]> git.proxmox.com Git - qemu.git/blob - exec.c
Remove PAGE_RESERVED
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
43 #include <qemu.h>
44 #include <signal.h>
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
50 #include <sys/time.h>
51 #include <sys/proc.h>
52 #include <machine/profile.h>
53 #define _KERNEL
54 #include <sys/user.h>
55 #undef _KERNEL
56 #undef sigqueue
57 #include <libutil.h>
58 #endif
59 #endif
60 #endif
61
62 //#define DEBUG_TB_INVALIDATE
63 //#define DEBUG_FLUSH
64 //#define DEBUG_TLB
65 //#define DEBUG_UNASSIGNED
66
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
70
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
73
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
76 #undef DEBUG_TB_CHECK
77 #endif
78
79 #define SMC_BITMAP_USE_THRESHOLD 10
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
122
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
129
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
141
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
153
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159 #else
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
161 #endif
162 #else
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
164 #endif
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define L2_BITS 10
168 #define L2_SIZE (1 << L2_BITS)
169
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179 #else
180 #define P_L1_BITS P_L1_BITS_REM
181 #endif
182
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185 #else
186 #define V_L1_BITS V_L1_BITS_REM
187 #endif
188
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
195 unsigned long qemu_real_host_page_size;
196 unsigned long qemu_host_page_bits;
197 unsigned long qemu_host_page_size;
198 unsigned long qemu_host_page_mask;
199
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map[V_L1_SIZE];
203
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209 } PhysPageDesc;
210
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map[P_L1_SIZE];
214
215 static void io_mem_init(void);
216
217 /* io memory support */
218 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
220 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
221 static char io_mem_used[IO_MEM_NB_ENTRIES];
222 static int io_mem_watch;
223 #endif
224
225 /* log support */
226 #ifdef WIN32
227 static const char *logfilename = "qemu.log";
228 #else
229 static const char *logfilename = "/tmp/qemu.log";
230 #endif
231 FILE *logfile;
232 int loglevel;
233 static int log_append = 0;
234
235 /* statistics */
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count;
238 #endif
239 static int tb_flush_count;
240 static int tb_phys_invalidate_count;
241
242 #ifdef _WIN32
243 static void map_exec(void *addr, long size)
244 {
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249 }
250 #else
251 static void map_exec(void *addr, long size)
252 {
253 unsigned long start, end, page_size;
254
255 page_size = getpagesize();
256 start = (unsigned long)addr;
257 start &= ~(page_size - 1);
258
259 end = (unsigned long)addr + size;
260 end += page_size - 1;
261 end &= ~(page_size - 1);
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265 }
266 #endif
267
268 static void page_init(void)
269 {
270 /* NOTE: we can always suppose that qemu_host_page_size >=
271 TARGET_PAGE_SIZE */
272 #ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279 #else
280 qemu_real_host_page_size = getpagesize();
281 #endif
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
290
291 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
292 {
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315 #endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322 #else
323 FILE *f;
324
325 last_brk = (unsigned long)sbrk(0);
326
327 f = fopen("/compat/linux/proc/self/maps", "r");
328 if (f) {
329 mmap_lock();
330
331 do {
332 unsigned long startaddr, endaddr;
333 int n;
334
335 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
336
337 if (n == 2 && h2g_valid(startaddr)) {
338 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
339
340 if (h2g_valid(endaddr)) {
341 endaddr = h2g(endaddr);
342 } else {
343 endaddr = ~0ul;
344 }
345 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
346 }
347 } while (!feof(f));
348
349 fclose(f);
350 mmap_unlock();
351 }
352 #endif
353 }
354 #endif
355 }
356
357 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
358 {
359 PageDesc *pd;
360 void **lp;
361 int i;
362
363 #if defined(CONFIG_USER_ONLY)
364 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
365 # define ALLOC(P, SIZE) \
366 do { \
367 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
368 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
369 } while (0)
370 #else
371 # define ALLOC(P, SIZE) \
372 do { P = qemu_mallocz(SIZE); } while (0)
373 #endif
374
375 /* Level 1. Always allocated. */
376 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
377
378 /* Level 2..N-1. */
379 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
380 void **p = *lp;
381
382 if (p == NULL) {
383 if (!alloc) {
384 return NULL;
385 }
386 ALLOC(p, sizeof(void *) * L2_SIZE);
387 *lp = p;
388 }
389
390 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
391 }
392
393 pd = *lp;
394 if (pd == NULL) {
395 if (!alloc) {
396 return NULL;
397 }
398 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
399 *lp = pd;
400 }
401
402 #undef ALLOC
403
404 return pd + (index & (L2_SIZE - 1));
405 }
406
407 static inline PageDesc *page_find(tb_page_addr_t index)
408 {
409 return page_find_alloc(index, 0);
410 }
411
412 #if !defined(CONFIG_USER_ONLY)
413 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
414 {
415 PhysPageDesc *pd;
416 void **lp;
417 int i;
418
419 /* Level 1. Always allocated. */
420 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
421
422 /* Level 2..N-1. */
423 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
424 void **p = *lp;
425 if (p == NULL) {
426 if (!alloc) {
427 return NULL;
428 }
429 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
430 }
431 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
432 }
433
434 pd = *lp;
435 if (pd == NULL) {
436 int i;
437
438 if (!alloc) {
439 return NULL;
440 }
441
442 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
443
444 for (i = 0; i < L2_SIZE; i++) {
445 pd[i].phys_offset = IO_MEM_UNASSIGNED;
446 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
447 }
448 }
449
450 return pd + (index & (L2_SIZE - 1));
451 }
452
453 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
454 {
455 return phys_page_find_alloc(index, 0);
456 }
457
458 static void tlb_protect_code(ram_addr_t ram_addr);
459 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
460 target_ulong vaddr);
461 #define mmap_lock() do { } while(0)
462 #define mmap_unlock() do { } while(0)
463 #endif
464
465 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
466
467 #if defined(CONFIG_USER_ONLY)
468 /* Currently it is not recommended to allocate big chunks of data in
469 user mode. It will change when a dedicated libc will be used */
470 #define USE_STATIC_CODE_GEN_BUFFER
471 #endif
472
473 #ifdef USE_STATIC_CODE_GEN_BUFFER
474 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
475 __attribute__((aligned (CODE_GEN_ALIGN)));
476 #endif
477
478 static void code_gen_alloc(unsigned long tb_size)
479 {
480 #ifdef USE_STATIC_CODE_GEN_BUFFER
481 code_gen_buffer = static_code_gen_buffer;
482 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
483 map_exec(code_gen_buffer, code_gen_buffer_size);
484 #else
485 code_gen_buffer_size = tb_size;
486 if (code_gen_buffer_size == 0) {
487 #if defined(CONFIG_USER_ONLY)
488 /* in user mode, phys_ram_size is not meaningful */
489 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
490 #else
491 /* XXX: needs adjustments */
492 code_gen_buffer_size = (unsigned long)(ram_size / 4);
493 #endif
494 }
495 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
496 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
497 /* The code gen buffer location may have constraints depending on
498 the host cpu and OS */
499 #if defined(__linux__)
500 {
501 int flags;
502 void *start = NULL;
503
504 flags = MAP_PRIVATE | MAP_ANONYMOUS;
505 #if defined(__x86_64__)
506 flags |= MAP_32BIT;
507 /* Cannot map more than that */
508 if (code_gen_buffer_size > (800 * 1024 * 1024))
509 code_gen_buffer_size = (800 * 1024 * 1024);
510 #elif defined(__sparc_v9__)
511 // Map the buffer below 2G, so we can use direct calls and branches
512 flags |= MAP_FIXED;
513 start = (void *) 0x60000000UL;
514 if (code_gen_buffer_size > (512 * 1024 * 1024))
515 code_gen_buffer_size = (512 * 1024 * 1024);
516 #elif defined(__arm__)
517 /* Map the buffer below 32M, so we can use direct calls and branches */
518 flags |= MAP_FIXED;
519 start = (void *) 0x01000000UL;
520 if (code_gen_buffer_size > 16 * 1024 * 1024)
521 code_gen_buffer_size = 16 * 1024 * 1024;
522 #endif
523 code_gen_buffer = mmap(start, code_gen_buffer_size,
524 PROT_WRITE | PROT_READ | PROT_EXEC,
525 flags, -1, 0);
526 if (code_gen_buffer == MAP_FAILED) {
527 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
528 exit(1);
529 }
530 }
531 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
532 {
533 int flags;
534 void *addr = NULL;
535 flags = MAP_PRIVATE | MAP_ANONYMOUS;
536 #if defined(__x86_64__)
537 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
538 * 0x40000000 is free */
539 flags |= MAP_FIXED;
540 addr = (void *)0x40000000;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #endif
545 code_gen_buffer = mmap(addr, code_gen_buffer_size,
546 PROT_WRITE | PROT_READ | PROT_EXEC,
547 flags, -1, 0);
548 if (code_gen_buffer == MAP_FAILED) {
549 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
550 exit(1);
551 }
552 }
553 #else
554 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
555 map_exec(code_gen_buffer, code_gen_buffer_size);
556 #endif
557 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
558 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
559 code_gen_buffer_max_size = code_gen_buffer_size -
560 code_gen_max_block_size();
561 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
562 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
563 }
564
565 /* Must be called before using the QEMU cpus. 'tb_size' is the size
566 (in bytes) allocated to the translation buffer. Zero means default
567 size. */
568 void cpu_exec_init_all(unsigned long tb_size)
569 {
570 cpu_gen_init();
571 code_gen_alloc(tb_size);
572 code_gen_ptr = code_gen_buffer;
573 page_init();
574 #if !defined(CONFIG_USER_ONLY)
575 io_mem_init();
576 #endif
577 }
578
579 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
580
581 static int cpu_common_post_load(void *opaque, int version_id)
582 {
583 CPUState *env = opaque;
584
585 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
586 version_id is increased. */
587 env->interrupt_request &= ~0x01;
588 tlb_flush(env, 1);
589
590 return 0;
591 }
592
593 static const VMStateDescription vmstate_cpu_common = {
594 .name = "cpu_common",
595 .version_id = 1,
596 .minimum_version_id = 1,
597 .minimum_version_id_old = 1,
598 .post_load = cpu_common_post_load,
599 .fields = (VMStateField []) {
600 VMSTATE_UINT32(halted, CPUState),
601 VMSTATE_UINT32(interrupt_request, CPUState),
602 VMSTATE_END_OF_LIST()
603 }
604 };
605 #endif
606
607 CPUState *qemu_get_cpu(int cpu)
608 {
609 CPUState *env = first_cpu;
610
611 while (env) {
612 if (env->cpu_index == cpu)
613 break;
614 env = env->next_cpu;
615 }
616
617 return env;
618 }
619
620 void cpu_exec_init(CPUState *env)
621 {
622 CPUState **penv;
623 int cpu_index;
624
625 #if defined(CONFIG_USER_ONLY)
626 cpu_list_lock();
627 #endif
628 env->next_cpu = NULL;
629 penv = &first_cpu;
630 cpu_index = 0;
631 while (*penv != NULL) {
632 penv = &(*penv)->next_cpu;
633 cpu_index++;
634 }
635 env->cpu_index = cpu_index;
636 env->numa_node = 0;
637 QTAILQ_INIT(&env->breakpoints);
638 QTAILQ_INIT(&env->watchpoints);
639 *penv = env;
640 #if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642 #endif
643 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
644 vmstate_register(cpu_index, &vmstate_cpu_common, env);
645 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
646 cpu_save, cpu_load, env);
647 #endif
648 }
649
650 static inline void invalidate_page_bitmap(PageDesc *p)
651 {
652 if (p->code_bitmap) {
653 qemu_free(p->code_bitmap);
654 p->code_bitmap = NULL;
655 }
656 p->code_write_count = 0;
657 }
658
659 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
660
661 static void page_flush_tb_1 (int level, void **lp)
662 {
663 int i;
664
665 if (*lp == NULL) {
666 return;
667 }
668 if (level == 0) {
669 PageDesc *pd = *lp;
670 for (i = 0; i < L2_SIZE; ++i) {
671 pd[i].first_tb = NULL;
672 invalidate_page_bitmap(pd + i);
673 }
674 } else {
675 void **pp = *lp;
676 for (i = 0; i < L2_SIZE; ++i) {
677 page_flush_tb_1 (level - 1, pp + i);
678 }
679 }
680 }
681
682 static void page_flush_tb(void)
683 {
684 int i;
685 for (i = 0; i < V_L1_SIZE; i++) {
686 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
687 }
688 }
689
690 /* flush all the translation blocks */
691 /* XXX: tb_flush is currently not thread safe */
692 void tb_flush(CPUState *env1)
693 {
694 CPUState *env;
695 #if defined(DEBUG_FLUSH)
696 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
697 (unsigned long)(code_gen_ptr - code_gen_buffer),
698 nb_tbs, nb_tbs > 0 ?
