]> git.proxmox.com Git - qemu.git/blob - exec.c
Fix a typo introduced in revision 4272
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
35
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include <qemu.h>
41 #endif
42
43 //#define DEBUG_TB_INVALIDATE
44 //#define DEBUG_FLUSH
45 //#define DEBUG_TLB
46 //#define DEBUG_UNASSIGNED
47
48 /* make various TB consistency checks */
49 //#define DEBUG_TB_CHECK
50 //#define DEBUG_TLB_CHECK
51
52 //#define DEBUG_IOPORT
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 /* TB consistency checks only implemented for usermode emulation. */
57 #undef DEBUG_TB_CHECK
58 #endif
59
60 /* threshold to flush the translated code buffer */
61 #define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - code_gen_max_block_size())
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #define MMAP_AREA_START 0x00000000
66 #define MMAP_AREA_END 0xa8000000
67
68 #if defined(TARGET_SPARC64)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 41
70 #elif defined(TARGET_SPARC)
71 #define TARGET_PHYS_ADDR_SPACE_BITS 36
72 #elif defined(TARGET_ALPHA)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #define TARGET_VIRT_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_PPC64)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 42
77 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
78 #define TARGET_PHYS_ADDR_SPACE_BITS 42
79 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
80 #define TARGET_PHYS_ADDR_SPACE_BITS 36
81 #else
82 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
83 #define TARGET_PHYS_ADDR_SPACE_BITS 32
84 #endif
85
86 TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
87 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
88 int nb_tbs;
89 /* any access to the tbs or the page table must use this lock */
90 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
91
92 uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
93 uint8_t *code_gen_ptr;
94
95 ram_addr_t phys_ram_size;
96 int phys_ram_fd;
97 uint8_t *phys_ram_base;
98 uint8_t *phys_ram_dirty;
99 static ram_addr_t phys_ram_alloc_offset = 0;
100
101 CPUState *first_cpu;
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 CPUState *cpu_single_env;
105
106 typedef struct PageDesc {
107 /* list of TBs intersecting this ram page */
108 TranslationBlock *first_tb;
109 /* in order to optimize self modifying code, we count the number
110 of lookups we do to a given page to use a bitmap */
111 unsigned int code_write_count;
112 uint8_t *code_bitmap;
113 #if defined(CONFIG_USER_ONLY)
114 unsigned long flags;
115 #endif
116 } PageDesc;
117
118 typedef struct PhysPageDesc {
119 /* offset in host memory of the page + io_index in the low 12 bits */
120 ram_addr_t phys_offset;
121 } PhysPageDesc;
122
123 #define L2_BITS 10
124 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
125 /* XXX: this is a temporary hack for alpha target.
126 * In the future, this is to be replaced by a multi-level table
127 * to actually be able to handle the complete 64 bits address space.
128 */
129 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
130 #else
131 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
132 #endif
133
134 #define L1_SIZE (1 << L1_BITS)
135 #define L2_SIZE (1 << L2_BITS)
136
137 static void io_mem_init(void);
138
139 unsigned long qemu_real_host_page_size;
140 unsigned long qemu_host_page_bits;
141 unsigned long qemu_host_page_size;
142 unsigned long qemu_host_page_mask;
143
144 /* XXX: for system emulation, it could just be an array */
145 static PageDesc *l1_map[L1_SIZE];
146 PhysPageDesc **l1_phys_map;
147
148 /* io memory support */
149 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
150 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
151 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
152 static int io_mem_nb;
153 #if defined(CONFIG_SOFTMMU)
154 static int io_mem_watch;
155 #endif
156
157 /* log support */
158 char *logfilename = "/tmp/qemu.log";
159 FILE *logfile;
160 int loglevel;
161 static int log_append = 0;
162
163 /* statistics */
164 static int tlb_flush_count;
165 static int tb_flush_count;
166 static int tb_phys_invalidate_count;
167
168 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
169 typedef struct subpage_t {
170 target_phys_addr_t base;
171 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
172 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
173 void *opaque[TARGET_PAGE_SIZE][2][4];
174 } subpage_t;
175
176 static void page_init(void)
177 {
178 /* NOTE: we can always suppose that qemu_host_page_size >=
179 TARGET_PAGE_SIZE */
180 #ifdef _WIN32
181 {
182 SYSTEM_INFO system_info;
183 DWORD old_protect;
184
185 GetSystemInfo(&system_info);
186 qemu_real_host_page_size = system_info.dwPageSize;
187
188 VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
189 PAGE_EXECUTE_READWRITE, &old_protect);
190 }
191 #else
192 qemu_real_host_page_size = getpagesize();
193 {
194 unsigned long start, end;
195
196 start = (unsigned long)code_gen_buffer;
197 start &= ~(qemu_real_host_page_size - 1);
198
199 end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
200 end += qemu_real_host_page_size - 1;
201 end &= ~(qemu_real_host_page_size - 1);
202
203 mprotect((void *)start, end - start,
204 PROT_READ | PROT_WRITE | PROT_EXEC);
205 }
206 #endif
207
208 if (qemu_host_page_size == 0)
209 qemu_host_page_size = qemu_real_host_page_size;
210 if (qemu_host_page_size < TARGET_PAGE_SIZE)
211 qemu_host_page_size = TARGET_PAGE_SIZE;
212 qemu_host_page_bits = 0;
213 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
214 qemu_host_page_bits++;
215 qemu_host_page_mask = ~(qemu_host_page_size - 1);
216 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
217 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
218
219 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
220 {
221 long long startaddr, endaddr;
222 FILE *f;
223 int n;
224
225 f = fopen("/proc/self/maps", "r");
226 if (f) {
227 do {
228 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
229 if (n == 2) {
230 page_set_flags(TARGET_PAGE_ALIGN(startaddr),
231 TARGET_PAGE_ALIGN(endaddr),
232 PAGE_RESERVED);
233 }
234 } while (!feof(f));
235 fclose(f);
236 }
237 }
238 #endif
239 }
240
241 static inline PageDesc *page_find_alloc(target_ulong index)
242 {
243 PageDesc **lp, *p;
244
245 lp = &l1_map[index >> L2_BITS];
246 p = *lp;
247 if (!p) {
248 /* allocate if not found */
249 p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
250 memset(p, 0, sizeof(PageDesc) * L2_SIZE);
251 *lp = p;
252 }
253 return p + (index & (L2_SIZE - 1));
254 }
255
256 static inline PageDesc *page_find(target_ulong index)
257 {
258 PageDesc *p;
259
260 p = l1_map[index >> L2_BITS];
261 if (!p)
262 return 0;
263 return p + (index & (L2_SIZE - 1));
264 }
265
266 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
267 {
268 void **lp, **p;
269 PhysPageDesc *pd;
270
271 p = (void **)l1_phys_map;
272 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
273
274 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
275 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
276 #endif
277 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
278 p = *lp;
279 if (!p) {
280 /* allocate if not found */
281 if (!alloc)
282 return NULL;
283 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
284 memset(p, 0, sizeof(void *) * L1_SIZE);
285 *lp = p;
286 }
287 #endif
288 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
289 pd = *lp;
290 if (!pd) {
291 int i;
292 /* allocate if not found */
293 if (!alloc)
294 return NULL;
295 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
296 *lp = pd;
297 for (i = 0; i < L2_SIZE; i++)
298 pd[i].phys_offset = IO_MEM_UNASSIGNED;
299 }
300 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
301 }
302
303 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
304 {
305 return phys_page_find_alloc(index, 0);
306 }
307
308 #if !defined(CONFIG_USER_ONLY)
309 static void tlb_protect_code(ram_addr_t ram_addr);
310 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
311 target_ulong vaddr);
312 #endif
313
314 void cpu_exec_init(CPUState *env)
315 {
316 CPUState **penv;
317 int cpu_index;
318
319 if (!code_gen_ptr) {
320 cpu_gen_init();
321 code_gen_ptr = code_gen_buffer;
322 page_init();
323 io_mem_init();
324 }
325 env->next_cpu = NULL;
326 penv = &first_cpu;
327 cpu_index = 0;
328 while (*penv != NULL) {
329 penv = (CPUState **)&(*penv)->next_cpu;
330 cpu_index++;
331 }
332 env->cpu_index = cpu_index;
333 env->nb_watchpoints = 0;
334 *penv = env;
335 }
336
337 static inline void invalidate_page_bitmap(PageDesc *p)
338 {
339 if (p->code_bitmap) {
340 qemu_free(p->code_bitmap);
341 p->code_bitmap = NULL;
342 }
343 p->code_write_count = 0;
344 }
345
346 /* set to NULL all the 'first_tb' fields in all PageDescs */
347 static void page_flush_tb(void)
348 {
349 int i, j;
350 PageDesc *p;
351
352 for(i = 0; i < L1_SIZE; i++) {
353 p = l1_map[i];
354 if (p) {
355 for(j = 0; j < L2_SIZE; j++) {
356 p->first_tb = NULL;
357 invalidate_page_bitmap(p);
358 p++;
359 }
360 }
361 }
362 }
363
364 /* flush all the translation blocks */
365 /* XXX: tb_flush is currently not thread safe */
366 void tb_flush(CPUState *env1)
367 {
368 CPUState *env;
369 #if defined(DEBUG_FLUSH)
370 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
371 (unsigned long)(code_gen_ptr - code_gen_buffer),
372 nb_tbs, nb_tbs > 0 ?
