]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge remote-tracking branch 'alon/pull-libcacard-1' into staging
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "hw/xen.h"
36 #include "qemu-timer.h"
37 #if defined(CONFIG_USER_ONLY)
38 #include <qemu.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #else /* !CONFIG_USER_ONLY */
55 #include "xen-mapcache.h"
56 #endif
57
58 //#define DEBUG_TB_INVALIDATE
59 //#define DEBUG_FLUSH
60 //#define DEBUG_TLB
61 //#define DEBUG_UNASSIGNED
62
63 /* make various TB consistency checks */
64 //#define DEBUG_TB_CHECK
65 //#define DEBUG_TLB_CHECK
66
67 //#define DEBUG_IOPORT
68 //#define DEBUG_SUBPAGE
69
70 #if !defined(CONFIG_USER_ONLY)
71 /* TB consistency checks only implemented for usermode emulation. */
72 #undef DEBUG_TB_CHECK
73 #endif
74
75 #define SMC_BITMAP_USE_THRESHOLD 10
76
77 static TranslationBlock *tbs;
78 static int code_gen_max_blocks;
79 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
80 static int nb_tbs;
81 /* any access to the tbs or the page table must use this lock */
82 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
83
84 #if defined(__arm__) || defined(__sparc_v9__)
85 /* The prologue must be reachable with a direct jump. ARM and Sparc64
86 have limited branch ranges (possibly also PPC) so place it in a
87 section close to code segment. */
88 #define code_gen_section \
89 __attribute__((__section__(".gen_code"))) \
90 __attribute__((aligned (32)))
91 #elif defined(_WIN32)
92 /* Maximum alignment for Win32 is 16. */
93 #define code_gen_section \
94 __attribute__((aligned (16)))
95 #else
96 #define code_gen_section \
97 __attribute__((aligned (32)))
98 #endif
99
100 uint8_t code_gen_prologue[1024] code_gen_section;
101 static uint8_t *code_gen_buffer;
102 static unsigned long code_gen_buffer_size;
103 /* threshold to flush the translated code buffer */
104 static unsigned long code_gen_buffer_max_size;
105 static uint8_t *code_gen_ptr;
106
107 #if !defined(CONFIG_USER_ONLY)
108 int phys_ram_fd;
109 static int in_migration;
110
111 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
112 #endif
113
114 CPUState *first_cpu;
115 /* current CPU in the current thread. It is only valid inside
116 cpu_exec() */
117 CPUState *cpu_single_env;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
121 int use_icount = 0;
122 /* Current instruction counter. While executing translated code this may
123 include some instructions that have not yet been executed. */
124 int64_t qemu_icount;
125
126 typedef struct PageDesc {
127 /* list of TBs intersecting this ram page */
128 TranslationBlock *first_tb;
129 /* in order to optimize self modifying code, we count the number
130 of lookups we do to a given page to use a bitmap */
131 unsigned int code_write_count;
132 uint8_t *code_bitmap;
133 #if defined(CONFIG_USER_ONLY)
134 unsigned long flags;
135 #endif
136 } PageDesc;
137
138 /* In system mode we want L1_MAP to be based on ram offsets,
139 while in user mode we want it to be based on virtual addresses. */
140 #if !defined(CONFIG_USER_ONLY)
141 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
142 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
143 #else
144 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
145 #endif
146 #else
147 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
148 #endif
149
150 /* Size of the L2 (and L3, etc) page tables. */
151 #define L2_BITS 10
152 #define L2_SIZE (1 << L2_BITS)
153
154 /* The bits remaining after N lower levels of page tables. */
155 #define P_L1_BITS_REM \
156 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157 #define V_L1_BITS_REM \
158 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
159
160 /* Size of the L1 page table. Avoid silly small sizes. */
161 #if P_L1_BITS_REM < 4
162 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
163 #else
164 #define P_L1_BITS P_L1_BITS_REM
165 #endif
166
167 #if V_L1_BITS_REM < 4
168 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
169 #else
170 #define V_L1_BITS V_L1_BITS_REM
171 #endif
172
173 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
174 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
175
176 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 unsigned long qemu_real_host_page_size;
180 unsigned long qemu_host_page_bits;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageDesc {
190 /* offset in host memory of the page + io_index in the low bits */
191 ram_addr_t phys_offset;
192 ram_addr_t region_offset;
193 } PhysPageDesc;
194
195 /* This is a multi-level map on the physical address space.
196 The bottom level has pointers to PhysPageDesc. */
197 static void *l1_phys_map[P_L1_SIZE];
198
199 static void io_mem_init(void);
200
201 /* io memory support */
202 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
203 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
204 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
205 static char io_mem_used[IO_MEM_NB_ENTRIES];
206 static int io_mem_watch;
207 #endif
208
209 /* log support */
210 #ifdef WIN32
211 static const char *logfilename = "qemu.log";
212 #else
213 static const char *logfilename = "/tmp/qemu.log";
214 #endif
215 FILE *logfile;
216 int loglevel;
217 static int log_append = 0;
218
219 /* statistics */
220 #if !defined(CONFIG_USER_ONLY)
221 static int tlb_flush_count;
222 #endif
223 static int tb_flush_count;
224 static int tb_phys_invalidate_count;
225
226 #ifdef _WIN32
227 static void map_exec(void *addr, long size)
228 {
229 DWORD old_protect;
230 VirtualProtect(addr, size,
231 PAGE_EXECUTE_READWRITE, &old_protect);
232
233 }
234 #else
235 static void map_exec(void *addr, long size)
236 {
237 unsigned long start, end, page_size;
238
239 page_size = getpagesize();
240 start = (unsigned long)addr;
241 start &= ~(page_size - 1);
242
243 end = (unsigned long)addr + size;
244 end += page_size - 1;
245 end &= ~(page_size - 1);
246
247 mprotect((void *)start, end - start,
248 PROT_READ | PROT_WRITE | PROT_EXEC);
249 }
250 #endif
251
252 static void page_init(void)
253 {
254 /* NOTE: we can always suppose that qemu_host_page_size >=
255 TARGET_PAGE_SIZE */
256 #ifdef _WIN32
257 {
258 SYSTEM_INFO system_info;
259
260 GetSystemInfo(&system_info);
261 qemu_real_host_page_size = system_info.dwPageSize;
262 }
263 #else
264 qemu_real_host_page_size = getpagesize();
265 #endif
266 if (qemu_host_page_size == 0)
267 qemu_host_page_size = qemu_real_host_page_size;
268 if (qemu_host_page_size < TARGET_PAGE_SIZE)
269 qemu_host_page_size = TARGET_PAGE_SIZE;
270 qemu_host_page_bits = 0;
271 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
272 qemu_host_page_bits++;
273 qemu_host_page_mask = ~(qemu_host_page_size - 1);
274
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
276 {
277 #ifdef HAVE_KINFO_GETVMMAP
278 struct kinfo_vmentry *freep;
279 int i, cnt;
280
281 freep = kinfo_getvmmap(getpid(), &cnt);
282 if (freep) {
283 mmap_lock();
284 for (i = 0; i < cnt; i++) {
285 unsigned long startaddr, endaddr;
286
287 startaddr = freep[i].kve_start;
288 endaddr = freep[i].kve_end;
289 if (h2g_valid(startaddr)) {
290 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
291
292 if (h2g_valid(endaddr)) {
293 endaddr = h2g(endaddr);
294 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
295 } else {
296 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
297 endaddr = ~0ul;
298 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
299 #endif
300 }
301 }
302 }
303 free(freep);
304 mmap_unlock();
305 }
306 #else
307 FILE *f;
308
309 last_brk = (unsigned long)sbrk(0);
310
311 f = fopen("/compat/linux/proc/self/maps", "r");
312 if (f) {
313 mmap_lock();
314
315 do {
316 unsigned long startaddr, endaddr;
317 int n;
318
319 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
320
321 if (n == 2 && h2g_valid(startaddr)) {
322 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
323
324 if (h2g_valid(endaddr)) {
325 endaddr = h2g(endaddr);
326 } else {
327 endaddr = ~0ul;
328 }
329 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
330 }
331 } while (!feof(f));
332
333 fclose(f);
334 mmap_unlock();
335 }
336 #endif
337 }
338 #endif
339 }
340
341 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
342 {
343 PageDesc *pd;
344 void **lp;
345 int i;
346
347 #if defined(CONFIG_USER_ONLY)
348 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
349 # define ALLOC(P, SIZE) \
350 do { \
351 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
352 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
353 } while (0)
354 #else
355 # define ALLOC(P, SIZE) \
356 do { P = qemu_mallocz(SIZE); } while (0)
357 #endif
358
359 /* Level 1. Always allocated. */
360 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
361
362 /* Level 2..N-1. */
363 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
364 void **p = *lp;
365
366 if (p == NULL) {
367 if (!alloc) {
368 return NULL;
369 }
370 ALLOC(p, sizeof(void *) * L2_SIZE);
371 *lp = p;
372 }
373
374 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 }
376
377 pd = *lp;
378 if (pd == NULL) {
379 if (!alloc) {
380 return NULL;
381 }
382 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
383 *lp = pd;
384 }
385
386 #undef ALLOC
387
388 return pd + (index & (L2_SIZE - 1));
389 }
390
391 static inline PageDesc *page_find(tb_page_addr_t index)
392 {
393 return page_find_alloc(index, 0);
394 }
395
396 #if !defined(CONFIG_USER_ONLY)
397 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
398 {
399 PhysPageDesc *pd;
400 void **lp;
401 int i;
402
403 /* Level 1. Always allocated. */
404 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
405
406 /* Level 2..N-1. */
407 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
408 void **p = *lp;
409 if (p == NULL) {
410 if (!alloc) {
411 return NULL;
412 }
413 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
414 }
415 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 }
417
418 pd = *lp;
419 if (pd == NULL) {
420 int i;
421
422 if (!alloc) {
423 return NULL;
424 }
425
426 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
427
428 for (i = 0; i < L2_SIZE; i++) {
429 pd[i].phys_offset = IO_MEM_UNASSIGNED;
430 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
431 }
432 }
433
434 return pd + (index & (L2_SIZE - 1));
435 }
436
437 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
438 {
439 return phys_page_find_alloc(index, 0);
440 }
441
442 static void tlb_protect_code(ram_addr_t ram_addr);
443 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
444 target_ulong vaddr);
445 #define mmap_lock() do { } while(0)
446 #define mmap_unlock() do { } while(0)
447 #endif
448
449 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
450
451 #if defined(CONFIG_USER_ONLY)
452 /* Currently it is not recommended to allocate big chunks of data in
453 user mode. It will change when a dedicated libc will be used */
454 #define USE_STATIC_CODE_GEN_BUFFER
455 #endif
456
457 #ifdef USE_STATIC_CODE_GEN_BUFFER
458 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
459 __attribute__((aligned (CODE_GEN_ALIGN)));
460 #endif
461
462 static void code_gen_alloc(unsigned long tb_size)
463 {
464 #ifdef USE_STATIC_CODE_GEN_BUFFER
465 code_gen_buffer = static_code_gen_buffer;
466 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
467 map_exec(code_gen_buffer, code_gen_buffer_size);
468 #else
469 code_gen_buffer_size = tb_size;
470 if (code_gen_buffer_size == 0) {
471 #if defined(CONFIG_USER_ONLY)
472 /* in user mode, phys_ram_size is not meaningful */
473 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
474 #else
475 /* XXX: needs adjustments */
476 code_gen_buffer_size = (unsigned long)(ram_size / 4);
477 #endif
478 }
479 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
480 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
481 /* The code gen buffer location may have constraints depending on
482 the host cpu and OS */
483 #if defined(__linux__)
484 {
485 int flags;
486 void *start = NULL;
487
488 flags = MAP_PRIVATE | MAP_ANONYMOUS;
489 #if defined(__x86_64__)
490 flags |= MAP_32BIT;
491 /* Cannot map more than that */
492 if (code_gen_buffer_size > (800 * 1024 * 1024))
493 code_gen_buffer_size = (800 * 1024 * 1024);
494 #elif defined(__sparc_v9__)
495 // Map the buffer below 2G, so we can use direct calls and branches
496 flags |= MAP_FIXED;
497 start = (void *) 0x60000000UL;
498 if (code_gen_buffer_size > (512 * 1024 * 1024))
499 code_gen_buffer_size = (512 * 1024 * 1024);
500 #elif defined(__arm__)
501 /* Map the buffer below 32M, so we can use direct calls and branches */
502 flags |= MAP_FIXED;
503 start = (void *) 0x01000000UL;
504 if (code_gen_buffer_size > 16 * 1024 * 1024)
505 code_gen_buffer_size = 16 * 1024 * 1024;
506 #elif defined(__s390x__)
507 /* Map the buffer so that we can use direct calls and branches. */
508 /* We have a +- 4GB range on the branches; leave some slop. */
509 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
510 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
511 }
512 start = (void *)0x90000000UL;
513 #endif
514 code_gen_buffer = mmap(start, code_gen_buffer_size,
515 PROT_WRITE | PROT_READ | PROT_EXEC,
516 flags, -1, 0);
517 if (code_gen_buffer == MAP_FAILED) {
518 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
519 exit(1);
520 }
521 }
522 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
523 || defined(__DragonFly__) || defined(__OpenBSD__)
524 {
525 int flags;
526 void *addr = NULL;
527 flags = MAP_PRIVATE | MAP_ANONYMOUS;
528 #if defined(__x86_64__)
529 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
530 * 0x40000000 is free */
531 flags |= MAP_FIXED;
532 addr = (void *)0x40000000;
533 /* Cannot map more than that */
534 if (code_gen_buffer_size > (800 * 1024 * 1024))
535 code_gen_buffer_size = (800 * 1024 * 1024);
536 #elif defined(__sparc_v9__)
537 // Map the buffer below 2G, so we can use direct calls and branches
538 flags |= MAP_FIXED;
539 addr = (void *) 0x60000000UL;
540 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
541 code_gen_buffer_size = (512 * 1024 * 1024);
542 }
543 #endif
544 code_gen_buffer = mmap(addr, code_gen_buffer_size,
545 PROT_WRITE | PROT_READ | PROT_EXEC,
546 flags, -1, 0);
547 if (code_gen_buffer == MAP_FAILED) {
548 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
549 exit(1);
550 }
551 }
552 #else
553 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
554 map_exec(code_gen_buffer, code_gen_buffer_size);
555 #endif
556 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
557 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
558 code_gen_buffer_max_size = code_gen_buffer_size -
559 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
560 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
561 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
562 }
563
564 /* Must be called before using the QEMU cpus. 'tb_size' is the size
565 (in bytes) allocated to the translation buffer. Zero means default
566 size. */
567 void cpu_exec_init_all(unsigned long tb_size)
568 {
569 cpu_gen_init();
570 code_gen_alloc(tb_size);
571 code_gen_ptr = code_gen_buffer;
572 page_init();
573 #if !defined(CONFIG_USER_ONLY)
574 io_mem_init();
575 #endif
576 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
577 /* There's no guest base to take into account, so go ahead and
578 initialize the prologue now. */
579 tcg_prologue_init(&tcg_ctx);
580 #endif
581 }
582
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584
585 static int cpu_common_post_load(void *opaque, int version_id)
586 {
587 CPUState *env = opaque;
588
589 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
590 version_id is increased. */
591 env->interrupt_request &= ~0x01;
592 tlb_flush(env, 1);
593
594 return 0;
595 }
596
597 static const VMStateDescription vmstate_cpu_common = {
598 .name = "cpu_common",
599 .version_id = 1,
600 .minimum_version_id = 1,
601 .minimum_version_id_old = 1,
602 .post_load = cpu_common_post_load,
603 .fields = (VMStateField []) {
604 VMSTATE_UINT32(halted, CPUState),
605 VMSTATE_UINT32(interrupt_request, CPUState),
606 VMSTATE_END_OF_LIST()
607 }
608 };
609 #endif
610
611 CPUState *qemu_get_cpu(int cpu)
612 {
613 CPUState *env = first_cpu;
614
615 while (env) {
616 if (env->cpu_index == cpu)
617 break;
618 env = env->next_cpu;
619 }
620
621 return env;
622 }
623
624 void cpu_exec_init(CPUState *env)
625 {
626 CPUState **penv;
627 int cpu_index;
628
629 #if defined(CONFIG_USER_ONLY)
630 cpu_list_lock();
631 #endif
632 env->next_cpu = NULL;
633 penv = &first_cpu;
634 cpu_index = 0;
635 while (*penv != NULL) {
636 penv = &(*penv)->next_cpu;
637 cpu_index++;
638 }
639 env->cpu_index = cpu_index;
640 env->numa_node = 0;
641 QTAILQ_INIT(&env->breakpoints);
642 QTAILQ_INIT(&env->watchpoints);
643 #ifndef CONFIG_USER_ONLY
644 env->thread_id = qemu_get_thread_id();
645 #endif
646 *penv = env;
647 #if defined(CONFIG_USER_ONLY)
648 cpu_list_unlock();
649 #endif
650 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
651 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
652 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
653 cpu_save, cpu_load, env);
654 #endif
655 }
656
657 /* Allocate a new translation block. Flush the translation buffer if
658 too many translation blocks or too much generated code. */
659 static TranslationBlock *tb_alloc(target_ulong pc)
660 {
661 TranslationBlock *tb;
662
663 if (nb_tbs >= code_gen_max_blocks ||
664 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
665 return NULL;
666 tb = &tbs[nb_tbs++];
667 tb->pc = pc;
668 tb->cflags = 0;
669 return tb;
670 }
671
672 void tb_free(TranslationBlock *tb)
673 {
674 /* In practice this is mostly used for single use temporary TB
675 Ignore the hard cases and just back up if this TB happens to
676 be the last one generated. */
677 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
678 code_gen_ptr = tb->tc_ptr;
679 nb_tbs--;
680 }
681 }
682
683 static inline void invalidate_page_bitmap(PageDesc *p)
684 {
685 if (p->code_bitmap) {
686 qemu_free(p->code_bitmap);
687 p->code_bitmap = NULL;
688 }
689 p->code_write_count = 0;
690 }
691
692 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
693
694 static void page_flush_tb_1 (int level, void **lp)
695 {
696 int i;
697
698 if (*lp == NULL) {
699 return;
700 }
701 if (level == 0) {
702 PageDesc *pd = *lp;
703 for (i = 0; i < L2_SIZE; ++i) {
704 pd[i].first_tb = NULL;
705 invalidate_page_bitmap(pd + i);
706 }
707 } else {
708 void **pp = *lp;
709 for (i = 0; i < L2_SIZE; ++i) {
710 page_flush_tb_1 (level - 1, pp + i);
711 }
712 }
713 }
714
715 static void page_flush_tb(void)
716 {
717 int i;
718 for (i = 0; i < V_L1_SIZE; i++) {
719 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
720 }
721 }
722
723 /* flush all the translation blocks */
724 /* XXX: tb_flush is currently not thread safe */
725 void tb_flush(CPUState *env1)
726 {
727 CPUState *env;
728 #if defined(DEBUG_FLUSH)
729 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
730 (unsigned long)(code_gen_ptr - code_gen_buffer),
731 nb_tbs, nb_tbs > 0 ?