699 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
700 #endif
701 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
702 cpu_abort(env1, "Internal error: code buffer overflow\n");
703
704 nb_tbs = 0;
705
706 for(env = first_cpu; env != NULL; env = env->next_cpu) {
707 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
708 }
709
710 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
711 page_flush_tb();
712
713 code_gen_ptr = code_gen_buffer;
714 /* XXX: flush processor icache at this point if cache flush is
715 expensive */
716 tb_flush_count++;
717 }
718
719 #ifdef DEBUG_TB_CHECK
720
721 static void tb_invalidate_check(target_ulong address)
722 {
723 TranslationBlock *tb;
724 int i;
725 address &= TARGET_PAGE_MASK;
726 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
727 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
728 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
729 address >= tb->pc + tb->size)) {
730 printf("ERROR invalidate: address=" TARGET_FMT_lx
731 " PC=%08lx size=%04x\n",
732 address, (long)tb->pc, tb->size);
733 }
734 }
735 }
736 }
737
738 /* verify that all the pages have correct rights for code */
739 static void tb_page_check(void)
740 {
741 TranslationBlock *tb;
742 int i, flags1, flags2;
743
744 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
745 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
746 flags1 = page_get_flags(tb->pc);
747 flags2 = page_get_flags(tb->pc + tb->size - 1);
748 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
749 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
750 (long)tb->pc, tb->size, flags1, flags2);
751 }
752 }
753 }
754 }
755
756 #endif
757
758 /* invalidate one TB */
759 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
760 int next_offset)
761 {
762 TranslationBlock *tb1;
763 for(;;) {
764 tb1 = *ptb;
765 if (tb1 == tb) {
766 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
767 break;
768 }
769 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
770 }
771 }
772
773 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
774 {
775 TranslationBlock *tb1;
776 unsigned int n1;
777
778 for(;;) {
779 tb1 = *ptb;
780 n1 = (long)tb1 & 3;
781 tb1 = (TranslationBlock *)((long)tb1 & ~3);
782 if (tb1 == tb) {
783 *ptb = tb1->page_next[n1];
784 break;
785 }
786 ptb = &tb1->page_next[n1];
787 }
788 }
789
790 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
791 {
792 TranslationBlock *tb1, **ptb;
793 unsigned int n1;
794
795 ptb = &tb->jmp_next[n];
796 tb1 = *ptb;
797 if (tb1) {
798 /* find tb(n) in circular list */
799 for(;;) {
800 tb1 = *ptb;
801 n1 = (long)tb1 & 3;
802 tb1 = (TranslationBlock *)((long)tb1 & ~3);
803 if (n1 == n && tb1 == tb)
804 break;
805 if (n1 == 2) {
806 ptb = &tb1->jmp_first;
807 } else {
808 ptb = &tb1->jmp_next[n1];
809 }
810 }
811 /* now we can suppress tb(n) from the list */
812 *ptb = tb->jmp_next[n];
813
814 tb->jmp_next[n] = NULL;
815 }
816 }
817
818 /* reset the jump entry 'n' of a TB so that it is not chained to
819 another TB */
820 static inline void tb_reset_jump(TranslationBlock *tb, int n)
821 {
822 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
823 }
824
825 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
826 {
827 CPUState *env;
828 PageDesc *p;
829 unsigned int h, n1;
830 tb_page_addr_t phys_pc;
831 TranslationBlock *tb1, *tb2;
832
833 /* remove the TB from the hash list */
834 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
835 h = tb_phys_hash_func(phys_pc);
836 tb_remove(&tb_phys_hash[h], tb,
837 offsetof(TranslationBlock, phys_hash_next));
838
839 /* remove the TB from the page list */
840 if (tb->page_addr[0] != page_addr) {
841 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
842 tb_page_remove(&p->first_tb, tb);
843 invalidate_page_bitmap(p);
844 }
845 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
846 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
847 tb_page_remove(&p->first_tb, tb);
848 invalidate_page_bitmap(p);
849 }
850
851 tb_invalidated_flag = 1;
852
853 /* remove the TB from the hash list */
854 h = tb_jmp_cache_hash_func(tb->pc);
855 for(env = first_cpu; env != NULL; env = env->next_cpu) {
856 if (env->tb_jmp_cache[h] == tb)
857 env->tb_jmp_cache[h] = NULL;
858 }
859
860 /* suppress this TB from the two jump lists */
861 tb_jmp_remove(tb, 0);
862 tb_jmp_remove(tb, 1);
863
864 /* suppress any remaining jumps to this TB */
865 tb1 = tb->jmp_first;
866 for(;;) {
867 n1 = (long)tb1 & 3;
868 if (n1 == 2)
869 break;
870 tb1 = (TranslationBlock *)((long)tb1 & ~3);
871 tb2 = tb1->jmp_next[n1];
872 tb_reset_jump(tb1, n1);
873 tb1->jmp_next[n1] = NULL;
874 tb1 = tb2;
875 }
876 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
877
878 tb_phys_invalidate_count++;
879 }
880
881 static inline void set_bits(uint8_t *tab, int start, int len)
882 {
883 int end, mask, end1;
884
885 end = start + len;
886 tab += start >> 3;
887 mask = 0xff << (start & 7);
888 if ((start & ~7) == (end & ~7)) {
889 if (start < end) {
890 mask &= ~(0xff << (end & 7));
891 *tab |= mask;
892 }
893 } else {
894 *tab++ |= mask;
895 start = (start + 8) & ~7;
896 end1 = end & ~7;
897 while (start < end1) {
898 *tab++ = 0xff;
899 start += 8;
900 }
901 if (start < end) {
902 mask = ~(0xff << (end & 7));
903 *tab |= mask;
904 }
905 }
906 }
907
908 static void build_page_bitmap(PageDesc *p)
909 {
910 int n, tb_start, tb_end;
911 TranslationBlock *tb;
912
913 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
914
915 tb = p->first_tb;
916 while (tb != NULL) {
917 n = (long)tb & 3;
918 tb = (TranslationBlock *)((long)tb & ~3);
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->pc & ~TARGET_PAGE_MASK;
924 tb_end = tb_start + tb->size;
925 if (tb_end > TARGET_PAGE_SIZE)
926 tb_end = TARGET_PAGE_SIZE;
927 } else {
928 tb_start = 0;
929 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
930 }
931 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
932 tb = tb->page_next[n];
933 }
934 }
935
936 TranslationBlock *tb_gen_code(CPUState *env,
937 target_ulong pc, target_ulong cs_base,
938 int flags, int cflags)
939 {
940 TranslationBlock *tb;
941 uint8_t *tc_ptr;
942 tb_page_addr_t phys_pc, phys_page2;
943 target_ulong virt_page2;
944 int code_gen_size;
945
946 phys_pc = get_page_addr_code(env, pc);
947 tb = tb_alloc(pc);
948 if (!tb) {
949 /* flush must be done */
950 tb_flush(env);
951 /* cannot fail at this point */
952 tb = tb_alloc(pc);
953 /* Don't forget to invalidate previous TB info. */
954 tb_invalidated_flag = 1;
955 }
956 tc_ptr = code_gen_ptr;
957 tb->tc_ptr = tc_ptr;
958 tb->cs_base = cs_base;
959 tb->flags = flags;
960 tb->cflags = cflags;
961 cpu_gen_code(env, tb, &code_gen_size);
962 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
963
964 /* check next page if needed */
965 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
966 phys_page2 = -1;
967 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
968 phys_page2 = get_page_addr_code(env, virt_page2);
969 }
970 tb_link_page(tb, phys_pc, phys_page2);
971 return tb;
972 }
973
974 /* invalidate all TBs which intersect with the target physical page
975 starting in range [start;end[. NOTE: start and end must refer to
976 the same physical page. 'is_cpu_write_access' should be true if called
977 from a real cpu write access: the virtual CPU will exit the current
978 TB if code is modified inside this TB. */
979 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
980 int is_cpu_write_access)
981 {
982 TranslationBlock *tb, *tb_next, *saved_tb;
983 CPUState *env = cpu_single_env;
984 tb_page_addr_t tb_start, tb_end;
985 PageDesc *p;
986 int n;
987 #ifdef TARGET_HAS_PRECISE_SMC
988 int current_tb_not_found = is_cpu_write_access;
989 TranslationBlock *current_tb = NULL;
990 int current_tb_modified = 0;
991 target_ulong current_pc = 0;
992 target_ulong current_cs_base = 0;
993 int current_flags = 0;
994 #endif /* TARGET_HAS_PRECISE_SMC */
995
996 p = page_find(start >> TARGET_PAGE_BITS);
997 if (!p)
998 return;
999 if (!p->code_bitmap &&
1000 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1001 is_cpu_write_access) {
1002 /* build code bitmap */
1003 build_page_bitmap(p);
1004 }
1005
1006 /* we remove all the TBs in the range [start, end[ */
1007 /* XXX: see if in some cases it could be faster to invalidate all the code */
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (long)tb & 3;
1011 tb = (TranslationBlock *)((long)tb & ~3);
1012 tb_next = tb->page_next[n];
1013 /* NOTE: this is subtle as a TB may span two physical pages */
1014 if (n == 0) {
1015 /* NOTE: tb_end may be after the end of the page, but
1016 it is not a problem */
1017 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1018 tb_end = tb_start + tb->size;
1019 } else {
1020 tb_start = tb->page_addr[1];
1021 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1022 }
1023 if (!(tb_end <= start || tb_start >= end)) {
1024 #ifdef TARGET_HAS_PRECISE_SMC
1025 if (current_tb_not_found) {
1026 current_tb_not_found = 0;
1027 current_tb = NULL;
1028 if (env->mem_io_pc) {
1029 /* now we have a real cpu fault */
1030 current_tb = tb_find_pc(env->mem_io_pc);
1031 }
1032 }
1033 if (current_tb == tb &&
1034 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1035 /* If we are modifying the current TB, we must stop
1036 its execution. We could be more precise by checking
1037 that the modification is after the current PC, but it
1038 would require a specialized function to partially
1039 restore the CPU state */
1040
1041 current_tb_modified = 1;
1042 cpu_restore_state(current_tb, env,
1043 env->mem_io_pc, NULL);
1044 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1045 &current_flags);
1046 }
1047 #endif /* TARGET_HAS_PRECISE_SMC */
1048 /* we need to do that to handle the case where a signal
1049 occurs while doing tb_phys_invalidate() */
1050 saved_tb = NULL;
1051 if (env) {
1052 saved_tb = env->current_tb;
1053 env->current_tb = NULL;
1054 }
1055 tb_phys_invalidate(tb, -1);
1056 if (env) {
1057 env->current_tb = saved_tb;
1058 if (env->interrupt_request && env->current_tb)
1059 cpu_interrupt(env, env->interrupt_request);
1060 }
1061 }
1062 tb = tb_next;
1063 }
1064 #if !defined(CONFIG_USER_ONLY)
1065 /* if no code remaining, no need to continue to use slow writes */
1066 if (!p->first_tb) {
1067 invalidate_page_bitmap(p);
1068 if (is_cpu_write_access) {
1069 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1070 }
1071 }
1072 #endif
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_modified) {
1075 /* we generate a block containing just the instruction
1076 modifying the memory. It will ensure that it cannot modify
1077 itself */
1078 env->current_tb = NULL;
1079 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1080 cpu_resume_from_signal(env, NULL);
1081 }
1082 #endif
1083 }
1084
1085 /* len must be <= 8 and start must be a multiple of len */
1086 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1087 {
1088 PageDesc *p;
1089 int offset, b;
1090 #if 0
1091 if (1) {
1092 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1093 cpu_single_env->mem_io_vaddr, len,
1094 cpu_single_env->eip,
1095 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1096 }
1097 #endif
1098 p = page_find(start >> TARGET_PAGE_BITS);
1099 if (!p)
1100 return;
1101 if (p->code_bitmap) {
1102 offset = start & ~TARGET_PAGE_MASK;
1103 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1104 if (b & ((1 << len) - 1))
1105 goto do_invalidate;
1106 } else {
1107 do_invalidate:
1108 tb_invalidate_phys_page_range(start, start + len, 1);
1109 }
1110 }
1111
1112 #if !defined(CONFIG_SOFTMMU)
1113 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1114 unsigned long pc, void *puc)
1115 {
1116 TranslationBlock *tb;
1117 PageDesc *p;
1118 int n;
1119 #ifdef TARGET_HAS_PRECISE_SMC
1120 TranslationBlock *current_tb = NULL;
1121 CPUState *env = cpu_single_env;
1122 int current_tb_modified = 0;
1123 target_ulong current_pc = 0;
1124 target_ulong current_cs_base = 0;
1125 int current_flags = 0;
1126 #endif
1127
1128 addr &= TARGET_PAGE_MASK;
1129 p = page_find(addr >> TARGET_PAGE_BITS);
1130 if (!p)
1131 return;
1132 tb = p->first_tb;
1133 #ifdef TARGET_HAS_PRECISE_SMC
1134 if (tb && pc != 0) {
1135 current_tb = tb_find_pc(pc);
1136 }
1137 #endif
1138 while (tb != NULL) {
1139 n = (long)tb & 3;
1140 tb = (TranslationBlock *)((long)tb & ~3);
1141 #ifdef TARGET_HAS_PRECISE_SMC
1142 if (current_tb == tb &&
1143 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1144 /* If we are modifying the current TB, we must stop
1145 its execution. We could be more precise by checking
1146 that the modification is after the current PC, but it
1147 would require a specialized function to partially
1148 restore the CPU state */
1149
1150 current_tb_modified = 1;
1151 cpu_restore_state(current_tb, env, pc, puc);
1152 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1153 &current_flags);
1154 }
1155 #endif /* TARGET_HAS_PRECISE_SMC */
1156 tb_phys_invalidate(tb, addr);
1157 tb = tb->page_next[n];
1158 }
1159 p->first_tb = NULL;
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (current_tb_modified) {
