]> git.proxmox.com Git - qemu.git/blob - exec.c
Update to a hopefully more future proof FSF address
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
44
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
49
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
53
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
61
62 #define SMC_BITMAP_USE_THRESHOLD 10
63
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #else
78 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
81
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
116
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
123
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
130
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
142
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
154
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
160
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
171
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
174
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
179
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182 static PhysPageDesc **l1_phys_map;
183
184 #if !defined(CONFIG_USER_ONLY)
185 static void io_mem_init(void);
186
187 /* io memory support */
188 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
190 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
191 static char io_mem_used[IO_MEM_NB_ENTRIES];
192 static int io_mem_watch;
193 #endif
194
195 /* log support */
196 static const char *logfilename = "/tmp/qemu.log";
197 FILE *logfile;
198 int loglevel;
199 static int log_append = 0;
200
201 /* statistics */
202 static int tlb_flush_count;
203 static int tb_flush_count;
204 static int tb_phys_invalidate_count;
205
206 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
207 typedef struct subpage_t {
208 target_phys_addr_t base;
209 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
210 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
211 void *opaque[TARGET_PAGE_SIZE][2][4];
212 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
213 } subpage_t;
214
215 #ifdef _WIN32
216 static void map_exec(void *addr, long size)
217 {
218 DWORD old_protect;
219 VirtualProtect(addr, size,
220 PAGE_EXECUTE_READWRITE, &old_protect);
221
222 }
223 #else
224 static void map_exec(void *addr, long size)
225 {
226 unsigned long start, end, page_size;
227
228 page_size = getpagesize();
229 start = (unsigned long)addr;
230 start &= ~(page_size - 1);
231
232 end = (unsigned long)addr + size;
233 end += page_size - 1;
234 end &= ~(page_size - 1);
235
236 mprotect((void *)start, end - start,
237 PROT_READ | PROT_WRITE | PROT_EXEC);
238 }
239 #endif
240
241 static void page_init(void)
242 {
243 /* NOTE: we can always suppose that qemu_host_page_size >=
244 TARGET_PAGE_SIZE */
245 #ifdef _WIN32
246 {
247 SYSTEM_INFO system_info;
248
249 GetSystemInfo(&system_info);
250 qemu_real_host_page_size = system_info.dwPageSize;
251 }
252 #else
253 qemu_real_host_page_size = getpagesize();
254 #endif
255 if (qemu_host_page_size == 0)
256 qemu_host_page_size = qemu_real_host_page_size;
257 if (qemu_host_page_size < TARGET_PAGE_SIZE)
258 qemu_host_page_size = TARGET_PAGE_SIZE;
259 qemu_host_page_bits = 0;
260 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
261 qemu_host_page_bits++;
262 qemu_host_page_mask = ~(qemu_host_page_size - 1);
263 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
264 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
265
266 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
267 {
268 long long startaddr, endaddr;
269 FILE *f;
270 int n;
271
272 mmap_lock();
273 last_brk = (unsigned long)sbrk(0);
274 f = fopen("/proc/self/maps", "r");
275 if (f) {
276 do {
277 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
278 if (n == 2) {
279 startaddr = MIN(startaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 endaddr = MIN(endaddr,
282 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
283 page_set_flags(startaddr & TARGET_PAGE_MASK,
284 TARGET_PAGE_ALIGN(endaddr),
285 PAGE_RESERVED);
286 }
287 } while (!feof(f));
288 fclose(f);
289 }
290 mmap_unlock();
291 }
292 #endif
293 }
294
295 static inline PageDesc **page_l1_map(target_ulong index)
296 {
297 #if TARGET_LONG_BITS > 32
298 /* Host memory outside guest VM. For 32-bit targets we have already
299 excluded high addresses. */
300 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
301 return NULL;
302 #endif
303 return &l1_map[index >> L2_BITS];
304 }
305
306 static inline PageDesc *page_find_alloc(target_ulong index)
307 {
308 PageDesc **lp, *p;
309 lp = page_l1_map(index);
310 if (!lp)
311 return NULL;
312
313 p = *lp;
314 if (!p) {
315 /* allocate if not found */
316 #if defined(CONFIG_USER_ONLY)
317 size_t len = sizeof(PageDesc) * L2_SIZE;
318 /* Don't use qemu_malloc because it may recurse. */
319 p = mmap(0, len, PROT_READ | PROT_WRITE,
320 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
321 *lp = p;
322 if (h2g_valid(p)) {
323 unsigned long addr = h2g(p);
324 page_set_flags(addr & TARGET_PAGE_MASK,
325 TARGET_PAGE_ALIGN(addr + len),
326 PAGE_RESERVED);
327 }
328 #else
329 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
330 *lp = p;
331 #endif
332 }
333 return p + (index & (L2_SIZE - 1));
334 }
335
336 static inline PageDesc *page_find(target_ulong index)
337 {
338 PageDesc **lp, *p;
339 lp = page_l1_map(index);
340 if (!lp)
341 return NULL;
342
343 p = *lp;
344 if (!p)
345 return 0;
346 return p + (index & (L2_SIZE - 1));
347 }
348
349 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
350 {
351 void **lp, **p;
352 PhysPageDesc *pd;
353
354 p = (void **)l1_phys_map;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 #endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370 #endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
372 pd = *lp;
373 if (!pd) {
374 int i;
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
380 for (i = 0; i < L2_SIZE; i++) {
381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
384 }
385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
386 }
387
388 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
389 {
390 return phys_page_find_alloc(index, 0);
391 }
392
393 #if !defined(CONFIG_USER_ONLY)
394 static void tlb_protect_code(ram_addr_t ram_addr);
395 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
396 target_ulong vaddr);
397 #define mmap_lock() do { } while(0)
398 #define mmap_unlock() do { } while(0)
399 #endif
400
401 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403 #if defined(CONFIG_USER_ONLY)
404 /* Currently it is not recommended to allocate big chunks of data in
405 user mode. It will change when a dedicated libc will be used */
406 #define USE_STATIC_CODE_GEN_BUFFER
407 #endif
408
409 #ifdef USE_STATIC_CODE_GEN_BUFFER
410 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411 #endif
412
413 static void code_gen_alloc(unsigned long tb_size)
414 {
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419 #else
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425 #else
426 /* XXX: needs adjustments */
427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
428 #endif
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
435 {
436 int flags;
437 void *start = NULL;
438
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440 #if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
457 #endif
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
466 #elif defined(__FreeBSD__) || defined(__DragonFly__)
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479 #endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
488 #else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491 #endif
492 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498 }
499
500 /* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503 void cpu_exec_init_all(unsigned long tb_size)
504 {
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
508 page_init();
509 #if !defined(CONFIG_USER_ONLY)
510 io_mem_init();
511 #endif
512 }
513
514 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
516 #define CPU_COMMON_SAVE_VERSION 1
517
518 static void cpu_common_save(QEMUFile *f, void *opaque)
519 {
520 CPUState *env = opaque;
521
522 cpu_synchronize_state(env, 0);
523
524 qemu_put_be32s(f, &env->halted);
525 qemu_put_be32s(f, &env->interrupt_request);
526 }
527
528 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
529 {
530 CPUState *env = opaque;
531
532 if (version_id != CPU_COMMON_SAVE_VERSION)
533 return -EINVAL;
534
535 qemu_get_be32s(f, &env->halted);
536 qemu_get_be32s(f, &env->interrupt_request);
537 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
538 version_id is increased. */
539 env->interrupt_request &= ~0x01;
540 tlb_flush(env, 1);
541 cpu_synchronize_state(env, 1);
542
543 return 0;
544 }
545 #endif
546
547 CPUState *qemu_get_cpu(int cpu)
548 {
549 CPUState *env = first_cpu;
550
551 while (env) {
552 if (env->cpu_index == cpu)
553 break;
554 env = env->next_cpu;
555 }
556
557 return env;
558 }
559
560 void cpu_exec_init(CPUState *env)
561 {
562 CPUState **penv;
563 int cpu_index;
564
565 #if defined(CONFIG_USER_ONLY)
566 cpu_list_lock();
567 #endif
568 env->next_cpu = NULL;
569 penv = &first_cpu;
570 cpu_index = 0;
571 while (*penv != NULL) {
572 penv = &(*penv)->next_cpu;
573 cpu_index++;
574 }
575 env->cpu_index = cpu_index;
576 env->numa_node = 0;
577 TAILQ_INIT(&env->breakpoints);
578 TAILQ_INIT(&env->watchpoints);
579 *penv = env;
580 #if defined(CONFIG_USER_ONLY)
581 cpu_list_unlock();
582 #endif
583 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
584 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
585 cpu_common_save, cpu_common_load, env);
586 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
587 cpu_save, cpu_load, env);
588 #endif
589 }
590
591 static inline void invalidate_page_bitmap(PageDesc *p)
592 {
593 if (p->code_bitmap) {
594 qemu_free(p->code_bitmap);
595 p->code_bitmap = NULL;
596 }
597 p->code_write_count = 0;
598 }
599
600 /* set to NULL all the 'first_tb' fields in all PageDescs */
601 static void page_flush_tb(void)
602 {
603 int i, j;
604 PageDesc *p;
605
606 for(i = 0; i < L1_SIZE; i++) {
607 p = l1_map[i];
608 if (p) {
609 for(j = 0; j < L2_SIZE; j++) {
610 p->first_tb = NULL;
611 invalidate_page_bitmap(p);
612 p++;
613 }
614 }
615 }
616 }
617
618 /* flush all the translation blocks */
619 /* XXX: tb_flush is currently not thread safe */
620 void tb_flush(CPUState *env1)
621 {
622 CPUState *env;
623 #if defined(DEBUG_FLUSH)
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr - code_gen_buffer),
626 nb_tbs, nb_tbs > 0 ?