732 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
733 #endif
734 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
735 cpu_abort(env1, "Internal error: code buffer overflow\n");
736
737 nb_tbs = 0;
738
739 for(env = first_cpu; env != NULL; env = env->next_cpu) {
740 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
741 }
742
743 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
744 page_flush_tb();
745
746 code_gen_ptr = code_gen_buffer;
747 /* XXX: flush processor icache at this point if cache flush is
748 expensive */
749 tb_flush_count++;
750 }
751
752 #ifdef DEBUG_TB_CHECK
753
754 static void tb_invalidate_check(target_ulong address)
755 {
756 TranslationBlock *tb;
757 int i;
758 address &= TARGET_PAGE_MASK;
759 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
760 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
761 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
762 address >= tb->pc + tb->size)) {
763 printf("ERROR invalidate: address=" TARGET_FMT_lx
764 " PC=%08lx size=%04x\n",
765 address, (long)tb->pc, tb->size);
766 }
767 }
768 }
769 }
770
771 /* verify that all the pages have correct rights for code */
772 static void tb_page_check(void)
773 {
774 TranslationBlock *tb;
775 int i, flags1, flags2;
776
777 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
778 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
779 flags1 = page_get_flags(tb->pc);
780 flags2 = page_get_flags(tb->pc + tb->size - 1);
781 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
782 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
783 (long)tb->pc, tb->size, flags1, flags2);
784 }
785 }
786 }
787 }
788
789 #endif
790
791 /* invalidate one TB */
792 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
793 int next_offset)
794 {
795 TranslationBlock *tb1;
796 for(;;) {
797 tb1 = *ptb;
798 if (tb1 == tb) {
799 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
800 break;
801 }
802 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
803 }
804 }
805
806 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
807 {
808 TranslationBlock *tb1;
809 unsigned int n1;
810
811 for(;;) {
812 tb1 = *ptb;
813 n1 = (long)tb1 & 3;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 if (tb1 == tb) {
816 *ptb = tb1->page_next[n1];
817 break;
818 }
819 ptb = &tb1->page_next[n1];
820 }
821 }
822
823 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
824 {
825 TranslationBlock *tb1, **ptb;
826 unsigned int n1;
827
828 ptb = &tb->jmp_next[n];
829 tb1 = *ptb;
830 if (tb1) {
831 /* find tb(n) in circular list */
832 for(;;) {
833 tb1 = *ptb;
834 n1 = (long)tb1 & 3;
835 tb1 = (TranslationBlock *)((long)tb1 & ~3);
836 if (n1 == n && tb1 == tb)
837 break;
838 if (n1 == 2) {
839 ptb = &tb1->jmp_first;
840 } else {
841 ptb = &tb1->jmp_next[n1];
842 }
843 }
844 /* now we can suppress tb(n) from the list */
845 *ptb = tb->jmp_next[n];
846
847 tb->jmp_next[n] = NULL;
848 }
849 }
850
851 /* reset the jump entry 'n' of a TB so that it is not chained to
852 another TB */
853 static inline void tb_reset_jump(TranslationBlock *tb, int n)
854 {
855 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
856 }
857
858 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
859 {
860 CPUState *env;
861 PageDesc *p;
862 unsigned int h, n1;
863 tb_page_addr_t phys_pc;
864 TranslationBlock *tb1, *tb2;
865
866 /* remove the TB from the hash list */
867 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
868 h = tb_phys_hash_func(phys_pc);
869 tb_remove(&tb_phys_hash[h], tb,
870 offsetof(TranslationBlock, phys_hash_next));
871
872 /* remove the TB from the page list */
873 if (tb->page_addr[0] != page_addr) {
874 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
875 tb_page_remove(&p->first_tb, tb);
876 invalidate_page_bitmap(p);
877 }
878 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
879 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
880 tb_page_remove(&p->first_tb, tb);
881 invalidate_page_bitmap(p);
882 }
883
884 tb_invalidated_flag = 1;
885
886 /* remove the TB from the hash list */
887 h = tb_jmp_cache_hash_func(tb->pc);
888 for(env = first_cpu; env != NULL; env = env->next_cpu) {
889 if (env->tb_jmp_cache[h] == tb)
890 env->tb_jmp_cache[h] = NULL;
891 }
892
893 /* suppress this TB from the two jump lists */
894 tb_jmp_remove(tb, 0);
895 tb_jmp_remove(tb, 1);
896
897 /* suppress any remaining jumps to this TB */
898 tb1 = tb->jmp_first;
899 for(;;) {
900 n1 = (long)tb1 & 3;
901 if (n1 == 2)
902 break;
903 tb1 = (TranslationBlock *)((long)tb1 & ~3);
904 tb2 = tb1->jmp_next[n1];
905 tb_reset_jump(tb1, n1);
906 tb1->jmp_next[n1] = NULL;
907 tb1 = tb2;
908 }
909 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
910
911 tb_phys_invalidate_count++;
912 }
913
914 static inline void set_bits(uint8_t *tab, int start, int len)
915 {
916 int end, mask, end1;
917
918 end = start + len;
919 tab += start >> 3;
920 mask = 0xff << (start & 7);
921 if ((start & ~7) == (end & ~7)) {
922 if (start < end) {
923 mask &= ~(0xff << (end & 7));
924 *tab |= mask;
925 }
926 } else {
927 *tab++ |= mask;
928 start = (start + 8) & ~7;
929 end1 = end & ~7;
930 while (start < end1) {
931 *tab++ = 0xff;
932 start += 8;
933 }
934 if (start < end) {
935 mask = ~(0xff << (end & 7));
936 *tab |= mask;
937 }
938 }
939 }
940
941 static void build_page_bitmap(PageDesc *p)
942 {
943 int n, tb_start, tb_end;
944 TranslationBlock *tb;
945
946 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
947
948 tb = p->first_tb;
949 while (tb != NULL) {
950 n = (long)tb & 3;
951 tb = (TranslationBlock *)((long)tb & ~3);
952 /* NOTE: this is subtle as a TB may span two physical pages */
953 if (n == 0) {
954 /* NOTE: tb_end may be after the end of the page, but
955 it is not a problem */
956 tb_start = tb->pc & ~TARGET_PAGE_MASK;
957 tb_end = tb_start + tb->size;
958 if (tb_end > TARGET_PAGE_SIZE)
959 tb_end = TARGET_PAGE_SIZE;
960 } else {
961 tb_start = 0;
962 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
963 }
964 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
965 tb = tb->page_next[n];
966 }
967 }
968
969 TranslationBlock *tb_gen_code(CPUState *env,
970 target_ulong pc, target_ulong cs_base,
971 int flags, int cflags)
972 {
973 TranslationBlock *tb;
974 uint8_t *tc_ptr;
975 tb_page_addr_t phys_pc, phys_page2;
976 target_ulong virt_page2;
977 int code_gen_size;
978
979 phys_pc = get_page_addr_code(env, pc);
980 tb = tb_alloc(pc);
981 if (!tb) {
982 /* flush must be done */
983 tb_flush(env);
984 /* cannot fail at this point */
985 tb = tb_alloc(pc);
986 /* Don't forget to invalidate previous TB info. */
987 tb_invalidated_flag = 1;
988 }
989 tc_ptr = code_gen_ptr;
990 tb->tc_ptr = tc_ptr;
991 tb->cs_base = cs_base;
992 tb->flags = flags;
993 tb->cflags = cflags;
994 cpu_gen_code(env, tb, &code_gen_size);
995 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
996
997 /* check next page if needed */
998 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
999 phys_page2 = -1;
1000 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1001 phys_page2 = get_page_addr_code(env, virt_page2);
1002 }
1003 tb_link_page(tb, phys_pc, phys_page2);
1004 return tb;
1005 }
1006
1007 /* invalidate all TBs which intersect with the target physical page
1008 starting in range [start;end[. NOTE: start and end must refer to
1009 the same physical page. 'is_cpu_write_access' should be true if called
1010 from a real cpu write access: the virtual CPU will exit the current
1011 TB if code is modified inside this TB. */
1012 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1013 int is_cpu_write_access)
1014 {
1015 TranslationBlock *tb, *tb_next, *saved_tb;
1016 CPUState *env = cpu_single_env;
1017 tb_page_addr_t tb_start, tb_end;
1018 PageDesc *p;
1019 int n;
1020 #ifdef TARGET_HAS_PRECISE_SMC
1021 int current_tb_not_found = is_cpu_write_access;
1022 TranslationBlock *current_tb = NULL;
1023 int current_tb_modified = 0;
1024 target_ulong current_pc = 0;
1025 target_ulong current_cs_base = 0;
1026 int current_flags = 0;
1027 #endif /* TARGET_HAS_PRECISE_SMC */
1028
1029 p = page_find(start >> TARGET_PAGE_BITS);
1030 if (!p)
1031 return;
1032 if (!p->code_bitmap &&
1033 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1034 is_cpu_write_access) {
1035 /* build code bitmap */
1036 build_page_bitmap(p);
1037 }
1038
1039 /* we remove all the TBs in the range [start, end[ */
1040 /* XXX: see if in some cases it could be faster to invalidate all the code */
1041 tb = p->first_tb;
1042 while (tb != NULL) {
1043 n = (long)tb & 3;
1044 tb = (TranslationBlock *)((long)tb & ~3);
1045 tb_next = tb->page_next[n];
1046 /* NOTE: this is subtle as a TB may span two physical pages */
1047 if (n == 0) {
1048 /* NOTE: tb_end may be after the end of the page, but
1049 it is not a problem */
1050 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1051 tb_end = tb_start + tb->size;
1052 } else {
1053 tb_start = tb->page_addr[1];
1054 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1055 }
1056 if (!(tb_end <= start || tb_start >= end)) {
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 if (current_tb_not_found) {
1059 current_tb_not_found = 0;
1060 current_tb = NULL;
1061 if (env->mem_io_pc) {
1062 /* now we have a real cpu fault */
1063 current_tb = tb_find_pc(env->mem_io_pc);
1064 }
1065 }
1066 if (current_tb == tb &&
1067 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1068 /* If we are modifying the current TB, we must stop
1069 its execution. We could be more precise by checking
1070 that the modification is after the current PC, but it
1071 would require a specialized function to partially
1072 restore the CPU state */
1073
1074 current_tb_modified = 1;
1075 cpu_restore_state(current_tb, env, env->mem_io_pc);
1076 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1077 &current_flags);
1078 }
1079 #endif /* TARGET_HAS_PRECISE_SMC */
1080 /* we need to do that to handle the case where a signal
1081 occurs while doing tb_phys_invalidate() */
1082 saved_tb = NULL;
1083 if (env) {
1084 saved_tb = env->current_tb;
1085 env->current_tb = NULL;
1086 }
1087 tb_phys_invalidate(tb, -1);
1088 if (env) {
1089 env->current_tb = saved_tb;
1090 if (env->interrupt_request && env->current_tb)
1091 cpu_interrupt(env, env->interrupt_request);
1092 }
1093 }
1094 tb = tb_next;
1095 }
1096 #if !defined(CONFIG_USER_ONLY)
1097 /* if no code remaining, no need to continue to use slow writes */
1098 if (!p->first_tb) {
1099 invalidate_page_bitmap(p);
1100 if (is_cpu_write_access) {
1101 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1102 }
1103 }
1104 #endif
1105 #ifdef TARGET_HAS_PRECISE_SMC
1106 if (current_tb_modified) {
1107 /* we generate a block containing just the instruction
1108 modifying the memory. It will ensure that it cannot modify
1109 itself */
1110 env->current_tb = NULL;
1111 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1112 cpu_resume_from_signal(env, NULL);
1113 }
1114 #endif
1115 }
1116
1117 /* len must be <= 8 and start must be a multiple of len */
1118 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1119 {
1120 PageDesc *p;
1121 int offset, b;
1122 #if 0
1123 if (1) {
1124 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1125 cpu_single_env->mem_io_vaddr, len,
1126 cpu_single_env->eip,
1127 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1128 }
1129 #endif
1130 p = page_find(start >> TARGET_PAGE_BITS);
1131 if (!p)
1132 return;
1133 if (p->code_bitmap) {
1134 offset = start & ~TARGET_PAGE_MASK;
1135 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1136 if (b & ((1 << len) - 1))
1137 goto do_invalidate;
1138 } else {
1139 do_invalidate:
1140 tb_invalidate_phys_page_range(start, start + len, 1);
1141 }
1142 }
1143
1144 #if !defined(CONFIG_SOFTMMU)
1145 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1146 unsigned long pc, void *puc)
1147 {
1148 TranslationBlock *tb;
1149 PageDesc *p;
1150 int n;
1151 #ifdef TARGET_HAS_PRECISE_SMC
1152 TranslationBlock *current_tb = NULL;
1153 CPUState *env = cpu_single_env;
1154 int current_tb_modified = 0;
1155 target_ulong current_pc = 0;
1156 target_ulong current_cs_base = 0;
1157 int current_flags = 0;
1158 #endif
1159
1160 addr &= TARGET_PAGE_MASK;
1161 p = page_find(addr >> TARGET_PAGE_BITS);
1162 if (!p)
1163 return;
1164 tb = p->first_tb;
1165 #ifdef TARGET_HAS_PRECISE_SMC
1166 if (tb && pc != 0) {
1167 current_tb = tb_find_pc(pc);
1168 }
1169 #endif
1170 while (tb != NULL) {
1171 n = (long)tb & 3;
1172 tb = (TranslationBlock *)((long)tb & ~3);
1173 #ifdef TARGET_HAS_PRECISE_SMC
1174 if (current_tb == tb &&
1175 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1176 /* If we are modifying the current TB, we must stop
1177 its execution. We could be more precise by checking
1178 that the modification is after the current PC, but it
