]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge remote-tracking branch 'bonzini/scsi-next' into staging
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
117
118 static MemoryRegion *system_memory;
119 static MemoryRegion *system_io;
120
121 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
122 static MemoryRegion io_mem_subpage_ram;
123
124 #endif
125
126 CPUArchState *first_cpu;
127 /* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
129 DEFINE_TLS(CPUArchState *,cpu_single_env);
130 /* 0 = Do not count executed instructions.
131 1 = Precise instruction counting.
132 2 = Adaptive rate instruction counting. */
133 int use_icount = 0;
134
135 typedef struct PageDesc {
136 /* list of TBs intersecting this ram page */
137 TranslationBlock *first_tb;
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142 #if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144 #endif
145 } PageDesc;
146
147 /* In system mode we want L1_MAP to be based on ram offsets,
148 while in user mode we want it to be based on virtual addresses. */
149 #if !defined(CONFIG_USER_ONLY)
150 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 #else
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
154 #endif
155 #else
156 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
157 #endif
158
159 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_BITS 10
161 #define L2_SIZE (1 << L2_BITS)
162
163 #define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165
166 /* The bits remaining after N lower levels of page tables. */
167 #define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
175
176 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
180 unsigned long qemu_real_host_page_size;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageEntry PhysPageEntry;
190
191 static MemoryRegionSection *phys_sections;
192 static unsigned phys_sections_nb, phys_sections_nb_alloc;
193 static uint16_t phys_section_unassigned;
194 static uint16_t phys_section_notdirty;
195 static uint16_t phys_section_rom;
196 static uint16_t phys_section_watch;
197
198 struct PhysPageEntry {
199 uint16_t is_leaf : 1;
200 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
201 uint16_t ptr : 15;
202 };
203
204 /* Simple allocator for PhysPageEntry nodes */
205 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
206 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
207
208 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
209
210 /* This is a multi-level map on the physical address space.
211 The bottom level has pointers to MemoryRegionSections. */
212 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
213
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216
217 static MemoryRegion io_mem_watch;
218 #endif
219
220 /* log support */
221 #ifdef WIN32
222 static const char *logfilename = "qemu.log";
223 #else
224 static const char *logfilename = "/tmp/qemu.log";
225 #endif
226 FILE *logfile;
227 int loglevel;
228 static int log_append = 0;
229
230 /* statistics */
231 #if !defined(CONFIG_USER_ONLY)
232 static int tlb_flush_count;
233 #endif
234 static int tb_flush_count;
235 static int tb_phys_invalidate_count;
236
237 #ifdef _WIN32
238 static void map_exec(void *addr, long size)
239 {
240 DWORD old_protect;
241 VirtualProtect(addr, size,
242 PAGE_EXECUTE_READWRITE, &old_protect);
243
244 }
245 #else
246 static void map_exec(void *addr, long size)
247 {
248 unsigned long start, end, page_size;
249
250 page_size = getpagesize();
251 start = (unsigned long)addr;
252 start &= ~(page_size - 1);
253
254 end = (unsigned long)addr + size;
255 end += page_size - 1;
256 end &= ~(page_size - 1);
257
258 mprotect((void *)start, end - start,
259 PROT_READ | PROT_WRITE | PROT_EXEC);
260 }
261 #endif
262
263 static void page_init(void)
264 {
265 /* NOTE: we can always suppose that qemu_host_page_size >=
266 TARGET_PAGE_SIZE */
267 #ifdef _WIN32
268 {
269 SYSTEM_INFO system_info;
270
271 GetSystemInfo(&system_info);
272 qemu_real_host_page_size = system_info.dwPageSize;
273 }
274 #else
275 qemu_real_host_page_size = getpagesize();
276 #endif
277 if (qemu_host_page_size == 0)
278 qemu_host_page_size = qemu_real_host_page_size;
279 if (qemu_host_page_size < TARGET_PAGE_SIZE)
280 qemu_host_page_size = TARGET_PAGE_SIZE;
281 qemu_host_page_mask = ~(qemu_host_page_size - 1);
282
283 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
284 {
285 #ifdef HAVE_KINFO_GETVMMAP
286 struct kinfo_vmentry *freep;
287 int i, cnt;
288
289 freep = kinfo_getvmmap(getpid(), &cnt);
290 if (freep) {
291 mmap_lock();
292 for (i = 0; i < cnt; i++) {
293 unsigned long startaddr, endaddr;
294
295 startaddr = freep[i].kve_start;
296 endaddr = freep[i].kve_end;
297 if (h2g_valid(startaddr)) {
298 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
299
300 if (h2g_valid(endaddr)) {
301 endaddr = h2g(endaddr);
302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
303 } else {
304 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
305 endaddr = ~0ul;
306 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
307 #endif
308 }
309 }
310 }
311 free(freep);
312 mmap_unlock();
313 }
314 #else
315 FILE *f;
316
317 last_brk = (unsigned long)sbrk(0);
318
319 f = fopen("/compat/linux/proc/self/maps", "r");
320 if (f) {
321 mmap_lock();
322
323 do {
324 unsigned long startaddr, endaddr;
325 int n;
326
327 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
328
329 if (n == 2 && h2g_valid(startaddr)) {
330 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
331
332 if (h2g_valid(endaddr)) {
333 endaddr = h2g(endaddr);
334 } else {
335 endaddr = ~0ul;
336 }
337 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
338 }
339 } while (!feof(f));
340
341 fclose(f);
342 mmap_unlock();
343 }
344 #endif
345 }
346 #endif
347 }
348
349 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
350 {
351 PageDesc *pd;
352 void **lp;
353 int i;
354
355 #if defined(CONFIG_USER_ONLY)
356 /* We can't use g_malloc because it may recurse into a locked mutex. */
357 # define ALLOC(P, SIZE) \
358 do { \
359 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
360 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
361 } while (0)
362 #else
363 # define ALLOC(P, SIZE) \
364 do { P = g_malloc0(SIZE); } while (0)
365 #endif
366
367 /* Level 1. Always allocated. */
368 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
369
370 /* Level 2..N-1. */
371 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
372 void **p = *lp;
373
374 if (p == NULL) {
375 if (!alloc) {
376 return NULL;
377 }
378 ALLOC(p, sizeof(void *) * L2_SIZE);
379 *lp = p;
380 }
381
382 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
383 }
384
385 pd = *lp;
386 if (pd == NULL) {
387 if (!alloc) {
388 return NULL;
389 }
390 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
391 *lp = pd;
392 }
393
394 #undef ALLOC
395
396 return pd + (index & (L2_SIZE - 1));
397 }
398
399 static inline PageDesc *page_find(tb_page_addr_t index)
400 {
401 return page_find_alloc(index, 0);
402 }
403
404 #if !defined(CONFIG_USER_ONLY)
405
406 static void phys_map_node_reserve(unsigned nodes)
407 {
408 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
409 typedef PhysPageEntry Node[L2_SIZE];
410 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
411 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
412 phys_map_nodes_nb + nodes);
413 phys_map_nodes = g_renew(Node, phys_map_nodes,
414 phys_map_nodes_nb_alloc);
415 }
416 }
417
418 static uint16_t phys_map_node_alloc(void)
419 {
420 unsigned i;
421 uint16_t ret;
422
423 ret = phys_map_nodes_nb++;
424 assert(ret != PHYS_MAP_NODE_NIL);
425 assert(ret != phys_map_nodes_nb_alloc);
426 for (i = 0; i < L2_SIZE; ++i) {
427 phys_map_nodes[ret][i].is_leaf = 0;
428 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
429 }
430 return ret;
431 }
432
433 static void phys_map_nodes_reset(void)
434 {
435 phys_map_nodes_nb = 0;
436 }
437
438
439 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
440 target_phys_addr_t *nb, uint16_t leaf,
441 int level)
442 {
443 PhysPageEntry *p;
444 int i;
445 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
446
447 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
448 lp->ptr = phys_map_node_alloc();
449 p = phys_map_nodes[lp->ptr];
450 if (level == 0) {
451 for (i = 0; i < L2_SIZE; i++) {
452 p[i].is_leaf = 1;
453 p[i].ptr = phys_section_unassigned;
454 }
455 }
456 } else {
457 p = phys_map_nodes[lp->ptr];
458 }
459 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
460
461 while (*nb && lp < &p[L2_SIZE]) {
462 if ((*index & (step - 1)) == 0 && *nb >= step) {
463 lp->is_leaf = true;
464 lp->ptr = leaf;
465 *index += step;
466 *nb -= step;
467 } else {
468 phys_page_set_level(lp, index, nb, leaf, level - 1);
469 }
470 ++lp;
471 }
472 }
473
474 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
475 uint16_t leaf)
476 {
477 /* Wildly overreserve - it doesn't matter much. */
478 phys_map_node_reserve(3 * P_L2_LEVELS);
479
480 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
481 }
482
483 static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
484 {
485 PhysPageEntry lp = phys_map;
486 PhysPageEntry *p;
487 int i;
488 uint16_t s_index = phys_section_unassigned;
489
490 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
491 if (lp.ptr == PHYS_MAP_NODE_NIL) {
492 goto not_found;
493 }
494 p = phys_map_nodes[lp.ptr];
495 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
496 }
497
498 s_index = lp.ptr;
499 not_found:
500 return &phys_sections[s_index];
501 }
502
503 static target_phys_addr_t section_addr(MemoryRegionSection *section,
504 target_phys_addr_t addr)
505 {
506 addr -= section->offset_within_address_space;
507 addr += section->offset_within_region;
508 return addr;
509 }
510
511 static void tlb_protect_code(ram_addr_t ram_addr);
512 static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
513 target_ulong vaddr);
514 #define mmap_lock() do { } while(0)
515 #define mmap_unlock() do { } while(0)
516 #endif
517
518 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
519
520 #if defined(CONFIG_USER_ONLY)
521 /* Currently it is not recommended to allocate big chunks of data in
522 user mode. It will change when a dedicated libc will be used */
523 #define USE_STATIC_CODE_GEN_BUFFER
524 #endif
525
526 #ifdef USE_STATIC_CODE_GEN_BUFFER
527 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
528 __attribute__((aligned (CODE_GEN_ALIGN)));
529 #endif
530
531 static void code_gen_alloc(unsigned long tb_size)
532 {
533 #ifdef USE_STATIC_CODE_GEN_BUFFER
534 code_gen_buffer = static_code_gen_buffer;
535 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
536 map_exec(code_gen_buffer, code_gen_buffer_size);
537 #else
538 code_gen_buffer_size = tb_size;
539 if (code_gen_buffer_size == 0) {
540 #if defined(CONFIG_USER_ONLY)
541 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
542 #else
543 /* XXX: needs adjustments */
544 code_gen_buffer_size = (unsigned long)(ram_size / 4);
545 #endif
546 }
547 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
548 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
549 /* The code gen buffer location may have constraints depending on
550 the host cpu and OS */
551 #if defined(__linux__)
552 {
553 int flags;
554 void *start = NULL;
555
556 flags = MAP_PRIVATE | MAP_ANONYMOUS;
557 #if defined(__x86_64__)
558 flags |= MAP_32BIT;
559 /* Cannot map more than that */
560 if (code_gen_buffer_size > (800 * 1024 * 1024))
561 code_gen_buffer_size = (800 * 1024 * 1024);
562 #elif defined(__sparc_v9__)
563 // Map the buffer below 2G, so we can use direct calls and branches
564 flags |= MAP_FIXED;
565 start = (void *) 0x60000000UL;
566 if (code_gen_buffer_size > (512 * 1024 * 1024))
567 code_gen_buffer_size = (512 * 1024 * 1024);
568 #elif defined(__arm__)
569 /* Keep the buffer no bigger than 16MB to branch between blocks */
570 if (code_gen_buffer_size > 16 * 1024 * 1024)
571 code_gen_buffer_size = 16 * 1024 * 1024;
572 #elif defined(__s390x__)
573 /* Map the buffer so that we can use direct calls and branches. */
574 /* We have a +- 4GB range on the branches; leave some slop. */
575 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
576 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
577 }
578 start = (void *)0x90000000UL;
579 #endif
580 code_gen_buffer = mmap(start, code_gen_buffer_size,
581 PROT_WRITE | PROT_READ | PROT_EXEC,
582 flags, -1, 0);
583 if (code_gen_buffer == MAP_FAILED) {
584 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
585 exit(1);
586 }
587 }
588 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
589 || defined(__DragonFly__) || defined(__OpenBSD__) \
590 || defined(__NetBSD__)
591 {
592 int flags;
593 void *addr = NULL;
594 flags = MAP_PRIVATE | MAP_ANONYMOUS;
595 #if defined(__x86_64__)
596 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
597 * 0x40000000 is free */
598 flags |= MAP_FIXED;
599 addr = (void *)0x40000000;
600 /* Cannot map more than that */
601 if (code_gen_buffer_size > (800 * 1024 * 1024))
602 code_gen_buffer_size = (800 * 1024 * 1024);
603 #elif defined(__sparc_v9__)
604 // Map the buffer below 2G, so we can use direct calls and branches
605 flags |= MAP_FIXED;
606 addr = (void *) 0x60000000UL;
607 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
608 code_gen_buffer_size = (512 * 1024 * 1024);
609 }
610 #endif
611 code_gen_buffer = mmap(addr, code_gen_buffer_size,
612 PROT_WRITE | PROT_READ | PROT_EXEC,
613 flags, -1, 0);
614 if (code_gen_buffer == MAP_FAILED) {
615 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
616 exit(1);
617 }
618 }
619 #else
620 code_gen_buffer = g_malloc(code_gen_buffer_size);
621 map_exec(code_gen_buffer, code_gen_buffer_size);
622 #endif
623 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
624 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
625 code_gen_buffer_max_size = code_gen_buffer_size -
626 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
627 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
628 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
629 }
630
631 /* Must be called before using the QEMU cpus. 'tb_size' is the size
632 (in bytes) allocated to the translation buffer. Zero means default
633 size. */
634 void tcg_exec_init(unsigned long tb_size)
635 {
636 cpu_gen_init();
637 code_gen_alloc(tb_size);
638 code_gen_ptr = code_gen_buffer;
639 page_init();
640 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
641 /* There's no guest base to take into account, so go ahead and
642 initialize the prologue now. */
643 tcg_prologue_init(&tcg_ctx);
644 #endif
645 }
646
647 bool tcg_enabled(void)
648 {
649 return code_gen_buffer != NULL;
650 }
651
652 void cpu_exec_init_all(void)
653 {
654 #if !defined(CONFIG_USER_ONLY)
655 memory_map_init();
656 io_mem_init();
657 #endif
658 }
659
660 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
661
662 static int cpu_common_post_load(void *opaque, int version_id)
663 {
664 CPUArchState *env = opaque;
665
666 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
667 version_id is increased. */
668 env->interrupt_request &= ~0x01;
669 tlb_flush(env, 1);
670
671 return 0;
672 }
673
674 static const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .minimum_version_id_old = 1,
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField []) {
681 VMSTATE_UINT32(halted, CPUArchState),
682 VMSTATE_UINT32(interrupt_request, CPUArchState),
683 VMSTATE_END_OF_LIST()
684 }
685 };
686 #endif
687
688 CPUArchState *qemu_get_cpu(int cpu)
689 {
690 CPUArchState *env = first_cpu;
691
692 while (env) {
693 if (env->cpu_index == cpu)
694 break;
695 env = env->next_cpu;
696 }
697
698 return env;
699 }
700
701 void cpu_exec_init(CPUArchState *env)
702 {
703 CPUArchState **penv;
704 int cpu_index;
705
706 #if defined(CONFIG_USER_ONLY)
707 cpu_list_lock();
708 #endif
709 env->next_cpu = NULL;
710 penv = &first_cpu;
711 cpu_index = 0;
712 while (*penv != NULL) {
713 penv = &(*penv)->next_cpu;
714 cpu_index++;
715 }
716 env->cpu_index = cpu_index;
717 env->numa_node = 0;
718 QTAILQ_INIT(&env->breakpoints);
719 QTAILQ_INIT(&env->watchpoints);
720 #ifndef CONFIG_USER_ONLY
721 env->thread_id = qemu_get_thread_id();
722 #endif
723 *penv = env;
724 #if defined(CONFIG_USER_ONLY)
725 cpu_list_unlock();
726 #endif
727 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
728 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
729 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
730 cpu_save, cpu_load, env);
731 #endif
732 }
733
734 /* Allocate a new translation block. Flush the translation buffer if
735 too many translation blocks or too much generated code. */
736 static TranslationBlock *tb_alloc(target_ulong pc)
737 {
738 TranslationBlock *tb;
739
740 if (nb_tbs >= code_gen_max_blocks ||
741 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
742 return NULL;
743 tb = &tbs[nb_tbs++];
744 tb->pc = pc;
745 tb->cflags = 0;
746 return tb;
747 }
748
749 void tb_free(TranslationBlock *tb)
750 {
751 /* In practice this is mostly used for single use temporary TB
752 Ignore the hard cases and just back up if this TB happens to
753 be the last one generated. */
754 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
755 code_gen_ptr = tb->tc_ptr;
756 nb_tbs--;
757 }
758 }
759
760 static inline void invalidate_page_bitmap(PageDesc *p)
761 {
762 if (p->code_bitmap) {
763 g_free(p->code_bitmap);
764 p->code_bitmap = NULL;
765 }
766 p->code_write_count = 0;
767 }
768
769 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
770
771 static void page_flush_tb_1 (int level, void **lp)
772 {
773 int i;
774
775 if (*lp == NULL) {
776 return;
777 }
778 if (level == 0) {
779 PageDesc *pd = *lp;
780 for (i = 0; i < L2_SIZE; ++i) {
781 pd[i].first_tb = NULL;
782 invalidate_page_bitmap(pd + i);
783 }
784 } else {
785 void **pp = *lp;
786 for (i = 0; i < L2_SIZE; ++i) {
787 page_flush_tb_1 (level - 1, pp + i);
788 }
789 }
790 }
791
792 static void page_flush_tb(void)
793 {
794 int i;
795 for (i = 0; i < V_L1_SIZE; i++) {
796 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
797 }
798 }
799
800 /* flush all the translation blocks */
801 /* XXX: tb_flush is currently not thread safe */
802 void tb_flush(CPUArchState *env1)
803 {
804 CPUArchState *env;
805 #if defined(DEBUG_FLUSH)
806 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
807 (unsigned long)(code_gen_ptr - code_gen_buffer),
808 nb_tbs, nb_tbs > 0 ?