627 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
628 #endif
629 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
630 cpu_abort(env1, "Internal error: code buffer overflow\n");
631
632 nb_tbs = 0;
633
634 for(env = first_cpu; env != NULL; env = env->next_cpu) {
635 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
636 }
637
638 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
639 page_flush_tb();
640
641 code_gen_ptr = code_gen_buffer;
642 /* XXX: flush processor icache at this point if cache flush is
643 expensive */
644 tb_flush_count++;
645 }
646
647 #ifdef DEBUG_TB_CHECK
648
649 static void tb_invalidate_check(target_ulong address)
650 {
651 TranslationBlock *tb;
652 int i;
653 address &= TARGET_PAGE_MASK;
654 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
655 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
656 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
657 address >= tb->pc + tb->size)) {
658 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
659 address, (long)tb->pc, tb->size);
660 }
661 }
662 }
663 }
664
665 /* verify that all the pages have correct rights for code */
666 static void tb_page_check(void)
667 {
668 TranslationBlock *tb;
669 int i, flags1, flags2;
670
671 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
672 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
673 flags1 = page_get_flags(tb->pc);
674 flags2 = page_get_flags(tb->pc + tb->size - 1);
675 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
676 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
677 (long)tb->pc, tb->size, flags1, flags2);
678 }
679 }
680 }
681 }
682
683 static void tb_jmp_check(TranslationBlock *tb)
684 {
685 TranslationBlock *tb1;
686 unsigned int n1;
687
688 /* suppress any remaining jumps to this TB */
689 tb1 = tb->jmp_first;
690 for(;;) {
691 n1 = (long)tb1 & 3;
692 tb1 = (TranslationBlock *)((long)tb1 & ~3);
693 if (n1 == 2)
694 break;
695 tb1 = tb1->jmp_next[n1];
696 }
697 /* check end of list */
698 if (tb1 != tb) {
699 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
700 }
701 }
702
703 #endif
704
705 /* invalidate one TB */
706 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
707 int next_offset)
708 {
709 TranslationBlock *tb1;
710 for(;;) {
711 tb1 = *ptb;
712 if (tb1 == tb) {
713 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
714 break;
715 }
716 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
717 }
718 }
719
720 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
721 {
722 TranslationBlock *tb1;
723 unsigned int n1;
724
725 for(;;) {
726 tb1 = *ptb;
727 n1 = (long)tb1 & 3;
728 tb1 = (TranslationBlock *)((long)tb1 & ~3);
729 if (tb1 == tb) {
730 *ptb = tb1->page_next[n1];
731 break;
732 }
733 ptb = &tb1->page_next[n1];
734 }
735 }
736
737 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
738 {
739 TranslationBlock *tb1, **ptb;
740 unsigned int n1;
741
742 ptb = &tb->jmp_next[n];
743 tb1 = *ptb;
744 if (tb1) {
745 /* find tb(n) in circular list */
746 for(;;) {
747 tb1 = *ptb;
748 n1 = (long)tb1 & 3;
749 tb1 = (TranslationBlock *)((long)tb1 & ~3);
750 if (n1 == n && tb1 == tb)
751 break;
752 if (n1 == 2) {
753 ptb = &tb1->jmp_first;
754 } else {
755 ptb = &tb1->jmp_next[n1];
756 }
757 }
758 /* now we can suppress tb(n) from the list */
759 *ptb = tb->jmp_next[n];
760
761 tb->jmp_next[n] = NULL;
762 }
763 }
764
765 /* reset the jump entry 'n' of a TB so that it is not chained to
766 another TB */
767 static inline void tb_reset_jump(TranslationBlock *tb, int n)
768 {
769 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
770 }
771
772 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
773 {
774 CPUState *env;
775 PageDesc *p;
776 unsigned int h, n1;
777 target_phys_addr_t phys_pc;
778 TranslationBlock *tb1, *tb2;
779
780 /* remove the TB from the hash list */
781 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
782 h = tb_phys_hash_func(phys_pc);
783 tb_remove(&tb_phys_hash[h], tb,
784 offsetof(TranslationBlock, phys_hash_next));
785
786 /* remove the TB from the page list */
787 if (tb->page_addr[0] != page_addr) {
788 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
789 tb_page_remove(&p->first_tb, tb);
790 invalidate_page_bitmap(p);
791 }
792 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
793 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
794 tb_page_remove(&p->first_tb, tb);
795 invalidate_page_bitmap(p);
796 }
797
798 tb_invalidated_flag = 1;
799
800 /* remove the TB from the hash list */
801 h = tb_jmp_cache_hash_func(tb->pc);
802 for(env = first_cpu; env != NULL; env = env->next_cpu) {
803 if (env->tb_jmp_cache[h] == tb)
804 env->tb_jmp_cache[h] = NULL;
805 }
806
807 /* suppress this TB from the two jump lists */
808 tb_jmp_remove(tb, 0);
809 tb_jmp_remove(tb, 1);
810
811 /* suppress any remaining jumps to this TB */
812 tb1 = tb->jmp_first;
813 for(;;) {
814 n1 = (long)tb1 & 3;
815 if (n1 == 2)
816 break;
817 tb1 = (TranslationBlock *)((long)tb1 & ~3);
818 tb2 = tb1->jmp_next[n1];
819 tb_reset_jump(tb1, n1);
820 tb1->jmp_next[n1] = NULL;
821 tb1 = tb2;
822 }
823 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
824
825 tb_phys_invalidate_count++;
826 }
827
828 static inline void set_bits(uint8_t *tab, int start, int len)
829 {
830 int end, mask, end1;
831
832 end = start + len;
833 tab += start >> 3;
834 mask = 0xff << (start & 7);
835 if ((start & ~7) == (end & ~7)) {
836 if (start < end) {
837 mask &= ~(0xff << (end & 7));
838 *tab |= mask;
839 }
840 } else {
841 *tab++ |= mask;
842 start = (start + 8) & ~7;
843 end1 = end & ~7;
844 while (start < end1) {
845 *tab++ = 0xff;
846 start += 8;
847 }
848 if (start < end) {
849 mask = ~(0xff << (end & 7));
850 *tab |= mask;
851 }
852 }
853 }
854
855 static void build_page_bitmap(PageDesc *p)
856 {
857 int n, tb_start, tb_end;
858 TranslationBlock *tb;
859
860 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
861
862 tb = p->first_tb;
863 while (tb != NULL) {
864 n = (long)tb & 3;
865 tb = (TranslationBlock *)((long)tb & ~3);
866 /* NOTE: this is subtle as a TB may span two physical pages */
867 if (n == 0) {
868 /* NOTE: tb_end may be after the end of the page, but
869 it is not a problem */
870 tb_start = tb->pc & ~TARGET_PAGE_MASK;
871 tb_end = tb_start + tb->size;
872 if (tb_end > TARGET_PAGE_SIZE)
873 tb_end = TARGET_PAGE_SIZE;
874 } else {
875 tb_start = 0;
876 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
877 }
878 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
879 tb = tb->page_next[n];
880 }
881 }
882
883 TranslationBlock *tb_gen_code(CPUState *env,
884 target_ulong pc, target_ulong cs_base,
885 int flags, int cflags)
886 {
887 TranslationBlock *tb;
888 uint8_t *tc_ptr;
889 target_ulong phys_pc, phys_page2, virt_page2;
890 int code_gen_size;
891
892 phys_pc = get_phys_addr_code(env, pc);
893 tb = tb_alloc(pc);
894 if (!tb) {
895 /* flush must be done */
896 tb_flush(env);
897 /* cannot fail at this point */
898 tb = tb_alloc(pc);
899 /* Don't forget to invalidate previous TB info. */
900 tb_invalidated_flag = 1;
901 }
902 tc_ptr = code_gen_ptr;
903 tb->tc_ptr = tc_ptr;
904 tb->cs_base = cs_base;
905 tb->flags = flags;
906 tb->cflags = cflags;
907 cpu_gen_code(env, tb, &code_gen_size);
908 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
909
910 /* check next page if needed */
911 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
912 phys_page2 = -1;
913 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
914 phys_page2 = get_phys_addr_code(env, virt_page2);
915 }
916 tb_link_phys(tb, phys_pc, phys_page2);
917 return tb;
918 }
919
920 /* invalidate all TBs which intersect with the target physical page
921 starting in range [start;end[. NOTE: start and end must refer to
922 the same physical page. 'is_cpu_write_access' should be true if called
923 from a real cpu write access: the virtual CPU will exit the current
924 TB if code is modified inside this TB. */
925 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
926 int is_cpu_write_access)
927 {
928 TranslationBlock *tb, *tb_next, *saved_tb;
929 CPUState *env = cpu_single_env;
930 target_ulong tb_start, tb_end;
931 PageDesc *p;
932 int n;
933 #ifdef TARGET_HAS_PRECISE_SMC
934 int current_tb_not_found = is_cpu_write_access;
935 TranslationBlock *current_tb = NULL;
936 int current_tb_modified = 0;
937 target_ulong current_pc = 0;
938 target_ulong current_cs_base = 0;
939 int current_flags = 0;
940 #endif /* TARGET_HAS_PRECISE_SMC */
941
942 p = page_find(start >> TARGET_PAGE_BITS);
943 if (!p)
944 return;
945 if (!p->code_bitmap &&
946 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
947 is_cpu_write_access) {
948 /* build code bitmap */
949 build_page_bitmap(p);
950 }
951
952 /* we remove all the TBs in the range [start, end[ */
953 /* XXX: see if in some cases it could be faster to invalidate all the code */
954 tb = p->first_tb;
955 while (tb != NULL) {
956 n = (long)tb & 3;
957 tb = (TranslationBlock *)((long)tb & ~3);
958 tb_next = tb->page_next[n];
959 /* NOTE: this is subtle as a TB may span two physical pages */
960 if (n == 0) {
961 /* NOTE: tb_end may be after the end of the page, but
962 it is not a problem */
963 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
964 tb_end = tb_start + tb->size;
965 } else {
966 tb_start = tb->page_addr[1];
967 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
968 }
969 if (!(tb_end <= start || tb_start >= end)) {
970 #ifdef TARGET_HAS_PRECISE_SMC
971 if (current_tb_not_found) {
972 current_tb_not_found = 0;
973 current_tb = NULL;
974 if (env->mem_io_pc) {
975 /* now we have a real cpu fault */
976 current_tb = tb_find_pc(env->mem_io_pc);
977 }
978 }
979 if (current_tb == tb &&
980 (current_tb->cflags & CF_COUNT_MASK) != 1) {
981 /* If we are modifying the current TB, we must stop
982 its execution. We could be more precise by checking
983 that the modification is after the current PC, but it
984 would require a specialized function to partially
985 restore the CPU state */
986
987 current_tb_modified = 1;
988 cpu_restore_state(current_tb, env,
989 env->mem_io_pc, NULL);
990 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
991 &current_flags);
992 }
993 #endif /* TARGET_HAS_PRECISE_SMC */
994 /* we need to do that to handle the case where a signal
995 occurs while doing tb_phys_invalidate() */
996 saved_tb = NULL;
997 if (env) {
998 saved_tb = env->current_tb;
999 env->current_tb = NULL;
1000 }
1001 tb_phys_invalidate(tb, -1);
1002 if (env) {
1003 env->current_tb = saved_tb;
1004 if (env->interrupt_request && env->current_tb)
1005 cpu_interrupt(env, env->interrupt_request);
1006 }
1007 }
1008 tb = tb_next;
1009 }
1010 #if !defined(CONFIG_USER_ONLY)
1011 /* if no code remaining, no need to continue to use slow writes */
1012 if (!p->first_tb) {
1013 invalidate_page_bitmap(p);
1014 if (is_cpu_write_access) {
1015 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1016 }
1017 }
1018 #endif
1019 #ifdef TARGET_HAS_PRECISE_SMC
1020 if (current_tb_modified) {
1021 /* we generate a block containing just the instruction
1022 modifying the memory. It will ensure that it cannot modify
1023 itself */
1024 env->current_tb = NULL;
1025 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1026 cpu_resume_from_signal(env, NULL);
1027 }
1028 #endif
1029 }
1030
1031 /* len must be <= 8 and start must be a multiple of len */
1032 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1033 {
1034 PageDesc *p;
1035 int offset, b;
1036 #if 0
1037 if (1) {
1038 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1039 cpu_single_env->mem_io_vaddr, len,
1040 cpu_single_env->eip,
1041 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1042 }
1043 #endif
1044 p = page_find(start >> TARGET_PAGE_BITS);
1045 if (!p)
1046 return;
1047 if (p->code_bitmap) {
1048 offset = start & ~TARGET_PAGE_MASK;
1049 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1050 if (b & ((1 << len) - 1))
1051 goto do_invalidate;
1052 } else {
1053 do_invalidate:
1054 tb_invalidate_phys_page_range(start, start + len, 1);
1055 }
1056 }
1057
1058 #if !defined(CONFIG_SOFTMMU)
1059 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1060 unsigned long pc, void *puc)
1061 {
1062 TranslationBlock *tb;
1063 PageDesc *p;
1064 int n;
1065 #ifdef TARGET_HAS_PRECISE_SMC
1066 TranslationBlock *current_tb = NULL;
1067 CPUState *env = cpu_single_env;
1068 int current_tb_modified = 0;
1069 target_ulong current_pc = 0;
1070 target_ulong current_cs_base = 0;
1071 int current_flags = 0;
1072 #endif
1073
1074 addr &= TARGET_PAGE_MASK;
1075 p = page_find(addr >> TARGET_PAGE_BITS);
1076 if (!p)
1077 return;
1078 tb = p->first_tb;
1079 #ifdef TARGET_HAS_PRECISE_SMC
1080 if (tb && pc != 0) {
1081 current_tb = tb_find_pc(pc);
1082 }
1083 #endif
1084 while (tb != NULL) {
1085 n = (long)tb & 3;
1086 tb = (TranslationBlock *)((long)tb & ~3);
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb == tb &&
1089 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1090 /* If we are modifying the current TB, we must stop
1091 its execution. We could be more precise by checking
