]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: check MRU in qemu_ram_addr_from_host
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
97 AddressSpace *as;
98 };
99
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
102 MemoryRegion iomem;
103 AddressSpace *as;
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106 } subpage_t;
107
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
114
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
120
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
124
125 static MemoryRegion io_mem_watch;
126 #endif
127
128 #if !defined(CONFIG_USER_ONLY)
129
130 static void phys_map_node_reserve(unsigned nodes)
131 {
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
140 }
141
142 static uint16_t phys_map_node_alloc(void)
143 {
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
153 }
154 return ret;
155 }
156
157 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
159 int level)
160 {
161 PhysPageEntry *p;
162 int i;
163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
164
165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
170 p[i].is_leaf = 1;
171 p[i].ptr = phys_section_unassigned;
172 }
173 }
174 } else {
175 p = phys_map_nodes[lp->ptr];
176 }
177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
178
179 while (*nb && lp < &p[L2_SIZE]) {
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
182 lp->ptr = leaf;
183 *index += step;
184 *nb -= step;
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
189 }
190 }
191
192 static void phys_page_set(AddressSpaceDispatch *d,
193 hwaddr index, hwaddr nb,
194 uint16_t leaf)
195 {
196 /* Wildly overreserve - it doesn't matter much. */
197 phys_map_node_reserve(3 * P_L2_LEVELS);
198
199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
200 }
201
202 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
203 {
204 PhysPageEntry lp = d->phys_map;
205 PhysPageEntry *p;
206 int i;
207
208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
210 return &phys_sections[phys_section_unassigned];
211 }
212 p = phys_map_nodes[lp.ptr];
213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
214 }
215 return &phys_sections[lp.ptr];
216 }
217
218 bool memory_region_is_unassigned(MemoryRegion *mr)
219 {
220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
221 && mr != &io_mem_watch;
222 }
223
224 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
225 hwaddr addr,
226 bool resolve_subpage)
227 {
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
237 }
238
239 static MemoryRegionSection *
240 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
242 {
243 MemoryRegionSection *section;
244 Int128 diff;
245
246 section = address_space_lookup_region(as, addr, resolve_subpage);
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
255 return section;
256 }
257
258 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
261 {
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
290 }
291
292 MemoryRegionSection *
293 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295 {
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
301 }
302 #endif
303
304 void cpu_exec_init_all(void)
305 {
306 #if !defined(CONFIG_USER_ONLY)
307 qemu_mutex_init(&ram_list.mutex);
308 memory_map_init();
309 io_mem_init();
310 #endif
311 }
312
313 #if !defined(CONFIG_USER_ONLY)
314
315 static int cpu_common_post_load(void *opaque, int version_id)
316 {
317 CPUState *cpu = opaque;
318
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
323
324 return 0;
325 }
326
327 const VMStateDescription vmstate_cpu_common = {
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
336 VMSTATE_END_OF_LIST()
337 }
338 };
339
340 #endif
341
342 CPUState *qemu_get_cpu(int index)
343 {
344 CPUArchState *env = first_cpu;
345 CPUState *cpu = NULL;
346
347 while (env) {
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
350 break;
351 }
352 env = env->next_cpu;
353 }
354
355 return env ? cpu : NULL;
356 }
357
358 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359 {
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366 }
367
368 void cpu_exec_init(CPUArchState *env)
369 {
370 CPUState *cpu = ENV_GET_CPU(env);
371 CPUClass *cc = CPU_GET_CLASS(cpu);
372 CPUArchState **penv;
373 int cpu_index;
374
375 #if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377 #endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
385 cpu->cpu_index = cpu_index;
386 cpu->numa_node = 0;
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389 #ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391 #endif
392 *penv = env;
393 #if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395 #endif
396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
397 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
400 assert(cc->vmsd == NULL);
401 #endif
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
405 }
406
407 #if defined(TARGET_HAS_ICE)
408 #if defined(CONFIG_USER_ONLY)
409 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
410 {
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412 }
413 #else
414 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415 {
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
418 }
419 #endif
420 #endif /* TARGET_HAS_ICE */
421
422 #if defined(CONFIG_USER_ONLY)
423 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
424
425 {
426 }
427
428 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
429 int flags, CPUWatchpoint **watchpoint)
430 {
431 return -ENOSYS;
432 }
433 #else
434 /* Add a watchpoint. */
435 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
436 int flags, CPUWatchpoint **watchpoint)
437 {
438 target_ulong len_mask = ~(len - 1);
439 CPUWatchpoint *wp;
440
441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
448 wp = g_malloc(sizeof(*wp));
449
450 wp->vaddr = addr;
451 wp->len_mask = len_mask;
452 wp->flags = flags;
453
454 /* keep all GDB-injected watchpoints in front */
455 if (flags & BP_GDB)
456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
457 else
458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
459
460 tlb_flush_page(env, addr);
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
465 }
466
467 /* Remove a specific watchpoint. */
468 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
469 int flags)
470 {
471 target_ulong len_mask = ~(len - 1);
472 CPUWatchpoint *wp;
473
474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
475 if (addr == wp->vaddr && len_mask == wp->len_mask
476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
477 cpu_watchpoint_remove_by_ref(env, wp);
478 return 0;
479 }
480 }
481 return -ENOENT;
482 }
483
484 /* Remove a specific watchpoint by reference. */
485 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
486 {
487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
488
489 tlb_flush_page(env, watchpoint->vaddr);
490
491 g_free(watchpoint);
492 }
493
494 /* Remove all matching watchpoints. */
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
496 {
497 CPUWatchpoint *wp, *next;
498
499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
502 }
503 }
504 #endif
505
506 /* Add a breakpoint. */
507 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
508 CPUBreakpoint **breakpoint)
509 {
510 #if defined(TARGET_HAS_ICE)
511 CPUBreakpoint *bp;
512
513 bp = g_malloc(sizeof(*bp));