809 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
810 #endif
811 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
812 cpu_abort(env1, "Internal error: code buffer overflow\n");
813
814 nb_tbs = 0;
815
816 for(env = first_cpu; env != NULL; env = env->next_cpu) {
817 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
818 }
819
820 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
821 page_flush_tb();
822
823 code_gen_ptr = code_gen_buffer;
824 /* XXX: flush processor icache at this point if cache flush is
825 expensive */
826 tb_flush_count++;
827 }
828
829 #ifdef DEBUG_TB_CHECK
830
831 static void tb_invalidate_check(target_ulong address)
832 {
833 TranslationBlock *tb;
834 int i;
835 address &= TARGET_PAGE_MASK;
836 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
837 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
838 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
839 address >= tb->pc + tb->size)) {
840 printf("ERROR invalidate: address=" TARGET_FMT_lx
841 " PC=%08lx size=%04x\n",
842 address, (long)tb->pc, tb->size);
843 }
844 }
845 }
846 }
847
848 /* verify that all the pages have correct rights for code */
849 static void tb_page_check(void)
850 {
851 TranslationBlock *tb;
852 int i, flags1, flags2;
853
854 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
855 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
856 flags1 = page_get_flags(tb->pc);
857 flags2 = page_get_flags(tb->pc + tb->size - 1);
858 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
859 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
860 (long)tb->pc, tb->size, flags1, flags2);
861 }
862 }
863 }
864 }
865
866 #endif
867
868 /* invalidate one TB */
869 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
870 int next_offset)
871 {
872 TranslationBlock *tb1;
873 for(;;) {
874 tb1 = *ptb;
875 if (tb1 == tb) {
876 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
877 break;
878 }
879 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
880 }
881 }
882
883 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
884 {
885 TranslationBlock *tb1;
886 unsigned int n1;
887
888 for(;;) {
889 tb1 = *ptb;
890 n1 = (long)tb1 & 3;
891 tb1 = (TranslationBlock *)((long)tb1 & ~3);
892 if (tb1 == tb) {
893 *ptb = tb1->page_next[n1];
894 break;
895 }
896 ptb = &tb1->page_next[n1];
897 }
898 }
899
900 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
901 {
902 TranslationBlock *tb1, **ptb;
903 unsigned int n1;
904
905 ptb = &tb->jmp_next[n];
906 tb1 = *ptb;
907 if (tb1) {
908 /* find tb(n) in circular list */
909 for(;;) {
910 tb1 = *ptb;
911 n1 = (long)tb1 & 3;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 if (n1 == n && tb1 == tb)
914 break;
915 if (n1 == 2) {
916 ptb = &tb1->jmp_first;
917 } else {
918 ptb = &tb1->jmp_next[n1];
919 }
920 }
921 /* now we can suppress tb(n) from the list */
922 *ptb = tb->jmp_next[n];
923
924 tb->jmp_next[n] = NULL;
925 }
926 }
927
928 /* reset the jump entry 'n' of a TB so that it is not chained to
929 another TB */
930 static inline void tb_reset_jump(TranslationBlock *tb, int n)
931 {
932 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
933 }
934
935 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
936 {
937 CPUArchState *env;
938 PageDesc *p;
939 unsigned int h, n1;
940 tb_page_addr_t phys_pc;
941 TranslationBlock *tb1, *tb2;
942
943 /* remove the TB from the hash list */
944 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 h = tb_phys_hash_func(phys_pc);
946 tb_remove(&tb_phys_hash[h], tb,
947 offsetof(TranslationBlock, phys_hash_next));
948
949 /* remove the TB from the page list */
950 if (tb->page_addr[0] != page_addr) {
951 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
952 tb_page_remove(&p->first_tb, tb);
953 invalidate_page_bitmap(p);
954 }
955 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
956 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
957 tb_page_remove(&p->first_tb, tb);
958 invalidate_page_bitmap(p);
959 }
960
961 tb_invalidated_flag = 1;
962
963 /* remove the TB from the hash list */
964 h = tb_jmp_cache_hash_func(tb->pc);
965 for(env = first_cpu; env != NULL; env = env->next_cpu) {
966 if (env->tb_jmp_cache[h] == tb)
967 env->tb_jmp_cache[h] = NULL;
968 }
969
970 /* suppress this TB from the two jump lists */
971 tb_jmp_remove(tb, 0);
972 tb_jmp_remove(tb, 1);
973
974 /* suppress any remaining jumps to this TB */
975 tb1 = tb->jmp_first;
976 for(;;) {
977 n1 = (long)tb1 & 3;
978 if (n1 == 2)
979 break;
980 tb1 = (TranslationBlock *)((long)tb1 & ~3);
981 tb2 = tb1->jmp_next[n1];
982 tb_reset_jump(tb1, n1);
983 tb1->jmp_next[n1] = NULL;
984 tb1 = tb2;
985 }
986 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
987
988 tb_phys_invalidate_count++;
989 }
990
991 static inline void set_bits(uint8_t *tab, int start, int len)
992 {
993 int end, mask, end1;
994
995 end = start + len;
996 tab += start >> 3;
997 mask = 0xff << (start & 7);
998 if ((start & ~7) == (end & ~7)) {
999 if (start < end) {
1000 mask &= ~(0xff << (end & 7));
1001 *tab |= mask;
1002 }
1003 } else {
1004 *tab++ |= mask;
1005 start = (start + 8) & ~7;
1006 end1 = end & ~7;
1007 while (start < end1) {
1008 *tab++ = 0xff;
1009 start += 8;
1010 }
1011 if (start < end) {
1012 mask = ~(0xff << (end & 7));
1013 *tab |= mask;
1014 }
1015 }
1016 }
1017
1018 static void build_page_bitmap(PageDesc *p)
1019 {
1020 int n, tb_start, tb_end;
1021 TranslationBlock *tb;
1022
1023 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1024
1025 tb = p->first_tb;
1026 while (tb != NULL) {
1027 n = (long)tb & 3;
1028 tb = (TranslationBlock *)((long)tb & ~3);
1029 /* NOTE: this is subtle as a TB may span two physical pages */
1030 if (n == 0) {
1031 /* NOTE: tb_end may be after the end of the page, but
1032 it is not a problem */
1033 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1034 tb_end = tb_start + tb->size;
1035 if (tb_end > TARGET_PAGE_SIZE)
1036 tb_end = TARGET_PAGE_SIZE;
1037 } else {
1038 tb_start = 0;
1039 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1040 }
1041 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1042 tb = tb->page_next[n];
1043 }
1044 }
1045
1046 TranslationBlock *tb_gen_code(CPUArchState *env,
1047 target_ulong pc, target_ulong cs_base,
1048 int flags, int cflags)
1049 {
1050 TranslationBlock *tb;
1051 uint8_t *tc_ptr;
1052 tb_page_addr_t phys_pc, phys_page2;
1053 target_ulong virt_page2;
1054 int code_gen_size;
1055
1056 phys_pc = get_page_addr_code(env, pc);
1057 tb = tb_alloc(pc);
1058 if (!tb) {
1059 /* flush must be done */
1060 tb_flush(env);
1061 /* cannot fail at this point */
1062 tb = tb_alloc(pc);
1063 /* Don't forget to invalidate previous TB info. */
1064 tb_invalidated_flag = 1;
1065 }
1066 tc_ptr = code_gen_ptr;
1067 tb->tc_ptr = tc_ptr;
1068 tb->cs_base = cs_base;
1069 tb->flags = flags;
1070 tb->cflags = cflags;
1071 cpu_gen_code(env, tb, &code_gen_size);
1072 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1073
1074 /* check next page if needed */
1075 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1076 phys_page2 = -1;
1077 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1078 phys_page2 = get_page_addr_code(env, virt_page2);
1079 }
1080 tb_link_page(tb, phys_pc, phys_page2);
1081 return tb;
1082 }
1083
1084 /* invalidate all TBs which intersect with the target physical page
1085 starting in range [start;end[. NOTE: start and end must refer to
1086 the same physical page. 'is_cpu_write_access' should be true if called
1087 from a real cpu write access: the virtual CPU will exit the current
1088 TB if code is modified inside this TB. */
1089 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1090 int is_cpu_write_access)
1091 {
1092 TranslationBlock *tb, *tb_next, *saved_tb;
1093 CPUArchState *env = cpu_single_env;
1094 tb_page_addr_t tb_start, tb_end;
1095 PageDesc *p;
1096 int n;
1097 #ifdef TARGET_HAS_PRECISE_SMC
1098 int current_tb_not_found = is_cpu_write_access;
1099 TranslationBlock *current_tb = NULL;
1100 int current_tb_modified = 0;
1101 target_ulong current_pc = 0;
1102 target_ulong current_cs_base = 0;
1103 int current_flags = 0;
1104 #endif /* TARGET_HAS_PRECISE_SMC */
1105
1106 p = page_find(start >> TARGET_PAGE_BITS);
1107 if (!p)
1108 return;
1109 if (!p->code_bitmap &&
1110 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1111 is_cpu_write_access) {
1112 /* build code bitmap */
1113 build_page_bitmap(p);
1114 }
1115
1116 /* we remove all the TBs in the range [start, end[ */
1117 /* XXX: see if in some cases it could be faster to invalidate all the code */
1118 tb = p->first_tb;
1119 while (tb != NULL) {
1120 n = (long)tb & 3;
1121 tb = (TranslationBlock *)((long)tb & ~3);
1122 tb_next = tb->page_next[n];
1123 /* NOTE: this is subtle as a TB may span two physical pages */
1124 if (n == 0) {
1125 /* NOTE: tb_end may be after the end of the page, but
1126 it is not a problem */
1127 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1128 tb_end = tb_start + tb->size;
1129 } else {
1130 tb_start = tb->page_addr[1];
1131 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1132 }
1133 if (!(tb_end <= start || tb_start >= end)) {
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (current_tb_not_found) {
1136 current_tb_not_found = 0;
1137 current_tb = NULL;
1138 if (env->mem_io_pc) {
1139 /* now we have a real cpu fault */
1140 current_tb = tb_find_pc(env->mem_io_pc);
1141 }
1142 }
1143 if (current_tb == tb &&
1144 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
1150
1151 current_tb_modified = 1;
1152 cpu_restore_state(current_tb, env, env->mem_io_pc);
1153 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1154 &current_flags);
1155 }
1156 #endif /* TARGET_HAS_PRECISE_SMC */
1157 /* we need to do that to handle the case where a signal
1158 occurs while doing tb_phys_invalidate() */
1159 saved_tb = NULL;
1160 if (env) {
1161 saved_tb = env->current_tb;
1162 env->current_tb = NULL;
1163 }
1164 tb_phys_invalidate(tb, -1);
1165 if (env) {
1166 env->current_tb = saved_tb;
1167 if (env->interrupt_request && env->current_tb)
1168 cpu_interrupt(env, env->interrupt_request);
1169 }
1170 }
1171 tb = tb_next;
1172 }
1173 #if !defined(CONFIG_USER_ONLY)
1174 /* if no code remaining, no need to continue to use slow writes */
1175 if (!p->first_tb) {
1176 invalidate_page_bitmap(p);
1177 if (is_cpu_write_access) {
1178 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1179 }
1180 }
1181 #endif
1182 #ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb_modified) {
1184 /* we generate a block containing just the instruction
1185 modifying the memory. It will ensure that it cannot modify
1186 itself */
1187 env->current_tb = NULL;
1188 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1189 cpu_resume_from_signal(env, NULL);
1190 }
1191 #endif
1192 }
1193
1194 /* len must be <= 8 and start must be a multiple of len */
1195 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1196 {
1197 PageDesc *p;
1198 int offset, b;
1199 #if 0
1200 if (1) {
1201 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1202 cpu_single_env->mem_io_vaddr, len,
1203 cpu_single_env->eip,
1204 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1205 }
1206 #endif
1207 p = page_find(start >> TARGET_PAGE_BITS);
1208 if (!p)
1209 return;
1210 if (p->code_bitmap) {
1211 offset = start & ~TARGET_PAGE_MASK;
1212 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1213 if (b & ((1 << len) - 1))
1214 goto do_invalidate;
1215 } else {
1216 do_invalidate:
1217 tb_invalidate_phys_page_range(start, start + len, 1);
1218 }
1219 }
1220
1221 #if !defined(CONFIG_SOFTMMU)
1222 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1223 unsigned long pc, void *puc)
1224 {
1225 TranslationBlock *tb;
1226 PageDesc *p;
1227 int n;
1228 #ifdef TARGET_HAS_PRECISE_SMC
1229 TranslationBlock *current_tb = NULL;
1230 CPUArchState *env = cpu_single_env;
1231 int current_tb_modified = 0;
1232 target_ulong current_pc = 0;
1233 target_ulong current_cs_base = 0;
1234 int current_flags = 0;
1235 #endif
1236
1237 addr &= TARGET_PAGE_MASK;
1238 p = page_find(addr >> TARGET_PAGE_BITS);
1239 if (!p)
1240 return;
1241 tb = p->first_tb;
1242 #ifdef TARGET_HAS_PRECISE_SMC
1243 if (tb && pc != 0) {
1244 current_tb = tb_find_pc(pc);
1245 }
1246 #endif
1247 while (tb != NULL) {
1248 n = (long)tb & 3;
1249 tb = (TranslationBlock *)((long)tb & ~3);
1250 #ifdef TARGET_HAS_PRECISE_SMC
1251 if (current_tb == tb &&
1252 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1258
1259 current_tb_modified = 1;
1260 cpu_restore_state(current_tb, env, pc);
1261 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1262 &current_flags);
1263 }
1264 #endif /* TARGET_HAS_PRECISE_SMC */
1265 tb_phys_invalidate(tb, addr);
1266 tb = tb->page_next[n];
1267 }
1268 p->first_tb = NULL;
1269 #ifdef TARGET_HAS_PRECISE_SMC
1270 if (current_tb_modified) {
1271 /* we generate a block containing just the instruction
1272 modifying the memory. It will ensure that it cannot modify
1273 itself */
1274 env->current_tb = NULL;
1275 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1276 cpu_resume_from_signal(env, puc);
1277 }
1278 #endif
1279 }
1280 #endif
1281
1282 /* add the tb in the target page and protect it if necessary */
1283 static inline void tb_alloc_page(TranslationBlock *tb,
1284 unsigned int n, tb_page_addr_t page_addr)
1285 {
1286 PageDesc *p;
1287 #ifndef CONFIG_USER_ONLY
1288 bool page_already_protected;
1289 #endif
1290
1291 tb->page_addr[n] = page_addr;
1292 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1293 tb->page_next[n] = p->first_tb;
1294 #ifndef CONFIG_USER_ONLY
1295 page_already_protected = p->first_tb != NULL;
1296 #endif
1297 p->first_tb = (TranslationBlock *)((long)tb | n);
1298 invalidate_page_bitmap(p);
1299
1300 #if defined(TARGET_HAS_SMC) || 1
1301
1302 #if defined(CONFIG_USER_ONLY)
1303 if (p->flags & PAGE_WRITE) {
1304 target_ulong addr;
1305 PageDesc *p2;
1306 int prot;
1307
1308 /* force the host page as non writable (writes will have a
1309 page fault + mprotect overhead) */
1310 page_addr &= qemu_host_page_mask;
1311 prot = 0;
1312 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1313 addr += TARGET_PAGE_SIZE) {
1314
1315 p2 = page_find (addr >> TARGET_PAGE_BITS);
1316 if (!p2)
1317 continue;
1318 prot |= p2->flags;
1319 p2->flags &= ~PAGE_WRITE;
1320 }
1321 mprotect(g2h(page_addr), qemu_host_page_size,
1322 (prot & PAGE_BITS) & ~PAGE_WRITE);
1323 #ifdef DEBUG_TB_INVALIDATE
1324 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1325 page_addr);
1326 #endif
1327 }
1328 #else
1329 /* if some code is already present, then the pages are already
1330 protected. So we handle the case where only the first TB is
1331 allocated in a physical page */
1332 if (!page_already_protected) {
1333 tlb_protect_code(page_addr);
1334 }
1335 #endif
1336