1092 that the modification is after the current PC, but it
1093 would require a specialized function to partially
1094 restore the CPU state */
1095
1096 current_tb_modified = 1;
1097 cpu_restore_state(current_tb, env, pc, puc);
1098 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1099 &current_flags);
1100 }
1101 #endif /* TARGET_HAS_PRECISE_SMC */
1102 tb_phys_invalidate(tb, addr);
1103 tb = tb->page_next[n];
1104 }
1105 p->first_tb = NULL;
1106 #ifdef TARGET_HAS_PRECISE_SMC
1107 if (current_tb_modified) {
1108 /* we generate a block containing just the instruction
1109 modifying the memory. It will ensure that it cannot modify
1110 itself */
1111 env->current_tb = NULL;
1112 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1113 cpu_resume_from_signal(env, puc);
1114 }
1115 #endif
1116 }
1117 #endif
1118
1119 /* add the tb in the target page and protect it if necessary */
1120 static inline void tb_alloc_page(TranslationBlock *tb,
1121 unsigned int n, target_ulong page_addr)
1122 {
1123 PageDesc *p;
1124 TranslationBlock *last_first_tb;
1125
1126 tb->page_addr[n] = page_addr;
1127 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1128 tb->page_next[n] = p->first_tb;
1129 last_first_tb = p->first_tb;
1130 p->first_tb = (TranslationBlock *)((long)tb | n);
1131 invalidate_page_bitmap(p);
1132
1133 #if defined(TARGET_HAS_SMC) || 1
1134
1135 #if defined(CONFIG_USER_ONLY)
1136 if (p->flags & PAGE_WRITE) {
1137 target_ulong addr;
1138 PageDesc *p2;
1139 int prot;
1140
1141 /* force the host page as non writable (writes will have a
1142 page fault + mprotect overhead) */
1143 page_addr &= qemu_host_page_mask;
1144 prot = 0;
1145 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1146 addr += TARGET_PAGE_SIZE) {
1147
1148 p2 = page_find (addr >> TARGET_PAGE_BITS);
1149 if (!p2)
1150 continue;
1151 prot |= p2->flags;
1152 p2->flags &= ~PAGE_WRITE;
1153 page_get_flags(addr);
1154 }
1155 mprotect(g2h(page_addr), qemu_host_page_size,
1156 (prot & PAGE_BITS) & ~PAGE_WRITE);
1157 #ifdef DEBUG_TB_INVALIDATE
1158 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1159 page_addr);
1160 #endif
1161 }
1162 #else
1163 /* if some code is already present, then the pages are already
1164 protected. So we handle the case where only the first TB is
1165 allocated in a physical page */
1166 if (!last_first_tb) {
1167 tlb_protect_code(page_addr);
1168 }
1169 #endif
1170
1171 #endif /* TARGET_HAS_SMC */
1172 }
1173
1174 /* Allocate a new translation block. Flush the translation buffer if
1175 too many translation blocks or too much generated code. */
1176 TranslationBlock *tb_alloc(target_ulong pc)
1177 {
1178 TranslationBlock *tb;
1179
1180 if (nb_tbs >= code_gen_max_blocks ||
1181 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1182 return NULL;
1183 tb = &tbs[nb_tbs++];
1184 tb->pc = pc;
1185 tb->cflags = 0;
1186 return tb;
1187 }
1188
1189 void tb_free(TranslationBlock *tb)
1190 {
1191 /* In practice this is mostly used for single use temporary TB
1192 Ignore the hard cases and just back up if this TB happens to
1193 be the last one generated. */
1194 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1195 code_gen_ptr = tb->tc_ptr;
1196 nb_tbs--;
1197 }
1198 }
1199
1200 /* add a new TB and link it to the physical page tables. phys_page2 is
1201 (-1) to indicate that only one page contains the TB. */
1202 void tb_link_phys(TranslationBlock *tb,
1203 target_ulong phys_pc, target_ulong phys_page2)
1204 {
1205 unsigned int h;
1206 TranslationBlock **ptb;
1207
1208 /* Grab the mmap lock to stop another thread invalidating this TB
1209 before we are done. */
1210 mmap_lock();
1211 /* add in the physical hash table */
1212 h = tb_phys_hash_func(phys_pc);
1213 ptb = &tb_phys_hash[h];
1214 tb->phys_hash_next = *ptb;
1215 *ptb = tb;
1216
1217 /* add in the page list */
1218 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1219 if (phys_page2 != -1)
1220 tb_alloc_page(tb, 1, phys_page2);
1221 else
1222 tb->page_addr[1] = -1;
1223
1224 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1225 tb->jmp_next[0] = NULL;
1226 tb->jmp_next[1] = NULL;
1227
1228 /* init original jump addresses */
1229 if (tb->tb_next_offset[0] != 0xffff)
1230 tb_reset_jump(tb, 0);
1231 if (tb->tb_next_offset[1] != 0xffff)
1232 tb_reset_jump(tb, 1);
1233
1234 #ifdef DEBUG_TB_CHECK
1235 tb_page_check();
1236 #endif
1237 mmap_unlock();
1238 }
1239
1240 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1241 tb[1].tc_ptr. Return NULL if not found */
1242 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1243 {
1244 int m_min, m_max, m;
1245 unsigned long v;
1246 TranslationBlock *tb;
1247
1248 if (nb_tbs <= 0)
1249 return NULL;
1250 if (tc_ptr < (unsigned long)code_gen_buffer ||
1251 tc_ptr >= (unsigned long)code_gen_ptr)
1252 return NULL;
1253 /* binary search (cf Knuth) */
1254 m_min = 0;
1255 m_max = nb_tbs - 1;
1256 while (m_min <= m_max) {
1257 m = (m_min + m_max) >> 1;
1258 tb = &tbs[m];
1259 v = (unsigned long)tb->tc_ptr;
1260 if (v == tc_ptr)
1261 return tb;
1262 else if (tc_ptr < v) {
1263 m_max = m - 1;
1264 } else {
1265 m_min = m + 1;
1266 }
1267 }
1268 return &tbs[m_max];
1269 }
1270
1271 static void tb_reset_jump_recursive(TranslationBlock *tb);
1272
1273 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1274 {
1275 TranslationBlock *tb1, *tb_next, **ptb;
1276 unsigned int n1;
1277
1278 tb1 = tb->jmp_next[n];
1279 if (tb1 != NULL) {
1280 /* find head of list */
1281 for(;;) {
1282 n1 = (long)tb1 & 3;
1283 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1284 if (n1 == 2)
1285 break;
1286 tb1 = tb1->jmp_next[n1];
1287 }
1288 /* we are now sure now that tb jumps to tb1 */
1289 tb_next = tb1;
1290
1291 /* remove tb from the jmp_first list */
1292 ptb = &tb_next->jmp_first;
1293 for(;;) {
1294 tb1 = *ptb;
1295 n1 = (long)tb1 & 3;
1296 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1297 if (n1 == n && tb1 == tb)
1298 break;
1299 ptb = &tb1->jmp_next[n1];
1300 }
1301 *ptb = tb->jmp_next[n];
1302 tb->jmp_next[n] = NULL;
1303
1304 /* suppress the jump to next tb in generated code */
1305 tb_reset_jump(tb, n);
1306
1307 /* suppress jumps in the tb on which we could have jumped */
1308 tb_reset_jump_recursive(tb_next);
1309 }
1310 }
1311
1312 static void tb_reset_jump_recursive(TranslationBlock *tb)
1313 {
1314 tb_reset_jump_recursive2(tb, 0);
1315 tb_reset_jump_recursive2(tb, 1);
1316 }
1317
1318 #if defined(TARGET_HAS_ICE)
1319 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1320 {
1321 target_phys_addr_t addr;
1322 target_ulong pd;
1323 ram_addr_t ram_addr;
1324 PhysPageDesc *p;
1325
1326 addr = cpu_get_phys_page_debug(env, pc);
1327 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1328 if (!p) {
1329 pd = IO_MEM_UNASSIGNED;
1330 } else {
1331 pd = p->phys_offset;
1332 }
1333 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1334 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1335 }
1336 #endif
1337
1338 /* Add a watchpoint. */
1339 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1340 int flags, CPUWatchpoint **watchpoint)
1341 {
1342 target_ulong len_mask = ~(len - 1);
1343 CPUWatchpoint *wp;
1344
1345 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1346 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1347 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1348 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1349 return -EINVAL;
1350 }
1351 wp = qemu_malloc(sizeof(*wp));
1352
1353 wp->vaddr = addr;
1354 wp->len_mask = len_mask;
1355 wp->flags = flags;
1356
1357 /* keep all GDB-injected watchpoints in front */
1358 if (flags & BP_GDB)
1359 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1360 else
1361 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1362
1363 tlb_flush_page(env, addr);
1364
1365 if (watchpoint)
1366 *watchpoint = wp;
1367 return 0;
1368 }
1369
1370 /* Remove a specific watchpoint. */
1371 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1372 int flags)
1373 {
1374 target_ulong len_mask = ~(len - 1);
1375 CPUWatchpoint *wp;
1376
1377 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1378 if (addr == wp->vaddr && len_mask == wp->len_mask
1379 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1380 cpu_watchpoint_remove_by_ref(env, wp);
1381 return 0;
1382 }
1383 }
1384 return -ENOENT;
1385 }
1386
1387 /* Remove a specific watchpoint by reference. */
1388 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1389 {
1390 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1391
1392 tlb_flush_page(env, watchpoint->vaddr);
1393
1394 qemu_free(watchpoint);
1395 }
1396
1397 /* Remove all matching watchpoints. */
1398 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1399 {
1400 CPUWatchpoint *wp, *next;
1401
1402 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1403 if (wp->flags & mask)
1404 cpu_watchpoint_remove_by_ref(env, wp);
1405 }
1406 }
1407
1408 /* Add a breakpoint. */
1409 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1410 CPUBreakpoint **breakpoint)
1411 {
1412 #if defined(TARGET_HAS_ICE)
1413 CPUBreakpoint *bp;
1414
1415 bp = qemu_malloc(sizeof(*bp));
1416
1417 bp->pc = pc;
1418 bp->flags = flags;
1419
1420 /* keep all GDB-injected breakpoints in front */
1421 if (flags & BP_GDB)
1422 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1423 else
1424 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1425
1426 breakpoint_invalidate(env, pc);
1427
1428 if (breakpoint)
1429 *breakpoint = bp;
1430 return 0;
1431 #else
1432 return -ENOSYS;
1433 #endif
1434 }
1435
1436 /* Remove a specific breakpoint. */
1437 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1438 {
1439 #if defined(TARGET_HAS_ICE)
1440 CPUBreakpoint *bp;
1441
1442 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1443 if (bp->pc == pc && bp->flags == flags) {
1444 cpu_breakpoint_remove_by_ref(env, bp);
1445 return 0;
1446 }
1447 }
1448 return -ENOENT;
1449 #else
1450 return -ENOSYS;
1451 #endif
1452 }
1453
1454 /* Remove a specific breakpoint by reference. */
1455 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1456 {
1457 #if defined(TARGET_HAS_ICE)
1458 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1459
1460 breakpoint_invalidate(env, breakpoint->pc);
1461
1462 qemu_free(breakpoint);
1463 #endif
1464 }
1465
1466 /* Remove all matching breakpoints. */
1467 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1468 {
1469 #if defined(TARGET_HAS_ICE)
1470 CPUBreakpoint *bp, *next;
1471
1472 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1473 if (bp->flags & mask)
1474 cpu_breakpoint_remove_by_ref(env, bp);
1475 }
1476 #endif
1477 }
1478
1479 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1480 CPU loop after each instruction */
1481 void cpu_single_step(CPUState *env, int enabled)
1482 {
1483 #if defined(TARGET_HAS_ICE)
1484 if (env->singlestep_enabled != enabled) {
1485 env->singlestep_enabled = enabled;
1486 if (kvm_enabled())
1487 kvm_update_guest_debug(env, 0);
1488 else {
1489 /* must flush all the translated code to avoid inconsistencies */
1490 /* XXX: only flush what is necessary */
1491 tb_flush(env);
1492 }
1493 }
1494 #endif
1495 }
1496
1497 /* enable or disable low levels log */
1498 void cpu_set_log(int log_flags)
1499 {
1500 loglevel = log_flags;
1501 if (loglevel && !logfile) {
1502 logfile = fopen(logfilename, log_append ? "a" : "w");
1503 if (!logfile) {
1504 perror(logfilename);
1505 _exit(1);
1506 }
1507 #if !defined(CONFIG_SOFTMMU)
1508 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1509 {
1510 static char logfile_buf[4096];
1511 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1512 }
1513 #else
1514 setvbuf(logfile, NULL, _IOLBF, 0);
1515 #endif
1516 log_append = 1;
1517 }
1518 if (!loglevel && logfile) {
1519 fclose(logfile);
1520 logfile = NULL;
1521 }
1522 }
1523
1524 void cpu_set_log_filename(const char *filename)
1525 {
1526 logfilename = strdup(filename);
1527 if (logfile) {
1528 fclose(logfile);
1529 logfile = NULL;
1530 }
1531 cpu_set_log(loglevel);
1532 }
1533
1534 static void cpu_unlink_tb(CPUState *env)
1535 {
1536 #if defined(USE_NPTL)
1537 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1538 problem and hope the cpu will stop of its own accord. For userspace
1539 emulation this often isn't actually as bad as it sounds. Often
1540 signals are used primarily to interrupt blocking syscalls. */
1541 #else
1542 TranslationBlock *tb;
1543 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1544
1545 tb = env->current_tb;
1546 /* if the cpu is currently executing code, we must unlink it and
1547 all the potentially executing TB */
1548 if (tb && !testandset(&interrupt_lock)) {
1549 env->current_tb = NULL;
1550 tb_reset_jump_recursive(tb);
1551 resetlock(&interrupt_lock);
1552 }
1553 #endif
1554 }
1555
1556 /* mask must never be zero, except for A20 change call */
1557 void cpu_interrupt(CPUState *env, int mask)
1558 {
1559 int old_mask;
1560
1561 old_mask = env->interrupt_request;
1562 env->interrupt_request |= mask;
1563
1564 #ifndef CONFIG_USER_ONLY
1565 /*
1566 * If called from iothread context, wake the target cpu in
1567 * case its halted.