514
515 bp->pc = pc;
516 bp->flags = flags;
517
518 /* keep all GDB-injected breakpoints in front */
519 if (flags & BP_GDB)
520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
521 else
522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
523
524 breakpoint_invalidate(env, pc);
525
526 if (breakpoint)
527 *breakpoint = bp;
528 return 0;
529 #else
530 return -ENOSYS;
531 #endif
532 }
533
534 /* Remove a specific breakpoint. */
535 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
536 {
537 #if defined(TARGET_HAS_ICE)
538 CPUBreakpoint *bp;
539
540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
545 }
546 return -ENOENT;
547 #else
548 return -ENOSYS;
549 #endif
550 }
551
552 /* Remove a specific breakpoint by reference. */
553 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
554 {
555 #if defined(TARGET_HAS_ICE)
556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
557
558 breakpoint_invalidate(env, breakpoint->pc);
559
560 g_free(breakpoint);
561 #endif
562 }
563
564 /* Remove all matching breakpoints. */
565 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
566 {
567 #if defined(TARGET_HAS_ICE)
568 CPUBreakpoint *bp, *next;
569
570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
573 }
574 #endif
575 }
576
577 /* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
579 void cpu_single_step(CPUArchState *env, int enabled)
580 {
581 #if defined(TARGET_HAS_ICE)
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
587 /* must flush all the translated code to avoid inconsistencies */
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
632 #if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635 #endif
636
637 memcpy(new_env, env, sizeof(CPUArchState));
638
639 /* Preserve chaining. */
640 new_env->next_cpu = next_cpu;
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
725 iotlb = section - phys_sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
766 memory_region_ref(section->mr);
767 return phys_sections_nb++;
768 }
769
770 static void phys_section_destroy(MemoryRegion *mr)
771 {
772 memory_region_unref(mr);
773
774 if (mr->subpage) {
775 subpage_t *subpage = container_of(mr, subpage_t, iomem);
776 memory_region_destroy(&subpage->iomem);
777 g_free(subpage);
778 }
779 }
780
781 static void phys_sections_clear(void)
782 {
783 while (phys_sections_nb > 0) {
784 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
785 phys_section_destroy(section->mr);
786 }
787 phys_map_nodes_nb = 0;
788 }
789
790 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
791 {
792 subpage_t *subpage;
793 hwaddr base = section->offset_within_address_space
794 & TARGET_PAGE_MASK;
795 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
796 MemoryRegionSection subsection = {
797 .offset_within_address_space = base,
798 .size = int128_make64(TARGET_PAGE_SIZE),
799 };
800 hwaddr start, end;
801
802 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
803
804 if (!(existing->mr->subpage)) {
805 subpage = subpage_init(d->as, base);
806 subsection.mr = &subpage->iomem;
807 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
808 phys_section_add(&subsection));
809 } else {
810 subpage = container_of(existing->mr, subpage_t, iomem);
811 }
812 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
813 end = start + int128_get64(section->size) - 1;
814 subpage_register(subpage, start, end, phys_section_add(section));
815 }
816
817
818 static void register_multipage(AddressSpaceDispatch *d,
819 MemoryRegionSection *section)
820 {
821 hwaddr start_addr = section->offset_within_address_space;
822 uint16_t section_index = phys_section_add(section);
823 uint64_t num_pages = int128_get64(int128_rshift(section->size,
824 TARGET_PAGE_BITS));
825
826 assert(num_pages);
827 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
828 }
829
830 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
831 {
832 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
833 MemoryRegionSection now = *section, remain = *section;
834 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
835
836 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
837 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
838 - now.offset_within_address_space;
839
840 now.size = int128_min(int128_make64(left), now.size);
841 register_subpage(d, &now);
842 } else {
843 now.size = int128_zero();
844 }
845 while (int128_ne(remain.size, now.size)) {
846 remain.size = int128_sub(remain.size, now.size);
847 remain.offset_within_address_space += int128_get64(now.size);
848 remain.offset_within_region += int128_get64(now.size);
849 now = remain;
850 if (int128_lt(remain.size, page_size)) {
851 register_subpage(d, &now);
852 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
853 now.size = page_size;
854 register_subpage(d, &now);
855 } else {
856 now.size = int128_and(now.size, int128_neg(page_size));
857 register_multipage(d, &now);
858 }
859 }
860 }
861
862 void qemu_flush_coalesced_mmio_buffer(void)
863 {
864 if (kvm_enabled())
865 kvm_flush_coalesced_mmio_buffer();
866 }
867
868 void qemu_mutex_lock_ramlist(void)
869 {
870 qemu_mutex_lock(&ram_list.mutex);
871 }
872
873 void qemu_mutex_unlock_ramlist(void)
874 {
875 qemu_mutex_unlock(&ram_list.mutex);
876 }
877
878 #if defined(__linux__) && !defined(TARGET_S390X)
879
880 #include <sys/vfs.h>
881
882 #define HUGETLBFS_MAGIC 0x958458f6
883
884 static long gethugepagesize(const char *path)
885 {
886 struct statfs fs;
887 int ret;
888
889 do {
890 ret = statfs(path, &fs);
891 } while (ret != 0 && errno == EINTR);
892
893 if (ret != 0) {
894 perror(path);
895 return 0;
896 }
897
898 if (fs.f_type != HUGETLBFS_MAGIC)
899 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
900
901 return fs.f_bsize;
902 }
903
904 static void *file_ram_alloc(RAMBlock *block,
905 ram_addr_t memory,
906 const char *path)
907 {
908 char *filename;
909 char *sanitized_name;
910 char *c;
911 void *area;
912 int fd;
913 #ifdef MAP_POPULATE
914 int flags;
915 #endif
916 unsigned long hpagesize;
917
918 hpagesize = gethugepagesize(path);
919 if (!hpagesize) {
920 return NULL;
921 }
922
923 if (memory < hpagesize) {
924 return NULL;
925 }
926
927 if (kvm_enabled() && !kvm_has_sync_mmu()) {
928 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
929 return NULL;
930 }
931
932 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
933 sanitized_name = g_strdup(block->mr->name);
934 for (c = sanitized_name; *c != '\0'; c++) {
935 if (*c == '/')
936 *c = '_';
937 }
938
939 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
940 sanitized_name);
941 g_free(sanitized_name);
942
943 fd = mkstemp(filename);
944 if (fd < 0) {
945 perror("unable to create backing store for hugepages");
946 g_free(filename);
947 return NULL;
948 }
949 unlink(filename);
950 g_free(filename);
951
952 memory = (memory+hpagesize-1) & ~(hpagesize-1);
953
954 /*
955 * ftruncate is not supported by hugetlbfs in older
956 * hosts, so don't bother bailing out on errors.
957 * If anything goes wrong with it under other filesystems,
958 * mmap will fail.
959 */
960 if (ftruncate(fd, memory))
961 perror("ftruncate");
962
963 #ifdef MAP_POPULATE
964 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
965 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
966 * to sidestep this quirk.