1337 #endif /* TARGET_HAS_SMC */
1338 }
1339
1340 /* add a new TB and link it to the physical page tables. phys_page2 is
1341 (-1) to indicate that only one page contains the TB. */
1342 void tb_link_page(TranslationBlock *tb,
1343 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1344 {
1345 unsigned int h;
1346 TranslationBlock **ptb;
1347
1348 /* Grab the mmap lock to stop another thread invalidating this TB
1349 before we are done. */
1350 mmap_lock();
1351 /* add in the physical hash table */
1352 h = tb_phys_hash_func(phys_pc);
1353 ptb = &tb_phys_hash[h];
1354 tb->phys_hash_next = *ptb;
1355 *ptb = tb;
1356
1357 /* add in the page list */
1358 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1359 if (phys_page2 != -1)
1360 tb_alloc_page(tb, 1, phys_page2);
1361 else
1362 tb->page_addr[1] = -1;
1363
1364 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1365 tb->jmp_next[0] = NULL;
1366 tb->jmp_next[1] = NULL;
1367
1368 /* init original jump addresses */
1369 if (tb->tb_next_offset[0] != 0xffff)
1370 tb_reset_jump(tb, 0);
1371 if (tb->tb_next_offset[1] != 0xffff)
1372 tb_reset_jump(tb, 1);
1373
1374 #ifdef DEBUG_TB_CHECK
1375 tb_page_check();
1376 #endif
1377 mmap_unlock();
1378 }
1379
1380 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1381 tb[1].tc_ptr. Return NULL if not found */
1382 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1383 {
1384 int m_min, m_max, m;
1385 unsigned long v;
1386 TranslationBlock *tb;
1387
1388 if (nb_tbs <= 0)
1389 return NULL;
1390 if (tc_ptr < (unsigned long)code_gen_buffer ||
1391 tc_ptr >= (unsigned long)code_gen_ptr)
1392 return NULL;
1393 /* binary search (cf Knuth) */
1394 m_min = 0;
1395 m_max = nb_tbs - 1;
1396 while (m_min <= m_max) {
1397 m = (m_min + m_max) >> 1;
1398 tb = &tbs[m];
1399 v = (unsigned long)tb->tc_ptr;
1400 if (v == tc_ptr)
1401 return tb;
1402 else if (tc_ptr < v) {
1403 m_max = m - 1;
1404 } else {
1405 m_min = m + 1;
1406 }
1407 }
1408 return &tbs[m_max];
1409 }
1410
1411 static void tb_reset_jump_recursive(TranslationBlock *tb);
1412
1413 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1414 {
1415 TranslationBlock *tb1, *tb_next, **ptb;
1416 unsigned int n1;
1417
1418 tb1 = tb->jmp_next[n];
1419 if (tb1 != NULL) {
1420 /* find head of list */
1421 for(;;) {
1422 n1 = (long)tb1 & 3;
1423 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1424 if (n1 == 2)
1425 break;
1426 tb1 = tb1->jmp_next[n1];
1427 }
1428 /* we are now sure now that tb jumps to tb1 */
1429 tb_next = tb1;
1430
1431 /* remove tb from the jmp_first list */
1432 ptb = &tb_next->jmp_first;
1433 for(;;) {
1434 tb1 = *ptb;
1435 n1 = (long)tb1 & 3;
1436 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1437 if (n1 == n && tb1 == tb)
1438 break;
1439 ptb = &tb1->jmp_next[n1];
1440 }
1441 *ptb = tb->jmp_next[n];
1442 tb->jmp_next[n] = NULL;
1443
1444 /* suppress the jump to next tb in generated code */
1445 tb_reset_jump(tb, n);
1446
1447 /* suppress jumps in the tb on which we could have jumped */
1448 tb_reset_jump_recursive(tb_next);
1449 }
1450 }
1451
1452 static void tb_reset_jump_recursive(TranslationBlock *tb)
1453 {
1454 tb_reset_jump_recursive2(tb, 0);
1455 tb_reset_jump_recursive2(tb, 1);
1456 }
1457
1458 #if defined(TARGET_HAS_ICE)
1459 #if defined(CONFIG_USER_ONLY)
1460 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1461 {
1462 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1463 }
1464 #else
1465 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1466 {
1467 target_phys_addr_t addr;
1468 ram_addr_t ram_addr;
1469 MemoryRegionSection *section;
1470
1471 addr = cpu_get_phys_page_debug(env, pc);
1472 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1473 if (!(memory_region_is_ram(section->mr)
1474 || (section->mr->rom_device && section->mr->readable))) {
1475 return;
1476 }
1477 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1478 + section_addr(section, addr);
1479 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1480 }
1481 #endif
1482 #endif /* TARGET_HAS_ICE */
1483
1484 #if defined(CONFIG_USER_ONLY)
1485 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1486
1487 {
1488 }
1489
1490 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1491 int flags, CPUWatchpoint **watchpoint)
1492 {
1493 return -ENOSYS;
1494 }
1495 #else
1496 /* Add a watchpoint. */
1497 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1498 int flags, CPUWatchpoint **watchpoint)
1499 {
1500 target_ulong len_mask = ~(len - 1);
1501 CPUWatchpoint *wp;
1502
1503 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1504 if ((len & (len - 1)) || (addr & ~len_mask) ||
1505 len == 0 || len > TARGET_PAGE_SIZE) {
1506 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1507 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1508 return -EINVAL;
1509 }
1510 wp = g_malloc(sizeof(*wp));
1511
1512 wp->vaddr = addr;
1513 wp->len_mask = len_mask;
1514 wp->flags = flags;
1515
1516 /* keep all GDB-injected watchpoints in front */
1517 if (flags & BP_GDB)
1518 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1519 else
1520 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1521
1522 tlb_flush_page(env, addr);
1523
1524 if (watchpoint)
1525 *watchpoint = wp;
1526 return 0;
1527 }
1528
1529 /* Remove a specific watchpoint. */
1530 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1531 int flags)
1532 {
1533 target_ulong len_mask = ~(len - 1);
1534 CPUWatchpoint *wp;
1535
1536 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1537 if (addr == wp->vaddr && len_mask == wp->len_mask
1538 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1539 cpu_watchpoint_remove_by_ref(env, wp);
1540 return 0;
1541 }
1542 }
1543 return -ENOENT;
1544 }
1545
1546 /* Remove a specific watchpoint by reference. */
1547 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1548 {
1549 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1550
1551 tlb_flush_page(env, watchpoint->vaddr);
1552
1553 g_free(watchpoint);
1554 }
1555
1556 /* Remove all matching watchpoints. */
1557 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1558 {
1559 CPUWatchpoint *wp, *next;
1560
1561 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1562 if (wp->flags & mask)
1563 cpu_watchpoint_remove_by_ref(env, wp);
1564 }
1565 }
1566 #endif
1567
1568 /* Add a breakpoint. */
1569 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1570 CPUBreakpoint **breakpoint)
1571 {
1572 #if defined(TARGET_HAS_ICE)
1573 CPUBreakpoint *bp;
1574
1575 bp = g_malloc(sizeof(*bp));
1576
1577 bp->pc = pc;
1578 bp->flags = flags;
1579
1580 /* keep all GDB-injected breakpoints in front */
1581 if (flags & BP_GDB)
1582 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1583 else
1584 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1585
1586 breakpoint_invalidate(env, pc);
1587
1588 if (breakpoint)
1589 *breakpoint = bp;
1590 return 0;
1591 #else
1592 return -ENOSYS;
1593 #endif
1594 }
1595
1596 /* Remove a specific breakpoint. */
1597 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1598 {
1599 #if defined(TARGET_HAS_ICE)
1600 CPUBreakpoint *bp;
1601
1602 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1603 if (bp->pc == pc && bp->flags == flags) {
1604 cpu_breakpoint_remove_by_ref(env, bp);
1605 return 0;
1606 }
1607 }
1608 return -ENOENT;
1609 #else
1610 return -ENOSYS;
1611 #endif
1612 }
1613
1614 /* Remove a specific breakpoint by reference. */
1615 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1616 {
1617 #if defined(TARGET_HAS_ICE)
1618 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1619
1620 breakpoint_invalidate(env, breakpoint->pc);
1621
1622 g_free(breakpoint);
1623 #endif
1624 }
1625
1626 /* Remove all matching breakpoints. */
1627 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1628 {
1629 #if defined(TARGET_HAS_ICE)
1630 CPUBreakpoint *bp, *next;
1631
1632 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1633 if (bp->flags & mask)
1634 cpu_breakpoint_remove_by_ref(env, bp);
1635 }
1636 #endif
1637 }
1638
1639 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1640 CPU loop after each instruction */
1641 void cpu_single_step(CPUArchState *env, int enabled)
1642 {
1643 #if defined(TARGET_HAS_ICE)
1644 if (env->singlestep_enabled != enabled) {
1645 env->singlestep_enabled = enabled;
1646 if (kvm_enabled())
1647 kvm_update_guest_debug(env, 0);
1648 else {
1649 /* must flush all the translated code to avoid inconsistencies */
1650 /* XXX: only flush what is necessary */
1651 tb_flush(env);
1652 }
1653 }
1654 #endif
1655 }
1656
1657 /* enable or disable low levels log */
1658 void cpu_set_log(int log_flags)
1659 {
1660 loglevel = log_flags;
1661 if (loglevel && !logfile) {
1662 logfile = fopen(logfilename, log_append ? "a" : "w");
1663 if (!logfile) {
1664 perror(logfilename);
1665 _exit(1);
1666 }
1667 #if !defined(CONFIG_SOFTMMU)
1668 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1669 {
1670 static char logfile_buf[4096];
1671 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1672 }
1673 #elif defined(_WIN32)
1674 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1675 setvbuf(logfile, NULL, _IONBF, 0);
1676 #else
1677 setvbuf(logfile, NULL, _IOLBF, 0);
1678 #endif
1679 log_append = 1;
1680 }
1681 if (!loglevel && logfile) {
1682 fclose(logfile);
1683 logfile = NULL;
1684 }
1685 }
1686
1687 void cpu_set_log_filename(const char *filename)
1688 {
1689 logfilename = strdup(filename);
1690 if (logfile) {
1691 fclose(logfile);
1692 logfile = NULL;
1693 }
1694 cpu_set_log(loglevel);
1695 }
1696
1697 static void cpu_unlink_tb(CPUArchState *env)
1698 {
1699 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1700 problem and hope the cpu will stop of its own accord. For userspace
1701 emulation this often isn't actually as bad as it sounds. Often
1702 signals are used primarily to interrupt blocking syscalls. */
1703 TranslationBlock *tb;
1704 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1705
1706 spin_lock(&interrupt_lock);
1707 tb = env->current_tb;
1708 /* if the cpu is currently executing code, we must unlink it and
1709 all the potentially executing TB */
1710 if (tb) {
1711 env->current_tb = NULL;
1712 tb_reset_jump_recursive(tb);
1713 }
1714 spin_unlock(&interrupt_lock);
1715 }
1716
1717 #ifndef CONFIG_USER_ONLY
1718 /* mask must never be zero, except for A20 change call */
1719 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1720 {
1721 int old_mask;
1722
1723 old_mask = env->interrupt_request;
1724 env->interrupt_request |= mask;
1725
1726 /*
1727 * If called from iothread context, wake the target cpu in
1728 * case its halted.
1729 */
1730 if (!qemu_cpu_is_self(env)) {
1731 qemu_cpu_kick(env);
1732 return;
1733 }
1734
1735 if (use_icount) {
1736 env->icount_decr.u16.high = 0xffff;
1737 if (!can_do_io(env)
1738 && (mask & ~old_mask) != 0) {
1739 cpu_abort(env, "Raised interrupt while not in I/O function");
1740 }
1741 } else {
1742 cpu_unlink_tb(env);
1743 }
1744 }
1745
1746 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1747
1748 #else /* CONFIG_USER_ONLY */
1749
1750 void cpu_interrupt(CPUArchState *env, int mask)
1751 {
1752 env->interrupt_request |= mask;
1753 cpu_unlink_tb(env);
1754 }
1755 #endif /* CONFIG_USER_ONLY */
1756
1757 void cpu_reset_interrupt(CPUArchState *env, int mask)
1758 {
1759 env->interrupt_request &= ~mask;
1760 }
1761
1762 void cpu_exit(CPUArchState *env)
1763 {
1764 env->exit_request = 1;
1765 cpu_unlink_tb(env);
1766 }
1767
1768 const CPULogItem cpu_log_items[] = {
1769 { CPU_LOG_TB_OUT_ASM, "out_asm",
1770 "show generated host assembly code for each compiled TB" },
1771 { CPU_LOG_TB_IN_ASM, "in_asm",
1772 "show target assembly code for each compiled TB" },
1773 { CPU_LOG_TB_OP, "op",
1774 "show micro ops for each compiled TB" },
1775 { CPU_LOG_TB_OP_OPT, "op_opt",
1776 "show micro ops "
1777 #ifdef TARGET_I386
1778 "before eflags optimization and "
1779 #endif
1780 "after liveness analysis" },
1781 { CPU_LOG_INT, "int",
1782 "show interrupts/exceptions in short format" },
1783 { CPU_LOG_EXEC, "exec",
1784 "show trace before each executed TB (lots of logs)" },
1785 { CPU_LOG_TB_CPU, "cpu",
1786 "show CPU state before block translation" },
1787 #ifdef TARGET_I386
1788 { CPU_LOG_PCALL, "pcall",
1789 "show protected mode far calls/returns/exceptions" },
1790 { CPU_LOG_RESET, "cpu_reset",
1791 "show CPU state before CPU resets" },
1792 #endif
1793 #ifdef DEBUG_IOPORT
1794 { CPU_LOG_IOPORT, "ioport",
1795 "show all i/o ports accesses" },
1796 #endif
1797 { 0, NULL, NULL },
1798 };
1799
1800 static int cmp1(const char *s1, int n, const char *s2)
1801 {
1802 if (strlen(s2) != n)
1803 return 0;
1804 return memcmp(s1, s2, n) == 0;
1805 }
1806
1807 /* takes a comma separated list of log masks. Return 0 if error. */
1808 int cpu_str_to_log_mask(const char *str)
1809 {
1810 const CPULogItem *item;
1811 int mask;
1812 const char *p, *p1;
1813
1814 p = str;
1815 mask = 0;
1816 for(;;) {
1817 p1 = strchr(p, ',');
1818 if (!p1)
1819 p1 = p + strlen(p);
1820 if(cmp1(p,p1-p,"all")) {
1821 for(item = cpu_log_items; item->mask != 0; item++) {
1822 mask |= item->mask;
1823 }
1824 } else {
1825 for(item = cpu_log_items; item->mask != 0; item++) {
1826 if (cmp1(p, p1 - p, item->name))
1827 goto found;
1828 }
1829 return 0;
1830 }
1831 found:
1832 mask |= item->mask;
1833 if (*p1 != ',')
1834 break;
1835 p = p1 + 1;
1836 }
1837 return mask;
1838 }
1839
1840 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1841 {
1842 va_list ap;
1843 va_list ap2;
1844
1845 va_start(ap, fmt);
1846 va_copy(ap2, ap);
1847 fprintf(stderr, "qemu: fatal: ");
1848 vfprintf(stderr, fmt, ap);
1849 fprintf(stderr, "\n");
1850 #ifdef TARGET_I386
1851 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1852 #else
1853 cpu_dump_state(env, stderr, fprintf, 0);
1854 #endif
1855 if (qemu_log_enabled()) {
1856 qemu_log("qemu: fatal: ");
1857 qemu_log_vprintf(fmt, ap2);
1858 qemu_log("\n");
1859 #ifdef TARGET_I386
1860 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1861 #else
1862 log_cpu_state(env, 0);
1863 #endif
1864 qemu_log_flush();
1865 qemu_log_close();
1866 }
1867 va_end(ap2);
1868 va_end(ap);
1869 #if defined(CONFIG_USER_ONLY)
1870 {
1871 struct sigaction act;
1872 sigfillset(&act.sa_mask);
1873 act.sa_handler = SIG_DFL;
1874 sigaction(SIGABRT, &act, NULL);
1875 }
1876 #endif
1877 abort();
1878 }
1879
1880 CPUArchState *cpu_copy(CPUArchState *env)
1881 {
1882 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1883 CPUArchState *next_cpu = new_env->next_cpu;
1884 int cpu_index = new_env->cpu_index;
1885 #if defined(TARGET_HAS_ICE)
1886 CPUBreakpoint *bp;
1887 CPUWatchpoint *wp;
1888 #endif
1889
1890 memcpy(new_env, env, sizeof(CPUArchState));
1891
1892 /* Preserve chaining and index. */
1893 new_env->next_cpu = next_cpu;
1894 new_env->cpu_index = cpu_index;
1895
1896 /* Clone all break/watchpoints.
