]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge branch 'ppc-next' of git://repo.or.cz/qemu/agraf
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
39 #include <sys/param.h>
40 #if __FreeBSD_version >= 700104
41 #define HAVE_KINFO_GETVMMAP
42 #define sigqueue sigqueue_freebsd /* avoid redefinition */
43 #include <sys/time.h>
44 #include <sys/proc.h>
45 #include <machine/profile.h>
46 #define _KERNEL
47 #include <sys/user.h>
48 #undef _KERNEL
49 #undef sigqueue
50 #include <libutil.h>
51 #endif
52 #endif
53 #else /* !CONFIG_USER_ONLY */
54 #include "xen-mapcache.h"
55 #include "trace.h"
56 #endif
57
58 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_FLUSH
60 //#define DEBUG_TLB
61 //#define DEBUG_UNASSIGNED
62
63 /* make various TB consistency checks */
64 //#define DEBUG_TB_CHECK
65 //#define DEBUG_TLB_CHECK
66
67 //#define DEBUG_IOPORT
68 //#define DEBUG_SUBPAGE
69
70 #if !defined(CONFIG_USER_ONLY)
71 /* TB consistency checks only implemented for usermode emulation. */
72 #undef DEBUG_TB_CHECK
73 #endif
74
75 #define SMC_BITMAP_USE_THRESHOLD 10
76
77 static TranslationBlock *tbs;
78 static int code_gen_max_blocks;
79 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
80 static int nb_tbs;
81 /* any access to the tbs or the page table must use this lock */
82 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
83
84 #if defined(__arm__) || defined(__sparc_v9__)
85 /* The prologue must be reachable with a direct jump. ARM and Sparc64
86 have limited branch ranges (possibly also PPC) so place it in a
87 section close to code segment. */
88 #define code_gen_section \
89 __attribute__((__section__(".gen_code"))) \
90 __attribute__((aligned (32)))
91 #elif defined(_WIN32)
92 /* Maximum alignment for Win32 is 16. */
93 #define code_gen_section \
94 __attribute__((aligned (16)))
95 #else
96 #define code_gen_section \
97 __attribute__((aligned (32)))
98 #endif
99
100 uint8_t code_gen_prologue[1024] code_gen_section;
101 static uint8_t *code_gen_buffer;
102 static unsigned long code_gen_buffer_size;
103 /* threshold to flush the translated code buffer */
104 static unsigned long code_gen_buffer_max_size;
105 static uint8_t *code_gen_ptr;
106
107 #if !defined(CONFIG_USER_ONLY)
108 int phys_ram_fd;
109 static int in_migration;
110
111 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
112 #endif
113
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
125
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
137
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143 #else
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 #endif
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 #endif
149
150 /* Size of the L2 (and L3, etc) page tables. */
151 #define L2_BITS 10
152 #define L2_SIZE (1 << L2_BITS)
153
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163 #else
164 #define P_L1_BITS P_L1_BITS_REM
165 #endif
166
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169 #else
170 #define V_L1_BITS V_L1_BITS_REM
171 #endif
172
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 unsigned long qemu_real_host_page_size;
180 unsigned long qemu_host_page_bits;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
194
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map[P_L1_SIZE];
198
199 static void io_mem_init(void);
200
201 /* io memory support */
202 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
204 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
205 static char io_mem_used[IO_MEM_NB_ENTRIES];
206 static int io_mem_watch;
207 #endif
208
209 /* log support */
210 #ifdef WIN32
211 static const char *logfilename = "qemu.log";
212 #else
213 static const char *logfilename = "/tmp/qemu.log";
214 #endif
215 FILE *logfile;
216 int loglevel;
217 static int log_append = 0;
218
219 /* statistics */
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count;
222 #endif
223 static int tb_flush_count;
224 static int tb_phys_invalidate_count;
225
226 #ifdef _WIN32
227 static void map_exec(void *addr, long size)
228 {
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233 }
234 #else
235 static void map_exec(void *addr, long size)
236 {
237 unsigned long start, end, page_size;
238
239 page_size = getpagesize();
240 start = (unsigned long)addr;
241 start &= ~(page_size - 1);
242
243 end = (unsigned long)addr + size;
244 end += page_size - 1;
245 end &= ~(page_size - 1);
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249 }
250 #endif
251
252 static void page_init(void)
253 {
254 /* NOTE: we can always suppose that qemu_host_page_size >=
255 TARGET_PAGE_SIZE */
256 #ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263 #else
264 qemu_real_host_page_size = getpagesize();
265 #endif
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
274
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
276 {
277 #ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
295 } else {
296 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 #endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306 #else
307 FILE *f;
308
309 last_brk = (unsigned long)sbrk(0);
310
311 f = fopen("/compat/linux/proc/self/maps", "r");
312 if (f) {
313 mmap_lock();
314
315 do {
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
330 }
331 } while (!feof(f));
332
333 fclose(f);
334 mmap_unlock();
335 }
336 #endif
337 }
338 #endif
339 }
340
341 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
342 {
343 PageDesc *pd;
344 void **lp;
345 int i;
346
347 #if defined(CONFIG_USER_ONLY)
348 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
349 # define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 } while (0)
354 #else
355 # define ALLOC(P, SIZE) \
356 do { P = qemu_mallocz(SIZE); } while (0)
357 #endif
358
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
372 }
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
384 }
385
386 #undef ALLOC
387
388 return pd + (index & (L2_SIZE - 1));
389 }
390
391 static inline PageDesc *page_find(tb_page_addr_t index)
392 {
393 return page_find_alloc(index, 0);
394 }
395
396 #if !defined(CONFIG_USER_ONLY)
397 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
398 {
399 PhysPageDesc *pd;
400 void **lp;
401 int i;
402
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
405
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
413 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 }
417
418 pd = *lp;
419 if (pd == NULL) {
420 int i;
421
422 if (!alloc) {
423 return NULL;
424 }
425
426 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
427
428 for (i = 0; i < L2_SIZE; i++) {
429 pd[i].phys_offset = IO_MEM_UNASSIGNED;
430 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
431 }
432 }
433
434 return pd + (index & (L2_SIZE - 1));
435 }
436
437 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
438 {
439 return phys_page_find_alloc(index, 0);
440 }
441
442 static void tlb_protect_code(ram_addr_t ram_addr);
443 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
444 target_ulong vaddr);
445 #define mmap_lock() do { } while(0)
446 #define mmap_unlock() do { } while(0)
447 #endif
448
449 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
450
451 #if defined(CONFIG_USER_ONLY)
452 /* Currently it is not recommended to allocate big chunks of data in
453 user mode. It will change when a dedicated libc will be used */
454 #define USE_STATIC_CODE_GEN_BUFFER
455 #endif
456
457 #ifdef USE_STATIC_CODE_GEN_BUFFER
458 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
459 __attribute__((aligned (CODE_GEN_ALIGN)));
460 #endif
461
462 static void code_gen_alloc(unsigned long tb_size)
463 {
464 #ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer = static_code_gen_buffer;
466 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468 #else
469 code_gen_buffer_size = tb_size;
470 if (code_gen_buffer_size == 0) {
471 #if defined(CONFIG_USER_ONLY)
472 /* in user mode, phys_ram_size is not meaningful */
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474 #else
475 /* XXX: needs adjustments */
476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
477 #endif
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483 #if defined(__linux__)
484 {
485 int flags;
486 void *start = NULL;
487
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489 #if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
494 #elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
500 #elif defined(__arm__)
501 /* Map the buffer below 32M, so we can use direct calls and branches */
502 flags |= MAP_FIXED;
503 start = (void *) 0x01000000UL;
504 if (code_gen_buffer_size > 16 * 1024 * 1024)
505 code_gen_buffer_size = 16 * 1024 * 1024;
506 #elif defined(__s390x__)
507 /* Map the buffer so that we can use direct calls and branches. */
508 /* We have a +- 4GB range on the branches; leave some slop. */
509 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
510 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
511 }
512 start = (void *)0x90000000UL;
513 #endif
514 code_gen_buffer = mmap(start, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
522 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
523 || defined(__DragonFly__) || defined(__OpenBSD__)
524 {
525 int flags;
526 void *addr = NULL;
527 flags = MAP_PRIVATE | MAP_ANONYMOUS;
528 #if defined(__x86_64__)
529 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
530 * 0x40000000 is free */
531 flags |= MAP_FIXED;
532 addr = (void *)0x40000000;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
536 #elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 addr = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
541 code_gen_buffer_size = (512 * 1024 * 1024);
542 }
543 #endif
544 code_gen_buffer = mmap(addr, code_gen_buffer_size,
545 PROT_WRITE | PROT_READ | PROT_EXEC,
546 flags, -1, 0);
547 if (code_gen_buffer == MAP_FAILED) {
548 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
549 exit(1);
550 }
551 }
552 #else
553 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
554 map_exec(code_gen_buffer, code_gen_buffer_size);
555 #endif
556 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
557 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
558 code_gen_buffer_max_size = code_gen_buffer_size -
559 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
560 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
561 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
562 }
563
564 /* Must be called before using the QEMU cpus. 'tb_size' is the size
565 (in bytes) allocated to the translation buffer. Zero means default
566 size. */
567 void cpu_exec_init_all(unsigned long tb_size)
568 {
569 cpu_gen_init();
570 code_gen_alloc(tb_size);
571 code_gen_ptr = code_gen_buffer;
572 page_init();
573 #if !defined(CONFIG_USER_ONLY)
574 io_mem_init();
575 #endif
576 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
577 /* There's no guest base to take into account, so go ahead and
578 initialize the prologue now. */
579 tcg_prologue_init(&tcg_ctx);
580 #endif
581 }
582
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584
585 static int cpu_common_post_load(void *opaque, int version_id)
586 {
587 CPUState *env = opaque;
588
589 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
590 version_id is increased. */
591 env->interrupt_request &= ~0x01;
592 tlb_flush(env, 1);
593
594 return 0;
595 }
596
597 static const VMStateDescription vmstate_cpu_common = {
598 .name = "cpu_common",
599 .version_id = 1,
600 .minimum_version_id = 1,
601 .minimum_version_id_old = 1,
602 .post_load = cpu_common_post_load,
603 .fields = (VMStateField []) {
604 VMSTATE_UINT32(halted, CPUState),
605 VMSTATE_UINT32(interrupt_request, CPUState),
606 VMSTATE_END_OF_LIST()
607 }
608 };
609 #endif
610
611 CPUState *qemu_get_cpu(int cpu)
612 {
613 CPUState *env = first_cpu;
614
615 while (env) {
616 if (env->cpu_index == cpu)
617 break;
618 env = env->next_cpu;
619 }
620
621 return env;
622 }
623
624 void cpu_exec_init(CPUState *env)
625 {
626 CPUState **penv;
627 int cpu_index;
628
629 #if defined(CONFIG_USER_ONLY)
630 cpu_list_lock();
631 #endif
632 env->next_cpu = NULL;
633 penv = &first_cpu;
634 cpu_index = 0;
635 while (*penv != NULL) {
636 penv = &(*penv)->next_cpu;
637 cpu_index++;
638 }
639 env->cpu_index = cpu_index;
640 env->numa_node = 0;
641 QTAILQ_INIT(&env->breakpoints);
642 QTAILQ_INIT(&env->watchpoints);
643 #ifndef CONFIG_USER_ONLY
644 env->thread_id = qemu_get_thread_id();
645 #endif
646 *penv = env;
647 #if defined(CONFIG_USER_ONLY)
648 cpu_list_unlock();
649 #endif
650 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
651 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
652 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
653 cpu_save, cpu_load, env);
654 #endif
655 }
656
657 /* Allocate a new translation block. Flush the translation buffer if
658 too many translation blocks or too much generated code. */
659 static TranslationBlock *tb_alloc(target_ulong pc)
660 {
661 TranslationBlock *tb;
662
663 if (nb_tbs >= code_gen_max_blocks ||
664 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
665 return NULL;
666 tb = &tbs[nb_tbs++];
667 tb->pc = pc;
668 tb->cflags = 0;
669 return tb;
670 }
671
672 void tb_free(TranslationBlock *tb)
673 {
674 /* In practice this is mostly used for single use temporary TB
675 Ignore the hard cases and just back up if this TB happens to
676 be the last one generated. */
677 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
678 code_gen_ptr = tb->tc_ptr;
679 nb_tbs--;
680 }
681 }
682
683 static inline void invalidate_page_bitmap(PageDesc *p)
684 {
685 if (p->code_bitmap) {
686 qemu_free(p->code_bitmap);
687 p->code_bitmap = NULL;
688 }
689 p->code_write_count = 0;
690 }
691
692 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
693
694 static void page_flush_tb_1 (int level, void **lp)
695 {
696 int i;
697
698 if (*lp == NULL) {
699 return;
700 }
701 if (level == 0) {
702 PageDesc *pd = *lp;
703 for (i = 0; i < L2_SIZE; ++i) {
704 pd[i].first_tb = NULL;
705 invalidate_page_bitmap(pd + i);
706 }
707 } else {
708 void **pp = *lp;
709 for (i = 0; i < L2_SIZE; ++i) {
710 page_flush_tb_1 (level - 1, pp + i);
711 }
712 }
713 }
714
715 static void page_flush_tb(void)
716 {
717 int i;
718 for (i = 0; i < V_L1_SIZE; i++) {
719 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
720 }
721 }
722
723 /* flush all the translation blocks */
724 /* XXX: tb_flush is currently not thread safe */
725 void tb_flush(CPUState *env1)
726 {
727 CPUState *env;
728 #if defined(DEBUG_FLUSH)
729 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
730 (unsigned long)(code_gen_ptr - code_gen_buffer),
731 nb_tbs, nb_tbs > 0 ?