967 */
968 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
969 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
970 #else
971 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
972 #endif
973 if (area == MAP_FAILED) {
974 perror("file_ram_alloc: can't mmap RAM pages");
975 close(fd);
976 return (NULL);
977 }
978 block->fd = fd;
979 return area;
980 }
981 #endif
982
983 static ram_addr_t find_ram_offset(ram_addr_t size)
984 {
985 RAMBlock *block, *next_block;
986 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
987
988 assert(size != 0); /* it would hand out same offset multiple times */
989
990 if (QTAILQ_EMPTY(&ram_list.blocks))
991 return 0;
992
993 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
994 ram_addr_t end, next = RAM_ADDR_MAX;
995
996 end = block->offset + block->length;
997
998 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
999 if (next_block->offset >= end) {
1000 next = MIN(next, next_block->offset);
1001 }
1002 }
1003 if (next - end >= size && next - end < mingap) {
1004 offset = end;
1005 mingap = next - end;
1006 }
1007 }
1008
1009 if (offset == RAM_ADDR_MAX) {
1010 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1011 (uint64_t)size);
1012 abort();
1013 }
1014
1015 return offset;
1016 }
1017
1018 ram_addr_t last_ram_offset(void)
1019 {
1020 RAMBlock *block;
1021 ram_addr_t last = 0;
1022
1023 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1024 last = MAX(last, block->offset + block->length);
1025
1026 return last;
1027 }
1028
1029 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1030 {
1031 int ret;
1032 QemuOpts *machine_opts;
1033
1034 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1035 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1036 if (machine_opts &&
1037 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1038 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1039 if (ret) {
1040 perror("qemu_madvise");
1041 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1042 "but dump_guest_core=off specified\n");
1043 }
1044 }
1045 }
1046
1047 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1048 {
1049 RAMBlock *new_block, *block;
1050
1051 new_block = NULL;
1052 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1053 if (block->offset == addr) {
1054 new_block = block;
1055 break;
1056 }
1057 }
1058 assert(new_block);
1059 assert(!new_block->idstr[0]);
1060
1061 if (dev) {
1062 char *id = qdev_get_dev_path(dev);
1063 if (id) {
1064 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1065 g_free(id);
1066 }
1067 }
1068 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1069
1070 /* This assumes the iothread lock is taken here too. */
1071 qemu_mutex_lock_ramlist();
1072 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1073 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1074 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1075 new_block->idstr);
1076 abort();
1077 }
1078 }
1079 qemu_mutex_unlock_ramlist();
1080 }
1081
1082 static int memory_try_enable_merging(void *addr, size_t len)
1083 {
1084 QemuOpts *opts;
1085
1086 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1087 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093 }
1094
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097 {
1098 RAMBlock *block, *new_block;
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1102
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1105 new_block->mr = mr;
1106 new_block->offset = find_ram_offset(size);
1107 if (host) {
1108 new_block->host = host;
1109 new_block->flags |= RAM_PREALLOC_MASK;
1110 } else {
1111 if (mem_path) {
1112 #if defined (__linux__) && !defined(TARGET_S390X)
1113 new_block->host = file_ram_alloc(new_block, size, mem_path);
1114 if (!new_block->host) {
1115 new_block->host = qemu_anon_ram_alloc(size);
1116 memory_try_enable_merging(new_block->host, size);
1117 }
1118 #else
1119 fprintf(stderr, "-mem-path option unsupported\n");
1120 exit(1);
1121 #endif
1122 } else {
1123 if (xen_enabled()) {
1124 xen_ram_alloc(new_block->offset, size, mr);
1125 } else if (kvm_enabled()) {
1126 /* some s390/kvm configurations have special constraints */
1127 new_block->host = kvm_ram_alloc(size);
1128 } else {
1129 new_block->host = qemu_anon_ram_alloc(size);
1130 }
1131 memory_try_enable_merging(new_block->host, size);
1132 }
1133 }
1134 new_block->length = size;
1135
1136 /* Keep the list sorted from biggest to smallest block. */
1137 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1138 if (block->length < new_block->length) {
1139 break;
1140 }
1141 }
1142 if (block) {
1143 QTAILQ_INSERT_BEFORE(block, new_block, next);
1144 } else {
1145 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1146 }
1147 ram_list.mru_block = NULL;
1148
1149 ram_list.version++;
1150 qemu_mutex_unlock_ramlist();
1151
1152 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1153 last_ram_offset() >> TARGET_PAGE_BITS);
1154 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1155 0, size >> TARGET_PAGE_BITS);
1156 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1157
1158 qemu_ram_setup_dump(new_block->host, size);
1159 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1160
1161 if (kvm_enabled())
1162 kvm_setup_guest_memory(new_block->host, size);
1163
1164 return new_block->offset;
1165 }
1166
1167 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1168 {
1169 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1170 }
1171
1172 void qemu_ram_free_from_ptr(ram_addr_t addr)
1173 {
1174 RAMBlock *block;
1175
1176 /* This assumes the iothread lock is taken here too. */
1177 qemu_mutex_lock_ramlist();
1178 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1179 if (addr == block->offset) {
1180 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1181 ram_list.mru_block = NULL;
1182 ram_list.version++;
1183 g_free(block);
1184 break;
1185 }
1186 }
1187 qemu_mutex_unlock_ramlist();
1188 }
1189
1190 void qemu_ram_free(ram_addr_t addr)
1191 {
1192 RAMBlock *block;
1193
1194 /* This assumes the iothread lock is taken here too. */
1195 qemu_mutex_lock_ramlist();
1196 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1197 if (addr == block->offset) {
1198 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1199 ram_list.mru_block = NULL;
1200 ram_list.version++;
1201 if (block->flags & RAM_PREALLOC_MASK) {
1202 ;
1203 } else if (mem_path) {
1204 #if defined (__linux__) && !defined(TARGET_S390X)
1205 if (block->fd) {
1206 munmap(block->host, block->length);
1207 close(block->fd);
1208 } else {
1209 qemu_anon_ram_free(block->host, block->length);
1210 }
1211 #else
1212 abort();
1213 #endif
1214 } else {
1215 if (xen_enabled()) {
1216 xen_invalidate_map_cache_entry(block->host);
1217 } else {
1218 qemu_anon_ram_free(block->host, block->length);
1219 }
1220 }
1221 g_free(block);
1222 break;
1223 }
1224 }
1225 qemu_mutex_unlock_ramlist();
1226
1227 }
1228
1229 #ifndef _WIN32
1230 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1231 {
1232 RAMBlock *block;
1233 ram_addr_t offset;
1234 int flags;
1235 void *area, *vaddr;
1236
1237 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1238 offset = addr - block->offset;
1239 if (offset < block->length) {
1240 vaddr = block->host + offset;
1241 if (block->flags & RAM_PREALLOC_MASK) {
1242 ;
1243 } else {
1244 flags = MAP_FIXED;
1245 munmap(vaddr, length);
1246 if (mem_path) {
1247 #if defined(__linux__) && !defined(TARGET_S390X)
1248 if (block->fd) {
1249 #ifdef MAP_POPULATE
1250 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1251 MAP_PRIVATE;
1252 #else
1253 flags |= MAP_PRIVATE;
1254 #endif
1255 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1256 flags, block->fd, offset);
1257 } else {
1258 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, -1, 0);
1261 }
1262 #else
1263 abort();
1264 #endif
1265 } else {
1266 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1267 flags |= MAP_SHARED | MAP_ANONYMOUS;
1268 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1269 flags, -1, 0);
1270 #else
1271 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1273 flags, -1, 0);
1274 #endif
1275 }
1276 if (area != vaddr) {
1277 fprintf(stderr, "Could not remap addr: "
1278 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1279 length, addr);
1280 exit(1);
1281 }
1282 memory_try_enable_merging(vaddr, length);
1283 qemu_ram_setup_dump(vaddr, length);
1284 }
1285 return;
1286 }
1287 }
1288 }
1289 #endif /* !_WIN32 */
1290
1291 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1292 With the exception of the softmmu code in this file, this should
1293 only be used for local memory (e.g. video ram) that the device owns,
1294 and knows it isn't going to access beyond the end of the block.
1295
1296 It should not be used for general purpose DMA.
1297 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1298 */
1299 void *qemu_get_ram_ptr(ram_addr_t addr)
1300 {
1301 RAMBlock *block;
1302
1303 /* The list is protected by the iothread lock here. */
1304 block = ram_list.mru_block;
1305 if (block && addr - block->offset < block->length) {
1306 goto found;
1307 }
1308 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1309 if (addr - block->offset < block->length) {
1310 goto found;
1311 }
1312 }
1313
1314 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1315 abort();
1316
1317 found:
1318 ram_list.mru_block = block;
1319 if (xen_enabled()) {
1320 /* We need to check if the requested address is in the RAM
1321 * because we don't want to map the entire memory in QEMU.