1179 would require a specialized function to partially
1180 restore the CPU state */
1181
1182 current_tb_modified = 1;
1183 cpu_restore_state(current_tb, env, pc);
1184 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1185 &current_flags);
1186 }
1187 #endif /* TARGET_HAS_PRECISE_SMC */
1188 tb_phys_invalidate(tb, addr);
1189 tb = tb->page_next[n];
1190 }
1191 p->first_tb = NULL;
1192 #ifdef TARGET_HAS_PRECISE_SMC
1193 if (current_tb_modified) {
1194 /* we generate a block containing just the instruction
1195 modifying the memory. It will ensure that it cannot modify
1196 itself */
1197 env->current_tb = NULL;
1198 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1199 cpu_resume_from_signal(env, puc);
1200 }
1201 #endif
1202 }
1203 #endif
1204
1205 /* add the tb in the target page and protect it if necessary */
1206 static inline void tb_alloc_page(TranslationBlock *tb,
1207 unsigned int n, tb_page_addr_t page_addr)
1208 {
1209 PageDesc *p;
1210 TranslationBlock *last_first_tb;
1211
1212 tb->page_addr[n] = page_addr;
1213 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1214 tb->page_next[n] = p->first_tb;
1215 last_first_tb = p->first_tb;
1216 p->first_tb = (TranslationBlock *)((long)tb | n);
1217 invalidate_page_bitmap(p);
1218
1219 #if defined(TARGET_HAS_SMC) || 1
1220
1221 #if defined(CONFIG_USER_ONLY)
1222 if (p->flags & PAGE_WRITE) {
1223 target_ulong addr;
1224 PageDesc *p2;
1225 int prot;
1226
1227 /* force the host page as non writable (writes will have a
1228 page fault + mprotect overhead) */
1229 page_addr &= qemu_host_page_mask;
1230 prot = 0;
1231 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1232 addr += TARGET_PAGE_SIZE) {
1233
1234 p2 = page_find (addr >> TARGET_PAGE_BITS);
1235 if (!p2)
1236 continue;
1237 prot |= p2->flags;
1238 p2->flags &= ~PAGE_WRITE;
1239 }
1240 mprotect(g2h(page_addr), qemu_host_page_size,
1241 (prot & PAGE_BITS) & ~PAGE_WRITE);
1242 #ifdef DEBUG_TB_INVALIDATE
1243 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1244 page_addr);
1245 #endif
1246 }
1247 #else
1248 /* if some code is already present, then the pages are already
1249 protected. So we handle the case where only the first TB is
1250 allocated in a physical page */
1251 if (!last_first_tb) {
1252 tlb_protect_code(page_addr);
1253 }
1254 #endif
1255
1256 #endif /* TARGET_HAS_SMC */
1257 }
1258
1259 /* add a new TB and link it to the physical page tables. phys_page2 is
1260 (-1) to indicate that only one page contains the TB. */
1261 void tb_link_page(TranslationBlock *tb,
1262 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1263 {
1264 unsigned int h;
1265 TranslationBlock **ptb;
1266
1267 /* Grab the mmap lock to stop another thread invalidating this TB
1268 before we are done. */
1269 mmap_lock();
1270 /* add in the physical hash table */
1271 h = tb_phys_hash_func(phys_pc);
1272 ptb = &tb_phys_hash[h];
1273 tb->phys_hash_next = *ptb;
1274 *ptb = tb;
1275
1276 /* add in the page list */
1277 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1278 if (phys_page2 != -1)
1279 tb_alloc_page(tb, 1, phys_page2);
1280 else
1281 tb->page_addr[1] = -1;
1282
1283 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1284 tb->jmp_next[0] = NULL;
1285 tb->jmp_next[1] = NULL;
1286
1287 /* init original jump addresses */
1288 if (tb->tb_next_offset[0] != 0xffff)
1289 tb_reset_jump(tb, 0);
1290 if (tb->tb_next_offset[1] != 0xffff)
1291 tb_reset_jump(tb, 1);
1292
1293 #ifdef DEBUG_TB_CHECK
1294 tb_page_check();
1295 #endif
1296 mmap_unlock();
1297 }
1298
1299 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1300 tb[1].tc_ptr. Return NULL if not found */
1301 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1302 {
1303 int m_min, m_max, m;
1304 unsigned long v;
1305 TranslationBlock *tb;
1306
1307 if (nb_tbs <= 0)
1308 return NULL;
1309 if (tc_ptr < (unsigned long)code_gen_buffer ||
1310 tc_ptr >= (unsigned long)code_gen_ptr)
1311 return NULL;
1312 /* binary search (cf Knuth) */
1313 m_min = 0;
1314 m_max = nb_tbs - 1;
1315 while (m_min <= m_max) {
1316 m = (m_min + m_max) >> 1;
1317 tb = &tbs[m];
1318 v = (unsigned long)tb->tc_ptr;
1319 if (v == tc_ptr)
1320 return tb;
1321 else if (tc_ptr < v) {
1322 m_max = m - 1;
1323 } else {
1324 m_min = m + 1;
1325 }
1326 }
1327 return &tbs[m_max];
1328 }
1329
1330 static void tb_reset_jump_recursive(TranslationBlock *tb);
1331
1332 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1333 {
1334 TranslationBlock *tb1, *tb_next, **ptb;
1335 unsigned int n1;
1336
1337 tb1 = tb->jmp_next[n];
1338 if (tb1 != NULL) {
1339 /* find head of list */
1340 for(;;) {
1341 n1 = (long)tb1 & 3;
1342 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1343 if (n1 == 2)
1344 break;
1345 tb1 = tb1->jmp_next[n1];
1346 }
1347 /* we are now sure now that tb jumps to tb1 */
1348 tb_next = tb1;
1349
1350 /* remove tb from the jmp_first list */
1351 ptb = &tb_next->jmp_first;
1352 for(;;) {
1353 tb1 = *ptb;
1354 n1 = (long)tb1 & 3;
1355 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1356 if (n1 == n && tb1 == tb)
1357 break;
1358 ptb = &tb1->jmp_next[n1];
1359 }
1360 *ptb = tb->jmp_next[n];
1361 tb->jmp_next[n] = NULL;
1362
1363 /* suppress the jump to next tb in generated code */
1364 tb_reset_jump(tb, n);
1365
1366 /* suppress jumps in the tb on which we could have jumped */
1367 tb_reset_jump_recursive(tb_next);
1368 }
1369 }
1370
1371 static void tb_reset_jump_recursive(TranslationBlock *tb)
1372 {
1373 tb_reset_jump_recursive2(tb, 0);
1374 tb_reset_jump_recursive2(tb, 1);
1375 }
1376
1377 #if defined(TARGET_HAS_ICE)
1378 #if defined(CONFIG_USER_ONLY)
1379 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1380 {
1381 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1382 }
1383 #else
1384 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1385 {
1386 target_phys_addr_t addr;
1387 target_ulong pd;
1388 ram_addr_t ram_addr;
1389 PhysPageDesc *p;
1390
1391 addr = cpu_get_phys_page_debug(env, pc);
1392 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1393 if (!p) {
1394 pd = IO_MEM_UNASSIGNED;
1395 } else {
1396 pd = p->phys_offset;
1397 }
1398 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1399 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1400 }
1401 #endif
1402 #endif /* TARGET_HAS_ICE */
1403
1404 #if defined(CONFIG_USER_ONLY)
1405 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1406
1407 {
1408 }
1409
1410 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1411 int flags, CPUWatchpoint **watchpoint)
1412 {
1413 return -ENOSYS;
1414 }
1415 #else
1416 /* Add a watchpoint. */
1417 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1418 int flags, CPUWatchpoint **watchpoint)
1419 {
1420 target_ulong len_mask = ~(len - 1);
1421 CPUWatchpoint *wp;
1422
1423 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1424 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1425 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1426 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1427 return -EINVAL;
1428 }
1429 wp = qemu_malloc(sizeof(*wp));
1430
1431 wp->vaddr = addr;
1432 wp->len_mask = len_mask;
1433 wp->flags = flags;
1434
1435 /* keep all GDB-injected watchpoints in front */
1436 if (flags & BP_GDB)
1437 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1438 else
1439 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1440
1441 tlb_flush_page(env, addr);
1442
1443 if (watchpoint)
1444 *watchpoint = wp;
1445 return 0;
1446 }
1447
1448 /* Remove a specific watchpoint. */
1449 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1450 int flags)
1451 {
1452 target_ulong len_mask = ~(len - 1);
1453 CPUWatchpoint *wp;
1454
1455 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1456 if (addr == wp->vaddr && len_mask == wp->len_mask
1457 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1458 cpu_watchpoint_remove_by_ref(env, wp);
1459 return 0;
1460 }
1461 }
1462 return -ENOENT;
1463 }
1464
1465 /* Remove a specific watchpoint by reference. */
1466 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1467 {
1468 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1469
1470 tlb_flush_page(env, watchpoint->vaddr);
1471
1472 qemu_free(watchpoint);
1473 }
1474
1475 /* Remove all matching watchpoints. */
1476 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1477 {
1478 CPUWatchpoint *wp, *next;
1479
1480 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1481 if (wp->flags & mask)
1482 cpu_watchpoint_remove_by_ref(env, wp);
1483 }
1484 }
1485 #endif
1486
1487 /* Add a breakpoint. */
1488 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1489 CPUBreakpoint **breakpoint)
1490 {
1491 #if defined(TARGET_HAS_ICE)
1492 CPUBreakpoint *bp;
1493
1494 bp = qemu_malloc(sizeof(*bp));
1495
1496 bp->pc = pc;
1497 bp->flags = flags;
1498
1499 /* keep all GDB-injected breakpoints in front */
1500 if (flags & BP_GDB)
1501 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1502 else
1503 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1504
1505 breakpoint_invalidate(env, pc);
1506
1507 if (breakpoint)
1508 *breakpoint = bp;
1509 return 0;
1510 #else
1511 return -ENOSYS;
1512 #endif
1513 }
1514
1515 /* Remove a specific breakpoint. */
1516 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1517 {
1518 #if defined(TARGET_HAS_ICE)
1519 CPUBreakpoint *bp;
1520
1521 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1522 if (bp->pc == pc && bp->flags == flags) {
1523 cpu_breakpoint_remove_by_ref(env, bp);
1524 return 0;
1525 }
1526 }
1527 return -ENOENT;
1528 #else
1529 return -ENOSYS;
1530 #endif
1531 }
1532
1533 /* Remove a specific breakpoint by reference. */
1534 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1535 {
1536 #if defined(TARGET_HAS_ICE)
1537 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1538
1539 breakpoint_invalidate(env, breakpoint->pc);
1540
1541 qemu_free(breakpoint);
1542 #endif
1543 }
1544
1545 /* Remove all matching breakpoints. */
1546 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1547 {
1548 #if defined(TARGET_HAS_ICE)
1549 CPUBreakpoint *bp, *next;
1550
1551 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1552 if (bp->flags & mask)
1553 cpu_breakpoint_remove_by_ref(env, bp);
1554 }
1555 #endif
1556 }
1557
1558 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1559 CPU loop after each instruction */
1560 void cpu_single_step(CPUState *env, int enabled)
1561 {
1562 #if defined(TARGET_HAS_ICE)
1563 if (env->singlestep_enabled != enabled) {
1564 env->singlestep_enabled = enabled;
1565 if (kvm_enabled())
1566 kvm_update_guest_debug(env, 0);
1567 else {
1568 /* must flush all the translated code to avoid inconsistencies */
1569 /* XXX: only flush what is necessary */
1570 tb_flush(env);
1571 }
1572 }
1573 #endif
1574 }
1575
1576 /* enable or disable low levels log */
1577 void cpu_set_log(int log_flags)
1578 {
1579 loglevel = log_flags;
1580 if (loglevel && !logfile) {
1581 logfile = fopen(logfilename, log_append ? "a" : "w");
1582 if (!logfile) {
1583 perror(logfilename);
1584 _exit(1);
1585 }
1586 #if !defined(CONFIG_SOFTMMU)
1587 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1588 {
1589 static char logfile_buf[4096];
1590 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1591 }
1592 #elif !defined(_WIN32)
1593 /* Win32 doesn't support line-buffering and requires size >= 2 */
1594 setvbuf(logfile, NULL, _IOLBF, 0);
1595 #endif
1596 log_append = 1;
1597 }
1598 if (!loglevel && logfile) {
1599 fclose(logfile);
1600 logfile = NULL;
1601 }
1602 }
1603
1604 void cpu_set_log_filename(const char *filename)
1605 {
1606 logfilename = strdup(filename);
1607 if (logfile) {
1608 fclose(logfile);
1609 logfile = NULL;
1610 }
1611 cpu_set_log(loglevel);
1612 }
1613
1614 static void cpu_unlink_tb(CPUState *env)
1615 {
1616 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1617 problem and hope the cpu will stop of its own accord. For userspace
1618 emulation this often isn't actually as bad as it sounds. Often
1619 signals are used primarily to interrupt blocking syscalls. */
1620 TranslationBlock *tb;
1621 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1622
1623 spin_lock(&interrupt_lock);
1624 tb = env->current_tb;
1625 /* if the cpu is currently executing code, we must unlink it and
1626 all the potentially executing TB */
1627 if (tb) {
1628 env->current_tb = NULL;
1629 tb_reset_jump_recursive(tb);
1630 }
1631 spin_unlock(&interrupt_lock);
1632 }
1633
1634 #ifndef CONFIG_USER_ONLY
1635 /* mask must never be zero, except for A20 change call */
1636 static void tcg_handle_interrupt(CPUState *env, int mask)
1637 {
1638 int old_mask;
1639
1640 old_mask = env->interrupt_request;
1641 env->interrupt_request |= mask;
1642
1643 /*
1644 * If called from iothread context, wake the target cpu in
1645 * case its halted.