1162 /* we generate a block containing just the instruction
1163 modifying the memory. It will ensure that it cannot modify
1164 itself */
1165 env->current_tb = NULL;
1166 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1167 cpu_resume_from_signal(env, puc);
1168 }
1169 #endif
1170 }
1171 #endif
1172
1173 /* add the tb in the target page and protect it if necessary */
1174 static inline void tb_alloc_page(TranslationBlock *tb,
1175 unsigned int n, tb_page_addr_t page_addr)
1176 {
1177 PageDesc *p;
1178 TranslationBlock *last_first_tb;
1179
1180 tb->page_addr[n] = page_addr;
1181 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1182 tb->page_next[n] = p->first_tb;
1183 last_first_tb = p->first_tb;
1184 p->first_tb = (TranslationBlock *)((long)tb | n);
1185 invalidate_page_bitmap(p);
1186
1187 #if defined(TARGET_HAS_SMC) || 1
1188
1189 #if defined(CONFIG_USER_ONLY)
1190 if (p->flags & PAGE_WRITE) {
1191 target_ulong addr;
1192 PageDesc *p2;
1193 int prot;
1194
1195 /* force the host page as non writable (writes will have a
1196 page fault + mprotect overhead) */
1197 page_addr &= qemu_host_page_mask;
1198 prot = 0;
1199 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1200 addr += TARGET_PAGE_SIZE) {
1201
1202 p2 = page_find (addr >> TARGET_PAGE_BITS);
1203 if (!p2)
1204 continue;
1205 prot |= p2->flags;
1206 p2->flags &= ~PAGE_WRITE;
1207 }
1208 mprotect(g2h(page_addr), qemu_host_page_size,
1209 (prot & PAGE_BITS) & ~PAGE_WRITE);
1210 #ifdef DEBUG_TB_INVALIDATE
1211 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1212 page_addr);
1213 #endif
1214 }
1215 #else
1216 /* if some code is already present, then the pages are already
1217 protected. So we handle the case where only the first TB is
1218 allocated in a physical page */
1219 if (!last_first_tb) {
1220 tlb_protect_code(page_addr);
1221 }
1222 #endif
1223
1224 #endif /* TARGET_HAS_SMC */
1225 }
1226
1227 /* Allocate a new translation block. Flush the translation buffer if
1228 too many translation blocks or too much generated code. */
1229 TranslationBlock *tb_alloc(target_ulong pc)
1230 {
1231 TranslationBlock *tb;
1232
1233 if (nb_tbs >= code_gen_max_blocks ||
1234 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1235 return NULL;
1236 tb = &tbs[nb_tbs++];
1237 tb->pc = pc;
1238 tb->cflags = 0;
1239 return tb;
1240 }
1241
1242 void tb_free(TranslationBlock *tb)
1243 {
1244 /* In practice this is mostly used for single use temporary TB
1245 Ignore the hard cases and just back up if this TB happens to
1246 be the last one generated. */
1247 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1248 code_gen_ptr = tb->tc_ptr;
1249 nb_tbs--;
1250 }
1251 }
1252
1253 /* add a new TB and link it to the physical page tables. phys_page2 is
1254 (-1) to indicate that only one page contains the TB. */
1255 void tb_link_page(TranslationBlock *tb,
1256 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1257 {
1258 unsigned int h;
1259 TranslationBlock **ptb;
1260
1261 /* Grab the mmap lock to stop another thread invalidating this TB
1262 before we are done. */
1263 mmap_lock();
1264 /* add in the physical hash table */
1265 h = tb_phys_hash_func(phys_pc);
1266 ptb = &tb_phys_hash[h];
1267 tb->phys_hash_next = *ptb;
1268 *ptb = tb;
1269
1270 /* add in the page list */
1271 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1272 if (phys_page2 != -1)
1273 tb_alloc_page(tb, 1, phys_page2);
1274 else
1275 tb->page_addr[1] = -1;
1276
1277 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1278 tb->jmp_next[0] = NULL;
1279 tb->jmp_next[1] = NULL;
1280
1281 /* init original jump addresses */
1282 if (tb->tb_next_offset[0] != 0xffff)
1283 tb_reset_jump(tb, 0);
1284 if (tb->tb_next_offset[1] != 0xffff)
1285 tb_reset_jump(tb, 1);
1286
1287 #ifdef DEBUG_TB_CHECK
1288 tb_page_check();
1289 #endif
1290 mmap_unlock();
1291 }
1292
1293 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1294 tb[1].tc_ptr. Return NULL if not found */
1295 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1296 {
1297 int m_min, m_max, m;
1298 unsigned long v;
1299 TranslationBlock *tb;
1300
1301 if (nb_tbs <= 0)
1302 return NULL;
1303 if (tc_ptr < (unsigned long)code_gen_buffer ||
1304 tc_ptr >= (unsigned long)code_gen_ptr)
1305 return NULL;
1306 /* binary search (cf Knuth) */
1307 m_min = 0;
1308 m_max = nb_tbs - 1;
1309 while (m_min <= m_max) {
1310 m = (m_min + m_max) >> 1;
1311 tb = &tbs[m];
1312 v = (unsigned long)tb->tc_ptr;
1313 if (v == tc_ptr)
1314 return tb;
1315 else if (tc_ptr < v) {
1316 m_max = m - 1;
1317 } else {
1318 m_min = m + 1;
1319 }
1320 }
1321 return &tbs[m_max];
1322 }
1323
1324 static void tb_reset_jump_recursive(TranslationBlock *tb);
1325
1326 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1327 {
1328 TranslationBlock *tb1, *tb_next, **ptb;
1329 unsigned int n1;
1330
1331 tb1 = tb->jmp_next[n];
1332 if (tb1 != NULL) {
1333 /* find head of list */
1334 for(;;) {
1335 n1 = (long)tb1 & 3;
1336 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1337 if (n1 == 2)
1338 break;
1339 tb1 = tb1->jmp_next[n1];
1340 }
1341 /* we are now sure now that tb jumps to tb1 */
1342 tb_next = tb1;
1343
1344 /* remove tb from the jmp_first list */
1345 ptb = &tb_next->jmp_first;
1346 for(;;) {
1347 tb1 = *ptb;
1348 n1 = (long)tb1 & 3;
1349 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1350 if (n1 == n && tb1 == tb)
1351 break;
1352 ptb = &tb1->jmp_next[n1];
1353 }
1354 *ptb = tb->jmp_next[n];
1355 tb->jmp_next[n] = NULL;
1356
1357 /* suppress the jump to next tb in generated code */
1358 tb_reset_jump(tb, n);
1359
1360 /* suppress jumps in the tb on which we could have jumped */
1361 tb_reset_jump_recursive(tb_next);
1362 }
1363 }
1364
1365 static void tb_reset_jump_recursive(TranslationBlock *tb)
1366 {
1367 tb_reset_jump_recursive2(tb, 0);
1368 tb_reset_jump_recursive2(tb, 1);
1369 }
1370
1371 #if defined(TARGET_HAS_ICE)
1372 #if defined(CONFIG_USER_ONLY)
1373 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374 {
1375 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1376 }
1377 #else
1378 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1379 {
1380 target_phys_addr_t addr;
1381 target_ulong pd;
1382 ram_addr_t ram_addr;
1383 PhysPageDesc *p;
1384
1385 addr = cpu_get_phys_page_debug(env, pc);
1386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1387 if (!p) {
1388 pd = IO_MEM_UNASSIGNED;
1389 } else {
1390 pd = p->phys_offset;
1391 }
1392 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1393 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1394 }
1395 #endif
1396 #endif /* TARGET_HAS_ICE */
1397
1398 #if defined(CONFIG_USER_ONLY)
1399 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1400
1401 {
1402 }
1403
1404 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1405 int flags, CPUWatchpoint **watchpoint)
1406 {
1407 return -ENOSYS;
1408 }
1409 #else
1410 /* Add a watchpoint. */
1411 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1412 int flags, CPUWatchpoint **watchpoint)
1413 {
1414 target_ulong len_mask = ~(len - 1);
1415 CPUWatchpoint *wp;
1416
1417 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1418 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1419 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1420 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1421 return -EINVAL;
1422 }
1423 wp = qemu_malloc(sizeof(*wp));
1424
1425 wp->vaddr = addr;
1426 wp->len_mask = len_mask;
1427 wp->flags = flags;
1428
1429 /* keep all GDB-injected watchpoints in front */
1430 if (flags & BP_GDB)
1431 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1432 else
1433 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1434
1435 tlb_flush_page(env, addr);
1436
1437 if (watchpoint)
1438 *watchpoint = wp;
1439 return 0;
1440 }
1441
1442 /* Remove a specific watchpoint. */
1443 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1444 int flags)
1445 {
1446 target_ulong len_mask = ~(len - 1);
1447 CPUWatchpoint *wp;
1448
1449 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1450 if (addr == wp->vaddr && len_mask == wp->len_mask
1451 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1452 cpu_watchpoint_remove_by_ref(env, wp);
1453 return 0;
1454 }
1455 }
1456 return -ENOENT;
1457 }
1458
1459 /* Remove a specific watchpoint by reference. */
1460 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1461 {
1462 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1463
1464 tlb_flush_page(env, watchpoint->vaddr);
1465
1466 qemu_free(watchpoint);
1467 }
1468
1469 /* Remove all matching watchpoints. */
1470 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1471 {
1472 CPUWatchpoint *wp, *next;
1473
1474 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1475 if (wp->flags & mask)
1476 cpu_watchpoint_remove_by_ref(env, wp);
1477 }
1478 }
1479 #endif
1480
1481 /* Add a breakpoint. */
1482 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1483 CPUBreakpoint **breakpoint)
1484 {
1485 #if defined(TARGET_HAS_ICE)
1486 CPUBreakpoint *bp;
1487
1488 bp = qemu_malloc(sizeof(*bp));
1489
1490 bp->pc = pc;
1491 bp->flags = flags;
1492
1493 /* keep all GDB-injected breakpoints in front */
1494 if (flags & BP_GDB)
1495 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1496 else
1497 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1498
1499 breakpoint_invalidate(env, pc);
1500
1501 if (breakpoint)
1502 *breakpoint = bp;
1503 return 0;
1504 #else
1505 return -ENOSYS;
1506 #endif
1507 }
1508
1509 /* Remove a specific breakpoint. */
1510 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1511 {
1512 #if defined(TARGET_HAS_ICE)
1513 CPUBreakpoint *bp;
1514
1515 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1516 if (bp->pc == pc && bp->flags == flags) {
1517 cpu_breakpoint_remove_by_ref(env, bp);
1518 return 0;
1519 }
1520 }
1521 return -ENOENT;
1522 #else
1523 return -ENOSYS;
1524 #endif
1525 }
1526
1527 /* Remove a specific breakpoint by reference. */
1528 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1529 {
1530 #if defined(TARGET_HAS_ICE)
1531 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1532
1533 breakpoint_invalidate(env, breakpoint->pc);
1534
1535 qemu_free(breakpoint);
1536 #endif
1537 }
1538
1539 /* Remove all matching breakpoints. */
1540 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1541 {
1542 #if defined(TARGET_HAS_ICE)
1543 CPUBreakpoint *bp, *next;
1544
1545 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1546 if (bp->flags & mask)
1547 cpu_breakpoint_remove_by_ref(env, bp);
1548 }
1549 #endif
1550 }
1551
1552 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1553 CPU loop after each instruction */
1554 void cpu_single_step(CPUState *env, int enabled)
1555 {
1556 #if defined(TARGET_HAS_ICE)
1557 if (env->singlestep_enabled != enabled) {
1558 env->singlestep_enabled = enabled;
1559 if (kvm_enabled())
1560 kvm_update_guest_debug(env, 0);
1561 else {
1562 /* must flush all the translated code to avoid inconsistencies */
1563 /* XXX: only flush what is necessary */
1564 tb_flush(env);
1565 }
1566 }
1567 #endif
1568 }
1569
1570 /* enable or disable low levels log */
1571 void cpu_set_log(int log_flags)
1572 {
1573 loglevel = log_flags;
1574 if (loglevel && !logfile) {
1575 logfile = fopen(logfilename, log_append ? "a" : "w");
1576 if (!logfile) {
1577 perror(logfilename);
1578 _exit(1);
1579 }
1580 #if !defined(CONFIG_SOFTMMU)
1581 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1582 {
1583 static char logfile_buf[4096];
1584 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1585 }
1586 #elif !defined(_WIN32)
1587 /* Win32 doesn't support line-buffering and requires size >= 2 */
1588 setvbuf(logfile, NULL, _IOLBF, 0);
1589 #endif
1590 log_append = 1;
1591 }
1592 if (!loglevel && logfile) {
1593 fclose(logfile);
1594 logfile = NULL;
1595 }
1596 }
1597
1598 void cpu_set_log_filename(const char *filename)
1599 {
1600 logfilename = strdup(filename);
1601 if (logfile) {
1602 fclose(logfile);
1603 logfile = NULL;
1604 }
1605 cpu_set_log(loglevel);
1606 }
1607
1608 static void cpu_unlink_tb(CPUState *env)
1609 {
1610 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1611 problem and hope the cpu will stop of its own accord. For userspace
1612 emulation this often isn't actually as bad as it sounds. Often
1613 signals are used primarily to interrupt blocking syscalls. */
1614 TranslationBlock *tb;
1615 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1616
1617 spin_lock(&interrupt_lock);
1618 tb = env->current_tb;
1619 /* if the cpu is currently executing code, we must unlink it and
1620 all the potentially executing TB */
1621 if (tb) {
1622 env->current_tb = NULL;
1623 tb_reset_jump_recursive(tb);
1624 }
1625 spin_unlock(&interrupt_lock);
1626 }
1627
1628 /* mask must never be zero, except for A20 change call */
1629 void cpu_interrupt(CPUState *env, int mask)
1630 {
1631 int old_mask;
1632
1633 old_mask = env->interrupt_request;
1634 env->interrupt_request |= mask;
1635
1636 #ifndef CONFIG_USER_ONLY
1637 /*
1638 * If called from iothread context, wake the target cpu in
1639 * case its halted.