373 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
374 #endif
375 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > CODE_GEN_BUFFER_SIZE)
376 cpu_abort(env1, "Internal error: code buffer overflow\n");
377
378 nb_tbs = 0;
379
380 for(env = first_cpu; env != NULL; env = env->next_cpu) {
381 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
382 }
383
384 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
385 page_flush_tb();
386
387 code_gen_ptr = code_gen_buffer;
388 /* XXX: flush processor icache at this point if cache flush is
389 expensive */
390 tb_flush_count++;
391 }
392
393 #ifdef DEBUG_TB_CHECK
394
395 static void tb_invalidate_check(target_ulong address)
396 {
397 TranslationBlock *tb;
398 int i;
399 address &= TARGET_PAGE_MASK;
400 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
401 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
402 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
403 address >= tb->pc + tb->size)) {
404 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
405 address, (long)tb->pc, tb->size);
406 }
407 }
408 }
409 }
410
411 /* verify that all the pages have correct rights for code */
412 static void tb_page_check(void)
413 {
414 TranslationBlock *tb;
415 int i, flags1, flags2;
416
417 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
418 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
419 flags1 = page_get_flags(tb->pc);
420 flags2 = page_get_flags(tb->pc + tb->size - 1);
421 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
422 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
423 (long)tb->pc, tb->size, flags1, flags2);
424 }
425 }
426 }
427 }
428
429 void tb_jmp_check(TranslationBlock *tb)
430 {
431 TranslationBlock *tb1;
432 unsigned int n1;
433
434 /* suppress any remaining jumps to this TB */
435 tb1 = tb->jmp_first;
436 for(;;) {
437 n1 = (long)tb1 & 3;
438 tb1 = (TranslationBlock *)((long)tb1 & ~3);
439 if (n1 == 2)
440 break;
441 tb1 = tb1->jmp_next[n1];
442 }
443 /* check end of list */
444 if (tb1 != tb) {
445 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
446 }
447 }
448
449 #endif
450
451 /* invalidate one TB */
452 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
453 int next_offset)
454 {
455 TranslationBlock *tb1;
456 for(;;) {
457 tb1 = *ptb;
458 if (tb1 == tb) {
459 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
460 break;
461 }
462 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
463 }
464 }
465
466 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
467 {
468 TranslationBlock *tb1;
469 unsigned int n1;
470
471 for(;;) {
472 tb1 = *ptb;
473 n1 = (long)tb1 & 3;
474 tb1 = (TranslationBlock *)((long)tb1 & ~3);
475 if (tb1 == tb) {
476 *ptb = tb1->page_next[n1];
477 break;
478 }
479 ptb = &tb1->page_next[n1];
480 }
481 }
482
483 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
484 {
485 TranslationBlock *tb1, **ptb;
486 unsigned int n1;
487
488 ptb = &tb->jmp_next[n];
489 tb1 = *ptb;
490 if (tb1) {
491 /* find tb(n) in circular list */
492 for(;;) {
493 tb1 = *ptb;
494 n1 = (long)tb1 & 3;
495 tb1 = (TranslationBlock *)((long)tb1 & ~3);
496 if (n1 == n && tb1 == tb)
497 break;
498 if (n1 == 2) {
499 ptb = &tb1->jmp_first;
500 } else {
501 ptb = &tb1->jmp_next[n1];
502 }
503 }
504 /* now we can suppress tb(n) from the list */
505 *ptb = tb->jmp_next[n];
506
507 tb->jmp_next[n] = NULL;
508 }
509 }
510
511 /* reset the jump entry 'n' of a TB so that it is not chained to
512 another TB */
513 static inline void tb_reset_jump(TranslationBlock *tb, int n)
514 {
515 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
516 }
517
518 static inline void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
519 {
520 CPUState *env;
521 PageDesc *p;
522 unsigned int h, n1;
523 target_phys_addr_t phys_pc;
524 TranslationBlock *tb1, *tb2;
525
526 /* remove the TB from the hash list */
527 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
528 h = tb_phys_hash_func(phys_pc);
529 tb_remove(&tb_phys_hash[h], tb,
530 offsetof(TranslationBlock, phys_hash_next));
531
532 /* remove the TB from the page list */
533 if (tb->page_addr[0] != page_addr) {
534 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
535 tb_page_remove(&p->first_tb, tb);
536 invalidate_page_bitmap(p);
537 }
538 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
539 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
540 tb_page_remove(&p->first_tb, tb);
541 invalidate_page_bitmap(p);
542 }
543
544 tb_invalidated_flag = 1;
545
546 /* remove the TB from the hash list */
547 h = tb_jmp_cache_hash_func(tb->pc);
548 for(env = first_cpu; env != NULL; env = env->next_cpu) {
549 if (env->tb_jmp_cache[h] == tb)
550 env->tb_jmp_cache[h] = NULL;
551 }
552
553 /* suppress this TB from the two jump lists */
554 tb_jmp_remove(tb, 0);
555 tb_jmp_remove(tb, 1);
556
557 /* suppress any remaining jumps to this TB */
558 tb1 = tb->jmp_first;
559 for(;;) {
560 n1 = (long)tb1 & 3;
561 if (n1 == 2)
562 break;
563 tb1 = (TranslationBlock *)((long)tb1 & ~3);
564 tb2 = tb1->jmp_next[n1];
565 tb_reset_jump(tb1, n1);
566 tb1->jmp_next[n1] = NULL;
567 tb1 = tb2;
568 }
569 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
570
571 tb_phys_invalidate_count++;
572 }
573
574 static inline void set_bits(uint8_t *tab, int start, int len)
575 {
576 int end, mask, end1;
577
578 end = start + len;
579 tab += start >> 3;
580 mask = 0xff << (start & 7);
581 if ((start & ~7) == (end & ~7)) {
582 if (start < end) {
583 mask &= ~(0xff << (end & 7));
584 *tab |= mask;
585 }
586 } else {
587 *tab++ |= mask;
588 start = (start + 8) & ~7;
589 end1 = end & ~7;
590 while (start < end1) {
591 *tab++ = 0xff;
592 start += 8;
593 }
594 if (start < end) {
595 mask = ~(0xff << (end & 7));
596 *tab |= mask;
597 }
598 }
599 }
600
601 static void build_page_bitmap(PageDesc *p)
602 {
603 int n, tb_start, tb_end;
604 TranslationBlock *tb;
605
606 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
607 if (!p->code_bitmap)
608 return;
609 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
610
611 tb = p->first_tb;
612 while (tb != NULL) {
613 n = (long)tb & 3;
614 tb = (TranslationBlock *)((long)tb & ~3);
615 /* NOTE: this is subtle as a TB may span two physical pages */
616 if (n == 0) {
617 /* NOTE: tb_end may be after the end of the page, but
618 it is not a problem */
619 tb_start = tb->pc & ~TARGET_PAGE_MASK;
620 tb_end = tb_start + tb->size;
621 if (tb_end > TARGET_PAGE_SIZE)
622 tb_end = TARGET_PAGE_SIZE;
623 } else {
624 tb_start = 0;
625 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
626 }
627 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
628 tb = tb->page_next[n];
629 }
630 }
631
632 #ifdef TARGET_HAS_PRECISE_SMC
633
634 static void tb_gen_code(CPUState *env,
635 target_ulong pc, target_ulong cs_base, int flags,
636 int cflags)
637 {
638 TranslationBlock *tb;
639 uint8_t *tc_ptr;
640 target_ulong phys_pc, phys_page2, virt_page2;
641 int code_gen_size;
642
643 phys_pc = get_phys_addr_code(env, pc);
644 tb = tb_alloc(pc);
645 if (!tb) {
646 /* flush must be done */
647 tb_flush(env);
648 /* cannot fail at this point */
649 tb = tb_alloc(pc);
650 }
651 tc_ptr = code_gen_ptr;
652 tb->tc_ptr = tc_ptr;
653 tb->cs_base = cs_base;
654 tb->flags = flags;
655 tb->cflags = cflags;
656 cpu_gen_code(env, tb, &code_gen_size);
657 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
658
659 /* check next page if needed */
660 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
661 phys_page2 = -1;
662 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
663 phys_page2 = get_phys_addr_code(env, virt_page2);
664 }
665 tb_link_phys(tb, phys_pc, phys_page2);
666 }
667 #endif
668
669 /* invalidate all TBs which intersect with the target physical page
670 starting in range [start;end[. NOTE: start and end must refer to
671 the same physical page. 'is_cpu_write_access' should be true if called
672 from a real cpu write access: the virtual CPU will exit the current
673 TB if code is modified inside this TB. */
674 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
675 int is_cpu_write_access)
676 {
677 int n, current_tb_modified, current_tb_not_found, current_flags;
678 CPUState *env = cpu_single_env;
679 PageDesc *p;
680 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
681 target_ulong tb_start, tb_end;
682 target_ulong current_pc, current_cs_base;
683
684 p = page_find(start >> TARGET_PAGE_BITS);
685 if (!p)
686 return;
687 if (!p->code_bitmap &&
688 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
689 is_cpu_write_access) {
690 /* build code bitmap */
691 build_page_bitmap(p);
692 }
693
694 /* we remove all the TBs in the range [start, end[ */
695 /* XXX: see if in some cases it could be faster to invalidate all the code */
696 current_tb_not_found = is_cpu_write_access;
697 current_tb_modified = 0;
698 current_tb = NULL; /* avoid warning */
699 current_pc = 0; /* avoid warning */
700 current_cs_base = 0; /* avoid warning */
701 current_flags = 0; /* avoid warning */
702 tb = p->first_tb;
703 while (tb != NULL) {
704 n = (long)tb & 3;
705 tb = (TranslationBlock *)((long)tb & ~3);
706 tb_next = tb->page_next[n];
707 /* NOTE: this is subtle as a TB may span two physical pages */
708 if (n == 0) {
709 /* NOTE: tb_end may be after the end of the page, but
710 it is not a problem */
711 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
712 tb_end = tb_start + tb->size;
713 } else {
714 tb_start = tb->page_addr[1];
715 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
716 }
717 if (!(tb_end <= start || tb_start >= end)) {
718 #ifdef TARGET_HAS_PRECISE_SMC
719 if (current_tb_not_found) {
720 current_tb_not_found = 0;
721 current_tb = NULL;
722 if (env->mem_write_pc) {
723 /* now we have a real cpu fault */
724 current_tb = tb_find_pc(env->mem_write_pc);
725 }
726 }
727 if (current_tb == tb &&
728 !(current_tb->cflags & CF_SINGLE_INSN)) {
729 /* If we are modifying the current TB, we must stop
730 its execution. We could be more precise by checking
731 that the modification is after the current PC, but it
732 would require a specialized function to partially
733 restore the CPU state */
734
735 current_tb_modified = 1;
736 cpu_restore_state(current_tb, env,
737 env->mem_write_pc, NULL);
738 #if defined(TARGET_I386)
739 current_flags = env->hflags;
740 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
741 current_cs_base = (target_ulong)env->segs[R_CS].base;
742 current_pc = current_cs_base + env->eip;
743 #else
744 #error unsupported CPU
745 #endif
746 }
747 #endif /* TARGET_HAS_PRECISE_SMC */
748 /* we need to do that to handle the case where a signal
749 occurs while doing tb_phys_invalidate() */
750 saved_tb = NULL;
751 if (env) {
752 saved_tb = env->current_tb;
753 env->current_tb = NULL;
754 }
755 tb_phys_invalidate(tb, -1);
756 if (env) {