1646 */
1647 if (!qemu_cpu_is_self(env)) {
1648 qemu_cpu_kick(env);
1649 return;
1650 }
1651
1652 if (use_icount) {
1653 env->icount_decr.u16.high = 0xffff;
1654 if (!can_do_io(env)
1655 && (mask & ~old_mask) != 0) {
1656 cpu_abort(env, "Raised interrupt while not in I/O function");
1657 }
1658 } else {
1659 cpu_unlink_tb(env);
1660 }
1661 }
1662
1663 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1664
1665 #else /* CONFIG_USER_ONLY */
1666
1667 void cpu_interrupt(CPUState *env, int mask)
1668 {
1669 env->interrupt_request |= mask;
1670 cpu_unlink_tb(env);
1671 }
1672 #endif /* CONFIG_USER_ONLY */
1673
1674 void cpu_reset_interrupt(CPUState *env, int mask)
1675 {
1676 env->interrupt_request &= ~mask;
1677 }
1678
1679 void cpu_exit(CPUState *env)
1680 {
1681 env->exit_request = 1;
1682 cpu_unlink_tb(env);
1683 }
1684
1685 const CPULogItem cpu_log_items[] = {
1686 { CPU_LOG_TB_OUT_ASM, "out_asm",
1687 "show generated host assembly code for each compiled TB" },
1688 { CPU_LOG_TB_IN_ASM, "in_asm",
1689 "show target assembly code for each compiled TB" },
1690 { CPU_LOG_TB_OP, "op",
1691 "show micro ops for each compiled TB" },
1692 { CPU_LOG_TB_OP_OPT, "op_opt",
1693 "show micro ops "
1694 #ifdef TARGET_I386
1695 "before eflags optimization and "
1696 #endif
1697 "after liveness analysis" },
1698 { CPU_LOG_INT, "int",
1699 "show interrupts/exceptions in short format" },
1700 { CPU_LOG_EXEC, "exec",
1701 "show trace before each executed TB (lots of logs)" },
1702 { CPU_LOG_TB_CPU, "cpu",
1703 "show CPU state before block translation" },
1704 #ifdef TARGET_I386
1705 { CPU_LOG_PCALL, "pcall",
1706 "show protected mode far calls/returns/exceptions" },
1707 { CPU_LOG_RESET, "cpu_reset",
1708 "show CPU state before CPU resets" },
1709 #endif
1710 #ifdef DEBUG_IOPORT
1711 { CPU_LOG_IOPORT, "ioport",
1712 "show all i/o ports accesses" },
1713 #endif
1714 { 0, NULL, NULL },
1715 };
1716
1717 #ifndef CONFIG_USER_ONLY
1718 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1719 = QLIST_HEAD_INITIALIZER(memory_client_list);
1720
1721 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1722 ram_addr_t size,
1723 ram_addr_t phys_offset,
1724 bool log_dirty)
1725 {
1726 CPUPhysMemoryClient *client;
1727 QLIST_FOREACH(client, &memory_client_list, list) {
1728 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1729 }
1730 }
1731
1732 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1733 target_phys_addr_t end)
1734 {
1735 CPUPhysMemoryClient *client;
1736 QLIST_FOREACH(client, &memory_client_list, list) {
1737 int r = client->sync_dirty_bitmap(client, start, end);
1738 if (r < 0)
1739 return r;
1740 }
1741 return 0;
1742 }
1743
1744 static int cpu_notify_migration_log(int enable)
1745 {
1746 CPUPhysMemoryClient *client;
1747 QLIST_FOREACH(client, &memory_client_list, list) {
1748 int r = client->migration_log(client, enable);
1749 if (r < 0)
1750 return r;
1751 }
1752 return 0;
1753 }
1754
1755 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1756 * address. Each intermediate table provides the next L2_BITs of guest
1757 * physical address space. The number of levels vary based on host and
1758 * guest configuration, making it efficient to build the final guest
1759 * physical address by seeding the L1 offset and shifting and adding in
1760 * each L2 offset as we recurse through them. */
1761 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1762 int level, void **lp, target_phys_addr_t addr)
1763 {
1764 int i;
1765
1766 if (*lp == NULL) {
1767 return;
1768 }
1769 if (level == 0) {
1770 PhysPageDesc *pd = *lp;
1771 addr <<= L2_BITS + TARGET_PAGE_BITS;
1772 for (i = 0; i < L2_SIZE; ++i) {
1773 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1774 client->set_memory(client, addr | i << TARGET_PAGE_BITS,
1775 TARGET_PAGE_SIZE, pd[i].phys_offset, false);
1776 }
1777 }
1778 } else {
1779 void **pp = *lp;
1780 for (i = 0; i < L2_SIZE; ++i) {
1781 phys_page_for_each_1(client, level - 1, pp + i,
1782 (addr << L2_BITS) | i);
1783 }
1784 }
1785 }
1786
1787 static void phys_page_for_each(CPUPhysMemoryClient *client)
1788 {
1789 int i;
1790 for (i = 0; i < P_L1_SIZE; ++i) {
1791 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1792 l1_phys_map + i, i);
1793 }
1794 }
1795
1796 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1797 {
1798 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1799 phys_page_for_each(client);
1800 }
1801
1802 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1803 {
1804 QLIST_REMOVE(client, list);
1805 }
1806 #endif
1807
1808 static int cmp1(const char *s1, int n, const char *s2)
1809 {
1810 if (strlen(s2) != n)
1811 return 0;
1812 return memcmp(s1, s2, n) == 0;
1813 }
1814
1815 /* takes a comma separated list of log masks. Return 0 if error. */
1816 int cpu_str_to_log_mask(const char *str)
1817 {
1818 const CPULogItem *item;
1819 int mask;
1820 const char *p, *p1;
1821
1822 p = str;
1823 mask = 0;
1824 for(;;) {
1825 p1 = strchr(p, ',');
1826 if (!p1)
1827 p1 = p + strlen(p);
1828 if(cmp1(p,p1-p,"all")) {
1829 for(item = cpu_log_items; item->mask != 0; item++) {
1830 mask |= item->mask;
1831 }
1832 } else {
1833 for(item = cpu_log_items; item->mask != 0; item++) {
1834 if (cmp1(p, p1 - p, item->name))
1835 goto found;
1836 }
1837 return 0;
1838 }
1839 found:
1840 mask |= item->mask;
1841 if (*p1 != ',')
1842 break;
1843 p = p1 + 1;
1844 }
1845 return mask;
1846 }
1847
1848 void cpu_abort(CPUState *env, const char *fmt, ...)
1849 {
1850 va_list ap;
1851 va_list ap2;
1852
1853 va_start(ap, fmt);
1854 va_copy(ap2, ap);
1855 fprintf(stderr, "qemu: fatal: ");
1856 vfprintf(stderr, fmt, ap);
1857 fprintf(stderr, "\n");
1858 #ifdef TARGET_I386
1859 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1860 #else
1861 cpu_dump_state(env, stderr, fprintf, 0);
1862 #endif
1863 if (qemu_log_enabled()) {
1864 qemu_log("qemu: fatal: ");
1865 qemu_log_vprintf(fmt, ap2);
1866 qemu_log("\n");
1867 #ifdef TARGET_I386
1868 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1869 #else
1870 log_cpu_state(env, 0);
1871 #endif
1872 qemu_log_flush();
1873 qemu_log_close();
1874 }
1875 va_end(ap2);
1876 va_end(ap);
1877 #if defined(CONFIG_USER_ONLY)
1878 {
1879 struct sigaction act;
1880 sigfillset(&act.sa_mask);
1881 act.sa_handler = SIG_DFL;
1882 sigaction(SIGABRT, &act, NULL);
1883 }
1884 #endif
1885 abort();
1886 }
1887
1888 CPUState *cpu_copy(CPUState *env)
1889 {
1890 CPUState *new_env = cpu_init(env->cpu_model_str);
1891 CPUState *next_cpu = new_env->next_cpu;
1892 int cpu_index = new_env->cpu_index;
1893 #if defined(TARGET_HAS_ICE)
1894 CPUBreakpoint *bp;
1895 CPUWatchpoint *wp;
1896 #endif
1897
1898 memcpy(new_env, env, sizeof(CPUState));
1899
1900 /* Preserve chaining and index. */
1901 new_env->next_cpu = next_cpu;
1902 new_env->cpu_index = cpu_index;
1903
1904 /* Clone all break/watchpoints.
1905 Note: Once we support ptrace with hw-debug register access, make sure
1906 BP_CPU break/watchpoints are handled correctly on clone. */
1907 QTAILQ_INIT(&env->breakpoints);
1908 QTAILQ_INIT(&env->watchpoints);
1909 #if defined(TARGET_HAS_ICE)
1910 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1911 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1912 }
1913 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1914 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1915 wp->flags, NULL);
1916 }
1917 #endif
1918
1919 return new_env;
1920 }
1921
1922 #if !defined(CONFIG_USER_ONLY)
1923
1924 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1925 {
1926 unsigned int i;
1927
1928 /* Discard jump cache entries for any tb which might potentially
1929 overlap the flushed page. */
1930 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1931 memset (&env->tb_jmp_cache[i], 0,
1932 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1933
1934 i = tb_jmp_cache_hash_page(addr);
1935 memset (&env->tb_jmp_cache[i], 0,
1936 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1937 }
1938
1939 static CPUTLBEntry s_cputlb_empty_entry = {
1940 .addr_read = -1,
1941 .addr_write = -1,
1942 .addr_code = -1,
1943 .addend = -1,
1944 };
1945
1946 /* NOTE: if flush_global is true, also flush global entries (not
1947 implemented yet) */
1948 void tlb_flush(CPUState *env, int flush_global)
1949 {
1950 int i;
1951
1952 #if defined(DEBUG_TLB)
1953 printf("tlb_flush:\n");
1954 #endif
1955 /* must reset current TB so that interrupts cannot modify the
1956 links while we are modifying them */
1957 env->current_tb = NULL;
1958
1959 for(i = 0; i < CPU_TLB_SIZE; i++) {
1960 int mmu_idx;
1961 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1962 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1963 }
1964 }
1965
1966 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1967
1968 env->tlb_flush_addr = -1;
1969 env->tlb_flush_mask = 0;
1970 tlb_flush_count++;
1971 }
1972
1973 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1974 {
1975 if (addr == (tlb_entry->addr_read &
1976 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1977 addr == (tlb_entry->addr_write &
1978 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1979 addr == (tlb_entry->addr_code &
1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1981 *tlb_entry = s_cputlb_empty_entry;
1982 }
1983 }
1984
1985 void tlb_flush_page(CPUState *env, target_ulong addr)
1986 {
1987 int i;
1988 int mmu_idx;
1989
1990 #if defined(DEBUG_TLB)
1991 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1992 #endif
1993 /* Check if we need to flush due to large pages. */
1994 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1995 #if defined(DEBUG_TLB)
1996 printf("tlb_flush_page: forced full flush ("
1997 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1998 env->tlb_flush_addr, env->tlb_flush_mask);
1999 #endif
2000 tlb_flush(env, 1);
2001 return;
2002 }
2003 /* must reset current TB so that interrupts cannot modify the
2004 links while we are modifying them */
2005 env->current_tb = NULL;
2006
2007 addr &= TARGET_PAGE_MASK;
2008 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2009 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2010 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2011
2012 tlb_flush_jmp_cache(env, addr);
2013 }
2014
2015 /* update the TLBs so that writes to code in the virtual page 'addr'
2016 can be detected */
2017 static void tlb_protect_code(ram_addr_t ram_addr)
2018 {
2019 cpu_physical_memory_reset_dirty(ram_addr,
2020 ram_addr + TARGET_PAGE_SIZE,
2021 CODE_DIRTY_FLAG);
2022 }
2023
2024 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2025 tested for self modifying code */
2026 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2027 target_ulong vaddr)
2028 {
2029 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2030 }
2031
2032 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2033 unsigned long start, unsigned long length)
2034 {
2035 unsigned long addr;
2036 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2037 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2038 if ((addr - start) < length) {
2039 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2040 }
2041 }
2042 }
2043
2044 /* Note: start and end must be within the same ram block. */
2045 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2046 int dirty_flags)
2047 {
2048 CPUState *env;
2049 unsigned long length, start1;
2050 int i;
2051
2052 start &= TARGET_PAGE_MASK;
2053 end = TARGET_PAGE_ALIGN(end);
2054
2055 length = end - start;
2056 if (length == 0)
2057 return;
2058 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2059
2060 /* we modify the TLB cache so that the dirty bit will be set again
2061 when accessing the range */
2062 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2063 /* Check that we don't span multiple blocks - this breaks the
2064 address comparisons below. */
2065 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2066 != (end - 1) - start) {
2067 abort();
2068 }
2069
2070 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2071 int mmu_idx;
2072 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2073 for(i = 0; i < CPU_TLB_SIZE; i++)
2074 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2075 start1, length);
2076 }
2077 }
2078 }
2079
2080 int cpu_physical_memory_set_dirty_tracking(int enable)
2081 {
2082 int ret = 0;
2083 in_migration = enable;
2084 ret = cpu_notify_migration_log(!!enable);
2085 return ret;
2086 }
2087
2088 int cpu_physical_memory_get_dirty_tracking(void)
2089 {
2090 return in_migration;
2091 }
2092
2093 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2094 target_phys_addr_t end_addr)
2095 {
2096 int ret;
2097
2098 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2099 return ret;
2100 }
2101
2102 int cpu_physical_log_start(target_phys_addr_t start_addr,
2103 ram_addr_t size)
2104 {
2105 CPUPhysMemoryClient *client;
2106 QLIST_FOREACH(client, &memory_client_list, list) {
2107 if (client->log_start) {
2108 int r = client->log_start(client, start_addr, size);
2109 if (r < 0) {
2110 return r;
2111 }
2112 }
2113 }
2114 return 0;
2115 }
2116
2117 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2118 ram_addr_t size)
2119 {
2120 CPUPhysMemoryClient *client;
2121 QLIST_FOREACH(client, &memory_client_list, list) {
2122 if (client->log_stop) {
2123 int r = client->log_stop(client, start_addr, size);
2124 if (r < 0) {
2125 return r;
2126 }
2127 }
2128 }
2129 return 0;
2130 }
2131
2132 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2133 {
2134 ram_addr_t ram_addr;
2135 void *p;
2136
2137 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2138 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2139 + tlb_entry->addend);
2140 ram_addr = qemu_ram_addr_from_host_nofail(p);
2141 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2142 tlb_entry->addr_write |= TLB_NOTDIRTY;
2143 }
2144 }
2145 }
2146
2147 /* update the TLB according to the current state of the dirty bits */
2148 void cpu_tlb_update_dirty(CPUState *env)
2149 {
2150 int i;
2151 int mmu_idx;
2152 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2153 for(i = 0; i < CPU_TLB_SIZE; i++)
2154 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2155 }
2156 }
2157
2158 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2159 {
2160 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2161 tlb_entry->addr_write = vaddr;
2162 }
2163
2164 /* update the TLB corresponding to virtual page vaddr
2165 so that it is no longer dirty */
2166 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2167 {
2168 int i;
2169 int mmu_idx;
2170
2171 vaddr &= TARGET_PAGE_MASK;
2172 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2173 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2174 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2175 }
2176
2177 /* Our TLB does not support large pages, so remember the area covered by
2178 large pages and trigger a full TLB flush if these are invalidated. */
2179 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2180 target_ulong size)
2181 {
2182 target_ulong mask = ~(size - 1);
2183
2184 if (env->tlb_flush_addr == (target_ulong)-1) {
2185 env->tlb_flush_addr = vaddr & mask;
2186 env->tlb_flush_mask = mask;
2187 return;
2188 }
2189 /* Extend the existing region to include the new page.
2190 This is a compromise between unnecessary flushes and the cost
2191 of maintaining a full variable size TLB. */
2192 mask &= env->tlb_flush_mask;
2193 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2194 mask <<= 1;
2195 }
2196 env->tlb_flush_addr &= mask;
2197 env->tlb_flush_mask = mask;
2198 }
2199
2200 /* Add a new TLB entry. At most one entry for a given virtual address
2201 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2202 supplied size is only used by tlb_flush_page. */
2203 void tlb_set_page(CPUState *env, target_ulong vaddr,
2204 target_phys_addr_t paddr, int prot,
2205 int mmu_idx, target_ulong size)
2206 {
2207 PhysPageDesc *p;
2208 unsigned long pd;
2209 unsigned int index;
2210 target_ulong address;
2211 target_ulong code_address;
2212 unsigned long addend;
2213 CPUTLBEntry *te;
2214 CPUWatchpoint *wp;
2215 target_phys_addr_t iotlb;
2216
2217 assert(size >= TARGET_PAGE_SIZE);
2218 if (size != TARGET_PAGE_SIZE) {
2219 tlb_add_large_page(env, vaddr, size);
2220 }
2221 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2222 if (!p) {
2223 pd = IO_MEM_UNASSIGNED;
2224 } else {
2225 pd = p->phys_offset;
2226 }
2227 #if defined(DEBUG_TLB)
2228 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2229 " prot=%x idx=%d pd=0x%08lx\n",
2230 vaddr, paddr, prot, mmu_idx, pd);
2231 #endif
2232
2233 address = vaddr;
2234 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2235 /* IO memory case (romd handled later) */
2236 address |= TLB_MMIO;
2237 }
2238 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2239 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2240 /* Normal RAM. */
2241 iotlb = pd & TARGET_PAGE_MASK;
2242 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2243 iotlb |= IO_MEM_NOTDIRTY;
2244 else
2245 iotlb |= IO_MEM_ROM;
2246 } else {
2247 /* IO handlers are currently passed a physical address.