1640 */
1641 if (!qemu_cpu_self(env)) {
1642 qemu_cpu_kick(env);
1643 return;
1644 }
1645 #endif
1646
1647 if (use_icount) {
1648 env->icount_decr.u16.high = 0xffff;
1649 #ifndef CONFIG_USER_ONLY
1650 if (!can_do_io(env)
1651 && (mask & ~old_mask) != 0) {
1652 cpu_abort(env, "Raised interrupt while not in I/O function");
1653 }
1654 #endif
1655 } else {
1656 cpu_unlink_tb(env);
1657 }
1658 }
1659
1660 void cpu_reset_interrupt(CPUState *env, int mask)
1661 {
1662 env->interrupt_request &= ~mask;
1663 }
1664
1665 void cpu_exit(CPUState *env)
1666 {
1667 env->exit_request = 1;
1668 cpu_unlink_tb(env);
1669 }
1670
1671 const CPULogItem cpu_log_items[] = {
1672 { CPU_LOG_TB_OUT_ASM, "out_asm",
1673 "show generated host assembly code for each compiled TB" },
1674 { CPU_LOG_TB_IN_ASM, "in_asm",
1675 "show target assembly code for each compiled TB" },
1676 { CPU_LOG_TB_OP, "op",
1677 "show micro ops for each compiled TB" },
1678 { CPU_LOG_TB_OP_OPT, "op_opt",
1679 "show micro ops "
1680 #ifdef TARGET_I386
1681 "before eflags optimization and "
1682 #endif
1683 "after liveness analysis" },
1684 { CPU_LOG_INT, "int",
1685 "show interrupts/exceptions in short format" },
1686 { CPU_LOG_EXEC, "exec",
1687 "show trace before each executed TB (lots of logs)" },
1688 { CPU_LOG_TB_CPU, "cpu",
1689 "show CPU state before block translation" },
1690 #ifdef TARGET_I386
1691 { CPU_LOG_PCALL, "pcall",
1692 "show protected mode far calls/returns/exceptions" },
1693 { CPU_LOG_RESET, "cpu_reset",
1694 "show CPU state before CPU resets" },
1695 #endif
1696 #ifdef DEBUG_IOPORT
1697 { CPU_LOG_IOPORT, "ioport",
1698 "show all i/o ports accesses" },
1699 #endif
1700 { 0, NULL, NULL },
1701 };
1702
1703 #ifndef CONFIG_USER_ONLY
1704 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1705 = QLIST_HEAD_INITIALIZER(memory_client_list);
1706
1707 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1708 ram_addr_t size,
1709 ram_addr_t phys_offset)
1710 {
1711 CPUPhysMemoryClient *client;
1712 QLIST_FOREACH(client, &memory_client_list, list) {
1713 client->set_memory(client, start_addr, size, phys_offset);
1714 }
1715 }
1716
1717 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1718 target_phys_addr_t end)
1719 {
1720 CPUPhysMemoryClient *client;
1721 QLIST_FOREACH(client, &memory_client_list, list) {
1722 int r = client->sync_dirty_bitmap(client, start, end);
1723 if (r < 0)
1724 return r;
1725 }
1726 return 0;
1727 }
1728
1729 static int cpu_notify_migration_log(int enable)
1730 {
1731 CPUPhysMemoryClient *client;
1732 QLIST_FOREACH(client, &memory_client_list, list) {
1733 int r = client->migration_log(client, enable);
1734 if (r < 0)
1735 return r;
1736 }
1737 return 0;
1738 }
1739
1740 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1741 int level, void **lp)
1742 {
1743 int i;
1744
1745 if (*lp == NULL) {
1746 return;
1747 }
1748 if (level == 0) {
1749 PhysPageDesc *pd = *lp;
1750 for (i = 0; i < L2_SIZE; ++i) {
1751 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1752 client->set_memory(client, pd[i].region_offset,
1753 TARGET_PAGE_SIZE, pd[i].phys_offset);
1754 }
1755 }
1756 } else {
1757 void **pp = *lp;
1758 for (i = 0; i < L2_SIZE; ++i) {
1759 phys_page_for_each_1(client, level - 1, pp + i);
1760 }
1761 }
1762 }
1763
1764 static void phys_page_for_each(CPUPhysMemoryClient *client)
1765 {
1766 int i;
1767 for (i = 0; i < P_L1_SIZE; ++i) {
1768 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1769 l1_phys_map + 1);
1770 }
1771 }
1772
1773 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1774 {
1775 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1776 phys_page_for_each(client);
1777 }
1778
1779 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1780 {
1781 QLIST_REMOVE(client, list);
1782 }
1783 #endif
1784
1785 static int cmp1(const char *s1, int n, const char *s2)
1786 {
1787 if (strlen(s2) != n)
1788 return 0;
1789 return memcmp(s1, s2, n) == 0;
1790 }
1791
1792 /* takes a comma separated list of log masks. Return 0 if error. */
1793 int cpu_str_to_log_mask(const char *str)
1794 {
1795 const CPULogItem *item;
1796 int mask;
1797 const char *p, *p1;
1798
1799 p = str;
1800 mask = 0;
1801 for(;;) {
1802 p1 = strchr(p, ',');
1803 if (!p1)
1804 p1 = p + strlen(p);
1805 if(cmp1(p,p1-p,"all")) {
1806 for(item = cpu_log_items; item->mask != 0; item++) {
1807 mask |= item->mask;
1808 }
1809 } else {
1810 for(item = cpu_log_items; item->mask != 0; item++) {
1811 if (cmp1(p, p1 - p, item->name))
1812 goto found;
1813 }
1814 return 0;
1815 }
1816 found:
1817 mask |= item->mask;
1818 if (*p1 != ',')
1819 break;
1820 p = p1 + 1;
1821 }
1822 return mask;
1823 }
1824
1825 void cpu_abort(CPUState *env, const char *fmt, ...)
1826 {
1827 va_list ap;
1828 va_list ap2;
1829
1830 va_start(ap, fmt);
1831 va_copy(ap2, ap);
1832 fprintf(stderr, "qemu: fatal: ");
1833 vfprintf(stderr, fmt, ap);
1834 fprintf(stderr, "\n");
1835 #ifdef TARGET_I386
1836 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1837 #else
1838 cpu_dump_state(env, stderr, fprintf, 0);
1839 #endif
1840 if (qemu_log_enabled()) {
1841 qemu_log("qemu: fatal: ");
1842 qemu_log_vprintf(fmt, ap2);
1843 qemu_log("\n");
1844 #ifdef TARGET_I386
1845 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1846 #else
1847 log_cpu_state(env, 0);
1848 #endif
1849 qemu_log_flush();
1850 qemu_log_close();
1851 }
1852 va_end(ap2);
1853 va_end(ap);
1854 #if defined(CONFIG_USER_ONLY)
1855 {
1856 struct sigaction act;
1857 sigfillset(&act.sa_mask);
1858 act.sa_handler = SIG_DFL;
1859 sigaction(SIGABRT, &act, NULL);
1860 }
1861 #endif
1862 abort();
1863 }
1864
1865 CPUState *cpu_copy(CPUState *env)
1866 {
1867 CPUState *new_env = cpu_init(env->cpu_model_str);
1868 CPUState *next_cpu = new_env->next_cpu;
1869 int cpu_index = new_env->cpu_index;
1870 #if defined(TARGET_HAS_ICE)
1871 CPUBreakpoint *bp;
1872 CPUWatchpoint *wp;
1873 #endif
1874
1875 memcpy(new_env, env, sizeof(CPUState));
1876
1877 /* Preserve chaining and index. */
1878 new_env->next_cpu = next_cpu;
1879 new_env->cpu_index = cpu_index;
1880
1881 /* Clone all break/watchpoints.
1882 Note: Once we support ptrace with hw-debug register access, make sure
1883 BP_CPU break/watchpoints are handled correctly on clone. */
1884 QTAILQ_INIT(&env->breakpoints);
1885 QTAILQ_INIT(&env->watchpoints);
1886 #if defined(TARGET_HAS_ICE)
1887 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1888 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1889 }
1890 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1891 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1892 wp->flags, NULL);
1893 }
1894 #endif
1895
1896 return new_env;
1897 }
1898
1899 #if !defined(CONFIG_USER_ONLY)
1900
1901 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1902 {
1903 unsigned int i;
1904
1905 /* Discard jump cache entries for any tb which might potentially
1906 overlap the flushed page. */
1907 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1908 memset (&env->tb_jmp_cache[i], 0,
1909 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910
1911 i = tb_jmp_cache_hash_page(addr);
1912 memset (&env->tb_jmp_cache[i], 0,
1913 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1914 }
1915
1916 static CPUTLBEntry s_cputlb_empty_entry = {
1917 .addr_read = -1,
1918 .addr_write = -1,
1919 .addr_code = -1,
1920 .addend = -1,
1921 };
1922
1923 /* NOTE: if flush_global is true, also flush global entries (not
1924 implemented yet) */
1925 void tlb_flush(CPUState *env, int flush_global)
1926 {
1927 int i;
1928
1929 #if defined(DEBUG_TLB)
1930 printf("tlb_flush:\n");
1931 #endif
1932 /* must reset current TB so that interrupts cannot modify the
1933 links while we are modifying them */
1934 env->current_tb = NULL;
1935
1936 for(i = 0; i < CPU_TLB_SIZE; i++) {
1937 int mmu_idx;
1938 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1939 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1940 }
1941 }
1942
1943 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1944
1945 env->tlb_flush_addr = -1;
1946 env->tlb_flush_mask = 0;
1947 tlb_flush_count++;
1948 }
1949
1950 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1951 {
1952 if (addr == (tlb_entry->addr_read &
1953 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1954 addr == (tlb_entry->addr_write &
1955 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1956 addr == (tlb_entry->addr_code &
1957 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1958 *tlb_entry = s_cputlb_empty_entry;
1959 }
1960 }
1961
1962 void tlb_flush_page(CPUState *env, target_ulong addr)
1963 {
1964 int i;
1965 int mmu_idx;
1966
1967 #if defined(DEBUG_TLB)
1968 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1969 #endif
1970 /* Check if we need to flush due to large pages. */
1971 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1972 #if defined(DEBUG_TLB)
1973 printf("tlb_flush_page: forced full flush ("
1974 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1975 env->tlb_flush_addr, env->tlb_flush_mask);
1976 #endif
1977 tlb_flush(env, 1);
1978 return;
1979 }
1980 /* must reset current TB so that interrupts cannot modify the
1981 links while we are modifying them */
1982 env->current_tb = NULL;
1983
1984 addr &= TARGET_PAGE_MASK;
1985 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1986 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1987 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1988
1989 tlb_flush_jmp_cache(env, addr);
1990 }
1991
1992 /* update the TLBs so that writes to code in the virtual page 'addr'
1993 can be detected */
1994 static void tlb_protect_code(ram_addr_t ram_addr)
1995 {
1996 cpu_physical_memory_reset_dirty(ram_addr,
1997 ram_addr + TARGET_PAGE_SIZE,
1998 CODE_DIRTY_FLAG);
1999 }
2000
2001 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2002 tested for self modifying code */
2003 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2004 target_ulong vaddr)
2005 {
2006 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2007 }
2008
2009 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2010 unsigned long start, unsigned long length)
2011 {
2012 unsigned long addr;
2013 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2014 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2015 if ((addr - start) < length) {
2016 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2017 }
2018 }
2019 }
2020
2021 /* Note: start and end must be within the same ram block. */
2022 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2023 int dirty_flags)
2024 {
2025 CPUState *env;
2026 unsigned long length, start1;
2027 int i;
2028
2029 start &= TARGET_PAGE_MASK;
2030 end = TARGET_PAGE_ALIGN(end);
2031
2032 length = end - start;
2033 if (length == 0)
2034 return;
2035 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2036
2037 /* we modify the TLB cache so that the dirty bit will be set again
2038 when accessing the range */
2039 start1 = (unsigned long)qemu_get_ram_ptr(start);
2040 /* Chek that we don't span multiple blocks - this breaks the
2041 address comparisons below. */
2042 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2043 != (end - 1) - start) {
2044 abort();
2045 }
2046
2047 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2048 int mmu_idx;
2049 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2050 for(i = 0; i < CPU_TLB_SIZE; i++)
2051 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2052 start1, length);
2053 }
2054 }
2055 }
2056
2057 int cpu_physical_memory_set_dirty_tracking(int enable)
2058 {
2059 int ret = 0;
2060 in_migration = enable;
2061 ret = cpu_notify_migration_log(!!enable);
2062 return ret;
2063 }
2064
2065 int cpu_physical_memory_get_dirty_tracking(void)
2066 {
2067 return in_migration;
2068 }
2069
2070 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2071 target_phys_addr_t end_addr)
2072 {
2073 int ret;
2074
2075 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2076 return ret;
2077 }
2078
2079 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2080 {
2081 ram_addr_t ram_addr;
2082 void *p;
2083
2084 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2085 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2086 + tlb_entry->addend);
2087 ram_addr = qemu_ram_addr_from_host(p);
2088 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2089 tlb_entry->addr_write |= TLB_NOTDIRTY;
2090 }
2091 }
2092 }
2093
2094 /* update the TLB according to the current state of the dirty bits */
2095 void cpu_tlb_update_dirty(CPUState *env)
2096 {
2097 int i;
2098 int mmu_idx;
2099 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2100 for(i = 0; i < CPU_TLB_SIZE; i++)
2101 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2102 }
2103 }
2104
2105 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2106 {
2107 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2108 tlb_entry->addr_write = vaddr;
2109 }
2110
2111 /* update the TLB corresponding to virtual page vaddr
2112 so that it is no longer dirty */
2113 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2114 {
2115 int i;
2116 int mmu_idx;
2117
2118 vaddr &= TARGET_PAGE_MASK;
2119 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2120 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2121 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2122 }
2123
2124 /* Our TLB does not support large pages, so remember the area covered by
2125 large pages and trigger a full TLB flush if these are invalidated. */
2126 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2127 target_ulong size)
2128 {
2129 target_ulong mask = ~(size - 1);
2130
2131 if (env->tlb_flush_addr == (target_ulong)-1) {
2132 env->tlb_flush_addr = vaddr & mask;
2133 env->tlb_flush_mask = mask;
2134 return;
2135 }
2136 /* Extend the existing region to include the new page.
