 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
852 - now.offset_within_address_space;
853
854 now.size = int128_min(int128_make64(left), now.size);
855 register_subpage(d, &now);
856 } else {
857 now.size = int128_zero();
858 }
859 while (int128_ne(remain.size, now.size)) {
860 remain.size = int128_sub(remain.size, now.size);
861 remain.offset_within_address_space += int128_get64(now.size);
862 remain.offset_within_region += int128_get64(now.size);
863 now = remain;
864 if (int128_lt(remain.size, page_size)) {
865 register_subpage(d, &now);
866 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
867 now.size = page_size;
868 register_subpage(d, &now);
869 } else {
870 now.size = int128_and(now.size, int128_neg(page_size));
871 register_multipage(d, &now);
872 }
873 }
874 }
875
876 void qemu_flush_coalesced_mmio_buffer(void)
877 {
878 if (kvm_enabled())
879 kvm_flush_coalesced_mmio_buffer();
880 }
881
882 void qemu_mutex_lock_ramlist(void)
883 {
884 qemu_mutex_lock(&ram_list.mutex);
885 }
886
887 void qemu_mutex_unlock_ramlist(void)
888 {
889 qemu_mutex_unlock(&ram_list.mutex);
890 }
891
892 #if defined(__linux__) && !defined(TARGET_S390X)
893
894 #include <sys/vfs.h>
895
896 #define HUGETLBFS_MAGIC 0x958458f6
897
898 static long gethugepagesize(const char *path)
899 {
900 struct statfs fs;
901 int ret;
902
903 do {
904 ret = statfs(path, &fs);
905 } while (ret != 0 && errno == EINTR);
906
907 if (ret != 0) {
908 perror(path);
909 return 0;
910 }
911
912 if (fs.f_type != HUGETLBFS_MAGIC)
913 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
914
915 return fs.f_bsize;
916 }
917
918 static void *file_ram_alloc(RAMBlock *block,
919 ram_addr_t memory,
920 const char *path)
921 {
922 char *filename;
923 char *sanitized_name;
924 char *c;
925 void *area;
926 int fd;
927 #ifdef MAP_POPULATE
928 int flags;
929 #endif
930 unsigned long hpagesize;
931
932 hpagesize = gethugepagesize(path);
933 if (!hpagesize) {
934 return NULL;
935 }
936
937 if (memory < hpagesize) {
938 return NULL;
939 }
940
941 if (kvm_enabled() && !kvm_has_sync_mmu()) {
942 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
943 return NULL;
944 }
945
946 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
947 sanitized_name = g_strdup(block->mr->name);
948 for (c = sanitized_name; *c != '\0'; c++) {
949 if (*c == '/')
950 *c = '_';
951 }
952
953 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
954 sanitized_name);
955 g_free(sanitized_name);
956
957 fd = mkstemp(filename);
958 if (fd < 0) {
959 perror("unable to create backing store for hugepages");
960 g_free(filename);
961 return NULL;
962 }
963 unlink(filename);
964 g_free(filename);
965
966 memory = (memory+hpagesize-1) & ~(hpagesize-1);
967
968 /*
969 * ftruncate is not supported by hugetlbfs in older
970 * hosts, so don't bother bailing out on errors.
971 * If anything goes wrong with it under other filesystems,
972 * mmap will fail.
973 */
974 if (ftruncate(fd, memory))
975 perror("ftruncate");
976
977 #ifdef MAP_POPULATE
978 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
979 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
980 * to sidestep this quirk.
981 */
982 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
983 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
984 #else
985 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
986 #endif
987 if (area == MAP_FAILED) {
988 perror("file_ram_alloc: can't mmap RAM pages");
989 close(fd);
990 return (NULL);
991 }
992 block->fd = fd;
993 return area;
994 }
995 #endif
996
997 static ram_addr_t find_ram_offset(ram_addr_t size)
998 {
999 RAMBlock *block, *next_block;
1000 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1001
1002 assert(size != 0); /* it would hand out same offset multiple times */
1003
1004 if (QTAILQ_EMPTY(&ram_list.blocks))
1005 return 0;
1006
1007 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1008 ram_addr_t end, next = RAM_ADDR_MAX;
1009
1010 end = block->offset + block->length;
1011
1012 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1013 if (next_block->offset >= end) {
1014 next = MIN(next, next_block->offset);
1015 }
1016 }
1017 if (next - end >= size && next - end < mingap) {
1018 offset = end;
1019 mingap = next - end;
1020 }
1021 }
1022
1023 if (offset == RAM_ADDR_MAX) {
1024 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1025 (uint64_t)size);
1026 abort();
1027 }
1028
1029 return offset;
1030 }
1031
1032 ram_addr_t last_ram_offset(void)
1033 {
1034 RAMBlock *block;
1035 ram_addr_t last = 0;
1036
1037 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1038 last = MAX(last, block->offset + block->length);
1039
1040 return last;
1041 }
1042
1043 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1044 {
1045 int ret;
1046 QemuOpts *machine_opts;
1047
1048 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1049 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1050 if (machine_opts &&
1051 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1052 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1053 if (ret) {
1054 perror("qemu_madvise");
1055 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1056 "but dump_guest_core=off specified\n");
1057 }
1058 }
1059 }
1060
1061 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1062 {
1063 RAMBlock *new_block, *block;
1064
1065 new_block = NULL;
1066 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1067 if (block->offset == addr) {
1068 new_block = block;
1069 break;
1070 }
1071 }
1072 assert(new_block);
1073 assert(!new_block->idstr[0]);
1074
1075 if (dev) {
1076 char *id = qdev_get_dev_path(dev);
1077 if (id) {
1078 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1079 g_free(id);
1080 }
1081 }
1082 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1083
1084 /* This assumes the iothread lock is taken here too. */
1085 qemu_mutex_lock_ramlist();
1086 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1087 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1088 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1089 new_block->idstr);
1090 abort();
1091 }
1092 }
1093 qemu_mutex_unlock_ramlist();
1094 }
1095
1096 static int memory_try_enable_merging(void *addr, size_t len)
1097 {
1098 QemuOpts *opts;
1099
1100 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1101 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1102 /* disabled by the user */