1897 Note: Once we support ptrace with hw-debug register access, make sure
1898 BP_CPU break/watchpoints are handled correctly on clone. */
1899 QTAILQ_INIT(&env->breakpoints);
1900 QTAILQ_INIT(&env->watchpoints);
1901 #if defined(TARGET_HAS_ICE)
1902 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1903 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1904 }
1905 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1906 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1907 wp->flags, NULL);
1908 }
1909 #endif
1910
1911 return new_env;
1912 }
1913
1914 #if !defined(CONFIG_USER_ONLY)
1915
1916 static inline void tlb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1917 {
1918 unsigned int i;
1919
1920 /* Discard jump cache entries for any tb which might potentially
1921 overlap the flushed page. */
1922 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1923 memset (&env->tb_jmp_cache[i], 0,
1924 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1925
1926 i = tb_jmp_cache_hash_page(addr);
1927 memset (&env->tb_jmp_cache[i], 0,
1928 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1929 }
1930
1931 static CPUTLBEntry s_cputlb_empty_entry = {
1932 .addr_read = -1,
1933 .addr_write = -1,
1934 .addr_code = -1,
1935 .addend = -1,
1936 };
1937
1938 /* NOTE:
1939 * If flush_global is true (the usual case), flush all tlb entries.
1940 * If flush_global is false, flush (at least) all tlb entries not
1941 * marked global.
1942 *
1943 * Since QEMU doesn't currently implement a global/not-global flag
1944 * for tlb entries, at the moment tlb_flush() will also flush all
1945 * tlb entries in the flush_global == false case. This is OK because
1946 * CPU architectures generally permit an implementation to drop
1947 * entries from the TLB at any time, so flushing more entries than
1948 * required is only an efficiency issue, not a correctness issue.
1949 */
1950 void tlb_flush(CPUArchState *env, int flush_global)
1951 {
1952 int i;
1953
1954 #if defined(DEBUG_TLB)
1955 printf("tlb_flush:\n");
1956 #endif
1957 /* must reset current TB so that interrupts cannot modify the
1958 links while we are modifying them */
1959 env->current_tb = NULL;
1960
1961 for(i = 0; i < CPU_TLB_SIZE; i++) {
1962 int mmu_idx;
1963 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1964 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1965 }
1966 }
1967
1968 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1969
1970 env->tlb_flush_addr = -1;
1971 env->tlb_flush_mask = 0;
1972 tlb_flush_count++;
1973 }
1974
1975 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1976 {
1977 if (addr == (tlb_entry->addr_read &
1978 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1979 addr == (tlb_entry->addr_write &
1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1981 addr == (tlb_entry->addr_code &
1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1983 *tlb_entry = s_cputlb_empty_entry;
1984 }
1985 }
1986
1987 void tlb_flush_page(CPUArchState *env, target_ulong addr)
1988 {
1989 int i;
1990 int mmu_idx;
1991
1992 #if defined(DEBUG_TLB)
1993 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1994 #endif
1995 /* Check if we need to flush due to large pages. */
1996 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1997 #if defined(DEBUG_TLB)
1998 printf("tlb_flush_page: forced full flush ("
1999 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2000 env->tlb_flush_addr, env->tlb_flush_mask);
2001 #endif
2002 tlb_flush(env, 1);
2003 return;
2004 }
2005 /* must reset current TB so that interrupts cannot modify the
2006 links while we are modifying them */
2007 env->current_tb = NULL;
2008
2009 addr &= TARGET_PAGE_MASK;
2010 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2011 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2012 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2013
2014 tlb_flush_jmp_cache(env, addr);
2015 }
2016
2017 /* update the TLBs so that writes to code in the virtual page 'addr'
2018 can be detected */
2019 static void tlb_protect_code(ram_addr_t ram_addr)
2020 {
2021 cpu_physical_memory_reset_dirty(ram_addr,
2022 ram_addr + TARGET_PAGE_SIZE,
2023 CODE_DIRTY_FLAG);
2024 }
2025
2026 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2027 tested for self modifying code */
2028 static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
2029 target_ulong vaddr)
2030 {
2031 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2032 }
2033
2034 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
2035 {
2036 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
2037 }
2038
2039 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2040 unsigned long start, unsigned long length)
2041 {
2042 unsigned long addr;
2043 if (tlb_is_dirty_ram(tlb_entry)) {
2044 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2045 if ((addr - start) < length) {
2046 tlb_entry->addr_write |= TLB_NOTDIRTY;
2047 }
2048 }
2049 }
2050
2051 /* Note: start and end must be within the same ram block. */
2052 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2053 int dirty_flags)
2054 {
2055 CPUArchState *env;
2056 unsigned long length, start1;
2057 int i;
2058
2059 start &= TARGET_PAGE_MASK;
2060 end = TARGET_PAGE_ALIGN(end);
2061
2062 length = end - start;
2063 if (length == 0)
2064 return;
2065 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2066
2067 /* we modify the TLB cache so that the dirty bit will be set again
2068 when accessing the range */
2069 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2070 /* Check that we don't span multiple blocks - this breaks the
2071 address comparisons below. */
2072 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2073 != (end - 1) - start) {
2074 abort();
2075 }
2076
2077 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2078 int mmu_idx;
2079 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2080 for(i = 0; i < CPU_TLB_SIZE; i++)
2081 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2082 start1, length);
2083 }
2084 }
2085 }
2086
2087 int cpu_physical_memory_set_dirty_tracking(int enable)
2088 {
2089 int ret = 0;
2090 in_migration = enable;
2091 return ret;
2092 }
2093
2094 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2095 {
2096 ram_addr_t ram_addr;
2097 void *p;
2098
2099 if (tlb_is_dirty_ram(tlb_entry)) {
2100 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2101 + tlb_entry->addend);
2102 ram_addr = qemu_ram_addr_from_host_nofail(p);
2103 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2104 tlb_entry->addr_write |= TLB_NOTDIRTY;
2105 }
2106 }
2107 }
2108
2109 /* update the TLB according to the current state of the dirty bits */
2110 void cpu_tlb_update_dirty(CPUArchState *env)
2111 {
2112 int i;
2113 int mmu_idx;
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2115 for(i = 0; i < CPU_TLB_SIZE; i++)
2116 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2117 }
2118 }
2119
2120 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2121 {
2122 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2123 tlb_entry->addr_write = vaddr;
2124 }
2125
2126 /* update the TLB corresponding to virtual page vaddr
2127 so that it is no longer dirty */
2128 static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
2129 {
2130 int i;
2131 int mmu_idx;
2132
2133 vaddr &= TARGET_PAGE_MASK;
2134 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2135 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2136 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2137 }
2138
2139 /* Our TLB does not support large pages, so remember the area covered by
2140 large pages and trigger a full TLB flush if these are invalidated. */
2141 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
2142 target_ulong size)
2143 {
2144 target_ulong mask = ~(size - 1);
2145
2146 if (env->tlb_flush_addr == (target_ulong)-1) {
2147 env->tlb_flush_addr = vaddr & mask;
2148 env->tlb_flush_mask = mask;
2149 return;
2150 }
2151 /* Extend the existing region to include the new page.
2152 This is a compromise between unnecessary flushes and the cost
2153 of maintaining a full variable size TLB. */
2154 mask &= env->tlb_flush_mask;
2155 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2156 mask <<= 1;
2157 }
2158 env->tlb_flush_addr &= mask;
2159 env->tlb_flush_mask = mask;
2160 }
2161
2162 static bool is_ram_rom(MemoryRegionSection *s)
2163 {
2164 return memory_region_is_ram(s->mr);
2165 }
2166
2167 static bool is_romd(MemoryRegionSection *s)
2168 {
2169 MemoryRegion *mr = s->mr;
2170
2171 return mr->rom_device && mr->readable;
2172 }
2173
2174 static bool is_ram_rom_romd(MemoryRegionSection *s)
2175 {
2176 return is_ram_rom(s) || is_romd(s);
2177 }
2178
2179 /* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
2182 void tlb_set_page(CPUArchState *env, target_ulong vaddr,
2183 target_phys_addr_t paddr, int prot,
2184 int mmu_idx, target_ulong size)
2185 {
2186 MemoryRegionSection *section;
2187 unsigned int index;
2188 target_ulong address;
2189 target_ulong code_address;
2190 unsigned long addend;
2191 CPUTLBEntry *te;
2192 CPUWatchpoint *wp;
2193 target_phys_addr_t iotlb;
2194
2195 assert(size >= TARGET_PAGE_SIZE);
2196 if (size != TARGET_PAGE_SIZE) {
2197 tlb_add_large_page(env, vaddr, size);
2198 }
2199 section = phys_page_find(paddr >> TARGET_PAGE_BITS);
2200 #if defined(DEBUG_TLB)
2201 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2202 " prot=%x idx=%d pd=0x%08lx\n",
2203 vaddr, paddr, prot, mmu_idx, pd);
2204 #endif
2205
2206 address = vaddr;
2207 if (!is_ram_rom_romd(section)) {
2208 /* IO memory case (romd handled later) */
2209 address |= TLB_MMIO;
2210 }
2211 if (is_ram_rom_romd(section)) {
2212 addend = (unsigned long)memory_region_get_ram_ptr(section->mr)
2213 + section_addr(section, paddr);
2214 } else {
2215 addend = 0;
2216 }
2217 if (is_ram_rom(section)) {
2218 /* Normal RAM. */
2219 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2220 + section_addr(section, paddr);
2221 if (!section->readonly)
2222 iotlb |= phys_section_notdirty;
2223 else
2224 iotlb |= phys_section_rom;
2225 } else {
2226 /* IO handlers are currently passed a physical address.
2227 It would be nice to pass an offset from the base address
2228 of that region. This would avoid having to special case RAM,
2229 and avoid full address decoding in every device.
2230 We can't use the high bits of pd for this because
2231 IO_MEM_ROMD uses these as a ram address. */
2232 iotlb = section - phys_sections;
2233 iotlb += section_addr(section, paddr);
2234 }
2235
2236 code_address = address;
2237 /* Make accesses to pages with watchpoints go via the
2238 watchpoint trap routines. */
2239 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2240 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2241 /* Avoid trapping reads of pages with a write breakpoint. */
2242 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2243 iotlb = phys_section_watch + paddr;
2244 address |= TLB_MMIO;
2245 break;
2246 }
2247 }
2248 }
2249
2250 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2251 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2252 te = &env->tlb_table[mmu_idx][index];
2253 te->addend = addend - vaddr;
2254 if (prot & PAGE_READ) {
2255 te->addr_read = address;
2256 } else {
2257 te->addr_read = -1;
2258 }
2259
2260 if (prot & PAGE_EXEC) {
2261 te->addr_code = code_address;
2262 } else {
2263 te->addr_code = -1;
2264 }
2265 if (prot & PAGE_WRITE) {
2266 if ((memory_region_is_ram(section->mr) && section->readonly)
2267 || is_romd(section)) {
2268 /* Write access calls the I/O callback. */
2269 te->addr_write = address | TLB_MMIO;
2270 } else if (memory_region_is_ram(section->mr)
2271 && !cpu_physical_memory_is_dirty(
2272 section->mr->ram_addr
2273 + section_addr(section, paddr))) {
2274 te->addr_write = address | TLB_NOTDIRTY;
2275 } else {
2276 te->addr_write = address;
2277 }
2278 } else {
2279 te->addr_write = -1;
2280 }
2281 }
2282
2283 #else
2284
2285 void tlb_flush(CPUArchState *env, int flush_global)
2286 {
2287 }
2288
2289 void tlb_flush_page(CPUArchState *env, target_ulong addr)
2290 {
2291 }
2292
2293 /*
2294 * Walks guest process memory "regions" one by one
2295 * and calls callback function 'fn' for each region.
2296 */
2297
2298 struct walk_memory_regions_data
2299 {
2300 walk_memory_regions_fn fn;
2301 void *priv;
2302 unsigned long start;
2303 int prot;
2304 };
2305
2306 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2307 abi_ulong end, int new_prot)
2308 {
2309 if (data->start != -1ul) {
2310 int rc = data->fn(data->priv, data->start, end, data->prot);
2311 if (rc != 0) {
2312 return rc;
2313 }
2314 }
2315
2316 data->start = (new_prot ? end : -1ul);
2317 data->prot = new_prot;
2318
2319 return 0;
2320 }
2321
2322 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2323 abi_ulong base, int level, void **lp)
2324 {
2325 abi_ulong pa;
2326 int i, rc;
2327
2328 if (*lp == NULL) {
2329 return walk_memory_regions_end(data, base, 0);
2330 }
2331
2332 if (level == 0) {
2333 PageDesc *pd = *lp;
2334 for (i = 0; i < L2_SIZE; ++i) {
2335 int prot = pd[i].flags;
2336
2337 pa = base | (i << TARGET_PAGE_BITS);
2338 if (prot != data->prot) {
2339 rc = walk_memory_regions_end(data, pa, prot);
2340 if (rc != 0) {
2341 return rc;
2342 }
2343 }
2344 }
2345 } else {
2346 void **pp = *lp;
2347 for (i = 0; i < L2_SIZE; ++i) {
2348 pa = base | ((abi_ulong)i <<
2349 (TARGET_PAGE_BITS + L2_BITS * level));
2350 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2351 if (rc != 0) {
2352 return rc;
2353 }
2354 }
2355 }
2356
2357 return 0;
2358 }
2359
2360 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2361 {
2362 struct walk_memory_regions_data data;
2363 unsigned long i;
2364
2365 data.fn = fn;
2366 data.priv = priv;
2367 data.start = -1ul;
2368 data.prot = 0;
2369
2370 for (i = 0; i < V_L1_SIZE; i++) {
2371 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2372 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2373 if (rc != 0) {
2374 return rc;
2375 }
2376 }
2377
2378 return walk_memory_regions_end(&data, 0, 0);
2379 }
2380
2381 static int dump_region(void *priv, abi_ulong start,
2382 abi_ulong end, unsigned long prot)
2383 {
2384 FILE *f = (FILE *)priv;
2385
2386 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2387 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2388 start, end, end - start,
2389 ((prot & PAGE_READ) ? 'r' : '-'),
2390 ((prot & PAGE_WRITE) ? 'w' : '-'),
2391 ((prot & PAGE_EXEC) ? 'x' : '-'));
2392
2393 return (0);
2394 }
2395
2396 /* dump memory mappings */
2397 void page_dump(FILE *f)
2398 {
2399 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2400 "start", "end", "size", "prot");
2401 walk_memory_regions(f, dump_region);
2402 }
2403
2404 int page_get_flags(target_ulong address)
2405 {
2406 PageDesc *p;
2407
2408 p = page_find(address >> TARGET_PAGE_BITS);
2409 if (!p)
2410 return 0;
2411 return p->flags;
2412 }
2413
2414 /* Modify the flags of a page and invalidate the code if necessary.