2137 This is a compromise between unnecessary flushes and the cost
2138 of maintaining a full variable size TLB. */
2139 mask &= env->tlb_flush_mask;
2140 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2141 mask <<= 1;
2142 }
2143 env->tlb_flush_addr &= mask;
2144 env->tlb_flush_mask = mask;
2145 }
2146
2147 /* Add a new TLB entry. At most one entry for a given virtual address
2148 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2149 supplied size is only used by tlb_flush_page. */
2150 void tlb_set_page(CPUState *env, target_ulong vaddr,
2151 target_phys_addr_t paddr, int prot,
2152 int mmu_idx, target_ulong size)
2153 {
2154 PhysPageDesc *p;
2155 unsigned long pd;
2156 unsigned int index;
2157 target_ulong address;
2158 target_ulong code_address;
2159 unsigned long addend;
2160 CPUTLBEntry *te;
2161 CPUWatchpoint *wp;
2162 target_phys_addr_t iotlb;
2163
2164 assert(size >= TARGET_PAGE_SIZE);
2165 if (size != TARGET_PAGE_SIZE) {
2166 tlb_add_large_page(env, vaddr, size);
2167 }
2168 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2169 if (!p) {
2170 pd = IO_MEM_UNASSIGNED;
2171 } else {
2172 pd = p->phys_offset;
2173 }
2174 #if defined(DEBUG_TLB)
2175 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2176 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2177 #endif
2178
2179 address = vaddr;
2180 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2181 /* IO memory case (romd handled later) */
2182 address |= TLB_MMIO;
2183 }
2184 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2185 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2186 /* Normal RAM. */
2187 iotlb = pd & TARGET_PAGE_MASK;
2188 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2189 iotlb |= IO_MEM_NOTDIRTY;
2190 else
2191 iotlb |= IO_MEM_ROM;
2192 } else {
2193 /* IO handlers are currently passed a physical address.
2194 It would be nice to pass an offset from the base address
2195 of that region. This would avoid having to special case RAM,
2196 and avoid full address decoding in every device.
2197 We can't use the high bits of pd for this because
2198 IO_MEM_ROMD uses these as a ram address. */
2199 iotlb = (pd & ~TARGET_PAGE_MASK);
2200 if (p) {
2201 iotlb += p->region_offset;
2202 } else {
2203 iotlb += paddr;
2204 }
2205 }
2206
2207 code_address = address;
2208 /* Make accesses to pages with watchpoints go via the
2209 watchpoint trap routines. */
2210 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2211 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2212 iotlb = io_mem_watch + paddr;
2213 /* TODO: The memory case can be optimized by not trapping
2214 reads of pages with a write breakpoint. */
2215 address |= TLB_MMIO;
2216 }
2217 }
2218
2219 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2221 te = &env->tlb_table[mmu_idx][index];
2222 te->addend = addend - vaddr;
2223 if (prot & PAGE_READ) {
2224 te->addr_read = address;
2225 } else {
2226 te->addr_read = -1;
2227 }
2228
2229 if (prot & PAGE_EXEC) {
2230 te->addr_code = code_address;
2231 } else {
2232 te->addr_code = -1;
2233 }
2234 if (prot & PAGE_WRITE) {
2235 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2236 (pd & IO_MEM_ROMD)) {
2237 /* Write access calls the I/O callback. */
2238 te->addr_write = address | TLB_MMIO;
2239 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2240 !cpu_physical_memory_is_dirty(pd)) {
2241 te->addr_write = address | TLB_NOTDIRTY;
2242 } else {
2243 te->addr_write = address;
2244 }
2245 } else {
2246 te->addr_write = -1;
2247 }
2248 }
2249
2250 #else
2251
2252 void tlb_flush(CPUState *env, int flush_global)
2253 {
2254 }
2255
2256 void tlb_flush_page(CPUState *env, target_ulong addr)
2257 {
2258 }
2259
2260 /*
2261 * Walks guest process memory "regions" one by one
2262 * and calls callback function 'fn' for each region.
2263 */
2264
2265 struct walk_memory_regions_data
2266 {
2267 walk_memory_regions_fn fn;
2268 void *priv;
2269 unsigned long start;
2270 int prot;
2271 };
2272
2273 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2274 abi_ulong end, int new_prot)
2275 {
2276 if (data->start != -1ul) {
2277 int rc = data->fn(data->priv, data->start, end, data->prot);
2278 if (rc != 0) {
2279 return rc;
2280 }
2281 }
2282
2283 data->start = (new_prot ? end : -1ul);
2284 data->prot = new_prot;
2285
2286 return 0;
2287 }
2288
2289 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2290 abi_ulong base, int level, void **lp)
2291 {
2292 abi_ulong pa;
2293 int i, rc;
2294
2295 if (*lp == NULL) {
2296 return walk_memory_regions_end(data, base, 0);
2297 }
2298
2299 if (level == 0) {
2300 PageDesc *pd = *lp;
2301 for (i = 0; i < L2_SIZE; ++i) {
2302 int prot = pd[i].flags;
2303
2304 pa = base | (i << TARGET_PAGE_BITS);
2305 if (prot != data->prot) {
2306 rc = walk_memory_regions_end(data, pa, prot);
2307 if (rc != 0) {
2308 return rc;
2309 }
2310 }
2311 }
2312 } else {
2313 void **pp = *lp;
2314 for (i = 0; i < L2_SIZE; ++i) {
2315 pa = base | ((abi_ulong)i <<
2316 (TARGET_PAGE_BITS + L2_BITS * level));
2317 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2318 if (rc != 0) {
2319 return rc;
2320 }
2321 }
2322 }
2323
2324 return 0;
2325 }
2326
2327 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2328 {
2329 struct walk_memory_regions_data data;
2330 unsigned long i;
2331
2332 data.fn = fn;
2333 data.priv = priv;
2334 data.start = -1ul;
2335 data.prot = 0;
2336
2337 for (i = 0; i < V_L1_SIZE; i++) {
2338 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2339 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2340 if (rc != 0) {
2341 return rc;
2342 }
2343 }
2344
2345 return walk_memory_regions_end(&data, 0, 0);
2346 }
2347
2348 static int dump_region(void *priv, abi_ulong start,
2349 abi_ulong end, unsigned long prot)
2350 {
2351 FILE *f = (FILE *)priv;
2352
2353 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2354 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2355 start, end, end - start,
2356 ((prot & PAGE_READ) ? 'r' : '-'),
2357 ((prot & PAGE_WRITE) ? 'w' : '-'),
2358 ((prot & PAGE_EXEC) ? 'x' : '-'));
2359
2360 return (0);
2361 }
2362
2363 /* dump memory mappings */
2364 void page_dump(FILE *f)
2365 {
2366 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2367 "start", "end", "size", "prot");
2368 walk_memory_regions(f, dump_region);
2369 }
2370
2371 int page_get_flags(target_ulong address)
2372 {
2373 PageDesc *p;
2374
2375 p = page_find(address >> TARGET_PAGE_BITS);
2376 if (!p)
2377 return 0;
2378 return p->flags;
2379 }
2380
2381 /* Modify the flags of a page and invalidate the code if necessary.