1103 return 0;
1104 }
1105
1106 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1107 }
1108
1109 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1110 MemoryRegion *mr)
1111 {
1112 RAMBlock *block, *new_block;
1113
1114 size = TARGET_PAGE_ALIGN(size);
1115 new_block = g_malloc0(sizeof(*new_block));
1116
1117 /* This assumes the iothread lock is taken here too. */
1118 qemu_mutex_lock_ramlist();
1119 new_block->mr = mr;
1120 new_block->offset = find_ram_offset(size);
1121 if (host) {
1122 new_block->host = host;
1123 new_block->flags |= RAM_PREALLOC_MASK;
1124 } else {
1125 if (mem_path) {
1126 #if defined (__linux__) && !defined(TARGET_S390X)
1127 new_block->host = file_ram_alloc(new_block, size, mem_path);
1128 if (!new_block->host) {
1129 new_block->host = qemu_anon_ram_alloc(size);
1130 memory_try_enable_merging(new_block->host, size);
1131 }
1132 #else
1133 fprintf(stderr, "-mem-path option unsupported\n");
1134 exit(1);
1135 #endif
1136 } else {
1137 if (xen_enabled()) {
1138 xen_ram_alloc(new_block->offset, size, mr);
1139 } else if (kvm_enabled()) {
1140 /* some s390/kvm configurations have special constraints */
1141 new_block->host = kvm_ram_alloc(size);
1142 } else {
1143 new_block->host = qemu_anon_ram_alloc(size);
1144 }
1145 memory_try_enable_merging(new_block->host, size);
1146 }
1147 }
1148 new_block->length = size;
1149
1150 /* Keep the list sorted from biggest to smallest block. */
1151 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1152 if (block->length < new_block->length) {
1153 break;
1154 }
1155 }
1156 if (block) {
1157 QTAILQ_INSERT_BEFORE(block, new_block, next);
1158 } else {
1159 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1160 }
1161 ram_list.mru_block = NULL;
1162
1163 ram_list.version++;
1164 qemu_mutex_unlock_ramlist();
1165
1166 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1167 last_ram_offset() >> TARGET_PAGE_BITS);
1168 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1169 0, size >> TARGET_PAGE_BITS);
1170 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1171
1172 qemu_ram_setup_dump(new_block->host, size);
1173 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1174
1175 if (kvm_enabled())
1176 kvm_setup_guest_memory(new_block->host, size);
1177
1178 return new_block->offset;
1179 }
1180
1181 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1182 {
1183 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1184 }
1185
1186 void qemu_ram_free_from_ptr(ram_addr_t addr)
1187 {
1188 RAMBlock *block;
1189
1190 /* This assumes the iothread lock is taken here too. */
1191 qemu_mutex_lock_ramlist();
1192 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1193 if (addr == block->offset) {
1194 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1195 ram_list.mru_block = NULL;
1196 ram_list.version++;
1197 g_free(block);
1198 break;
1199 }
1200 }
1201 qemu_mutex_unlock_ramlist();
1202 }
1203
1204 void qemu_ram_free(ram_addr_t addr)
1205 {
1206 RAMBlock *block;
1207
1208 /* This assumes the iothread lock is taken here too. */
1209 qemu_mutex_lock_ramlist();
1210 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1211 if (addr == block->offset) {
1212 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1213 ram_list.mru_block = NULL;
1214 ram_list.version++;
1215 if (block->flags & RAM_PREALLOC_MASK) {
1216 ;
1217 } else if (mem_path) {
1218 #if defined (__linux__) && !defined(TARGET_S390X)
1219 if (block->fd) {
1220 munmap(block->host, block->length);
1221 close(block->fd);
1222 } else {
1223 qemu_anon_ram_free(block->host, block->length);
1224 }
1225 #else
1226 abort();
1227 #endif
1228 } else {
1229 if (xen_enabled()) {
1230 xen_invalidate_map_cache_entry(block->host);
1231 } else {
1232 qemu_anon_ram_free(block->host, block->length);
1233 }
1234 }
1235 g_free(block);
1236 break;
1237 }
1238 }
1239 qemu_mutex_unlock_ramlist();
1240
1241 }
1242
1243 #ifndef _WIN32
1244 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1245 {
1246 RAMBlock *block;
1247 ram_addr_t offset;
1248 int flags;
1249 void *area, *vaddr;
1250
1251 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1252 offset = addr - block->offset;
1253 if (offset < block->length) {
1254 vaddr = block->host + offset;
1255 if (block->flags & RAM_PREALLOC_MASK) {
1256 ;
1257 } else {
1258 flags = MAP_FIXED;
1259 munmap(vaddr, length);
1260 if (mem_path) {
1261 #if defined(__linux__) && !defined(TARGET_S390X)
1262 if (block->fd) {
1263 #ifdef MAP_POPULATE
1264 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1265 MAP_PRIVATE;
1266 #else
1267 flags |= MAP_PRIVATE;
1268 #endif
1269 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1270 flags, block->fd, offset);
1271 } else {
1272 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1273 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1274 flags, -1, 0);
1275 }
1276 #else
1277 abort();
1278 #endif
1279 } else {
1280 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1281 flags |= MAP_SHARED | MAP_ANONYMOUS;
1282 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1283 flags, -1, 0);
1284 #else
1285 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1286 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1287 flags, -1, 0);
1288 #endif
1289 }
1290 if (area != vaddr) {
1291 fprintf(stderr, "Could not remap addr: "
1292 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1293 length, addr);
1294 exit(1);
1295 }
1296 memory_try_enable_merging(vaddr, length);
1297 qemu_ram_setup_dump(vaddr, length);
1298 }
1299 return;
1300 }
1301 }
1302 }
1303 #endif /* !_WIN32 */
1304
1305 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1306 {
1307 RAMBlock *block;
1308
1309 /* The list is protected by the iothread lock here. */
1310 block = ram_list.mru_block;
1311 if (block && addr - block->offset < block->length) {
1312 goto found;
1313 }
1314 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1315 if (addr - block->offset < block->length) {
1316 goto found;
1317 }
1318 }
1319
1320 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1321 abort();
1322
1323 found:
1324 ram_list.mru_block = block;
1325 return block;
1326 }
1327
1328 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1329 With the exception of the softmmu code in this file, this should
1330 only be used for local memory (e.g. video ram) that the device owns,
1331 and knows it isn't going to access beyond the end of the block.