2248 It would be nice to pass an offset from the base address
2249 of that region. This would avoid having to special case RAM,
2250 and avoid full address decoding in every device.
2251 We can't use the high bits of pd for this because
2252 IO_MEM_ROMD uses these as a ram address. */
2253 iotlb = (pd & ~TARGET_PAGE_MASK);
2254 if (p) {
2255 iotlb += p->region_offset;
2256 } else {
2257 iotlb += paddr;
2258 }
2259 }
2260
2261 code_address = address;
2262 /* Make accesses to pages with watchpoints go via the
2263 watchpoint trap routines. */
2264 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2265 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2266 /* Avoid trapping reads of pages with a write breakpoint. */
2267 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2268 iotlb = io_mem_watch + paddr;
2269 address |= TLB_MMIO;
2270 break;
2271 }
2272 }
2273 }
2274
2275 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2276 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2277 te = &env->tlb_table[mmu_idx][index];
2278 te->addend = addend - vaddr;
2279 if (prot & PAGE_READ) {
2280 te->addr_read = address;
2281 } else {
2282 te->addr_read = -1;
2283 }
2284
2285 if (prot & PAGE_EXEC) {
2286 te->addr_code = code_address;
2287 } else {
2288 te->addr_code = -1;
2289 }
2290 if (prot & PAGE_WRITE) {
2291 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2292 (pd & IO_MEM_ROMD)) {
2293 /* Write access calls the I/O callback. */
2294 te->addr_write = address | TLB_MMIO;
2295 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2296 !cpu_physical_memory_is_dirty(pd)) {
2297 te->addr_write = address | TLB_NOTDIRTY;
2298 } else {
2299 te->addr_write = address;
2300 }
2301 } else {
2302 te->addr_write = -1;
2303 }
2304 }
2305
2306 #else
2307
2308 void tlb_flush(CPUState *env, int flush_global)
2309 {
2310 }
2311
2312 void tlb_flush_page(CPUState *env, target_ulong addr)
2313 {
2314 }
2315
2316 /*
2317 * Walks guest process memory "regions" one by one
2318 * and calls callback function 'fn' for each region.
2319 */
2320
2321 struct walk_memory_regions_data
2322 {
2323 walk_memory_regions_fn fn;
2324 void *priv;
2325 unsigned long start;
2326 int prot;
2327 };
2328
2329 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2330 abi_ulong end, int new_prot)
2331 {
2332 if (data->start != -1ul) {
2333 int rc = data->fn(data->priv, data->start, end, data->prot);
2334 if (rc != 0) {
2335 return rc;
2336 }
2337 }
2338
2339 data->start = (new_prot ? end : -1ul);
2340 data->prot = new_prot;
2341
2342 return 0;
2343 }
2344
2345 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2346 abi_ulong base, int level, void **lp)
2347 {
2348 abi_ulong pa;
2349 int i, rc;
2350
2351 if (*lp == NULL) {
2352 return walk_memory_regions_end(data, base, 0);
2353 }
2354
2355 if (level == 0) {
2356 PageDesc *pd = *lp;
2357 for (i = 0; i < L2_SIZE; ++i) {
2358 int prot = pd[i].flags;
2359
2360 pa = base | (i << TARGET_PAGE_BITS);
2361 if (prot != data->prot) {
2362 rc = walk_memory_regions_end(data, pa, prot);
2363 if (rc != 0) {
2364 return rc;
2365 }
2366 }
2367 }
2368 } else {
2369 void **pp = *lp;
2370 for (i = 0; i < L2_SIZE; ++i) {
2371 pa = base | ((abi_ulong)i <<
2372 (TARGET_PAGE_BITS + L2_BITS * level));
2373 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2374 if (rc != 0) {
2375 return rc;
2376 }
2377 }
2378 }
2379
2380 return 0;
2381 }
2382
2383 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2384 {
2385 struct walk_memory_regions_data data;
2386 unsigned long i;
2387
2388 data.fn = fn;
2389 data.priv = priv;
2390 data.start = -1ul;
2391 data.prot = 0;
2392
2393 for (i = 0; i < V_L1_SIZE; i++) {
2394 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2395 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2396 if (rc != 0) {
2397 return rc;
2398 }
2399 }
2400
2401 return walk_memory_regions_end(&data, 0, 0);
2402 }
2403
2404 static int dump_region(void *priv, abi_ulong start,
2405 abi_ulong end, unsigned long prot)
2406 {
2407 FILE *f = (FILE *)priv;
2408
2409 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2410 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2411 start, end, end - start,
2412 ((prot & PAGE_READ) ? 'r' : '-'),
2413 ((prot & PAGE_WRITE) ? 'w' : '-'),
2414 ((prot & PAGE_EXEC) ? 'x' : '-'));
2415
2416 return (0);
2417 }
2418
2419 /* dump memory mappings */
2420 void page_dump(FILE *f)
2421 {
2422 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2423 "start", "end", "size", "prot");
2424 walk_memory_regions(f, dump_region);
2425 }
2426
2427 int page_get_flags(target_ulong address)
2428 {
2429 PageDesc *p;
2430
2431 p = page_find(address >> TARGET_PAGE_BITS);
2432 if (!p)
2433 return 0;
2434 return p->flags;
2435 }
2436
2437 /* Modify the flags of a page and invalidate the code if necessary.
2438 The flag PAGE_WRITE_ORG is positioned automatically depending
2439 on PAGE_WRITE. The mmap_lock should already be held. */
2440 void page_set_flags(target_ulong start, target_ulong end, int flags)
2441 {
2442 target_ulong addr, len;
2443
2444 /* This function should never be called with addresses outside the
2445 guest address space. If this assert fires, it probably indicates
2446 a missing call to h2g_valid. */
2447 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2448 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2449 #endif
2450 assert(start < end);
2451
2452 start = start & TARGET_PAGE_MASK;
2453 end = TARGET_PAGE_ALIGN(end);
2454
2455 if (flags & PAGE_WRITE) {
2456 flags |= PAGE_WRITE_ORG;
2457 }
2458
2459 for (addr = start, len = end - start;
2460 len != 0;
2461 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2462 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2463
2464 /* If the write protection bit is set, then we invalidate
2465 the code inside. */
2466 if (!(p->flags & PAGE_WRITE) &&
2467 (flags & PAGE_WRITE) &&
2468 p->first_tb) {
2469 tb_invalidate_phys_page(addr, 0, NULL);
2470 }
2471 p->flags = flags;
2472 }
2473 }
2474
2475 int page_check_range(target_ulong start, target_ulong len, int flags)
2476 {
2477 PageDesc *p;
2478 target_ulong end;
2479 target_ulong addr;
2480
2481 /* This function should never be called with addresses outside the
2482 guest address space. If this assert fires, it probably indicates
2483 a missing call to h2g_valid. */
2484 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2485 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2486 #endif
2487
2488 if (len == 0) {
2489 return 0;
2490 }
2491 if (start + len - 1 < start) {
2492 /* We've wrapped around. */
2493 return -1;
2494 }
2495
2496 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2497 start = start & TARGET_PAGE_MASK;
2498
2499 for (addr = start, len = end - start;
2500 len != 0;
2501 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2502 p = page_find(addr >> TARGET_PAGE_BITS);
2503 if( !p )
2504 return -1;
2505 if( !(p->flags & PAGE_VALID) )
2506 return -1;
2507
2508 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2509 return -1;
2510 if (flags & PAGE_WRITE) {
2511 if (!(p->flags & PAGE_WRITE_ORG))
2512 return -1;
2513 /* unprotect the page if it was put read-only because it
2514 contains translated code */
2515 if (!(p->flags & PAGE_WRITE)) {
2516 if (!page_unprotect(addr, 0, NULL))
2517 return -1;
2518 }
2519 return 0;
2520 }
2521 }
2522 return 0;
2523 }
2524
2525 /* called from signal handler: invalidate the code and unprotect the
2526 page. Return TRUE if the fault was successfully handled. */
2527 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2528 {
2529 unsigned int prot;
2530 PageDesc *p;
2531 target_ulong host_start, host_end, addr;
2532
2533 /* Technically this isn't safe inside a signal handler. However we
2534 know this only ever happens in a synchronous SEGV handler, so in
2535 practice it seems to be ok. */
2536 mmap_lock();
2537
2538 p = page_find(address >> TARGET_PAGE_BITS);
2539 if (!p) {
2540 mmap_unlock();
2541 return 0;
2542 }
2543
2544 /* if the page was really writable, then we change its
2545 protection back to writable */
2546 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2547 host_start = address & qemu_host_page_mask;
2548 host_end = host_start + qemu_host_page_size;
2549
2550 prot = 0;
2551 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2552 p = page_find(addr >> TARGET_PAGE_BITS);
2553 p->flags |= PAGE_WRITE;
2554 prot |= p->flags;
2555
2556 /* and since the content will be modified, we must invalidate
2557 the corresponding translated code. */
2558 tb_invalidate_phys_page(addr, pc, puc);
2559 #ifdef DEBUG_TB_CHECK
2560 tb_invalidate_check(addr);
2561 #endif
2562 }
2563 mprotect((void *)g2h(host_start), qemu_host_page_size,
2564 prot & PAGE_BITS);
2565
2566 mmap_unlock();
2567 return 1;
2568 }
2569 mmap_unlock();
2570 return 0;
2571 }
2572
2573 static inline void tlb_set_dirty(CPUState *env,
2574 unsigned long addr, target_ulong vaddr)
2575 {
2576 }
2577 #endif /* defined(CONFIG_USER_ONLY) */
2578
2579 #if !defined(CONFIG_USER_ONLY)
2580
2581 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2582 typedef struct subpage_t {
2583 target_phys_addr_t base;
2584 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2585 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2586 } subpage_t;
2587
2588 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2589 ram_addr_t memory, ram_addr_t region_offset);
2590 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2591 ram_addr_t orig_memory,
2592 ram_addr_t region_offset);
2593 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2594 need_subpage) \
2595 do { \
2596 if (addr > start_addr) \
2597 start_addr2 = 0; \
2598 else { \
2599 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2600 if (start_addr2 > 0) \
2601 need_subpage = 1; \
2602 } \
2603 \
2604 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2605 end_addr2 = TARGET_PAGE_SIZE - 1; \
2606 else { \
2607 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2608 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2609 need_subpage = 1; \
2610 } \
2611 } while (0)
2612
2613 /* register physical memory.
2614 For RAM, 'size' must be a multiple of the target page size.
2615 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2616 io memory page. The address used when calling the IO function is
2617 the offset from the start of the region, plus region_offset. Both
2618 start_addr and region_offset are rounded down to a page boundary
2619 before calculating this offset. This should not be a problem unless
2620 the low bits of start_addr and region_offset differ. */
2621 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2622 ram_addr_t size,
2623 ram_addr_t phys_offset,
2624 ram_addr_t region_offset,
2625 bool log_dirty)
2626 {
2627 target_phys_addr_t addr, end_addr;
2628 PhysPageDesc *p;
2629 CPUState *env;
2630 ram_addr_t orig_size = size;
2631 subpage_t *subpage;
2632
2633 assert(size);
2634 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2635
2636 if (phys_offset == IO_MEM_UNASSIGNED) {
2637 region_offset = start_addr;
2638 }
2639 region_offset &= TARGET_PAGE_MASK;
2640 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2641 end_addr = start_addr + (target_phys_addr_t)size;
2642
2643 addr = start_addr;
2644 do {
2645 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2646 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2647 ram_addr_t orig_memory = p->phys_offset;
2648 target_phys_addr_t start_addr2, end_addr2;
2649 int need_subpage = 0;
2650
2651 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2652 need_subpage);
2653 if (need_subpage) {
2654 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2655 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2656 &p->phys_offset, orig_memory,
2657 p->region_offset);
2658 } else {
2659 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2660 >> IO_MEM_SHIFT];
2661 }
2662 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2663 region_offset);
2664 p->region_offset = 0;
2665 } else {
2666 p->phys_offset = phys_offset;
2667 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2668 (phys_offset & IO_MEM_ROMD))
2669 phys_offset += TARGET_PAGE_SIZE;
2670 }
2671 } else {
2672 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2673 p->phys_offset = phys_offset;
2674 p->region_offset = region_offset;
2675 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2676 (phys_offset & IO_MEM_ROMD)) {
2677 phys_offset += TARGET_PAGE_SIZE;
2678 } else {
2679 target_phys_addr_t start_addr2, end_addr2;
2680 int need_subpage = 0;
2681
2682 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2683 end_addr2, need_subpage);
2684
2685 if (need_subpage) {
2686 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2687 &p->phys_offset, IO_MEM_UNASSIGNED,
2688 addr & TARGET_PAGE_MASK);
2689 subpage_register(subpage, start_addr2, end_addr2,
2690 phys_offset, region_offset);
2691 p->region_offset = 0;
2692 }
2693 }
2694 }
2695 region_offset += TARGET_PAGE_SIZE;
2696 addr += TARGET_PAGE_SIZE;
2697 } while (addr != end_addr);
2698
2699 /* since each CPU stores ram addresses in its TLB cache, we must
2700 reset the modified entries */
2701 /* XXX: slow ! */
2702 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2703 tlb_flush(env, 1);
2704 }
2705 }
2706
2707 /* XXX: temporary until new memory mapping API */
2708 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2709 {
2710 PhysPageDesc *p;
2711
2712 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2713 if (!p)
2714 return IO_MEM_UNASSIGNED;
2715 return p->phys_offset;
2716 }
2717
2718 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2719 {
2720 if (kvm_enabled())
2721 kvm_coalesce_mmio_region(addr, size);
2722 }
2723
2724 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2725 {
2726 if (kvm_enabled())
2727 kvm_uncoalesce_mmio_region(addr, size);
2728 }
2729
2730 void qemu_flush_coalesced_mmio_buffer(void)
2731 {
2732 if (kvm_enabled())
2733 kvm_flush_coalesced_mmio_buffer();
2734 }
2735
2736 #if defined(__linux__) && !defined(TARGET_S390X)
2737
2738 #include <sys/vfs.h>
2739
2740 #define HUGETLBFS_MAGIC 0x958458f6
2741
2742 static long gethugepagesize(const char *path)
2743 {
2744 struct statfs fs;
2745 int ret;
2746
2747 do {
2748 ret = statfs(path, &fs);
2749 } while (ret != 0 && errno == EINTR);
2750
2751 if (ret != 0) {
2752 perror(path);
2753 return 0;
2754 }
2755
2756 if (fs.f_type != HUGETLBFS_MAGIC)
2757 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2758
2759 return fs.f_bsize;
2760 }
2761
2762 static void *file_ram_alloc(RAMBlock *block,
2763 ram_addr_t memory,
2764 const char *path)
2765 {
2766 char *filename;
2767 void *area;
2768 int fd;
2769 #ifdef MAP_POPULATE
2770 int flags;
2771 #endif
2772 unsigned long hpagesize;
2773
2774 hpagesize = gethugepagesize(path);
2775 if (!hpagesize) {
2776 return NULL;
2777 }
2778
2779 if (memory < hpagesize) {
2780 return NULL;
2781 }
2782
2783 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2784 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2785 return NULL;
2786 }
2787
2788 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2789 return NULL;
2790 }
2791
2792 fd = mkstemp(filename);
2793 if (fd < 0) {
2794 perror("unable to create backing store for hugepages");
2795 free(filename);
2796 return NULL;
2797 }
2798 unlink(filename);
2799 free(filename);
2800
2801 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2802
2803 /*
2804 * ftruncate is not supported by hugetlbfs in older
2805 * hosts, so don't bother bailing out on errors.