2382 The flag PAGE_WRITE_ORG is positioned automatically depending
2383 on PAGE_WRITE. The mmap_lock should already be held. */
2384 void page_set_flags(target_ulong start, target_ulong end, int flags)
2385 {
2386 target_ulong addr, len;
2387
2388 /* This function should never be called with addresses outside the
2389 guest address space. If this assert fires, it probably indicates
2390 a missing call to h2g_valid. */
2391 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2392 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2393 #endif
2394 assert(start < end);
2395
2396 start = start & TARGET_PAGE_MASK;
2397 end = TARGET_PAGE_ALIGN(end);
2398
2399 if (flags & PAGE_WRITE) {
2400 flags |= PAGE_WRITE_ORG;
2401 }
2402
2403 for (addr = start, len = end - start;
2404 len != 0;
2405 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2406 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2407
2408 /* If the write protection bit is set, then we invalidate
2409 the code inside. */
2410 if (!(p->flags & PAGE_WRITE) &&
2411 (flags & PAGE_WRITE) &&
2412 p->first_tb) {
2413 tb_invalidate_phys_page(addr, 0, NULL);
2414 }
2415 p->flags = flags;
2416 }
2417 }
2418
2419 int page_check_range(target_ulong start, target_ulong len, int flags)
2420 {
2421 PageDesc *p;
2422 target_ulong end;
2423 target_ulong addr;
2424
2425 /* This function should never be called with addresses outside the
2426 guest address space. If this assert fires, it probably indicates
2427 a missing call to h2g_valid. */
2428 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2429 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2430 #endif
2431
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
2434 return -1;
2435 }
2436
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2439
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2444 if( !p )
2445 return -1;
2446 if( !(p->flags & PAGE_VALID) )
2447 return -1;
2448
2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2450 return -1;
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2453 return -1;
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2458 return -1;
2459 }
2460 return 0;
2461 }
2462 }
2463 return 0;
2464 }
2465
2466 /* called from signal handler: invalidate the code and unprotect the
2467 page. Return TRUE if the fault was successfully handled. */
2468 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2469 {
2470 unsigned int prot;
2471 PageDesc *p;
2472 target_ulong host_start, host_end, addr;
2473
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2477 mmap_lock();
2478
2479 p = page_find(address >> TARGET_PAGE_BITS);
2480 if (!p) {
2481 mmap_unlock();
2482 return 0;
2483 }
2484
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2490
2491 prot = 0;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2495 prot |= p->flags;
2496
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
2499 tb_invalidate_phys_page(addr, pc, puc);
2500 #ifdef DEBUG_TB_CHECK
2501 tb_invalidate_check(addr);
2502 #endif
2503 }
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2505 prot & PAGE_BITS);
2506
2507 mmap_unlock();
2508 return 1;
2509 }
2510 mmap_unlock();
2511 return 0;
2512 }
2513
2514 static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
2516 {
2517 }
2518 #endif /* defined(CONFIG_USER_ONLY) */
2519
2520 #if !defined(CONFIG_USER_ONLY)
2521
2522 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523 typedef struct subpage_t {
2524 target_phys_addr_t base;
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2527 } subpage_t;
2528
2529 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
2531 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
2534 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2535 need_subpage) \
2536 do { \
2537 if (addr > start_addr) \
2538 start_addr2 = 0; \
2539 else { \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2542 need_subpage = 1; \
2543 } \
2544 \
2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2547 else { \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2550 need_subpage = 1; \
2551 } \
2552 } while (0)
2553
2554 /* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
2559 start_addr and region_offset are rounded down to a page boundary
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
2562 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2563 ram_addr_t size,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
2566 {
2567 target_phys_addr_t addr, end_addr;
2568 PhysPageDesc *p;
2569 CPUState *env;
2570 ram_addr_t orig_size = size;
2571 subpage_t *subpage;
2572
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2574
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2577 }
2578 region_offset &= TARGET_PAGE_MASK;
2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2580 end_addr = start_addr + (target_phys_addr_t)size;
2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
2586 int need_subpage = 0;
2587
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2589 need_subpage);
2590 if (need_subpage) {
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2593 &p->phys_offset, orig_memory,
2594 p->region_offset);
2595 } else {
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2597 >> IO_MEM_SHIFT];
2598 }
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2600 region_offset);
2601 p->region_offset = 0;
2602 } else {
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2607 }
2608 } else {
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
2611 p->region_offset = region_offset;
2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2613 (phys_offset & IO_MEM_ROMD)) {
2614 phys_offset += TARGET_PAGE_SIZE;
2615 } else {
2616 target_phys_addr_t start_addr2, end_addr2;
2617 int need_subpage = 0;
2618
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2621
2622 if (need_subpage) {
2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2624 &p->phys_offset, IO_MEM_UNASSIGNED,
2625 addr & TARGET_PAGE_MASK);
2626 subpage_register(subpage, start_addr2, end_addr2,
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
2629 }
2630 }
2631 }
2632 region_offset += TARGET_PAGE_SIZE;
2633 }
2634
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 /* XXX: slow ! */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2639 tlb_flush(env, 1);
2640 }
2641 }
2642
2643 /* XXX: temporary until new memory mapping API */
2644 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2645 {
2646 PhysPageDesc *p;
2647
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2649 if (!p)
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2652 }
2653
2654 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2655 {
2656 if (kvm_enabled())
2657 kvm_coalesce_mmio_region(addr, size);
2658 }
2659
2660 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2661 {
2662 if (kvm_enabled())
2663 kvm_uncoalesce_mmio_region(addr, size);
2664 }
2665
2666 void qemu_flush_coalesced_mmio_buffer(void)
2667 {
2668 if (kvm_enabled())
2669 kvm_flush_coalesced_mmio_buffer();
2670 }
2671
2672 #if defined(__linux__) && !defined(TARGET_S390X)
2673
2674 #include <sys/vfs.h>
2675
2676 #define HUGETLBFS_MAGIC 0x958458f6
2677
2678 static long gethugepagesize(const char *path)
2679 {
2680 struct statfs fs;
2681 int ret;
2682
2683 do {
2684 ret = statfs(path, &fs);
2685 } while (ret != 0 && errno == EINTR);
2686
2687 if (ret != 0) {
2688 perror(path);
2689 return 0;
2690 }
2691
2692 if (fs.f_type != HUGETLBFS_MAGIC)
2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2694
2695 return fs.f_bsize;
2696 }
2697
2698 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2699 {
2700 char *filename;
2701 void *area;
2702 int fd;
2703 #ifdef MAP_POPULATE
2704 int flags;
2705 #endif
2706 unsigned long hpagesize;
2707
2708 hpagesize = gethugepagesize(path);
2709 if (!hpagesize) {
2710 return NULL;
2711 }
2712
2713 if (memory < hpagesize) {
2714 return NULL;
2715 }
2716
2717 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2718 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2719 return NULL;
2720 }
2721
2722 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2723 return NULL;
2724 }
2725
2726 fd = mkstemp(filename);
2727 if (fd < 0) {
2728 perror("unable to create backing store for hugepages");
2729 free(filename);
2730 return NULL;
2731 }
2732 unlink(filename);
2733 free(filename);
2734
2735 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2736
2737 /*
2738 * ftruncate is not supported by hugetlbfs in older
2739 * hosts, so don't bother bailing out on errors.
2740 * If anything goes wrong with it under other filesystems,
2741 * mmap will fail.
2742 */
2743 if (ftruncate(fd, memory))
2744 perror("ftruncate");
2745
2746 #ifdef MAP_POPULATE
2747 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2748 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2749 * to sidestep this quirk.
2750 */
2751 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2752 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2753 #else
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2755 #endif
2756 if (area == MAP_FAILED) {
2757 perror("file_ram_alloc: can't mmap RAM pages");
2758 close(fd);
2759 return (NULL);
2760 }
2761 return area;
2762 }
2763 #endif
2764
2765 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2766 {
2767 RAMBlock *new_block;
2768
2769 size = TARGET_PAGE_ALIGN(size);
2770 new_block = qemu_malloc(sizeof(*new_block));
2771
2772 if (mem_path) {
2773 #if defined (__linux__) && !defined(TARGET_S390X)
2774 new_block->host = file_ram_alloc(size, mem_path);
2775 if (!new_block->host)
2776 exit(1);
2777 #else
2778 fprintf(stderr, "-mem-path option unsupported\n");
2779 exit(1);
2780 #endif
2781 } else {
2782 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2783 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2784 new_block->host = mmap((void*)0x1000000, size,
2785 PROT_EXEC|PROT_READ|PROT_WRITE,
2786 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2787 #else
2788 new_block->host = qemu_vmalloc(size);
2789 #endif
2790 #ifdef MADV_MERGEABLE
2791 madvise(new_block->host, size, MADV_MERGEABLE);
2792 #endif
2793 }
2794 new_block->offset = last_ram_offset;
2795 new_block->length = size;
2796
2797 new_block->next = ram_blocks;
2798 ram_blocks = new_block;
2799
2800 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2801 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2802 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2803 0xff, size >> TARGET_PAGE_BITS);
2804
2805 last_ram_offset += size;
2806
2807 if (kvm_enabled())
2808 kvm_setup_guest_memory(new_block->host, size);
2809
2810 return new_block->offset;
2811 }
2812
2813 void qemu_ram_free(ram_addr_t addr)
2814 {
2815 /* TODO: implement this. */
2816 }
2817
2818 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2819 With the exception of the softmmu code in this file, this should
2820 only be used for local memory (e.g. video ram) that the device owns,
2821 and knows it isn't going to access beyond the end of the block.
2822
2823 It should not be used for general purpose DMA.
2824 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2825 */
2826 void *qemu_get_ram_ptr(ram_addr_t addr)
2827 {
2828 RAMBlock *prev;
2829 RAMBlock **prevp;
2830 RAMBlock *block;
2831
2832 prev = NULL;
2833 prevp = &ram_blocks;
2834 block = ram_blocks;
2835 while (block && (block->offset > addr
2836 || block->offset + block->length <= addr)) {
2837 if (prev)
2838 prevp = &prev->next;
2839 prev = block;
2840 block = block->next;
2841 }
2842 if (!block) {
2843 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2844 abort();
2845 }
2846 /* Move this entry to to start of the list. */
2847 if (prev) {
2848 prev->next = block->next;
2849 block->next = *prevp;
2850 *prevp = block;
2851 }
2852 return block->host + (addr - block->offset);
2853 }
2854
2855 /* Some of the softmmu routines need to translate from a host pointer
2856 (typically a TLB entry) back to a ram offset. */
2857 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2858 {
2859 RAMBlock *block;
2860 uint8_t *host = ptr;
2861
2862 block = ram_blocks;
2863 while (block && (block->host > host
2864 || block->host + block->length <= host)) {
2865 block = block->next;
2866 }
2867 if (!block) {
2868 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2869 abort();
2870 }
2871 return block->offset + (host - block->host);
2872 }
2873
2874 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2875 {
2876 #ifdef DEBUG_UNASSIGNED
2877 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2878 #endif
2879 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2880 do_unassigned_access(addr, 0, 0, 0, 1);
2881 #endif
2882 return 0;
2883 }
2884
2885 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2886 {
2887 #ifdef DEBUG_UNASSIGNED
2888 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2889 #endif
2890 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2891 do_unassigned_access(addr, 0, 0, 0, 2);
2892 #endif
2893 return 0;
2894 }
2895
2896 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2897 {
2898 #ifdef DEBUG_UNASSIGNED
2899 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2900 #endif
2901 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2902 do_unassigned_access(addr, 0, 0, 0, 4);
2903 #endif
2904 return 0;
2905 }
2906
2907 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2908 {
2909 #ifdef DEBUG_UNASSIGNED
2910 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2911 #endif
2912 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2913 do_unassigned_access(addr, 1, 0, 0, 1);
2914 #endif
2915 }
2916
2917 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2918 {
2919 #ifdef DEBUG_UNASSIGNED
2920 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2921 #endif
2922 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2923 do_unassigned_access(addr, 1, 0, 0, 2);
2924 #endif
2925 }
2926
2927 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2928 {
2929 #ifdef DEBUG_UNASSIGNED
2930 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2931 #endif
2932 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2933 do_unassigned_access(addr, 1, 0, 0, 4);
2934 #endif
2935 }
2936
2937 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2938 unassigned_mem_readb,
2939 unassigned_mem_readw,
2940 unassigned_mem_readl,
2941 };
2942
2943 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2944 unassigned_mem_writeb,
2945 unassigned_mem_writew,
2946 unassigned_mem_writel,
2947 };
2948
2949 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2950 uint32_t val)
2951 {
2952 int dirty_flags;
2953 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2954 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2955 #if !defined(CONFIG_USER_ONLY)
2956 tb_invalidate_phys_page_fast(ram_addr, 1);
2957 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2958 #endif
2959 }
2960 stb_p(qemu_get_ram_ptr(ram_addr), val);
2961 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2962 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2963 /* we remove the notdirty callback only if the code has been
2964 flushed */
2965 if (dirty_flags == 0xff)
2966 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2967 }
2968
2969 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2970 uint32_t val)
2971 {
2972 int dirty_flags;
2973 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2974 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2975 #if !defined(CONFIG_USER_ONLY)
2976 tb_invalidate_phys_page_fast(ram_addr, 2);
2977 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2978 #endif
2979 }
2980 stw_p(qemu_get_ram_ptr(ram_addr), val);
2981 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2982 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2983 /* we remove the notdirty callback only if the code has been
2984 flushed */
2985 if (dirty_flags == 0xff)
2986 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2987 }
2988
2989 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2990 uint32_t val)
2991 {
2992 int dirty_flags;
2993 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2994 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2995 #if !defined(CONFIG_USER_ONLY)
2996 tb_invalidate_phys_page_fast(ram_addr, 4);
2997 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2998 #endif
2999 }
3000 stl_p(qemu_get_ram_ptr(ram_addr), val);
3001 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3002 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3003 /* we remove the notdirty callback only if the code has been
3004 flushed */
3005 if (dirty_flags == 0xff)
3006 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3007 }
3008
3009 static CPUReadMemoryFunc * const error_mem_read[3] = {
3010 NULL, /* never used */
3011 NULL, /* never used */
3012 NULL, /* never used */
3013 };
3014
3015 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3016 notdirty_mem_writeb,
3017 notdirty_mem_writew,
3018 notdirty_mem_writel,
3019 };
3020
3021 /* Generate a debug exception if a watchpoint has been hit. */
3022 static void check_watchpoint(int offset, int len_mask, int flags)
3023 {
3024 CPUState *env = cpu_single_env;
3025 target_ulong pc, cs_base;
3026 TranslationBlock *tb;
3027 target_ulong vaddr;
3028 CPUWatchpoint *wp;
3029 int cpu_flags;
3030
3031 if (env->watchpoint_hit) {
3032 /* We re-entered the check after replacing the TB. Now raise
3033 * the debug interrupt so that is will trigger after the
3034 * current instruction. */
3035 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3036 return;
3037 }
3038 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3039 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3040 if ((vaddr == (wp->vaddr & len_mask) ||
3041 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3042 wp->flags |= BP_WATCHPOINT_HIT;
3043 if (!env->watchpoint_hit) {
3044 env->watchpoint_hit = wp;
3045 tb = tb_find_pc(env->mem_io_pc);
3046 if (!tb) {
3047 cpu_abort(env, "check_watchpoint: could not find TB for "
3048 "pc=%p", (void *)env->mem_io_pc);
3049 }
3050 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3051 tb_phys_invalidate(tb, -1);
3052 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3053 env->exception_index = EXCP_DEBUG;
3054 } else {
3055 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3056 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3057 }
3058 cpu_resume_from_signal(env, NULL);
3059 }
3060 } else {
3061 wp->flags &= ~BP_WATCHPOINT_HIT;
3062 }
3063 }
3064 }
3065
3066 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3067 so these check for a hit then pass through to the normal out-of-line
3068 phys routines. */
3069 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3070 {
3071 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3072 return ldub_phys(addr);
3073 }
3074
3075 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3076 {
3077 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3078 return lduw_phys(addr);
3079 }
3080
3081 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3082 {
3083 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3084 return ldl_phys(addr);
3085 }
3086
3087 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3088 uint32_t val)
3089 {
3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3091 stb_phys(addr, val);
3092 }
3093
3094 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3095 uint32_t val)
3096 {
3097 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3098 stw_phys(addr, val);
3099 }
3100
3101 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3102 uint32_t val)
3103 {
3104 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3105 stl_phys(addr, val);
3106 }
3107
3108 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3109 watch_mem_readb,
3110 watch_mem_readw,
3111 watch_mem_readl,
3112 };
3113
3114 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3115 watch_mem_writeb,
3116 watch_mem_writew,
3117 watch_mem_writel,
3118 };
3119
3120 static inline uint32_t subpage_readlen (subpage_t *mmio,
3121 target_phys_addr_t addr,
3122 unsigned int len)
3123 {
3124 unsigned int idx = SUBPAGE_IDX(addr);
3125 #if defined(DEBUG_SUBPAGE)
3126 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3127 mmio, len, addr, idx);
3128 #endif
3129
3130 addr += mmio->region_offset[idx];
3131 idx = mmio->sub_io_index[idx];
3132 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3133 }
3134
3135 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3136 uint32_t value, unsigned int len)
3137 {
3138 unsigned int idx = SUBPAGE_IDX(addr);
3139 #if defined(DEBUG_SUBPAGE)
3140 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3141 __func__, mmio, len, addr, idx, value);
3142 #endif
3143
3144 addr += mmio->region_offset[idx];
3145 idx = mmio->sub_io_index[idx];
3146 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3147 }
3148
3149 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3150 {
3151 return subpage_readlen(opaque, addr, 0);
3152 }
3153
3154 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3155 uint32_t value)
3156 {
3157 subpage_writelen(opaque, addr, value, 0);
3158 }
3159
3160 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3161 {
3162 return subpage_readlen(opaque, addr, 1);
3163 }
3164
3165 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3166 uint32_t value)
3167 {
3168 subpage_writelen(opaque, addr, value, 1);
3169 }
3170
3171 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3172 {
3173 return subpage_readlen(opaque, addr, 2);
3174 }
3175
3176 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3177 uint32_t value)
3178 {
3179 subpage_writelen(opaque, addr, value, 2);
3180 }
3181
3182 static CPUReadMemoryFunc * const subpage_read[] = {
3183 &subpage_readb,
3184 &subpage_readw,
3185 &subpage_readl,
3186 };
3187
3188 static CPUWriteMemoryFunc * const subpage_write[] = {
3189 &subpage_writeb,
3190 &subpage_writew,
3191 &subpage_writel,
3192 };
3193
3194 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3195 ram_addr_t memory, ram_addr_t region_offset)
3196 {
3197 int idx, eidx;
3198
3199 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3200 return -1;
3201 idx = SUBPAGE_IDX(start);
3202 eidx = SUBPAGE_IDX(end);
3203 #if defined(DEBUG_SUBPAGE)
3204 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3205 mmio, start, end, idx, eidx, memory);
3206 #endif
3207 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3208 for (; idx <= eidx; idx++) {
3209 mmio->sub_io_index[idx] = memory;
3210 mmio->region_offset[idx] = region_offset;
3211 }
3212
3213 return 0;
3214 }
3215
3216 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3217 ram_addr_t orig_memory,
3218 ram_addr_t region_offset)
3219 {
3220 subpage_t *mmio;
3221 int subpage_memory;
3222
3223 mmio = qemu_mallocz(sizeof(subpage_t));
3224
3225 mmio->base = base;
3226 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3227 #if defined(DEBUG_SUBPAGE)
3228 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3229 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3230 #endif
3231 *phys = subpage_memory | IO_MEM_SUBPAGE;
3232 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3233
3234 return mmio;
3235 }
3236
3237 static int get_free_io_mem_idx(void)
3238 {
3239 int i;
3240
3241 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3242 if (!io_mem_used[i]) {
3243 io_mem_used[i] = 1;
3244 return i;
3245 }
3246 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3247 return -1;
3248 }
3249
3250 /* mem_read and mem_write are arrays of functions containing the
3251 function to access byte (index 0), word (index 1) and dword (index
3252 2). Functions can be omitted with a NULL function pointer.