1332
1333 It should not be used for general purpose DMA.
1334 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1335 */
1336 void *qemu_get_ram_ptr(ram_addr_t addr)
1337 {
1338 RAMBlock *block = qemu_get_ram_block(addr);
1339
1340 if (xen_enabled()) {
1341 /* We need to check if the requested address is in the RAM
1342 * because we don't want to map the entire memory in QEMU.
1343 * In that case just map until the end of the page.
1344 */
1345 if (block->offset == 0) {
1346 return xen_map_cache(addr, 0, 0);
1347 } else if (block->host == NULL) {
1348 block->host =
1349 xen_map_cache(block->offset, block->length, 1);
1350 }
1351 }
1352 return block->host + (addr - block->offset);
1353 }
1354
1355 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1356 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1357 *
1358 * ??? Is this still necessary?
1359 */
1360 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1361 {
1362 RAMBlock *block;
1363
1364 /* The list is protected by the iothread lock here. */
1365 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1366 if (addr - block->offset < block->length) {
1367 if (xen_enabled()) {
1368 /* We need to check if the requested address is in the RAM
1369 * because we don't want to map the entire memory in QEMU.
1370 * In that case just map until the end of the page.
1371 */
1372 if (block->offset == 0) {
1373 return xen_map_cache(addr, 0, 0);
1374 } else if (block->host == NULL) {
1375 block->host =
1376 xen_map_cache(block->offset, block->length, 1);
1377 }
1378 }
1379 return block->host + (addr - block->offset);
1380 }
1381 }
1382
1383 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1384 abort();
1385
1386 return NULL;
1387 }
1388
1389 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1390 * but takes a size argument */
1391 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1392 {
1393 if (*size == 0) {
1394 return NULL;
1395 }
1396 if (xen_enabled()) {
1397 return xen_map_cache(addr, *size, 1);
1398 } else {
1399 RAMBlock *block;
1400
1401 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1402 if (addr - block->offset < block->length) {
1403 if (addr - block->offset + *size > block->length)
1404 *size = block->length - addr + block->offset;
1405 return block->host + (addr - block->offset);
1406 }
1407 }
1408
1409 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1410 abort();
1411 }
1412 }
1413
1414 /* Some of the softmmu routines need to translate from a host pointer
1415 (typically a TLB entry) back to a ram offset. */
1416 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1417 {
1418 RAMBlock *block;
1419 uint8_t *host = ptr;
1420
1421 if (xen_enabled()) {
1422 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1423 return qemu_get_ram_block(*ram_addr)->mr;
1424 }
1425
1426 block = ram_list.mru_block;
1427 if (block && block->host && host - block->host < block->length) {
1428 goto found;
1429 }
1430
1431 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1432 /* This case append when the block is not mapped. */
1433 if (block->host == NULL) {
1434 continue;
1435 }
1436 if (host - block->host < block->length) {
1437 goto found;
1438 }
1439 }
1440
1441 return NULL;
1442
1443 found:
1444 *ram_addr = block->offset + (host - block->host);
1445 return block->mr;
1446 }
1447
1448 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1449 uint64_t val, unsigned size)
1450 {
1451 int dirty_flags;
1452 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1453 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1454 tb_invalidate_phys_page_fast(ram_addr, size);
1455 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1456 }
1457 switch (size) {
1458 case 1:
1459 stb_p(qemu_get_ram_ptr(ram_addr), val);
1460 break;
1461 case 2:
1462 stw_p(qemu_get_ram_ptr(ram_addr), val);
1463 break;
1464 case 4:
1465 stl_p(qemu_get_ram_ptr(ram_addr), val);
1466 break;
1467 default:
1468 abort();
1469 }
1470 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1471 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1472 /* we remove the notdirty callback only if the code has been
1473 flushed */
1474 if (dirty_flags == 0xff)
1475 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1476 }
1477
1478 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1479 unsigned size, bool is_write)
1480 {
1481 return is_write;
1482 }
1483
1484 static const MemoryRegionOps notdirty_mem_ops = {
1485 .write = notdirty_mem_write,
1486 .valid.accepts = notdirty_mem_accepts,
1487 .endianness = DEVICE_NATIVE_ENDIAN,
1488 };
1489
1490 /* Generate a debug exception if a watchpoint has been hit. */
1491 static void check_watchpoint(int offset, int len_mask, int flags)
1492 {
1493 CPUArchState *env = cpu_single_env;
1494 target_ulong pc, cs_base;
1495 target_ulong vaddr;
1496 CPUWatchpoint *wp;
1497 int cpu_flags;
1498
1499 if (env->watchpoint_hit) {
1500 /* We re-entered the check after replacing the TB. Now raise
1501 * the debug interrupt so that is will trigger after the
1502 * current instruction. */
1503 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1504 return;
1505 }
1506 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1507 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1508 if ((vaddr == (wp->vaddr & len_mask) ||
1509 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1510 wp->flags |= BP_WATCHPOINT_HIT;
1511 if (!env->watchpoint_hit) {
1512 env->watchpoint_hit = wp;
1513 tb_check_watchpoint(env);
1514 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1515 env->exception_index = EXCP_DEBUG;
1516 cpu_loop_exit(env);
1517 } else {
1518 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1519 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1520 cpu_resume_from_signal(env, NULL);
1521 }
1522 }
1523 } else {
1524 wp->flags &= ~BP_WATCHPOINT_HIT;
1525 }
1526 }
1527 }
1528