2806 * If anything goes wrong with it under other filesystems,
2807 * mmap will fail.
2808 */
2809 if (ftruncate(fd, memory))
2810 perror("ftruncate");
2811
2812 #ifdef MAP_POPULATE
2813 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2814 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2815 * to sidestep this quirk.
2816 */
2817 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2818 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2819 #else
2820 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2821 #endif
2822 if (area == MAP_FAILED) {
2823 perror("file_ram_alloc: can't mmap RAM pages");
2824 close(fd);
2825 return (NULL);
2826 }
2827 block->fd = fd;
2828 return area;
2829 }
2830 #endif
2831
2832 static ram_addr_t find_ram_offset(ram_addr_t size)
2833 {
2834 RAMBlock *block, *next_block;
2835 ram_addr_t offset = 0, mingap = ULONG_MAX;
2836
2837 if (QLIST_EMPTY(&ram_list.blocks))
2838 return 0;
2839
2840 QLIST_FOREACH(block, &ram_list.blocks, next) {
2841 ram_addr_t end, next = ULONG_MAX;
2842
2843 end = block->offset + block->length;
2844
2845 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2846 if (next_block->offset >= end) {
2847 next = MIN(next, next_block->offset);
2848 }
2849 }
2850 if (next - end >= size && next - end < mingap) {
2851 offset = end;
2852 mingap = next - end;
2853 }
2854 }
2855 return offset;
2856 }
2857
2858 static ram_addr_t last_ram_offset(void)
2859 {
2860 RAMBlock *block;
2861 ram_addr_t last = 0;
2862
2863 QLIST_FOREACH(block, &ram_list.blocks, next)
2864 last = MAX(last, block->offset + block->length);
2865
2866 return last;
2867 }
2868
2869 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2870 ram_addr_t size, void *host)
2871 {
2872 RAMBlock *new_block, *block;
2873
2874 size = TARGET_PAGE_ALIGN(size);
2875 new_block = qemu_mallocz(sizeof(*new_block));
2876
2877 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2878 char *id = dev->parent_bus->info->get_dev_path(dev);
2879 if (id) {
2880 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2881 qemu_free(id);
2882 }
2883 }
2884 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2885
2886 QLIST_FOREACH(block, &ram_list.blocks, next) {
2887 if (!strcmp(block->idstr, new_block->idstr)) {
2888 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2889 new_block->idstr);
2890 abort();
2891 }
2892 }
2893
2894 new_block->offset = find_ram_offset(size);
2895 if (host) {
2896 new_block->host = host;
2897 new_block->flags |= RAM_PREALLOC_MASK;
2898 } else {
2899 if (mem_path) {
2900 #if defined (__linux__) && !defined(TARGET_S390X)
2901 new_block->host = file_ram_alloc(new_block, size, mem_path);
2902 if (!new_block->host) {
2903 new_block->host = qemu_vmalloc(size);
2904 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2905 }
2906 #else
2907 fprintf(stderr, "-mem-path option unsupported\n");
2908 exit(1);
2909 #endif
2910 } else {
2911 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2912 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2913 an system defined value, which is at least 256GB. Larger systems
2914 have larger values. We put the guest between the end of data
2915 segment (system break) and this value. We use 32GB as a base to
2916 have enough room for the system break to grow. */
2917 new_block->host = mmap((void*)0x800000000, size,
2918 PROT_EXEC|PROT_READ|PROT_WRITE,
2919 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2920 if (new_block->host == MAP_FAILED) {
2921 fprintf(stderr, "Allocating RAM failed\n");
2922 abort();
2923 }
2924 #else
2925 if (xen_mapcache_enabled()) {
2926 xen_ram_alloc(new_block->offset, size);
2927 } else {
2928 new_block->host = qemu_vmalloc(size);
2929 }
2930 #endif
2931 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2932 }
2933 }
2934 new_block->length = size;
2935
2936 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2937
2938 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2939 last_ram_offset() >> TARGET_PAGE_BITS);
2940 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2941 0xff, size >> TARGET_PAGE_BITS);
2942
2943 if (kvm_enabled())
2944 kvm_setup_guest_memory(new_block->host, size);
2945
2946 return new_block->offset;
2947 }
2948
2949 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2950 {
2951 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2952 }
2953
2954 void qemu_ram_free_from_ptr(ram_addr_t addr)
2955 {
2956 RAMBlock *block;
2957
2958 QLIST_FOREACH(block, &ram_list.blocks, next) {
2959 if (addr == block->offset) {
2960 QLIST_REMOVE(block, next);
2961 qemu_free(block);
2962 return;
2963 }
2964 }
2965 }
2966
2967 void qemu_ram_free(ram_addr_t addr)
2968 {
2969 RAMBlock *block;
2970
2971 QLIST_FOREACH(block, &ram_list.blocks, next) {
2972 if (addr == block->offset) {
2973 QLIST_REMOVE(block, next);
2974 if (block->flags & RAM_PREALLOC_MASK) {
2975 ;
2976 } else if (mem_path) {
2977 #if defined (__linux__) && !defined(TARGET_S390X)
2978 if (block->fd) {
2979 munmap(block->host, block->length);
2980 close(block->fd);
2981 } else {
2982 qemu_vfree(block->host);
2983 }
2984 #else
2985 abort();
2986 #endif
2987 } else {
2988 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2989 munmap(block->host, block->length);
2990 #else
2991 if (xen_mapcache_enabled()) {
2992 qemu_invalidate_entry(block->host);
2993 } else {
2994 qemu_vfree(block->host);
2995 }
2996 #endif
2997 }
2998 qemu_free(block);
2999 return;
3000 }
3001 }
3002
3003 }
3004
3005 #ifndef _WIN32
3006 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3007 {
3008 RAMBlock *block;
3009 ram_addr_t offset;
3010 int flags;
3011 void *area, *vaddr;
3012
3013 QLIST_FOREACH(block, &ram_list.blocks, next) {
3014 offset = addr - block->offset;
3015 if (offset < block->length) {
3016 vaddr = block->host + offset;
3017 if (block->flags & RAM_PREALLOC_MASK) {
3018 ;
3019 } else {
3020 flags = MAP_FIXED;
3021 munmap(vaddr, length);
3022 if (mem_path) {
3023 #if defined(__linux__) && !defined(TARGET_S390X)
3024 if (block->fd) {
3025 #ifdef MAP_POPULATE
3026 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3027 MAP_PRIVATE;
3028 #else
3029 flags |= MAP_PRIVATE;
3030 #endif
3031 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3032 flags, block->fd, offset);
3033 } else {
3034 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3035 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3036 flags, -1, 0);
3037 }
3038 #else
3039 abort();
3040 #endif
3041 } else {
3042 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3043 flags |= MAP_SHARED | MAP_ANONYMOUS;
3044 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3045 flags, -1, 0);
3046 #else
3047 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3048 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3049 flags, -1, 0);
3050 #endif
3051 }
3052 if (area != vaddr) {
3053 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3054 length, addr);
3055 exit(1);
3056 }
3057 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3058 }
3059 return;
3060 }
3061 }
3062 }
3063 #endif /* !_WIN32 */
3064
3065 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3066 With the exception of the softmmu code in this file, this should
3067 only be used for local memory (e.g. video ram) that the device owns,
3068 and knows it isn't going to access beyond the end of the block.
3069
3070 It should not be used for general purpose DMA.
3071 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3072 */
3073 void *qemu_get_ram_ptr(ram_addr_t addr)
3074 {
3075 RAMBlock *block;
3076
3077 QLIST_FOREACH(block, &ram_list.blocks, next) {
3078 if (addr - block->offset < block->length) {
3079 /* Move this entry to to start of the list. */
3080 if (block != QLIST_FIRST(&ram_list.blocks)) {
3081 QLIST_REMOVE(block, next);
3082 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3083 }
3084 if (xen_mapcache_enabled()) {
3085 /* We need to check if the requested address is in the RAM
3086 * because we don't want to map the entire memory in QEMU.
3087 */
3088 if (block->offset == 0) {
3089 return qemu_map_cache(addr, 0, 1);
3090 } else if (block->host == NULL) {
3091 block->host = xen_map_block(block->offset, block->length);
3092 }
3093 }
3094 return block->host + (addr - block->offset);
3095 }
3096 }
3097
3098 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3099 abort();
3100
3101 return NULL;
3102 }
3103
3104 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3105 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3106 */
3107 void *qemu_safe_ram_ptr(ram_addr_t addr)
3108 {
3109 RAMBlock *block;
3110
3111 QLIST_FOREACH(block, &ram_list.blocks, next) {
3112 if (addr - block->offset < block->length) {
3113 if (xen_mapcache_enabled()) {
3114 /* We need to check if the requested address is in the RAM
3115 * because we don't want to map the entire memory in QEMU.
3116 */
3117 if (block->offset == 0) {
3118 return qemu_map_cache(addr, 0, 1);
3119 } else if (block->host == NULL) {
3120 block->host = xen_map_block(block->offset, block->length);
3121 }
3122 }
3123 return block->host + (addr - block->offset);
3124 }
3125 }
3126
3127 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3128 abort();
3129
3130 return NULL;
3131 }
3132
3133 void qemu_put_ram_ptr(void *addr)
3134 {
3135 trace_qemu_put_ram_ptr(addr);
3136
3137 if (xen_mapcache_enabled()) {
3138 RAMBlock *block;
3139
3140 QLIST_FOREACH(block, &ram_list.blocks, next) {
3141 if (addr == block->host) {
3142 break;
3143 }
3144 }
3145 if (block && block->host) {
3146 xen_unmap_block(block->host, block->length);
3147 block->host = NULL;
3148 } else {
3149 qemu_map_cache_unlock(addr);
3150 }
3151 }
3152 }
3153
3154 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3155 {
3156 RAMBlock *block;
3157 uint8_t *host = ptr;
3158
3159 QLIST_FOREACH(block, &ram_list.blocks, next) {
3160 /* This case append when the block is not mapped. */
3161 if (block->host == NULL) {
3162 continue;
3163 }
3164 if (host - block->host < block->length) {
3165 *ram_addr = block->offset + (host - block->host);
3166 return 0;
3167 }
3168 }
3169
3170 if (xen_mapcache_enabled()) {
3171 *ram_addr = qemu_ram_addr_from_mapcache(ptr);
3172 return 0;
3173 }
3174
3175 return -1;
3176 }
3177
3178 /* Some of the softmmu routines need to translate from a host pointer
3179 (typically a TLB entry) back to a ram offset. */
3180 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3181 {
3182 ram_addr_t ram_addr;
3183
3184 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3185 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3186 abort();
3187 }
3188 return ram_addr;
3189 }
3190
3191 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3192 {
3193 #ifdef DEBUG_UNASSIGNED
3194 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3195 #endif
3196 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3197 do_unassigned_access(addr, 0, 0, 0, 1);
3198 #endif
3199 return 0;
3200 }
3201
3202 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3203 {
3204 #ifdef DEBUG_UNASSIGNED
3205 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3206 #endif
3207 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3208 do_unassigned_access(addr, 0, 0, 0, 2);
3209 #endif
3210 return 0;
3211 }
3212
3213 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3214 {
3215 #ifdef DEBUG_UNASSIGNED
3216 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3217 #endif
3218 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3219 do_unassigned_access(addr, 0, 0, 0, 4);
3220 #endif
3221 return 0;
3222 }
3223
3224 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3225 {
3226 #ifdef DEBUG_UNASSIGNED
3227 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3228 #endif
3229 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3230 do_unassigned_access(addr, 1, 0, 0, 1);
3231 #endif
3232 }
3233
3234 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3235 {
3236 #ifdef DEBUG_UNASSIGNED
3237 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3238 #endif
3239 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3240 do_unassigned_access(addr, 1, 0, 0, 2);
3241 #endif
3242 }
3243
3244 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3245 {
3246 #ifdef DEBUG_UNASSIGNED
3247 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3248 #endif
3249 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3250 do_unassigned_access(addr, 1, 0, 0, 4);
3251 #endif
3252 }
3253
3254 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3255 unassigned_mem_readb,
3256 unassigned_mem_readw,
3257 unassigned_mem_readl,
3258 };
3259
3260 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3261 unassigned_mem_writeb,
3262 unassigned_mem_writew,
3263 unassigned_mem_writel,
3264 };
3265
3266 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3267 uint32_t val)
3268 {
3269 int dirty_flags;
3270 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3271 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3272 #if !defined(CONFIG_USER_ONLY)
3273 tb_invalidate_phys_page_fast(ram_addr, 1);
3274 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3275 #endif
3276 }
3277 stb_p(qemu_get_ram_ptr(ram_addr), val);
3278 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3279 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3280 /* we remove the notdirty callback only if the code has been
3281 flushed */
3282 if (dirty_flags == 0xff)
3283 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3284 }
3285
3286 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3287 uint32_t val)
3288 {
3289 int dirty_flags;
3290 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3291 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3292 #if !defined(CONFIG_USER_ONLY)
3293 tb_invalidate_phys_page_fast(ram_addr, 2);
3294 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3295 #endif
3296 }
3297 stw_p(qemu_get_ram_ptr(ram_addr), val);
3298 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3299 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3300 /* we remove the notdirty callback only if the code has been
3301 flushed */
3302 if (dirty_flags == 0xff)
3303 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3304 }
3305
3306 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3307 uint32_t val)
3308 {
3309 int dirty_flags;
3310 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3311 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3312 #if !defined(CONFIG_USER_ONLY)
3313 tb_invalidate_phys_page_fast(ram_addr, 4);
3314 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3315 #endif
3316 }
3317 stl_p(qemu_get_ram_ptr(ram_addr), val);
3318 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3319 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3320 /* we remove the notdirty callback only if the code has been
3321 flushed */
3322 if (dirty_flags == 0xff)
3323 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3324 }
3325
3326 static CPUReadMemoryFunc * const error_mem_read[3] = {
3327 NULL, /* never used */
3328 NULL, /* never used */
3329 NULL, /* never used */
3330 };
3331
3332 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3333 notdirty_mem_writeb,
3334 notdirty_mem_writew,
3335 notdirty_mem_writel,
3336 };
3337
3338 /* Generate a debug exception if a watchpoint has been hit. */
3339 static void check_watchpoint(int offset, int len_mask, int flags)
3340 {
3341 CPUState *env = cpu_single_env;
3342 target_ulong pc, cs_base;
3343 TranslationBlock *tb;
3344 target_ulong vaddr;
3345 CPUWatchpoint *wp;
3346 int cpu_flags;
3347
3348 if (env->watchpoint_hit) {
3349 /* We re-entered the check after replacing the TB. Now raise
3350 * the debug interrupt so that is will trigger after the
3351 * current instruction. */
3352 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3353 return;
3354 }
3355 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3356 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3357 if ((vaddr == (wp->vaddr & len_mask) ||
3358 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3359 wp->flags |= BP_WATCHPOINT_HIT;
3360 if (!env->watchpoint_hit) {
3361 env->watchpoint_hit = wp;
3362 tb = tb_find_pc(env->mem_io_pc);
3363 if (!tb) {
3364 cpu_abort(env, "check_watchpoint: could not find TB for "
3365 "pc=%p", (void *)env->mem_io_pc);
3366 }
3367 cpu_restore_state(tb, env, env->mem_io_pc);
3368 tb_phys_invalidate(tb, -1);
3369 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3370 env->exception_index = EXCP_DEBUG;
3371 } else {
3372 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3373 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3374 }
3375 cpu_resume_from_signal(env, NULL);
3376 }
3377 } else {
3378 wp->flags &= ~BP_WATCHPOINT_HIT;
3379 }
3380 }
3381 }
3382
3383 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3384 so these check for a hit then pass through to the normal out-of-line
3385 phys routines. */
3386 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3387 {
3388 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3389 return ldub_phys(addr);
3390 }
3391
3392 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3393 {
3394 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3395 return lduw_phys(addr);
3396 }
3397
3398 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3399 {
3400 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3401 return ldl_phys(addr);
3402 }
3403
3404 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3405 uint32_t val)
3406 {
3407 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3408 stb_phys(addr, val);
3409 }
3410
3411 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3412 uint32_t val)
3413 {
3414 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3415 stw_phys(addr, val);
3416 }
3417
3418 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3419 uint32_t val)
3420 {
3421 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3422 stl_phys(addr, val);
3423 }
3424
3425 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3426 watch_mem_readb,
3427 watch_mem_readw,
3428 watch_mem_readl,
3429 };
3430
3431 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3432 watch_mem_writeb,
3433 watch_mem_writew,
3434 watch_mem_writel,
3435 };
3436
3437 static inline uint32_t subpage_readlen (subpage_t *mmio,
3438 target_phys_addr_t addr,
3439 unsigned int len)
3440 {
3441 unsigned int idx = SUBPAGE_IDX(addr);
3442 #if defined(DEBUG_SUBPAGE)
3443 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3444 mmio, len, addr, idx);
3445 #endif
3446
3447 addr += mmio->region_offset[idx];
3448 idx = mmio->sub_io_index[idx];
3449 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3450 }
3451
3452 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3453 uint32_t value, unsigned int len)
3454 {
3455 unsigned int idx = SUBPAGE_IDX(addr);
3456 #if defined(DEBUG_SUBPAGE)
3457 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3458 __func__, mmio, len, addr, idx, value);
3459 #endif
3460
3461 addr += mmio->region_offset[idx];
3462 idx = mmio->sub_io_index[idx];
3463 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3464 }
3465
3466 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3467 {
3468 return subpage_readlen(opaque, addr, 0);
3469 }
3470
3471 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3472 uint32_t value)
3473 {
3474 subpage_writelen(opaque, addr, value, 0);
3475 }
3476
3477 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3478 {
3479 return subpage_readlen(opaque, addr, 1);
3480 }
3481
3482 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3483 uint32_t value)
3484 {
3485 subpage_writelen(opaque, addr, value, 1);
3486 }
3487
3488 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3489 {
3490 return subpage_readlen(opaque, addr, 2);
3491 }
3492
3493 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3494 uint32_t value)
3495 {
3496 subpage_writelen(opaque, addr, value, 2);
3497 }
3498
3499 static CPUReadMemoryFunc * const subpage_read[] = {
3500 &subpage_readb,
3501 &subpage_readw,
3502 &subpage_readl,
3503 };
3504
3505 static CPUWriteMemoryFunc * const subpage_write[] = {
3506 &subpage_writeb,
3507 &subpage_writew,
3508 &subpage_writel,
3509 };
3510
3511 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3512 ram_addr_t memory, ram_addr_t region_offset)
3513 {
3514 int idx, eidx;
3515
3516 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3517 return -1;
3518 idx = SUBPAGE_IDX(start);
3519 eidx = SUBPAGE_IDX(end);
3520 #if defined(DEBUG_SUBPAGE)
3521 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3522 mmio, start, end, idx, eidx, memory);
3523 #endif
3524 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3525 memory = IO_MEM_UNASSIGNED;
3526 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3527 for (; idx <= eidx; idx++) {
3528 mmio->sub_io_index[idx] = memory;
3529 mmio->region_offset[idx] = region_offset;
3530 }
3531
3532 return 0;
3533 }
3534
3535 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3536 ram_addr_t orig_memory,
3537 ram_addr_t region_offset)
3538 {
3539 subpage_t *mmio;
3540 int subpage_memory;
3541
3542 mmio = qemu_mallocz(sizeof(subpage_t));
3543
3544 mmio->base = base;
3545 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3546 DEVICE_NATIVE_ENDIAN);
3547 #if defined(DEBUG_SUBPAGE)
3548 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3549 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3550 #endif
3551 *phys = subpage_memory | IO_MEM_SUBPAGE;
3552 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3553
3554 return mmio;
3555 }
3556
3557 static int get_free_io_mem_idx(void)
3558 {
3559 int i;
3560
3561 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3562 if (!io_mem_used[i]) {
3563 io_mem_used[i] = 1;
3564 return i;
3565 }
3566 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3567 return -1;
3568 }
3569
3570 /*
3571 * Usually, devices operate in little endian mode. There are devices out
3572 * there that operate in big endian too. Each device gets byte swapped
3573 * mmio if plugged onto a CPU that does the other endianness.