3253 If io_index is non zero, the corresponding io zone is
3254 modified. If it is zero, a new io zone is allocated. The return
3255 value can be used with cpu_register_physical_memory(). (-1) is
3256 returned if error. */
3257 static int cpu_register_io_memory_fixed(int io_index,
3258 CPUReadMemoryFunc * const *mem_read,
3259 CPUWriteMemoryFunc * const *mem_write,
3260 void *opaque)
3261 {
3262 if (io_index <= 0) {
3263 io_index = get_free_io_mem_idx();
3264 if (io_index == -1)
3265 return io_index;
3266 } else {
3267 io_index >>= IO_MEM_SHIFT;
3268 if (io_index >= IO_MEM_NB_ENTRIES)
3269 return -1;
3270 }
3271
3272 memcpy(io_mem_read[io_index], mem_read, 3 * sizeof(CPUReadMemoryFunc*));
3273 memcpy(io_mem_write[io_index], mem_write, 3 * sizeof(CPUWriteMemoryFunc*));
3274 io_mem_opaque[io_index] = opaque;
3275
3276 return (io_index << IO_MEM_SHIFT);
3277 }
3278
3279 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3280 CPUWriteMemoryFunc * const *mem_write,
3281 void *opaque)
3282 {
3283 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3284 }
3285
3286 void cpu_unregister_io_memory(int io_table_address)
3287 {
3288 int i;
3289 int io_index = io_table_address >> IO_MEM_SHIFT;
3290
3291 for (i=0;i < 3; i++) {
3292 io_mem_read[io_index][i] = unassigned_mem_read[i];
3293 io_mem_write[io_index][i] = unassigned_mem_write[i];
3294 }
3295 io_mem_opaque[io_index] = NULL;
3296 io_mem_used[io_index] = 0;
3297 }
3298
3299 static void io_mem_init(void)
3300 {
3301 int i;
3302
3303 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3304 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3305 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3306 for (i=0; i<5; i++)
3307 io_mem_used[i] = 1;
3308
3309 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3310 watch_mem_write, NULL);
3311 }
3312
3313 #endif /* !defined(CONFIG_USER_ONLY) */
3314
3315 /* physical memory access (slow version, mainly for debug) */
3316 #if defined(CONFIG_USER_ONLY)
3317 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3318 uint8_t *buf, int len, int is_write)
3319 {
3320 int l, flags;
3321 target_ulong page;
3322 void * p;
3323
3324 while (len > 0) {
3325 page = addr & TARGET_PAGE_MASK;
3326 l = (page + TARGET_PAGE_SIZE) - addr;
3327 if (l > len)
3328 l = len;
3329 flags = page_get_flags(page);
3330 if (!(flags & PAGE_VALID))
3331 return -1;
3332 if (is_write) {
3333 if (!(flags & PAGE_WRITE))
3334 return -1;
3335 /* XXX: this code should not depend on lock_user */
3336 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3337 return -1;
3338 memcpy(p, buf, l);
3339 unlock_user(p, addr, l);
3340 } else {
3341 if (!(flags & PAGE_READ))
3342 return -1;
3343 /* XXX: this code should not depend on lock_user */
3344 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3345 return -1;
3346 memcpy(buf, p, l);
3347 unlock_user(p, addr, 0);
3348 }
3349 len -= l;
3350 buf += l;
3351 addr += l;
3352 }
3353 return 0;
3354 }
3355
3356 #else
3357 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3358 int len, int is_write)
3359 {
3360 int l, io_index;
3361 uint8_t *ptr;
3362 uint32_t val;
3363 target_phys_addr_t page;
3364 unsigned long pd;
3365 PhysPageDesc *p;
3366
3367 while (len > 0) {
3368 page = addr & TARGET_PAGE_MASK;
3369 l = (page + TARGET_PAGE_SIZE) - addr;
3370 if (l > len)
3371 l = len;
3372 p = phys_page_find(page >> TARGET_PAGE_BITS);
3373 if (!p) {
3374 pd = IO_MEM_UNASSIGNED;
3375 } else {
3376 pd = p->phys_offset;
3377 }
3378
3379 if (is_write) {
3380 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3381 target_phys_addr_t addr1 = addr;
3382 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3383 if (p)
3384 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3385 /* XXX: could force cpu_single_env to NULL to avoid
3386 potential bugs */
3387 if (l >= 4 && ((addr1 & 3) == 0)) {
3388 /* 32 bit write access */
3389 val = ldl_p(buf);
3390 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3391 l = 4;
3392 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3393 /* 16 bit write access */
3394 val = lduw_p(buf);
3395 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3396 l = 2;
3397 } else {
3398 /* 8 bit write access */
3399 val = ldub_p(buf);
3400 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3401 l = 1;
3402 }
3403 } else {
3404 unsigned long addr1;
3405 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3406 /* RAM case */
3407 ptr = qemu_get_ram_ptr(addr1);
3408 memcpy(ptr, buf, l);
3409 if (!cpu_physical_memory_is_dirty(addr1)) {
3410 /* invalidate code */
3411 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3412 /* set dirty bit */
3413 cpu_physical_memory_set_dirty_flags(
3414 addr1, (0xff & ~CODE_DIRTY_FLAG));
3415 }
3416 }
3417 } else {
3418 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3419 !(pd & IO_MEM_ROMD)) {
3420 target_phys_addr_t addr1 = addr;
3421 /* I/O case */
3422 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3423 if (p)
3424 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3425 if (l >= 4 && ((addr1 & 3) == 0)) {
3426 /* 32 bit read access */
3427 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3428 stl_p(buf, val);
3429 l = 4;
3430 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3431 /* 16 bit read access */
3432 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3433 stw_p(buf, val);
3434 l = 2;
3435 } else {
3436 /* 8 bit read access */
3437 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3438 stb_p(buf, val);
3439 l = 1;
3440 }
3441 } else {
3442 /* RAM case */
3443 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3444 (addr & ~TARGET_PAGE_MASK);
3445 memcpy(buf, ptr, l);
3446 }
3447 }
3448 len -= l;
3449 buf += l;
3450 addr += l;
3451 }
3452 }
3453
3454 /* used for ROM loading : can write in RAM and ROM */
3455 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3456 const uint8_t *buf, int len)
3457 {
3458 int l;
3459 uint8_t *ptr;
3460 target_phys_addr_t page;
3461 unsigned long pd;
3462 PhysPageDesc *p;
3463
3464 while (len > 0) {
3465 page = addr & TARGET_PAGE_MASK;
3466 l = (page + TARGET_PAGE_SIZE) - addr;
3467 if (l > len)
3468 l = len;
3469 p = phys_page_find(page >> TARGET_PAGE_BITS);
3470 if (!p) {
3471 pd = IO_MEM_UNASSIGNED;
3472 } else {
3473 pd = p->phys_offset;
3474 }
3475
3476 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3477 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3478 !(pd & IO_MEM_ROMD)) {
3479 /* do nothing */
3480 } else {
3481 unsigned long addr1;
3482 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3483 /* ROM/RAM case */
3484 ptr = qemu_get_ram_ptr(addr1);
3485 memcpy(ptr, buf, l);
3486 }
3487 len -= l;
3488 buf += l;
3489 addr += l;
3490 }
3491 }
3492
3493 typedef struct {
3494 void *buffer;
3495 target_phys_addr_t addr;
3496 target_phys_addr_t len;
3497 } BounceBuffer;
3498
3499 static BounceBuffer bounce;
3500
3501 typedef struct MapClient {
3502 void *opaque;
3503 void (*callback)(void *opaque);
3504 QLIST_ENTRY(MapClient) link;
3505 } MapClient;
3506
3507 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3508 = QLIST_HEAD_INITIALIZER(map_client_list);
3509
3510 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3511 {
3512 MapClient *client = qemu_malloc(sizeof(*client));
3513
3514 client->opaque = opaque;
3515 client->callback = callback;
3516 QLIST_INSERT_HEAD(&map_client_list, client, link);
3517 return client;
3518 }
3519
3520 void cpu_unregister_map_client(void *_client)
3521 {
3522 MapClient *client = (MapClient *)_client;
3523
3524 QLIST_REMOVE(client, link);
3525 qemu_free(client);
3526 }
3527
3528 static void cpu_notify_map_clients(void)
3529 {
3530 MapClient *client;
3531
3532 while (!QLIST_EMPTY(&map_client_list)) {
3533 client = QLIST_FIRST(&map_client_list);
3534 client->callback(client->opaque);
3535 cpu_unregister_map_client(client);
3536 }
3537 }
3538
3539 /* Map a physical memory region into a host virtual address.
3540 * May map a subset of the requested range, given by and returned in *plen.
3541 * May return NULL if resources needed to perform the mapping are exhausted.
3542 * Use only for reads OR writes - not for read-modify-write operations.
3543 * Use cpu_register_map_client() to know when retrying the map operation is
3544 * likely to succeed.