1529 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1530 so these check for a hit then pass through to the normal out-of-line
1531 phys routines. */
1532 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1533 unsigned size)
1534 {
1535 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1536 switch (size) {
1537 case 1: return ldub_phys(addr);
1538 case 2: return lduw_phys(addr);
1539 case 4: return ldl_phys(addr);
1540 default: abort();
1541 }
1542 }
1543
1544 static void watch_mem_write(void *opaque, hwaddr addr,
1545 uint64_t val, unsigned size)
1546 {
1547 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1548 switch (size) {
1549 case 1:
1550 stb_phys(addr, val);
1551 break;
1552 case 2:
1553 stw_phys(addr, val);
1554 break;
1555 case 4:
1556 stl_phys(addr, val);
1557 break;
1558 default: abort();
1559 }
1560 }
1561
1562 static const MemoryRegionOps watch_mem_ops = {
1563 .read = watch_mem_read,
1564 .write = watch_mem_write,
1565 .endianness = DEVICE_NATIVE_ENDIAN,
1566 };
1567
1568 static uint64_t subpage_read(void *opaque, hwaddr addr,
1569 unsigned len)
1570 {
1571 subpage_t *subpage = opaque;
1572 uint8_t buf[4];
1573
1574 #if defined(DEBUG_SUBPAGE)
1575 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1576 subpage, len, addr);
1577 #endif
1578 address_space_read(subpage->as, addr + subpage->base, buf, len);
1579 switch (len) {
1580 case 1:
1581 return ldub_p(buf);
1582 case 2:
1583 return lduw_p(buf);
1584 case 4:
1585 return ldl_p(buf);
1586 default:
1587 abort();
1588 }
1589 }
1590
1591 static void subpage_write(void *opaque, hwaddr addr,
1592 uint64_t value, unsigned len)
1593 {
1594 subpage_t *subpage = opaque;
1595 uint8_t buf[4];
1596
1597 #if defined(DEBUG_SUBPAGE)
1598 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1599 " value %"PRIx64"\n",
1600 __func__, subpage, len, addr, value);
1601 #endif
1602 switch (len) {
1603 case 1:
1604 stb_p(buf, value);
1605 break;
1606 case 2:
1607 stw_p(buf, value);
1608 break;
1609 case 4:
1610 stl_p(buf, value);
1611 break;
1612 default:
1613 abort();
1614 }
1615 address_space_write(subpage->as, addr + subpage->base, buf, len);
1616 }
1617
1618 static bool subpage_accepts(void *opaque, hwaddr addr,
1619 unsigned size, bool is_write)
1620 {
1621 subpage_t *subpage = opaque;
1622 #if defined(DEBUG_SUBPAGE)
1623 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1624 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1625 #endif
1626
1627 return address_space_access_valid(subpage->as, addr + subpage->base,
1628 size, is_write);
1629 }
1630
1631 static const MemoryRegionOps subpage_ops = {
1632 .read = subpage_read,
1633 .write = subpage_write,
1634 .valid.accepts = subpage_accepts,
1635 .endianness = DEVICE_NATIVE_ENDIAN,
1636 };
1637
1638 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1639 uint16_t section)
1640 {
1641 int idx, eidx;
1642
1643 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1644 return -1;
1645 idx = SUBPAGE_IDX(start);
1646 eidx = SUBPAGE_IDX(end);
1647 #if defined(DEBUG_SUBPAGE)
1648 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1649 mmio, start, end, idx, eidx, memory);
1650 #endif
1651 for (; idx <= eidx; idx++) {
1652 mmio->sub_section[idx] = section;
1653 }
1654
1655 return 0;
1656 }
1657
1658 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1659 {
1660 subpage_t *mmio;
1661
1662 mmio = g_malloc0(sizeof(subpage_t));
1663
1664 mmio->as = as;
1665 mmio->base = base;
1666 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1667 "subpage", TARGET_PAGE_SIZE);
1668 mmio->iomem.subpage = true;
1669 #if defined(DEBUG_SUBPAGE)
1670 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1671 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1672 #endif
1673 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1674
1675 return mmio;
1676 }
1677
1678 static uint16_t dummy_section(MemoryRegion *mr)
1679 {
1680 MemoryRegionSection section = {
1681 .mr = mr,
1682 .offset_within_address_space = 0,
1683 .offset_within_region = 0,
1684 .size = int128_2_64(),
1685 };
1686
1687 return phys_section_add(&section);
1688 }
1689
1690 MemoryRegion *iotlb_to_region(hwaddr index)
1691 {
1692 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1693 }
1694
1695 static void io_mem_init(void)
1696 {
1697 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1698 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1699 "unassigned", UINT64_MAX);
1700 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1701 "notdirty", UINT64_MAX);
1702 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1703 "watch", UINT64_MAX);
1704 }
1705
1706 static void mem_begin(MemoryListener *listener)
1707 {
1708 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1709 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1710
1711 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1712 d->as = as;
1713 as->next_dispatch = d;
1714 }
1715
1716 static void mem_commit(MemoryListener *listener)
1717 {
1718 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1719 AddressSpaceDispatch *cur = as->dispatch;
1720 AddressSpaceDispatch *next = as->next_dispatch;
1721
1722 next->nodes = next_map.nodes;
1723 next->sections = next_map.sections;
1724
1725 as->dispatch = next;
1726 g_free(cur);
1727 }
1728
1729 static void core_begin(MemoryListener *listener)
1730 {
1731 uint16_t n;
1732
1733 prev_map = g_new(PhysPageMap, 1);
1734 *prev_map = next_map;
1735
1736 memset(&next_map, 0, sizeof(next_map));
1737 n = dummy_section(&io_mem_unassigned);
1738 assert(n == PHYS_SECTION_UNASSIGNED);
1739 n = dummy_section(&io_mem_notdirty);
1740 assert(n == PHYS_SECTION_NOTDIRTY);
1741 n = dummy_section(&io_mem_rom);
1742 assert(n == PHYS_SECTION_ROM);
1743 n = dummy_section(&io_mem_watch);
1744 assert(n == PHYS_SECTION_WATCH);
1745 }
1746
1747 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1748 * All AddressSpaceDispatch instances have switched to the next map.