3574 *
3575 * CPU Device swap?
3576 *
3577 * little little no
3578 * little big yes
3579 * big little yes
3580 * big big no
3581 */
3582
3583 typedef struct SwapEndianContainer {
3584 CPUReadMemoryFunc *read[3];
3585 CPUWriteMemoryFunc *write[3];
3586 void *opaque;
3587 } SwapEndianContainer;
3588
3589 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3590 {
3591 uint32_t val;
3592 SwapEndianContainer *c = opaque;
3593 val = c->read[0](c->opaque, addr);
3594 return val;
3595 }
3596
3597 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3598 {
3599 uint32_t val;
3600 SwapEndianContainer *c = opaque;
3601 val = bswap16(c->read[1](c->opaque, addr));
3602 return val;
3603 }
3604
3605 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3606 {
3607 uint32_t val;
3608 SwapEndianContainer *c = opaque;
3609 val = bswap32(c->read[2](c->opaque, addr));
3610 return val;
3611 }
3612
3613 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3614 swapendian_mem_readb,
3615 swapendian_mem_readw,
3616 swapendian_mem_readl
3617 };
3618
3619 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3620 uint32_t val)
3621 {
3622 SwapEndianContainer *c = opaque;
3623 c->write[0](c->opaque, addr, val);
3624 }
3625
3626 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3627 uint32_t val)
3628 {
3629 SwapEndianContainer *c = opaque;
3630 c->write[1](c->opaque, addr, bswap16(val));
3631 }
3632
3633 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3634 uint32_t val)
3635 {
3636 SwapEndianContainer *c = opaque;
3637 c->write[2](c->opaque, addr, bswap32(val));
3638 }
3639
3640 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3641 swapendian_mem_writeb,
3642 swapendian_mem_writew,
3643 swapendian_mem_writel
3644 };
3645
3646 static void swapendian_init(int io_index)
3647 {
3648 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3649 int i;
3650
3651 /* Swap mmio for big endian targets */
3652 c->opaque = io_mem_opaque[io_index];
3653 for (i = 0; i < 3; i++) {
3654 c->read[i] = io_mem_read[io_index][i];
3655 c->write[i] = io_mem_write[io_index][i];
3656
3657 io_mem_read[io_index][i] = swapendian_readfn[i];
3658 io_mem_write[io_index][i] = swapendian_writefn[i];
3659 }
3660 io_mem_opaque[io_index] = c;
3661 }
3662
3663 static void swapendian_del(int io_index)
3664 {
3665 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3666 qemu_free(io_mem_opaque[io_index]);
3667 }
3668 }
3669
3670 /* mem_read and mem_write are arrays of functions containing the
3671 function to access byte (index 0), word (index 1) and dword (index
3672 2). Functions can be omitted with a NULL function pointer.
3673 If io_index is non zero, the corresponding io zone is
3674 modified. If it is zero, a new io zone is allocated. The return
3675 value can be used with cpu_register_physical_memory(). (-1) is
3676 returned if error. */
3677 static int cpu_register_io_memory_fixed(int io_index,
3678 CPUReadMemoryFunc * const *mem_read,
3679 CPUWriteMemoryFunc * const *mem_write,
3680 void *opaque, enum device_endian endian)
3681 {
3682 int i;
3683
3684 if (io_index <= 0) {
3685 io_index = get_free_io_mem_idx();
3686 if (io_index == -1)
3687 return io_index;
3688 } else {
3689 io_index >>= IO_MEM_SHIFT;
3690 if (io_index >= IO_MEM_NB_ENTRIES)
3691 return -1;
3692 }
3693
3694 for (i = 0; i < 3; ++i) {
3695 io_mem_read[io_index][i]
3696 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3697 }
3698 for (i = 0; i < 3; ++i) {
3699 io_mem_write[io_index][i]
3700 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3701 }
3702 io_mem_opaque[io_index] = opaque;
3703
3704 switch (endian) {
3705 case DEVICE_BIG_ENDIAN:
3706 #ifndef TARGET_WORDS_BIGENDIAN
3707 swapendian_init(io_index);
3708 #endif
3709 break;
3710 case DEVICE_LITTLE_ENDIAN:
3711 #ifdef TARGET_WORDS_BIGENDIAN
3712 swapendian_init(io_index);
3713 #endif
3714 break;
3715 case DEVICE_NATIVE_ENDIAN:
3716 default:
3717 break;
3718 }
3719
3720 return (io_index << IO_MEM_SHIFT);
3721 }
3722
3723 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3724 CPUWriteMemoryFunc * const *mem_write,
3725 void *opaque, enum device_endian endian)
3726 {
3727 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3728 }
3729
3730 void cpu_unregister_io_memory(int io_table_address)
3731 {
3732 int i;
3733 int io_index = io_table_address >> IO_MEM_SHIFT;
3734
3735 swapendian_del(io_index);
3736
3737 for (i=0;i < 3; i++) {
3738 io_mem_read[io_index][i] = unassigned_mem_read[i];
3739 io_mem_write[io_index][i] = unassigned_mem_write[i];
3740 }
3741 io_mem_opaque[io_index] = NULL;
3742 io_mem_used[io_index] = 0;
3743 }
3744
3745 static void io_mem_init(void)
3746 {
3747 int i;
3748
3749 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3750 unassigned_mem_write, NULL,
3751 DEVICE_NATIVE_ENDIAN);
3752 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3753 unassigned_mem_write, NULL,
3754 DEVICE_NATIVE_ENDIAN);
3755 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3756 notdirty_mem_write, NULL,
3757 DEVICE_NATIVE_ENDIAN);
3758 for (i=0; i<5; i++)
3759 io_mem_used[i] = 1;
3760
3761 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3762 watch_mem_write, NULL,
3763 DEVICE_NATIVE_ENDIAN);
3764 }
3765
3766 #endif /* !defined(CONFIG_USER_ONLY) */
3767
3768 /* physical memory access (slow version, mainly for debug) */
3769 #if defined(CONFIG_USER_ONLY)
3770 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3771 uint8_t *buf, int len, int is_write)
3772 {
3773 int l, flags;
3774 target_ulong page;
3775 void * p;
3776
3777 while (len > 0) {
3778 page = addr & TARGET_PAGE_MASK;
3779 l = (page + TARGET_PAGE_SIZE) - addr;
3780 if (l > len)
3781 l = len;
3782 flags = page_get_flags(page);
3783 if (!(flags & PAGE_VALID))
3784 return -1;
3785 if (is_write) {
3786 if (!(flags & PAGE_WRITE))
3787 return -1;
3788 /* XXX: this code should not depend on lock_user */
3789 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3790 return -1;
3791 memcpy(p, buf, l);
3792 unlock_user(p, addr, l);
3793 } else {
3794 if (!(flags & PAGE_READ))
3795 return -1;
3796 /* XXX: this code should not depend on lock_user */
3797 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3798 return -1;
3799 memcpy(buf, p, l);
3800 unlock_user(p, addr, 0);
3801 }
3802 len -= l;
3803 buf += l;
3804 addr += l;
3805 }
3806 return 0;
3807 }
3808
3809 #else
3810 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3811 int len, int is_write)
3812 {
3813 int l, io_index;
3814 uint8_t *ptr;
3815 uint32_t val;
3816 target_phys_addr_t page;
3817 unsigned long pd;
3818 PhysPageDesc *p;
3819
3820 while (len > 0) {
3821 page = addr & TARGET_PAGE_MASK;
3822 l = (page + TARGET_PAGE_SIZE) - addr;
3823 if (l > len)
3824 l = len;
3825 p = phys_page_find(page >> TARGET_PAGE_BITS);
3826 if (!p) {
3827 pd = IO_MEM_UNASSIGNED;
3828 } else {
3829 pd = p->phys_offset;
3830 }
3831
3832 if (is_write) {
3833 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3834 target_phys_addr_t addr1 = addr;
3835 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3836 if (p)
3837 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3838 /* XXX: could force cpu_single_env to NULL to avoid
3839 potential bugs */
3840 if (l >= 4 && ((addr1 & 3) == 0)) {
3841 /* 32 bit write access */
3842 val = ldl_p(buf);
3843 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3844 l = 4;
3845 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3846 /* 16 bit write access */
3847 val = lduw_p(buf);
3848 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3849 l = 2;
3850 } else {
3851 /* 8 bit write access */
3852 val = ldub_p(buf);
3853 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3854 l = 1;
3855 }
3856 } else {
3857 unsigned long addr1;
3858 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3859 /* RAM case */
3860 ptr = qemu_get_ram_ptr(addr1);
3861 memcpy(ptr, buf, l);
3862 if (!cpu_physical_memory_is_dirty(addr1)) {
3863 /* invalidate code */
3864 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3865 /* set dirty bit */
3866 cpu_physical_memory_set_dirty_flags(
3867 addr1, (0xff & ~CODE_DIRTY_FLAG));
3868 }
3869 qemu_put_ram_ptr(ptr);
3870 }
3871 } else {
3872 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3873 !(pd & IO_MEM_ROMD)) {
3874 target_phys_addr_t addr1 = addr;
3875 /* I/O case */
3876 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3877 if (p)
3878 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3879 if (l >= 4 && ((addr1 & 3) == 0)) {
3880 /* 32 bit read access */
3881 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3882 stl_p(buf, val);
3883 l = 4;
3884 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3885 /* 16 bit read access */
3886 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3887 stw_p(buf, val);
3888 l = 2;
3889 } else {
3890 /* 8 bit read access */
3891 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3892 stb_p(buf, val);
3893 l = 1;
3894 }
3895 } else {
3896 /* RAM case */
3897 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3898 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3899 qemu_put_ram_ptr(ptr);
3900 }
3901 }
3902 len -= l;
3903 buf += l;
3904 addr += l;
3905 }
3906 }
3907
3908 /* used for ROM loading : can write in RAM and ROM */
3909 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3910 const uint8_t *buf, int len)
3911 {
3912 int l;
3913 uint8_t *ptr;
3914 target_phys_addr_t page;
3915 unsigned long pd;
3916 PhysPageDesc *p;
3917
3918 while (len > 0) {
3919 page = addr & TARGET_PAGE_MASK;
3920 l = (page + TARGET_PAGE_SIZE) - addr;
3921 if (l > len)
3922 l = len;
3923 p = phys_page_find(page >> TARGET_PAGE_BITS);
3924 if (!p) {
3925 pd = IO_MEM_UNASSIGNED;
3926 } else {
3927 pd = p->phys_offset;
3928 }
3929
3930 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3931 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3932 !(pd & IO_MEM_ROMD)) {
3933 /* do nothing */
3934 } else {
3935 unsigned long addr1;
3936 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3937 /* ROM/RAM case */
3938 ptr = qemu_get_ram_ptr(addr1);
3939 memcpy(ptr, buf, l);
3940 qemu_put_ram_ptr(ptr);
3941 }
3942 len -= l;
3943 buf += l;
3944 addr += l;
3945 }
3946 }
3947
3948 typedef struct {
3949 void *buffer;
3950 target_phys_addr_t addr;
3951 target_phys_addr_t len;
3952 } BounceBuffer;
3953
3954 static BounceBuffer bounce;
3955
3956 typedef struct MapClient {
3957 void *opaque;
3958 void (*callback)(void *opaque);
3959 QLIST_ENTRY(MapClient) link;
3960 } MapClient;
3961
3962 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3963 = QLIST_HEAD_INITIALIZER(map_client_list);
3964
3965 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3966 {
3967 MapClient *client = qemu_malloc(sizeof(*client));
3968
3969 client->opaque = opaque;
3970 client->callback = callback;
3971 QLIST_INSERT_HEAD(&map_client_list, client, link);
3972 return client;
3973 }
3974
3975 void cpu_unregister_map_client(void *_client)
3976 {
3977 MapClient *client = (MapClient *)_client;
3978
3979 QLIST_REMOVE(client, link);
3980 qemu_free(client);
3981 }
3982
3983 static void cpu_notify_map_clients(void)
3984 {
3985 MapClient *client;
3986
3987 while (!QLIST_EMPTY(&map_client_list)) {
3988 client = QLIST_FIRST(&map_client_list);
3989 client->callback(client->opaque);
3990 cpu_unregister_map_client(client);
3991 }
3992 }
3993
3994 /* Map a physical memory region into a host virtual address.