757 env->current_tb = saved_tb;
758 if (env->interrupt_request && env->current_tb)
759 cpu_interrupt(env, env->interrupt_request);
760 }
761 }
762 tb = tb_next;
763 }
764 #if !defined(CONFIG_USER_ONLY)
765 /* if no code remaining, no need to continue to use slow writes */
766 if (!p->first_tb) {
767 invalidate_page_bitmap(p);
768 if (is_cpu_write_access) {
769 tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
770 }
771 }
772 #endif
773 #ifdef TARGET_HAS_PRECISE_SMC
774 if (current_tb_modified) {
775 /* we generate a block containing just the instruction
776 modifying the memory. It will ensure that it cannot modify
777 itself */
778 env->current_tb = NULL;
779 tb_gen_code(env, current_pc, current_cs_base, current_flags,
780 CF_SINGLE_INSN);
781 cpu_resume_from_signal(env, NULL);
782 }
783 #endif
784 }
785
786 /* len must be <= 8 and start must be a multiple of len */
787 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
788 {
789 PageDesc *p;
790 int offset, b;
791 #if 0
792 if (1) {
793 if (loglevel) {
794 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
795 cpu_single_env->mem_write_vaddr, len,
796 cpu_single_env->eip,
797 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
798 }
799 }
800 #endif
801 p = page_find(start >> TARGET_PAGE_BITS);
802 if (!p)
803 return;
804 if (p->code_bitmap) {
805 offset = start & ~TARGET_PAGE_MASK;
806 b = p->code_bitmap[offset >> 3] >> (offset & 7);
807 if (b & ((1 << len) - 1))
808 goto do_invalidate;
809 } else {
810 do_invalidate:
811 tb_invalidate_phys_page_range(start, start + len, 1);
812 }
813 }
814
815 #if !defined(CONFIG_SOFTMMU)
816 static void tb_invalidate_phys_page(target_phys_addr_t addr,
817 unsigned long pc, void *puc)
818 {
819 int n, current_flags, current_tb_modified;
820 target_ulong current_pc, current_cs_base;
821 PageDesc *p;
822 TranslationBlock *tb, *current_tb;
823 #ifdef TARGET_HAS_PRECISE_SMC
824 CPUState *env = cpu_single_env;
825 #endif
826
827 addr &= TARGET_PAGE_MASK;
828 p = page_find(addr >> TARGET_PAGE_BITS);
829 if (!p)
830 return;
831 tb = p->first_tb;
832 current_tb_modified = 0;
833 current_tb = NULL;
834 current_pc = 0; /* avoid warning */
835 current_cs_base = 0; /* avoid warning */
836 current_flags = 0; /* avoid warning */
837 #ifdef TARGET_HAS_PRECISE_SMC
838 if (tb && pc != 0) {
839 current_tb = tb_find_pc(pc);
840 }
841 #endif
842 while (tb != NULL) {
843 n = (long)tb & 3;
844 tb = (TranslationBlock *)((long)tb & ~3);
845 #ifdef TARGET_HAS_PRECISE_SMC
846 if (current_tb == tb &&
847 !(current_tb->cflags & CF_SINGLE_INSN)) {
848 /* If we are modifying the current TB, we must stop
849 its execution. We could be more precise by checking
850 that the modification is after the current PC, but it
851 would require a specialized function to partially
852 restore the CPU state */
853
854 current_tb_modified = 1;
855 cpu_restore_state(current_tb, env, pc, puc);
856 #if defined(TARGET_I386)
857 current_flags = env->hflags;
858 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
859 current_cs_base = (target_ulong)env->segs[R_CS].base;
860 current_pc = current_cs_base + env->eip;
861 #else
862 #error unsupported CPU
863 #endif
864 }
865 #endif /* TARGET_HAS_PRECISE_SMC */
866 tb_phys_invalidate(tb, addr);
867 tb = tb->page_next[n];
868 }
869 p->first_tb = NULL;
870 #ifdef TARGET_HAS_PRECISE_SMC
871 if (current_tb_modified) {
872 /* we generate a block containing just the instruction
873 modifying the memory. It will ensure that it cannot modify
874 itself */
875 env->current_tb = NULL;
876 tb_gen_code(env, current_pc, current_cs_base, current_flags,
877 CF_SINGLE_INSN);
878 cpu_resume_from_signal(env, puc);
879 }
880 #endif
881 }
882 #endif
883
884 /* add the tb in the target page and protect it if necessary */
885 static inline void tb_alloc_page(TranslationBlock *tb,
886 unsigned int n, target_ulong page_addr)
887 {
888 PageDesc *p;
889 TranslationBlock *last_first_tb;
890
891 tb->page_addr[n] = page_addr;
892 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
893 tb->page_next[n] = p->first_tb;
894 last_first_tb = p->first_tb;
895 p->first_tb = (TranslationBlock *)((long)tb | n);
896 invalidate_page_bitmap(p);
897
898 #if defined(TARGET_HAS_SMC) || 1
899
900 #if defined(CONFIG_USER_ONLY)
901 if (p->flags & PAGE_WRITE) {
902 target_ulong addr;
903 PageDesc *p2;
904 int prot;
905
906 /* force the host page as non writable (writes will have a
907 page fault + mprotect overhead) */
908 page_addr &= qemu_host_page_mask;
909 prot = 0;
910 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
911 addr += TARGET_PAGE_SIZE) {
912
913 p2 = page_find (addr >> TARGET_PAGE_BITS);
914 if (!p2)
915 continue;
916 prot |= p2->flags;
917 p2->flags &= ~PAGE_WRITE;
918 page_get_flags(addr);
919 }
920 mprotect(g2h(page_addr), qemu_host_page_size,
921 (prot & PAGE_BITS) & ~PAGE_WRITE);
922 #ifdef DEBUG_TB_INVALIDATE
923 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
924 page_addr);
925 #endif
926 }
927 #else
928 /* if some code is already present, then the pages are already
929 protected. So we handle the case where only the first TB is
930 allocated in a physical page */
931 if (!last_first_tb) {
932 tlb_protect_code(page_addr);
933 }
934 #endif
935
936 #endif /* TARGET_HAS_SMC */
937 }
938
939 /* Allocate a new translation block. Flush the translation buffer if
940 too many translation blocks or too much generated code. */
941 TranslationBlock *tb_alloc(target_ulong pc)
942 {
943 TranslationBlock *tb;
944
945 if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
946 (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
947 return NULL;
948 tb = &tbs[nb_tbs++];
949 tb->pc = pc;
950 tb->cflags = 0;
951 return tb;
952 }
953
954 /* add a new TB and link it to the physical page tables. phys_page2 is
955 (-1) to indicate that only one page contains the TB. */
956 void tb_link_phys(TranslationBlock *tb,
957 target_ulong phys_pc, target_ulong phys_page2)
958 {
959 unsigned int h;
960 TranslationBlock **ptb;
961
962 /* add in the physical hash table */
963 h = tb_phys_hash_func(phys_pc);
964 ptb = &tb_phys_hash[h];
965 tb->phys_hash_next = *ptb;
966 *ptb = tb;
967
968 /* add in the page list */
969 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
970 if (phys_page2 != -1)
971 tb_alloc_page(tb, 1, phys_page2);
972 else
973 tb->page_addr[1] = -1;
974
975 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
976 tb->jmp_next[0] = NULL;
977 tb->jmp_next[1] = NULL;
978
979 /* init original jump addresses */
980 if (tb->tb_next_offset[0] != 0xffff)
981 tb_reset_jump(tb, 0);
982 if (tb->tb_next_offset[1] != 0xffff)
983 tb_reset_jump(tb, 1);
984
985 #ifdef DEBUG_TB_CHECK
986 tb_page_check();
987 #endif
988 }
989
990 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
991 tb[1].tc_ptr. Return NULL if not found */
992 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
993 {
994 int m_min, m_max, m;
995 unsigned long v;
996 TranslationBlock *tb;
997
998 if (nb_tbs <= 0)
999 return NULL;
1000 if (tc_ptr < (unsigned long)code_gen_buffer ||
1001 tc_ptr >= (unsigned long)code_gen_ptr)
1002 return NULL;
1003 /* binary search (cf Knuth) */
1004 m_min = 0;
1005 m_max = nb_tbs - 1;
1006 while (m_min <= m_max) {
1007 m = (m_min + m_max) >> 1;
1008 tb = &tbs[m];
1009 v = (unsigned long)tb->tc_ptr;
1010 if (v == tc_ptr)
1011 return tb;
1012 else if (tc_ptr < v) {
1013 m_max = m - 1;
1014 } else {
1015 m_min = m + 1;
1016 }
1017 }
1018 return &tbs[m_max];
1019 }
1020
1021 static void tb_reset_jump_recursive(TranslationBlock *tb);
1022
1023 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1024 {
1025 TranslationBlock *tb1, *tb_next, **ptb;
1026 unsigned int n1;
1027
1028 tb1 = tb->jmp_next[n];
1029 if (tb1 != NULL) {
1030 /* find head of list */
1031 for(;;) {
1032 n1 = (long)tb1 & 3;
1033 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1034 if (n1 == 2)
1035 break;
1036 tb1 = tb1->jmp_next[n1];
1037 }
1038 /* we are now sure now that tb jumps to tb1 */
1039 tb_next = tb1;
1040
1041 /* remove tb from the jmp_first list */
1042 ptb = &tb_next->jmp_first;
1043 for(;;) {
1044 tb1 = *ptb;
1045 n1 = (long)tb1 & 3;
1046 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1047 if (n1 == n && tb1 == tb)
1048 break;
1049 ptb = &tb1->jmp_next[n1];
1050 }
1051 *ptb = tb->jmp_next[n];
1052 tb->jmp_next[n] = NULL;
1053
1054 /* suppress the jump to next tb in generated code */
1055 tb_reset_jump(tb, n);
1056
1057 /* suppress jumps in the tb on which we could have jumped */
1058 tb_reset_jump_recursive(tb_next);
1059 }
1060 }
1061
1062 static void tb_reset_jump_recursive(TranslationBlock *tb)
1063 {
1064 tb_reset_jump_recursive2(tb, 0);
1065 tb_reset_jump_recursive2(tb, 1);
1066 }
1067
1068 #if defined(TARGET_HAS_ICE)
1069 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1070 {
1071 target_phys_addr_t addr;
1072 target_ulong pd;
1073 ram_addr_t ram_addr;
1074 PhysPageDesc *p;
1075
1076 addr = cpu_get_phys_page_debug(env, pc);
1077 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1078 if (!p) {
1079 pd = IO_MEM_UNASSIGNED;
1080 } else {
1081 pd = p->phys_offset;
1082 }
1083 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1084 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1085 }
1086 #endif
1087
1088 /* Add a watchpoint. */
1089 int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
1090 {
1091 int i;
1092
1093 for (i = 0; i < env->nb_watchpoints; i++) {
1094 if (addr == env->watchpoint[i].vaddr)
1095 return 0;
1096 }
1097 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1098 return -1;
1099
1100 i = env->nb_watchpoints++;
1101 env->watchpoint[i].vaddr = addr;
1102 tlb_flush_page(env, addr);
1103 /* FIXME: This flush is needed because of the hack to make memory ops
1104 terminate the TB. It can be removed once the proper IO trap and
1105 re-execute bits are in. */
1106 tb_flush(env);
1107 return i;
1108 }
1109
1110 /* Remove a watchpoint. */
1111 int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1112 {
1113 int i;
1114
1115 for (i = 0; i < env->nb_watchpoints; i++) {
1116 if (addr == env->watchpoint[i].vaddr) {
1117 env->nb_watchpoints--;
1118 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1119 tlb_flush_page(env, addr);
1120 return 0;
1121 }
1122 }
1123 return -1;
1124 }
1125
1126 /* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1127 breakpoint is reached */
1128 int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1129 {
1130 #if defined(TARGET_HAS_ICE)
1131 int i;
1132
1133 for(i = 0; i < env->nb_breakpoints; i++) {
1134 if (env->breakpoints[i] == pc)
1135 return 0;
1136 }
1137
1138 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1139 return -1;
1140 env->breakpoints[env->nb_breakpoints++] = pc;
1141
1142 breakpoint_invalidate(env, pc);
1143 return 0;
1144 #else
1145 return -1;
1146 #endif
1147 }
1148