3545 */
3546 void *cpu_physical_memory_map(target_phys_addr_t addr,
3547 target_phys_addr_t *plen,
3548 int is_write)
3549 {
3550 target_phys_addr_t len = *plen;
3551 target_phys_addr_t done = 0;
3552 int l;
3553 uint8_t *ret = NULL;
3554 uint8_t *ptr;
3555 target_phys_addr_t page;
3556 unsigned long pd;
3557 PhysPageDesc *p;
3558 unsigned long addr1;
3559
3560 while (len > 0) {
3561 page = addr & TARGET_PAGE_MASK;
3562 l = (page + TARGET_PAGE_SIZE) - addr;
3563 if (l > len)
3564 l = len;
3565 p = phys_page_find(page >> TARGET_PAGE_BITS);
3566 if (!p) {
3567 pd = IO_MEM_UNASSIGNED;
3568 } else {
3569 pd = p->phys_offset;
3570 }
3571
3572 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3573 if (done || bounce.buffer) {
3574 break;
3575 }
3576 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3577 bounce.addr = addr;
3578 bounce.len = l;
3579 if (!is_write) {
3580 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3581 }
3582 ptr = bounce.buffer;
3583 } else {
3584 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3585 ptr = qemu_get_ram_ptr(addr1);
3586 }
3587 if (!done) {
3588 ret = ptr;
3589 } else if (ret + done != ptr) {
3590 break;
3591 }
3592
3593 len -= l;
3594 addr += l;
3595 done += l;
3596 }
3597 *plen = done;
3598 return ret;
3599 }
3600
3601 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3602 * Will also mark the memory as dirty if is_write == 1. access_len gives
3603 * the amount of memory that was actually read or written by the caller.
3604 */
3605 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3606 int is_write, target_phys_addr_t access_len)
3607 {
3608 if (buffer != bounce.buffer) {
3609 if (is_write) {
3610 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3611 while (access_len) {
3612 unsigned l;
3613 l = TARGET_PAGE_SIZE;
3614 if (l > access_len)
3615 l = access_len;
3616 if (!cpu_physical_memory_is_dirty(addr1)) {
3617 /* invalidate code */
3618 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3619 /* set dirty bit */
3620 cpu_physical_memory_set_dirty_flags(
3621 addr1, (0xff & ~CODE_DIRTY_FLAG));
3622 }
3623 addr1 += l;
3624 access_len -= l;
3625 }
3626 }
3627 return;
3628 }
3629 if (is_write) {
3630 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3631 }
3632 qemu_vfree(bounce.buffer);
3633 bounce.buffer = NULL;
3634 cpu_notify_map_clients();
3635 }
3636
3637 /* warning: addr must be aligned */
3638 uint32_t ldl_phys(target_phys_addr_t addr)
3639 {
3640 int io_index;
3641 uint8_t *ptr;
3642 uint32_t val;
3643 unsigned long pd;
3644 PhysPageDesc *p;
3645
3646 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3647 if (!p) {
3648 pd = IO_MEM_UNASSIGNED;
3649 } else {
3650 pd = p->phys_offset;
3651 }
3652
3653 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3654 !(pd & IO_MEM_ROMD)) {
3655 /* I/O case */
3656 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3657 if (p)
3658 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3659 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3660 } else {
3661 /* RAM case */
3662 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3663 (addr & ~TARGET_PAGE_MASK);
3664 val = ldl_p(ptr);
3665 }
3666 return val;
3667 }
3668
3669 /* warning: addr must be aligned */
3670 uint64_t ldq_phys(target_phys_addr_t addr)
3671 {
3672 int io_index;
3673 uint8_t *ptr;
3674 uint64_t val;
3675 unsigned long pd;
3676 PhysPageDesc *p;
3677
3678 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3679 if (!p) {
3680 pd = IO_MEM_UNASSIGNED;
3681 } else {
3682 pd = p->phys_offset;
3683 }
3684
3685 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3686 !(pd & IO_MEM_ROMD)) {
3687 /* I/O case */
3688 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3689 if (p)
3690 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3691 #ifdef TARGET_WORDS_BIGENDIAN
3692 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3693 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3694 #else
3695 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3696 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3697 #endif
3698 } else {
3699 /* RAM case */
3700 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3701 (addr & ~TARGET_PAGE_MASK);
3702 val = ldq_p(ptr);
3703 }
3704 return val;
3705 }
3706
3707 /* XXX: optimize */
3708 uint32_t ldub_phys(target_phys_addr_t addr)
3709 {
3710 uint8_t val;
3711 cpu_physical_memory_read(addr, &val, 1);
3712 return val;
3713 }
3714
3715 /* XXX: optimize */
3716 uint32_t lduw_phys(target_phys_addr_t addr)
3717 {
3718 uint16_t val;
3719 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3720 return tswap16(val);
3721 }
3722
3723 /* warning: addr must be aligned. The ram page is not masked as dirty
3724 and the code inside is not invalidated. It is useful if the dirty
3725 bits are used to track modified PTEs */
3726 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3727 {
3728 int io_index;
3729 uint8_t *ptr;
3730 unsigned long pd;
3731 PhysPageDesc *p;
3732
3733 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3734 if (!p) {
3735 pd = IO_MEM_UNASSIGNED;
3736 } else {
3737 pd = p->phys_offset;
3738 }
3739
3740 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3741 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3742 if (p)
3743 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3744 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3745 } else {
3746 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3747 ptr = qemu_get_ram_ptr(addr1);
3748 stl_p(ptr, val);
3749
3750 if (unlikely(in_migration)) {
3751 if (!cpu_physical_memory_is_dirty(addr1)) {
3752 /* invalidate code */
3753 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3754 /* set dirty bit */
3755 cpu_physical_memory_set_dirty_flags(
3756 addr1, (0xff & ~CODE_DIRTY_FLAG));
3757 }
3758 }
3759 }
3760 }
3761
3762 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3763 {
3764 int io_index;
3765 uint8_t *ptr;
3766 unsigned long pd;
3767 PhysPageDesc *p;
3768
3769 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3770 if (!p) {
3771 pd = IO_MEM_UNASSIGNED;
3772 } else {
3773 pd = p->phys_offset;
3774 }
3775
3776 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3777 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3778 if (p)
3779 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3780 #ifdef TARGET_WORDS_BIGENDIAN
3781 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3782 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3783 #else
3784 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3785 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3786 #endif
3787 } else {
3788 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3789 (addr & ~TARGET_PAGE_MASK);
3790 stq_p(ptr, val);
3791 }
3792 }
3793
3794 /* warning: addr must be aligned */
3795 void stl_phys(target_phys_addr_t addr, uint32_t val)
3796 {
3797 int io_index;
3798 uint8_t *ptr;
3799 unsigned long pd;
3800 PhysPageDesc *p;
3801
3802 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3803 if (!p) {
3804 pd = IO_MEM_UNASSIGNED;
3805 } else {
3806 pd = p->phys_offset;
3807 }
3808
3809 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3810 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3811 if (p)
3812 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3813 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3814 } else {
3815 unsigned long addr1;
3816 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3817 /* RAM case */
3818 ptr = qemu_get_ram_ptr(addr1);
3819 stl_p(ptr, val);
3820 if (!cpu_physical_memory_is_dirty(addr1)) {
3821 /* invalidate code */
3822 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3823 /* set dirty bit */
3824 cpu_physical_memory_set_dirty_flags(addr1,
3825 (0xff & ~CODE_DIRTY_FLAG));
3826 }
3827 }
3828 }
3829
3830 /* XXX: optimize */
3831 void stb_phys(target_phys_addr_t addr, uint32_t val)
3832 {
3833 uint8_t v = val;
3834 cpu_physical_memory_write(addr, &v, 1);
3835 }
3836
3837 /* XXX: optimize */
3838 void stw_phys(target_phys_addr_t addr, uint32_t val)
3839 {
3840 uint16_t v = tswap16(val);
3841 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3842 }
3843
3844 /* XXX: optimize */
3845 void stq_phys(target_phys_addr_t addr, uint64_t val)
3846 {
3847 val = tswap64(val);
3848 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3849 }
3850
3851 /* virtual memory access for debug (includes writing to ROM) */
3852 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3853 uint8_t *buf, int len, int is_write)
3854 {
3855 int l;
3856 target_phys_addr_t phys_addr;
3857 target_ulong page;
3858
3859 while (len > 0) {
3860 page = addr & TARGET_PAGE_MASK;
3861 phys_addr = cpu_get_phys_page_debug(env, page);
3862 /* if no physical page mapped, return an error */
3863 if (phys_addr == -1)
3864 return -1;
3865 l = (page + TARGET_PAGE_SIZE) - addr;
3866 if (l > len)
3867 l = len;
3868 phys_addr += (addr & ~TARGET_PAGE_MASK);
3869 if (is_write)
3870 cpu_physical_memory_write_rom(phys_addr, buf, l);
3871 else
3872 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3873 len -= l;
3874 buf += l;
3875 addr += l;
3876 }
3877 return 0;
3878 }
3879 #endif
3880
3881 /* in deterministic execution mode, instructions doing device I/Os
3882 must be at the end of the TB */
3883 void cpu_io_recompile(CPUState *env, void *retaddr)
3884 {
3885 TranslationBlock *tb;
3886 uint32_t n, cflags;
3887 target_ulong pc, cs_base;
3888 uint64_t flags;
3889
3890 tb = tb_find_pc((unsigned long)retaddr);
3891 if (!tb) {
3892 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3893 retaddr);
3894 }
3895 n = env->icount_decr.u16.low + tb->icount;
3896 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3897 /* Calculate how many instructions had been executed before the fault
3898 occurred. */
3899 n = n - env->icount_decr.u16.low;
3900 /* Generate a new TB ending on the I/O insn. */
3901 n++;
3902 /* On MIPS and SH, delay slot instructions can only be restarted if
3903 they were already the first instruction in the TB. If this is not
3904 the first instruction in a TB then re-execute the preceding
3905 branch. */
3906 #if defined(TARGET_MIPS)
3907 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3908 env->active_tc.PC -= 4;
3909 env->icount_decr.u16.low++;
3910 env->hflags &= ~MIPS_HFLAG_BMASK;
3911 }
3912 #elif defined(TARGET_SH4)
3913 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3914 && n > 1) {
3915 env->pc -= 2;
3916 env->icount_decr.u16.low++;
3917 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3918 }
3919 #endif
3920 /* This should never happen. */
3921 if (n > CF_COUNT_MASK)
3922 cpu_abort(env, "TB too big during recompile");
3923
3924 cflags = n | CF_LAST_IO;
3925 pc = tb->pc;
3926 cs_base = tb->cs_base;
3927 flags = tb->flags;
3928 tb_phys_invalidate(tb, -1);
3929 /* FIXME: In theory this could raise an exception. In practice
3930 we have already translated the block once so it's probably ok. */
3931 tb_gen_code(env, pc, cs_base, flags, cflags);
3932 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3933 the first in the TB) then we end up generating a whole new TB and
3934 repeating the fault, which is horribly inefficient.
3935 Better would be to execute just this insn uncached, or generate a
3936 second new TB. */
3937 cpu_resume_from_signal(env, NULL);
3938 }
3939
3940 #if !defined(CONFIG_USER_ONLY)
3941
3942 void dump_exec_info(FILE *f,
3943 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3944 {
3945 int i, target_code_size, max_target_code_size;
3946 int direct_jmp_count, direct_jmp2_count, cross_page;
3947 TranslationBlock *tb;
3948
3949 target_code_size = 0;
3950 max_target_code_size = 0;
3951 cross_page = 0;
3952 direct_jmp_count = 0;
3953 direct_jmp2_count = 0;
3954 for(i = 0; i < nb_tbs; i++) {
3955 tb = &tbs[i];
3956 target_code_size += tb->size;
3957 if (tb->size > max_target_code_size)
3958 max_target_code_size = tb->size;
3959 if (tb->page_addr[1] != -1)
3960 cross_page++;
3961 if (tb->tb_next_offset[0] != 0xffff) {
3962 direct_jmp_count++;
3963 if (tb->tb_next_offset[1] != 0xffff) {
3964 direct_jmp2_count++;
3965 }
3966 }
3967 }
3968 /* XXX: avoid using doubles ? */
3969 cpu_fprintf(f, "Translation buffer state:\n");
3970 cpu_fprintf(f, "gen code size %ld/%ld\n",
3971 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3972 cpu_fprintf(f, "TB count %d/%d\n",
3973 nb_tbs, code_gen_max_blocks);
3974 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3975 nb_tbs ? target_code_size / nb_tbs : 0,
3976 max_target_code_size);
3977 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3978 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3979 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3980 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3981 cross_page,
3982 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3983 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3984 direct_jmp_count,
3985 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3986 direct_jmp2_count,
3987 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3988 cpu_fprintf(f, "\nStatistics:\n");
3989 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3990 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3991 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3992 tcg_dump_info(f, cpu_fprintf);
3993 }
3994
3995 #define MMUSUFFIX _cmmu
3996 #define GETPC() NULL
3997 #define env cpu_single_env
3998 #define SOFTMMU_CODE_ACCESS
3999
4000 #define SHIFT 0
4001 #include "softmmu_template.h"
4002
4003 #define SHIFT 1
4004 #include "softmmu_template.h"
4005
4006 #define SHIFT 2
4007 #include "softmmu_template.h"
4008
4009 #define SHIFT 3
4010 #include "softmmu_template.h"
4011
4012 #undef env
4013
4014 #endif