732 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
733 #endif
734 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
735 cpu_abort(env1, "Internal error: code buffer overflow\n");
736
737 nb_tbs = 0;
738
739 for(env = first_cpu; env != NULL; env = env->next_cpu) {
740 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
741 }
742
743 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
744 page_flush_tb();
745
746 code_gen_ptr = code_gen_buffer;
747 /* XXX: flush processor icache at this point if cache flush is
748 expensive */
749 tb_flush_count++;
750 }
751
752 #ifdef DEBUG_TB_CHECK
753
754 static void tb_invalidate_check(target_ulong address)
755 {
756 TranslationBlock *tb;
757 int i;
758 address &= TARGET_PAGE_MASK;
759 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
760 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
761 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
762 address >= tb->pc + tb->size)) {
763 printf("ERROR invalidate: address=" TARGET_FMT_lx
764 " PC=%08lx size=%04x\n",
765 address, (long)tb->pc, tb->size);
766 }
767 }
768 }
769 }
770
771 /* verify that all the pages have correct rights for code */
772 static void tb_page_check(void)
773 {
774 TranslationBlock *tb;
775 int i, flags1, flags2;
776
777 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
778 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
779 flags1 = page_get_flags(tb->pc);
780 flags2 = page_get_flags(tb->pc + tb->size - 1);
781 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
782 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
783 (long)tb->pc, tb->size, flags1, flags2);
784 }
785 }
786 }
787 }
788
789 #endif
790
791 /* invalidate one TB */
792 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
793 int next_offset)
794 {
795 TranslationBlock *tb1;
796 for(;;) {
797 tb1 = *ptb;
798 if (tb1 == tb) {
799 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
800 break;
801 }
802 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
803 }
804 }
805
806 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
807 {
808 TranslationBlock *tb1;
809 unsigned int n1;
810
811 for(;;) {
812 tb1 = *ptb;
813 n1 = (long)tb1 & 3;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 if (tb1 == tb) {
816 *ptb = tb1->page_next[n1];
817 break;
818 }
819 ptb = &tb1->page_next[n1];
820 }
821 }
822
823 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
824 {
825 TranslationBlock *tb1, **ptb;
826 unsigned int n1;
827
828 ptb = &tb->jmp_next[n];
829 tb1 = *ptb;
830 if (tb1) {
831 /* find tb(n) in circular list */
832 for(;;) {
833 tb1 = *ptb;
834 n1 = (long)tb1 & 3;
835 tb1 = (TranslationBlock *)((long)tb1 & ~3);
836 if (n1 == n && tb1 == tb)
837 break;
838 if (n1 == 2) {
839 ptb = &tb1->jmp_first;
840 } else {
841 ptb = &tb1->jmp_next[n1];
842 }
843 }
844 /* now we can suppress tb(n) from the list */
845 *ptb = tb->jmp_next[n];
846
847 tb->jmp_next[n] = NULL;
848 }
849 }
850
851 /* reset the jump entry 'n' of a TB so that it is not chained to
852 another TB */
853 static inline void tb_reset_jump(TranslationBlock *tb, int n)
854 {
855 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
856 }
857
858 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
859 {
860 CPUState *env;
861 PageDesc *p;
862 unsigned int h, n1;
863 tb_page_addr_t phys_pc;
864 TranslationBlock *tb1, *tb2;
865
866 /* remove the TB from the hash list */
867 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
868 h = tb_phys_hash_func(phys_pc);
869 tb_remove(&tb_phys_hash[h], tb,
870 offsetof(TranslationBlock, phys_hash_next));
871
872 /* remove the TB from the page list */
873 if (tb->page_addr[0] != page_addr) {
874 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
875 tb_page_remove(&p->first_tb, tb);
876 invalidate_page_bitmap(p);
877 }
878 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
879 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
880 tb_page_remove(&p->first_tb, tb);
881 invalidate_page_bitmap(p);
882 }
883
884 tb_invalidated_flag = 1;
885
886 /* remove the TB from the hash list */
887 h = tb_jmp_cache_hash_func(tb->pc);
888 for(env = first_cpu; env != NULL; env = env->next_cpu) {
889 if (env->tb_jmp_cache[h] == tb)
890 env->tb_jmp_cache[h] = NULL;
891 }
892
893 /* suppress this TB from the two jump lists */
894 tb_jmp_remove(tb, 0);
895 tb_jmp_remove(tb, 1);
896
897 /* suppress any remaining jumps to this TB */
898 tb1 = tb->jmp_first;
899 for(;;) {
900 n1 = (long)tb1 & 3;
901 if (n1 == 2)
902 break;
903 tb1 = (TranslationBlock *)((long)tb1 & ~3);
904 tb2 = tb1->jmp_next[n1];
905 tb_reset_jump(tb1, n1);
906 tb1->jmp_next[n1] = NULL;
907 tb1 = tb2;
908 }
909 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
910
911 tb_phys_invalidate_count++;
912 }
913
914 static inline void set_bits(uint8_t *tab, int start, int len)
915 {
916 int end, mask, end1;
917
918 end = start + len;
919 tab += start >> 3;
920 mask = 0xff << (start & 7);
921 if ((start & ~7) == (end & ~7)) {
922 if (start < end) {
923 mask &= ~(0xff << (end & 7));
924 *tab |= mask;
925 }
926 } else {
927 *tab++ |= mask;
928 start = (start + 8) & ~7;
929 end1 = end & ~7;
930 while (start < end1) {
931 *tab++ = 0xff;
932 start += 8;
933 }
934 if (start < end) {
935 mask = ~(0xff << (end & 7));
936 *tab |= mask;
937 }
938 }
939 }
940
941 static void build_page_bitmap(PageDesc *p)
942 {
943 int n, tb_start, tb_end;
944 TranslationBlock *tb;
945
946 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
947
948 tb = p->first_tb;
949 while (tb != NULL) {
950 n = (long)tb & 3;
951 tb = (TranslationBlock *)((long)tb & ~3);
952 /* NOTE: this is subtle as a TB may span two physical pages */
953 if (n == 0) {
954 /* NOTE: tb_end may be after the end of the page, but
955 it is not a problem */
956 tb_start = tb->pc & ~TARGET_PAGE_MASK;
957 tb_end = tb_start + tb->size;
958 if (tb_end > TARGET_PAGE_SIZE)
959 tb_end = TARGET_PAGE_SIZE;
960 } else {
961 tb_start = 0;
962 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
963 }
964 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
965 tb = tb->page_next[n];
966 }
967 }
968
969 TranslationBlock *tb_gen_code(CPUState *env,
970 target_ulong pc, target_ulong cs_base,
971 int flags, int cflags)
972 {
973 TranslationBlock *tb;
974 uint8_t *tc_ptr;
975 tb_page_addr_t phys_pc, phys_page2;
976 target_ulong virt_page2;
977 int code_gen_size;
978
979 phys_pc = get_page_addr_code(env, pc);
980 tb = tb_alloc(pc);
981 if (!tb) {
982 /* flush must be done */
983 tb_flush(env);
984 /* cannot fail at this point */
985 tb = tb_alloc(pc);
986 /* Don't forget to invalidate previous TB info. */
987 tb_invalidated_flag = 1;
988 }
989 tc_ptr = code_gen_ptr;
990 tb->tc_ptr = tc_ptr;
991 tb->cs_base = cs_base;
992 tb->flags = flags;
993 tb->cflags = cflags;
994 cpu_gen_code(env, tb, &code_gen_size);
995 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
996
997 /* check next page if needed */
998 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
999 phys_page2 = -1;
1000 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1001 phys_page2 = get_page_addr_code(env, virt_page2);
1002 }
1003 tb_link_page(tb, phys_pc, phys_page2);
1004 return tb;
1005 }
1006
1007 /* invalidate all TBs which intersect with the target physical page
1008 starting in range [start;end[. NOTE: start and end must refer to
1009 the same physical page. 'is_cpu_write_access' should be true if called
1010 from a real cpu write access: the virtual CPU will exit the current
1011 TB if code is modified inside this TB. */
1012 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1013 int is_cpu_write_access)
1014 {
1015 TranslationBlock *tb, *tb_next, *saved_tb;
1016 CPUState *env = cpu_single_env;
1017 tb_page_addr_t tb_start, tb_end;
1018 PageDesc *p;
1019 int n;
1020 #ifdef TARGET_HAS_PRECISE_SMC
1021 int current_tb_not_found = is_cpu_write_access;
1022 TranslationBlock *current_tb = NULL;
1023 int current_tb_modified = 0;
1024 target_ulong current_pc = 0;
1025 target_ulong current_cs_base = 0;
1026 int current_flags = 0;
1027 #endif /* TARGET_HAS_PRECISE_SMC */
1028
1029 p = page_find(start >> TARGET_PAGE_BITS);
1030 if (!p)
1031 return;
1032 if (!p->code_bitmap &&
1033 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1034 is_cpu_write_access) {
1035 /* build code bitmap */
1036 build_page_bitmap(p);
1037 }
1038
1039 /* we remove all the TBs in the range [start, end[ */
1040 /* XXX: see if in some cases it could be faster to invalidate all the code */
1041 tb = p->first_tb;
1042 while (tb != NULL) {
1043 n = (long)tb & 3;
1044 tb = (TranslationBlock *)((long)tb & ~3);
1045 tb_next = tb->page_next[n];
1046 /* NOTE: this is subtle as a TB may span two physical pages */
1047 if (n == 0) {
1048 /* NOTE: tb_end may be after the end of the page, but
1049 it is not a problem */
1050 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1051 tb_end = tb_start + tb->size;
1052 } else {
1053 tb_start = tb->page_addr[1];
1054 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1055 }
1056 if (!(tb_end <= start || tb_start >= end)) {
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb_not_found) {
1059 current_tb_not_found = 0;
1060 current_tb = NULL;
1061 if (env->mem_io_pc) {
1062 /* now we have a real cpu fault */
1063 current_tb = tb_find_pc(env->mem_io_pc);
1064 }
1065 }
1066 if (current_tb == tb &&
1067 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1068 /* If we are modifying the current TB, we must stop
1069 its execution. We could be more precise by checking
1070 that the modification is after the current PC, but it
1071 would require a specialized function to partially
1072 restore the CPU state */
1073
1074 current_tb_modified = 1;
1075 cpu_restore_state(current_tb, env, env->mem_io_pc);
1076 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1077 &current_flags);
1078 }
1079 #endif /* TARGET_HAS_PRECISE_SMC */
1080 /* we need to do that to handle the case where a signal
1081 occurs while doing tb_phys_invalidate() */
1082 saved_tb = NULL;
1083 if (env) {
1084 saved_tb = env->current_tb;
1085 env->current_tb = NULL;
1086 }
1087 tb_phys_invalidate(tb, -1);
1088 if (env) {
1089 env->current_tb = saved_tb;
1090 if (env->interrupt_request && env->current_tb)
1091 cpu_interrupt(env, env->interrupt_request);
1092 }
1093 }
1094 tb = tb_next;
1095 }
1096 #if !defined(CONFIG_USER_ONLY)
1097 /* if no code remaining, no need to continue to use slow writes */
1098 if (!p->first_tb) {
1099 invalidate_page_bitmap(p);
1100 if (is_cpu_write_access) {
1101 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1102 }
1103 }
1104 #endif
1105 #ifdef TARGET_HAS_PRECISE_SMC
1106 if (current_tb_modified) {
1107 /* we generate a block containing just the instruction
1108 modifying the memory. It will ensure that it cannot modify
1109 itself */
1110 env->current_tb = NULL;
1111 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1112 cpu_resume_from_signal(env, NULL);
1113 }
1114 #endif
1115 }
1116
1117 /* len must be <= 8 and start must be a multiple of len */
1118 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1119 {
1120 PageDesc *p;
1121 int offset, b;
1122 #if 0
1123 if (1) {
1124 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1125 cpu_single_env->mem_io_vaddr, len,
1126 cpu_single_env->eip,
1127 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1128 }
1129 #endif
1130 p = page_find(start >> TARGET_PAGE_BITS);
1131 if (!p)
1132 return;
1133 if (p->code_bitmap) {
1134 offset = start & ~TARGET_PAGE_MASK;
1135 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1136 if (b & ((1 << len) - 1))
1137 goto do_invalidate;
1138 } else {
1139 do_invalidate:
1140 tb_invalidate_phys_page_range(start, start + len, 1);
1141 }
1142 }
1143
1144 #if !defined(CONFIG_SOFTMMU)
1145 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1146 unsigned long pc, void *puc)
1147 {
1148 TranslationBlock *tb;
1149 PageDesc *p;
1150 int n;
1151 #ifdef TARGET_HAS_PRECISE_SMC
1152 TranslationBlock *current_tb = NULL;
1153 CPUState *env = cpu_single_env;
1154 int current_tb_modified = 0;
1155 target_ulong current_pc = 0;
1156 target_ulong current_cs_base = 0;
1157 int current_flags = 0;
1158 #endif
1159
1160 addr &= TARGET_PAGE_MASK;
1161 p = page_find(addr >> TARGET_PAGE_BITS);
1162 if (!p)
1163 return;
1164 tb = p->first_tb;
1165 #ifdef TARGET_HAS_PRECISE_SMC
1166 if (tb && pc != 0) {
1167 current_tb = tb_find_pc(pc);
1168 }
1169 #endif
1170 while (tb != NULL) {
1171 n = (long)tb & 3;
1172 tb = (TranslationBlock *)((long)tb & ~3);
1173 #ifdef TARGET_HAS_PRECISE_SMC
1174 if (current_tb == tb &&
1175 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1176 /* If we are modifying the current TB, we must stop
1177 its execution. We could be more precise by checking
1178 that the modification is after the current PC, but it
1179 would require a specialized function to partially
1180 restore the CPU state */
1181
1182 current_tb_modified = 1;
1183 cpu_restore_state(current_tb, env, pc);
1184 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1185 &current_flags);
1186 }
1187 #endif /* TARGET_HAS_PRECISE_SMC */
1188 tb_phys_invalidate(tb, addr);
1189 tb = tb->page_next[n];
1190 }
1191 p->first_tb = NULL;
1192 #ifdef TARGET_HAS_PRECISE_SMC
1193 if (current_tb_modified) {
1194 /* we generate a block containing just the instruction
1195 modifying the memory. It will ensure that it cannot modify
1196 itself */
1197 env->current_tb = NULL;
1198 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1199 cpu_resume_from_signal(env, puc);
1200 }
1201 #endif
1202 }
1203 #endif
1204
1205 /* add the tb in the target page and protect it if necessary */
1206 static inline void tb_alloc_page(TranslationBlock *tb,
1207 unsigned int n, tb_page_addr_t page_addr)
1208 {
1209 PageDesc *p;
1210 #ifndef CONFIG_USER_ONLY
1211 bool page_already_protected;
1212 #endif
1213
1214 tb->page_addr[n] = page_addr;
1215 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1216 tb->page_next[n] = p->first_tb;
1217 #ifndef CONFIG_USER_ONLY
1218 page_already_protected = p->first_tb != NULL;
1219 #endif
1220 p->first_tb = (TranslationBlock *)((long)tb | n);
1221 invalidate_page_bitmap(p);
1222
1223 #if defined(TARGET_HAS_SMC) || 1
1224
1225 #if defined(CONFIG_USER_ONLY)
1226 if (p->flags & PAGE_WRITE) {
1227 target_ulong addr;
1228 PageDesc *p2;
1229 int prot;
1230
1231 /* force the host page as non writable (writes will have a
1232 page fault + mprotect overhead) */
1233 page_addr &= qemu_host_page_mask;
1234 prot = 0;
1235 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1236 addr += TARGET_PAGE_SIZE) {
1237
1238 p2 = page_find (addr >> TARGET_PAGE_BITS);
1239 if (!p2)
1240 continue;
1241 prot |= p2->flags;
1242 p2->flags &= ~PAGE_WRITE;
1243 }
1244 mprotect(g2h(page_addr), qemu_host_page_size,
1245 (prot & PAGE_BITS) & ~PAGE_WRITE);
1246 #ifdef DEBUG_TB_INVALIDATE
1247 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1248 page_addr);
1249 #endif
1250 }
1251 #else
1252 /* if some code is already present, then the pages are already
1253 protected. So we handle the case where only the first TB is
1254 allocated in a physical page */
1255 if (!page_already_protected) {
1256 tlb_protect_code(page_addr);
1257 }
1258 #endif
1259
1260 #endif /* TARGET_HAS_SMC */
1261 }
1262
1263 /* add a new TB and link it to the physical page tables. phys_page2 is
1264 (-1) to indicate that only one page contains the TB. */
1265 void tb_link_page(TranslationBlock *tb,
1266 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1267 {
1268 unsigned int h;
1269 TranslationBlock **ptb;
1270
1271 /* Grab the mmap lock to stop another thread invalidating this TB
1272 before we are done. */
1273 mmap_lock();
1274 /* add in the physical hash table */
1275 h = tb_phys_hash_func(phys_pc);
1276 ptb = &tb_phys_hash[h];
1277 tb->phys_hash_next = *ptb;
1278 *ptb = tb;
1279
1280 /* add in the page list */