1749 */
1750 static void core_commit(MemoryListener *listener)
1751 {
1752 phys_sections_free(prev_map);
1753 }
1754
1755 static void tcg_commit(MemoryListener *listener)
1756 {
1757 CPUArchState *env;
1758
1759 /* since each CPU stores ram addresses in its TLB cache, we must
1760 reset the modified entries */
1761 /* XXX: slow ! */
1762 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1763 tlb_flush(env, 1);
1764 }
1765 }
1766
1767 static void core_log_global_start(MemoryListener *listener)
1768 {
1769 cpu_physical_memory_set_dirty_tracking(1);
1770 }
1771
1772 static void core_log_global_stop(MemoryListener *listener)
1773 {
1774 cpu_physical_memory_set_dirty_tracking(0);
1775 }
1776
1777 static MemoryListener core_memory_listener = {
1778 .begin = core_begin,
1779 .commit = core_commit,
1780 .log_global_start = core_log_global_start,
1781 .log_global_stop = core_log_global_stop,
1782 .priority = 1,
1783 };
1784
1785 static MemoryListener tcg_memory_listener = {
1786 .commit = tcg_commit,
1787 };
1788
1789 void address_space_init_dispatch(AddressSpace *as)
1790 {
1791 as->dispatch = NULL;
1792 as->dispatch_listener = (MemoryListener) {
1793 .begin = mem_begin,
1794 .commit = mem_commit,
1795 .region_add = mem_add,
1796 .region_nop = mem_add,
1797 .priority = 0,
1798 };
1799 memory_listener_register(&as->dispatch_listener, as);
1800 }
1801
1802 void address_space_destroy_dispatch(AddressSpace *as)
1803 {
1804 AddressSpaceDispatch *d = as->dispatch;
1805
1806 memory_listener_unregister(&as->dispatch_listener);
1807 g_free(d);
1808 as->dispatch = NULL;
1809 }
1810
1811 static void memory_map_init(void)
1812 {
1813 system_memory = g_malloc(sizeof(*system_memory));
1814 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1815 address_space_init(&address_space_memory, system_memory, "memory");
1816
1817 system_io = g_malloc(sizeof(*system_io));
1818 memory_region_init(system_io, NULL, "io", 65536);
1819 address_space_init(&address_space_io, system_io, "I/O");
1820
1821 memory_listener_register(&core_memory_listener, &address_space_memory);
1822 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1823 }
1824
1825 MemoryRegion *get_system_memory(void)
1826 {
1827 return system_memory;
1828 }
1829
1830 MemoryRegion *get_system_io(void)
1831 {
1832 return system_io;
1833 }
1834
1835 #endif /* !defined(CONFIG_USER_ONLY) */
1836
1837 /* physical memory access (slow version, mainly for debug) */
1838 #if defined(CONFIG_USER_ONLY)
1839 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1840 uint8_t *buf, int len, int is_write)
1841 {
1842 int l, flags;
1843 target_ulong page;
1844 void * p;
1845
1846 while (len > 0) {
1847 page = addr & TARGET_PAGE_MASK;
1848 l = (page + TARGET_PAGE_SIZE) - addr;
1849 if (l > len)
1850 l = len;
1851 flags = page_get_flags(page);
1852 if (!(flags & PAGE_VALID))
1853 return -1;
1854 if (is_write) {
1855 if (!(flags & PAGE_WRITE))
1856 return -1;
1857 /* XXX: this code should not depend on lock_user */
1858 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1859 return -1;
1860 memcpy(p, buf, l);
1861 unlock_user(p, addr, l);
1862 } else {
1863 if (!(flags & PAGE_READ))
1864 return -1;
1865 /* XXX: this code should not depend on lock_user */
1866 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1867 return -1;
1868 memcpy(buf, p, l);
1869 unlock_user(p, addr, 0);
1870 }
1871 len -= l;
1872 buf += l;
1873 addr += l;
1874 }
1875 return 0;
1876 }
1877
1878 #else
1879
1880 static void invalidate_and_set_dirty(hwaddr addr,
1881 hwaddr length)
1882 {
1883 if (!cpu_physical_memory_is_dirty(addr)) {
1884 /* invalidate code */
1885 tb_invalidate_phys_page_range(addr, addr + length, 0);
1886 /* set dirty bit */
1887 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1888 }
1889 xen_modified_memory(addr, length);
1890 }
1891
1892 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1893 {
1894 if (memory_region_is_ram(mr)) {
1895 return !(is_write && mr->readonly);
1896 }
1897 if (memory_region_is_romd(mr)) {
1898 return !is_write;
1899 }
1900
1901 return false;
1902 }
1903
1904 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1905 {
1906 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1907 return 4;
1908 }
1909 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1910 return 2;
1911 }
1912 return 1;
1913 }
1914
1915 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1916 int len, bool is_write)
1917 {
1918 hwaddr l;
1919 uint8_t *ptr;
1920 uint64_t val;
1921 hwaddr addr1;
1922 MemoryRegion *mr;
1923 bool error = false;
1924
1925 while (len > 0) {
1926 l = len;
1927 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1928
1929 if (is_write) {
1930 if (!memory_access_is_direct(mr, is_write)) {
1931 l = memory_access_size(mr, l, addr1);
1932 /* XXX: could force cpu_single_env to NULL to avoid
1933 potential bugs */
1934 if (l == 4) {
1935 /* 32 bit write access */
1936 val = ldl_p(buf);
1937 error |= io_mem_write(mr, addr1, val, 4);
1938 } else if (l == 2) {
1939 /* 16 bit write access */
1940 val = lduw_p(buf);
1941 error |= io_mem_write(mr, addr1, val, 2);
1942 } else {
1943 /* 8 bit write access */
1944 val = ldub_p(buf);
1945 error |= io_mem_write(mr, addr1, val, 1);
1946 }
1947 } else {
1948 addr1 += memory_region_get_ram_addr(mr);
1949 /* RAM case */
1950 ptr = qemu_get_ram_ptr(addr1);
1951 memcpy(ptr, buf, l);
1952 invalidate_and_set_dirty(addr1, l);