2415 The flag PAGE_WRITE_ORG is positioned automatically depending
2416 on PAGE_WRITE. The mmap_lock should already be held. */
2417 void page_set_flags(target_ulong start, target_ulong end, int flags)
2418 {
2419 target_ulong addr, len;
2420
2421 /* This function should never be called with addresses outside the
2422 guest address space. If this assert fires, it probably indicates
2423 a missing call to h2g_valid. */
2424 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2425 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2426 #endif
2427 assert(start < end);
2428
2429 start = start & TARGET_PAGE_MASK;
2430 end = TARGET_PAGE_ALIGN(end);
2431
2432 if (flags & PAGE_WRITE) {
2433 flags |= PAGE_WRITE_ORG;
2434 }
2435
2436 for (addr = start, len = end - start;
2437 len != 0;
2438 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2439 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2440
2441 /* If the write protection bit is set, then we invalidate
2442 the code inside. */
2443 if (!(p->flags & PAGE_WRITE) &&
2444 (flags & PAGE_WRITE) &&
2445 p->first_tb) {
2446 tb_invalidate_phys_page(addr, 0, NULL);
2447 }
2448 p->flags = flags;
2449 }
2450 }
2451
2452 int page_check_range(target_ulong start, target_ulong len, int flags)
2453 {
2454 PageDesc *p;
2455 target_ulong end;
2456 target_ulong addr;
2457
2458 /* This function should never be called with addresses outside the
2459 guest address space. If this assert fires, it probably indicates
2460 a missing call to h2g_valid. */
2461 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2462 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2463 #endif
2464
2465 if (len == 0) {
2466 return 0;
2467 }
2468 if (start + len - 1 < start) {
2469 /* We've wrapped around. */
2470 return -1;
2471 }
2472
2473 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2474 start = start & TARGET_PAGE_MASK;
2475
2476 for (addr = start, len = end - start;
2477 len != 0;
2478 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2479 p = page_find(addr >> TARGET_PAGE_BITS);
2480 if( !p )
2481 return -1;
2482 if( !(p->flags & PAGE_VALID) )
2483 return -1;
2484
2485 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2486 return -1;
2487 if (flags & PAGE_WRITE) {
2488 if (!(p->flags & PAGE_WRITE_ORG))
2489 return -1;
2490 /* unprotect the page if it was put read-only because it
2491 contains translated code */
2492 if (!(p->flags & PAGE_WRITE)) {
2493 if (!page_unprotect(addr, 0, NULL))
2494 return -1;
2495 }
2496 return 0;
2497 }
2498 }
2499 return 0;
2500 }
2501
2502 /* called from signal handler: invalidate the code and unprotect the
2503 page. Return TRUE if the fault was successfully handled. */
2504 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2505 {
2506 unsigned int prot;
2507 PageDesc *p;
2508 target_ulong host_start, host_end, addr;
2509
2510 /* Technically this isn't safe inside a signal handler. However we
2511 know this only ever happens in a synchronous SEGV handler, so in
2512 practice it seems to be ok. */
2513 mmap_lock();
2514
2515 p = page_find(address >> TARGET_PAGE_BITS);
2516 if (!p) {
2517 mmap_unlock();
2518 return 0;
2519 }
2520
2521 /* if the page was really writable, then we change its
2522 protection back to writable */
2523 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2524 host_start = address & qemu_host_page_mask;
2525 host_end = host_start + qemu_host_page_size;
2526
2527 prot = 0;
2528 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2529 p = page_find(addr >> TARGET_PAGE_BITS);
2530 p->flags |= PAGE_WRITE;
2531 prot |= p->flags;
2532
2533 /* and since the content will be modified, we must invalidate
2534 the corresponding translated code. */
2535 tb_invalidate_phys_page(addr, pc, puc);
2536 #ifdef DEBUG_TB_CHECK
2537 tb_invalidate_check(addr);
2538 #endif
2539 }
2540 mprotect((void *)g2h(host_start), qemu_host_page_size,
2541 prot & PAGE_BITS);
2542
2543 mmap_unlock();
2544 return 1;
2545 }
2546 mmap_unlock();
2547 return 0;
2548 }
2549
2550 static inline void tlb_set_dirty(CPUArchState *env,
2551 unsigned long addr, target_ulong vaddr)
2552 {
2553 }
2554 #endif /* defined(CONFIG_USER_ONLY) */
2555
2556 #if !defined(CONFIG_USER_ONLY)
2557
2558 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2559 typedef struct subpage_t {
2560 MemoryRegion iomem;
2561 target_phys_addr_t base;
2562 uint16_t sub_section[TARGET_PAGE_SIZE];
2563 } subpage_t;
2564
2565 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2566 uint16_t section);
2567 static subpage_t *subpage_init(target_phys_addr_t base);
2568 static void destroy_page_desc(uint16_t section_index)
2569 {
2570 MemoryRegionSection *section = &phys_sections[section_index];
2571 MemoryRegion *mr = section->mr;
2572
2573 if (mr->subpage) {
2574 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2575 memory_region_destroy(&subpage->iomem);
2576 g_free(subpage);
2577 }
2578 }
2579
2580 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2581 {
2582 unsigned i;
2583 PhysPageEntry *p;
2584
2585 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2586 return;
2587 }
2588
2589 p = phys_map_nodes[lp->ptr];
2590 for (i = 0; i < L2_SIZE; ++i) {
2591 if (!p[i].is_leaf) {
2592 destroy_l2_mapping(&p[i], level - 1);
2593 } else {
2594 destroy_page_desc(p[i].ptr);
2595 }
2596 }
2597 lp->is_leaf = 0;
2598 lp->ptr = PHYS_MAP_NODE_NIL;
2599 }
2600
2601 static void destroy_all_mappings(void)
2602 {
2603 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2604 phys_map_nodes_reset();
2605 }
2606
2607 static uint16_t phys_section_add(MemoryRegionSection *section)
2608 {
2609 if (phys_sections_nb == phys_sections_nb_alloc) {
2610 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2611 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2612 phys_sections_nb_alloc);
2613 }
2614 phys_sections[phys_sections_nb] = *section;
2615 return phys_sections_nb++;
2616 }
2617
2618 static void phys_sections_clear(void)
2619 {
2620 phys_sections_nb = 0;
2621 }
2622
2623 /* register physical memory.
2624 For RAM, 'size' must be a multiple of the target page size.
2625 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2626 io memory page. The address used when calling the IO function is
2627 the offset from the start of the region, plus region_offset. Both
2628 start_addr and region_offset are rounded down to a page boundary
2629 before calculating this offset. This should not be a problem unless
2630 the low bits of start_addr and region_offset differ. */
2631 static void register_subpage(MemoryRegionSection *section)
2632 {
2633 subpage_t *subpage;
2634 target_phys_addr_t base = section->offset_within_address_space
2635 & TARGET_PAGE_MASK;
2636 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2637 MemoryRegionSection subsection = {
2638 .offset_within_address_space = base,
2639 .size = TARGET_PAGE_SIZE,
2640 };
2641 target_phys_addr_t start, end;
2642
2643 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2644
2645 if (!(existing->mr->subpage)) {
2646 subpage = subpage_init(base);
2647 subsection.mr = &subpage->iomem;
2648 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2649 phys_section_add(&subsection));
2650 } else {
2651 subpage = container_of(existing->mr, subpage_t, iomem);
2652 }
2653 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2654 end = start + section->size;
2655 subpage_register(subpage, start, end, phys_section_add(section));
2656 }
2657
2658
2659 static void register_multipage(MemoryRegionSection *section)
2660 {
2661 target_phys_addr_t start_addr = section->offset_within_address_space;
2662 ram_addr_t size = section->size;
2663 target_phys_addr_t addr;
2664 uint16_t section_index = phys_section_add(section);
2665
2666 assert(size);
2667
2668 addr = start_addr;
2669 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2670 section_index);
2671 }
2672
2673 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2674 bool readonly)
2675 {
2676 MemoryRegionSection now = *section, remain = *section;
2677
2678 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2679 || (now.size < TARGET_PAGE_SIZE)) {
2680 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2681 - now.offset_within_address_space,
2682 now.size);
2683 register_subpage(&now);
2684 remain.size -= now.size;
2685 remain.offset_within_address_space += now.size;
2686 remain.offset_within_region += now.size;
2687 }
2688 now = remain;
2689 now.size &= TARGET_PAGE_MASK;
2690 if (now.size) {
2691 register_multipage(&now);
2692 remain.size -= now.size;
2693 remain.offset_within_address_space += now.size;
2694 remain.offset_within_region += now.size;
2695 }
2696 now = remain;
2697 if (now.size) {
2698 register_subpage(&now);
2699 }
2700 }
2701
2702
2703 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2704 {
2705 if (kvm_enabled())
2706 kvm_coalesce_mmio_region(addr, size);
2707 }
2708
2709 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2710 {
2711 if (kvm_enabled())
2712 kvm_uncoalesce_mmio_region(addr, size);
2713 }
2714
2715 void qemu_flush_coalesced_mmio_buffer(void)
2716 {
2717 if (kvm_enabled())
2718 kvm_flush_coalesced_mmio_buffer();
2719 }
2720
2721 #if defined(__linux__) && !defined(TARGET_S390X)
2722
2723 #include <sys/vfs.h>
2724
2725 #define HUGETLBFS_MAGIC 0x958458f6
2726
2727 static long gethugepagesize(const char *path)
2728 {
2729 struct statfs fs;
2730 int ret;
2731
2732 do {
2733 ret = statfs(path, &fs);
2734 } while (ret != 0 && errno == EINTR);
2735
2736 if (ret != 0) {
2737 perror(path);
2738 return 0;
2739 }
2740
2741 if (fs.f_type != HUGETLBFS_MAGIC)
2742 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2743
2744 return fs.f_bsize;
2745 }
2746
2747 static void *file_ram_alloc(RAMBlock *block,
2748 ram_addr_t memory,
2749 const char *path)
2750 {
2751 char *filename;
2752 void *area;
2753 int fd;
2754 #ifdef MAP_POPULATE
2755 int flags;
2756 #endif
2757 unsigned long hpagesize;
2758
2759 hpagesize = gethugepagesize(path);
2760 if (!hpagesize) {
2761 return NULL;
2762 }
2763
2764 if (memory < hpagesize) {
2765 return NULL;
2766 }
2767
2768 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2769 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2770 return NULL;
2771 }
2772
2773 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2774 return NULL;
2775 }
2776
2777 fd = mkstemp(filename);
2778 if (fd < 0) {
2779 perror("unable to create backing store for hugepages");
2780 free(filename);
2781 return NULL;
2782 }
2783 unlink(filename);
2784 free(filename);
2785
2786 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2787
2788 /*
2789 * ftruncate is not supported by hugetlbfs in older
2790 * hosts, so don't bother bailing out on errors.
2791 * If anything goes wrong with it under other filesystems,
2792 * mmap will fail.
2793 */
2794 if (ftruncate(fd, memory))
2795 perror("ftruncate");
2796
2797 #ifdef MAP_POPULATE
2798 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2799 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2800 * to sidestep this quirk.
2801 */
2802 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2803 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2804 #else
2805 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2806 #endif
2807 if (area == MAP_FAILED) {
2808 perror("file_ram_alloc: can't mmap RAM pages");
2809 close(fd);
2810 return (NULL);
2811 }
2812 block->fd = fd;
2813 return area;
2814 }
2815 #endif
2816
2817 static ram_addr_t find_ram_offset(ram_addr_t size)
2818 {
2819 RAMBlock *block, *next_block;
2820 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2821
2822 if (QLIST_EMPTY(&ram_list.blocks))
2823 return 0;
2824
2825 QLIST_FOREACH(block, &ram_list.blocks, next) {
2826 ram_addr_t end, next = RAM_ADDR_MAX;
2827
2828 end = block->offset + block->length;
2829
2830 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2831 if (next_block->offset >= end) {
2832 next = MIN(next, next_block->offset);
2833 }
2834 }
2835 if (next - end >= size && next - end < mingap) {
2836 offset = end;
2837 mingap = next - end;
2838 }
2839 }
2840
2841 if (offset == RAM_ADDR_MAX) {
2842 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2843 (uint64_t)size);
2844 abort();
2845 }
2846
2847 return offset;
2848 }
2849
2850 static ram_addr_t last_ram_offset(void)
2851 {
2852 RAMBlock *block;
2853 ram_addr_t last = 0;
2854
2855 QLIST_FOREACH(block, &ram_list.blocks, next)
2856 last = MAX(last, block->offset + block->length);
2857
2858 return last;
2859 }
2860
2861 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2862 {
2863 RAMBlock *new_block, *block;
2864
2865 new_block = NULL;
2866 QLIST_FOREACH(block, &ram_list.blocks, next) {
2867 if (block->offset == addr) {
2868 new_block = block;
2869 break;
2870 }
2871 }
2872 assert(new_block);
2873 assert(!new_block->idstr[0]);
2874
2875 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2876 char *id = dev->parent_bus->info->get_dev_path(dev);
2877 if (id) {
2878 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2879 g_free(id);
2880 }
2881 }
2882 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2883
2884 QLIST_FOREACH(block, &ram_list.blocks, next) {
2885 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2886 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2887 new_block->idstr);
2888 abort();
2889 }
2890 }
2891 }
2892
2893 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2894 MemoryRegion *mr)
2895 {
2896 RAMBlock *new_block;
2897
2898 size = TARGET_PAGE_ALIGN(size);
2899 new_block = g_malloc0(sizeof(*new_block));
2900
2901 new_block->mr = mr;
2902 new_block->offset = find_ram_offset(size);
2903 if (host) {
2904 new_block->host = host;
2905 new_block->flags |= RAM_PREALLOC_MASK;
2906 } else {
2907 if (mem_path) {
2908 #if defined (__linux__) && !defined(TARGET_S390X)
2909 new_block->host = file_ram_alloc(new_block, size, mem_path);
2910 if (!new_block->host) {
2911 new_block->host = qemu_vmalloc(size);
2912 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2913 }
2914 #else
2915 fprintf(stderr, "-mem-path option unsupported\n");
2916 exit(1);
2917 #endif
2918 } else {
2919 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2920 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2921 an system defined value, which is at least 256GB. Larger systems
2922 have larger values. We put the guest between the end of data
2923 segment (system break) and this value. We use 32GB as a base to
2924 have enough room for the system break to grow. */
2925 new_block->host = mmap((void*)0x800000000, size,
2926 PROT_EXEC|PROT_READ|PROT_WRITE,
2927 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2928 if (new_block->host == MAP_FAILED) {
2929 fprintf(stderr, "Allocating RAM failed\n");
2930 abort();
2931 }
2932 #else
2933 if (xen_enabled()) {
2934 xen_ram_alloc(new_block->offset, size, mr);
2935 } else {
2936 new_block->host = qemu_vmalloc(size);
2937 }
2938 #endif
2939 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2940 }
2941 }
2942 new_block->length = size;
2943
2944 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2945
2946 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2947 last_ram_offset() >> TARGET_PAGE_BITS);
2948 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2949 0xff, size >> TARGET_PAGE_BITS);
2950
2951 if (kvm_enabled())
2952 kvm_setup_guest_memory(new_block->host, size);
2953
2954 return new_block->offset;
2955 }
2956
2957 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2958 {
2959 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2960 }
2961
2962 void qemu_ram_free_from_ptr(ram_addr_t addr)
2963 {
2964 RAMBlock *block;
2965
2966 QLIST_FOREACH(block, &ram_list.blocks, next) {
2967 if (addr == block->offset) {
2968 QLIST_REMOVE(block, next);
2969 g_free(block);
2970 return;
2971 }
2972 }
2973 }
2974
2975 void qemu_ram_free(ram_addr_t addr)
2976 {
2977 RAMBlock *block;
2978
2979 QLIST_FOREACH(block, &ram_list.blocks, next) {
2980 if (addr == block->offset) {
2981 QLIST_REMOVE(block, next);
2982 if (block->flags & RAM_PREALLOC_MASK) {
2983 ;
2984 } else if (mem_path) {
2985 #if defined (__linux__) && !defined(TARGET_S390X)
2986 if (block->fd) {
2987 munmap(block->host, block->length);
2988 close(block->fd);
2989 } else {
2990 qemu_vfree(block->host);
2991 }
2992 #else
2993 abort();
2994 #endif
2995 } else {
2996 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2997 munmap(block->host, block->length);
2998 #else
2999 if (xen_enabled()) {
3000 xen_invalidate_map_cache_entry(block->host);
3001 } else {
3002 qemu_vfree(block->host);
3003 }
3004 #endif
3005 }
3006 g_free(block);
3007 return;
3008 }
3009 }
3010
3011 }
3012
3013 #ifndef _WIN32
3014 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3015 {
3016 RAMBlock *block;
3017 ram_addr_t offset;
3018 int flags;
3019 void *area, *vaddr;
3020
3021 QLIST_FOREACH(block, &ram_list.blocks, next) {
3022 offset = addr - block->offset;
3023 if (offset < block->length) {
3024 vaddr = block->host + offset;
3025 if (block->flags & RAM_PREALLOC_MASK) {
3026 ;
3027 } else {
3028 flags = MAP_FIXED;
3029 munmap(vaddr, length);
3030 if (mem_path) {
3031 #if defined(__linux__) && !defined(TARGET_S390X)
3032 if (block->fd) {
3033 #ifdef MAP_POPULATE
3034 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3035 MAP_PRIVATE;
3036 #else
3037 flags |= MAP_PRIVATE;
3038 #endif
3039 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3040 flags, block->fd, offset);
3041 } else {
3042 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3043 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3044 flags, -1, 0);
3045 }
3046 #else
3047 abort();
3048 #endif
3049 } else {
3050 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3051 flags |= MAP_SHARED | MAP_ANONYMOUS;
3052 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3053 flags, -1, 0);
3054 #else
3055 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3056 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3057 flags, -1, 0);
3058 #endif
3059 }
3060 if (area != vaddr) {
3061 fprintf(stderr, "Could not remap addr: "
3062 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3063 length, addr);
3064 exit(1);
3065 }
3066 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3067 }
3068 return;
3069 }
3070 }
3071 }
3072 #endif /* !_WIN32 */
3073
3074 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3075 With the exception of the softmmu code in this file, this should
3076 only be used for local memory (e.g. video ram) that the device owns,
3077 and knows it isn't going to access beyond the end of the block.