1281 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1282 if (phys_page2 != -1)
1283 tb_alloc_page(tb, 1, phys_page2);
1284 else
1285 tb->page_addr[1] = -1;
1286
1287 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1288 tb->jmp_next[0] = NULL;
1289 tb->jmp_next[1] = NULL;
1290
1291 /* init original jump addresses */
1292 if (tb->tb_next_offset[0] != 0xffff)
1293 tb_reset_jump(tb, 0);
1294 if (tb->tb_next_offset[1] != 0xffff)
1295 tb_reset_jump(tb, 1);
1296
1297 #ifdef DEBUG_TB_CHECK
1298 tb_page_check();
1299 #endif
1300 mmap_unlock();
1301 }
1302
1303 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1304 tb[1].tc_ptr. Return NULL if not found */
1305 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1306 {
1307 int m_min, m_max, m;
1308 unsigned long v;
1309 TranslationBlock *tb;
1310
1311 if (nb_tbs <= 0)
1312 return NULL;
1313 if (tc_ptr < (unsigned long)code_gen_buffer ||
1314 tc_ptr >= (unsigned long)code_gen_ptr)
1315 return NULL;
1316 /* binary search (cf Knuth) */
1317 m_min = 0;
1318 m_max = nb_tbs - 1;
1319 while (m_min <= m_max) {
1320 m = (m_min + m_max) >> 1;
1321 tb = &tbs[m];
1322 v = (unsigned long)tb->tc_ptr;
1323 if (v == tc_ptr)
1324 return tb;
1325 else if (tc_ptr < v) {
1326 m_max = m - 1;
1327 } else {
1328 m_min = m + 1;
1329 }
1330 }
1331 return &tbs[m_max];
1332 }
1333
1334 static void tb_reset_jump_recursive(TranslationBlock *tb);
1335
1336 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1337 {
1338 TranslationBlock *tb1, *tb_next, **ptb;
1339 unsigned int n1;
1340
1341 tb1 = tb->jmp_next[n];
1342 if (tb1 != NULL) {
1343 /* find head of list */
1344 for(;;) {
1345 n1 = (long)tb1 & 3;
1346 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1347 if (n1 == 2)
1348 break;
1349 tb1 = tb1->jmp_next[n1];
1350 }
1351 /* we are now sure now that tb jumps to tb1 */
1352 tb_next = tb1;
1353
1354 /* remove tb from the jmp_first list */
1355 ptb = &tb_next->jmp_first;
1356 for(;;) {
1357 tb1 = *ptb;
1358 n1 = (long)tb1 & 3;
1359 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1360 if (n1 == n && tb1 == tb)
1361 break;
1362 ptb = &tb1->jmp_next[n1];
1363 }
1364 *ptb = tb->jmp_next[n];
1365 tb->jmp_next[n] = NULL;
1366
1367 /* suppress the jump to next tb in generated code */
1368 tb_reset_jump(tb, n);
1369
1370 /* suppress jumps in the tb on which we could have jumped */
1371 tb_reset_jump_recursive(tb_next);
1372 }
1373 }
1374
1375 static void tb_reset_jump_recursive(TranslationBlock *tb)
1376 {
1377 tb_reset_jump_recursive2(tb, 0);
1378 tb_reset_jump_recursive2(tb, 1);
1379 }
1380
1381 #if defined(TARGET_HAS_ICE)
1382 #if defined(CONFIG_USER_ONLY)
1383 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1384 {
1385 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1386 }
1387 #else
1388 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1389 {
1390 target_phys_addr_t addr;
1391 target_ulong pd;
1392 ram_addr_t ram_addr;
1393 PhysPageDesc *p;
1394
1395 addr = cpu_get_phys_page_debug(env, pc);
1396 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1397 if (!p) {
1398 pd = IO_MEM_UNASSIGNED;
1399 } else {
1400 pd = p->phys_offset;
1401 }
1402 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1403 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1404 }
1405 #endif
1406 #endif /* TARGET_HAS_ICE */
1407
1408 #if defined(CONFIG_USER_ONLY)
1409 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1410
1411 {
1412 }
1413
1414 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1415 int flags, CPUWatchpoint **watchpoint)
1416 {
1417 return -ENOSYS;
1418 }
1419 #else
1420 /* Add a watchpoint. */
1421 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1422 int flags, CPUWatchpoint **watchpoint)
1423 {
1424 target_ulong len_mask = ~(len - 1);
1425 CPUWatchpoint *wp;
1426
1427 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1428 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1429 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1430 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1431 return -EINVAL;
1432 }
1433 wp = qemu_malloc(sizeof(*wp));
1434
1435 wp->vaddr = addr;
1436 wp->len_mask = len_mask;
1437 wp->flags = flags;
1438
1439 /* keep all GDB-injected watchpoints in front */
1440 if (flags & BP_GDB)
1441 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1442 else
1443 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1444
1445 tlb_flush_page(env, addr);
1446
1447 if (watchpoint)
1448 *watchpoint = wp;
1449 return 0;
1450 }
1451
1452 /* Remove a specific watchpoint. */
1453 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1454 int flags)
1455 {
1456 target_ulong len_mask = ~(len - 1);
1457 CPUWatchpoint *wp;
1458
1459 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1460 if (addr == wp->vaddr && len_mask == wp->len_mask
1461 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1462 cpu_watchpoint_remove_by_ref(env, wp);
1463 return 0;
1464 }
1465 }
1466 return -ENOENT;
1467 }
1468
1469 /* Remove a specific watchpoint by reference. */
1470 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1471 {
1472 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1473
1474 tlb_flush_page(env, watchpoint->vaddr);
1475
1476 qemu_free(watchpoint);
1477 }
1478
1479 /* Remove all matching watchpoints. */
1480 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1481 {
1482 CPUWatchpoint *wp, *next;
1483
1484 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1485 if (wp->flags & mask)
1486 cpu_watchpoint_remove_by_ref(env, wp);
1487 }
1488 }
1489 #endif
1490
1491 /* Add a breakpoint. */
1492 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1493 CPUBreakpoint **breakpoint)
1494 {
1495 #if defined(TARGET_HAS_ICE)
1496 CPUBreakpoint *bp;
1497
1498 bp = qemu_malloc(sizeof(*bp));
1499
1500 bp->pc = pc;
1501 bp->flags = flags;
1502
1503 /* keep all GDB-injected breakpoints in front */
1504 if (flags & BP_GDB)
1505 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1506 else
1507 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1508
1509 breakpoint_invalidate(env, pc);
1510
1511 if (breakpoint)
1512 *breakpoint = bp;
1513 return 0;
1514 #else
1515 return -ENOSYS;
1516 #endif
1517 }
1518
1519 /* Remove a specific breakpoint. */
1520 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1521 {
1522 #if defined(TARGET_HAS_ICE)
1523 CPUBreakpoint *bp;
1524
1525 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1526 if (bp->pc == pc && bp->flags == flags) {
1527 cpu_breakpoint_remove_by_ref(env, bp);
1528 return 0;
1529 }
1530 }
1531 return -ENOENT;
1532 #else
1533 return -ENOSYS;
1534 #endif
1535 }
1536
1537 /* Remove a specific breakpoint by reference. */
1538 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1539 {
1540 #if defined(TARGET_HAS_ICE)
1541 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1542
1543 breakpoint_invalidate(env, breakpoint->pc);
1544
1545 qemu_free(breakpoint);
1546 #endif
1547 }
1548
1549 /* Remove all matching breakpoints. */
1550 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1551 {
1552 #if defined(TARGET_HAS_ICE)
1553 CPUBreakpoint *bp, *next;
1554
1555 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1556 if (bp->flags & mask)
1557 cpu_breakpoint_remove_by_ref(env, bp);
1558 }
1559 #endif
1560 }
1561
1562 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1563 CPU loop after each instruction */
1564 void cpu_single_step(CPUState *env, int enabled)
1565 {
1566 #if defined(TARGET_HAS_ICE)
1567 if (env->singlestep_enabled != enabled) {
1568 env->singlestep_enabled = enabled;
1569 if (kvm_enabled())
1570 kvm_update_guest_debug(env, 0);
1571 else {
1572 /* must flush all the translated code to avoid inconsistencies */
1573 /* XXX: only flush what is necessary */
1574 tb_flush(env);
1575 }
1576 }
1577 #endif
1578 }
1579
1580 /* enable or disable low levels log */
1581 void cpu_set_log(int log_flags)
1582 {
1583 loglevel = log_flags;
1584 if (loglevel && !logfile) {
1585 logfile = fopen(logfilename, log_append ? "a" : "w");
1586 if (!logfile) {
1587 perror(logfilename);
1588 _exit(1);
1589 }
1590 #if !defined(CONFIG_SOFTMMU)
1591 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1592 {
1593 static char logfile_buf[4096];
1594 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1595 }
1596 #elif !defined(_WIN32)
1597 /* Win32 doesn't support line-buffering and requires size >= 2 */
1598 setvbuf(logfile, NULL, _IOLBF, 0);
1599 #endif
1600 log_append = 1;
1601 }
1602 if (!loglevel && logfile) {
1603 fclose(logfile);
1604 logfile = NULL;
1605 }
1606 }
1607
1608 void cpu_set_log_filename(const char *filename)
1609 {
1610 logfilename = strdup(filename);
1611 if (logfile) {
1612 fclose(logfile);
1613 logfile = NULL;
1614 }
1615 cpu_set_log(loglevel);
1616 }
1617
1618 static void cpu_unlink_tb(CPUState *env)
1619 {
1620 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1621 problem and hope the cpu will stop of its own accord. For userspace
1622 emulation this often isn't actually as bad as it sounds. Often
1623 signals are used primarily to interrupt blocking syscalls. */
1624 TranslationBlock *tb;
1625 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1626
1627 spin_lock(&interrupt_lock);
1628 tb = env->current_tb;
1629 /* if the cpu is currently executing code, we must unlink it and
1630 all the potentially executing TB */
1631 if (tb) {
1632 env->current_tb = NULL;
1633 tb_reset_jump_recursive(tb);
1634 }
1635 spin_unlock(&interrupt_lock);
1636 }
1637
1638 #ifndef CONFIG_USER_ONLY
1639 /* mask must never be zero, except for A20 change call */
1640 static void tcg_handle_interrupt(CPUState *env, int mask)
1641 {
1642 int old_mask;
1643
1644 old_mask = env->interrupt_request;
1645 env->interrupt_request |= mask;
1646
1647 /*
1648 * If called from iothread context, wake the target cpu in
1649 * case its halted.
1650 */
1651 if (!qemu_cpu_is_self(env)) {
1652 qemu_cpu_kick(env);
1653 return;
1654 }
1655
1656 if (use_icount) {
1657 env->icount_decr.u16.high = 0xffff;
1658 if (!can_do_io(env)
1659 && (mask & ~old_mask) != 0) {
1660 cpu_abort(env, "Raised interrupt while not in I/O function");
1661 }
1662 } else {
1663 cpu_unlink_tb(env);
1664 }
1665 }
1666
1667 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1668
1669 #else /* CONFIG_USER_ONLY */
1670
1671 void cpu_interrupt(CPUState *env, int mask)
1672 {
1673 env->interrupt_request |= mask;
1674 cpu_unlink_tb(env);
1675 }
1676 #endif /* CONFIG_USER_ONLY */
1677
1678 void cpu_reset_interrupt(CPUState *env, int mask)
1679 {
1680 env->interrupt_request &= ~mask;
1681 }
1682
1683 void cpu_exit(CPUState *env)
1684 {
1685 env->exit_request = 1;
1686 cpu_unlink_tb(env);
1687 }
1688
1689 const CPULogItem cpu_log_items[] = {
1690 { CPU_LOG_TB_OUT_ASM, "out_asm",
1691 "show generated host assembly code for each compiled TB" },
1692 { CPU_LOG_TB_IN_ASM, "in_asm",
1693 "show target assembly code for each compiled TB" },
1694 { CPU_LOG_TB_OP, "op",
1695 "show micro ops for each compiled TB" },
1696 { CPU_LOG_TB_OP_OPT, "op_opt",
1697 "show micro ops "
1698 #ifdef TARGET_I386
1699 "before eflags optimization and "
1700 #endif
1701 "after liveness analysis" },
1702 { CPU_LOG_INT, "int",
1703 "show interrupts/exceptions in short format" },
1704 { CPU_LOG_EXEC, "exec",
1705 "show trace before each executed TB (lots of logs)" },
1706 { CPU_LOG_TB_CPU, "cpu",
1707 "show CPU state before block translation" },
1708 #ifdef TARGET_I386
1709 { CPU_LOG_PCALL, "pcall",
1710 "show protected mode far calls/returns/exceptions" },
1711 { CPU_LOG_RESET, "cpu_reset",
1712 "show CPU state before CPU resets" },
1713 #endif
1714 #ifdef DEBUG_IOPORT
1715 { CPU_LOG_IOPORT, "ioport",
1716 "show all i/o ports accesses" },
1717 #endif
1718 { 0, NULL, NULL },
1719 };
1720
1721 #ifndef CONFIG_USER_ONLY
1722 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1723 = QLIST_HEAD_INITIALIZER(memory_client_list);
1724
1725 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1726 ram_addr_t size,
1727 ram_addr_t phys_offset,
1728 bool log_dirty)
1729 {
1730 CPUPhysMemoryClient *client;
1731 QLIST_FOREACH(client, &memory_client_list, list) {
1732 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1733 }
1734 }
1735
1736 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1737 target_phys_addr_t end)
1738 {
1739 CPUPhysMemoryClient *client;
1740 QLIST_FOREACH(client, &memory_client_list, list) {
1741 int r = client->sync_dirty_bitmap(client, start, end);
1742 if (r < 0)
1743 return r;
1744 }
1745 return 0;
1746 }
1747
1748 static int cpu_notify_migration_log(int enable)
1749 {
1750 CPUPhysMemoryClient *client;
1751 QLIST_FOREACH(client, &memory_client_list, list) {
1752 int r = client->migration_log(client, enable);
1753 if (r < 0)
1754 return r;
1755 }
1756 return 0;
1757 }
1758
1759 struct last_map {
1760 target_phys_addr_t start_addr;
1761 ram_addr_t size;
1762 ram_addr_t phys_offset;
1763 };
1764
1765 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1766 * address. Each intermediate table provides the next L2_BITs of guest
1767 * physical address space. The number of levels vary based on host and
1768 * guest configuration, making it efficient to build the final guest
1769 * physical address by seeding the L1 offset and shifting and adding in
1770 * each L2 offset as we recurse through them. */
1771 static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1772 void **lp, target_phys_addr_t addr,
1773 struct last_map *map)
1774 {
1775 int i;
1776
1777 if (*lp == NULL) {
1778 return;
1779 }
1780 if (level == 0) {
1781 PhysPageDesc *pd = *lp;
1782 addr <<= L2_BITS + TARGET_PAGE_BITS;
1783 for (i = 0; i < L2_SIZE; ++i) {
1784 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1785 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1786
1787 if (map->size &&
1788 start_addr == map->start_addr + map->size &&
1789 pd[i].phys_offset == map->phys_offset + map->size) {
1790
1791 map->size += TARGET_PAGE_SIZE;
1792 continue;
1793 } else if (map->size) {
1794 client->set_memory(client, map->start_addr,
1795 map->size, map->phys_offset, false);
1796 }
1797
1798 map->start_addr = start_addr;
1799 map->size = TARGET_PAGE_SIZE;
1800 map->phys_offset = pd[i].phys_offset;
1801 }
1802 }
1803 } else {
1804 void **pp = *lp;
1805 for (i = 0; i < L2_SIZE; ++i) {
1806 phys_page_for_each_1(client, level - 1, pp + i,
1807 (addr << L2_BITS) | i, map);
1808 }
1809 }
1810 }
1811
1812 static void phys_page_for_each(CPUPhysMemoryClient *client)
1813 {
1814 int i;
1815 struct last_map map = { };
1816
1817 for (i = 0; i < P_L1_SIZE; ++i) {
1818 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1819 l1_phys_map + i, i, &map);
1820 }
1821 if (map.size) {
1822 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1823 false);
1824 }
1825 }
1826
1827 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1828 {
1829 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1830 phys_page_for_each(client);
1831 }
1832
1833 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1834 {
1835 QLIST_REMOVE(client, list);
1836 }
1837 #endif
1838
1839 static int cmp1(const char *s1, int n, const char *s2)
1840 {
1841 if (strlen(s2) != n)
1842 return 0;
1843 return memcmp(s1, s2, n) == 0;
1844 }
1845
1846 /* takes a comma separated list of log masks. Return 0 if error. */
1847 int cpu_str_to_log_mask(const char *str)
1848 {
1849 const CPULogItem *item;
1850 int mask;
1851 const char *p, *p1;
1852
1853 p = str;
1854 mask = 0;
1855 for(;;) {
1856 p1 = strchr(p, ',');
1857 if (!p1)
1858 p1 = p + strlen(p);
1859 if(cmp1(p,p1-p,"all")) {
1860 for(item = cpu_log_items; item->mask != 0; item++) {
1861 mask |= item->mask;
1862 }
1863 } else {
1864 for(item = cpu_log_items; item->mask != 0; item++) {
1865 if (cmp1(p, p1 - p, item->name))
1866 goto found;
1867 }
1868 return 0;
1869 }
1870 found:
1871 mask |= item->mask;
1872 if (*p1 != ',')
1873 break;
1874 p = p1 + 1;
1875 }
1876 return mask;
1877 }
1878
1879 void cpu_abort(CPUState *env, const char *fmt, ...)