1953 }
1954 } else {
1955 if (!memory_access_is_direct(mr, is_write)) {
1956 /* I/O case */
1957 l = memory_access_size(mr, l, addr1);
1958 if (l == 4) {
1959 /* 32 bit read access */
1960 error |= io_mem_read(mr, addr1, &val, 4);
1961 stl_p(buf, val);
1962 } else if (l == 2) {
1963 /* 16 bit read access */
1964 error |= io_mem_read(mr, addr1, &val, 2);
1965 stw_p(buf, val);
1966 } else {
1967 /* 8 bit read access */
1968 error |= io_mem_read(mr, addr1, &val, 1);
1969 stb_p(buf, val);
1970 }
1971 } else {
1972 /* RAM case */
1973 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1974 memcpy(buf, ptr, l);
1975 }
1976 }
1977 len -= l;
1978 buf += l;
1979 addr += l;
1980 }
1981
1982 return error;
1983 }
1984
1985 bool address_space_write(AddressSpace *as, hwaddr addr,
1986 const uint8_t *buf, int len)
1987 {
1988 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1989 }
1990
1991 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1992 {
1993 return address_space_rw(as, addr, buf, len, false);
1994 }
1995
1996
1997 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1998 int len, int is_write)
1999 {
2000 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2001 }
2002
2003 /* used for ROM loading : can write in RAM and ROM */
2004 void cpu_physical_memory_write_rom(hwaddr addr,
2005 const uint8_t *buf, int len)
2006 {
2007 hwaddr l;
2008 uint8_t *ptr;
2009 hwaddr addr1;
2010 MemoryRegion *mr;
2011
2012 while (len > 0) {
2013 l = len;
2014 mr = address_space_translate(&address_space_memory,
2015 addr, &addr1, &l, true);
2016
2017 if (!(memory_region_is_ram(mr) ||
2018 memory_region_is_romd(mr))) {
2019 /* do nothing */
2020 } else {
2021 addr1 += memory_region_get_ram_addr(mr);
2022 /* ROM/RAM case */
2023 ptr = qemu_get_ram_ptr(addr1);
2024 memcpy(ptr, buf, l);
2025 invalidate_and_set_dirty(addr1, l);
2026 }
2027 len -= l;
2028 buf += l;
2029 addr += l;
2030 }
2031 }
2032
2033 typedef struct {
2034 MemoryRegion *mr;
2035 void *buffer;
2036 hwaddr addr;
2037 hwaddr len;
2038 } BounceBuffer;
2039
2040 static BounceBuffer bounce;
2041
2042 typedef struct MapClient {
2043 void *opaque;
2044 void (*callback)(void *opaque);
2045 QLIST_ENTRY(MapClient) link;
2046 } MapClient;
2047
2048 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2049 = QLIST_HEAD_INITIALIZER(map_client_list);
2050
2051 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2052 {
2053 MapClient *client = g_malloc(sizeof(*client));
2054
2055 client->opaque = opaque;
2056 client->callback = callback;
2057 QLIST_INSERT_HEAD(&map_client_list, client, link);
2058 return client;
2059 }
2060
2061 static void cpu_unregister_map_client(void *_client)
2062 {
2063 MapClient *client = (MapClient *)_client;
2064
2065 QLIST_REMOVE(client, link);
2066 g_free(client);
2067 }
2068
2069 static void cpu_notify_map_clients(void)
2070 {
2071 MapClient *client;
2072
2073 while (!QLIST_EMPTY(&map_client_list)) {
2074 client = QLIST_FIRST(&map_client_list);
2075 client->callback(client->opaque);
2076 cpu_unregister_map_client(client);
2077 }
2078 }
2079
2080 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2081 {
2082 MemoryRegion *mr;
2083 hwaddr l, xlat;
2084
2085 while (len > 0) {
2086 l = len;
2087 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2088 if (!memory_access_is_direct(mr, is_write)) {
2089 l = memory_access_size(mr, l, addr);
2090 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2091 return false;
2092 }
2093 }
2094
2095 len -= l;
2096 addr += l;
2097 }
2098 return true;
2099 }
2100
2101 /* Map a physical memory region into a host virtual address.
2102 * May map a subset of the requested range, given by and returned in *plen.
2103 * May return NULL if resources needed to perform the mapping are exhausted.
2104 * Use only for reads OR writes - not for read-modify-write operations.
2105 * Use cpu_register_map_client() to know when retrying the map operation is
2106 * likely to succeed.
2107 */
2108 void *address_space_map(AddressSpace *as,
2109 hwaddr addr,
2110 hwaddr *plen,
2111 bool is_write)
2112 {
2113 hwaddr len = *plen;
2114 hwaddr done = 0;
2115 hwaddr l, xlat, base;
2116 MemoryRegion *mr, *this_mr;
2117 ram_addr_t raddr;
2118
2119 if (len == 0) {
2120 return NULL;
2121 }
2122
2123 l = len;
2124 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2125 if (!memory_access_is_direct(mr, is_write)) {
2126 if (bounce.buffer) {
2127 return NULL;
2128 }
2129 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2130 bounce.addr = addr;
2131 bounce.len = l;
2132
2133 memory_region_ref(mr);
2134 bounce.mr = mr;
2135 if (!is_write) {
2136 address_space_read(as, addr, bounce.buffer, l);
2137 }
2138
2139 *plen = l;
2140 return bounce.buffer;
2141 }
2142
2143 base = xlat;
2144 raddr = memory_region_get_ram_addr(mr);
2145
2146 for (;;) {
2147 len -= l;
2148 addr += l;
2149 done += l;
2150 if (len == 0) {
2151 break;
2152 }
2153
2154 l = len;
2155 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2156 if (this_mr != mr || xlat != base + done) {
2157 break;
2158 }
2159 }
2160
2161 memory_region_ref(mr);
2162 *plen = done;
2163 return qemu_ram_ptr_length(raddr + base, plen);
2164 }
2165
2166 /* Unmaps a memory region previously mapped by address_space_map().
2167 * Will also mark the memory as dirty if is_write == 1. access_len gives
2168 * the amount of memory that was actually read or written by the caller.