3078
3079 It should not be used for general purpose DMA.
3080 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3081 */
3082 void *qemu_get_ram_ptr(ram_addr_t addr)
3083 {
3084 RAMBlock *block;
3085
3086 QLIST_FOREACH(block, &ram_list.blocks, next) {
3087 if (addr - block->offset < block->length) {
3088 /* Move this entry to to start of the list. */
3089 if (block != QLIST_FIRST(&ram_list.blocks)) {
3090 QLIST_REMOVE(block, next);
3091 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3092 }
3093 if (xen_enabled()) {
3094 /* We need to check if the requested address is in the RAM
3095 * because we don't want to map the entire memory in QEMU.
3096 * In that case just map until the end of the page.
3097 */
3098 if (block->offset == 0) {
3099 return xen_map_cache(addr, 0, 0);
3100 } else if (block->host == NULL) {
3101 block->host =
3102 xen_map_cache(block->offset, block->length, 1);
3103 }
3104 }
3105 return block->host + (addr - block->offset);
3106 }
3107 }
3108
3109 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3110 abort();
3111
3112 return NULL;
3113 }
3114
3115 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3116 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3117 */
3118 void *qemu_safe_ram_ptr(ram_addr_t addr)
3119 {
3120 RAMBlock *block;
3121
3122 QLIST_FOREACH(block, &ram_list.blocks, next) {
3123 if (addr - block->offset < block->length) {
3124 if (xen_enabled()) {
3125 /* We need to check if the requested address is in the RAM
3126 * because we don't want to map the entire memory in QEMU.
3127 * In that case just map until the end of the page.
3128 */
3129 if (block->offset == 0) {
3130 return xen_map_cache(addr, 0, 0);
3131 } else if (block->host == NULL) {
3132 block->host =
3133 xen_map_cache(block->offset, block->length, 1);
3134 }
3135 }
3136 return block->host + (addr - block->offset);
3137 }
3138 }
3139
3140 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3141 abort();
3142
3143 return NULL;
3144 }
3145
3146 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3147 * but takes a size argument */
3148 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3149 {
3150 if (*size == 0) {
3151 return NULL;
3152 }
3153 if (xen_enabled()) {
3154 return xen_map_cache(addr, *size, 1);
3155 } else {
3156 RAMBlock *block;
3157
3158 QLIST_FOREACH(block, &ram_list.blocks, next) {
3159 if (addr - block->offset < block->length) {
3160 if (addr - block->offset + *size > block->length)
3161 *size = block->length - addr + block->offset;
3162 return block->host + (addr - block->offset);
3163 }
3164 }
3165
3166 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3167 abort();
3168 }
3169 }
3170
3171 void qemu_put_ram_ptr(void *addr)
3172 {
3173 trace_qemu_put_ram_ptr(addr);
3174 }
3175
3176 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3177 {
3178 RAMBlock *block;
3179 uint8_t *host = ptr;
3180
3181 if (xen_enabled()) {
3182 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3183 return 0;
3184 }
3185
3186 QLIST_FOREACH(block, &ram_list.blocks, next) {
3187 /* This case append when the block is not mapped. */
3188 if (block->host == NULL) {
3189 continue;
3190 }
3191 if (host - block->host < block->length) {
3192 *ram_addr = block->offset + (host - block->host);
3193 return 0;
3194 }
3195 }
3196
3197 return -1;
3198 }
3199
3200 /* Some of the softmmu routines need to translate from a host pointer
3201 (typically a TLB entry) back to a ram offset. */
3202 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3203 {
3204 ram_addr_t ram_addr;
3205
3206 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3207 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3208 abort();
3209 }
3210 return ram_addr;
3211 }
3212
3213 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3214 unsigned size)
3215 {
3216 #ifdef DEBUG_UNASSIGNED
3217 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3218 #endif
3219 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3220 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
3221 #endif
3222 return 0;
3223 }
3224
3225 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3226 uint64_t val, unsigned size)
3227 {
3228 #ifdef DEBUG_UNASSIGNED
3229 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
3230 #endif
3231 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3232 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
3233 #endif
3234 }
3235
3236 static const MemoryRegionOps unassigned_mem_ops = {
3237 .read = unassigned_mem_read,
3238 .write = unassigned_mem_write,
3239 .endianness = DEVICE_NATIVE_ENDIAN,
3240 };
3241
3242 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3243 unsigned size)
3244 {
3245 abort();
3246 }
3247
3248 static void error_mem_write(void *opaque, target_phys_addr_t addr,
3249 uint64_t value, unsigned size)
3250 {
3251 abort();
3252 }
3253
3254 static const MemoryRegionOps error_mem_ops = {
3255 .read = error_mem_read,
3256 .write = error_mem_write,
3257 .endianness = DEVICE_NATIVE_ENDIAN,
3258 };
3259
3260 static const MemoryRegionOps rom_mem_ops = {
3261 .read = error_mem_read,
3262 .write = unassigned_mem_write,
3263 .endianness = DEVICE_NATIVE_ENDIAN,
3264 };
3265
3266 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3267 uint64_t val, unsigned size)
3268 {
3269 int dirty_flags;
3270 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3271 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3272 #if !defined(CONFIG_USER_ONLY)
3273 tb_invalidate_phys_page_fast(ram_addr, size);
3274 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3275 #endif
3276 }
3277 switch (size) {
3278 case 1:
3279 stb_p(qemu_get_ram_ptr(ram_addr), val);
3280 break;
3281 case 2:
3282 stw_p(qemu_get_ram_ptr(ram_addr), val);
3283 break;
3284 case 4:
3285 stl_p(qemu_get_ram_ptr(ram_addr), val);
3286 break;
3287 default:
3288 abort();
3289 }
3290 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3291 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3292 /* we remove the notdirty callback only if the code has been
3293 flushed */
3294 if (dirty_flags == 0xff)
3295 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3296 }
3297
3298 static const MemoryRegionOps notdirty_mem_ops = {
3299 .read = error_mem_read,
3300 .write = notdirty_mem_write,
3301 .endianness = DEVICE_NATIVE_ENDIAN,
3302 };
3303
3304 /* Generate a debug exception if a watchpoint has been hit. */
3305 static void check_watchpoint(int offset, int len_mask, int flags)
3306 {
3307 CPUArchState *env = cpu_single_env;
3308 target_ulong pc, cs_base;
3309 TranslationBlock *tb;
3310 target_ulong vaddr;
3311 CPUWatchpoint *wp;
3312 int cpu_flags;
3313
3314 if (env->watchpoint_hit) {
3315 /* We re-entered the check after replacing the TB. Now raise
3316 * the debug interrupt so that is will trigger after the
3317 * current instruction. */
3318 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3319 return;
3320 }
3321 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3322 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3323 if ((vaddr == (wp->vaddr & len_mask) ||
3324 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3325 wp->flags |= BP_WATCHPOINT_HIT;
3326 if (!env->watchpoint_hit) {
3327 env->watchpoint_hit = wp;
3328 tb = tb_find_pc(env->mem_io_pc);
3329 if (!tb) {
3330 cpu_abort(env, "check_watchpoint: could not find TB for "
3331 "pc=%p", (void *)env->mem_io_pc);
3332 }
3333 cpu_restore_state(tb, env, env->mem_io_pc);
3334 tb_phys_invalidate(tb, -1);
3335 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3336 env->exception_index = EXCP_DEBUG;
3337 cpu_loop_exit(env);
3338 } else {
3339 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3340 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3341 cpu_resume_from_signal(env, NULL);
3342 }
3343 }
3344 } else {
3345 wp->flags &= ~BP_WATCHPOINT_HIT;
3346 }
3347 }
3348 }
3349
3350 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3351 so these check for a hit then pass through to the normal out-of-line
3352 phys routines. */
3353 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3354 unsigned size)
3355 {
3356 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3357 switch (size) {
3358 case 1: return ldub_phys(addr);
3359 case 2: return lduw_phys(addr);
3360 case 4: return ldl_phys(addr);
3361 default: abort();
3362 }
3363 }
3364
3365 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3366 uint64_t val, unsigned size)
3367 {
3368 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3369 switch (size) {
3370 case 1:
3371 stb_phys(addr, val);
3372 break;
3373 case 2:
3374 stw_phys(addr, val);
3375 break;
3376 case 4:
3377 stl_phys(addr, val);
3378 break;
3379 default: abort();
3380 }
3381 }
3382
3383 static const MemoryRegionOps watch_mem_ops = {
3384 .read = watch_mem_read,
3385 .write = watch_mem_write,
3386 .endianness = DEVICE_NATIVE_ENDIAN,
3387 };
3388
3389 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3390 unsigned len)
3391 {
3392 subpage_t *mmio = opaque;
3393 unsigned int idx = SUBPAGE_IDX(addr);
3394 MemoryRegionSection *section;
3395 #if defined(DEBUG_SUBPAGE)
3396 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3397 mmio, len, addr, idx);
3398 #endif
3399
3400 section = &phys_sections[mmio->sub_section[idx]];
3401 addr += mmio->base;
3402 addr -= section->offset_within_address_space;
3403 addr += section->offset_within_region;
3404 return io_mem_read(section->mr, addr, len);
3405 }
3406
3407 static void subpage_write(void *opaque, target_phys_addr_t addr,
3408 uint64_t value, unsigned len)
3409 {
3410 subpage_t *mmio = opaque;
3411 unsigned int idx = SUBPAGE_IDX(addr);
3412 MemoryRegionSection *section;
3413 #if defined(DEBUG_SUBPAGE)
3414 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3415 " idx %d value %"PRIx64"\n",
3416 __func__, mmio, len, addr, idx, value);
3417 #endif
3418
3419 section = &phys_sections[mmio->sub_section[idx]];
3420 addr += mmio->base;
3421 addr -= section->offset_within_address_space;
3422 addr += section->offset_within_region;
3423 io_mem_write(section->mr, addr, value, len);
3424 }
3425
3426 static const MemoryRegionOps subpage_ops = {
3427 .read = subpage_read,
3428 .write = subpage_write,
3429 .endianness = DEVICE_NATIVE_ENDIAN,
3430 };
3431
3432 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3433 unsigned size)
3434 {
3435 ram_addr_t raddr = addr;
3436 void *ptr = qemu_get_ram_ptr(raddr);
3437 switch (size) {
3438 case 1: return ldub_p(ptr);
3439 case 2: return lduw_p(ptr);
3440 case 4: return ldl_p(ptr);
3441 default: abort();
3442 }
3443 }
3444
3445 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3446 uint64_t value, unsigned size)
3447 {
3448 ram_addr_t raddr = addr;
3449 void *ptr = qemu_get_ram_ptr(raddr);
3450 switch (size) {
3451 case 1: return stb_p(ptr, value);
3452 case 2: return stw_p(ptr, value);
3453 case 4: return stl_p(ptr, value);
3454 default: abort();
3455 }
3456 }
3457
3458 static const MemoryRegionOps subpage_ram_ops = {
3459 .read = subpage_ram_read,
3460 .write = subpage_ram_write,
3461 .endianness = DEVICE_NATIVE_ENDIAN,
3462 };
3463
3464 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3465 uint16_t section)
3466 {
3467 int idx, eidx;
3468
3469 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3470 return -1;
3471 idx = SUBPAGE_IDX(start);
3472 eidx = SUBPAGE_IDX(end);
3473 #if defined(DEBUG_SUBPAGE)
3474 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3475 mmio, start, end, idx, eidx, memory);
3476 #endif
3477 if (memory_region_is_ram(phys_sections[section].mr)) {
3478 MemoryRegionSection new_section = phys_sections[section];
3479 new_section.mr = &io_mem_subpage_ram;
3480 section = phys_section_add(&new_section);
3481 }
3482 for (; idx <= eidx; idx++) {
3483 mmio->sub_section[idx] = section;
3484 }
3485
3486 return 0;
3487 }
3488
3489 static subpage_t *subpage_init(target_phys_addr_t base)
3490 {
3491 subpage_t *mmio;
3492
3493 mmio = g_malloc0(sizeof(subpage_t));
3494
3495 mmio->base = base;
3496 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3497 "subpage", TARGET_PAGE_SIZE);
3498 mmio->iomem.subpage = true;
3499 #if defined(DEBUG_SUBPAGE)
3500 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3501 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3502 #endif
3503 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3504
3505 return mmio;
3506 }
3507
3508 static uint16_t dummy_section(MemoryRegion *mr)
3509 {
3510 MemoryRegionSection section = {
3511 .mr = mr,
3512 .offset_within_address_space = 0,
3513 .offset_within_region = 0,
3514 .size = UINT64_MAX,
3515 };
3516
3517 return phys_section_add(&section);
3518 }
3519
3520 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3521 {
3522 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3523 }
3524
3525 static void io_mem_init(void)
3526 {
3527 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3528 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3529 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3530 "unassigned", UINT64_MAX);
3531 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3532 "notdirty", UINT64_MAX);
3533 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3534 "subpage-ram", UINT64_MAX);
3535 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3536 "watch", UINT64_MAX);
3537 }
3538
3539 static void core_begin(MemoryListener *listener)
3540 {
3541 destroy_all_mappings();
3542 phys_sections_clear();
3543 phys_map.ptr = PHYS_MAP_NODE_NIL;
3544 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3545 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3546 phys_section_rom = dummy_section(&io_mem_rom);
3547 phys_section_watch = dummy_section(&io_mem_watch);
3548 }
3549
3550 static void core_commit(MemoryListener *listener)
3551 {
3552 CPUArchState *env;
3553
3554 /* since each CPU stores ram addresses in its TLB cache, we must
3555 reset the modified entries */
3556 /* XXX: slow ! */
3557 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3558 tlb_flush(env, 1);
3559 }
3560 }
3561
3562 static void core_region_add(MemoryListener *listener,
3563 MemoryRegionSection *section)
3564 {
3565 cpu_register_physical_memory_log(section, section->readonly);
3566 }
3567
3568 static void core_region_del(MemoryListener *listener,
3569 MemoryRegionSection *section)
3570 {
3571 }
3572
3573 static void core_region_nop(MemoryListener *listener,
3574 MemoryRegionSection *section)
3575 {
3576 cpu_register_physical_memory_log(section, section->readonly);