1322 * In that case just map until the end of the page.
1323 */
1324 if (block->offset == 0) {
1325 return xen_map_cache(addr, 0, 0);
1326 } else if (block->host == NULL) {
1327 block->host =
1328 xen_map_cache(block->offset, block->length, 1);
1329 }
1330 }
1331 return block->host + (addr - block->offset);
1332 }
1333
1334 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1335 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1336 *
1337 * ??? Is this still necessary?
1338 */
1339 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1340 {
1341 RAMBlock *block;
1342
1343 /* The list is protected by the iothread lock here. */
1344 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1345 if (addr - block->offset < block->length) {
1346 if (xen_enabled()) {
1347 /* We need to check if the requested address is in the RAM
1348 * because we don't want to map the entire memory in QEMU.
1349 * In that case just map until the end of the page.
1350 */
1351 if (block->offset == 0) {
1352 return xen_map_cache(addr, 0, 0);
1353 } else if (block->host == NULL) {
1354 block->host =
1355 xen_map_cache(block->offset, block->length, 1);
1356 }
1357 }
1358 return block->host + (addr - block->offset);
1359 }
1360 }
1361
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1364
1365 return NULL;
1366 }
1367
1368 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1369 * but takes a size argument */
1370 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1371 {
1372 if (*size == 0) {
1373 return NULL;
1374 }
1375 if (xen_enabled()) {
1376 return xen_map_cache(addr, *size, 1);
1377 } else {
1378 RAMBlock *block;
1379
1380 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1381 if (addr - block->offset < block->length) {
1382 if (addr - block->offset + *size > block->length)
1383 *size = block->length - addr + block->offset;
1384 return block->host + (addr - block->offset);
1385 }
1386 }
1387
1388 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1389 abort();
1390 }
1391 }
1392
1393 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1394 {
1395 RAMBlock *block;
1396 uint8_t *host = ptr;
1397
1398 if (xen_enabled()) {
1399 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1400 return 0;
1401 }
1402
1403 block = ram_list.mru_block;
1404 if (block && block->host && host - block->host < block->length) {
1405 goto found;
1406 }
1407
1408 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1409 /* This case append when the block is not mapped. */
1410 if (block->host == NULL) {
1411 continue;
1412 }
1413 if (host - block->host < block->length) {
1414 goto found;
1415 }
1416 }
1417
1418 return -1;
1419
1420 found:
1421 *ram_addr = block->offset + (host - block->host);
1422 return 0;
1423 }
1424
1425 /* Some of the softmmu routines need to translate from a host pointer
1426 (typically a TLB entry) back to a ram offset. */
1427 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1428 {
1429 ram_addr_t ram_addr;
1430
1431 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1432 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1433 abort();
1434 }
1435 return ram_addr;
1436 }
1437
1438 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1439 uint64_t val, unsigned size)
1440 {
1441 int dirty_flags;
1442 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1443 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1444 tb_invalidate_phys_page_fast(ram_addr, size);
1445 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1446 }
1447 switch (size) {
1448 case 1:
1449 stb_p(qemu_get_ram_ptr(ram_addr), val);
1450 break;
1451 case 2:
1452 stw_p(qemu_get_ram_ptr(ram_addr), val);
1453 break;
1454 case 4:
1455 stl_p(qemu_get_ram_ptr(ram_addr), val);
1456 break;
1457 default:
1458 abort();
1459 }
1460 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1461 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1462 /* we remove the notdirty callback only if the code has been
1463 flushed */
1464 if (dirty_flags == 0xff)
1465 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1466 }
1467
1468 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1469 unsigned size, bool is_write)
1470 {
1471 return is_write;
1472 }
1473
1474 static const MemoryRegionOps notdirty_mem_ops = {
1475 .write = notdirty_mem_write,
1476 .valid.accepts = notdirty_mem_accepts,
1477 .endianness = DEVICE_NATIVE_ENDIAN,
1478 };
1479
1480 /* Generate a debug exception if a watchpoint has been hit. */
1481 static void check_watchpoint(int offset, int len_mask, int flags)
1482 {
1483 CPUArchState *env = cpu_single_env;
1484 target_ulong pc, cs_base;
1485 target_ulong vaddr;
1486 CPUWatchpoint *wp;
1487 int cpu_flags;
1488
1489 if (env->watchpoint_hit) {
1490 /* We re-entered the check after replacing the TB. Now raise
1491 * the debug interrupt so that is will trigger after the
1492 * current instruction. */
1493 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1494 return;
1495 }
1496 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1497 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1498 if ((vaddr == (wp->vaddr & len_mask) ||
1499 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1500 wp->flags |= BP_WATCHPOINT_HIT;
1501 if (!env->watchpoint_hit) {
1502 env->watchpoint_hit = wp;
1503 tb_check_watchpoint(env);
1504 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1505 env->exception_index = EXCP_DEBUG;
1506 cpu_loop_exit(env);
1507 } else {
1508 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1509 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1510 cpu_resume_from_signal(env, NULL);
1511 }
1512 }
1513 } else {
1514 wp->flags &= ~BP_WATCHPOINT_HIT;
1515 }
1516 }
1517 }
1518
1519 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1520 so these check for a hit then pass through to the normal out-of-line
1521 phys routines. */
1522 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1523 unsigned size)
1524 {
1525 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1526 switch (size) {
1527 case 1: return ldub_phys(addr);
1528 case 2: return lduw_phys(addr);
1529 case 4: return ldl_phys(addr);
1530 default: abort();
1531 }
1532 }
1533
1534 static void watch_mem_write(void *opaque, hwaddr addr,
1535 uint64_t val, unsigned size)
1536 {
1537 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1538 switch (size) {
1539 case 1:
1540 stb_phys(addr, val);
1541 break;
1542 case 2:
1543 stw_phys(addr, val);
1544 break;
1545 case 4:
1546 stl_phys(addr, val);
1547 break;
1548 default: abort();
1549 }
1550 }
1551
1552 static const MemoryRegionOps watch_mem_ops = {
1553 .read = watch_mem_read,
1554 .write = watch_mem_write,
1555 .endianness = DEVICE_NATIVE_ENDIAN,
1556 };
1557
1558 static uint64_t subpage_read(void *opaque, hwaddr addr,
1559 unsigned len)
1560 {
1561 subpage_t *subpage = opaque;
1562 uint8_t buf[4];
1563
1564 #if defined(DEBUG_SUBPAGE)
1565 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1566 subpage, len, addr);
1567 #endif
1568 address_space_read(subpage->as, addr + subpage->base, buf, len);
1569 switch (len) {
1570 case 1:
1571 return ldub_p(buf);
1572 case 2:
1573 return lduw_p(buf);
1574 case 4:
1575 return ldl_p(buf);
1576 default:
1577 abort();
1578 }
1579 }
1580
1581 static void subpage_write(void *opaque, hwaddr addr,
1582 uint64_t value, unsigned len)
1583 {
1584 subpage_t *subpage = opaque;
1585 uint8_t buf[4];
1586
1587 #if defined(DEBUG_SUBPAGE)
1588 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1589 " value %"PRIx64"\n",
1590 __func__, subpage, len, addr, value);
1591 #endif
1592 switch (len) {
1593 case 1:
1594 stb_p(buf, value);
1595 break;
1596 case 2:
1597 stw_p(buf, value);
1598 break;
1599 case 4:
1600 stl_p(buf, value);
1601 break;
1602 default:
1603 abort();
1604 }
1605 address_space_write(subpage->as, addr + subpage->base, buf, len);
1606 }
1607
1608 static bool subpage_accepts(void *opaque, hwaddr addr,
1609 unsigned size, bool is_write)
1610 {
1611 subpage_t *subpage = opaque;
1612 #if defined(DEBUG_SUBPAGE)
1613 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1614 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1615 #endif
1616
1617 return address_space_access_valid(subpage->as, addr + subpage->base,
1618 size, is_write);
1619 }
1620
1621 static const MemoryRegionOps subpage_ops = {
1622 .read = subpage_read,
1623 .write = subpage_write,
1624 .valid.accepts = subpage_accepts,
1625 .endianness = DEVICE_NATIVE_ENDIAN,
1626 };
1627
1628 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1629 uint16_t section)
1630 {
1631 int idx, eidx;
1632
1633 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1634 return -1;
1635 idx = SUBPAGE_IDX(start);
1636 eidx = SUBPAGE_IDX(end);
1637 #if defined(DEBUG_SUBPAGE)
1638 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1639 mmio, start, end, idx, eidx, memory);
1640 #endif
1641 for (; idx <= eidx; idx++) {
1642 mmio->sub_section[idx] = section;
1643 }
1644
1645 return 0;
1646 }
1647
1648 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1649 {
1650 subpage_t *mmio;
1651
1652 mmio = g_malloc0(sizeof(subpage_t));
1653
1654 mmio->as = as;
1655 mmio->base = base;
1656 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1657 "subpage", TARGET_PAGE_SIZE);
1658 mmio->iomem.subpage = true;
1659 #if defined(DEBUG_SUBPAGE)
1660 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1661 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1662 #endif
1663 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1664
1665 return mmio;
1666 }
1667
1668 static uint16_t dummy_section(MemoryRegion *mr)
1669 {
1670 MemoryRegionSection section = {
1671 .mr = mr,
1672 .offset_within_address_space = 0,
1673 .offset_within_region = 0,
1674 .size = int128_2_64(),
1675 };
1676
1677 return phys_section_add(&section);
1678 }
1679
1680 MemoryRegion *iotlb_to_region(hwaddr index)
1681 {
1682 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1683 }
1684
1685 static void io_mem_init(void)
1686 {
1687 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1688 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1689 "unassigned", UINT64_MAX);
1690 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1691 "notdirty", UINT64_MAX);
1692 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1693 "watch", UINT64_MAX);
1694 }
1695
1696 static void mem_begin(MemoryListener *listener)
1697 {
1698 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1699
1700 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1701 }
1702
1703 static void core_begin(MemoryListener *listener)
1704 {
1705 phys_sections_clear();
1706 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1707 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1708 phys_section_rom = dummy_section(&io_mem_rom);
1709 phys_section_watch = dummy_section(&io_mem_watch);
1710 }
1711
1712 static void tcg_commit(MemoryListener *listener)
1713 {
1714 CPUArchState *env;
1715
1716 /* since each CPU stores ram addresses in its TLB cache, we must
1717 reset the modified entries */
1718 /* XXX: slow ! */
1719 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1720 tlb_flush(env, 1);
1721 }
1722 }
1723
1724 static void core_log_global_start(MemoryListener *listener)
1725 {
1726 cpu_physical_memory_set_dirty_tracking(1);
1727 }
1728
1729 static void core_log_global_stop(MemoryListener *listener)
1730 {
1731 cpu_physical_memory_set_dirty_tracking(0);
1732 }
1733
1734 static MemoryListener core_memory_listener = {
1735 .begin = core_begin,
1736 .log_global_start = core_log_global_start,
1737 .log_global_stop = core_log_global_stop,
1738 .priority = 1,
1739 };
1740
1741 static MemoryListener tcg_memory_listener = {
1742 .commit = tcg_commit,
1743 };
1744
1745 void address_space_init_dispatch(AddressSpace *as)
1746 {
1747 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1748
1749 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1750 d->listener = (MemoryListener) {
1751 .begin = mem_begin,
1752 .region_add = mem_add,
1753 .region_nop = mem_add,
1754 .priority = 0,
1755 };
1756 d->as = as;
1757 as->dispatch = d;
1758 memory_listener_register(&d->listener, as);
1759 }
1760
1761 void address_space_destroy_dispatch(AddressSpace *as)
1762 {
1763 AddressSpaceDispatch *d = as->dispatch;
1764
1765 memory_listener_unregister(&d->listener);
1766 g_free(d);
1767 as->dispatch = NULL;
1768 }
1769
1770 static void memory_map_init(void)
1771 {
1772 system_memory = g_malloc(sizeof(*system_memory));
1773 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1774 address_space_init(&address_space_memory, system_memory, "memory");
1775
1776 system_io = g_malloc(sizeof(*system_io));
1777 memory_region_init(system_io, NULL, "io", 65536);
1778 address_space_init(&address_space_io, system_io, "I/O");
1779
1780 memory_listener_register(&core_memory_listener, &address_space_memory);
1781 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1782 }
1783
1784 MemoryRegion *get_system_memory(void)
1785 {
1786 return system_memory;
1787 }
1788
1789 MemoryRegion *get_system_io(void)
1790 {
1791 return system_io;
1792 }
1793
1794 #endif /* !defined(CONFIG_USER_ONLY) */
1795
1796 /* physical memory access (slow version, mainly for debug) */
1797 #if defined(CONFIG_USER_ONLY)
1798 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1799 uint8_t *buf, int len, int is_write)
1800 {
1801 int l, flags;
1802 target_ulong page;
1803 void * p;
1804
1805 while (len > 0) {
1806 page = addr & TARGET_PAGE_MASK;
1807 l = (page + TARGET_PAGE_SIZE) - addr;
1808 if (l > len)
1809 l = len;
1810 flags = page_get_flags(page);
1811 if (!(flags & PAGE_VALID))
1812 return -1;
1813 if (is_write) {
1814 if (!(flags & PAGE_WRITE))
1815 return -1;
1816 /* XXX: this code should not depend on lock_user */
1817 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1818 return -1;
1819 memcpy(p, buf, l);
1820 unlock_user(p, addr, l);
1821 } else {
1822 if (!(flags & PAGE_READ))
1823 return -1;
1824 /* XXX: this code should not depend on lock_user */
1825 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1826 return -1;
1827 memcpy(buf, p, l);
1828 unlock_user(p, addr, 0);
1829 }
1830 len -= l;
1831 buf += l;