1880 {
1881 va_list ap;
1882 va_list ap2;
1883
1884 va_start(ap, fmt);
1885 va_copy(ap2, ap);
1886 fprintf(stderr, "qemu: fatal: ");
1887 vfprintf(stderr, fmt, ap);
1888 fprintf(stderr, "\n");
1889 #ifdef TARGET_I386
1890 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1891 #else
1892 cpu_dump_state(env, stderr, fprintf, 0);
1893 #endif
1894 if (qemu_log_enabled()) {
1895 qemu_log("qemu: fatal: ");
1896 qemu_log_vprintf(fmt, ap2);
1897 qemu_log("\n");
1898 #ifdef TARGET_I386
1899 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1900 #else
1901 log_cpu_state(env, 0);
1902 #endif
1903 qemu_log_flush();
1904 qemu_log_close();
1905 }
1906 va_end(ap2);
1907 va_end(ap);
1908 #if defined(CONFIG_USER_ONLY)
1909 {
1910 struct sigaction act;
1911 sigfillset(&act.sa_mask);
1912 act.sa_handler = SIG_DFL;
1913 sigaction(SIGABRT, &act, NULL);
1914 }
1915 #endif
1916 abort();
1917 }
1918
1919 CPUState *cpu_copy(CPUState *env)
1920 {
1921 CPUState *new_env = cpu_init(env->cpu_model_str);
1922 CPUState *next_cpu = new_env->next_cpu;
1923 int cpu_index = new_env->cpu_index;
1924 #if defined(TARGET_HAS_ICE)
1925 CPUBreakpoint *bp;
1926 CPUWatchpoint *wp;
1927 #endif
1928
1929 memcpy(new_env, env, sizeof(CPUState));
1930
1931 /* Preserve chaining and index. */
1932 new_env->next_cpu = next_cpu;
1933 new_env->cpu_index = cpu_index;
1934
1935 /* Clone all break/watchpoints.
1936 Note: Once we support ptrace with hw-debug register access, make sure
1937 BP_CPU break/watchpoints are handled correctly on clone. */
1938 QTAILQ_INIT(&env->breakpoints);
1939 QTAILQ_INIT(&env->watchpoints);
1940 #if defined(TARGET_HAS_ICE)
1941 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1942 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1943 }
1944 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1945 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1946 wp->flags, NULL);
1947 }
1948 #endif
1949
1950 return new_env;
1951 }
1952
1953 #if !defined(CONFIG_USER_ONLY)
1954
1955 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1956 {
1957 unsigned int i;
1958
1959 /* Discard jump cache entries for any tb which might potentially
1960 overlap the flushed page. */
1961 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1962 memset (&env->tb_jmp_cache[i], 0,
1963 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1964
1965 i = tb_jmp_cache_hash_page(addr);
1966 memset (&env->tb_jmp_cache[i], 0,
1967 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1968 }
1969
1970 static CPUTLBEntry s_cputlb_empty_entry = {
1971 .addr_read = -1,
1972 .addr_write = -1,
1973 .addr_code = -1,
1974 .addend = -1,
1975 };
1976
1977 /* NOTE: if flush_global is true, also flush global entries (not
1978 implemented yet) */
1979 void tlb_flush(CPUState *env, int flush_global)
1980 {
1981 int i;
1982
1983 #if defined(DEBUG_TLB)
1984 printf("tlb_flush:\n");
1985 #endif
1986 /* must reset current TB so that interrupts cannot modify the
1987 links while we are modifying them */
1988 env->current_tb = NULL;
1989
1990 for(i = 0; i < CPU_TLB_SIZE; i++) {
1991 int mmu_idx;
1992 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1993 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1994 }
1995 }
1996
1997 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1998
1999 env->tlb_flush_addr = -1;
2000 env->tlb_flush_mask = 0;
2001 tlb_flush_count++;
2002 }
2003
2004 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
2005 {
2006 if (addr == (tlb_entry->addr_read &
2007 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2008 addr == (tlb_entry->addr_write &
2009 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2010 addr == (tlb_entry->addr_code &
2011 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
2012 *tlb_entry = s_cputlb_empty_entry;
2013 }
2014 }
2015
2016 void tlb_flush_page(CPUState *env, target_ulong addr)
2017 {
2018 int i;
2019 int mmu_idx;
2020
2021 #if defined(DEBUG_TLB)
2022 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
2023 #endif
2024 /* Check if we need to flush due to large pages. */
2025 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2026 #if defined(DEBUG_TLB)
2027 printf("tlb_flush_page: forced full flush ("
2028 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2029 env->tlb_flush_addr, env->tlb_flush_mask);
2030 #endif
2031 tlb_flush(env, 1);
2032 return;
2033 }
2034 /* must reset current TB so that interrupts cannot modify the
2035 links while we are modifying them */
2036 env->current_tb = NULL;
2037
2038 addr &= TARGET_PAGE_MASK;
2039 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2040 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2041 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2042
2043 tlb_flush_jmp_cache(env, addr);
2044 }
2045
2046 /* update the TLBs so that writes to code in the virtual page 'addr'
2047 can be detected */
2048 static void tlb_protect_code(ram_addr_t ram_addr)
2049 {
2050 cpu_physical_memory_reset_dirty(ram_addr,
2051 ram_addr + TARGET_PAGE_SIZE,
2052 CODE_DIRTY_FLAG);
2053 }
2054
2055 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2056 tested for self modifying code */
2057 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2058 target_ulong vaddr)
2059 {
2060 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2061 }
2062
2063 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2064 unsigned long start, unsigned long length)
2065 {
2066 unsigned long addr;
2067 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2068 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2069 if ((addr - start) < length) {
2070 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2071 }
2072 }
2073 }
2074
2075 /* Note: start and end must be within the same ram block. */
2076 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2077 int dirty_flags)
2078 {
2079 CPUState *env;
2080 unsigned long length, start1;
2081 int i;
2082
2083 start &= TARGET_PAGE_MASK;
2084 end = TARGET_PAGE_ALIGN(end);
2085
2086 length = end - start;
2087 if (length == 0)
2088 return;
2089 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2090
2091 /* we modify the TLB cache so that the dirty bit will be set again
2092 when accessing the range */
2093 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2094 /* Check that we don't span multiple blocks - this breaks the
2095 address comparisons below. */
2096 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2097 != (end - 1) - start) {
2098 abort();
2099 }
2100
2101 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2102 int mmu_idx;
2103 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2104 for(i = 0; i < CPU_TLB_SIZE; i++)
2105 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2106 start1, length);
2107 }
2108 }
2109 }
2110
2111 int cpu_physical_memory_set_dirty_tracking(int enable)
2112 {
2113 int ret = 0;
2114 in_migration = enable;
2115 ret = cpu_notify_migration_log(!!enable);
2116 return ret;
2117 }
2118
2119 int cpu_physical_memory_get_dirty_tracking(void)
2120 {
2121 return in_migration;
2122 }
2123
2124 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2125 target_phys_addr_t end_addr)
2126 {
2127 int ret;
2128
2129 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2130 return ret;
2131 }
2132
2133 int cpu_physical_log_start(target_phys_addr_t start_addr,
2134 ram_addr_t size)
2135 {
2136 CPUPhysMemoryClient *client;
2137 QLIST_FOREACH(client, &memory_client_list, list) {
2138 if (client->log_start) {
2139 int r = client->log_start(client, start_addr, size);
2140 if (r < 0) {
2141 return r;
2142 }
2143 }
2144 }
2145 return 0;
2146 }
2147
2148 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2149 ram_addr_t size)
2150 {
2151 CPUPhysMemoryClient *client;
2152 QLIST_FOREACH(client, &memory_client_list, list) {
2153 if (client->log_stop) {
2154 int r = client->log_stop(client, start_addr, size);
2155 if (r < 0) {
2156 return r;
2157 }
2158 }
2159 }
2160 return 0;
2161 }
2162
2163 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2164 {
2165 ram_addr_t ram_addr;
2166 void *p;
2167
2168 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2169 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2170 + tlb_entry->addend);
2171 ram_addr = qemu_ram_addr_from_host_nofail(p);
2172 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2173 tlb_entry->addr_write |= TLB_NOTDIRTY;
2174 }
2175 }
2176 }
2177
2178 /* update the TLB according to the current state of the dirty bits */
2179 void cpu_tlb_update_dirty(CPUState *env)
2180 {
2181 int i;
2182 int mmu_idx;
2183 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2184 for(i = 0; i < CPU_TLB_SIZE; i++)
2185 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2186 }
2187 }
2188
2189 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2190 {
2191 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2192 tlb_entry->addr_write = vaddr;
2193 }
2194
2195 /* update the TLB corresponding to virtual page vaddr
2196 so that it is no longer dirty */
2197 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2198 {
2199 int i;
2200 int mmu_idx;
2201
2202 vaddr &= TARGET_PAGE_MASK;
2203 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2204 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2205 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2206 }
2207
2208 /* Our TLB does not support large pages, so remember the area covered by
2209 large pages and trigger a full TLB flush if these are invalidated. */
2210 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2211 target_ulong size)
2212 {
2213 target_ulong mask = ~(size - 1);
2214
2215 if (env->tlb_flush_addr == (target_ulong)-1) {
2216 env->tlb_flush_addr = vaddr & mask;
2217 env->tlb_flush_mask = mask;
2218 return;
2219 }
2220 /* Extend the existing region to include the new page.
2221 This is a compromise between unnecessary flushes and the cost
2222 of maintaining a full variable size TLB. */
2223 mask &= env->tlb_flush_mask;
2224 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2225 mask <<= 1;
2226 }
2227 env->tlb_flush_addr &= mask;
2228 env->tlb_flush_mask = mask;
2229 }
2230
2231 /* Add a new TLB entry. At most one entry for a given virtual address
2232 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2233 supplied size is only used by tlb_flush_page. */
2234 void tlb_set_page(CPUState *env, target_ulong vaddr,
2235 target_phys_addr_t paddr, int prot,
2236 int mmu_idx, target_ulong size)
2237 {
2238 PhysPageDesc *p;
2239 unsigned long pd;
2240 unsigned int index;
2241 target_ulong address;
2242 target_ulong code_address;
2243 unsigned long addend;
2244 CPUTLBEntry *te;
2245 CPUWatchpoint *wp;
2246 target_phys_addr_t iotlb;
2247
2248 assert(size >= TARGET_PAGE_SIZE);
2249 if (size != TARGET_PAGE_SIZE) {
2250 tlb_add_large_page(env, vaddr, size);
2251 }
2252 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2253 if (!p) {
2254 pd = IO_MEM_UNASSIGNED;
2255 } else {
2256 pd = p->phys_offset;
2257 }
2258 #if defined(DEBUG_TLB)
2259 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2260 " prot=%x idx=%d pd=0x%08lx\n",
2261 vaddr, paddr, prot, mmu_idx, pd);
2262 #endif
2263
2264 address = vaddr;
2265 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2266 /* IO memory case (romd handled later) */
2267 address |= TLB_MMIO;
2268 }
2269 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2270 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2271 /* Normal RAM. */
2272 iotlb = pd & TARGET_PAGE_MASK;
2273 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2274 iotlb |= IO_MEM_NOTDIRTY;
2275 else
2276 iotlb |= IO_MEM_ROM;
2277 } else {
2278 /* IO handlers are currently passed a physical address.
2279 It would be nice to pass an offset from the base address
2280 of that region. This would avoid having to special case RAM,
2281 and avoid full address decoding in every device.
2282 We can't use the high bits of pd for this because
2283 IO_MEM_ROMD uses these as a ram address. */
2284 iotlb = (pd & ~TARGET_PAGE_MASK);
2285 if (p) {
2286 iotlb += p->region_offset;
2287 } else {
2288 iotlb += paddr;
2289 }
2290 }
2291
2292 code_address = address;
2293 /* Make accesses to pages with watchpoints go via the
2294 watchpoint trap routines. */
2295 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2296 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2297 /* Avoid trapping reads of pages with a write breakpoint. */
2298 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2299 iotlb = io_mem_watch + paddr;
2300 address |= TLB_MMIO;
2301 break;
2302 }
2303 }
2304 }
2305
2306 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2307 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2308 te = &env->tlb_table[mmu_idx][index];
2309 te->addend = addend - vaddr;
2310 if (prot & PAGE_READ) {
2311 te->addr_read = address;
2312 } else {
2313 te->addr_read = -1;
2314 }
2315
2316 if (prot & PAGE_EXEC) {
2317 te->addr_code = code_address;
2318 } else {
2319 te->addr_code = -1;
2320 }
2321 if (prot & PAGE_WRITE) {
2322 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2323 (pd & IO_MEM_ROMD)) {
2324 /* Write access calls the I/O callback. */
2325 te->addr_write = address | TLB_MMIO;
2326 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2327 !cpu_physical_memory_is_dirty(pd)) {
2328 te->addr_write = address | TLB_NOTDIRTY;
2329 } else {
2330 te->addr_write = address;
2331 }
2332 } else {
2333 te->addr_write = -1;
2334 }
2335 }
2336
2337 #else
2338
2339 void tlb_flush(CPUState *env, int flush_global)
2340 {
2341 }
2342
2343 void tlb_flush_page(CPUState *env, target_ulong addr)
2344 {
2345 }
2346
2347 /*
2348 * Walks guest process memory "regions" one by one
2349 * and calls callback function 'fn' for each region.