1568 */
1569 if (!qemu_cpu_self(env)) {
1570 qemu_cpu_kick(env);
1571 return;
1572 }
1573 #endif
1574
1575 if (use_icount) {
1576 env->icount_decr.u16.high = 0xffff;
1577 #ifndef CONFIG_USER_ONLY
1578 if (!can_do_io(env)
1579 && (mask & ~old_mask) != 0) {
1580 cpu_abort(env, "Raised interrupt while not in I/O function");
1581 }
1582 #endif
1583 } else {
1584 cpu_unlink_tb(env);
1585 }
1586 }
1587
1588 void cpu_reset_interrupt(CPUState *env, int mask)
1589 {
1590 env->interrupt_request &= ~mask;
1591 }
1592
1593 void cpu_exit(CPUState *env)
1594 {
1595 env->exit_request = 1;
1596 cpu_unlink_tb(env);
1597 }
1598
1599 const CPULogItem cpu_log_items[] = {
1600 { CPU_LOG_TB_OUT_ASM, "out_asm",
1601 "show generated host assembly code for each compiled TB" },
1602 { CPU_LOG_TB_IN_ASM, "in_asm",
1603 "show target assembly code for each compiled TB" },
1604 { CPU_LOG_TB_OP, "op",
1605 "show micro ops for each compiled TB" },
1606 { CPU_LOG_TB_OP_OPT, "op_opt",
1607 "show micro ops "
1608 #ifdef TARGET_I386
1609 "before eflags optimization and "
1610 #endif
1611 "after liveness analysis" },
1612 { CPU_LOG_INT, "int",
1613 "show interrupts/exceptions in short format" },
1614 { CPU_LOG_EXEC, "exec",
1615 "show trace before each executed TB (lots of logs)" },
1616 { CPU_LOG_TB_CPU, "cpu",
1617 "show CPU state before block translation" },
1618 #ifdef TARGET_I386
1619 { CPU_LOG_PCALL, "pcall",
1620 "show protected mode far calls/returns/exceptions" },
1621 { CPU_LOG_RESET, "cpu_reset",
1622 "show CPU state before CPU resets" },
1623 #endif
1624 #ifdef DEBUG_IOPORT
1625 { CPU_LOG_IOPORT, "ioport",
1626 "show all i/o ports accesses" },
1627 #endif
1628 { 0, NULL, NULL },
1629 };
1630
1631 static int cmp1(const char *s1, int n, const char *s2)
1632 {
1633 if (strlen(s2) != n)
1634 return 0;
1635 return memcmp(s1, s2, n) == 0;
1636 }
1637
1638 /* takes a comma separated list of log masks. Return 0 if error. */
1639 int cpu_str_to_log_mask(const char *str)
1640 {
1641 const CPULogItem *item;
1642 int mask;
1643 const char *p, *p1;
1644
1645 p = str;
1646 mask = 0;
1647 for(;;) {
1648 p1 = strchr(p, ',');
1649 if (!p1)
1650 p1 = p + strlen(p);
1651 if(cmp1(p,p1-p,"all")) {
1652 for(item = cpu_log_items; item->mask != 0; item++) {
1653 mask |= item->mask;
1654 }
1655 } else {
1656 for(item = cpu_log_items; item->mask != 0; item++) {
1657 if (cmp1(p, p1 - p, item->name))
1658 goto found;
1659 }
1660 return 0;
1661 }
1662 found:
1663 mask |= item->mask;
1664 if (*p1 != ',')
1665 break;
1666 p = p1 + 1;
1667 }
1668 return mask;
1669 }
1670
1671 void cpu_abort(CPUState *env, const char *fmt, ...)
1672 {
1673 va_list ap;
1674 va_list ap2;
1675
1676 va_start(ap, fmt);
1677 va_copy(ap2, ap);
1678 fprintf(stderr, "qemu: fatal: ");
1679 vfprintf(stderr, fmt, ap);
1680 fprintf(stderr, "\n");
1681 #ifdef TARGET_I386
1682 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1683 #else
1684 cpu_dump_state(env, stderr, fprintf, 0);
1685 #endif
1686 if (qemu_log_enabled()) {
1687 qemu_log("qemu: fatal: ");
1688 qemu_log_vprintf(fmt, ap2);
1689 qemu_log("\n");
1690 #ifdef TARGET_I386
1691 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1692 #else
1693 log_cpu_state(env, 0);
1694 #endif
1695 qemu_log_flush();
1696 qemu_log_close();
1697 }
1698 va_end(ap2);
1699 va_end(ap);
1700 abort();
1701 }
1702
1703 CPUState *cpu_copy(CPUState *env)
1704 {
1705 CPUState *new_env = cpu_init(env->cpu_model_str);
1706 CPUState *next_cpu = new_env->next_cpu;
1707 int cpu_index = new_env->cpu_index;
1708 #if defined(TARGET_HAS_ICE)
1709 CPUBreakpoint *bp;
1710 CPUWatchpoint *wp;
1711 #endif
1712
1713 memcpy(new_env, env, sizeof(CPUState));
1714
1715 /* Preserve chaining and index. */
1716 new_env->next_cpu = next_cpu;
1717 new_env->cpu_index = cpu_index;
1718
1719 /* Clone all break/watchpoints.
1720 Note: Once we support ptrace with hw-debug register access, make sure
1721 BP_CPU break/watchpoints are handled correctly on clone. */
1722 TAILQ_INIT(&env->breakpoints);
1723 TAILQ_INIT(&env->watchpoints);
1724 #if defined(TARGET_HAS_ICE)
1725 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1726 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1727 }
1728 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1729 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1730 wp->flags, NULL);
1731 }
1732 #endif
1733
1734 return new_env;
1735 }
1736
1737 #if !defined(CONFIG_USER_ONLY)
1738
1739 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1740 {
1741 unsigned int i;
1742
1743 /* Discard jump cache entries for any tb which might potentially
1744 overlap the flushed page. */
1745 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1746 memset (&env->tb_jmp_cache[i], 0,
1747 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1748
1749 i = tb_jmp_cache_hash_page(addr);
1750 memset (&env->tb_jmp_cache[i], 0,
1751 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1752 }
1753
1754 /* NOTE: if flush_global is true, also flush global entries (not
1755 implemented yet) */
1756 void tlb_flush(CPUState *env, int flush_global)
1757 {
1758 int i;
1759
1760 #if defined(DEBUG_TLB)
1761 printf("tlb_flush:\n");
1762 #endif
1763 /* must reset current TB so that interrupts cannot modify the
1764 links while we are modifying them */
1765 env->current_tb = NULL;
1766
1767 for(i = 0; i < CPU_TLB_SIZE; i++) {
1768 int mmu_idx;
1769 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1770 env->tlb_table[mmu_idx][i].addr_read = -1;
1771 env->tlb_table[mmu_idx][i].addr_write = -1;
1772 env->tlb_table[mmu_idx][i].addr_code = -1;
1773 }
1774 }
1775
1776 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1777
1778 #ifdef CONFIG_KQEMU
1779 if (env->kqemu_enabled) {
1780 kqemu_flush(env, flush_global);
1781 }
1782 #endif
1783 tlb_flush_count++;
1784 }
1785
1786 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1787 {
1788 if (addr == (tlb_entry->addr_read &
1789 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1790 addr == (tlb_entry->addr_write &
1791 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1792 addr == (tlb_entry->addr_code &
1793 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1794 tlb_entry->addr_read = -1;
1795 tlb_entry->addr_write = -1;
1796 tlb_entry->addr_code = -1;
1797 }
1798 }
1799
1800 void tlb_flush_page(CPUState *env, target_ulong addr)
1801 {
1802 int i;
1803 int mmu_idx;
1804
1805 #if defined(DEBUG_TLB)
1806 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1807 #endif
1808 /* must reset current TB so that interrupts cannot modify the
1809 links while we are modifying them */
1810 env->current_tb = NULL;
1811
1812 addr &= TARGET_PAGE_MASK;
1813 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1814 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1815 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1816
1817 tlb_flush_jmp_cache(env, addr);
1818
1819 #ifdef CONFIG_KQEMU
1820 if (env->kqemu_enabled) {
1821 kqemu_flush_page(env, addr);
1822 }
1823 #endif
1824 }
1825
1826 /* update the TLBs so that writes to code in the virtual page 'addr'
1827 can be detected */
1828 static void tlb_protect_code(ram_addr_t ram_addr)
1829 {
1830 cpu_physical_memory_reset_dirty(ram_addr,
1831 ram_addr + TARGET_PAGE_SIZE,
1832 CODE_DIRTY_FLAG);
1833 }
1834
1835 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1836 tested for self modifying code */
1837 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1838 target_ulong vaddr)
1839 {
1840 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1841 }
1842
1843 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1844 unsigned long start, unsigned long length)
1845 {
1846 unsigned long addr;
1847 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1848 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1849 if ((addr - start) < length) {
1850 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1851 }
1852 }
1853 }
1854
1855 /* Note: start and end must be within the same ram block. */
1856 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1857 int dirty_flags)
1858 {
1859 CPUState *env;
1860 unsigned long length, start1;
1861 int i, mask, len;
1862 uint8_t *p;
1863
1864 start &= TARGET_PAGE_MASK;
1865 end = TARGET_PAGE_ALIGN(end);
1866
1867 length = end - start;
1868 if (length == 0)
1869 return;
1870 len = length >> TARGET_PAGE_BITS;
1871 #ifdef CONFIG_KQEMU
1872 /* XXX: should not depend on cpu context */
1873 env = first_cpu;
1874 if (env->kqemu_enabled) {
1875 ram_addr_t addr;
1876 addr = start;
1877 for(i = 0; i < len; i++) {
1878 kqemu_set_notdirty(env, addr);
1879 addr += TARGET_PAGE_SIZE;
1880 }
1881 }
1882 #endif
1883 mask = ~dirty_flags;
1884 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1885 for(i = 0; i < len; i++)
1886 p[i] &= mask;
1887
1888 /* we modify the TLB cache so that the dirty bit will be set again
1889 when accessing the range */
1890 start1 = (unsigned long)qemu_get_ram_ptr(start);
1891 /* Chek that we don't span multiple blocks - this breaks the
1892 address comparisons below. */
1893 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1894 != (end - 1) - start) {
1895 abort();
1896 }
1897
1898 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1899 int mmu_idx;
1900 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1901 for(i = 0; i < CPU_TLB_SIZE; i++)
1902 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1903 start1, length);
1904 }
1905 }
1906 }
1907
1908 int cpu_physical_memory_set_dirty_tracking(int enable)
1909 {
1910 in_migration = enable;
1911 if (kvm_enabled()) {
1912 return kvm_set_migration_log(enable);
1913 }
1914 return 0;
1915 }
1916
1917 int cpu_physical_memory_get_dirty_tracking(void)
1918 {
1919 return in_migration;
1920 }
1921
1922 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1923 target_phys_addr_t end_addr)
1924 {
1925 int ret = 0;
1926
1927 if (kvm_enabled())
1928 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1929 return ret;
1930 }
1931
1932 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1933 {
1934 ram_addr_t ram_addr;
1935 void *p;
1936
1937 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1938 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1939 + tlb_entry->addend);
1940 ram_addr = qemu_ram_addr_from_host(p);
1941 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1942 tlb_entry->addr_write |= TLB_NOTDIRTY;
1943 }
1944 }
1945 }
1946
1947 /* update the TLB according to the current state of the dirty bits */
1948 void cpu_tlb_update_dirty(CPUState *env)
1949 {
1950 int i;
1951 int mmu_idx;
1952 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1953 for(i = 0; i < CPU_TLB_SIZE; i++)
1954 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1955 }
1956 }
1957
1958 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1959 {
1960 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1961 tlb_entry->addr_write = vaddr;
1962 }
1963
1964 /* update the TLB corresponding to virtual page vaddr
1965 so that it is no longer dirty */
1966 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1967 {
1968 int i;
1969 int mmu_idx;
1970
1971 vaddr &= TARGET_PAGE_MASK;
1972 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1973 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1974 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1975 }
1976
1977 /* add a new TLB entry. At most one entry for a given virtual address
1978 is permitted. Return 0 if OK or 2 if the page could not be mapped
1979 (can only happen in non SOFTMMU mode for I/O pages or pages
1980 conflicting with the host address space). */
1981 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1982 target_phys_addr_t paddr, int prot,
1983 int mmu_idx, int is_softmmu)
1984 {
1985 PhysPageDesc *p;
1986 unsigned long pd;
1987 unsigned int index;
1988 target_ulong address;
1989 target_ulong code_address;
1990 target_phys_addr_t addend;
1991 int ret;
1992 CPUTLBEntry *te;
1993 CPUWatchpoint *wp;
1994 target_phys_addr_t iotlb;
1995
1996 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1997 if (!p) {
1998 pd = IO_MEM_UNASSIGNED;
1999 } else {
2000 pd = p->phys_offset;
2001 }
2002 #if defined(DEBUG_TLB)
2003 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2004 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2005 #endif
2006
2007 ret = 0;
2008 address = vaddr;
2009 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2010 /* IO memory case (romd handled later) */
2011 address |= TLB_MMIO;
2012 }
2013 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2014 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2015 /* Normal RAM. */
2016 iotlb = pd & TARGET_PAGE_MASK;
2017 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2018 iotlb |= IO_MEM_NOTDIRTY;
2019 else
2020 iotlb |= IO_MEM_ROM;
2021 } else {
2022 /* IO handlers are currently passed a physical address.