3577 }
3578
3579 static void core_log_start(MemoryListener *listener,
3580 MemoryRegionSection *section)
3581 {
3582 }
3583
3584 static void core_log_stop(MemoryListener *listener,
3585 MemoryRegionSection *section)
3586 {
3587 }
3588
3589 static void core_log_sync(MemoryListener *listener,
3590 MemoryRegionSection *section)
3591 {
3592 }
3593
3594 static void core_log_global_start(MemoryListener *listener)
3595 {
3596 cpu_physical_memory_set_dirty_tracking(1);
3597 }
3598
3599 static void core_log_global_stop(MemoryListener *listener)
3600 {
3601 cpu_physical_memory_set_dirty_tracking(0);
3602 }
3603
3604 static void core_eventfd_add(MemoryListener *listener,
3605 MemoryRegionSection *section,
3606 bool match_data, uint64_t data, int fd)
3607 {
3608 }
3609
3610 static void core_eventfd_del(MemoryListener *listener,
3611 MemoryRegionSection *section,
3612 bool match_data, uint64_t data, int fd)
3613 {
3614 }
3615
3616 static void io_begin(MemoryListener *listener)
3617 {
3618 }
3619
3620 static void io_commit(MemoryListener *listener)
3621 {
3622 }
3623
3624 static void io_region_add(MemoryListener *listener,
3625 MemoryRegionSection *section)
3626 {
3627 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3628
3629 mrio->mr = section->mr;
3630 mrio->offset = section->offset_within_region;
3631 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3632 section->offset_within_address_space, section->size);
3633 ioport_register(&mrio->iorange);
3634 }
3635
3636 static void io_region_del(MemoryListener *listener,
3637 MemoryRegionSection *section)
3638 {
3639 isa_unassign_ioport(section->offset_within_address_space, section->size);
3640 }
3641
3642 static void io_region_nop(MemoryListener *listener,
3643 MemoryRegionSection *section)
3644 {
3645 }
3646
3647 static void io_log_start(MemoryListener *listener,
3648 MemoryRegionSection *section)
3649 {
3650 }
3651
3652 static void io_log_stop(MemoryListener *listener,
3653 MemoryRegionSection *section)
3654 {
3655 }
3656
3657 static void io_log_sync(MemoryListener *listener,
3658 MemoryRegionSection *section)
3659 {
3660 }
3661
3662 static void io_log_global_start(MemoryListener *listener)
3663 {
3664 }
3665
3666 static void io_log_global_stop(MemoryListener *listener)
3667 {
3668 }
3669
3670 static void io_eventfd_add(MemoryListener *listener,
3671 MemoryRegionSection *section,
3672 bool match_data, uint64_t data, int fd)
3673 {
3674 }
3675
3676 static void io_eventfd_del(MemoryListener *listener,
3677 MemoryRegionSection *section,
3678 bool match_data, uint64_t data, int fd)
3679 {
3680 }
3681
3682 static MemoryListener core_memory_listener = {
3683 .begin = core_begin,
3684 .commit = core_commit,
3685 .region_add = core_region_add,
3686 .region_del = core_region_del,
3687 .region_nop = core_region_nop,
3688 .log_start = core_log_start,
3689 .log_stop = core_log_stop,
3690 .log_sync = core_log_sync,
3691 .log_global_start = core_log_global_start,
3692 .log_global_stop = core_log_global_stop,
3693 .eventfd_add = core_eventfd_add,
3694 .eventfd_del = core_eventfd_del,
3695 .priority = 0,
3696 };
3697
3698 static MemoryListener io_memory_listener = {
3699 .begin = io_begin,
3700 .commit = io_commit,
3701 .region_add = io_region_add,
3702 .region_del = io_region_del,
3703 .region_nop = io_region_nop,
3704 .log_start = io_log_start,
3705 .log_stop = io_log_stop,
3706 .log_sync = io_log_sync,
3707 .log_global_start = io_log_global_start,
3708 .log_global_stop = io_log_global_stop,
3709 .eventfd_add = io_eventfd_add,
3710 .eventfd_del = io_eventfd_del,
3711 .priority = 0,
3712 };
3713
3714 static void memory_map_init(void)
3715 {
3716 system_memory = g_malloc(sizeof(*system_memory));
3717 memory_region_init(system_memory, "system", INT64_MAX);
3718 set_system_memory_map(system_memory);
3719
3720 system_io = g_malloc(sizeof(*system_io));
3721 memory_region_init(system_io, "io", 65536);
3722 set_system_io_map(system_io);
3723
3724 memory_listener_register(&core_memory_listener, system_memory);
3725 memory_listener_register(&io_memory_listener, system_io);
3726 }
3727
3728 MemoryRegion *get_system_memory(void)
3729 {
3730 return system_memory;
3731 }
3732
3733 MemoryRegion *get_system_io(void)
3734 {
3735 return system_io;
3736 }
3737
3738 #endif /* !defined(CONFIG_USER_ONLY) */
3739
3740 /* physical memory access (slow version, mainly for debug) */
3741 #if defined(CONFIG_USER_ONLY)
3742 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3743 uint8_t *buf, int len, int is_write)
3744 {
3745 int l, flags;
3746 target_ulong page;
3747 void * p;
3748
3749 while (len > 0) {
3750 page = addr & TARGET_PAGE_MASK;
3751 l = (page + TARGET_PAGE_SIZE) - addr;
3752 if (l > len)
3753 l = len;
3754 flags = page_get_flags(page);
3755 if (!(flags & PAGE_VALID))
3756 return -1;
3757 if (is_write) {
3758 if (!(flags & PAGE_WRITE))
3759 return -1;
3760 /* XXX: this code should not depend on lock_user */
3761 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3762 return -1;
3763 memcpy(p, buf, l);
3764 unlock_user(p, addr, l);
3765 } else {
3766 if (!(flags & PAGE_READ))
3767 return -1;
3768 /* XXX: this code should not depend on lock_user */
3769 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3770 return -1;
3771 memcpy(buf, p, l);
3772 unlock_user(p, addr, 0);
3773 }
3774 len -= l;
3775 buf += l;
3776 addr += l;
3777 }
3778 return 0;
3779 }
3780
3781 #else
3782 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3783 int len, int is_write)
3784 {
3785 int l;
3786 uint8_t *ptr;
3787 uint32_t val;
3788 target_phys_addr_t page;
3789 MemoryRegionSection *section;
3790
3791 while (len > 0) {
3792 page = addr & TARGET_PAGE_MASK;
3793 l = (page + TARGET_PAGE_SIZE) - addr;
3794 if (l > len)
3795 l = len;
3796 section = phys_page_find(page >> TARGET_PAGE_BITS);
3797
3798 if (is_write) {
3799 if (!memory_region_is_ram(section->mr)) {
3800 target_phys_addr_t addr1;
3801 addr1 = section_addr(section, addr);
3802 /* XXX: could force cpu_single_env to NULL to avoid
3803 potential bugs */
3804 if (l >= 4 && ((addr1 & 3) == 0)) {
3805 /* 32 bit write access */
3806 val = ldl_p(buf);
3807 io_mem_write(section->mr, addr1, val, 4);
3808 l = 4;
3809 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3810 /* 16 bit write access */
3811 val = lduw_p(buf);
3812 io_mem_write(section->mr, addr1, val, 2);
3813 l = 2;
3814 } else {
3815 /* 8 bit write access */
3816 val = ldub_p(buf);
3817 io_mem_write(section->mr, addr1, val, 1);
3818 l = 1;
3819 }
3820 } else if (!section->readonly) {
3821 ram_addr_t addr1;
3822 addr1 = memory_region_get_ram_addr(section->mr)
3823 + section_addr(section, addr);
3824 /* RAM case */
3825 ptr = qemu_get_ram_ptr(addr1);
3826 memcpy(ptr, buf, l);
3827 if (!cpu_physical_memory_is_dirty(addr1)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3830 /* set dirty bit */
3831 cpu_physical_memory_set_dirty_flags(
3832 addr1, (0xff & ~CODE_DIRTY_FLAG));
3833 }
3834 qemu_put_ram_ptr(ptr);
3835 }
3836 } else {
3837 if (!is_ram_rom_romd(section)) {
3838 target_phys_addr_t addr1;
3839 /* I/O case */
3840 addr1 = section_addr(section, addr);
3841 if (l >= 4 && ((addr1 & 3) == 0)) {
3842 /* 32 bit read access */
3843 val = io_mem_read(section->mr, addr1, 4);
3844 stl_p(buf, val);
3845 l = 4;
3846 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3847 /* 16 bit read access */
3848 val = io_mem_read(section->mr, addr1, 2);
3849 stw_p(buf, val);
3850 l = 2;
3851 } else {
3852 /* 8 bit read access */
3853 val = io_mem_read(section->mr, addr1, 1);
3854 stb_p(buf, val);
3855 l = 1;
3856 }
3857 } else {
3858 /* RAM case */
3859 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3860 + section_addr(section, addr));
3861 memcpy(buf, ptr, l);
3862 qemu_put_ram_ptr(ptr);
3863 }
3864 }
3865 len -= l;
3866 buf += l;
3867 addr += l;
3868 }
3869 }
3870
3871 /* used for ROM loading : can write in RAM and ROM */
3872 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3873 const uint8_t *buf, int len)
3874 {
3875 int l;
3876 uint8_t *ptr;
3877 target_phys_addr_t page;
3878 MemoryRegionSection *section;
3879
3880 while (len > 0) {
3881 page = addr & TARGET_PAGE_MASK;
3882 l = (page + TARGET_PAGE_SIZE) - addr;
3883 if (l > len)
3884 l = len;
3885 section = phys_page_find(page >> TARGET_PAGE_BITS);
3886
3887 if (!is_ram_rom_romd(section)) {
3888 /* do nothing */
3889 } else {
3890 unsigned long addr1;
3891 addr1 = memory_region_get_ram_addr(section->mr)
3892 + section_addr(section, addr);
3893 /* ROM/RAM case */
3894 ptr = qemu_get_ram_ptr(addr1);
3895 memcpy(ptr, buf, l);
3896 qemu_put_ram_ptr(ptr);
3897 }
3898 len -= l;
3899 buf += l;
3900 addr += l;
3901 }
3902 }
3903
3904 typedef struct {
3905 void *buffer;
3906 target_phys_addr_t addr;
3907 target_phys_addr_t len;
3908 } BounceBuffer;
3909
3910 static BounceBuffer bounce;
3911
3912 typedef struct MapClient {
3913 void *opaque;
3914 void (*callback)(void *opaque);
3915 QLIST_ENTRY(MapClient) link;
3916 } MapClient;
3917
3918 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3919 = QLIST_HEAD_INITIALIZER(map_client_list);
3920
3921 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3922 {
3923 MapClient *client = g_malloc(sizeof(*client));
3924
3925 client->opaque = opaque;
3926 client->callback = callback;
3927 QLIST_INSERT_HEAD(&map_client_list, client, link);
3928 return client;
3929 }
3930
3931 void cpu_unregister_map_client(void *_client)
3932 {
3933 MapClient *client = (MapClient *)_client;
3934
3935 QLIST_REMOVE(client, link);
3936 g_free(client);
3937 }
3938
3939 static void cpu_notify_map_clients(void)
3940 {
3941 MapClient *client;
3942
3943 while (!QLIST_EMPTY(&map_client_list)) {
3944 client = QLIST_FIRST(&map_client_list);
3945 client->callback(client->opaque);
3946 cpu_unregister_map_client(client);
3947 }
3948 }
3949
3950 /* Map a physical memory region into a host virtual address.
3951 * May map a subset of the requested range, given by and returned in *plen.
3952 * May return NULL if resources needed to perform the mapping are exhausted.
3953 * Use only for reads OR writes - not for read-modify-write operations.
3954 * Use cpu_register_map_client() to know when retrying the map operation is
3955 * likely to succeed.
3956 */
3957 void *cpu_physical_memory_map(target_phys_addr_t addr,
3958 target_phys_addr_t *plen,
3959 int is_write)
3960 {
3961 target_phys_addr_t len = *plen;
3962 target_phys_addr_t todo = 0;
3963 int l;
3964 target_phys_addr_t page;
3965 MemoryRegionSection *section;
3966 ram_addr_t raddr = RAM_ADDR_MAX;
3967 ram_addr_t rlen;
3968 void *ret;
3969
3970 while (len > 0) {
3971 page = addr & TARGET_PAGE_MASK;
3972 l = (page + TARGET_PAGE_SIZE) - addr;
3973 if (l > len)
3974 l = len;
3975 section = phys_page_find(page >> TARGET_PAGE_BITS);
3976
3977 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3978 if (todo || bounce.buffer) {
3979 break;
3980 }
3981 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3982 bounce.addr = addr;
3983 bounce.len = l;
3984 if (!is_write) {
3985 cpu_physical_memory_read(addr, bounce.buffer, l);
3986 }
3987
3988 *plen = l;
3989 return bounce.buffer;
3990 }
3991 if (!todo) {
3992 raddr = memory_region_get_ram_addr(section->mr)
3993 + section_addr(section, addr);
3994 }
3995
3996 len -= l;
3997 addr += l;
3998 todo += l;
3999 }
4000 rlen = todo;
4001 ret = qemu_ram_ptr_length(raddr, &rlen);
4002 *plen = rlen;
4003 return ret;
4004 }
4005
4006 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4007 * Will also mark the memory as dirty if is_write == 1. access_len gives
4008 * the amount of memory that was actually read or written by the caller.
4009 */
4010 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4011 int is_write, target_phys_addr_t access_len)
4012 {
4013 if (buffer != bounce.buffer) {
4014 if (is_write) {
4015 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4016 while (access_len) {
4017 unsigned l;
4018 l = TARGET_PAGE_SIZE;
4019 if (l > access_len)
4020 l = access_len;
4021 if (!cpu_physical_memory_is_dirty(addr1)) {
4022 /* invalidate code */
4023 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4024 /* set dirty bit */
4025 cpu_physical_memory_set_dirty_flags(
4026 addr1, (0xff & ~CODE_DIRTY_FLAG));
4027 }
4028 addr1 += l;
4029 access_len -= l;
4030 }
4031 }
4032 if (xen_enabled()) {
4033 xen_invalidate_map_cache_entry(buffer);
4034 }
4035 return;
4036 }
4037 if (is_write) {
4038 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4039 }
4040 qemu_vfree(bounce.buffer);
4041 bounce.buffer = NULL;
4042 cpu_notify_map_clients();
4043 }
4044
4045 /* warning: addr must be aligned */
4046 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4047 enum device_endian endian)
4048 {
4049 uint8_t *ptr;
4050 uint32_t val;
4051 MemoryRegionSection *section;
4052
4053 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4054
4055 if (!is_ram_rom_romd(section)) {
4056 /* I/O case */
4057 addr = section_addr(section, addr);
4058 val = io_mem_read(section->mr, addr, 4);
4059 #if defined(TARGET_WORDS_BIGENDIAN)
4060 if (endian == DEVICE_LITTLE_ENDIAN) {
4061 val = bswap32(val);
4062 }
4063 #else
4064 if (endian == DEVICE_BIG_ENDIAN) {
4065 val = bswap32(val);
4066 }
4067 #endif
4068 } else {
4069 /* RAM case */
4070 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4071 & TARGET_PAGE_MASK)
4072 + section_addr(section, addr));
4073 switch (endian) {
4074 case DEVICE_LITTLE_ENDIAN:
4075 val = ldl_le_p(ptr);
4076 break;
4077 case DEVICE_BIG_ENDIAN:
4078 val = ldl_be_p(ptr);
4079 break;
4080 default:
4081 val = ldl_p(ptr);
4082 break;
4083 }
4084 }
4085 return val;
4086 }
4087
4088 uint32_t ldl_phys(target_phys_addr_t addr)
4089 {
4090 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4091 }
4092
4093 uint32_t ldl_le_phys(target_phys_addr_t addr)
4094 {
4095 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4096 }
4097
4098 uint32_t ldl_be_phys(target_phys_addr_t addr)
4099 {
4100 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4101 }
4102
4103 /* warning: addr must be aligned */
4104 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4105 enum device_endian endian)
4106 {
4107 uint8_t *ptr;
4108 uint64_t val;
4109 MemoryRegionSection *section;
4110
4111 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4112
4113 if (!is_ram_rom_romd(section)) {
4114 /* I/O case */
4115 addr = section_addr(section, addr);
4116
4117 /* XXX This is broken when device endian != cpu endian.