2350 */
2351
2352 struct walk_memory_regions_data
2353 {
2354 walk_memory_regions_fn fn;
2355 void *priv;
2356 unsigned long start;
2357 int prot;
2358 };
2359
2360 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2361 abi_ulong end, int new_prot)
2362 {
2363 if (data->start != -1ul) {
2364 int rc = data->fn(data->priv, data->start, end, data->prot);
2365 if (rc != 0) {
2366 return rc;
2367 }
2368 }
2369
2370 data->start = (new_prot ? end : -1ul);
2371 data->prot = new_prot;
2372
2373 return 0;
2374 }
2375
2376 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2377 abi_ulong base, int level, void **lp)
2378 {
2379 abi_ulong pa;
2380 int i, rc;
2381
2382 if (*lp == NULL) {
2383 return walk_memory_regions_end(data, base, 0);
2384 }
2385
2386 if (level == 0) {
2387 PageDesc *pd = *lp;
2388 for (i = 0; i < L2_SIZE; ++i) {
2389 int prot = pd[i].flags;
2390
2391 pa = base | (i << TARGET_PAGE_BITS);
2392 if (prot != data->prot) {
2393 rc = walk_memory_regions_end(data, pa, prot);
2394 if (rc != 0) {
2395 return rc;
2396 }
2397 }
2398 }
2399 } else {
2400 void **pp = *lp;
2401 for (i = 0; i < L2_SIZE; ++i) {
2402 pa = base | ((abi_ulong)i <<
2403 (TARGET_PAGE_BITS + L2_BITS * level));
2404 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2405 if (rc != 0) {
2406 return rc;
2407 }
2408 }
2409 }
2410
2411 return 0;
2412 }
2413
2414 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2415 {
2416 struct walk_memory_regions_data data;
2417 unsigned long i;
2418
2419 data.fn = fn;
2420 data.priv = priv;
2421 data.start = -1ul;
2422 data.prot = 0;
2423
2424 for (i = 0; i < V_L1_SIZE; i++) {
2425 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2426 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2427 if (rc != 0) {
2428 return rc;
2429 }
2430 }
2431
2432 return walk_memory_regions_end(&data, 0, 0);
2433 }
2434
2435 static int dump_region(void *priv, abi_ulong start,
2436 abi_ulong end, unsigned long prot)
2437 {
2438 FILE *f = (FILE *)priv;
2439
2440 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2441 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2442 start, end, end - start,
2443 ((prot & PAGE_READ) ? 'r' : '-'),
2444 ((prot & PAGE_WRITE) ? 'w' : '-'),
2445 ((prot & PAGE_EXEC) ? 'x' : '-'));
2446
2447 return (0);
2448 }
2449
2450 /* dump memory mappings */
2451 void page_dump(FILE *f)
2452 {
2453 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2454 "start", "end", "size", "prot");
2455 walk_memory_regions(f, dump_region);
2456 }
2457
2458 int page_get_flags(target_ulong address)
2459 {
2460 PageDesc *p;
2461
2462 p = page_find(address >> TARGET_PAGE_BITS);
2463 if (!p)
2464 return 0;
2465 return p->flags;
2466 }
2467
2468 /* Modify the flags of a page and invalidate the code if necessary.
2469 The flag PAGE_WRITE_ORG is positioned automatically depending
2470 on PAGE_WRITE. The mmap_lock should already be held. */
2471 void page_set_flags(target_ulong start, target_ulong end, int flags)
2472 {
2473 target_ulong addr, len;
2474
2475 /* This function should never be called with addresses outside the
2476 guest address space. If this assert fires, it probably indicates
2477 a missing call to h2g_valid. */
2478 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2479 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2480 #endif
2481 assert(start < end);
2482
2483 start = start & TARGET_PAGE_MASK;
2484 end = TARGET_PAGE_ALIGN(end);
2485
2486 if (flags & PAGE_WRITE) {
2487 flags |= PAGE_WRITE_ORG;
2488 }
2489
2490 for (addr = start, len = end - start;
2491 len != 0;
2492 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2493 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2494
2495 /* If the write protection bit is set, then we invalidate
2496 the code inside. */
2497 if (!(p->flags & PAGE_WRITE) &&
2498 (flags & PAGE_WRITE) &&
2499 p->first_tb) {
2500 tb_invalidate_phys_page(addr, 0, NULL);
2501 }
2502 p->flags = flags;
2503 }
2504 }
2505
2506 int page_check_range(target_ulong start, target_ulong len, int flags)
2507 {
2508 PageDesc *p;
2509 target_ulong end;
2510 target_ulong addr;
2511
2512 /* This function should never be called with addresses outside the
2513 guest address space. If this assert fires, it probably indicates
2514 a missing call to h2g_valid. */
2515 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2516 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2517 #endif
2518
2519 if (len == 0) {
2520 return 0;
2521 }
2522 if (start + len - 1 < start) {
2523 /* We've wrapped around. */
2524 return -1;
2525 }
2526
2527 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2528 start = start & TARGET_PAGE_MASK;
2529
2530 for (addr = start, len = end - start;
2531 len != 0;
2532 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2533 p = page_find(addr >> TARGET_PAGE_BITS);
2534 if( !p )
2535 return -1;
2536 if( !(p->flags & PAGE_VALID) )
2537 return -1;
2538
2539 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2540 return -1;
2541 if (flags & PAGE_WRITE) {
2542 if (!(p->flags & PAGE_WRITE_ORG))
2543 return -1;
2544 /* unprotect the page if it was put read-only because it
2545 contains translated code */
2546 if (!(p->flags & PAGE_WRITE)) {
2547 if (!page_unprotect(addr, 0, NULL))
2548 return -1;
2549 }
2550 return 0;
2551 }
2552 }
2553 return 0;
2554 }
2555
2556 /* called from signal handler: invalidate the code and unprotect the
2557 page. Return TRUE if the fault was successfully handled. */
2558 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2559 {
2560 unsigned int prot;
2561 PageDesc *p;
2562 target_ulong host_start, host_end, addr;
2563
2564 /* Technically this isn't safe inside a signal handler. However we
2565 know this only ever happens in a synchronous SEGV handler, so in
2566 practice it seems to be ok. */
2567 mmap_lock();
2568
2569 p = page_find(address >> TARGET_PAGE_BITS);
2570 if (!p) {
2571 mmap_unlock();
2572 return 0;
2573 }
2574
2575 /* if the page was really writable, then we change its
2576 protection back to writable */
2577 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2578 host_start = address & qemu_host_page_mask;
2579 host_end = host_start + qemu_host_page_size;
2580
2581 prot = 0;
2582 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2583 p = page_find(addr >> TARGET_PAGE_BITS);
2584 p->flags |= PAGE_WRITE;
2585 prot |= p->flags;
2586
2587 /* and since the content will be modified, we must invalidate
2588 the corresponding translated code. */
2589 tb_invalidate_phys_page(addr, pc, puc);
2590 #ifdef DEBUG_TB_CHECK
2591 tb_invalidate_check(addr);
2592 #endif
2593 }
2594 mprotect((void *)g2h(host_start), qemu_host_page_size,
2595 prot & PAGE_BITS);
2596
2597 mmap_unlock();
2598 return 1;
2599 }
2600 mmap_unlock();
2601 return 0;
2602 }
2603
2604 static inline void tlb_set_dirty(CPUState *env,
2605 unsigned long addr, target_ulong vaddr)
2606 {
2607 }
2608 #endif /* defined(CONFIG_USER_ONLY) */
2609
2610 #if !defined(CONFIG_USER_ONLY)
2611
2612 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2613 typedef struct subpage_t {
2614 target_phys_addr_t base;
2615 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2616 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2617 } subpage_t;
2618
2619 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2620 ram_addr_t memory, ram_addr_t region_offset);
2621 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2622 ram_addr_t orig_memory,
2623 ram_addr_t region_offset);
2624 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2625 need_subpage) \
2626 do { \
2627 if (addr > start_addr) \
2628 start_addr2 = 0; \
2629 else { \
2630 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2631 if (start_addr2 > 0) \
2632 need_subpage = 1; \
2633 } \
2634 \
2635 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2636 end_addr2 = TARGET_PAGE_SIZE - 1; \
2637 else { \
2638 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2639 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2640 need_subpage = 1; \
2641 } \
2642 } while (0)
2643
2644 /* register physical memory.
2645 For RAM, 'size' must be a multiple of the target page size.
2646 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2647 io memory page. The address used when calling the IO function is
2648 the offset from the start of the region, plus region_offset. Both
2649 start_addr and region_offset are rounded down to a page boundary
2650 before calculating this offset. This should not be a problem unless
2651 the low bits of start_addr and region_offset differ. */
2652 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2653 ram_addr_t size,
2654 ram_addr_t phys_offset,
2655 ram_addr_t region_offset,
2656 bool log_dirty)
2657 {
2658 target_phys_addr_t addr, end_addr;
2659 PhysPageDesc *p;
2660 CPUState *env;
2661 ram_addr_t orig_size = size;
2662 subpage_t *subpage;
2663
2664 assert(size);
2665 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2666
2667 if (phys_offset == IO_MEM_UNASSIGNED) {
2668 region_offset = start_addr;
2669 }
2670 region_offset &= TARGET_PAGE_MASK;
2671 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2672 end_addr = start_addr + (target_phys_addr_t)size;
2673
2674 addr = start_addr;
2675 do {
2676 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2677 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2678 ram_addr_t orig_memory = p->phys_offset;
2679 target_phys_addr_t start_addr2, end_addr2;
2680 int need_subpage = 0;
2681
2682 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2683 need_subpage);
2684 if (need_subpage) {
2685 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2686 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2687 &p->phys_offset, orig_memory,
2688 p->region_offset);
2689 } else {
2690 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2691 >> IO_MEM_SHIFT];
2692 }
2693 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2694 region_offset);
2695 p->region_offset = 0;
2696 } else {
2697 p->phys_offset = phys_offset;
2698 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2699 (phys_offset & IO_MEM_ROMD))
2700 phys_offset += TARGET_PAGE_SIZE;
2701 }
2702 } else {
2703 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2704 p->phys_offset = phys_offset;
2705 p->region_offset = region_offset;
2706 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2707 (phys_offset & IO_MEM_ROMD)) {
2708 phys_offset += TARGET_PAGE_SIZE;
2709 } else {
2710 target_phys_addr_t start_addr2, end_addr2;
2711 int need_subpage = 0;
2712
2713 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2714 end_addr2, need_subpage);
2715
2716 if (need_subpage) {
2717 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2718 &p->phys_offset, IO_MEM_UNASSIGNED,
2719 addr & TARGET_PAGE_MASK);
2720 subpage_register(subpage, start_addr2, end_addr2,
2721 phys_offset, region_offset);
2722 p->region_offset = 0;
2723 }
2724 }
2725 }
2726 region_offset += TARGET_PAGE_SIZE;
2727 addr += TARGET_PAGE_SIZE;
2728 } while (addr != end_addr);
2729
2730 /* since each CPU stores ram addresses in its TLB cache, we must
2731 reset the modified entries */
2732 /* XXX: slow ! */
2733 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2734 tlb_flush(env, 1);
2735 }
2736 }
2737
2738 /* XXX: temporary until new memory mapping API */
2739 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2740 {
2741 PhysPageDesc *p;
2742
2743 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2744 if (!p)
2745 return IO_MEM_UNASSIGNED;
2746 return p->phys_offset;
2747 }
2748
2749 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2750 {
2751 if (kvm_enabled())
2752 kvm_coalesce_mmio_region(addr, size);
2753 }
2754
2755 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2756 {
2757 if (kvm_enabled())
2758 kvm_uncoalesce_mmio_region(addr, size);
2759 }
2760
2761 void qemu_flush_coalesced_mmio_buffer(void)
2762 {
2763 if (kvm_enabled())
2764 kvm_flush_coalesced_mmio_buffer();
2765 }
2766
2767 #if defined(__linux__) && !defined(TARGET_S390X)
2768
2769 #include <sys/vfs.h>
2770
2771 #define HUGETLBFS_MAGIC 0x958458f6
2772
2773 static long gethugepagesize(const char *path)
2774 {
2775 struct statfs fs;
2776 int ret;
2777
2778 do {
2779 ret = statfs(path, &fs);
2780 } while (ret != 0 && errno == EINTR);
2781
2782 if (ret != 0) {
2783 perror(path);
2784 return 0;
2785 }
2786
2787 if (fs.f_type != HUGETLBFS_MAGIC)
2788 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2789
2790 return fs.f_bsize;
2791 }
2792
2793 static void *file_ram_alloc(RAMBlock *block,
2794 ram_addr_t memory,
2795 const char *path)
2796 {
2797 char *filename;
2798 void *area;
2799 int fd;
2800 #ifdef MAP_POPULATE
2801 int flags;
2802 #endif
2803 unsigned long hpagesize;
2804
2805 hpagesize = gethugepagesize(path);
2806 if (!hpagesize) {
2807 return NULL;
2808 }
2809
2810 if (memory < hpagesize) {
2811 return NULL;
2812 }
2813
2814 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2815 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2816 return NULL;
2817 }
2818
2819 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2820 return NULL;
2821 }
2822
2823 fd = mkstemp(filename);
2824 if (fd < 0) {
2825 perror("unable to create backing store for hugepages");
2826 free(filename);
2827 return NULL;
2828 }
2829 unlink(filename);
2830 free(filename);
2831
2832 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2833
2834 /*
2835 * ftruncate is not supported by hugetlbfs in older
2836 * hosts, so don't bother bailing out on errors.
2837 * If anything goes wrong with it under other filesystems,
2838 * mmap will fail.
2839 */
2840 if (ftruncate(fd, memory))
2841 perror("ftruncate");
2842
2843 #ifdef MAP_POPULATE
2844 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2845 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2846 * to sidestep this quirk.