1149 /* remove a breakpoint */
1150 int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1151 {
1152 #if defined(TARGET_HAS_ICE)
1153 int i;
1154 for(i = 0; i < env->nb_breakpoints; i++) {
1155 if (env->breakpoints[i] == pc)
1156 goto found;
1157 }
1158 return -1;
1159 found:
1160 env->nb_breakpoints--;
1161 if (i < env->nb_breakpoints)
1162 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1163
1164 breakpoint_invalidate(env, pc);
1165 return 0;
1166 #else
1167 return -1;
1168 #endif
1169 }
1170
1171 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1172 CPU loop after each instruction */
1173 void cpu_single_step(CPUState *env, int enabled)
1174 {
1175 #if defined(TARGET_HAS_ICE)
1176 if (env->singlestep_enabled != enabled) {
1177 env->singlestep_enabled = enabled;
1178 /* must flush all the translated code to avoid inconsistancies */
1179 /* XXX: only flush what is necessary */
1180 tb_flush(env);
1181 }
1182 #endif
1183 }
1184
1185 /* enable or disable low levels log */
1186 void cpu_set_log(int log_flags)
1187 {
1188 loglevel = log_flags;
1189 if (loglevel && !logfile) {
1190 logfile = fopen(logfilename, log_append ? "a" : "w");
1191 if (!logfile) {
1192 perror(logfilename);
1193 _exit(1);
1194 }
1195 #if !defined(CONFIG_SOFTMMU)
1196 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1197 {
1198 static uint8_t logfile_buf[4096];
1199 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1200 }
1201 #else
1202 setvbuf(logfile, NULL, _IOLBF, 0);
1203 #endif
1204 log_append = 1;
1205 }
1206 if (!loglevel && logfile) {
1207 fclose(logfile);
1208 logfile = NULL;
1209 }
1210 }
1211
1212 void cpu_set_log_filename(const char *filename)
1213 {
1214 logfilename = strdup(filename);
1215 if (logfile) {
1216 fclose(logfile);
1217 logfile = NULL;
1218 }
1219 cpu_set_log(loglevel);
1220 }
1221
1222 /* mask must never be zero, except for A20 change call */
1223 void cpu_interrupt(CPUState *env, int mask)
1224 {
1225 TranslationBlock *tb;
1226 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1227
1228 env->interrupt_request |= mask;
1229 /* if the cpu is currently executing code, we must unlink it and
1230 all the potentially executing TB */
1231 tb = env->current_tb;
1232 if (tb && !testandset(&interrupt_lock)) {
1233 env->current_tb = NULL;
1234 tb_reset_jump_recursive(tb);
1235 resetlock(&interrupt_lock);
1236 }
1237 }
1238
1239 void cpu_reset_interrupt(CPUState *env, int mask)
1240 {
1241 env->interrupt_request &= ~mask;
1242 }
1243
1244 CPULogItem cpu_log_items[] = {
1245 { CPU_LOG_TB_OUT_ASM, "out_asm",
1246 "show generated host assembly code for each compiled TB" },
1247 { CPU_LOG_TB_IN_ASM, "in_asm",
1248 "show target assembly code for each compiled TB" },
1249 { CPU_LOG_TB_OP, "op",
1250 "show micro ops for each compiled TB" },
1251 { CPU_LOG_TB_OP_OPT, "op_opt",
1252 "show micro ops "
1253 #ifdef TARGET_I386
1254 "before eflags optimization and "
1255 #endif
1256 "after liveness analysis" },
1257 { CPU_LOG_INT, "int",
1258 "show interrupts/exceptions in short format" },
1259 { CPU_LOG_EXEC, "exec",
1260 "show trace before each executed TB (lots of logs)" },
1261 { CPU_LOG_TB_CPU, "cpu",
1262 "show CPU state before block translation" },
1263 #ifdef TARGET_I386
1264 { CPU_LOG_PCALL, "pcall",
1265 "show protected mode far calls/returns/exceptions" },
1266 #endif
1267 #ifdef DEBUG_IOPORT
1268 { CPU_LOG_IOPORT, "ioport",
1269 "show all i/o ports accesses" },
1270 #endif
1271 { 0, NULL, NULL },
1272 };
1273
1274 static int cmp1(const char *s1, int n, const char *s2)
1275 {
1276 if (strlen(s2) != n)
1277 return 0;
1278 return memcmp(s1, s2, n) == 0;
1279 }
1280
1281 /* takes a comma separated list of log masks. Return 0 if error. */
1282 int cpu_str_to_log_mask(const char *str)
1283 {
1284 CPULogItem *item;
1285 int mask;
1286 const char *p, *p1;
1287
1288 p = str;
1289 mask = 0;
1290 for(;;) {
1291 p1 = strchr(p, ',');
1292 if (!p1)
1293 p1 = p + strlen(p);
1294 if(cmp1(p,p1-p,"all")) {
1295 for(item = cpu_log_items; item->mask != 0; item++) {
1296 mask |= item->mask;
1297 }
1298 } else {
1299 for(item = cpu_log_items; item->mask != 0; item++) {
1300 if (cmp1(p, p1 - p, item->name))
1301 goto found;
1302 }
1303 return 0;
1304 }
1305 found:
1306 mask |= item->mask;
1307 if (*p1 != ',')
1308 break;
1309 p = p1 + 1;
1310 }
1311 return mask;
1312 }
1313
1314 void cpu_abort(CPUState *env, const char *fmt, ...)
1315 {
1316 va_list ap;
1317 va_list ap2;
1318
1319 va_start(ap, fmt);
1320 va_copy(ap2, ap);
1321 fprintf(stderr, "qemu: fatal: ");
1322 vfprintf(stderr, fmt, ap);
1323 fprintf(stderr, "\n");
1324 #ifdef TARGET_I386
1325 if(env->intercept & INTERCEPT_SVM_MASK) {
1326 /* most probably the virtual machine should not
1327 be shut down but rather caught by the VMM */
1328 vmexit(SVM_EXIT_SHUTDOWN, 0);
1329 }
1330 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1331 #else
1332 cpu_dump_state(env, stderr, fprintf, 0);
1333 #endif
1334 if (logfile) {
1335 fprintf(logfile, "qemu: fatal: ");
1336 vfprintf(logfile, fmt, ap2);
1337 fprintf(logfile, "\n");
1338 #ifdef TARGET_I386
1339 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1340 #else
1341 cpu_dump_state(env, logfile, fprintf, 0);
1342 #endif
1343 fflush(logfile);
1344 fclose(logfile);
1345 }
1346 va_end(ap2);
1347 va_end(ap);
1348 abort();
1349 }
1350
1351 CPUState *cpu_copy(CPUState *env)
1352 {
1353 CPUState *new_env = cpu_init(env->cpu_model_str);
1354 /* preserve chaining and index */
1355 CPUState *next_cpu = new_env->next_cpu;
1356 int cpu_index = new_env->cpu_index;
1357 memcpy(new_env, env, sizeof(CPUState));
1358 new_env->next_cpu = next_cpu;
1359 new_env->cpu_index = cpu_index;
1360 return new_env;
1361 }
1362
1363 #if !defined(CONFIG_USER_ONLY)
1364
1365 /* NOTE: if flush_global is true, also flush global entries (not
1366 implemented yet) */
1367 void tlb_flush(CPUState *env, int flush_global)
1368 {
1369 int i;
1370
1371 #if defined(DEBUG_TLB)
1372 printf("tlb_flush:\n");
1373 #endif
1374 /* must reset current TB so that interrupts cannot modify the
1375 links while we are modifying them */
1376 env->current_tb = NULL;
1377
1378 for(i = 0; i < CPU_TLB_SIZE; i++) {
1379 env->tlb_table[0][i].addr_read = -1;
1380 env->tlb_table[0][i].addr_write = -1;
1381 env->tlb_table[0][i].addr_code = -1;
1382 env->tlb_table[1][i].addr_read = -1;
1383 env->tlb_table[1][i].addr_write = -1;
1384 env->tlb_table[1][i].addr_code = -1;
1385 #if (NB_MMU_MODES >= 3)
1386 env->tlb_table[2][i].addr_read = -1;
1387 env->tlb_table[2][i].addr_write = -1;
1388 env->tlb_table[2][i].addr_code = -1;
1389 #if (NB_MMU_MODES == 4)
1390 env->tlb_table[3][i].addr_read = -1;
1391 env->tlb_table[3][i].addr_write = -1;
1392 env->tlb_table[3][i].addr_code = -1;
1393 #endif
1394 #endif
1395 }
1396
1397 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1398
1399 #if !defined(CONFIG_SOFTMMU)
1400 munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
1401 #endif
1402 #ifdef USE_KQEMU
1403 if (env->kqemu_enabled) {
1404 kqemu_flush(env, flush_global);
1405 }
1406 #endif
1407 tlb_flush_count++;
1408 }
1409
1410 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1411 {
1412 if (addr == (tlb_entry->addr_read &
1413 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1414 addr == (tlb_entry->addr_write &
1415 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1416 addr == (tlb_entry->addr_code &
1417 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1418 tlb_entry->addr_read = -1;
1419 tlb_entry->addr_write = -1;
1420 tlb_entry->addr_code = -1;
1421 }
1422 }
1423
1424 void tlb_flush_page(CPUState *env, target_ulong addr)
1425 {
1426 int i;
1427 TranslationBlock *tb;
1428
1429 #if defined(DEBUG_TLB)
1430 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1431 #endif
1432 /* must reset current TB so that interrupts cannot modify the
1433 links while we are modifying them */
1434 env->current_tb = NULL;
1435
1436 addr &= TARGET_PAGE_MASK;
1437 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1438 tlb_flush_entry(&env->tlb_table[0][i], addr);
1439 tlb_flush_entry(&env->tlb_table[1][i], addr);
1440 #if (NB_MMU_MODES >= 3)
1441 tlb_flush_entry(&env->tlb_table[2][i], addr);
1442 #if (NB_MMU_MODES == 4)
1443 tlb_flush_entry(&env->tlb_table[3][i], addr);
1444 #endif
1445 #endif
1446
1447 /* Discard jump cache entries for any tb which might potentially
1448 overlap the flushed page. */
1449 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1450 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1451
1452 i = tb_jmp_cache_hash_page(addr);
1453 memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
1454
1455 #if !defined(CONFIG_SOFTMMU)
1456 if (addr < MMAP_AREA_END)
1457 munmap((void *)addr, TARGET_PAGE_SIZE);
1458 #endif
1459 #ifdef USE_KQEMU
1460 if (env->kqemu_enabled) {
1461 kqemu_flush_page(env, addr);
1462 }
1463 #endif
1464 }
1465
1466 /* update the TLBs so that writes to code in the virtual page 'addr'
1467 can be detected */
1468 static void tlb_protect_code(ram_addr_t ram_addr)
1469 {
1470 cpu_physical_memory_reset_dirty(ram_addr,
1471 ram_addr + TARGET_PAGE_SIZE,
1472 CODE_DIRTY_FLAG);
1473 }
1474
1475 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1476 tested for self modifying code */
1477 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1478 target_ulong vaddr)
1479 {
1480 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1481 }
1482
1483 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1484 unsigned long start, unsigned long length)
1485 {
1486 unsigned long addr;
1487 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1488 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1489 if ((addr - start) < length) {
1490 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1491 }
1492 }
1493 }
1494
1495 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1496 int dirty_flags)
1497 {
1498 CPUState *env;
1499 unsigned long length, start1;
1500 int i, mask, len;
1501 uint8_t *p;
1502
1503 start &= TARGET_PAGE_MASK;
1504 end = TARGET_PAGE_ALIGN(end);
1505
1506 length = end - start;
1507 if (length == 0)
1508 return;
1509 len = length >> TARGET_PAGE_BITS;
1510 #ifdef USE_KQEMU
1511 /* XXX: should not depend on cpu context */
1512 env = first_cpu;
1513 if (env->kqemu_enabled) {
1514 ram_addr_t addr;
1515 addr = start;
1516 for(i = 0; i < len; i++) {
1517 kqemu_set_notdirty(env, addr);
1518 addr += TARGET_PAGE_SIZE;
1519 }
1520 }
1521 #endif
1522 mask = ~dirty_flags;
1523 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1524 for(i = 0; i < len; i++)
1525 p[i] &= mask;
1526
1527 /* we modify the TLB cache so that the dirty bit will be set again
1528 when accessing the range */
1529 start1 = start + (unsigned long)phys_ram_base;
1530 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1531 for(i = 0; i < CPU_TLB_SIZE; i++)