3995 * May map a subset of the requested range, given by and returned in *plen.
3996 * May return NULL if resources needed to perform the mapping are exhausted.
3997 * Use only for reads OR writes - not for read-modify-write operations.
3998 * Use cpu_register_map_client() to know when retrying the map operation is
3999 * likely to succeed.
4000 */
4001 void *cpu_physical_memory_map(target_phys_addr_t addr,
4002 target_phys_addr_t *plen,
4003 int is_write)
4004 {
4005 target_phys_addr_t len = *plen;
4006 target_phys_addr_t done = 0;
4007 int l;
4008 uint8_t *ret = NULL;
4009 uint8_t *ptr;
4010 target_phys_addr_t page;
4011 unsigned long pd;
4012 PhysPageDesc *p;
4013 unsigned long addr1;
4014
4015 while (len > 0) {
4016 page = addr & TARGET_PAGE_MASK;
4017 l = (page + TARGET_PAGE_SIZE) - addr;
4018 if (l > len)
4019 l = len;
4020 p = phys_page_find(page >> TARGET_PAGE_BITS);
4021 if (!p) {
4022 pd = IO_MEM_UNASSIGNED;
4023 } else {
4024 pd = p->phys_offset;
4025 }
4026
4027 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4028 if (done || bounce.buffer) {
4029 break;
4030 }
4031 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4032 bounce.addr = addr;
4033 bounce.len = l;
4034 if (!is_write) {
4035 cpu_physical_memory_read(addr, bounce.buffer, l);
4036 }
4037 ptr = bounce.buffer;
4038 } else {
4039 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4040 ptr = qemu_get_ram_ptr(addr1);
4041 }
4042 if (!done) {
4043 ret = ptr;
4044 } else if (ret + done != ptr) {
4045 break;
4046 }
4047
4048 len -= l;
4049 addr += l;
4050 done += l;
4051 }
4052 *plen = done;
4053 return ret;
4054 }
4055
4056 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4057 * Will also mark the memory as dirty if is_write == 1. access_len gives
4058 * the amount of memory that was actually read or written by the caller.
4059 */
4060 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4061 int is_write, target_phys_addr_t access_len)
4062 {
4063 if (buffer != bounce.buffer) {
4064 if (is_write) {
4065 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4066 while (access_len) {
4067 unsigned l;
4068 l = TARGET_PAGE_SIZE;
4069 if (l > access_len)
4070 l = access_len;
4071 if (!cpu_physical_memory_is_dirty(addr1)) {
4072 /* invalidate code */
4073 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4074 /* set dirty bit */
4075 cpu_physical_memory_set_dirty_flags(
4076 addr1, (0xff & ~CODE_DIRTY_FLAG));
4077 }
4078 addr1 += l;
4079 access_len -= l;
4080 }
4081 }
4082 if (xen_mapcache_enabled()) {
4083 uint8_t *buffer1 = buffer;
4084 uint8_t *end_buffer = buffer + len;
4085
4086 while (buffer1 < end_buffer) {
4087 qemu_put_ram_ptr(buffer1);
4088 buffer1 += TARGET_PAGE_SIZE;
4089 }
4090 }
4091 return;
4092 }
4093 if (is_write) {
4094 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4095 }
4096 qemu_vfree(bounce.buffer);
4097 bounce.buffer = NULL;
4098 cpu_notify_map_clients();
4099 }
4100
4101 /* warning: addr must be aligned */
4102 uint32_t ldl_phys(target_phys_addr_t addr)
4103 {
4104 int io_index;
4105 uint8_t *ptr;
4106 uint32_t val;
4107 unsigned long pd;
4108 PhysPageDesc *p;
4109
4110 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4111 if (!p) {
4112 pd = IO_MEM_UNASSIGNED;
4113 } else {
4114 pd = p->phys_offset;
4115 }
4116
4117 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4118 !(pd & IO_MEM_ROMD)) {
4119 /* I/O case */
4120 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4121 if (p)
4122 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4123 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4124 } else {
4125 /* RAM case */
4126 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4127 (addr & ~TARGET_PAGE_MASK);
4128 val = ldl_p(ptr);
4129 }
4130 return val;
4131 }
4132
4133 /* warning: addr must be aligned */
4134 uint64_t ldq_phys(target_phys_addr_t addr)
4135 {
4136 int io_index;
4137 uint8_t *ptr;
4138 uint64_t val;
4139 unsigned long pd;
4140 PhysPageDesc *p;
4141
4142 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4143 if (!p) {
4144 pd = IO_MEM_UNASSIGNED;
4145 } else {
4146 pd = p->phys_offset;
4147 }
4148
4149 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4150 !(pd & IO_MEM_ROMD)) {
4151 /* I/O case */
4152 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4153 if (p)
4154 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4155 #ifdef TARGET_WORDS_BIGENDIAN
4156 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4157 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4158 #else
4159 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4160 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4161 #endif
4162 } else {
4163 /* RAM case */
4164 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4165 (addr & ~TARGET_PAGE_MASK);
4166 val = ldq_p(ptr);
4167 }
4168 return val;
4169 }
4170
4171 /* XXX: optimize */
4172 uint32_t ldub_phys(target_phys_addr_t addr)
4173 {
4174 uint8_t val;
4175 cpu_physical_memory_read(addr, &val, 1);
4176 return val;
4177 }
4178
4179 /* warning: addr must be aligned */
4180 uint32_t lduw_phys(target_phys_addr_t addr)
4181 {
4182 int io_index;
4183 uint8_t *ptr;
4184 uint64_t val;
4185 unsigned long pd;
4186 PhysPageDesc *p;
4187
4188 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4189 if (!p) {
4190 pd = IO_MEM_UNASSIGNED;
4191 } else {
4192 pd = p->phys_offset;
4193 }
4194
4195 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4196 !(pd & IO_MEM_ROMD)) {
4197 /* I/O case */
4198 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4199 if (p)
4200 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4201 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4202 } else {
4203 /* RAM case */
4204 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4205 (addr & ~TARGET_PAGE_MASK);
4206 val = lduw_p(ptr);
4207 }
4208 return val;
4209 }
4210
4211 /* warning: addr must be aligned. The ram page is not masked as dirty
4212 and the code inside is not invalidated. It is useful if the dirty
4213 bits are used to track modified PTEs */
4214 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4215 {
4216 int io_index;
4217 uint8_t *ptr;
4218 unsigned long pd;
4219 PhysPageDesc *p;
4220
4221 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4222 if (!p) {
4223 pd = IO_MEM_UNASSIGNED;
4224 } else {
4225 pd = p->phys_offset;
4226 }
4227
4228 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4229 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4230 if (p)
4231 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4232 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4233 } else {
4234 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4235 ptr = qemu_get_ram_ptr(addr1);
4236 stl_p(ptr, val);
4237
4238 if (unlikely(in_migration)) {
4239 if (!cpu_physical_memory_is_dirty(addr1)) {
4240 /* invalidate code */
4241 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4242 /* set dirty bit */
4243 cpu_physical_memory_set_dirty_flags(
4244 addr1, (0xff & ~CODE_DIRTY_FLAG));
4245 }
4246 }
4247 }
4248 }
4249
4250 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4251 {
4252 int io_index;
4253 uint8_t *ptr;
4254 unsigned long pd;
4255 PhysPageDesc *p;
4256
4257 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4258 if (!p) {
4259 pd = IO_MEM_UNASSIGNED;
4260 } else {
4261 pd = p->phys_offset;
4262 }
4263
4264 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4265 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4266 if (p)
4267 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4268 #ifdef TARGET_WORDS_BIGENDIAN
4269 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4270 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4271 #else
4272 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4273 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4274 #endif
4275 } else {
4276 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4277 (addr & ~TARGET_PAGE_MASK);
4278 stq_p(ptr, val);
4279 }
4280 }
4281
4282 /* warning: addr must be aligned */
4283 void stl_phys(target_phys_addr_t addr, uint32_t val)
4284 {
4285 int io_index;
4286 uint8_t *ptr;
4287 unsigned long pd;
4288 PhysPageDesc *p;
4289
4290 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4291 if (!p) {
4292 pd = IO_MEM_UNASSIGNED;
4293 } else {
4294 pd = p->phys_offset;
4295 }
4296
4297 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4298 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4299 if (p)
4300 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4301 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4302 } else {
4303 unsigned long addr1;
4304 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4305 /* RAM case */
4306 ptr = qemu_get_ram_ptr(addr1);
4307 stl_p(ptr, val);
4308 if (!cpu_physical_memory_is_dirty(addr1)) {
4309 /* invalidate code */
4310 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4311 /* set dirty bit */
4312 cpu_physical_memory_set_dirty_flags(addr1,
4313 (0xff & ~CODE_DIRTY_FLAG));
4314 }
4315 }
4316 }
4317
4318 /* XXX: optimize */
4319 void stb_phys(target_phys_addr_t addr, uint32_t val)
4320 {
4321 uint8_t v = val;
4322 cpu_physical_memory_write(addr, &v, 1);
4323 }
4324
4325 /* warning: addr must be aligned */
4326 void stw_phys(target_phys_addr_t addr, uint32_t val)
4327 {
4328 int io_index;
4329 uint8_t *ptr;
4330 unsigned long pd;
4331 PhysPageDesc *p;
4332
4333 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4334 if (!p) {
4335 pd = IO_MEM_UNASSIGNED;
4336 } else {
4337 pd = p->phys_offset;
4338 }
4339
4340 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4341 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4342 if (p)
4343 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4344 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4345 } else {
4346 unsigned long addr1;
4347 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4348 /* RAM case */
4349 ptr = qemu_get_ram_ptr(addr1);
4350 stw_p(ptr, val);
4351 if (!cpu_physical_memory_is_dirty(addr1)) {
4352 /* invalidate code */
4353 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4354 /* set dirty bit */
4355 cpu_physical_memory_set_dirty_flags(addr1,
4356 (0xff & ~CODE_DIRTY_FLAG));
4357 }
4358 }
4359 }
4360
4361 /* XXX: optimize */
4362 void stq_phys(target_phys_addr_t addr, uint64_t val)
4363 {
4364 val = tswap64(val);
4365 cpu_physical_memory_write(addr, &val, 8);
4366 }
4367
4368 /* virtual memory access for debug (includes writing to ROM) */
4369 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4370 uint8_t *buf, int len, int is_write)
4371 {
4372 int l;
4373 target_phys_addr_t phys_addr;
4374 target_ulong page;
4375
4376 while (len > 0) {
4377 page = addr & TARGET_PAGE_MASK;
4378 phys_addr = cpu_get_phys_page_debug(env, page);
4379 /* if no physical page mapped, return an error */
4380 if (phys_addr == -1)
4381 return -1;
4382 l = (page + TARGET_PAGE_SIZE) - addr;
4383 if (l > len)
4384 l = len;
4385 phys_addr += (addr & ~TARGET_PAGE_MASK);
4386 if (is_write)
4387 cpu_physical_memory_write_rom(phys_addr, buf, l);
4388 else
4389 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4390 len -= l;
4391 buf += l;
4392 addr += l;
4393 }
4394 return 0;
4395 }
4396 #endif
4397
4398 /* in deterministic execution mode, instructions doing device I/Os
4399 must be at the end of the TB */
4400 void cpu_io_recompile(CPUState *env, void *retaddr)
4401 {
4402 TranslationBlock *tb;
4403 uint32_t n, cflags;
4404 target_ulong pc, cs_base;
4405 uint64_t flags;
4406
4407 tb = tb_find_pc((unsigned long)retaddr);
4408 if (!tb) {
4409 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4410 retaddr);
4411 }
4412 n = env->icount_decr.u16.low + tb->icount;
4413 cpu_restore_state(tb, env, (unsigned long)retaddr);
4414 /* Calculate how many instructions had been executed before the fault
4415 occurred. */
4416 n = n - env->icount_decr.u16.low;
4417 /* Generate a new TB ending on the I/O insn. */
4418 n++;
4419 /* On MIPS and SH, delay slot instructions can only be restarted if
4420 they were already the first instruction in the TB. If this is not
4421 the first instruction in a TB then re-execute the preceding
4422 branch. */
4423 #if defined(TARGET_MIPS)
4424 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4425 env->active_tc.PC -= 4;
4426 env->icount_decr.u16.low++;
4427 env->hflags &= ~MIPS_HFLAG_BMASK;
4428 }
4429 #elif defined(TARGET_SH4)
4430 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4431 && n > 1) {
4432 env->pc -= 2;
4433 env->icount_decr.u16.low++;
4434 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4435 }
4436 #endif
4437 /* This should never happen. */
4438 if (n > CF_COUNT_MASK)
4439 cpu_abort(env, "TB too big during recompile");
4440
4441 cflags = n | CF_LAST_IO;
4442 pc = tb->pc;
4443 cs_base = tb->cs_base;
4444 flags = tb->flags;
4445 tb_phys_invalidate(tb, -1);
4446 /* FIXME: In theory this could raise an exception. In practice
4447 we have already translated the block once so it's probably ok. */
4448 tb_gen_code(env, pc, cs_base, flags, cflags);
4449 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4450 the first in the TB) then we end up generating a whole new TB and
4451 repeating the fault, which is horribly inefficient.
4452 Better would be to execute just this insn uncached, or generate a
4453 second new TB. */
4454 cpu_resume_from_signal(env, NULL);
4455 }
4456
4457 #if !defined(CONFIG_USER_ONLY)
4458
4459 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4460 {
4461 int i, target_code_size, max_target_code_size;
4462 int direct_jmp_count, direct_jmp2_count, cross_page;
4463 TranslationBlock *tb;
4464
4465 target_code_size = 0;
4466 max_target_code_size = 0;
4467 cross_page = 0;
4468 direct_jmp_count = 0;
4469 direct_jmp2_count = 0;
4470 for(i = 0; i < nb_tbs; i++) {
4471 tb = &tbs[i];
4472 target_code_size += tb->size;
4473 if (tb->size > max_target_code_size)
4474 max_target_code_size = tb->size;
4475 if (tb->page_addr[1] != -1)
4476 cross_page++;
4477 if (tb->tb_next_offset[0] != 0xffff) {
4478 direct_jmp_count++;
4479 if (tb->tb_next_offset[1] != 0xffff) {
4480 direct_jmp2_count++;
4481 }
4482 }
4483 }
4484 /* XXX: avoid using doubles ? */
4485 cpu_fprintf(f, "Translation buffer state:\n");
4486 cpu_fprintf(f, "gen code size %td/%ld\n",
4487 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4488 cpu_fprintf(f, "TB count %d/%d\n",
4489 nb_tbs, code_gen_max_blocks);
4490 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4491 nb_tbs ? target_code_size / nb_tbs : 0,
4492 max_target_code_size);
4493 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4494 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4495 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4496 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4497 cross_page,
4498 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4499 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4500 direct_jmp_count,
4501 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4502 direct_jmp2_count,
4503 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4504 cpu_fprintf(f, "\nStatistics:\n");
4505 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4506 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4507 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4508 tcg_dump_info(f, cpu_fprintf);
4509 }
4510
4511 #define MMUSUFFIX _cmmu
4512 #define GETPC() NULL
4513 #define env cpu_single_env
4514 #define SOFTMMU_CODE_ACCESS
4515
4516 #define SHIFT 0
4517 #include "softmmu_template.h"
4518
4519 #define SHIFT 1
4520 #include "softmmu_template.h"
4521
4522 #define SHIFT 2
4523 #include "softmmu_template.h"
4524
4525 #define SHIFT 3
4526 #include "softmmu_template.h"
4527
4528 #undef env
4529
4530 #endif