1832 addr += l;
1833 }
1834 return 0;
1835 }
1836
1837 #else
1838
1839 static void invalidate_and_set_dirty(hwaddr addr,
1840 hwaddr length)
1841 {
1842 if (!cpu_physical_memory_is_dirty(addr)) {
1843 /* invalidate code */
1844 tb_invalidate_phys_page_range(addr, addr + length, 0);
1845 /* set dirty bit */
1846 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1847 }
1848 xen_modified_memory(addr, length);
1849 }
1850
1851 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1852 {
1853 if (memory_region_is_ram(mr)) {
1854 return !(is_write && mr->readonly);
1855 }
1856 if (memory_region_is_romd(mr)) {
1857 return !is_write;
1858 }
1859
1860 return false;
1861 }
1862
1863 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1864 {
1865 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1866 return 4;
1867 }
1868 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1869 return 2;
1870 }
1871 return 1;
1872 }
1873
1874 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1875 int len, bool is_write)
1876 {
1877 hwaddr l;
1878 uint8_t *ptr;
1879 uint64_t val;
1880 hwaddr addr1;
1881 MemoryRegion *mr;
1882 bool error = false;
1883
1884 while (len > 0) {
1885 l = len;
1886 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1887
1888 if (is_write) {
1889 if (!memory_access_is_direct(mr, is_write)) {
1890 l = memory_access_size(mr, l, addr1);
1891 /* XXX: could force cpu_single_env to NULL to avoid
1892 potential bugs */
1893 if (l == 4) {
1894 /* 32 bit write access */
1895 val = ldl_p(buf);
1896 error |= io_mem_write(mr, addr1, val, 4);
1897 } else if (l == 2) {
1898 /* 16 bit write access */
1899 val = lduw_p(buf);
1900 error |= io_mem_write(mr, addr1, val, 2);
1901 } else {
1902 /* 8 bit write access */
1903 val = ldub_p(buf);
1904 error |= io_mem_write(mr, addr1, val, 1);
1905 }
1906 } else {
1907 addr1 += memory_region_get_ram_addr(mr);
1908 /* RAM case */
1909 ptr = qemu_get_ram_ptr(addr1);
1910 memcpy(ptr, buf, l);
1911 invalidate_and_set_dirty(addr1, l);
1912 }
1913 } else {
1914 if (!memory_access_is_direct(mr, is_write)) {
1915 /* I/O case */
1916 l = memory_access_size(mr, l, addr1);
1917 if (l == 4) {
1918 /* 32 bit read access */
1919 error |= io_mem_read(mr, addr1, &val, 4);
1920 stl_p(buf, val);
1921 } else if (l == 2) {
1922 /* 16 bit read access */
1923 error |= io_mem_read(mr, addr1, &val, 2);
1924 stw_p(buf, val);
1925 } else {
1926 /* 8 bit read access */
1927 error |= io_mem_read(mr, addr1, &val, 1);
1928 stb_p(buf, val);
1929 }
1930 } else {
1931 /* RAM case */
1932 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1933 memcpy(buf, ptr, l);
1934 }
1935 }
1936 len -= l;
1937 buf += l;
1938 addr += l;
1939 }
1940
1941 return error;
1942 }
1943
1944 bool address_space_write(AddressSpace *as, hwaddr addr,
1945 const uint8_t *buf, int len)
1946 {
1947 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1948 }
1949
1950 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1951 {
1952 return address_space_rw(as, addr, buf, len, false);
1953 }
1954
1955
1956 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1957 int len, int is_write)
1958 {
1959 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1960 }
1961
1962 /* used for ROM loading : can write in RAM and ROM */
1963 void cpu_physical_memory_write_rom(hwaddr addr,
1964 const uint8_t *buf, int len)
1965 {
1966 hwaddr l;
1967 uint8_t *ptr;
1968 hwaddr addr1;
1969 MemoryRegion *mr;
1970
1971 while (len > 0) {
1972 l = len;
1973 mr = address_space_translate(&address_space_memory,
1974 addr, &addr1, &l, true);
1975
1976 if (!(memory_region_is_ram(mr) ||
1977 memory_region_is_romd(mr))) {
1978 /* do nothing */
1979 } else {
1980 addr1 += memory_region_get_ram_addr(mr);
1981 /* ROM/RAM case */
1982 ptr = qemu_get_ram_ptr(addr1);
1983 memcpy(ptr, buf, l);
1984 invalidate_and_set_dirty(addr1, l);
1985 }
1986 len -= l;
1987 buf += l;
1988 addr += l;
1989 }
1990 }
1991
1992 typedef struct {
1993 void *buffer;
1994 hwaddr addr;
1995 hwaddr len;
1996 } BounceBuffer;
1997
1998 static BounceBuffer bounce;
1999
2000 typedef struct MapClient {
2001 void *opaque;
2002 void (*callback)(void *opaque);
2003 QLIST_ENTRY(MapClient) link;
2004 } MapClient;
2005
2006 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2007 = QLIST_HEAD_INITIALIZER(map_client_list);
2008
2009 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2010 {
2011 MapClient *client = g_malloc(sizeof(*client));
2012
2013 client->opaque = opaque;
2014 client->callback = callback;
2015 QLIST_INSERT_HEAD(&map_client_list, client, link);
2016 return client;
2017 }
2018
2019 static void cpu_unregister_map_client(void *_client)
2020 {
2021 MapClient *client = (MapClient *)_client;
2022
2023 QLIST_REMOVE(client, link);
2024 g_free(client);
2025 }
2026
2027 static void cpu_notify_map_clients(void)
2028 {
2029 MapClient *client;
2030
2031 while (!QLIST_EMPTY(&map_client_list)) {
2032 client = QLIST_FIRST(&map_client_list);
2033 client->callback(client->opaque);
2034 cpu_unregister_map_client(client);
2035 }
2036 }
2037
2038 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2039 {
2040 MemoryRegion *mr;
2041 hwaddr l, xlat;
2042
2043 while (len > 0) {
2044 l = len;
2045 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2046 if (!memory_access_is_direct(mr, is_write)) {
2047 l = memory_access_size(mr, l, addr);
2048 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2049 return false;
2050 }
2051 }
2052
2053 len -= l;
2054 addr += l;
2055 }
2056 return true;
2057 }
2058
2059 /* Map a physical memory region into a host virtual address.
2060 * May map a subset of the requested range, given by and returned in *plen.
2061 * May return NULL if resources needed to perform the mapping are exhausted.
2062 * Use only for reads OR writes - not for read-modify-write operations.
2063 * Use cpu_register_map_client() to know when retrying the map operation is
2064 * likely to succeed.
2065 */
2066 void *address_space_map(AddressSpace *as,
2067 hwaddr addr,
2068 hwaddr *plen,
2069 bool is_write)
2070 {
2071 hwaddr len = *plen;
2072 hwaddr todo = 0;
2073 hwaddr l, xlat;
2074 MemoryRegion *mr;
2075 ram_addr_t raddr = RAM_ADDR_MAX;
2076 ram_addr_t rlen;
2077 void *ret;
2078
2079 while (len > 0) {
2080 l = len;
2081 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2082
2083 if (!memory_access_is_direct(mr, is_write)) {
2084 if (todo || bounce.buffer) {
2085 break;
2086 }
2087 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2088 bounce.addr = addr;
2089 bounce.len = l;
2090 if (!is_write) {
2091 address_space_read(as, addr, bounce.buffer, l);
2092 }
2093
2094 *plen = l;
2095 return bounce.buffer;
2096 }
2097 if (!todo) {
2098 raddr = memory_region_get_ram_addr(mr) + xlat;
2099 } else {
2100 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2101 break;
2102 }
2103 }
2104
2105 len -= l;
2106 addr += l;
2107 todo += l;
2108 }
2109 rlen = todo;
2110 ret = qemu_ram_ptr_length(raddr, &rlen);
2111 *plen = rlen;
2112 return ret;
2113 }
2114
2115 /* Unmaps a memory region previously mapped by address_space_map().