2847 */
2848 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2849 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2850 #else
2851 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2852 #endif
2853 if (area == MAP_FAILED) {
2854 perror("file_ram_alloc: can't mmap RAM pages");
2855 close(fd);
2856 return (NULL);
2857 }
2858 block->fd = fd;
2859 return area;
2860 }
2861 #endif
2862
2863 static ram_addr_t find_ram_offset(ram_addr_t size)
2864 {
2865 RAMBlock *block, *next_block;
2866 ram_addr_t offset = 0, mingap = ULONG_MAX;
2867
2868 if (QLIST_EMPTY(&ram_list.blocks))
2869 return 0;
2870
2871 QLIST_FOREACH(block, &ram_list.blocks, next) {
2872 ram_addr_t end, next = ULONG_MAX;
2873
2874 end = block->offset + block->length;
2875
2876 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2877 if (next_block->offset >= end) {
2878 next = MIN(next, next_block->offset);
2879 }
2880 }
2881 if (next - end >= size && next - end < mingap) {
2882 offset = end;
2883 mingap = next - end;
2884 }
2885 }
2886 return offset;
2887 }
2888
2889 static ram_addr_t last_ram_offset(void)
2890 {
2891 RAMBlock *block;
2892 ram_addr_t last = 0;
2893
2894 QLIST_FOREACH(block, &ram_list.blocks, next)
2895 last = MAX(last, block->offset + block->length);
2896
2897 return last;
2898 }
2899
2900 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2901 ram_addr_t size, void *host)
2902 {
2903 RAMBlock *new_block, *block;
2904
2905 size = TARGET_PAGE_ALIGN(size);
2906 new_block = qemu_mallocz(sizeof(*new_block));
2907
2908 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2909 char *id = dev->parent_bus->info->get_dev_path(dev);
2910 if (id) {
2911 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2912 qemu_free(id);
2913 }
2914 }
2915 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2916
2917 QLIST_FOREACH(block, &ram_list.blocks, next) {
2918 if (!strcmp(block->idstr, new_block->idstr)) {
2919 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2920 new_block->idstr);
2921 abort();
2922 }
2923 }
2924
2925 new_block->offset = find_ram_offset(size);
2926 if (host) {
2927 new_block->host = host;
2928 new_block->flags |= RAM_PREALLOC_MASK;
2929 } else {
2930 if (mem_path) {
2931 #if defined (__linux__) && !defined(TARGET_S390X)
2932 new_block->host = file_ram_alloc(new_block, size, mem_path);
2933 if (!new_block->host) {
2934 new_block->host = qemu_vmalloc(size);
2935 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2936 }
2937 #else
2938 fprintf(stderr, "-mem-path option unsupported\n");
2939 exit(1);
2940 #endif
2941 } else {
2942 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2943 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2944 an system defined value, which is at least 256GB. Larger systems
2945 have larger values. We put the guest between the end of data
2946 segment (system break) and this value. We use 32GB as a base to
2947 have enough room for the system break to grow. */
2948 new_block->host = mmap((void*)0x800000000, size,
2949 PROT_EXEC|PROT_READ|PROT_WRITE,
2950 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2951 if (new_block->host == MAP_FAILED) {
2952 fprintf(stderr, "Allocating RAM failed\n");
2953 abort();
2954 }
2955 #else
2956 if (xen_mapcache_enabled()) {
2957 xen_ram_alloc(new_block->offset, size);
2958 } else {
2959 new_block->host = qemu_vmalloc(size);
2960 }
2961 #endif
2962 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2963 }
2964 }
2965 new_block->length = size;
2966
2967 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2968
2969 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2970 last_ram_offset() >> TARGET_PAGE_BITS);
2971 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2972 0xff, size >> TARGET_PAGE_BITS);
2973
2974 if (kvm_enabled())
2975 kvm_setup_guest_memory(new_block->host, size);
2976
2977 return new_block->offset;
2978 }
2979
2980 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2981 {
2982 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2983 }
2984
2985 void qemu_ram_free_from_ptr(ram_addr_t addr)
2986 {
2987 RAMBlock *block;
2988
2989 QLIST_FOREACH(block, &ram_list.blocks, next) {
2990 if (addr == block->offset) {
2991 QLIST_REMOVE(block, next);
2992 qemu_free(block);
2993 return;
2994 }
2995 }
2996 }
2997
2998 void qemu_ram_free(ram_addr_t addr)
2999 {
3000 RAMBlock *block;
3001
3002 QLIST_FOREACH(block, &ram_list.blocks, next) {
3003 if (addr == block->offset) {
3004 QLIST_REMOVE(block, next);
3005 if (block->flags & RAM_PREALLOC_MASK) {
3006 ;
3007 } else if (mem_path) {
3008 #if defined (__linux__) && !defined(TARGET_S390X)
3009 if (block->fd) {
3010 munmap(block->host, block->length);
3011 close(block->fd);
3012 } else {
3013 qemu_vfree(block->host);
3014 }
3015 #else
3016 abort();
3017 #endif
3018 } else {
3019 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3020 munmap(block->host, block->length);
3021 #else
3022 if (xen_mapcache_enabled()) {
3023 qemu_invalidate_entry(block->host);
3024 } else {
3025 qemu_vfree(block->host);
3026 }
3027 #endif
3028 }
3029 qemu_free(block);
3030 return;
3031 }
3032 }
3033
3034 }
3035
3036 #ifndef _WIN32
3037 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3038 {
3039 RAMBlock *block;
3040 ram_addr_t offset;
3041 int flags;
3042 void *area, *vaddr;
3043
3044 QLIST_FOREACH(block, &ram_list.blocks, next) {
3045 offset = addr - block->offset;
3046 if (offset < block->length) {
3047 vaddr = block->host + offset;
3048 if (block->flags & RAM_PREALLOC_MASK) {
3049 ;
3050 } else {
3051 flags = MAP_FIXED;
3052 munmap(vaddr, length);
3053 if (mem_path) {
3054 #if defined(__linux__) && !defined(TARGET_S390X)
3055 if (block->fd) {
3056 #ifdef MAP_POPULATE
3057 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3058 MAP_PRIVATE;
3059 #else
3060 flags |= MAP_PRIVATE;
3061 #endif
3062 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3063 flags, block->fd, offset);
3064 } else {
3065 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3066 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3067 flags, -1, 0);
3068 }
3069 #else
3070 abort();
3071 #endif
3072 } else {
3073 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3074 flags |= MAP_SHARED | MAP_ANONYMOUS;
3075 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3076 flags, -1, 0);
3077 #else
3078 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3079 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3080 flags, -1, 0);
3081 #endif
3082 }
3083 if (area != vaddr) {
3084 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3085 length, addr);
3086 exit(1);
3087 }
3088 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3089 }
3090 return;
3091 }
3092 }
3093 }
3094 #endif /* !_WIN32 */
3095
3096 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3097 With the exception of the softmmu code in this file, this should
3098 only be used for local memory (e.g. video ram) that the device owns,
3099 and knows it isn't going to access beyond the end of the block.
3100
3101 It should not be used for general purpose DMA.
3102 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3103 */
3104 void *qemu_get_ram_ptr(ram_addr_t addr)
3105 {
3106 RAMBlock *block;
3107
3108 QLIST_FOREACH(block, &ram_list.blocks, next) {
3109 if (addr - block->offset < block->length) {
3110 /* Move this entry to to start of the list. */
3111 if (block != QLIST_FIRST(&ram_list.blocks)) {
3112 QLIST_REMOVE(block, next);
3113 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3114 }
3115 if (xen_mapcache_enabled()) {
3116 /* We need to check if the requested address is in the RAM
3117 * because we don't want to map the entire memory in QEMU.
3118 * In that case just map until the end of the page.
3119 */
3120 if (block->offset == 0) {
3121 return qemu_map_cache(addr, 0, 0);
3122 } else if (block->host == NULL) {
3123 block->host = qemu_map_cache(block->offset, block->length, 1);
3124 }
3125 }
3126 return block->host + (addr - block->offset);
3127 }
3128 }
3129
3130 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3131 abort();
3132
3133 return NULL;
3134 }
3135
3136 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3137 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3138 */
3139 void *qemu_safe_ram_ptr(ram_addr_t addr)
3140 {
3141 RAMBlock *block;
3142
3143 QLIST_FOREACH(block, &ram_list.blocks, next) {
3144 if (addr - block->offset < block->length) {
3145 if (xen_mapcache_enabled()) {
3146 /* We need to check if the requested address is in the RAM
3147 * because we don't want to map the entire memory in QEMU.
3148 * In that case just map until the end of the page.
3149 */
3150 if (block->offset == 0) {
3151 return qemu_map_cache(addr, 0, 0);
3152 } else if (block->host == NULL) {
3153 block->host = qemu_map_cache(block->offset, block->length, 1);
3154 }
3155 }
3156 return block->host + (addr - block->offset);
3157 }
3158 }
3159
3160 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3161 abort();
3162
3163 return NULL;
3164 }
3165
3166 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3167 * but takes a size argument */
3168 void *qemu_ram_ptr_length(target_phys_addr_t addr, target_phys_addr_t *size)
3169 {
3170 if (xen_mapcache_enabled())
3171 return qemu_map_cache(addr, *size, 1);
3172 else {
3173 RAMBlock *block;
3174
3175 QLIST_FOREACH(block, &ram_list.blocks, next) {
3176 if (addr - block->offset < block->length) {
3177 if (addr - block->offset + *size > block->length)
3178 *size = block->length - addr + block->offset;
3179 return block->host + (addr - block->offset);
3180 }
3181 }
3182
3183 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3184 abort();
3185
3186 *size = 0;
3187 return NULL;
3188 }
3189 }
3190
3191 void qemu_put_ram_ptr(void *addr)
3192 {
3193 trace_qemu_put_ram_ptr(addr);
3194 }
3195
3196 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3197 {
3198 RAMBlock *block;
3199 uint8_t *host = ptr;
3200
3201 if (xen_mapcache_enabled()) {
3202 *ram_addr = qemu_ram_addr_from_mapcache(ptr);
3203 return 0;
3204 }
3205
3206 QLIST_FOREACH(block, &ram_list.blocks, next) {
3207 /* This case append when the block is not mapped. */
3208 if (block->host == NULL) {
3209 continue;
3210 }
3211 if (host - block->host < block->length) {
3212 *ram_addr = block->offset + (host - block->host);
3213 return 0;
3214 }
3215 }
3216
3217 return -1;
3218 }
3219
3220 /* Some of the softmmu routines need to translate from a host pointer
3221 (typically a TLB entry) back to a ram offset. */
3222 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3223 {
3224 ram_addr_t ram_addr;
3225
3226 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3227 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3228 abort();
3229 }
3230 return ram_addr;
3231 }
3232
3233 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3234 {
3235 #ifdef DEBUG_UNASSIGNED
3236 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3237 #endif
3238 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3239 do_unassigned_access(addr, 0, 0, 0, 1);
3240 #endif
3241 return 0;
3242 }
3243
3244 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3245 {
3246 #ifdef DEBUG_UNASSIGNED
3247 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3248 #endif
3249 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3250 do_unassigned_access(addr, 0, 0, 0, 2);
3251 #endif
3252 return 0;
3253 }
3254
3255 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3256 {
3257 #ifdef DEBUG_UNASSIGNED
3258 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3259 #endif
3260 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3261 do_unassigned_access(addr, 0, 0, 0, 4);
3262 #endif
3263 return 0;
3264 }
3265
3266 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3267 {
3268 #ifdef DEBUG_UNASSIGNED
3269 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3270 #endif
3271 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3272 do_unassigned_access(addr, 1, 0, 0, 1);
3273 #endif
3274 }
3275
3276 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3277 {
3278 #ifdef DEBUG_UNASSIGNED
3279 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3280 #endif
3281 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3282 do_unassigned_access(addr, 1, 0, 0, 2);
3283 #endif
3284 }
3285
3286 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3287 {
3288 #ifdef DEBUG_UNASSIGNED
3289 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3290 #endif
3291 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3292 do_unassigned_access(addr, 1, 0, 0, 4);
3293 #endif
3294 }
3295
3296 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3297 unassigned_mem_readb,
3298 unassigned_mem_readw,
3299 unassigned_mem_readl,
3300 };
3301
3302 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3303 unassigned_mem_writeb,
3304 unassigned_mem_writew,
3305 unassigned_mem_writel,
3306 };
3307
3308 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3309 uint32_t val)
3310 {
3311 int dirty_flags;
3312 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3313 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3314 #if !defined(CONFIG_USER_ONLY)
3315 tb_invalidate_phys_page_fast(ram_addr, 1);
3316 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3317 #endif
3318 }
3319 stb_p(qemu_get_ram_ptr(ram_addr), val);
3320 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3321 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3322 /* we remove the notdirty callback only if the code has been
3323 flushed */
3324 if (dirty_flags == 0xff)
3325 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3326 }
3327
3328 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3329 uint32_t val)
3330 {
3331 int dirty_flags;
3332 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3333 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3334 #if !defined(CONFIG_USER_ONLY)
3335 tb_invalidate_phys_page_fast(ram_addr, 2);
3336 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3337 #endif
3338 }
3339 stw_p(qemu_get_ram_ptr(ram_addr), val);
3340 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3341 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3342 /* we remove the notdirty callback only if the code has been
3343 flushed */
3344 if (dirty_flags == 0xff)
3345 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3346 }
3347
3348 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3349 uint32_t val)
3350 {
3351 int dirty_flags;
3352 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3353 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3354 #if !defined(CONFIG_USER_ONLY)
3355 tb_invalidate_phys_page_fast(ram_addr, 4);
3356 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3357 #endif
3358 }
3359 stl_p(qemu_get_ram_ptr(ram_addr), val);
3360 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3361 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3362 /* we remove the notdirty callback only if the code has been
3363 flushed */
3364 if (dirty_flags == 0xff)
3365 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3366 }
3367
3368 static CPUReadMemoryFunc * const error_mem_read[3] = {
3369 NULL, /* never used */
3370 NULL, /* never used */
3371 NULL, /* never used */
3372 };
3373
3374 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3375 notdirty_mem_writeb,
3376 notdirty_mem_writew,
3377 notdirty_mem_writel,
3378 };
3379
3380 /* Generate a debug exception if a watchpoint has been hit. */
3381 static void check_watchpoint(int offset, int len_mask, int flags)
3382 {
3383 CPUState *env = cpu_single_env;
3384 target_ulong pc, cs_base;
3385 TranslationBlock *tb;
3386 target_ulong vaddr;
3387 CPUWatchpoint *wp;
3388 int cpu_flags;
3389
3390 if (env->watchpoint_hit) {
3391 /* We re-entered the check after replacing the TB. Now raise
3392 * the debug interrupt so that is will trigger after the
3393 * current instruction. */
3394 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3395 return;
3396 }
3397 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3398 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3399 if ((vaddr == (wp->vaddr & len_mask) ||
3400 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3401 wp->flags |= BP_WATCHPOINT_HIT;
3402 if (!env->watchpoint_hit) {
3403 env->watchpoint_hit = wp;
3404 tb = tb_find_pc(env->mem_io_pc);
3405 if (!tb) {
3406 cpu_abort(env, "check_watchpoint: could not find TB for "
3407 "pc=%p", (void *)env->mem_io_pc);
3408 }
3409 cpu_restore_state(tb, env, env->mem_io_pc);
3410 tb_phys_invalidate(tb, -1);
3411 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3412 env->exception_index = EXCP_DEBUG;
3413 } else {
3414 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3415 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3416 }
3417 cpu_resume_from_signal(env, NULL);
3418 }
3419 } else {
3420 wp->flags &= ~BP_WATCHPOINT_HIT;
3421 }
3422 }
3423 }
3424
3425 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3426 so these check for a hit then pass through to the normal out-of-line
3427 phys routines. */
3428 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3429 {
3430 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3431 return ldub_phys(addr);
3432 }
3433
3434 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3435 {
3436 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3437 return lduw_phys(addr);
3438 }
3439
3440 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3441 {
3442 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3443 return ldl_phys(addr);
3444 }
3445
3446 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3447 uint32_t val)
3448 {
3449 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3450 stb_phys(addr, val);
3451 }
3452
3453 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3454 uint32_t val)
3455 {
3456 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3457 stw_phys(addr, val);
3458 }
3459
3460 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3461 uint32_t val)
3462 {
3463 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3464 stl_phys(addr, val);
3465 }
3466
3467 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3468 watch_mem_readb,
3469 watch_mem_readw,
3470 watch_mem_readl,
3471 };
3472
3473 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3474 watch_mem_writeb,
3475 watch_mem_writew,
3476 watch_mem_writel,
3477 };
3478
3479 static inline uint32_t subpage_readlen (subpage_t *mmio,
3480 target_phys_addr_t addr,
3481 unsigned int len)
3482 {
3483 unsigned int idx = SUBPAGE_IDX(addr);
3484 #if defined(DEBUG_SUBPAGE)
3485 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3486 mmio, len, addr, idx);
3487 #endif
3488
3489 addr += mmio->region_offset[idx];
3490 idx = mmio->sub_io_index[idx];
3491 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3492 }
3493
3494 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3495 uint32_t value, unsigned int len)
3496 {
3497 unsigned int idx = SUBPAGE_IDX(addr);
3498 #if defined(DEBUG_SUBPAGE)
3499 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3500 __func__, mmio, len, addr, idx, value);
3501 #endif
3502
3503 addr += mmio->region_offset[idx];
3504 idx = mmio->sub_io_index[idx];
3505 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3506 }
3507
3508 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3509 {
3510 return subpage_readlen(opaque, addr, 0);
3511 }
3512
3513 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3514 uint32_t value)
3515 {
3516 subpage_writelen(opaque, addr, value, 0);
3517 }
3518
3519 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3520 {
3521 return subpage_readlen(opaque, addr, 1);
3522 }
3523
3524 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3525 uint32_t value)
3526 {
3527 subpage_writelen(opaque, addr, value, 1);
3528 }
3529
3530 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3531 {
3532 return subpage_readlen(opaque, addr, 2);
3533 }
3534
3535 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3536 uint32_t value)
3537 {
3538 subpage_writelen(opaque, addr, value, 2);
3539 }
3540
3541 static CPUReadMemoryFunc * const subpage_read[] = {
3542 &subpage_readb,
3543 &subpage_readw,
3544 &subpage_readl,
3545 };
3546
3547 static CPUWriteMemoryFunc * const subpage_write[] = {
3548 &subpage_writeb,
3549 &subpage_writew,
3550 &subpage_writel,
3551 };
3552
3553 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3554 ram_addr_t memory, ram_addr_t region_offset)
3555 {
3556 int idx, eidx;
3557
3558 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3559 return -1;
3560 idx = SUBPAGE_IDX(start);
3561 eidx = SUBPAGE_IDX(end);
3562 #if defined(DEBUG_SUBPAGE)
3563 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3564 mmio, start, end, idx, eidx, memory);
3565 #endif
3566 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3567 memory = IO_MEM_UNASSIGNED;
3568 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3569 for (; idx <= eidx; idx++) {
3570 mmio->sub_io_index[idx] = memory;
3571 mmio->region_offset[idx] = region_offset;
3572 }
3573
3574 return 0;
3575 }
3576
3577 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3578 ram_addr_t orig_memory,
3579 ram_addr_t region_offset)
3580 {
3581 subpage_t *mmio;
3582 int subpage_memory;
3583
3584 mmio = qemu_mallocz(sizeof(subpage_t));
3585
3586 mmio->base = base;
3587 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3588 DEVICE_NATIVE_ENDIAN);
3589 #if defined(DEBUG_SUBPAGE)
3590 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3591 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3592 #endif
3593 *phys = subpage_memory | IO_MEM_SUBPAGE;
3594 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3595
3596 return mmio;
3597 }
3598
3599 static int get_free_io_mem_idx(void)
3600 {
3601 int i;
3602
3603 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3604 if (!io_mem_used[i]) {
3605 io_mem_used[i] = 1;
3606 return i;
3607 }
3608 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3609 return -1;
3610 }
3611
3612 /*
3613 * Usually, devices operate in little endian mode. There are devices out
3614 * there that operate in big endian too. Each device gets byte swapped
3615 * mmio if plugged onto a CPU that does the other endianness.