4118 Fix and add "endian" variable check */
4119 #ifdef TARGET_WORDS_BIGENDIAN
4120 val = io_mem_read(section->mr, addr, 4) << 32;
4121 val |= io_mem_read(section->mr, addr + 4, 4);
4122 #else
4123 val = io_mem_read(section->mr, addr, 4);
4124 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
4125 #endif
4126 } else {
4127 /* RAM case */
4128 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4129 & TARGET_PAGE_MASK)
4130 + section_addr(section, addr));
4131 switch (endian) {
4132 case DEVICE_LITTLE_ENDIAN:
4133 val = ldq_le_p(ptr);
4134 break;
4135 case DEVICE_BIG_ENDIAN:
4136 val = ldq_be_p(ptr);
4137 break;
4138 default:
4139 val = ldq_p(ptr);
4140 break;
4141 }
4142 }
4143 return val;
4144 }
4145
4146 uint64_t ldq_phys(target_phys_addr_t addr)
4147 {
4148 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4149 }
4150
4151 uint64_t ldq_le_phys(target_phys_addr_t addr)
4152 {
4153 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4154 }
4155
4156 uint64_t ldq_be_phys(target_phys_addr_t addr)
4157 {
4158 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4159 }
4160
4161 /* XXX: optimize */
4162 uint32_t ldub_phys(target_phys_addr_t addr)
4163 {
4164 uint8_t val;
4165 cpu_physical_memory_read(addr, &val, 1);
4166 return val;
4167 }
4168
4169 /* warning: addr must be aligned */
4170 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4171 enum device_endian endian)
4172 {
4173 uint8_t *ptr;
4174 uint64_t val;
4175 MemoryRegionSection *section;
4176
4177 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4178
4179 if (!is_ram_rom_romd(section)) {
4180 /* I/O case */
4181 addr = section_addr(section, addr);
4182 val = io_mem_read(section->mr, addr, 2);
4183 #if defined(TARGET_WORDS_BIGENDIAN)
4184 if (endian == DEVICE_LITTLE_ENDIAN) {
4185 val = bswap16(val);
4186 }
4187 #else
4188 if (endian == DEVICE_BIG_ENDIAN) {
4189 val = bswap16(val);
4190 }
4191 #endif
4192 } else {
4193 /* RAM case */
4194 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4195 & TARGET_PAGE_MASK)
4196 + section_addr(section, addr));
4197 switch (endian) {
4198 case DEVICE_LITTLE_ENDIAN:
4199 val = lduw_le_p(ptr);
4200 break;
4201 case DEVICE_BIG_ENDIAN:
4202 val = lduw_be_p(ptr);
4203 break;
4204 default:
4205 val = lduw_p(ptr);
4206 break;
4207 }
4208 }
4209 return val;
4210 }
4211
4212 uint32_t lduw_phys(target_phys_addr_t addr)
4213 {
4214 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4215 }
4216
4217 uint32_t lduw_le_phys(target_phys_addr_t addr)
4218 {
4219 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4220 }
4221
4222 uint32_t lduw_be_phys(target_phys_addr_t addr)
4223 {
4224 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4225 }
4226
4227 /* warning: addr must be aligned. The ram page is not masked as dirty
4228 and the code inside is not invalidated. It is useful if the dirty
4229 bits are used to track modified PTEs */
4230 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4231 {
4232 uint8_t *ptr;
4233 MemoryRegionSection *section;
4234
4235 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4236
4237 if (!memory_region_is_ram(section->mr) || section->readonly) {
4238 addr = section_addr(section, addr);
4239 if (memory_region_is_ram(section->mr)) {
4240 section = &phys_sections[phys_section_rom];
4241 }
4242 io_mem_write(section->mr, addr, val, 4);
4243 } else {
4244 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
4245 & TARGET_PAGE_MASK)
4246 + section_addr(section, addr);
4247 ptr = qemu_get_ram_ptr(addr1);
4248 stl_p(ptr, val);
4249
4250 if (unlikely(in_migration)) {
4251 if (!cpu_physical_memory_is_dirty(addr1)) {
4252 /* invalidate code */
4253 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4254 /* set dirty bit */
4255 cpu_physical_memory_set_dirty_flags(
4256 addr1, (0xff & ~CODE_DIRTY_FLAG));
4257 }
4258 }
4259 }
4260 }
4261
4262 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4263 {
4264 uint8_t *ptr;
4265 MemoryRegionSection *section;
4266
4267 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4268
4269 if (!memory_region_is_ram(section->mr) || section->readonly) {
4270 addr = section_addr(section, addr);
4271 if (memory_region_is_ram(section->mr)) {
4272 section = &phys_sections[phys_section_rom];
4273 }
4274 #ifdef TARGET_WORDS_BIGENDIAN
4275 io_mem_write(section->mr, addr, val >> 32, 4);
4276 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
4277 #else
4278 io_mem_write(section->mr, addr, (uint32_t)val, 4);
4279 io_mem_write(section->mr, addr + 4, val >> 32, 4);
4280 #endif
4281 } else {
4282 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4283 & TARGET_PAGE_MASK)
4284 + section_addr(section, addr));
4285 stq_p(ptr, val);
4286 }
4287 }
4288
4289 /* warning: addr must be aligned */
4290 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4291 enum device_endian endian)
4292 {
4293 uint8_t *ptr;
4294 MemoryRegionSection *section;
4295
4296 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4297
4298 if (!memory_region_is_ram(section->mr) || section->readonly) {
4299 addr = section_addr(section, addr);
4300 if (memory_region_is_ram(section->mr)) {
4301 section = &phys_sections[phys_section_rom];
4302 }
4303 #if defined(TARGET_WORDS_BIGENDIAN)
4304 if (endian == DEVICE_LITTLE_ENDIAN) {
4305 val = bswap32(val);
4306 }
4307 #else
4308 if (endian == DEVICE_BIG_ENDIAN) {
4309 val = bswap32(val);
4310 }
4311 #endif
4312 io_mem_write(section->mr, addr, val, 4);
4313 } else {
4314 unsigned long addr1;
4315 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4316 + section_addr(section, addr);
4317 /* RAM case */
4318 ptr = qemu_get_ram_ptr(addr1);
4319 switch (endian) {
4320 case DEVICE_LITTLE_ENDIAN:
4321 stl_le_p(ptr, val);
4322 break;
4323 case DEVICE_BIG_ENDIAN:
4324 stl_be_p(ptr, val);
4325 break;
4326 default:
4327 stl_p(ptr, val);
4328 break;
4329 }
4330 if (!cpu_physical_memory_is_dirty(addr1)) {
4331 /* invalidate code */
4332 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4333 /* set dirty bit */
4334 cpu_physical_memory_set_dirty_flags(addr1,
4335 (0xff & ~CODE_DIRTY_FLAG));
4336 }
4337 }
4338 }
4339
4340 void stl_phys(target_phys_addr_t addr, uint32_t val)
4341 {
4342 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4343 }
4344
4345 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4346 {
4347 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4348 }
4349
4350 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4351 {
4352 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4353 }
4354
4355 /* XXX: optimize */
4356 void stb_phys(target_phys_addr_t addr, uint32_t val)
4357 {
4358 uint8_t v = val;
4359 cpu_physical_memory_write(addr, &v, 1);
4360 }
4361
4362 /* warning: addr must be aligned */
4363 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4364 enum device_endian endian)
4365 {
4366 uint8_t *ptr;
4367 MemoryRegionSection *section;
4368
4369 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4370
4371 if (!memory_region_is_ram(section->mr) || section->readonly) {
4372 addr = section_addr(section, addr);
4373 if (memory_region_is_ram(section->mr)) {
4374 section = &phys_sections[phys_section_rom];
4375 }
4376 #if defined(TARGET_WORDS_BIGENDIAN)
4377 if (endian == DEVICE_LITTLE_ENDIAN) {
4378 val = bswap16(val);
4379 }
4380 #else
4381 if (endian == DEVICE_BIG_ENDIAN) {
4382 val = bswap16(val);
4383 }
4384 #endif
4385 io_mem_write(section->mr, addr, val, 2);
4386 } else {
4387 unsigned long addr1;
4388 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4389 + section_addr(section, addr);
4390 /* RAM case */
4391 ptr = qemu_get_ram_ptr(addr1);
4392 switch (endian) {
4393 case DEVICE_LITTLE_ENDIAN:
4394 stw_le_p(ptr, val);
4395 break;
4396 case DEVICE_BIG_ENDIAN:
4397 stw_be_p(ptr, val);
4398 break;
4399 default:
4400 stw_p(ptr, val);
4401 break;
4402 }
4403 if (!cpu_physical_memory_is_dirty(addr1)) {
4404 /* invalidate code */
4405 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4406 /* set dirty bit */
4407 cpu_physical_memory_set_dirty_flags(addr1,
4408 (0xff & ~CODE_DIRTY_FLAG));
4409 }
4410 }
4411 }
4412
4413 void stw_phys(target_phys_addr_t addr, uint32_t val)
4414 {
4415 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4416 }
4417
4418 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4419 {
4420 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4421 }
4422
4423 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4424 {
4425 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4426 }
4427
4428 /* XXX: optimize */
4429 void stq_phys(target_phys_addr_t addr, uint64_t val)
4430 {
4431 val = tswap64(val);
4432 cpu_physical_memory_write(addr, &val, 8);
4433 }
4434
4435 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4436 {
4437 val = cpu_to_le64(val);
4438 cpu_physical_memory_write(addr, &val, 8);
4439 }
4440
4441 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4442 {
4443 val = cpu_to_be64(val);
4444 cpu_physical_memory_write(addr, &val, 8);
4445 }
4446
4447 /* virtual memory access for debug (includes writing to ROM) */
4448 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4449 uint8_t *buf, int len, int is_write)
4450 {
4451 int l;
4452 target_phys_addr_t phys_addr;
4453 target_ulong page;
4454
4455 while (len > 0) {
4456 page = addr & TARGET_PAGE_MASK;
4457 phys_addr = cpu_get_phys_page_debug(env, page);
4458 /* if no physical page mapped, return an error */
4459 if (phys_addr == -1)
4460 return -1;
4461 l = (page + TARGET_PAGE_SIZE) - addr;
4462 if (l > len)
4463 l = len;
4464 phys_addr += (addr & ~TARGET_PAGE_MASK);
4465 if (is_write)
4466 cpu_physical_memory_write_rom(phys_addr, buf, l);
4467 else
4468 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4469 len -= l;
4470 buf += l;
4471 addr += l;
4472 }
4473 return 0;
4474 }
4475 #endif
4476
4477 /* in deterministic execution mode, instructions doing device I/Os
4478 must be at the end of the TB */
4479 void cpu_io_recompile(CPUArchState *env, void *retaddr)
4480 {
4481 TranslationBlock *tb;
4482 uint32_t n, cflags;
4483 target_ulong pc, cs_base;
4484 uint64_t flags;
4485
4486 tb = tb_find_pc((unsigned long)retaddr);
4487 if (!tb) {
4488 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4489 retaddr);
4490 }
4491 n = env->icount_decr.u16.low + tb->icount;
4492 cpu_restore_state(tb, env, (unsigned long)retaddr);
4493 /* Calculate how many instructions had been executed before the fault
4494 occurred. */
4495 n = n - env->icount_decr.u16.low;
4496 /* Generate a new TB ending on the I/O insn. */
4497 n++;
4498 /* On MIPS and SH, delay slot instructions can only be restarted if
4499 they were already the first instruction in the TB. If this is not
4500 the first instruction in a TB then re-execute the preceding
4501 branch. */
4502 #if defined(TARGET_MIPS)
4503 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4504 env->active_tc.PC -= 4;
4505 env->icount_decr.u16.low++;
4506 env->hflags &= ~MIPS_HFLAG_BMASK;
4507 }
4508 #elif defined(TARGET_SH4)
4509 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4510 && n > 1) {
4511 env->pc -= 2;
4512 env->icount_decr.u16.low++;
4513 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4514 }
4515 #endif
4516 /* This should never happen. */
4517 if (n > CF_COUNT_MASK)
4518 cpu_abort(env, "TB too big during recompile");
4519
4520 cflags = n | CF_LAST_IO;
4521 pc = tb->pc;
4522 cs_base = tb->cs_base;
4523 flags = tb->flags;
4524 tb_phys_invalidate(tb, -1);
4525 /* FIXME: In theory this could raise an exception. In practice
4526 we have already translated the block once so it's probably ok. */
4527 tb_gen_code(env, pc, cs_base, flags, cflags);
4528 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4529 the first in the TB) then we end up generating a whole new TB and
4530 repeating the fault, which is horribly inefficient.
4531 Better would be to execute just this insn uncached, or generate a
4532 second new TB. */
4533 cpu_resume_from_signal(env, NULL);
4534 }
4535
4536 #if !defined(CONFIG_USER_ONLY)
4537
4538 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4539 {
4540 int i, target_code_size, max_target_code_size;
4541 int direct_jmp_count, direct_jmp2_count, cross_page;
4542 TranslationBlock *tb;
4543
4544 target_code_size = 0;
4545 max_target_code_size = 0;
4546 cross_page = 0;
4547 direct_jmp_count = 0;
4548 direct_jmp2_count = 0;
4549 for(i = 0; i < nb_tbs; i++) {
4550 tb = &tbs[i];
4551 target_code_size += tb->size;
4552 if (tb->size > max_target_code_size)
4553 max_target_code_size = tb->size;
4554 if (tb->page_addr[1] != -1)
4555 cross_page++;
4556 if (tb->tb_next_offset[0] != 0xffff) {
4557 direct_jmp_count++;
4558 if (tb->tb_next_offset[1] != 0xffff) {
4559 direct_jmp2_count++;
4560 }
4561 }
4562 }
4563 /* XXX: avoid using doubles ? */
4564 cpu_fprintf(f, "Translation buffer state:\n");
4565 cpu_fprintf(f, "gen code size %td/%ld\n",
4566 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4567 cpu_fprintf(f, "TB count %d/%d\n",
4568 nb_tbs, code_gen_max_blocks);
4569 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4570 nb_tbs ? target_code_size / nb_tbs : 0,
4571 max_target_code_size);
4572 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4573 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4574 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4575 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4576 cross_page,
4577 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4578 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4579 direct_jmp_count,
4580 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4581 direct_jmp2_count,
4582 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4583 cpu_fprintf(f, "\nStatistics:\n");
4584 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4585 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4586 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4587 tcg_dump_info(f, cpu_fprintf);
4588 }
4589
4590 /* NOTE: this function can trigger an exception */
4591 /* NOTE2: the returned address is not exactly the physical address: it
4592 is the offset relative to phys_ram_base */
4593 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
4594 {
4595 int mmu_idx, page_index, pd;
4596 void *p;
4597 MemoryRegion *mr;
4598
4599 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4600 mmu_idx = cpu_mmu_index(env1);
4601 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4602 (addr & TARGET_PAGE_MASK))) {
4603 #ifdef CONFIG_TCG_PASS_AREG0
4604 cpu_ldub_code(env1, addr);
4605 #else
4606 ldub_code(addr);
4607 #endif
4608 }
4609 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
4610 mr = iotlb_to_region(pd);
4611 if (mr != &io_mem_ram && mr != &io_mem_rom
4612 && mr != &io_mem_notdirty && !mr->rom_device
4613 && mr != &io_mem_watch) {
4614 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4615 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4616 #else
4617 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4618 #endif
4619 }
4620 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4621 return qemu_ram_addr_from_host_nofail(p);
4622 }
4623
4624 /*
4625 * A helper function for the _utterly broken_ virtio device model to find out if
4626 * it's running on a big endian machine. Don't do this at home kids!
4627 */
4628 bool virtio_is_big_endian(void);
4629 bool virtio_is_big_endian(void)
4630 {
4631 #if defined(TARGET_WORDS_BIGENDIAN)
4632 return true;
4633 #else
4634 return false;
4635 #endif
4636 }
4637
4638 #define MMUSUFFIX _cmmu
4639 #undef GETPC
4640 #define GETPC() NULL
4641 #define env cpu_single_env
4642 #define SOFTMMU_CODE_ACCESS
4643
4644 #define SHIFT 0
4645 #include "softmmu_template.h"
4646
4647 #define SHIFT 1
4648 #include "softmmu_template.h"
4649
4650 #define SHIFT 2
4651 #include "softmmu_template.h"
4652
4653 #define SHIFT 3
4654 #include "softmmu_template.h"
4655
4656 #undef env
4657
4658 #endif