2116 * Will also mark the memory as dirty if is_write == 1. access_len gives
2117 * the amount of memory that was actually read or written by the caller.
2118 */
2119 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2120 int is_write, hwaddr access_len)
2121 {
2122 if (buffer != bounce.buffer) {
2123 if (is_write) {
2124 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2125 while (access_len) {
2126 unsigned l;
2127 l = TARGET_PAGE_SIZE;
2128 if (l > access_len)
2129 l = access_len;
2130 invalidate_and_set_dirty(addr1, l);
2131 addr1 += l;
2132 access_len -= l;
2133 }
2134 }
2135 if (xen_enabled()) {
2136 xen_invalidate_map_cache_entry(buffer);
2137 }
2138 return;
2139 }
2140 if (is_write) {
2141 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2142 }
2143 qemu_vfree(bounce.buffer);
2144 bounce.buffer = NULL;
2145 cpu_notify_map_clients();
2146 }
2147
2148 void *cpu_physical_memory_map(hwaddr addr,
2149 hwaddr *plen,
2150 int is_write)
2151 {
2152 return address_space_map(&address_space_memory, addr, plen, is_write);
2153 }
2154
2155 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2156 int is_write, hwaddr access_len)
2157 {
2158 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2159 }
2160
2161 /* warning: addr must be aligned */
2162 static inline uint32_t ldl_phys_internal(hwaddr addr,
2163 enum device_endian endian)
2164 {
2165 uint8_t *ptr;
2166 uint64_t val;
2167 MemoryRegion *mr;
2168 hwaddr l = 4;
2169 hwaddr addr1;
2170
2171 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2172 false);
2173 if (l < 4 || !memory_access_is_direct(mr, false)) {
2174 /* I/O case */
2175 io_mem_read(mr, addr1, &val, 4);
2176 #if defined(TARGET_WORDS_BIGENDIAN)
2177 if (endian == DEVICE_LITTLE_ENDIAN) {
2178 val = bswap32(val);
2179 }
2180 #else
2181 if (endian == DEVICE_BIG_ENDIAN) {
2182 val = bswap32(val);
2183 }
2184 #endif
2185 } else {
2186 /* RAM case */
2187 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2188 & TARGET_PAGE_MASK)
2189 + addr1);
2190 switch (endian) {
2191 case DEVICE_LITTLE_ENDIAN:
2192 val = ldl_le_p(ptr);
2193 break;
2194 case DEVICE_BIG_ENDIAN:
2195 val = ldl_be_p(ptr);
2196 break;
2197 default:
2198 val = ldl_p(ptr);
2199 break;
2200 }
2201 }
2202 return val;
2203 }
2204
2205 uint32_t ldl_phys(hwaddr addr)
2206 {
2207 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2208 }
2209
2210 uint32_t ldl_le_phys(hwaddr addr)
2211 {
2212 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2213 }
2214
2215 uint32_t ldl_be_phys(hwaddr addr)
2216 {
2217 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2218 }
2219
2220 /* warning: addr must be aligned */
2221 static inline uint64_t ldq_phys_internal(hwaddr addr,
2222 enum device_endian endian)
2223 {
2224 uint8_t *ptr;
2225 uint64_t val;
2226 MemoryRegion *mr;
2227 hwaddr l = 8;
2228 hwaddr addr1;
2229
2230 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2231 false);
2232 if (l < 8 || !memory_access_is_direct(mr, false)) {
2233 /* I/O case */
2234 io_mem_read(mr, addr1, &val, 8);
2235 #if defined(TARGET_WORDS_BIGENDIAN)
2236 if (endian == DEVICE_LITTLE_ENDIAN) {
2237 val = bswap64(val);
2238 }
2239 #else
2240 if (endian == DEVICE_BIG_ENDIAN) {
2241 val = bswap64(val);
2242 }
2243 #endif
2244 } else {
2245 /* RAM case */
2246 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2247 & TARGET_PAGE_MASK)
2248 + addr1);
2249 switch (endian) {
2250 case DEVICE_LITTLE_ENDIAN:
2251 val = ldq_le_p(ptr);
2252 break;
2253 case DEVICE_BIG_ENDIAN:
2254 val = ldq_be_p(ptr);
2255 break;
2256 default:
2257 val = ldq_p(ptr);
2258 break;
2259 }
2260 }
2261 return val;
2262 }
2263
2264 uint64_t ldq_phys(hwaddr addr)
2265 {
2266 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2267 }
2268
2269 uint64_t ldq_le_phys(hwaddr addr)
2270 {
2271 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2272 }
2273
2274 uint64_t ldq_be_phys(hwaddr addr)
2275 {
2276 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2277 }
2278
2279 /* XXX: optimize */
2280 uint32_t ldub_phys(hwaddr addr)
2281 {
2282 uint8_t val;
2283 cpu_physical_memory_read(addr, &val, 1);
2284 return val;
2285 }
2286
2287 /* warning: addr must be aligned */
2288 static inline uint32_t lduw_phys_internal(hwaddr addr,
2289 enum device_endian endian)
2290 {
2291 uint8_t *ptr;
2292 uint64_t val;
2293 MemoryRegion *mr;
2294 hwaddr l = 2;
2295 hwaddr addr1;
2296
2297 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2298 false);
2299 if (l < 2 || !memory_access_is_direct(mr, false)) {
2300 /* I/O case */
2301 io_mem_read(mr, addr1, &val, 2);
2302 #if defined(TARGET_WORDS_BIGENDIAN)
2303 if (endian == DEVICE_LITTLE_ENDIAN) {
2304 val = bswap16(val);
2305 }
2306 #else
2307 if (endian == DEVICE_BIG_ENDIAN) {
2308 val = bswap16(val);
2309 }
2310 #endif
2311 } else {
2312 /* RAM case */
2313 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2314 & TARGET_PAGE_MASK)
2315 + addr1);
2316 switch (endian) {
2317 case DEVICE_LITTLE_ENDIAN:
2318 val = lduw_le_p(ptr);
2319 break;
2320 case DEVICE_BIG_ENDIAN:
2321 val = lduw_be_p(ptr);
2322 break;
2323 default:
2324 val = lduw_p(ptr);
2325 break;
2326 }
2327 }
2328 return val;
2329 }
2330
2331 uint32_t lduw_phys(hwaddr addr)
2332 {
2333 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2334 }
2335
2336 uint32_t lduw_le_phys(hwaddr addr)
2337 {
2338 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2339 }
2340
2341 uint32_t lduw_be_phys(hwaddr addr)
2342 {
2343 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2344 }
2345
2346 /* warning: addr must be aligned. The ram page is not masked as dirty
2347 and the code inside is not invalidated. It is useful if the dirty
2348 bits are used to track modified PTEs */
2349 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2350 {
2351 uint8_t *ptr;
2352 MemoryRegion *mr;