3616 *
3617 * CPU Device swap?
3618 *
3619 * little little no
3620 * little big yes
3621 * big little yes
3622 * big big no
3623 */
3624
3625 typedef struct SwapEndianContainer {
3626 CPUReadMemoryFunc *read[3];
3627 CPUWriteMemoryFunc *write[3];
3628 void *opaque;
3629 } SwapEndianContainer;
3630
3631 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3632 {
3633 uint32_t val;
3634 SwapEndianContainer *c = opaque;
3635 val = c->read[0](c->opaque, addr);
3636 return val;
3637 }
3638
3639 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3640 {
3641 uint32_t val;
3642 SwapEndianContainer *c = opaque;
3643 val = bswap16(c->read[1](c->opaque, addr));
3644 return val;
3645 }
3646
3647 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3648 {
3649 uint32_t val;
3650 SwapEndianContainer *c = opaque;
3651 val = bswap32(c->read[2](c->opaque, addr));
3652 return val;
3653 }
3654
3655 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3656 swapendian_mem_readb,
3657 swapendian_mem_readw,
3658 swapendian_mem_readl
3659 };
3660
3661 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3662 uint32_t val)
3663 {
3664 SwapEndianContainer *c = opaque;
3665 c->write[0](c->opaque, addr, val);
3666 }
3667
3668 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3669 uint32_t val)
3670 {
3671 SwapEndianContainer *c = opaque;
3672 c->write[1](c->opaque, addr, bswap16(val));
3673 }
3674
3675 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3676 uint32_t val)
3677 {
3678 SwapEndianContainer *c = opaque;
3679 c->write[2](c->opaque, addr, bswap32(val));
3680 }
3681
3682 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3683 swapendian_mem_writeb,
3684 swapendian_mem_writew,
3685 swapendian_mem_writel
3686 };
3687
3688 static void swapendian_init(int io_index)
3689 {
3690 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3691 int i;
3692
3693 /* Swap mmio for big endian targets */
3694 c->opaque = io_mem_opaque[io_index];
3695 for (i = 0; i < 3; i++) {
3696 c->read[i] = io_mem_read[io_index][i];
3697 c->write[i] = io_mem_write[io_index][i];
3698
3699 io_mem_read[io_index][i] = swapendian_readfn[i];
3700 io_mem_write[io_index][i] = swapendian_writefn[i];
3701 }
3702 io_mem_opaque[io_index] = c;
3703 }
3704
3705 static void swapendian_del(int io_index)
3706 {
3707 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3708 qemu_free(io_mem_opaque[io_index]);
3709 }
3710 }
3711
3712 /* mem_read and mem_write are arrays of functions containing the
3713 function to access byte (index 0), word (index 1) and dword (index
3714 2). Functions can be omitted with a NULL function pointer.
3715 If io_index is non zero, the corresponding io zone is
3716 modified. If it is zero, a new io zone is allocated. The return
3717 value can be used with cpu_register_physical_memory(). (-1) is
3718 returned if error. */
3719 static int cpu_register_io_memory_fixed(int io_index,
3720 CPUReadMemoryFunc * const *mem_read,
3721 CPUWriteMemoryFunc * const *mem_write,
3722 void *opaque, enum device_endian endian)
3723 {
3724 int i;
3725
3726 if (io_index <= 0) {
3727 io_index = get_free_io_mem_idx();
3728 if (io_index == -1)
3729 return io_index;
3730 } else {
3731 io_index >>= IO_MEM_SHIFT;
3732 if (io_index >= IO_MEM_NB_ENTRIES)
3733 return -1;
3734 }
3735
3736 for (i = 0; i < 3; ++i) {
3737 io_mem_read[io_index][i]
3738 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3739 }
3740 for (i = 0; i < 3; ++i) {
3741 io_mem_write[io_index][i]
3742 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3743 }
3744 io_mem_opaque[io_index] = opaque;
3745
3746 switch (endian) {
3747 case DEVICE_BIG_ENDIAN:
3748 #ifndef TARGET_WORDS_BIGENDIAN
3749 swapendian_init(io_index);
3750 #endif
3751 break;
3752 case DEVICE_LITTLE_ENDIAN:
3753 #ifdef TARGET_WORDS_BIGENDIAN
3754 swapendian_init(io_index);
3755 #endif
3756 break;
3757 case DEVICE_NATIVE_ENDIAN:
3758 default:
3759 break;
3760 }
3761
3762 return (io_index << IO_MEM_SHIFT);
3763 }
3764
3765 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3766 CPUWriteMemoryFunc * const *mem_write,
3767 void *opaque, enum device_endian endian)
3768 {
3769 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3770 }
3771
3772 void cpu_unregister_io_memory(int io_table_address)
3773 {
3774 int i;
3775 int io_index = io_table_address >> IO_MEM_SHIFT;
3776
3777 swapendian_del(io_index);
3778
3779 for (i=0;i < 3; i++) {
3780 io_mem_read[io_index][i] = unassigned_mem_read[i];
3781 io_mem_write[io_index][i] = unassigned_mem_write[i];
3782 }
3783 io_mem_opaque[io_index] = NULL;
3784 io_mem_used[io_index] = 0;
3785 }
3786
3787 static void io_mem_init(void)
3788 {
3789 int i;
3790
3791 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3792 unassigned_mem_write, NULL,
3793 DEVICE_NATIVE_ENDIAN);
3794 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3795 unassigned_mem_write, NULL,
3796 DEVICE_NATIVE_ENDIAN);
3797 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3798 notdirty_mem_write, NULL,
3799 DEVICE_NATIVE_ENDIAN);
3800 for (i=0; i<5; i++)
3801 io_mem_used[i] = 1;
3802
3803 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3804 watch_mem_write, NULL,
3805 DEVICE_NATIVE_ENDIAN);
3806 }
3807
3808 #endif /* !defined(CONFIG_USER_ONLY) */
3809
3810 /* physical memory access (slow version, mainly for debug) */
3811 #if defined(CONFIG_USER_ONLY)
3812 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3813 uint8_t *buf, int len, int is_write)
3814 {
3815 int l, flags;
3816 target_ulong page;
3817 void * p;
3818
3819 while (len > 0) {
3820 page = addr & TARGET_PAGE_MASK;
3821 l = (page + TARGET_PAGE_SIZE) - addr;
3822 if (l > len)
3823 l = len;
3824 flags = page_get_flags(page);
3825 if (!(flags & PAGE_VALID))
3826 return -1;
3827 if (is_write) {
3828 if (!(flags & PAGE_WRITE))
3829 return -1;
3830 /* XXX: this code should not depend on lock_user */
3831 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3832 return -1;
3833 memcpy(p, buf, l);
3834 unlock_user(p, addr, l);
3835 } else {
3836 if (!(flags & PAGE_READ))
3837 return -1;
3838 /* XXX: this code should not depend on lock_user */
3839 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3840 return -1;
3841 memcpy(buf, p, l);
3842 unlock_user(p, addr, 0);
3843 }
3844 len -= l;
3845 buf += l;
3846 addr += l;
3847 }
3848 return 0;
3849 }
3850
3851 #else
3852 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3853 int len, int is_write)
3854 {
3855 int l, io_index;
3856 uint8_t *ptr;
3857 uint32_t val;
3858 target_phys_addr_t page;
3859 unsigned long pd;
3860 PhysPageDesc *p;
3861
3862 while (len > 0) {
3863 page = addr & TARGET_PAGE_MASK;
3864 l = (page + TARGET_PAGE_SIZE) - addr;
3865 if (l > len)
3866 l = len;
3867 p = phys_page_find(page >> TARGET_PAGE_BITS);
3868 if (!p) {
3869 pd = IO_MEM_UNASSIGNED;
3870 } else {
3871 pd = p->phys_offset;
3872 }
3873
3874 if (is_write) {
3875 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3876 target_phys_addr_t addr1 = addr;
3877 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3878 if (p)
3879 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3880 /* XXX: could force cpu_single_env to NULL to avoid
3881 potential bugs */
3882 if (l >= 4 && ((addr1 & 3) == 0)) {
3883 /* 32 bit write access */
3884 val = ldl_p(buf);
3885 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3886 l = 4;
3887 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3888 /* 16 bit write access */
3889 val = lduw_p(buf);
3890 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3891 l = 2;
3892 } else {
3893 /* 8 bit write access */
3894 val = ldub_p(buf);
3895 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3896 l = 1;
3897 }
3898 } else {
3899 unsigned long addr1;
3900 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3901 /* RAM case */
3902 ptr = qemu_get_ram_ptr(addr1);
3903 memcpy(ptr, buf, l);
3904 if (!cpu_physical_memory_is_dirty(addr1)) {
3905 /* invalidate code */
3906 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3907 /* set dirty bit */
3908 cpu_physical_memory_set_dirty_flags(
3909 addr1, (0xff & ~CODE_DIRTY_FLAG));
3910 }
3911 qemu_put_ram_ptr(ptr);
3912 }
3913 } else {
3914 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3915 !(pd & IO_MEM_ROMD)) {
3916 target_phys_addr_t addr1 = addr;
3917 /* I/O case */
3918 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3919 if (p)
3920 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3921 if (l >= 4 && ((addr1 & 3) == 0)) {
3922 /* 32 bit read access */
3923 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3924 stl_p(buf, val);
3925 l = 4;
3926 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3927 /* 16 bit read access */
3928 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3929 stw_p(buf, val);
3930 l = 2;
3931 } else {
3932 /* 8 bit read access */
3933 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3934 stb_p(buf, val);
3935 l = 1;
3936 }
3937 } else {
3938 /* RAM case */
3939 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3940 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3941 qemu_put_ram_ptr(ptr);
3942 }
3943 }
3944 len -= l;
3945 buf += l;
3946 addr += l;
3947 }
3948 }
3949
3950 /* used for ROM loading : can write in RAM and ROM */
3951 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3952 const uint8_t *buf, int len)
3953 {
3954 int l;
3955 uint8_t *ptr;
3956 target_phys_addr_t page;
3957 unsigned long pd;
3958 PhysPageDesc *p;
3959
3960 while (len > 0) {
3961 page = addr & TARGET_PAGE_MASK;
3962 l = (page + TARGET_PAGE_SIZE) - addr;
3963 if (l > len)
3964 l = len;
3965 p = phys_page_find(page >> TARGET_PAGE_BITS);
3966 if (!p) {
3967 pd = IO_MEM_UNASSIGNED;
3968 } else {
3969 pd = p->phys_offset;
3970 }
3971
3972 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3973 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3974 !(pd & IO_MEM_ROMD)) {
3975 /* do nothing */
3976 } else {
3977 unsigned long addr1;
3978 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3979 /* ROM/RAM case */
3980 ptr = qemu_get_ram_ptr(addr1);
3981 memcpy(ptr, buf, l);
3982 qemu_put_ram_ptr(ptr);
3983 }
3984 len -= l;
3985 buf += l;
3986 addr += l;
3987 }
3988 }
3989
3990 typedef struct {
3991 void *buffer;
3992 target_phys_addr_t addr;
3993 target_phys_addr_t len;
3994 } BounceBuffer;
3995
3996 static BounceBuffer bounce;
3997
3998 typedef struct MapClient {
3999 void *opaque;
4000 void (*callback)(void *opaque);
4001 QLIST_ENTRY(MapClient) link;
4002 } MapClient;
4003
4004 static QLIST_HEAD(map_client_list, MapClient) map_client_list
4005 = QLIST_HEAD_INITIALIZER(map_client_list);
4006
4007 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4008 {
4009 MapClient *client = qemu_malloc(sizeof(*client));
4010
4011 client->opaque = opaque;
4012 client->callback = callback;
4013 QLIST_INSERT_HEAD(&map_client_list, client, link);
4014 return client;
4015 }
4016
4017 void cpu_unregister_map_client(void *_client)
4018 {
4019 MapClient *client = (MapClient *)_client;
4020
4021 QLIST_REMOVE(client, link);
4022 qemu_free(client);
4023 }
4024
4025 static void cpu_notify_map_clients(void)
4026 {
4027 MapClient *client;
4028
4029 while (!QLIST_EMPTY(&map_client_list)) {
4030 client = QLIST_FIRST(&map_client_list);
4031 client->callback(client->opaque);
4032 cpu_unregister_map_client(client);
4033 }
4034 }
4035
4036 /* Map a physical memory region into a host virtual address.