1532 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1533 for(i = 0; i < CPU_TLB_SIZE; i++)
1534 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1535 #if (NB_MMU_MODES >= 3)
1536 for(i = 0; i < CPU_TLB_SIZE; i++)
1537 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1538 #if (NB_MMU_MODES == 4)
1539 for(i = 0; i < CPU_TLB_SIZE; i++)
1540 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1541 #endif
1542 #endif
1543 }
1544
1545 #if !defined(CONFIG_SOFTMMU)
1546 /* XXX: this is expensive */
1547 {
1548 VirtPageDesc *p;
1549 int j;
1550 target_ulong addr;
1551
1552 for(i = 0; i < L1_SIZE; i++) {
1553 p = l1_virt_map[i];
1554 if (p) {
1555 addr = i << (TARGET_PAGE_BITS + L2_BITS);
1556 for(j = 0; j < L2_SIZE; j++) {
1557 if (p->valid_tag == virt_valid_tag &&
1558 p->phys_addr >= start && p->phys_addr < end &&
1559 (p->prot & PROT_WRITE)) {
1560 if (addr < MMAP_AREA_END) {
1561 mprotect((void *)addr, TARGET_PAGE_SIZE,
1562 p->prot & ~PROT_WRITE);
1563 }
1564 }
1565 addr += TARGET_PAGE_SIZE;
1566 p++;
1567 }
1568 }
1569 }
1570 }
1571 #endif
1572 }
1573
1574 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1575 {
1576 ram_addr_t ram_addr;
1577
1578 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1579 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1580 tlb_entry->addend - (unsigned long)phys_ram_base;
1581 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1582 tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
1583 }
1584 }
1585 }
1586
1587 /* update the TLB according to the current state of the dirty bits */
1588 void cpu_tlb_update_dirty(CPUState *env)
1589 {
1590 int i;
1591 for(i = 0; i < CPU_TLB_SIZE; i++)
1592 tlb_update_dirty(&env->tlb_table[0][i]);
1593 for(i = 0; i < CPU_TLB_SIZE; i++)
1594 tlb_update_dirty(&env->tlb_table[1][i]);
1595 #if (NB_MMU_MODES >= 3)
1596 for(i = 0; i < CPU_TLB_SIZE; i++)
1597 tlb_update_dirty(&env->tlb_table[2][i]);
1598 #if (NB_MMU_MODES == 4)
1599 for(i = 0; i < CPU_TLB_SIZE; i++)
1600 tlb_update_dirty(&env->tlb_table[3][i]);
1601 #endif
1602 #endif
1603 }
1604
1605 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
1606 unsigned long start)
1607 {
1608 unsigned long addr;
1609 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
1610 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1611 if (addr == start) {
1612 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
1613 }
1614 }
1615 }
1616
1617 /* update the TLB corresponding to virtual page vaddr and phys addr
1618 addr so that it is no longer dirty */
1619 static inline void tlb_set_dirty(CPUState *env,
1620 unsigned long addr, target_ulong vaddr)
1621 {
1622 int i;
1623
1624 addr &= TARGET_PAGE_MASK;
1625 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1626 tlb_set_dirty1(&env->tlb_table[0][i], addr);
1627 tlb_set_dirty1(&env->tlb_table[1][i], addr);
1628 #if (NB_MMU_MODES >= 3)
1629 tlb_set_dirty1(&env->tlb_table[2][i], addr);
1630 #if (NB_MMU_MODES == 4)
1631 tlb_set_dirty1(&env->tlb_table[3][i], addr);
1632 #endif
1633 #endif
1634 }
1635
1636 /* add a new TLB entry. At most one entry for a given virtual address
1637 is permitted. Return 0 if OK or 2 if the page could not be mapped
1638 (can only happen in non SOFTMMU mode for I/O pages or pages
1639 conflicting with the host address space). */
1640 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1641 target_phys_addr_t paddr, int prot,
1642 int mmu_idx, int is_softmmu)
1643 {
1644 PhysPageDesc *p;
1645 unsigned long pd;
1646 unsigned int index;
1647 target_ulong address;
1648 target_phys_addr_t addend;
1649 int ret;
1650 CPUTLBEntry *te;
1651 int i;
1652
1653 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1654 if (!p) {
1655 pd = IO_MEM_UNASSIGNED;
1656 } else {
1657 pd = p->phys_offset;
1658 }
1659 #if defined(DEBUG_TLB)
1660 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1661 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1662 #endif
1663
1664 ret = 0;
1665 #if !defined(CONFIG_SOFTMMU)
1666 if (is_softmmu)
1667 #endif
1668 {
1669 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1670 /* IO memory case */
1671 address = vaddr | pd;
1672 addend = paddr;
1673 } else {
1674 /* standard memory */
1675 address = vaddr;
1676 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1677 }
1678
1679 /* Make accesses to pages with watchpoints go via the
1680 watchpoint trap routines. */
1681 for (i = 0; i < env->nb_watchpoints; i++) {
1682 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
1683 if (address & ~TARGET_PAGE_MASK) {
1684 env->watchpoint[i].addend = 0;
1685 address = vaddr | io_mem_watch;
1686 } else {
1687 env->watchpoint[i].addend = pd - paddr +
1688 (unsigned long) phys_ram_base;
1689 /* TODO: Figure out how to make read watchpoints coexist
1690 with code. */
1691 pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
1692 }
1693 }
1694 }
1695
1696 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1697 addend -= vaddr;
1698 te = &env->tlb_table[mmu_idx][index];
1699 te->addend = addend;
1700 if (prot & PAGE_READ) {
1701 te->addr_read = address;
1702 } else {
1703 te->addr_read = -1;
1704 }
1705 if (prot & PAGE_EXEC) {
1706 te->addr_code = address;
1707 } else {
1708 te->addr_code = -1;
1709 }
1710 if (prot & PAGE_WRITE) {
1711 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1712 (pd & IO_MEM_ROMD)) {
1713 /* write access calls the I/O callback */
1714 te->addr_write = vaddr |
1715 (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
1716 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1717 !cpu_physical_memory_is_dirty(pd)) {
1718 te->addr_write = vaddr | IO_MEM_NOTDIRTY;
1719 } else {
1720 te->addr_write = address;
1721 }
1722 } else {
1723 te->addr_write = -1;
1724 }
1725 }
1726 #if !defined(CONFIG_SOFTMMU)
1727 else {
1728 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
1729 /* IO access: no mapping is done as it will be handled by the
1730 soft MMU */
1731 if (!(env->hflags & HF_SOFTMMU_MASK))
1732 ret = 2;
1733 } else {
1734 void *map_addr;
1735
1736 if (vaddr >= MMAP_AREA_END) {
1737 ret = 2;
1738 } else {
1739 if (prot & PROT_WRITE) {
1740 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1741 #if defined(TARGET_HAS_SMC) || 1
1742 first_tb ||
1743 #endif
1744 ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
1745 !cpu_physical_memory_is_dirty(pd))) {
1746 /* ROM: we do as if code was inside */
1747 /* if code is present, we only map as read only and save the
1748 original mapping */
1749 VirtPageDesc *vp;
1750
1751 vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
1752 vp->phys_addr = pd;
1753 vp->prot = prot;
1754 vp->valid_tag = virt_valid_tag;
1755 prot &= ~PAGE_WRITE;
1756 }
1757 }
1758 map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
1759 MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
1760 if (map_addr == MAP_FAILED) {
1761 cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
1762 paddr, vaddr);
1763 }
1764 }
1765 }
1766 }
1767 #endif
1768 return ret;
1769 }
1770
1771 /* called from signal handler: invalidate the code and unprotect the
1772 page. Return TRUE if the fault was succesfully handled. */
1773 int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
1774 {
1775 #if !defined(CONFIG_SOFTMMU)
1776 VirtPageDesc *vp;
1777
1778 #if defined(DEBUG_TLB)
1779 printf("page_unprotect: addr=0x%08x\n", addr);
1780 #endif
1781 addr &= TARGET_PAGE_MASK;
1782
1783 /* if it is not mapped, no need to worry here */
1784 if (addr >= MMAP_AREA_END)
1785 return 0;
1786 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
1787 if (!vp)
1788 return 0;
1789 /* NOTE: in this case, validate_tag is _not_ tested as it
1790 validates only the code TLB */
1791 if (vp->valid_tag != virt_valid_tag)
1792 return 0;
1793 if (!(vp->prot & PAGE_WRITE))
1794 return 0;
1795 #if defined(DEBUG_TLB)
1796 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
1797 addr, vp->phys_addr, vp->prot);
1798 #endif
1799 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
1800 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
1801 (unsigned long)addr, vp->prot);
1802 /* set the dirty bit */
1803 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
1804 /* flush the code inside */
1805 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
1806 return 1;
1807 #else
1808 return 0;
1809 #endif
1810 }
1811
1812 #else
1813
1814 void tlb_flush(CPUState *env, int flush_global)
1815 {
1816 }
1817
1818 void tlb_flush_page(CPUState *env, target_ulong addr)
1819 {
1820 }
1821
1822 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1823 target_phys_addr_t paddr, int prot,
1824 int mmu_idx, int is_softmmu)
1825 {
1826 return 0;
1827 }
1828
1829 /* dump memory mappings */
1830 void page_dump(FILE *f)
1831 {
1832 unsigned long start, end;
1833 int i, j, prot, prot1;
1834 PageDesc *p;
1835
1836 fprintf(f, "%-8s %-8s %-8s %s\n",
1837 "start", "end", "size", "prot");
1838 start = -1;
1839 end = -1;
1840 prot = 0;
1841 for(i = 0; i <= L1_SIZE; i++) {
1842 if (i < L1_SIZE)
1843 p = l1_map[i];
1844 else
1845 p = NULL;
1846 for(j = 0;j < L2_SIZE; j++) {
1847 if (!p)
1848 prot1 = 0;
1849 else
1850 prot1 = p[j].flags;
1851 if (prot1 != prot) {
1852 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
1853 if (start != -1) {
1854 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
1855 start, end, end - start,
1856 prot & PAGE_READ ? 'r' : '-',
1857 prot & PAGE_WRITE ? 'w' : '-',
1858 prot & PAGE_EXEC ? 'x' : '-');
1859 }
1860 if (prot1 != 0)
1861 start = end;
1862 else
1863 start = -1;
1864 prot = prot1;
1865 }
1866 if (!p)
1867 break;
1868 }
1869 }
1870 }
1871
1872 int page_get_flags(target_ulong address)
1873 {
1874 PageDesc *p;
1875
1876 p = page_find(address >> TARGET_PAGE_BITS);
1877 if (!p)
1878 return 0;
1879 return p->flags;
1880 }
1881
1882 /* modify the flags of a page and invalidate the code if
1883 necessary. The flag PAGE_WRITE_ORG is positionned automatically
1884 depending on PAGE_WRITE */
1885 void page_set_flags(target_ulong start, target_ulong end, int flags)
1886 {
1887 PageDesc *p;
1888 target_ulong addr;
1889
1890 start = start & TARGET_PAGE_MASK;
1891 end = TARGET_PAGE_ALIGN(end);
1892 if (flags & PAGE_WRITE)
1893 flags |= PAGE_WRITE_ORG;
1894 spin_lock(&tb_lock);
1895 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1896 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
1897 /* if the write protection is set, then we invalidate the code
1898 inside */
1899 if (!(p->flags & PAGE_WRITE) &&
1900 (flags & PAGE_WRITE) &&
1901 p->first_tb) {
1902 tb_invalidate_phys_page(addr, 0, NULL);
1903 }
1904 p->flags = flags;
1905 }
1906 spin_unlock(&tb_lock);
1907 }
1908
1909 int page_check_range(target_ulong start, target_ulong len, int flags)
1910 {
1911 PageDesc *p;
1912 target_ulong end;
1913 target_ulong addr;
1914
1915 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
1916 start = start & TARGET_PAGE_MASK;