2353 hwaddr l = 4;
2354 hwaddr addr1;
2355
2356 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2357 true);
2358 if (l < 4 || !memory_access_is_direct(mr, true)) {
2359 io_mem_write(mr, addr1, val, 4);
2360 } else {
2361 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2362 ptr = qemu_get_ram_ptr(addr1);
2363 stl_p(ptr, val);
2364
2365 if (unlikely(in_migration)) {
2366 if (!cpu_physical_memory_is_dirty(addr1)) {
2367 /* invalidate code */
2368 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2369 /* set dirty bit */
2370 cpu_physical_memory_set_dirty_flags(
2371 addr1, (0xff & ~CODE_DIRTY_FLAG));
2372 }
2373 }
2374 }
2375 }
2376
2377 /* warning: addr must be aligned */
2378 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2379 enum device_endian endian)
2380 {
2381 uint8_t *ptr;
2382 MemoryRegion *mr;
2383 hwaddr l = 4;
2384 hwaddr addr1;
2385
2386 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2387 true);
2388 if (l < 4 || !memory_access_is_direct(mr, true)) {
2389 #if defined(TARGET_WORDS_BIGENDIAN)
2390 if (endian == DEVICE_LITTLE_ENDIAN) {
2391 val = bswap32(val);
2392 }
2393 #else
2394 if (endian == DEVICE_BIG_ENDIAN) {
2395 val = bswap32(val);
2396 }
2397 #endif
2398 io_mem_write(mr, addr1, val, 4);
2399 } else {
2400 /* RAM case */
2401 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2402 ptr = qemu_get_ram_ptr(addr1);
2403 switch (endian) {
2404 case DEVICE_LITTLE_ENDIAN:
2405 stl_le_p(ptr, val);
2406 break;
2407 case DEVICE_BIG_ENDIAN:
2408 stl_be_p(ptr, val);
2409 break;
2410 default:
2411 stl_p(ptr, val);
2412 break;
2413 }
2414 invalidate_and_set_dirty(addr1, 4);
2415 }
2416 }
2417
2418 void stl_phys(hwaddr addr, uint32_t val)
2419 {
2420 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2421 }
2422
2423 void stl_le_phys(hwaddr addr, uint32_t val)
2424 {
2425 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2426 }
2427
2428 void stl_be_phys(hwaddr addr, uint32_t val)
2429 {
2430 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2431 }
2432
2433 /* XXX: optimize */
2434 void stb_phys(hwaddr addr, uint32_t val)
2435 {
2436 uint8_t v = val;
2437 cpu_physical_memory_write(addr, &v, 1);
2438 }
2439
2440 /* warning: addr must be aligned */
2441 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2442 enum device_endian endian)
2443 {
2444 uint8_t *ptr;
2445 MemoryRegion *mr;
2446 hwaddr l = 2;
2447 hwaddr addr1;
2448
2449 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2450 true);
2451 if (l < 2 || !memory_access_is_direct(mr, true)) {
2452 #if defined(TARGET_WORDS_BIGENDIAN)
2453 if (endian == DEVICE_LITTLE_ENDIAN) {
2454 val = bswap16(val);
2455 }
2456 #else
2457 if (endian == DEVICE_BIG_ENDIAN) {
2458 val = bswap16(val);
2459 }
2460 #endif
2461 io_mem_write(mr, addr1, val, 2);
2462 } else {
2463 /* RAM case */
2464 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2465 ptr = qemu_get_ram_ptr(addr1);
2466 switch (endian) {
2467 case DEVICE_LITTLE_ENDIAN:
2468 stw_le_p(ptr, val);
2469 break;
2470 case DEVICE_BIG_ENDIAN:
2471 stw_be_p(ptr, val);
2472 break;
2473 default:
2474 stw_p(ptr, val);
2475 break;
2476 }
2477 invalidate_and_set_dirty(addr1, 2);
2478 }
2479 }
2480
2481 void stw_phys(hwaddr addr, uint32_t val)
2482 {
2483 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2484 }
2485
2486 void stw_le_phys(hwaddr addr, uint32_t val)
2487 {
2488 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2489 }
2490
2491 void stw_be_phys(hwaddr addr, uint32_t val)
2492 {
2493 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2494 }
2495
2496 /* XXX: optimize */
2497 void stq_phys(hwaddr addr, uint64_t val)
2498 {
2499 val = tswap64(val);
2500 cpu_physical_memory_write(addr, &val, 8);
2501 }
2502
2503 void stq_le_phys(hwaddr addr, uint64_t val)
2504 {
2505 val = cpu_to_le64(val);
2506 cpu_physical_memory_write(addr, &val, 8);
2507 }
2508
2509 void stq_be_phys(hwaddr addr, uint64_t val)
2510 {
2511 val = cpu_to_be64(val);
2512 cpu_physical_memory_write(addr, &val, 8);
2513 }
2514
2515 /* virtual memory access for debug (includes writing to ROM) */
2516 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2517 uint8_t *buf, int len, int is_write)
2518 {
2519 int l;
2520 hwaddr phys_addr;
2521 target_ulong page;
2522
2523 while (len > 0) {
2524 page = addr & TARGET_PAGE_MASK;
2525 phys_addr = cpu_get_phys_page_debug(env, page);
2526 /* if no physical page mapped, return an error */
2527 if (phys_addr == -1)
2528 return -1;
2529 l = (page + TARGET_PAGE_SIZE) - addr;
2530 if (l > len)
2531 l = len;
2532 phys_addr += (addr & ~TARGET_PAGE_MASK);
2533 if (is_write)
2534 cpu_physical_memory_write_rom(phys_addr, buf, l);
2535 else
2536 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2537 len -= l;
2538 buf += l;
2539 addr += l;
2540 }
2541 return 0;
2542 }
2543 #endif
2544
2545 #if !defined(CONFIG_USER_ONLY)
2546
2547 /*
2548 * A helper function for the _utterly broken_ virtio device model to find out if
2549 * it's running on a big endian machine. Don't do this at home kids!
2550 */
2551 bool virtio_is_big_endian(void);
2552 bool virtio_is_big_endian(void)
2553 {
2554 #if defined(TARGET_WORDS_BIGENDIAN)
2555 return true;
2556 #else
2557 return false;
2558 #endif
2559 }
2560
2561 #endif
2562
2563 #ifndef CONFIG_USER_ONLY
2564 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2565 {
2566 MemoryRegion*mr;
2567 hwaddr l = 1;
2568
2569 mr = address_space_translate(&address_space_memory,
2570 phys_addr, &phys_addr, &l, false);
2571
2572 return !(memory_region_is_ram(mr) ||
2573 memory_region_is_romd(mr));
2574 }
2575
2576 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2577 {
2578 RAMBlock *block;
2579
2580 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2581 func(block->host, block->offset, block->length, opaque);
2582 }
2583 }
2584 #endif