2023 It would be nice to pass an offset from the base address
2024 of that region. This would avoid having to special case RAM,
2025 and avoid full address decoding in every device.
2026 We can't use the high bits of pd for this because
2027 IO_MEM_ROMD uses these as a ram address. */
2028 iotlb = (pd & ~TARGET_PAGE_MASK);
2029 if (p) {
2030 iotlb += p->region_offset;
2031 } else {
2032 iotlb += paddr;
2033 }
2034 }
2035
2036 code_address = address;
2037 /* Make accesses to pages with watchpoints go via the
2038 watchpoint trap routines. */
2039 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2040 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2041 iotlb = io_mem_watch + paddr;
2042 /* TODO: The memory case can be optimized by not trapping
2043 reads of pages with a write breakpoint. */
2044 address |= TLB_MMIO;
2045 }
2046 }
2047
2048 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2049 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2050 te = &env->tlb_table[mmu_idx][index];
2051 te->addend = addend - vaddr;
2052 if (prot & PAGE_READ) {
2053 te->addr_read = address;
2054 } else {
2055 te->addr_read = -1;
2056 }
2057
2058 if (prot & PAGE_EXEC) {
2059 te->addr_code = code_address;
2060 } else {
2061 te->addr_code = -1;
2062 }
2063 if (prot & PAGE_WRITE) {
2064 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2065 (pd & IO_MEM_ROMD)) {
2066 /* Write access calls the I/O callback. */
2067 te->addr_write = address | TLB_MMIO;
2068 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2069 !cpu_physical_memory_is_dirty(pd)) {
2070 te->addr_write = address | TLB_NOTDIRTY;
2071 } else {
2072 te->addr_write = address;
2073 }
2074 } else {
2075 te->addr_write = -1;
2076 }
2077 return ret;
2078 }
2079
2080 #else
2081
2082 void tlb_flush(CPUState *env, int flush_global)
2083 {
2084 }
2085
2086 void tlb_flush_page(CPUState *env, target_ulong addr)
2087 {
2088 }
2089
2090 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2091 target_phys_addr_t paddr, int prot,
2092 int mmu_idx, int is_softmmu)
2093 {
2094 return 0;
2095 }
2096
2097 /*
2098 * Walks guest process memory "regions" one by one
2099 * and calls callback function 'fn' for each region.
2100 */
2101 int walk_memory_regions(void *priv,
2102 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2103 {
2104 unsigned long start, end;
2105 PageDesc *p = NULL;
2106 int i, j, prot, prot1;
2107 int rc = 0;
2108
2109 start = end = -1;
2110 prot = 0;
2111
2112 for (i = 0; i <= L1_SIZE; i++) {
2113 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2114 for (j = 0; j < L2_SIZE; j++) {
2115 prot1 = (p == NULL) ? 0 : p[j].flags;
2116 /*
2117 * "region" is one continuous chunk of memory
2118 * that has same protection flags set.
2119 */
2120 if (prot1 != prot) {
2121 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2122 if (start != -1) {
2123 rc = (*fn)(priv, start, end, prot);
2124 /* callback can stop iteration by returning != 0 */
2125 if (rc != 0)
2126 return (rc);
2127 }
2128 if (prot1 != 0)
2129 start = end;
2130 else
2131 start = -1;
2132 prot = prot1;
2133 }
2134 if (p == NULL)
2135 break;
2136 }
2137 }
2138 return (rc);
2139 }
2140
2141 static int dump_region(void *priv, unsigned long start,
2142 unsigned long end, unsigned long prot)
2143 {
2144 FILE *f = (FILE *)priv;
2145
2146 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2147 start, end, end - start,
2148 ((prot & PAGE_READ) ? 'r' : '-'),
2149 ((prot & PAGE_WRITE) ? 'w' : '-'),
2150 ((prot & PAGE_EXEC) ? 'x' : '-'));
2151
2152 return (0);
2153 }
2154
2155 /* dump memory mappings */
2156 void page_dump(FILE *f)
2157 {
2158 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2159 "start", "end", "size", "prot");
2160 walk_memory_regions(f, dump_region);
2161 }
2162
2163 int page_get_flags(target_ulong address)
2164 {
2165 PageDesc *p;
2166
2167 p = page_find(address >> TARGET_PAGE_BITS);
2168 if (!p)
2169 return 0;
2170 return p->flags;
2171 }
2172
2173 /* modify the flags of a page and invalidate the code if
2174 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2175 depending on PAGE_WRITE */
2176 void page_set_flags(target_ulong start, target_ulong end, int flags)
2177 {
2178 PageDesc *p;
2179 target_ulong addr;
2180
2181 /* mmap_lock should already be held. */
2182 start = start & TARGET_PAGE_MASK;
2183 end = TARGET_PAGE_ALIGN(end);
2184 if (flags & PAGE_WRITE)
2185 flags |= PAGE_WRITE_ORG;
2186 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2187 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2188 /* We may be called for host regions that are outside guest
2189 address space. */
2190 if (!p)
2191 return;
2192 /* if the write protection is set, then we invalidate the code
2193 inside */
2194 if (!(p->flags & PAGE_WRITE) &&
2195 (flags & PAGE_WRITE) &&
2196 p->first_tb) {
2197 tb_invalidate_phys_page(addr, 0, NULL);
2198 }
2199 p->flags = flags;
2200 }
2201 }
2202
2203 int page_check_range(target_ulong start, target_ulong len, int flags)
2204 {
2205 PageDesc *p;
2206 target_ulong end;
2207 target_ulong addr;
2208
2209 if (start + len < start)
2210 /* we've wrapped around */
2211 return -1;
2212
2213 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2214 start = start & TARGET_PAGE_MASK;
2215
2216 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2217 p = page_find(addr >> TARGET_PAGE_BITS);
2218 if( !p )
2219 return -1;
2220 if( !(p->flags & PAGE_VALID) )
2221 return -1;
2222
2223 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2224 return -1;
2225 if (flags & PAGE_WRITE) {
2226 if (!(p->flags & PAGE_WRITE_ORG))
2227 return -1;
2228 /* unprotect the page if it was put read-only because it
2229 contains translated code */
2230 if (!(p->flags & PAGE_WRITE)) {
2231 if (!page_unprotect(addr, 0, NULL))
2232 return -1;
2233 }
2234 return 0;
2235 }
2236 }
2237 return 0;
2238 }
2239
2240 /* called from signal handler: invalidate the code and unprotect the
2241 page. Return TRUE if the fault was successfully handled. */
2242 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2243 {
2244 unsigned int page_index, prot, pindex;
2245 PageDesc *p, *p1;
2246 target_ulong host_start, host_end, addr;
2247
2248 /* Technically this isn't safe inside a signal handler. However we
2249 know this only ever happens in a synchronous SEGV handler, so in
2250 practice it seems to be ok. */
2251 mmap_lock();
2252
2253 host_start = address & qemu_host_page_mask;
2254 page_index = host_start >> TARGET_PAGE_BITS;
2255 p1 = page_find(page_index);
2256 if (!p1) {
2257 mmap_unlock();
2258 return 0;
2259 }
2260 host_end = host_start + qemu_host_page_size;
2261 p = p1;
2262 prot = 0;
2263 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2264 prot |= p->flags;
2265 p++;
2266 }
2267 /* if the page was really writable, then we change its
2268 protection back to writable */
2269 if (prot & PAGE_WRITE_ORG) {
2270 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2271 if (!(p1[pindex].flags & PAGE_WRITE)) {
2272 mprotect((void *)g2h(host_start), qemu_host_page_size,
2273 (prot & PAGE_BITS) | PAGE_WRITE);
2274 p1[pindex].flags |= PAGE_WRITE;
2275 /* and since the content will be modified, we must invalidate
2276 the corresponding translated code. */
2277 tb_invalidate_phys_page(address, pc, puc);
2278 #ifdef DEBUG_TB_CHECK
2279 tb_invalidate_check(address);
2280 #endif
2281 mmap_unlock();
2282 return 1;
2283 }
2284 }
2285 mmap_unlock();
2286 return 0;
2287 }
2288
2289 static inline void tlb_set_dirty(CPUState *env,
2290 unsigned long addr, target_ulong vaddr)
2291 {
2292 }
2293 #endif /* defined(CONFIG_USER_ONLY) */
2294
2295 #if !defined(CONFIG_USER_ONLY)
2296
2297 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2298 ram_addr_t memory, ram_addr_t region_offset);
2299 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2300 ram_addr_t orig_memory, ram_addr_t region_offset);
2301 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2302 need_subpage) \
2303 do { \
2304 if (addr > start_addr) \
2305 start_addr2 = 0; \
2306 else { \
2307 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2308 if (start_addr2 > 0) \
2309 need_subpage = 1; \
2310 } \
2311 \
2312 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2313 end_addr2 = TARGET_PAGE_SIZE - 1; \
2314 else { \
2315 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2316 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2317 need_subpage = 1; \
2318 } \
2319 } while (0)
2320
2321 /* register physical memory. 'size' must be a multiple of the target
2322 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2323 io memory page. The address used when calling the IO function is
2324 the offset from the start of the region, plus region_offset. Both
2325 start_addr and region_offset are rounded down to a page boundary
2326 before calculating this offset. This should not be a problem unless
2327 the low bits of start_addr and region_offset differ. */
2328 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2329 ram_addr_t size,
2330 ram_addr_t phys_offset,
2331 ram_addr_t region_offset)
2332 {
2333 target_phys_addr_t addr, end_addr;
2334 PhysPageDesc *p;
2335 CPUState *env;
2336 ram_addr_t orig_size = size;
2337 void *subpage;
2338
2339 #ifdef CONFIG_KQEMU
2340 /* XXX: should not depend on cpu context */
2341 env = first_cpu;
2342 if (env->kqemu_enabled) {
2343 kqemu_set_phys_mem(start_addr, size, phys_offset);
2344 }
2345 #endif
2346 if (kvm_enabled())
2347 kvm_set_phys_mem(start_addr, size, phys_offset);
2348
2349 if (phys_offset == IO_MEM_UNASSIGNED) {
2350 region_offset = start_addr;
2351 }
2352 region_offset &= TARGET_PAGE_MASK;
2353 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2354 end_addr = start_addr + (target_phys_addr_t)size;
2355 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2356 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2357 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2358 ram_addr_t orig_memory = p->phys_offset;
2359 target_phys_addr_t start_addr2, end_addr2;
2360 int need_subpage = 0;
2361
2362 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2363 need_subpage);
2364 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2365 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2366 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2367 &p->phys_offset, orig_memory,
2368 p->region_offset);
2369 } else {
2370 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2371 >> IO_MEM_SHIFT];
2372 }
2373 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2374 region_offset);
2375 p->region_offset = 0;
2376 } else {
2377 p->phys_offset = phys_offset;
2378 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2379 (phys_offset & IO_MEM_ROMD))
2380 phys_offset += TARGET_PAGE_SIZE;
2381 }
2382 } else {
2383 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2384 p->phys_offset = phys_offset;
2385 p->region_offset = region_offset;
2386 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2387 (phys_offset & IO_MEM_ROMD)) {
2388 phys_offset += TARGET_PAGE_SIZE;
2389 } else {
2390 target_phys_addr_t start_addr2, end_addr2;
2391 int need_subpage = 0;
2392
2393 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2394 end_addr2, need_subpage);
2395
2396 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2397 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2398 &p->phys_offset, IO_MEM_UNASSIGNED,
2399 addr & TARGET_PAGE_MASK);
2400 subpage_register(subpage, start_addr2, end_addr2,
2401 phys_offset, region_offset);
2402 p->region_offset = 0;
2403 }
2404 }
2405 }
2406 region_offset += TARGET_PAGE_SIZE;
2407 }
2408
2409 /* since each CPU stores ram addresses in its TLB cache, we must
2410 reset the modified entries */
2411 /* XXX: slow ! */
2412 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2413 tlb_flush(env, 1);
2414 }
2415 }
2416
2417 /* XXX: temporary until new memory mapping API */
2418 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2419 {
2420 PhysPageDesc *p;
2421
2422 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2423 if (!p)
2424 return IO_MEM_UNASSIGNED;
2425 return p->phys_offset;
2426 }
2427
2428 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2429 {
2430 if (kvm_enabled())
2431 kvm_coalesce_mmio_region(addr, size);
2432 }
2433
2434 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2435 {
2436 if (kvm_enabled())
2437 kvm_uncoalesce_mmio_region(addr, size);
2438 }
2439
2440 #ifdef CONFIG_KQEMU
2441 /* XXX: better than nothing */
2442 static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
2443 {
2444 ram_addr_t addr;
2445 if ((last_ram_offset + size) > kqemu_phys_ram_size) {
2446 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2447 (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
2448 abort();
2449 }
2450 addr = last_ram_offset;
2451 last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
2452 return addr;
2453 }
2454 #endif
2455
2456 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2457 {
2458 RAMBlock *new_block;
2459
2460 #ifdef CONFIG_KQEMU
2461 if (kqemu_phys_ram_base) {
2462 return kqemu_ram_alloc(size);
2463 }
2464 #endif
2465
2466 size = TARGET_PAGE_ALIGN(size);
2467 new_block = qemu_malloc(sizeof(*new_block));
2468
2469 new_block->host = qemu_vmalloc(size);
2470 new_block->offset = last_ram_offset;
2471 new_block->length = size;
2472
2473 new_block->next = ram_blocks;
2474 ram_blocks = new_block;
2475
2476 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2477 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2478 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2479 0xff, size >> TARGET_PAGE_BITS);
2480
2481 last_ram_offset += size;
2482
2483 if (kvm_enabled())
2484 kvm_setup_guest_memory(new_block->host, size);
2485
2486 return new_block->offset;
2487 }
2488
2489 void qemu_ram_free(ram_addr_t addr)
2490 {
2491 /* TODO: implement this. */
2492 }
2493
2494 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2495 With the exception of the softmmu code in this file, this should
2496 only be used for local memory (e.g. video ram) that the device owns,
2497 and knows it isn't going to access beyond the end of the block.