1917
1918 if( end < start )
1919 /* we've wrapped around */
1920 return -1;
1921 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
1922 p = page_find(addr >> TARGET_PAGE_BITS);
1923 if( !p )
1924 return -1;
1925 if( !(p->flags & PAGE_VALID) )
1926 return -1;
1927
1928 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
1929 return -1;
1930 if (flags & PAGE_WRITE) {
1931 if (!(p->flags & PAGE_WRITE_ORG))
1932 return -1;
1933 /* unprotect the page if it was put read-only because it
1934 contains translated code */
1935 if (!(p->flags & PAGE_WRITE)) {
1936 if (!page_unprotect(addr, 0, NULL))
1937 return -1;
1938 }
1939 return 0;
1940 }
1941 }
1942 return 0;
1943 }
1944
1945 /* called from signal handler: invalidate the code and unprotect the
1946 page. Return TRUE if the fault was succesfully handled. */
1947 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
1948 {
1949 unsigned int page_index, prot, pindex;
1950 PageDesc *p, *p1;
1951 target_ulong host_start, host_end, addr;
1952
1953 host_start = address & qemu_host_page_mask;
1954 page_index = host_start >> TARGET_PAGE_BITS;
1955 p1 = page_find(page_index);
1956 if (!p1)
1957 return 0;
1958 host_end = host_start + qemu_host_page_size;
1959 p = p1;
1960 prot = 0;
1961 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
1962 prot |= p->flags;
1963 p++;
1964 }
1965 /* if the page was really writable, then we change its
1966 protection back to writable */
1967 if (prot & PAGE_WRITE_ORG) {
1968 pindex = (address - host_start) >> TARGET_PAGE_BITS;
1969 if (!(p1[pindex].flags & PAGE_WRITE)) {
1970 mprotect((void *)g2h(host_start), qemu_host_page_size,
1971 (prot & PAGE_BITS) | PAGE_WRITE);
1972 p1[pindex].flags |= PAGE_WRITE;
1973 /* and since the content will be modified, we must invalidate
1974 the corresponding translated code. */
1975 tb_invalidate_phys_page(address, pc, puc);
1976 #ifdef DEBUG_TB_CHECK
1977 tb_invalidate_check(address);
1978 #endif
1979 return 1;
1980 }
1981 }
1982 return 0;
1983 }
1984
1985 static inline void tlb_set_dirty(CPUState *env,
1986 unsigned long addr, target_ulong vaddr)
1987 {
1988 }
1989 #endif /* defined(CONFIG_USER_ONLY) */
1990
1991 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1992 ram_addr_t memory);
1993 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
1994 ram_addr_t orig_memory);
1995 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
1996 need_subpage) \
1997 do { \
1998 if (addr > start_addr) \
1999 start_addr2 = 0; \
2000 else { \
2001 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2002 if (start_addr2 > 0) \
2003 need_subpage = 1; \
2004 } \
2005 \
2006 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2007 end_addr2 = TARGET_PAGE_SIZE - 1; \
2008 else { \
2009 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2010 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2011 need_subpage = 1; \
2012 } \
2013 } while (0)
2014
2015 /* register physical memory. 'size' must be a multiple of the target
2016 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2017 io memory page */
2018 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2019 ram_addr_t size,
2020 ram_addr_t phys_offset)
2021 {
2022 target_phys_addr_t addr, end_addr;
2023 PhysPageDesc *p;
2024 CPUState *env;
2025 ram_addr_t orig_size = size;
2026 void *subpage;
2027
2028 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2029 end_addr = start_addr + (target_phys_addr_t)size;
2030 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2031 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2032 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2033 ram_addr_t orig_memory = p->phys_offset;
2034 target_phys_addr_t start_addr2, end_addr2;
2035 int need_subpage = 0;
2036
2037 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2038 need_subpage);
2039 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2040 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2041 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2042 &p->phys_offset, orig_memory);
2043 } else {
2044 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2045 >> IO_MEM_SHIFT];
2046 }
2047 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2048 } else {
2049 p->phys_offset = phys_offset;
2050 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2051 (phys_offset & IO_MEM_ROMD))
2052 phys_offset += TARGET_PAGE_SIZE;
2053 }
2054 } else {
2055 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2056 p->phys_offset = phys_offset;
2057 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2058 (phys_offset & IO_MEM_ROMD))
2059 phys_offset += TARGET_PAGE_SIZE;
2060 else {
2061 target_phys_addr_t start_addr2, end_addr2;
2062 int need_subpage = 0;
2063
2064 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2065 end_addr2, need_subpage);
2066
2067 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2068 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2069 &p->phys_offset, IO_MEM_UNASSIGNED);
2070 subpage_register(subpage, start_addr2, end_addr2,
2071 phys_offset);
2072 }
2073 }
2074 }
2075 }
2076
2077 /* since each CPU stores ram addresses in its TLB cache, we must
2078 reset the modified entries */
2079 /* XXX: slow ! */
2080 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2081 tlb_flush(env, 1);
2082 }
2083 }
2084
2085 /* XXX: temporary until new memory mapping API */
2086 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2087 {
2088 PhysPageDesc *p;
2089
2090 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2091 if (!p)
2092 return IO_MEM_UNASSIGNED;
2093 return p->phys_offset;
2094 }
2095
2096 /* XXX: better than nothing */
2097 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2098 {
2099 ram_addr_t addr;
2100 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2101 fprintf(stderr, "Not enough memory (requested_size = %lu, max memory = %ld)\n",
2102 size, phys_ram_size);
2103 abort();
2104 }
2105 addr = phys_ram_alloc_offset;
2106 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2107 return addr;
2108 }
2109
2110 void qemu_ram_free(ram_addr_t addr)
2111 {
2112 }
2113
2114 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2115 {
2116 #ifdef DEBUG_UNASSIGNED
2117 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2118 #endif
2119 #ifdef TARGET_SPARC
2120 do_unassigned_access(addr, 0, 0, 0);
2121 #elif TARGET_CRIS
2122 do_unassigned_access(addr, 0, 0, 0);
2123 #endif
2124 return 0;
2125 }
2126
2127 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2128 {
2129 #ifdef DEBUG_UNASSIGNED
2130 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2131 #endif
2132 #ifdef TARGET_SPARC
2133 do_unassigned_access(addr, 1, 0, 0);
2134 #elif TARGET_CRIS
2135 do_unassigned_access(addr, 1, 0, 0);
2136 #endif
2137 }
2138
2139 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2140 unassigned_mem_readb,
2141 unassigned_mem_readb,
2142 unassigned_mem_readb,
2143 };
2144
2145 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2146 unassigned_mem_writeb,
2147 unassigned_mem_writeb,
2148 unassigned_mem_writeb,
2149 };
2150
2151 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2152 {
2153 unsigned long ram_addr;
2154 int dirty_flags;
2155 ram_addr = addr - (unsigned long)phys_ram_base;
2156 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2157 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2158 #if !defined(CONFIG_USER_ONLY)
2159 tb_invalidate_phys_page_fast(ram_addr, 1);
2160 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2161 #endif
2162 }
2163 stb_p((uint8_t *)(long)addr, val);
2164 #ifdef USE_KQEMU
2165 if (cpu_single_env->kqemu_enabled &&
2166 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2167 kqemu_modify_page(cpu_single_env, ram_addr);
2168 #endif
2169 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2170 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2171 /* we remove the notdirty callback only if the code has been
2172 flushed */
2173 if (dirty_flags == 0xff)
2174 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2175 }
2176
2177 static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2178 {
2179 unsigned long ram_addr;
2180 int dirty_flags;
2181 ram_addr = addr - (unsigned long)phys_ram_base;
2182 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2183 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2184 #if !defined(CONFIG_USER_ONLY)
2185 tb_invalidate_phys_page_fast(ram_addr, 2);
2186 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2187 #endif
2188 }
2189 stw_p((uint8_t *)(long)addr, val);
2190 #ifdef USE_KQEMU
2191 if (cpu_single_env->kqemu_enabled &&
2192 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2193 kqemu_modify_page(cpu_single_env, ram_addr);
2194 #endif
2195 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2196 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2197 /* we remove the notdirty callback only if the code has been
2198 flushed */
2199 if (dirty_flags == 0xff)
2200 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2201 }
2202
2203 static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2204 {
2205 unsigned long ram_addr;
2206 int dirty_flags;
2207 ram_addr = addr - (unsigned long)phys_ram_base;
2208 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2209 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2210 #if !defined(CONFIG_USER_ONLY)
2211 tb_invalidate_phys_page_fast(ram_addr, 4);
2212 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2213 #endif
2214 }
2215 stl_p((uint8_t *)(long)addr, val);
2216 #ifdef USE_KQEMU
2217 if (cpu_single_env->kqemu_enabled &&
2218 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2219 kqemu_modify_page(cpu_single_env, ram_addr);
2220 #endif
2221 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2222 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2223 /* we remove the notdirty callback only if the code has been
2224 flushed */
2225 if (dirty_flags == 0xff)
2226 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
2227 }
2228
2229 static CPUReadMemoryFunc *error_mem_read[3] = {
2230 NULL, /* never used */
2231 NULL, /* never used */
2232 NULL, /* never used */
2233 };
2234
2235 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2236 notdirty_mem_writeb,
2237 notdirty_mem_writew,
2238 notdirty_mem_writel,
2239 };
2240
2241 #if defined(CONFIG_SOFTMMU)
2242 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2243 so these check for a hit then pass through to the normal out-of-line
2244 phys routines. */
2245 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2246 {
2247 return ldub_phys(addr);
2248 }
2249
2250 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2251 {
2252 return lduw_phys(addr);
2253 }
2254
2255 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2256 {
2257 return ldl_phys(addr);
2258 }
2259
2260 /* Generate a debug exception if a watchpoint has been hit.