4037 * May map a subset of the requested range, given by and returned in *plen.
4038 * May return NULL if resources needed to perform the mapping are exhausted.
4039 * Use only for reads OR writes - not for read-modify-write operations.
4040 * Use cpu_register_map_client() to know when retrying the map operation is
4041 * likely to succeed.
4042 */
4043 void *cpu_physical_memory_map(target_phys_addr_t addr,
4044 target_phys_addr_t *plen,
4045 int is_write)
4046 {
4047 target_phys_addr_t len = *plen;
4048 target_phys_addr_t todo = 0;
4049 int l;
4050 target_phys_addr_t page;
4051 unsigned long pd;
4052 PhysPageDesc *p;
4053 target_phys_addr_t addr1 = addr;
4054
4055 while (len > 0) {
4056 page = addr & TARGET_PAGE_MASK;
4057 l = (page + TARGET_PAGE_SIZE) - addr;
4058 if (l > len)
4059 l = len;
4060 p = phys_page_find(page >> TARGET_PAGE_BITS);
4061 if (!p) {
4062 pd = IO_MEM_UNASSIGNED;
4063 } else {
4064 pd = p->phys_offset;
4065 }
4066
4067 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4068 if (todo || bounce.buffer) {
4069 break;
4070 }
4071 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4072 bounce.addr = addr;
4073 bounce.len = l;
4074 if (!is_write) {
4075 cpu_physical_memory_read(addr, bounce.buffer, l);
4076 }
4077
4078 *plen = l;
4079 return bounce.buffer;
4080 }
4081
4082 len -= l;
4083 addr += l;
4084 todo += l;
4085 }
4086 *plen = todo;
4087 return qemu_ram_ptr_length(addr1, plen);
4088 }
4089
4090 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4091 * Will also mark the memory as dirty if is_write == 1. access_len gives
4092 * the amount of memory that was actually read or written by the caller.
4093 */
4094 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4095 int is_write, target_phys_addr_t access_len)
4096 {
4097 if (buffer != bounce.buffer) {
4098 if (is_write) {
4099 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4100 while (access_len) {
4101 unsigned l;
4102 l = TARGET_PAGE_SIZE;
4103 if (l > access_len)
4104 l = access_len;
4105 if (!cpu_physical_memory_is_dirty(addr1)) {
4106 /* invalidate code */
4107 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4108 /* set dirty bit */
4109 cpu_physical_memory_set_dirty_flags(
4110 addr1, (0xff & ~CODE_DIRTY_FLAG));
4111 }
4112 addr1 += l;
4113 access_len -= l;
4114 }
4115 }
4116 if (xen_mapcache_enabled()) {
4117 qemu_invalidate_entry(buffer);
4118 }
4119 return;
4120 }
4121 if (is_write) {
4122 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4123 }
4124 qemu_vfree(bounce.buffer);
4125 bounce.buffer = NULL;
4126 cpu_notify_map_clients();
4127 }
4128
4129 /* warning: addr must be aligned */
4130 uint32_t ldl_phys(target_phys_addr_t addr)
4131 {
4132 int io_index;
4133 uint8_t *ptr;
4134 uint32_t val;
4135 unsigned long pd;
4136 PhysPageDesc *p;
4137
4138 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4139 if (!p) {
4140 pd = IO_MEM_UNASSIGNED;
4141 } else {
4142 pd = p->phys_offset;
4143 }
4144
4145 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4146 !(pd & IO_MEM_ROMD)) {
4147 /* I/O case */
4148 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4149 if (p)
4150 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4151 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4152 } else {
4153 /* RAM case */
4154 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4155 (addr & ~TARGET_PAGE_MASK);
4156 val = ldl_p(ptr);
4157 }
4158 return val;
4159 }
4160
4161 /* warning: addr must be aligned */
4162 uint64_t ldq_phys(target_phys_addr_t addr)
4163 {
4164 int io_index;
4165 uint8_t *ptr;
4166 uint64_t val;
4167 unsigned long pd;
4168 PhysPageDesc *p;
4169
4170 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4171 if (!p) {
4172 pd = IO_MEM_UNASSIGNED;
4173 } else {
4174 pd = p->phys_offset;
4175 }
4176
4177 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4178 !(pd & IO_MEM_ROMD)) {
4179 /* I/O case */
4180 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4181 if (p)
4182 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4183 #ifdef TARGET_WORDS_BIGENDIAN
4184 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4185 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4186 #else
4187 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4188 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4189 #endif
4190 } else {
4191 /* RAM case */
4192 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4193 (addr & ~TARGET_PAGE_MASK);
4194 val = ldq_p(ptr);
4195 }
4196 return val;
4197 }
4198
4199 /* XXX: optimize */
4200 uint32_t ldub_phys(target_phys_addr_t addr)
4201 {
4202 uint8_t val;
4203 cpu_physical_memory_read(addr, &val, 1);
4204 return val;
4205 }
4206
4207 /* warning: addr must be aligned */
4208 uint32_t lduw_phys(target_phys_addr_t addr)
4209 {
4210 int io_index;
4211 uint8_t *ptr;
4212 uint64_t val;
4213 unsigned long pd;
4214 PhysPageDesc *p;
4215
4216 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4217 if (!p) {
4218 pd = IO_MEM_UNASSIGNED;
4219 } else {
4220 pd = p->phys_offset;
4221 }
4222
4223 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4224 !(pd & IO_MEM_ROMD)) {
4225 /* I/O case */
4226 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4227 if (p)
4228 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4229 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4230 } else {
4231 /* RAM case */
4232 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4233 (addr & ~TARGET_PAGE_MASK);
4234 val = lduw_p(ptr);
4235 }
4236 return val;
4237 }
4238
4239 /* warning: addr must be aligned. The ram page is not masked as dirty
4240 and the code inside is not invalidated. It is useful if the dirty
4241 bits are used to track modified PTEs */
4242 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4243 {
4244 int io_index;
4245 uint8_t *ptr;
4246 unsigned long pd;
4247 PhysPageDesc *p;
4248
4249 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4250 if (!p) {
4251 pd = IO_MEM_UNASSIGNED;
4252 } else {
4253 pd = p->phys_offset;
4254 }
4255
4256 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4257 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4258 if (p)
4259 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4260 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4261 } else {
4262 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4263 ptr = qemu_get_ram_ptr(addr1);
4264 stl_p(ptr, val);
4265
4266 if (unlikely(in_migration)) {
4267 if (!cpu_physical_memory_is_dirty(addr1)) {
4268 /* invalidate code */
4269 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4270 /* set dirty bit */
4271 cpu_physical_memory_set_dirty_flags(
4272 addr1, (0xff & ~CODE_DIRTY_FLAG));
4273 }
4274 }
4275 }
4276 }
4277
4278 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4279 {
4280 int io_index;
4281 uint8_t *ptr;
4282 unsigned long pd;
4283 PhysPageDesc *p;
4284
4285 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4286 if (!p) {
4287 pd = IO_MEM_UNASSIGNED;
4288 } else {
4289 pd = p->phys_offset;
4290 }
4291
4292 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4293 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4294 if (p)
4295 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4296 #ifdef TARGET_WORDS_BIGENDIAN
4297 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4298 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4299 #else
4300 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4301 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4302 #endif
4303 } else {
4304 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4305 (addr & ~TARGET_PAGE_MASK);
4306 stq_p(ptr, val);
4307 }
4308 }
4309
4310 /* warning: addr must be aligned */
4311 void stl_phys(target_phys_addr_t addr, uint32_t val)
4312 {
4313 int io_index;
4314 uint8_t *ptr;
4315 unsigned long pd;
4316 PhysPageDesc *p;
4317
4318 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4319 if (!p) {
4320 pd = IO_MEM_UNASSIGNED;
4321 } else {
4322 pd = p->phys_offset;
4323 }
4324
4325 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4326 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4327 if (p)
4328 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4329 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4330 } else {
4331 unsigned long addr1;
4332 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4333 /* RAM case */
4334 ptr = qemu_get_ram_ptr(addr1);
4335 stl_p(ptr, val);
4336 if (!cpu_physical_memory_is_dirty(addr1)) {
4337 /* invalidate code */
4338 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4339 /* set dirty bit */
4340 cpu_physical_memory_set_dirty_flags(addr1,
4341 (0xff & ~CODE_DIRTY_FLAG));
4342 }
4343 }
4344 }
4345
4346 /* XXX: optimize */
4347 void stb_phys(target_phys_addr_t addr, uint32_t val)
4348 {
4349 uint8_t v = val;
4350 cpu_physical_memory_write(addr, &v, 1);
4351 }
4352
4353 /* warning: addr must be aligned */
4354 void stw_phys(target_phys_addr_t addr, uint32_t val)
4355 {
4356 int io_index;
4357 uint8_t *ptr;
4358 unsigned long pd;
4359 PhysPageDesc *p;
4360
4361 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4362 if (!p) {
4363 pd = IO_MEM_UNASSIGNED;
4364 } else {
4365 pd = p->phys_offset;
4366 }
4367
4368 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4369 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4370 if (p)
4371 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4372 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4373 } else {
4374 unsigned long addr1;
4375 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4376 /* RAM case */
4377 ptr = qemu_get_ram_ptr(addr1);
4378 stw_p(ptr, val);
4379 if (!cpu_physical_memory_is_dirty(addr1)) {
4380 /* invalidate code */
4381 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4382 /* set dirty bit */
4383 cpu_physical_memory_set_dirty_flags(addr1,
4384 (0xff & ~CODE_DIRTY_FLAG));
4385 }
4386 }
4387 }
4388
4389 /* XXX: optimize */
4390 void stq_phys(target_phys_addr_t addr, uint64_t val)
4391 {
4392 val = tswap64(val);
4393 cpu_physical_memory_write(addr, &val, 8);
4394 }
4395
4396 /* virtual memory access for debug (includes writing to ROM) */
4397 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4398 uint8_t *buf, int len, int is_write)
4399 {
4400 int l;
4401 target_phys_addr_t phys_addr;
4402 target_ulong page;
4403
4404 while (len > 0) {
4405 page = addr & TARGET_PAGE_MASK;
4406 phys_addr = cpu_get_phys_page_debug(env, page);
4407 /* if no physical page mapped, return an error */
4408 if (phys_addr == -1)
4409 return -1;
4410 l = (page + TARGET_PAGE_SIZE) - addr;
4411 if (l > len)
4412 l = len;
4413 phys_addr += (addr & ~TARGET_PAGE_MASK);
4414 if (is_write)
4415 cpu_physical_memory_write_rom(phys_addr, buf, l);
4416 else
4417 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4418 len -= l;
4419 buf += l;
4420 addr += l;
4421 }
4422 return 0;
4423 }
4424 #endif
4425
4426 /* in deterministic execution mode, instructions doing device I/Os
4427 must be at the end of the TB */
4428 void cpu_io_recompile(CPUState *env, void *retaddr)
4429 {
4430 TranslationBlock *tb;
4431 uint32_t n, cflags;
4432 target_ulong pc, cs_base;
4433 uint64_t flags;
4434
4435 tb = tb_find_pc((unsigned long)retaddr);
4436 if (!tb) {
4437 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4438 retaddr);
4439 }
4440 n = env->icount_decr.u16.low + tb->icount;
4441 cpu_restore_state(tb, env, (unsigned long)retaddr);
4442 /* Calculate how many instructions had been executed before the fault
4443 occurred. */
4444 n = n - env->icount_decr.u16.low;
4445 /* Generate a new TB ending on the I/O insn. */
4446 n++;
4447 /* On MIPS and SH, delay slot instructions can only be restarted if
4448 they were already the first instruction in the TB. If this is not
4449 the first instruction in a TB then re-execute the preceding
4450 branch. */
4451 #if defined(TARGET_MIPS)
4452 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4453 env->active_tc.PC -= 4;
4454 env->icount_decr.u16.low++;
4455 env->hflags &= ~MIPS_HFLAG_BMASK;
4456 }
4457 #elif defined(TARGET_SH4)
4458 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4459 && n > 1) {
4460 env->pc -= 2;
4461 env->icount_decr.u16.low++;
4462 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4463 }
4464 #endif
4465 /* This should never happen. */
4466 if (n > CF_COUNT_MASK)
4467 cpu_abort(env, "TB too big during recompile");
4468
4469 cflags = n | CF_LAST_IO;
4470 pc = tb->pc;
4471 cs_base = tb->cs_base;
4472 flags = tb->flags;
4473 tb_phys_invalidate(tb, -1);
4474 /* FIXME: In theory this could raise an exception. In practice
4475 we have already translated the block once so it's probably ok. */
4476 tb_gen_code(env, pc, cs_base, flags, cflags);
4477 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4478 the first in the TB) then we end up generating a whole new TB and
4479 repeating the fault, which is horribly inefficient.
4480 Better would be to execute just this insn uncached, or generate a
4481 second new TB. */
4482 cpu_resume_from_signal(env, NULL);
4483 }
4484
4485 #if !defined(CONFIG_USER_ONLY)
4486
4487 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4488 {
4489 int i, target_code_size, max_target_code_size;
4490 int direct_jmp_count, direct_jmp2_count, cross_page;
4491 TranslationBlock *tb;
4492
4493 target_code_size = 0;
4494 max_target_code_size = 0;
4495 cross_page = 0;
4496 direct_jmp_count = 0;
4497 direct_jmp2_count = 0;
4498 for(i = 0; i < nb_tbs; i++) {
4499 tb = &tbs[i];
4500 target_code_size += tb->size;
4501 if (tb->size > max_target_code_size)
4502 max_target_code_size = tb->size;
4503 if (tb->page_addr[1] != -1)
4504 cross_page++;
4505 if (tb->tb_next_offset[0] != 0xffff) {
4506 direct_jmp_count++;
4507 if (tb->tb_next_offset[1] != 0xffff) {
4508 direct_jmp2_count++;
4509 }
4510 }
4511 }
4512 /* XXX: avoid using doubles ? */
4513 cpu_fprintf(f, "Translation buffer state:\n");
4514 cpu_fprintf(f, "gen code size %td/%ld\n",
4515 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4516 cpu_fprintf(f, "TB count %d/%d\n",
4517 nb_tbs, code_gen_max_blocks);
4518 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4519 nb_tbs ? target_code_size / nb_tbs : 0,
4520 max_target_code_size);
4521 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4522 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4523 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4524 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4525 cross_page,
4526 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4527 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4528 direct_jmp_count,
4529 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4530 direct_jmp2_count,
4531 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4532 cpu_fprintf(f, "\nStatistics:\n");
4533 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4534 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4535 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4536 tcg_dump_info(f, cpu_fprintf);
4537 }
4538
4539 #define MMUSUFFIX _cmmu
4540 #define GETPC() NULL
4541 #define env cpu_single_env
4542 #define SOFTMMU_CODE_ACCESS
4543
4544 #define SHIFT 0
4545 #include "softmmu_template.h"
4546
4547 #define SHIFT 1
4548 #include "softmmu_template.h"
4549
4550 #define SHIFT 2
4551 #include "softmmu_template.h"
4552
4553 #define SHIFT 3
4554 #include "softmmu_template.h"
4555
4556 #undef env
4557
4558 #endif