2498
2499 It should not be used for general purpose DMA.
2500 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2501 */
2502 void *qemu_get_ram_ptr(ram_addr_t addr)
2503 {
2504 RAMBlock *prev;
2505 RAMBlock **prevp;
2506 RAMBlock *block;
2507
2508 #ifdef CONFIG_KQEMU
2509 if (kqemu_phys_ram_base) {
2510 return kqemu_phys_ram_base + addr;
2511 }
2512 #endif
2513
2514 prev = NULL;
2515 prevp = &ram_blocks;
2516 block = ram_blocks;
2517 while (block && (block->offset > addr
2518 || block->offset + block->length <= addr)) {
2519 if (prev)
2520 prevp = &prev->next;
2521 prev = block;
2522 block = block->next;
2523 }
2524 if (!block) {
2525 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2526 abort();
2527 }
2528 /* Move this entry to to start of the list. */
2529 if (prev) {
2530 prev->next = block->next;
2531 block->next = *prevp;
2532 *prevp = block;
2533 }
2534 return block->host + (addr - block->offset);
2535 }
2536
2537 /* Some of the softmmu routines need to translate from a host pointer
2538 (typically a TLB entry) back to a ram offset. */
2539 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2540 {
2541 RAMBlock *prev;
2542 RAMBlock **prevp;
2543 RAMBlock *block;
2544 uint8_t *host = ptr;
2545
2546 #ifdef CONFIG_KQEMU
2547 if (kqemu_phys_ram_base) {
2548 return host - kqemu_phys_ram_base;
2549 }
2550 #endif
2551
2552 prev = NULL;
2553 prevp = &ram_blocks;
2554 block = ram_blocks;
2555 while (block && (block->host > host
2556 || block->host + block->length <= host)) {
2557 if (prev)
2558 prevp = &prev->next;
2559 prev = block;
2560 block = block->next;
2561 }
2562 if (!block) {
2563 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2564 abort();
2565 }
2566 return block->offset + (host - block->host);
2567 }
2568
2569 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2570 {
2571 #ifdef DEBUG_UNASSIGNED
2572 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2573 #endif
2574 #if defined(TARGET_SPARC)
2575 do_unassigned_access(addr, 0, 0, 0, 1);
2576 #endif
2577 return 0;
2578 }
2579
2580 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2581 {
2582 #ifdef DEBUG_UNASSIGNED
2583 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2584 #endif
2585 #if defined(TARGET_SPARC)
2586 do_unassigned_access(addr, 0, 0, 0, 2);
2587 #endif
2588 return 0;
2589 }
2590
2591 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2592 {
2593 #ifdef DEBUG_UNASSIGNED
2594 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2595 #endif
2596 #if defined(TARGET_SPARC)
2597 do_unassigned_access(addr, 0, 0, 0, 4);
2598 #endif
2599 return 0;
2600 }
2601
2602 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2603 {
2604 #ifdef DEBUG_UNASSIGNED
2605 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2606 #endif
2607 #if defined(TARGET_SPARC)
2608 do_unassigned_access(addr, 1, 0, 0, 1);
2609 #endif
2610 }
2611
2612 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2613 {
2614 #ifdef DEBUG_UNASSIGNED
2615 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2616 #endif
2617 #if defined(TARGET_SPARC)
2618 do_unassigned_access(addr, 1, 0, 0, 2);
2619 #endif
2620 }
2621
2622 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2623 {
2624 #ifdef DEBUG_UNASSIGNED
2625 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2626 #endif
2627 #if defined(TARGET_SPARC)
2628 do_unassigned_access(addr, 1, 0, 0, 4);
2629 #endif
2630 }
2631
2632 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2633 unassigned_mem_readb,
2634 unassigned_mem_readw,
2635 unassigned_mem_readl,
2636 };
2637
2638 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2639 unassigned_mem_writeb,
2640 unassigned_mem_writew,
2641 unassigned_mem_writel,
2642 };
2643
2644 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2645 uint32_t val)
2646 {
2647 int dirty_flags;
2648 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2649 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2650 #if !defined(CONFIG_USER_ONLY)
2651 tb_invalidate_phys_page_fast(ram_addr, 1);
2652 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2653 #endif
2654 }
2655 stb_p(qemu_get_ram_ptr(ram_addr), val);
2656 #ifdef CONFIG_KQEMU
2657 if (cpu_single_env->kqemu_enabled &&
2658 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2659 kqemu_modify_page(cpu_single_env, ram_addr);
2660 #endif
2661 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2662 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2663 /* we remove the notdirty callback only if the code has been
2664 flushed */
2665 if (dirty_flags == 0xff)
2666 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2667 }
2668
2669 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2670 uint32_t val)
2671 {
2672 int dirty_flags;
2673 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2674 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2675 #if !defined(CONFIG_USER_ONLY)
2676 tb_invalidate_phys_page_fast(ram_addr, 2);
2677 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2678 #endif
2679 }
2680 stw_p(qemu_get_ram_ptr(ram_addr), val);
2681 #ifdef CONFIG_KQEMU
2682 if (cpu_single_env->kqemu_enabled &&
2683 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2684 kqemu_modify_page(cpu_single_env, ram_addr);
2685 #endif
2686 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2687 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2688 /* we remove the notdirty callback only if the code has been
2689 flushed */
2690 if (dirty_flags == 0xff)
2691 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2692 }
2693
2694 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2695 uint32_t val)
2696 {
2697 int dirty_flags;
2698 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2699 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2700 #if !defined(CONFIG_USER_ONLY)
2701 tb_invalidate_phys_page_fast(ram_addr, 4);
2702 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2703 #endif
2704 }
2705 stl_p(qemu_get_ram_ptr(ram_addr), val);
2706 #ifdef CONFIG_KQEMU
2707 if (cpu_single_env->kqemu_enabled &&
2708 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2709 kqemu_modify_page(cpu_single_env, ram_addr);
2710 #endif
2711 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2712 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2713 /* we remove the notdirty callback only if the code has been
2714 flushed */
2715 if (dirty_flags == 0xff)
2716 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2717 }
2718
2719 static CPUReadMemoryFunc *error_mem_read[3] = {
2720 NULL, /* never used */
2721 NULL, /* never used */
2722 NULL, /* never used */
2723 };
2724
2725 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2726 notdirty_mem_writeb,
2727 notdirty_mem_writew,
2728 notdirty_mem_writel,
2729 };
2730
2731 /* Generate a debug exception if a watchpoint has been hit. */
2732 static void check_watchpoint(int offset, int len_mask, int flags)
2733 {
2734 CPUState *env = cpu_single_env;
2735 target_ulong pc, cs_base;
2736 TranslationBlock *tb;
2737 target_ulong vaddr;
2738 CPUWatchpoint *wp;
2739 int cpu_flags;
2740
2741 if (env->watchpoint_hit) {
2742 /* We re-entered the check after replacing the TB. Now raise
2743 * the debug interrupt so that is will trigger after the
2744 * current instruction. */
2745 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2746 return;
2747 }
2748 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2749 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2750 if ((vaddr == (wp->vaddr & len_mask) ||
2751 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2752 wp->flags |= BP_WATCHPOINT_HIT;
2753 if (!env->watchpoint_hit) {
2754 env->watchpoint_hit = wp;
2755 tb = tb_find_pc(env->mem_io_pc);
2756 if (!tb) {
2757 cpu_abort(env, "check_watchpoint: could not find TB for "
2758 "pc=%p", (void *)env->mem_io_pc);
2759 }
2760 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2761 tb_phys_invalidate(tb, -1);
2762 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2763 env->exception_index = EXCP_DEBUG;
2764 } else {
2765 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2766 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2767 }
2768 cpu_resume_from_signal(env, NULL);
2769 }
2770 } else {
2771 wp->flags &= ~BP_WATCHPOINT_HIT;
2772 }
2773 }
2774 }
2775
2776 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2777 so these check for a hit then pass through to the normal out-of-line
2778 phys routines. */
2779 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2780 {
2781 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2782 return ldub_phys(addr);
2783 }
2784
2785 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2786 {
2787 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2788 return lduw_phys(addr);
2789 }
2790
2791 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2792 {
2793 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2794 return ldl_phys(addr);
2795 }
2796
2797 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2798 uint32_t val)
2799 {
2800 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2801 stb_phys(addr, val);
2802 }
2803
2804 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2805 uint32_t val)
2806 {
2807 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2808 stw_phys(addr, val);
2809 }
2810
2811 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2812 uint32_t val)
2813 {
2814 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2815 stl_phys(addr, val);
2816 }
2817
2818 static CPUReadMemoryFunc *watch_mem_read[3] = {
2819 watch_mem_readb,
2820 watch_mem_readw,
2821 watch_mem_readl,
2822 };
2823
2824 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2825 watch_mem_writeb,
2826 watch_mem_writew,
2827 watch_mem_writel,
2828 };
2829
2830 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2831 unsigned int len)
2832 {
2833 uint32_t ret;
2834 unsigned int idx;
2835
2836 idx = SUBPAGE_IDX(addr);
2837 #if defined(DEBUG_SUBPAGE)
2838 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2839 mmio, len, addr, idx);
2840 #endif
2841 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2842 addr + mmio->region_offset[idx][0][len]);
2843
2844 return ret;
2845 }
2846
2847 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2848 uint32_t value, unsigned int len)
2849 {
2850 unsigned int idx;
2851
2852 idx = SUBPAGE_IDX(addr);
2853 #if defined(DEBUG_SUBPAGE)
2854 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2855 mmio, len, addr, idx, value);
2856 #endif
2857 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2858 addr + mmio->region_offset[idx][1][len],
2859 value);
2860 }
2861
2862 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2863 {
2864 #if defined(DEBUG_SUBPAGE)
2865 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2866 #endif
2867
2868 return subpage_readlen(opaque, addr, 0);
2869 }
2870
2871 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2872 uint32_t value)
2873 {
2874 #if defined(DEBUG_SUBPAGE)
2875 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2876 #endif
2877 subpage_writelen(opaque, addr, value, 0);
2878 }
2879
2880 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2881 {
2882 #if defined(DEBUG_SUBPAGE)
2883 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2884 #endif
2885
2886 return subpage_readlen(opaque, addr, 1);
2887 }
2888
2889 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2890 uint32_t value)
2891 {
2892 #if defined(DEBUG_SUBPAGE)
2893 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2894 #endif
2895 subpage_writelen(opaque, addr, value, 1);
2896 }
2897
2898 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2899 {
2900 #if defined(DEBUG_SUBPAGE)
2901 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2902 #endif
2903
2904 return subpage_readlen(opaque, addr, 2);
2905 }
2906
2907 static void subpage_writel (void *opaque,
2908 target_phys_addr_t addr, uint32_t value)
2909 {
2910 #if defined(DEBUG_SUBPAGE)
2911 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2912 #endif
2913 subpage_writelen(opaque, addr, value, 2);
2914 }
2915
2916 static CPUReadMemoryFunc *subpage_read[] = {
2917 &subpage_readb,
2918 &subpage_readw,
2919 &subpage_readl,
2920 };
2921
2922 static CPUWriteMemoryFunc *subpage_write[] = {
2923 &subpage_writeb,
2924 &subpage_writew,
2925 &subpage_writel,
2926 };
2927
2928 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2929 ram_addr_t memory, ram_addr_t region_offset)
2930 {
2931 int idx, eidx;
2932 unsigned int i;
2933
2934 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2935 return -1;
2936 idx = SUBPAGE_IDX(start);
2937 eidx = SUBPAGE_IDX(end);
2938 #if defined(DEBUG_SUBPAGE)
2939 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2940 mmio, start, end, idx, eidx, memory);
2941 #endif
2942 memory >>= IO_MEM_SHIFT;
2943 for (; idx <= eidx; idx++) {
2944 for (i = 0; i < 4; i++) {
2945 if (io_mem_read[memory][i]) {
2946 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2947 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2948 mmio->region_offset[idx][0][i] = region_offset;
2949 }
2950 if (io_mem_write[memory][i]) {
2951 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2952 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2953 mmio->region_offset[idx][1][i] = region_offset;
2954 }
2955 }
2956 }
2957
2958 return 0;
2959 }
2960
2961 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2962 ram_addr_t orig_memory, ram_addr_t region_offset)
2963 {
2964 subpage_t *mmio;
2965 int subpage_memory;
2966
2967 mmio = qemu_mallocz(sizeof(subpage_t));
2968
2969 mmio->base = base;
2970 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2971 #if defined(DEBUG_SUBPAGE)
2972 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2973 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2974 #endif
2975 *phys = subpage_memory | IO_MEM_SUBPAGE;
2976 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2977 region_offset);
2978
2979 return mmio;
2980 }
2981
2982 static int get_free_io_mem_idx(void)
2983 {
2984 int i;
2985
2986 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2987 if (!io_mem_used[i]) {
2988 io_mem_used[i] = 1;
2989 return i;
2990 }
2991
2992 return -1;
2993 }
2994
2995 /* mem_read and mem_write are arrays of functions containing the
2996 function to access byte (index 0), word (index 1) and dword (index
2997 2). Functions can be omitted with a NULL function pointer.