2261 Returns the real physical address of the access. addr will be a host
2262 address in case of a RAM location. */
2263 static target_ulong check_watchpoint(target_phys_addr_t addr)
2264 {
2265 CPUState *env = cpu_single_env;
2266 target_ulong watch;
2267 target_ulong retaddr;
2268 int i;
2269
2270 retaddr = addr;
2271 for (i = 0; i < env->nb_watchpoints; i++) {
2272 watch = env->watchpoint[i].vaddr;
2273 if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
2274 retaddr = addr - env->watchpoint[i].addend;
2275 if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
2276 cpu_single_env->watchpoint_hit = i + 1;
2277 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
2278 break;
2279 }
2280 }
2281 }
2282 return retaddr;
2283 }
2284
2285 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2286 uint32_t val)
2287 {
2288 addr = check_watchpoint(addr);
2289 stb_phys(addr, val);
2290 }
2291
2292 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2293 uint32_t val)
2294 {
2295 addr = check_watchpoint(addr);
2296 stw_phys(addr, val);
2297 }
2298
2299 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2300 uint32_t val)
2301 {
2302 addr = check_watchpoint(addr);
2303 stl_phys(addr, val);
2304 }
2305
2306 static CPUReadMemoryFunc *watch_mem_read[3] = {
2307 watch_mem_readb,
2308 watch_mem_readw,
2309 watch_mem_readl,
2310 };
2311
2312 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2313 watch_mem_writeb,
2314 watch_mem_writew,
2315 watch_mem_writel,
2316 };
2317 #endif
2318
2319 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2320 unsigned int len)
2321 {
2322 uint32_t ret;
2323 unsigned int idx;
2324
2325 idx = SUBPAGE_IDX(addr - mmio->base);
2326 #if defined(DEBUG_SUBPAGE)
2327 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2328 mmio, len, addr, idx);
2329 #endif
2330 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2331
2332 return ret;
2333 }
2334
2335 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2336 uint32_t value, unsigned int len)
2337 {
2338 unsigned int idx;
2339
2340 idx = SUBPAGE_IDX(addr - mmio->base);
2341 #if defined(DEBUG_SUBPAGE)
2342 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2343 mmio, len, addr, idx, value);
2344 #endif
2345 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2346 }
2347
2348 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2349 {
2350 #if defined(DEBUG_SUBPAGE)
2351 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2352 #endif
2353
2354 return subpage_readlen(opaque, addr, 0);
2355 }
2356
2357 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2358 uint32_t value)
2359 {
2360 #if defined(DEBUG_SUBPAGE)
2361 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2362 #endif
2363 subpage_writelen(opaque, addr, value, 0);
2364 }
2365
2366 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2367 {
2368 #if defined(DEBUG_SUBPAGE)
2369 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2370 #endif
2371
2372 return subpage_readlen(opaque, addr, 1);
2373 }
2374
2375 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2376 uint32_t value)
2377 {
2378 #if defined(DEBUG_SUBPAGE)
2379 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2380 #endif
2381 subpage_writelen(opaque, addr, value, 1);
2382 }
2383
2384 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2385 {
2386 #if defined(DEBUG_SUBPAGE)
2387 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2388 #endif
2389
2390 return subpage_readlen(opaque, addr, 2);
2391 }
2392
2393 static void subpage_writel (void *opaque,
2394 target_phys_addr_t addr, uint32_t value)
2395 {
2396 #if defined(DEBUG_SUBPAGE)
2397 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2398 #endif
2399 subpage_writelen(opaque, addr, value, 2);
2400 }
2401
2402 static CPUReadMemoryFunc *subpage_read[] = {
2403 &subpage_readb,
2404 &subpage_readw,
2405 &subpage_readl,
2406 };
2407
2408 static CPUWriteMemoryFunc *subpage_write[] = {
2409 &subpage_writeb,
2410 &subpage_writew,
2411 &subpage_writel,
2412 };
2413
2414 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2415 ram_addr_t memory)
2416 {
2417 int idx, eidx;
2418 unsigned int i;
2419
2420 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2421 return -1;
2422 idx = SUBPAGE_IDX(start);
2423 eidx = SUBPAGE_IDX(end);
2424 #if defined(DEBUG_SUBPAGE)
2425 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2426 mmio, start, end, idx, eidx, memory);
2427 #endif
2428 memory >>= IO_MEM_SHIFT;
2429 for (; idx <= eidx; idx++) {
2430 for (i = 0; i < 4; i++) {
2431 if (io_mem_read[memory][i]) {
2432 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2433 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2434 }
2435 if (io_mem_write[memory][i]) {
2436 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2437 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2438 }
2439 }
2440 }
2441
2442 return 0;
2443 }
2444
2445 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2446 ram_addr_t orig_memory)
2447 {
2448 subpage_t *mmio;
2449 int subpage_memory;
2450
2451 mmio = qemu_mallocz(sizeof(subpage_t));
2452 if (mmio != NULL) {
2453 mmio->base = base;
2454 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2455 #if defined(DEBUG_SUBPAGE)
2456 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2457 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2458 #endif
2459 *phys = subpage_memory | IO_MEM_SUBPAGE;
2460 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2461 }
2462
2463 return mmio;
2464 }
2465
2466 static void io_mem_init(void)
2467 {
2468 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2469 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2470 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2471 io_mem_nb = 5;
2472
2473 #if defined(CONFIG_SOFTMMU)
2474 io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
2475 watch_mem_write, NULL);
2476 #endif
2477 /* alloc dirty bits array */
2478 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2479 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2480 }
2481
2482 /* mem_read and mem_write are arrays of functions containing the
2483 function to access byte (index 0), word (index 1) and dword (index
2484 2). Functions can be omitted with a NULL function pointer. The
2485 registered functions may be modified dynamically later.
2486 If io_index is non zero, the corresponding io zone is
2487 modified. If it is zero, a new io zone is allocated. The return
2488 value can be used with cpu_register_physical_memory(). (-1) is
2489 returned if error. */
2490 int cpu_register_io_memory(int io_index,
2491 CPUReadMemoryFunc **mem_read,
2492 CPUWriteMemoryFunc **mem_write,
2493 void *opaque)
2494 {
2495 int i, subwidth = 0;
2496
2497 if (io_index <= 0) {
2498 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2499 return -1;
2500 io_index = io_mem_nb++;
2501 } else {
2502 if (io_index >= IO_MEM_NB_ENTRIES)
2503 return -1;
2504 }
2505
2506 for(i = 0;i < 3; i++) {
2507 if (!mem_read[i] || !mem_write[i])
2508 subwidth = IO_MEM_SUBWIDTH;
2509 io_mem_read[io_index][i] = mem_read[i];
2510 io_mem_write[io_index][i] = mem_write[i];
2511 }
2512 io_mem_opaque[io_index] = opaque;
2513 return (io_index << IO_MEM_SHIFT) | subwidth;
2514 }
2515
2516 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2517 {
2518 return io_mem_write[io_index >> IO_MEM_SHIFT];
2519 }
2520
2521 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2522 {
2523 return io_mem_read[io_index >> IO_MEM_SHIFT];
2524 }
2525
2526 /* physical memory access (slow version, mainly for debug) */
2527 #if defined(CONFIG_USER_ONLY)
2528 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2529 int len, int is_write)
2530 {
2531 int l, flags;
2532 target_ulong page;
2533 void * p;
2534
2535 while (len > 0) {
2536 page = addr & TARGET_PAGE_MASK;
2537 l = (page + TARGET_PAGE_SIZE) - addr;
2538 if (l > len)
2539 l = len;
2540 flags = page_get_flags(page);
2541 if (!(flags & PAGE_VALID))
2542 return;
2543 if (is_write) {
2544 if (!(flags & PAGE_WRITE))
2545 return;
2546 /* XXX: this code should not depend on lock_user */
2547 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2548 /* FIXME - should this return an error rather than just fail? */
2549 return;
2550 memcpy(p, buf, l);
2551 unlock_user(p, addr, l);
2552 } else {
2553 if (!(flags & PAGE_READ))
2554 return;
2555 /* XXX: this code should not depend on lock_user */
2556 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2557 /* FIXME - should this return an error rather than just fail? */
2558 return;
2559 memcpy(buf, p, l);
2560 unlock_user(p, addr, 0);
2561 }
2562 len -= l;
2563 buf += l;
2564 addr += l;
2565 }
2566 }
2567
2568 #else
2569 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2570 int len, int is_write)
2571 {
2572 int l, io_index;
2573 uint8_t *ptr;
2574 uint32_t val;
2575 target_phys_addr_t page;
2576 unsigned long pd;
2577 PhysPageDesc *p;
2578
2579 while (len > 0) {
2580 page = addr & TARGET_PAGE_MASK;
2581 l = (page + TARGET_PAGE_SIZE) - addr;
2582 if (l > len)
2583 l = len;
2584 p = phys_page_find(page >> TARGET_PAGE_BITS);
2585 if (!p) {
2586 pd = IO_MEM_UNASSIGNED;
2587 } else {
2588 pd = p->phys_offset;
2589 }
2590
2591 if (is_write) {
2592 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2593 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2594 /* XXX: could force cpu_single_env to NULL to avoid
2595 potential bugs */
2596 if (l >= 4 && ((addr & 3) == 0)) {
2597 /* 32 bit write access */
2598 val = ldl_p(buf);
2599 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2600 l = 4;
2601 } else if (l >= 2 && ((addr & 1) == 0)) {
2602 /* 16 bit write access */
2603 val = lduw_p(buf);
2604 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2605 l = 2;
2606 } else {
2607 /* 8 bit write access */
2608 val = ldub_p(buf);
2609 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2610 l = 1;
2611 }
2612 } else {
2613 unsigned long addr1;
2614 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2615 /* RAM case */
2616 ptr = phys_ram_base + addr1;
2617 memcpy(ptr, buf, l);
2618 if (!cpu_physical_memory_is_dirty(addr1)) {
2619 /* invalidate code */
2620 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2621 /* set dirty bit */
2622 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2623 (0xff & ~CODE_DIRTY_FLAG);
2624 }
2625 }
2626 } else {
2627 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2628 !(pd & IO_MEM_ROMD)) {
2629 /* I/O case */
2630 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2631 if (l >= 4 && ((addr & 3) == 0)) {
2632 /* 32 bit read access */
2633 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2634 stl_p(buf, val);
2635 l = 4;
2636 } else if (l >= 2 && ((addr & 1) == 0)) {
2637 /* 16 bit read access */
2638 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2639 stw_p(buf, val);
2640 l = 2;
2641 } else {
2642 /* 8 bit read access */
2643 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2644 stb_p(buf, val);
2645 l = 1;
2646 }
2647 } else {
2648 /* RAM case */
2649 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2650 (addr & ~TARGET_PAGE_MASK);