2169 */
2170 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2171 int is_write, hwaddr access_len)
2172 {
2173 if (buffer != bounce.buffer) {
2174 MemoryRegion *mr;
2175 ram_addr_t addr1;
2176
2177 mr = qemu_ram_addr_from_host(buffer, &addr1);
2178 assert(mr != NULL);
2179 if (is_write) {
2180 while (access_len) {
2181 unsigned l;
2182 l = TARGET_PAGE_SIZE;
2183 if (l > access_len)
2184 l = access_len;
2185 invalidate_and_set_dirty(addr1, l);
2186 addr1 += l;
2187 access_len -= l;
2188 }
2189 }
2190 if (xen_enabled()) {
2191 xen_invalidate_map_cache_entry(buffer);
2192 }
2193 memory_region_unref(mr);
2194 return;
2195 }
2196 if (is_write) {
2197 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2198 }
2199 qemu_vfree(bounce.buffer);
2200 bounce.buffer = NULL;
2201 memory_region_unref(bounce.mr);
2202 cpu_notify_map_clients();
2203 }
2204
2205 void *cpu_physical_memory_map(hwaddr addr,
2206 hwaddr *plen,
2207 int is_write)
2208 {
2209 return address_space_map(&address_space_memory, addr, plen, is_write);
2210 }
2211
2212 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2213 int is_write, hwaddr access_len)
2214 {
2215 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2216 }
2217
2218 /* warning: addr must be aligned */
2219 static inline uint32_t ldl_phys_internal(hwaddr addr,
2220 enum device_endian endian)
2221 {
2222 uint8_t *ptr;
2223 uint64_t val;
2224 MemoryRegion *mr;
2225 hwaddr l = 4;
2226 hwaddr addr1;
2227
2228 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2229 false);
2230 if (l < 4 || !memory_access_is_direct(mr, false)) {
2231 /* I/O case */
2232 io_mem_read(mr, addr1, &val, 4);
2233 #if defined(TARGET_WORDS_BIGENDIAN)
2234 if (endian == DEVICE_LITTLE_ENDIAN) {
2235 val = bswap32(val);
2236 }
2237 #else
2238 if (endian == DEVICE_BIG_ENDIAN) {
2239 val = bswap32(val);
2240 }
2241 #endif
2242 } else {
2243 /* RAM case */
2244 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2245 & TARGET_PAGE_MASK)
2246 + addr1);
2247 switch (endian) {
2248 case DEVICE_LITTLE_ENDIAN:
2249 val = ldl_le_p(ptr);
2250 break;
2251 case DEVICE_BIG_ENDIAN:
2252 val = ldl_be_p(ptr);
2253 break;
2254 default:
2255 val = ldl_p(ptr);
2256 break;
2257 }
2258 }
2259 return val;
2260 }
2261
2262 uint32_t ldl_phys(hwaddr addr)
2263 {
2264 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2265 }
2266
2267 uint32_t ldl_le_phys(hwaddr addr)
2268 {
2269 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2270 }
2271
2272 uint32_t ldl_be_phys(hwaddr addr)
2273 {
2274 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2275 }
2276
2277 /* warning: addr must be aligned */
2278 static inline uint64_t ldq_phys_internal(hwaddr addr,
2279 enum device_endian endian)
2280 {
2281 uint8_t *ptr;
2282 uint64_t val;
2283 MemoryRegion *mr;
2284 hwaddr l = 8;
2285 hwaddr addr1;
2286
2287 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2288 false);
2289 if (l < 8 || !memory_access_is_direct(mr, false)) {
2290 /* I/O case */
2291 io_mem_read(mr, addr1, &val, 8);
2292 #if defined(TARGET_WORDS_BIGENDIAN)
2293 if (endian == DEVICE_LITTLE_ENDIAN) {
2294 val = bswap64(val);
2295 }
2296 #else
2297 if (endian == DEVICE_BIG_ENDIAN) {
2298 val = bswap64(val);
2299 }
2300 #endif
2301 } else {
2302 /* RAM case */
2303 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2304 & TARGET_PAGE_MASK)
2305 + addr1);
2306 switch (endian) {
2307 case DEVICE_LITTLE_ENDIAN:
2308 val = ldq_le_p(ptr);
2309 break;
2310 case DEVICE_BIG_ENDIAN:
2311 val = ldq_be_p(ptr);
2312 break;
2313 default:
2314 val = ldq_p(ptr);
2315 break;
2316 }
2317 }
2318 return val;
2319 }
2320
2321 uint64_t ldq_phys(hwaddr addr)
2322 {
2323 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2324 }
2325
2326 uint64_t ldq_le_phys(hwaddr addr)
2327 {
2328 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2329 }
2330
2331 uint64_t ldq_be_phys(hwaddr addr)
2332 {
2333 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2334 }
2335
2336 /* XXX: optimize */
2337 uint32_t ldub_phys(hwaddr addr)
2338 {
2339 uint8_t val;
2340 cpu_physical_memory_read(addr, &val, 1);
2341 return val;
2342 }
2343
2344 /* warning: addr must be aligned */
2345 static inline uint32_t lduw_phys_internal(hwaddr addr,
2346 enum device_endian endian)
2347 {
2348 uint8_t *ptr;
2349 uint64_t val;
2350 MemoryRegion *mr;
2351 hwaddr l = 2;
2352 hwaddr addr1;
2353
2354 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2355 false);
2356 if (l < 2 || !memory_access_is_direct(mr, false)) {
2357 /* I/O case */
2358 io_mem_read(mr, addr1, &val, 2);
2359 #if defined(TARGET_WORDS_BIGENDIAN)
2360 if (endian == DEVICE_LITTLE_ENDIAN) {
2361 val = bswap16(val);
2362 }
2363 #else
2364 if (endian == DEVICE_BIG_ENDIAN) {
2365 val = bswap16(val);
2366 }
2367 #endif
2368 } else {
2369 /* RAM case */
2370 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2371 & TARGET_PAGE_MASK)
2372 + addr1);
2373 switch (endian) {
2374 case DEVICE_LITTLE_ENDIAN:
2375 val = lduw_le_p(ptr);
2376 break;
2377 case DEVICE_BIG_ENDIAN:
2378 val = lduw_be_p(ptr);
2379 break;
2380 default:
2381 val = lduw_p(ptr);
2382 break;
2383 }
2384 }
2385 return val;
2386 }
2387
2388 uint32_t lduw_phys(hwaddr addr)
2389 {
2390 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2391 }
2392
2393 uint32_t lduw_le_phys(hwaddr addr)
2394 {
2395 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2396 }
2397
2398 uint32_t lduw_be_phys(hwaddr addr)
2399 {
2400 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2401 }
2402
2403 /* warning: addr must be aligned. The ram page is not masked as dirty
2404 and the code inside is not invalidated. It is useful if the dirty
2405 bits are used to track modified PTEs */
2406 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2407 {
2408 uint8_t *ptr;
2409 MemoryRegion *mr;