2998 If io_index is non zero, the corresponding io zone is
2999 modified. If it is zero, a new io zone is allocated. The return
3000 value can be used with cpu_register_physical_memory(). (-1) is
3001 returned if error. */
3002 static int cpu_register_io_memory_fixed(int io_index,
3003 CPUReadMemoryFunc **mem_read,
3004 CPUWriteMemoryFunc **mem_write,
3005 void *opaque)
3006 {
3007 int i, subwidth = 0;
3008
3009 if (io_index <= 0) {
3010 io_index = get_free_io_mem_idx();
3011 if (io_index == -1)
3012 return io_index;
3013 } else {
3014 io_index >>= IO_MEM_SHIFT;
3015 if (io_index >= IO_MEM_NB_ENTRIES)
3016 return -1;
3017 }
3018
3019 for(i = 0;i < 3; i++) {
3020 if (!mem_read[i] || !mem_write[i])
3021 subwidth = IO_MEM_SUBWIDTH;
3022 io_mem_read[io_index][i] = mem_read[i];
3023 io_mem_write[io_index][i] = mem_write[i];
3024 }
3025 io_mem_opaque[io_index] = opaque;
3026 return (io_index << IO_MEM_SHIFT) | subwidth;
3027 }
3028
3029 int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
3030 CPUWriteMemoryFunc **mem_write,
3031 void *opaque)
3032 {
3033 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3034 }
3035
3036 void cpu_unregister_io_memory(int io_table_address)
3037 {
3038 int i;
3039 int io_index = io_table_address >> IO_MEM_SHIFT;
3040
3041 for (i=0;i < 3; i++) {
3042 io_mem_read[io_index][i] = unassigned_mem_read[i];
3043 io_mem_write[io_index][i] = unassigned_mem_write[i];
3044 }
3045 io_mem_opaque[io_index] = NULL;
3046 io_mem_used[io_index] = 0;
3047 }
3048
3049 static void io_mem_init(void)
3050 {
3051 int i;
3052
3053 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3054 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3055 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3056 for (i=0; i<5; i++)
3057 io_mem_used[i] = 1;
3058
3059 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3060 watch_mem_write, NULL);
3061 #ifdef CONFIG_KQEMU
3062 if (kqemu_phys_ram_base) {
3063 /* alloc dirty bits array */
3064 phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3065 memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
3066 }
3067 #endif
3068 }
3069
3070 #endif /* !defined(CONFIG_USER_ONLY) */
3071
3072 /* physical memory access (slow version, mainly for debug) */
3073 #if defined(CONFIG_USER_ONLY)
3074 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3075 int len, int is_write)
3076 {
3077 int l, flags;
3078 target_ulong page;
3079 void * p;
3080
3081 while (len > 0) {
3082 page = addr & TARGET_PAGE_MASK;
3083 l = (page + TARGET_PAGE_SIZE) - addr;
3084 if (l > len)
3085 l = len;
3086 flags = page_get_flags(page);
3087 if (!(flags & PAGE_VALID))
3088 return;
3089 if (is_write) {
3090 if (!(flags & PAGE_WRITE))
3091 return;
3092 /* XXX: this code should not depend on lock_user */
3093 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3094 /* FIXME - should this return an error rather than just fail? */
3095 return;
3096 memcpy(p, buf, l);
3097 unlock_user(p, addr, l);
3098 } else {
3099 if (!(flags & PAGE_READ))
3100 return;
3101 /* XXX: this code should not depend on lock_user */
3102 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3103 /* FIXME - should this return an error rather than just fail? */
3104 return;
3105 memcpy(buf, p, l);
3106 unlock_user(p, addr, 0);
3107 }
3108 len -= l;
3109 buf += l;
3110 addr += l;
3111 }
3112 }
3113
3114 #else
3115 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3116 int len, int is_write)
3117 {
3118 int l, io_index;
3119 uint8_t *ptr;
3120 uint32_t val;
3121 target_phys_addr_t page;
3122 unsigned long pd;
3123 PhysPageDesc *p;
3124
3125 while (len > 0) {
3126 page = addr & TARGET_PAGE_MASK;
3127 l = (page + TARGET_PAGE_SIZE) - addr;
3128 if (l > len)
3129 l = len;
3130 p = phys_page_find(page >> TARGET_PAGE_BITS);
3131 if (!p) {
3132 pd = IO_MEM_UNASSIGNED;
3133 } else {
3134 pd = p->phys_offset;
3135 }
3136
3137 if (is_write) {
3138 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3139 target_phys_addr_t addr1 = addr;
3140 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3141 if (p)
3142 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3143 /* XXX: could force cpu_single_env to NULL to avoid
3144 potential bugs */
3145 if (l >= 4 && ((addr1 & 3) == 0)) {
3146 /* 32 bit write access */
3147 val = ldl_p(buf);
3148 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3149 l = 4;
3150 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3151 /* 16 bit write access */
3152 val = lduw_p(buf);
3153 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3154 l = 2;
3155 } else {
3156 /* 8 bit write access */
3157 val = ldub_p(buf);
3158 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3159 l = 1;
3160 }
3161 } else {
3162 unsigned long addr1;
3163 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3164 /* RAM case */
3165 ptr = qemu_get_ram_ptr(addr1);
3166 memcpy(ptr, buf, l);
3167 if (!cpu_physical_memory_is_dirty(addr1)) {
3168 /* invalidate code */
3169 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3170 /* set dirty bit */
3171 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3172 (0xff & ~CODE_DIRTY_FLAG);
3173 }
3174 }
3175 } else {
3176 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3177 !(pd & IO_MEM_ROMD)) {
3178 target_phys_addr_t addr1 = addr;
3179 /* I/O case */
3180 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3181 if (p)
3182 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3183 if (l >= 4 && ((addr1 & 3) == 0)) {
3184 /* 32 bit read access */
3185 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3186 stl_p(buf, val);
3187 l = 4;
3188 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3189 /* 16 bit read access */
3190 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3191 stw_p(buf, val);
3192 l = 2;
3193 } else {
3194 /* 8 bit read access */
3195 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3196 stb_p(buf, val);
3197 l = 1;
3198 }
3199 } else {
3200 /* RAM case */
3201 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3202 (addr & ~TARGET_PAGE_MASK);
3203 memcpy(buf, ptr, l);
3204 }
3205 }
3206 len -= l;
3207 buf += l;
3208 addr += l;
3209 }
3210 }
3211
3212 /* used for ROM loading : can write in RAM and ROM */
3213 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3214 const uint8_t *buf, int len)
3215 {
3216 int l;
3217 uint8_t *ptr;
3218 target_phys_addr_t page;
3219 unsigned long pd;
3220 PhysPageDesc *p;
3221
3222 while (len > 0) {
3223 page = addr & TARGET_PAGE_MASK;
3224 l = (page + TARGET_PAGE_SIZE) - addr;
3225 if (l > len)
3226 l = len;
3227 p = phys_page_find(page >> TARGET_PAGE_BITS);
3228 if (!p) {
3229 pd = IO_MEM_UNASSIGNED;
3230 } else {
3231 pd = p->phys_offset;
3232 }
3233
3234 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3235 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3236 !(pd & IO_MEM_ROMD)) {
3237 /* do nothing */
3238 } else {
3239 unsigned long addr1;
3240 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3241 /* ROM/RAM case */
3242 ptr = qemu_get_ram_ptr(addr1);
3243 memcpy(ptr, buf, l);
3244 }
3245 len -= l;
3246 buf += l;
3247 addr += l;
3248 }
3249 }
3250
3251 typedef struct {
3252 void *buffer;
3253 target_phys_addr_t addr;
3254 target_phys_addr_t len;
3255 } BounceBuffer;
3256
3257 static BounceBuffer bounce;
3258
3259 typedef struct MapClient {
3260 void *opaque;
3261 void (*callback)(void *opaque);
3262 LIST_ENTRY(MapClient) link;
3263 } MapClient;
3264
3265 static LIST_HEAD(map_client_list, MapClient) map_client_list
3266 = LIST_HEAD_INITIALIZER(map_client_list);
3267
3268 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3269 {
3270 MapClient *client = qemu_malloc(sizeof(*client));
3271
3272 client->opaque = opaque;
3273 client->callback = callback;
3274 LIST_INSERT_HEAD(&map_client_list, client, link);
3275 return client;
3276 }
3277
3278 void cpu_unregister_map_client(void *_client)
3279 {
3280 MapClient *client = (MapClient *)_client;
3281
3282 LIST_REMOVE(client, link);
3283 qemu_free(client);
3284 }
3285
3286 static void cpu_notify_map_clients(void)
3287 {
3288 MapClient *client;
3289
3290 while (!LIST_EMPTY(&map_client_list)) {
3291 client = LIST_FIRST(&map_client_list);
3292 client->callback(client->opaque);
3293 cpu_unregister_map_client(client);
3294 }
3295 }
3296
3297 /* Map a physical memory region into a host virtual address.
3298 * May map a subset of the requested range, given by and returned in *plen.
3299 * May return NULL if resources needed to perform the mapping are exhausted.
3300 * Use only for reads OR writes - not for read-modify-write operations.
3301 * Use cpu_register_map_client() to know when retrying the map operation is
3302 * likely to succeed.