2651 memcpy(buf, ptr, l);
2652 }
2653 }
2654 len -= l;
2655 buf += l;
2656 addr += l;
2657 }
2658 }
2659
2660 /* used for ROM loading : can write in RAM and ROM */
2661 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2662 const uint8_t *buf, int len)
2663 {
2664 int l;
2665 uint8_t *ptr;
2666 target_phys_addr_t page;
2667 unsigned long pd;
2668 PhysPageDesc *p;
2669
2670 while (len > 0) {
2671 page = addr & TARGET_PAGE_MASK;
2672 l = (page + TARGET_PAGE_SIZE) - addr;
2673 if (l > len)
2674 l = len;
2675 p = phys_page_find(page >> TARGET_PAGE_BITS);
2676 if (!p) {
2677 pd = IO_MEM_UNASSIGNED;
2678 } else {
2679 pd = p->phys_offset;
2680 }
2681
2682 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2683 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2684 !(pd & IO_MEM_ROMD)) {
2685 /* do nothing */
2686 } else {
2687 unsigned long addr1;
2688 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2689 /* ROM/RAM case */
2690 ptr = phys_ram_base + addr1;
2691 memcpy(ptr, buf, l);
2692 }
2693 len -= l;
2694 buf += l;
2695 addr += l;
2696 }
2697 }
2698
2699
2700 /* warning: addr must be aligned */
2701 uint32_t ldl_phys(target_phys_addr_t addr)
2702 {
2703 int io_index;
2704 uint8_t *ptr;
2705 uint32_t val;
2706 unsigned long pd;
2707 PhysPageDesc *p;
2708
2709 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2710 if (!p) {
2711 pd = IO_MEM_UNASSIGNED;
2712 } else {
2713 pd = p->phys_offset;
2714 }
2715
2716 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2717 !(pd & IO_MEM_ROMD)) {
2718 /* I/O case */
2719 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2720 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2721 } else {
2722 /* RAM case */
2723 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2724 (addr & ~TARGET_PAGE_MASK);
2725 val = ldl_p(ptr);
2726 }
2727 return val;
2728 }
2729
2730 /* warning: addr must be aligned */
2731 uint64_t ldq_phys(target_phys_addr_t addr)
2732 {
2733 int io_index;
2734 uint8_t *ptr;
2735 uint64_t val;
2736 unsigned long pd;
2737 PhysPageDesc *p;
2738
2739 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2740 if (!p) {
2741 pd = IO_MEM_UNASSIGNED;
2742 } else {
2743 pd = p->phys_offset;
2744 }
2745
2746 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2747 !(pd & IO_MEM_ROMD)) {
2748 /* I/O case */
2749 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2750 #ifdef TARGET_WORDS_BIGENDIAN
2751 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
2752 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
2753 #else
2754 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2755 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
2756 #endif
2757 } else {
2758 /* RAM case */
2759 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2760 (addr & ~TARGET_PAGE_MASK);
2761 val = ldq_p(ptr);
2762 }
2763 return val;
2764 }
2765
2766 /* XXX: optimize */
2767 uint32_t ldub_phys(target_phys_addr_t addr)
2768 {
2769 uint8_t val;
2770 cpu_physical_memory_read(addr, &val, 1);
2771 return val;
2772 }
2773
2774 /* XXX: optimize */
2775 uint32_t lduw_phys(target_phys_addr_t addr)
2776 {
2777 uint16_t val;
2778 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
2779 return tswap16(val);
2780 }
2781
2782 /* warning: addr must be aligned. The ram page is not masked as dirty
2783 and the code inside is not invalidated. It is useful if the dirty
2784 bits are used to track modified PTEs */
2785 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
2786 {
2787 int io_index;
2788 uint8_t *ptr;
2789 unsigned long pd;
2790 PhysPageDesc *p;
2791
2792 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2793 if (!p) {
2794 pd = IO_MEM_UNASSIGNED;
2795 } else {
2796 pd = p->phys_offset;
2797 }
2798
2799 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2800 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2801 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2802 } else {
2803 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2804 (addr & ~TARGET_PAGE_MASK);
2805 stl_p(ptr, val);
2806 }
2807 }
2808
2809 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
2810 {
2811 int io_index;
2812 uint8_t *ptr;
2813 unsigned long pd;
2814 PhysPageDesc *p;
2815
2816 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2817 if (!p) {
2818 pd = IO_MEM_UNASSIGNED;
2819 } else {
2820 pd = p->phys_offset;
2821 }
2822
2823 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2824 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2825 #ifdef TARGET_WORDS_BIGENDIAN
2826 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
2827 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
2828 #else
2829 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2830 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
2831 #endif
2832 } else {
2833 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2834 (addr & ~TARGET_PAGE_MASK);
2835 stq_p(ptr, val);
2836 }
2837 }
2838
2839 /* warning: addr must be aligned */
2840 void stl_phys(target_phys_addr_t addr, uint32_t val)
2841 {
2842 int io_index;
2843 uint8_t *ptr;
2844 unsigned long pd;
2845 PhysPageDesc *p;
2846
2847 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2848 if (!p) {
2849 pd = IO_MEM_UNASSIGNED;
2850 } else {
2851 pd = p->phys_offset;
2852 }
2853
2854 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2855 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2856 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2857 } else {
2858 unsigned long addr1;
2859 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2860 /* RAM case */
2861 ptr = phys_ram_base + addr1;
2862 stl_p(ptr, val);
2863 if (!cpu_physical_memory_is_dirty(addr1)) {
2864 /* invalidate code */
2865 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2866 /* set dirty bit */
2867 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2868 (0xff & ~CODE_DIRTY_FLAG);
2869 }
2870 }
2871 }
2872
2873 /* XXX: optimize */
2874 void stb_phys(target_phys_addr_t addr, uint32_t val)
2875 {
2876 uint8_t v = val;
2877 cpu_physical_memory_write(addr, &v, 1);
2878 }
2879
2880 /* XXX: optimize */
2881 void stw_phys(target_phys_addr_t addr, uint32_t val)
2882 {
2883 uint16_t v = tswap16(val);
2884 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
2885 }
2886
2887 /* XXX: optimize */
2888 void stq_phys(target_phys_addr_t addr, uint64_t val)
2889 {
2890 val = tswap64(val);
2891 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
2892 }
2893
2894 #endif
2895
2896 /* virtual memory access for debug */
2897 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
2898 uint8_t *buf, int len, int is_write)
2899 {
2900 int l;
2901 target_phys_addr_t phys_addr;
2902 target_ulong page;
2903
2904 while (len > 0) {
2905 page = addr & TARGET_PAGE_MASK;
2906 phys_addr = cpu_get_phys_page_debug(env, page);
2907 /* if no physical page mapped, return an error */
2908 if (phys_addr == -1)
2909 return -1;
2910 l = (page + TARGET_PAGE_SIZE) - addr;
2911 if (l > len)
2912 l = len;
2913 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
2914 buf, l, is_write);
2915 len -= l;
2916 buf += l;
2917 addr += l;
2918 }
2919 return 0;
2920 }
2921
2922 void dump_exec_info(FILE *f,
2923 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
2924 {
2925 int i, target_code_size, max_target_code_size;
2926 int direct_jmp_count, direct_jmp2_count, cross_page;
2927 TranslationBlock *tb;
2928
2929 target_code_size = 0;
2930 max_target_code_size = 0;
2931 cross_page = 0;
2932 direct_jmp_count = 0;
2933 direct_jmp2_count = 0;
2934 for(i = 0; i < nb_tbs; i++) {
2935 tb = &tbs[i];
2936 target_code_size += tb->size;
2937 if (tb->size > max_target_code_size)
2938 max_target_code_size = tb->size;
2939 if (tb->page_addr[1] != -1)
2940 cross_page++;
2941 if (tb->tb_next_offset[0] != 0xffff) {
2942 direct_jmp_count++;
2943 if (tb->tb_next_offset[1] != 0xffff) {
2944 direct_jmp2_count++;
2945 }
2946 }
2947 }
2948 /* XXX: avoid using doubles ? */
2949 cpu_fprintf(f, "Translation buffer state:\n");
2950 cpu_fprintf(f, "TB count %d\n", nb_tbs);
2951 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
2952 nb_tbs ? target_code_size / nb_tbs : 0,
2953 max_target_code_size);
2954 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
2955 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
2956 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
2957 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
2958 cross_page,
2959 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
2960 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
2961 direct_jmp_count,
2962 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
2963 direct_jmp2_count,
2964 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
2965 cpu_fprintf(f, "\nStatistics:\n");
2966 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
2967 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
2968 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
2969 #ifdef CONFIG_PROFILER
2970 {
2971 int64_t tot;
2972 tot = dyngen_interm_time + dyngen_code_time;
2973 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
2974 tot, tot / 2.4e9);
2975 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
2976 dyngen_tb_count,
2977 dyngen_tb_count1 - dyngen_tb_count,
2978 dyngen_tb_count1 ? (double)(dyngen_tb_count1 - dyngen_tb_count) / dyngen_tb_count1 * 100.0 : 0);
2979 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
2980 dyngen_tb_count ? (double)dyngen_op_count / dyngen_tb_count : 0, dyngen_op_count_max);
2981 cpu_fprintf(f, "old ops/total ops %0.1f%%\n",
2982 dyngen_op_count ? (double)dyngen_old_op_count / dyngen_op_count * 100.0 : 0);
2983 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
2984 dyngen_tb_count ?
2985 (double)dyngen_tcg_del_op_count / dyngen_tb_count : 0);
2986 cpu_fprintf(f, "cycles/op %0.1f\n",
2987 dyngen_op_count ? (double)tot / dyngen_op_count : 0);
2988 cpu_fprintf(f, "cycles/in byte %0.1f\n",
2989 dyngen_code_in_len ? (double)tot / dyngen_code_in_len : 0);
2990 cpu_fprintf(f, "cycles/out byte %0.1f\n",
2991 dyngen_code_out_len ? (double)tot / dyngen_code_out_len : 0);
2992 if (tot == 0)
2993 tot = 1;
2994 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
2995 (double)dyngen_interm_time / tot * 100.0);
2996 cpu_fprintf(f, " gen_code time %0.1f%%\n",
2997 (double)dyngen_code_time / tot * 100.0);
2998 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
2999 dyngen_restore_count);
3000 cpu_fprintf(f, " avg cycles %0.1f\n",
3001 dyngen_restore_count ? (double)dyngen_restore_time / dyngen_restore_count : 0);
3002 {
3003 extern void dump_op_count(void);
3004 dump_op_count();
3005 }
3006 }
3007 #endif
3008 }
3009
3010 #if !defined(CONFIG_USER_ONLY)
3011
3012 #define MMUSUFFIX _cmmu
3013 #define GETPC() NULL
3014 #define env cpu_single_env
3015 #define SOFTMMU_CODE_ACCESS
3016
3017 #define SHIFT 0
3018 #include "softmmu_template.h"
3019
3020 #define SHIFT 1
3021 #include "softmmu_template.h"
3022
3023 #define SHIFT 2
3024 #include "softmmu_template.h"
3025
3026 #define SHIFT 3
3027 #include "softmmu_template.h"
3028
3029 #undef env
3030
3031 #endif