2410 hwaddr l = 4;
2411 hwaddr addr1;
2412
2413 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2414 true);
2415 if (l < 4 || !memory_access_is_direct(mr, true)) {
2416 io_mem_write(mr, addr1, val, 4);
2417 } else {
2418 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2419 ptr = qemu_get_ram_ptr(addr1);
2420 stl_p(ptr, val);
2421
2422 if (unlikely(in_migration)) {
2423 if (!cpu_physical_memory_is_dirty(addr1)) {
2424 /* invalidate code */
2425 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2426 /* set dirty bit */
2427 cpu_physical_memory_set_dirty_flags(
2428 addr1, (0xff & ~CODE_DIRTY_FLAG));
2429 }
2430 }
2431 }
2432 }
2433
2434 /* warning: addr must be aligned */
2435 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2436 enum device_endian endian)
2437 {
2438 uint8_t *ptr;
2439 MemoryRegion *mr;
2440 hwaddr l = 4;
2441 hwaddr addr1;
2442
2443 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2444 true);
2445 if (l < 4 || !memory_access_is_direct(mr, true)) {
2446 #if defined(TARGET_WORDS_BIGENDIAN)
2447 if (endian == DEVICE_LITTLE_ENDIAN) {
2448 val = bswap32(val);
2449 }
2450 #else
2451 if (endian == DEVICE_BIG_ENDIAN) {
2452 val = bswap32(val);
2453 }
2454 #endif
2455 io_mem_write(mr, addr1, val, 4);
2456 } else {
2457 /* RAM case */
2458 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2459 ptr = qemu_get_ram_ptr(addr1);
2460 switch (endian) {
2461 case DEVICE_LITTLE_ENDIAN:
2462 stl_le_p(ptr, val);
2463 break;
2464 case DEVICE_BIG_ENDIAN:
2465 stl_be_p(ptr, val);
2466 break;
2467 default:
2468 stl_p(ptr, val);
2469 break;
2470 }
2471 invalidate_and_set_dirty(addr1, 4);
2472 }
2473 }
2474
2475 void stl_phys(hwaddr addr, uint32_t val)
2476 {
2477 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2478 }
2479
2480 void stl_le_phys(hwaddr addr, uint32_t val)
2481 {
2482 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2483 }
2484
2485 void stl_be_phys(hwaddr addr, uint32_t val)
2486 {
2487 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2488 }
2489
2490 /* XXX: optimize */
2491 void stb_phys(hwaddr addr, uint32_t val)
2492 {
2493 uint8_t v = val;
2494 cpu_physical_memory_write(addr, &v, 1);
2495 }
2496
2497 /* warning: addr must be aligned */
2498 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2499 enum device_endian endian)
2500 {
2501 uint8_t *ptr;
2502 MemoryRegion *mr;
2503 hwaddr l = 2;
2504 hwaddr addr1;
2505
2506 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2507 true);
2508 if (l < 2 || !memory_access_is_direct(mr, true)) {
2509 #if defined(TARGET_WORDS_BIGENDIAN)
2510 if (endian == DEVICE_LITTLE_ENDIAN) {
2511 val = bswap16(val);
2512 }
2513 #else
2514 if (endian == DEVICE_BIG_ENDIAN) {
2515 val = bswap16(val);
2516 }
2517 #endif
2518 io_mem_write(mr, addr1, val, 2);
2519 } else {
2520 /* RAM case */
2521 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2522 ptr = qemu_get_ram_ptr(addr1);
2523 switch (endian) {
2524 case DEVICE_LITTLE_ENDIAN:
2525 stw_le_p(ptr, val);
2526 break;
2527 case DEVICE_BIG_ENDIAN:
2528 stw_be_p(ptr, val);
2529 break;
2530 default:
2531 stw_p(ptr, val);
2532 break;
2533 }
2534 invalidate_and_set_dirty(addr1, 2);
2535 }
2536 }
2537
2538 void stw_phys(hwaddr addr, uint32_t val)
2539 {
2540 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2541 }
2542
2543 void stw_le_phys(hwaddr addr, uint32_t val)
2544 {
2545 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2546 }
2547
2548 void stw_be_phys(hwaddr addr, uint32_t val)
2549 {
2550 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2551 }
2552
2553 /* XXX: optimize */
2554 void stq_phys(hwaddr addr, uint64_t val)
2555 {
2556 val = tswap64(val);
2557 cpu_physical_memory_write(addr, &val, 8);
2558 }
2559
2560 void stq_le_phys(hwaddr addr, uint64_t val)
2561 {
2562 val = cpu_to_le64(val);
2563 cpu_physical_memory_write(addr, &val, 8);
2564 }
2565
2566 void stq_be_phys(hwaddr addr, uint64_t val)
2567 {
2568 val = cpu_to_be64(val);
2569 cpu_physical_memory_write(addr, &val, 8);
2570 }
2571
2572 /* virtual memory access for debug (includes writing to ROM) */
2573 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2574 uint8_t *buf, int len, int is_write)
2575 {
2576 int l;
2577 hwaddr phys_addr;
2578 target_ulong page;
2579
2580 while (len > 0) {
2581 page = addr & TARGET_PAGE_MASK;
2582 phys_addr = cpu_get_phys_page_debug(env, page);
2583 /* if no physical page mapped, return an error */
2584 if (phys_addr == -1)
2585 return -1;
2586 l = (page + TARGET_PAGE_SIZE) - addr;
2587 if (l > len)
2588 l = len;
2589 phys_addr += (addr & ~TARGET_PAGE_MASK);
2590 if (is_write)
2591 cpu_physical_memory_write_rom(phys_addr, buf, l);
2592 else
2593 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2594 len -= l;
2595 buf += l;
2596 addr += l;
2597 }
2598 return 0;
2599 }
2600 #endif
2601
2602 #if !defined(CONFIG_USER_ONLY)
2603
2604 /*
2605 * A helper function for the _utterly broken_ virtio device model to find out if
2606 * it's running on a big endian machine. Don't do this at home kids!
2607 */
2608 bool virtio_is_big_endian(void);
2609 bool virtio_is_big_endian(void)
2610 {
2611 #if defined(TARGET_WORDS_BIGENDIAN)
2612 return true;
2613 #else
2614 return false;
2615 #endif
2616 }
2617
2618 #endif
2619
2620 #ifndef CONFIG_USER_ONLY
2621 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2622 {
2623 MemoryRegion*mr;
2624 hwaddr l = 1;
2625
2626 mr = address_space_translate(&address_space_memory,
2627 phys_addr, &phys_addr, &l, false);
2628
2629 return !(memory_region_is_ram(mr) ||
2630 memory_region_is_romd(mr));
2631 }
2632
2633 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2634 {
2635 RAMBlock *block;
2636
2637 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2638 func(block->host, block->offset, block->length, opaque);
2639 }
2640 }
2641 #endif