3303 */
3304 void *cpu_physical_memory_map(target_phys_addr_t addr,
3305 target_phys_addr_t *plen,
3306 int is_write)
3307 {
3308 target_phys_addr_t len = *plen;
3309 target_phys_addr_t done = 0;
3310 int l;
3311 uint8_t *ret = NULL;
3312 uint8_t *ptr;
3313 target_phys_addr_t page;
3314 unsigned long pd;
3315 PhysPageDesc *p;
3316 unsigned long addr1;
3317
3318 while (len > 0) {
3319 page = addr & TARGET_PAGE_MASK;
3320 l = (page + TARGET_PAGE_SIZE) - addr;
3321 if (l > len)
3322 l = len;
3323 p = phys_page_find(page >> TARGET_PAGE_BITS);
3324 if (!p) {
3325 pd = IO_MEM_UNASSIGNED;
3326 } else {
3327 pd = p->phys_offset;
3328 }
3329
3330 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3331 if (done || bounce.buffer) {
3332 break;
3333 }
3334 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3335 bounce.addr = addr;
3336 bounce.len = l;
3337 if (!is_write) {
3338 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3339 }
3340 ptr = bounce.buffer;
3341 } else {
3342 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3343 ptr = qemu_get_ram_ptr(addr1);
3344 }
3345 if (!done) {
3346 ret = ptr;
3347 } else if (ret + done != ptr) {
3348 break;
3349 }
3350
3351 len -= l;
3352 addr += l;
3353 done += l;
3354 }
3355 *plen = done;
3356 return ret;
3357 }
3358
3359 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3360 * Will also mark the memory as dirty if is_write == 1. access_len gives
3361 * the amount of memory that was actually read or written by the caller.
3362 */
3363 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3364 int is_write, target_phys_addr_t access_len)
3365 {
3366 if (buffer != bounce.buffer) {
3367 if (is_write) {
3368 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3369 while (access_len) {
3370 unsigned l;
3371 l = TARGET_PAGE_SIZE;
3372 if (l > access_len)
3373 l = access_len;
3374 if (!cpu_physical_memory_is_dirty(addr1)) {
3375 /* invalidate code */
3376 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3377 /* set dirty bit */
3378 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3379 (0xff & ~CODE_DIRTY_FLAG);
3380 }
3381 addr1 += l;
3382 access_len -= l;
3383 }
3384 }
3385 return;
3386 }
3387 if (is_write) {
3388 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3389 }
3390 qemu_free(bounce.buffer);
3391 bounce.buffer = NULL;
3392 cpu_notify_map_clients();
3393 }
3394
3395 /* warning: addr must be aligned */
3396 uint32_t ldl_phys(target_phys_addr_t addr)
3397 {
3398 int io_index;
3399 uint8_t *ptr;
3400 uint32_t val;
3401 unsigned long pd;
3402 PhysPageDesc *p;
3403
3404 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3405 if (!p) {
3406 pd = IO_MEM_UNASSIGNED;
3407 } else {
3408 pd = p->phys_offset;
3409 }
3410
3411 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3412 !(pd & IO_MEM_ROMD)) {
3413 /* I/O case */
3414 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3415 if (p)
3416 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3417 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3418 } else {
3419 /* RAM case */
3420 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3421 (addr & ~TARGET_PAGE_MASK);
3422 val = ldl_p(ptr);
3423 }
3424 return val;
3425 }
3426
3427 /* warning: addr must be aligned */
3428 uint64_t ldq_phys(target_phys_addr_t addr)
3429 {
3430 int io_index;
3431 uint8_t *ptr;
3432 uint64_t val;
3433 unsigned long pd;
3434 PhysPageDesc *p;
3435
3436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3437 if (!p) {
3438 pd = IO_MEM_UNASSIGNED;
3439 } else {
3440 pd = p->phys_offset;
3441 }
3442
3443 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3444 !(pd & IO_MEM_ROMD)) {
3445 /* I/O case */
3446 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3447 if (p)
3448 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3449 #ifdef TARGET_WORDS_BIGENDIAN
3450 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3451 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3452 #else
3453 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3454 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3455 #endif
3456 } else {
3457 /* RAM case */
3458 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3459 (addr & ~TARGET_PAGE_MASK);
3460 val = ldq_p(ptr);
3461 }
3462 return val;
3463 }
3464
3465 /* XXX: optimize */
3466 uint32_t ldub_phys(target_phys_addr_t addr)
3467 {
3468 uint8_t val;
3469 cpu_physical_memory_read(addr, &val, 1);
3470 return val;
3471 }
3472
3473 /* XXX: optimize */
3474 uint32_t lduw_phys(target_phys_addr_t addr)
3475 {
3476 uint16_t val;
3477 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3478 return tswap16(val);
3479 }
3480
3481 /* warning: addr must be aligned. The ram page is not masked as dirty
3482 and the code inside is not invalidated. It is useful if the dirty
3483 bits are used to track modified PTEs */
3484 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3485 {
3486 int io_index;
3487 uint8_t *ptr;
3488 unsigned long pd;
3489 PhysPageDesc *p;
3490
3491 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3492 if (!p) {
3493 pd = IO_MEM_UNASSIGNED;
3494 } else {
3495 pd = p->phys_offset;
3496 }
3497
3498 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3499 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3500 if (p)
3501 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3502 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3503 } else {
3504 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3505 ptr = qemu_get_ram_ptr(addr1);
3506 stl_p(ptr, val);
3507
3508 if (unlikely(in_migration)) {
3509 if (!cpu_physical_memory_is_dirty(addr1)) {
3510 /* invalidate code */
3511 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3512 /* set dirty bit */
3513 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3514 (0xff & ~CODE_DIRTY_FLAG);
3515 }
3516 }
3517 }
3518 }
3519
3520 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3521 {
3522 int io_index;
3523 uint8_t *ptr;
3524 unsigned long pd;
3525 PhysPageDesc *p;
3526
3527 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3528 if (!p) {
3529 pd = IO_MEM_UNASSIGNED;
3530 } else {
3531 pd = p->phys_offset;
3532 }
3533
3534 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3535 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3536 if (p)
3537 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3538 #ifdef TARGET_WORDS_BIGENDIAN
3539 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3540 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3541 #else
3542 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3543 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3544 #endif
3545 } else {
3546 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3547 (addr & ~TARGET_PAGE_MASK);
3548 stq_p(ptr, val);
3549 }
3550 }
3551
3552 /* warning: addr must be aligned */
3553 void stl_phys(target_phys_addr_t addr, uint32_t val)
3554 {
3555 int io_index;
3556 uint8_t *ptr;
3557 unsigned long pd;
3558 PhysPageDesc *p;
3559
3560 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3561 if (!p) {
3562 pd = IO_MEM_UNASSIGNED;
3563 } else {
3564 pd = p->phys_offset;
3565 }
3566
3567 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3568 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3569 if (p)
3570 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3571 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3572 } else {
3573 unsigned long addr1;
3574 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3575 /* RAM case */
3576 ptr = qemu_get_ram_ptr(addr1);
3577 stl_p(ptr, val);
3578 if (!cpu_physical_memory_is_dirty(addr1)) {
3579 /* invalidate code */
3580 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3581 /* set dirty bit */
3582 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3583 (0xff & ~CODE_DIRTY_FLAG);
3584 }
3585 }
3586 }
3587
3588 /* XXX: optimize */
3589 void stb_phys(target_phys_addr_t addr, uint32_t val)
3590 {
3591 uint8_t v = val;
3592 cpu_physical_memory_write(addr, &v, 1);
3593 }
3594
3595 /* XXX: optimize */
3596 void stw_phys(target_phys_addr_t addr, uint32_t val)
3597 {
3598 uint16_t v = tswap16(val);
3599 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3600 }
3601
3602 /* XXX: optimize */
3603 void stq_phys(target_phys_addr_t addr, uint64_t val)
3604 {
3605 val = tswap64(val);
3606 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3607 }
3608
3609 #endif
3610
3611 /* virtual memory access for debug (includes writing to ROM) */
3612 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3613 uint8_t *buf, int len, int is_write)
3614 {
3615 int l;
3616 target_phys_addr_t phys_addr;
3617 target_ulong page;
3618
3619 while (len > 0) {
3620 page = addr & TARGET_PAGE_MASK;
3621 phys_addr = cpu_get_phys_page_debug(env, page);
3622 /* if no physical page mapped, return an error */
3623 if (phys_addr == -1)
3624 return -1;
3625 l = (page + TARGET_PAGE_SIZE) - addr;
3626 if (l > len)
3627 l = len;
3628 phys_addr += (addr & ~TARGET_PAGE_MASK);
3629 #if !defined(CONFIG_USER_ONLY)
3630 if (is_write)
3631 cpu_physical_memory_write_rom(phys_addr, buf, l);
3632 else
3633 #endif
3634 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3635 len -= l;
3636 buf += l;
3637 addr += l;
3638 }
3639 return 0;
3640 }
3641
3642 /* in deterministic execution mode, instructions doing device I/Os
3643 must be at the end of the TB */
3644 void cpu_io_recompile(CPUState *env, void *retaddr)
3645 {
3646 TranslationBlock *tb;
3647 uint32_t n, cflags;
3648 target_ulong pc, cs_base;
3649 uint64_t flags;
3650
3651 tb = tb_find_pc((unsigned long)retaddr);
3652 if (!tb) {
3653 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3654 retaddr);
3655 }
3656 n = env->icount_decr.u16.low + tb->icount;
3657 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3658 /* Calculate how many instructions had been executed before the fault
3659 occurred. */
3660 n = n - env->icount_decr.u16.low;
3661 /* Generate a new TB ending on the I/O insn. */
3662 n++;
3663 /* On MIPS and SH, delay slot instructions can only be restarted if
3664 they were already the first instruction in the TB. If this is not
3665 the first instruction in a TB then re-execute the preceding
3666 branch. */
3667 #if defined(TARGET_MIPS)
3668 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3669 env->active_tc.PC -= 4;
3670 env->icount_decr.u16.low++;
3671 env->hflags &= ~MIPS_HFLAG_BMASK;
3672 }
3673 #elif defined(TARGET_SH4)
3674 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3675 && n > 1) {
3676 env->pc -= 2;
3677 env->icount_decr.u16.low++;
3678 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3679 }
3680 #endif
3681 /* This should never happen. */
3682 if (n > CF_COUNT_MASK)
3683 cpu_abort(env, "TB too big during recompile");
3684
3685 cflags = n | CF_LAST_IO;
3686 pc = tb->pc;
3687 cs_base = tb->cs_base;
3688 flags = tb->flags;
3689 tb_phys_invalidate(tb, -1);
3690 /* FIXME: In theory this could raise an exception. In practice
3691 we have already translated the block once so it's probably ok. */
3692 tb_gen_code(env, pc, cs_base, flags, cflags);
3693 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3694 the first in the TB) then we end up generating a whole new TB and
3695 repeating the fault, which is horribly inefficient.
3696 Better would be to execute just this insn uncached, or generate a
3697 second new TB. */
3698 cpu_resume_from_signal(env, NULL);
3699 }
3700
3701 void dump_exec_info(FILE *f,
3702 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3703 {
3704 int i, target_code_size, max_target_code_size;
3705 int direct_jmp_count, direct_jmp2_count, cross_page;
3706 TranslationBlock *tb;
3707
3708 target_code_size = 0;
3709 max_target_code_size = 0;
3710 cross_page = 0;
3711 direct_jmp_count = 0;
3712 direct_jmp2_count = 0;
3713 for(i = 0; i < nb_tbs; i++) {
3714 tb = &tbs[i];
3715 target_code_size += tb->size;
3716 if (tb->size > max_target_code_size)
3717 max_target_code_size = tb->size;
3718 if (tb->page_addr[1] != -1)
3719 cross_page++;
3720 if (tb->tb_next_offset[0] != 0xffff) {
3721 direct_jmp_count++;
3722 if (tb->tb_next_offset[1] != 0xffff) {
3723 direct_jmp2_count++;
3724 }
3725 }
3726 }
3727 /* XXX: avoid using doubles ? */
3728 cpu_fprintf(f, "Translation buffer state:\n");
3729 cpu_fprintf(f, "gen code size %ld/%ld\n",
3730 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3731 cpu_fprintf(f, "TB count %d/%d\n",
3732 nb_tbs, code_gen_max_blocks);
3733 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3734 nb_tbs ? target_code_size / nb_tbs : 0,
3735 max_target_code_size);
3736 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3737 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3738 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3739 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3740 cross_page,
3741 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3742 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3743 direct_jmp_count,
3744 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3745 direct_jmp2_count,
3746 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3747 cpu_fprintf(f, "\nStatistics:\n");
3748 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3749 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3750 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3751 tcg_dump_info(f, cpu_fprintf);
3752 }
3753
3754 #if !defined(CONFIG_USER_ONLY)
3755
3756 #define MMUSUFFIX _cmmu
3757 #define GETPC() NULL
3758 #define env cpu_single_env
3759 #define SOFTMMU_CODE_ACCESS
3760
3761 #define SHIFT 0
3762 #include "softmmu_template.h"
3763
3764 #define SHIFT 1
3765 #include "softmmu_template.h"
3766
3767 #define SHIFT 2
3768 #include "softmmu_template.h"
3769
3770 #define SHIFT 3
3771 #include "softmmu_template.h"
3772
3773 #undef env
3774
3775 #endif