]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: introduce memory_access_size
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66 DMAContext dma_context_memory;
67
68 MemoryRegion io_mem_rom, io_mem_notdirty;
69 static MemoryRegion io_mem_unassigned, io_mem_subpage_ram;
70
71 #endif
72
73 CPUArchState *first_cpu;
74 /* current CPU in the current thread. It is only valid inside
75 cpu_exec() */
76 DEFINE_TLS(CPUArchState *,cpu_single_env);
77 /* 0 = Do not count executed instructions.
78 1 = Precise instruction counting.
79 2 = Adaptive rate instruction counting. */
80 int use_icount;
81
82 #if !defined(CONFIG_USER_ONLY)
83
84 static MemoryRegionSection *phys_sections;
85 static unsigned phys_sections_nb, phys_sections_nb_alloc;
86 static uint16_t phys_section_unassigned;
87 static uint16_t phys_section_notdirty;
88 static uint16_t phys_section_rom;
89 static uint16_t phys_section_watch;
90
91 /* Simple allocator for PhysPageEntry nodes */
92 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
93 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
94
95 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
96
97 static void io_mem_init(void);
98 static void memory_map_init(void);
99 static void *qemu_safe_ram_ptr(ram_addr_t addr);
100
101 static MemoryRegion io_mem_watch;
102 #endif
103
104 #if !defined(CONFIG_USER_ONLY)
105
106 static void phys_map_node_reserve(unsigned nodes)
107 {
108 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
109 typedef PhysPageEntry Node[L2_SIZE];
110 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
112 phys_map_nodes_nb + nodes);
113 phys_map_nodes = g_renew(Node, phys_map_nodes,
114 phys_map_nodes_nb_alloc);
115 }
116 }
117
118 static uint16_t phys_map_node_alloc(void)
119 {
120 unsigned i;
121 uint16_t ret;
122
123 ret = phys_map_nodes_nb++;
124 assert(ret != PHYS_MAP_NODE_NIL);
125 assert(ret != phys_map_nodes_nb_alloc);
126 for (i = 0; i < L2_SIZE; ++i) {
127 phys_map_nodes[ret][i].is_leaf = 0;
128 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
129 }
130 return ret;
131 }
132
133 static void phys_map_nodes_reset(void)
134 {
135 phys_map_nodes_nb = 0;
136 }
137
138
139 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
140 hwaddr *nb, uint16_t leaf,
141 int level)
142 {
143 PhysPageEntry *p;
144 int i;
145 hwaddr step = (hwaddr)1 << (level * L2_BITS);
146
147 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
148 lp->ptr = phys_map_node_alloc();
149 p = phys_map_nodes[lp->ptr];
150 if (level == 0) {
151 for (i = 0; i < L2_SIZE; i++) {
152 p[i].is_leaf = 1;
153 p[i].ptr = phys_section_unassigned;
154 }
155 }
156 } else {
157 p = phys_map_nodes[lp->ptr];
158 }
159 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
160
161 while (*nb && lp < &p[L2_SIZE]) {
162 if ((*index & (step - 1)) == 0 && *nb >= step) {
163 lp->is_leaf = true;
164 lp->ptr = leaf;
165 *index += step;
166 *nb -= step;
167 } else {
168 phys_page_set_level(lp, index, nb, leaf, level - 1);
169 }
170 ++lp;
171 }
172 }
173
174 static void phys_page_set(AddressSpaceDispatch *d,
175 hwaddr index, hwaddr nb,
176 uint16_t leaf)
177 {
178 /* Wildly overreserve - it doesn't matter much. */
179 phys_map_node_reserve(3 * P_L2_LEVELS);
180
181 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
182 }
183
184 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
185 {
186 PhysPageEntry lp = d->phys_map;
187 PhysPageEntry *p;
188 int i;
189
190 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
191 if (lp.ptr == PHYS_MAP_NODE_NIL) {
192 return &phys_sections[phys_section_unassigned];
193 }
194 p = phys_map_nodes[lp.ptr];
195 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
196 }
197 return &phys_sections[lp.ptr];
198 }
199
200 bool memory_region_is_unassigned(MemoryRegion *mr)
201 {
202 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
203 && mr != &io_mem_watch;
204 }
205
206 MemoryRegionSection *address_space_translate(AddressSpace *as, hwaddr addr,
207 hwaddr *xlat, hwaddr *plen,
208 bool is_write)
209 {
210 MemoryRegionSection *section;
211 Int128 diff;
212
213 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
214 /* Compute offset within MemoryRegionSection */
215 addr -= section->offset_within_address_space;
216
217 /* Compute offset within MemoryRegion */
218 *xlat = addr + section->offset_within_region;
219
220 diff = int128_sub(section->mr->size, int128_make64(addr));
221 *plen = MIN(int128_get64(diff), *plen);
222 return section;
223 }
224 #endif
225
226 void cpu_exec_init_all(void)
227 {
228 #if !defined(CONFIG_USER_ONLY)
229 qemu_mutex_init(&ram_list.mutex);
230 memory_map_init();
231 io_mem_init();
232 #endif
233 }
234
235 #if !defined(CONFIG_USER_ONLY)
236
237 static int cpu_common_post_load(void *opaque, int version_id)
238 {
239 CPUState *cpu = opaque;
240
241 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
242 version_id is increased. */
243 cpu->interrupt_request &= ~0x01;
244 tlb_flush(cpu->env_ptr, 1);
245
246 return 0;
247 }
248
249 static const VMStateDescription vmstate_cpu_common = {
250 .name = "cpu_common",
251 .version_id = 1,
252 .minimum_version_id = 1,
253 .minimum_version_id_old = 1,
254 .post_load = cpu_common_post_load,
255 .fields = (VMStateField []) {
256 VMSTATE_UINT32(halted, CPUState),
257 VMSTATE_UINT32(interrupt_request, CPUState),
258 VMSTATE_END_OF_LIST()
259 }
260 };
261 #else
262 #define vmstate_cpu_common vmstate_dummy
263 #endif
264
265 CPUState *qemu_get_cpu(int index)
266 {
267 CPUArchState *env = first_cpu;
268 CPUState *cpu = NULL;
269
270 while (env) {
271 cpu = ENV_GET_CPU(env);
272 if (cpu->cpu_index == index) {
273 break;
274 }
275 env = env->next_cpu;
276 }
277
278 return env ? cpu : NULL;
279 }
280
281 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
282 {
283 CPUArchState *env = first_cpu;
284
285 while (env) {
286 func(ENV_GET_CPU(env), data);
287 env = env->next_cpu;
288 }
289 }
290
291 void cpu_exec_init(CPUArchState *env)
292 {
293 CPUState *cpu = ENV_GET_CPU(env);
294 CPUClass *cc = CPU_GET_CLASS(cpu);
295 CPUArchState **penv;
296 int cpu_index;
297
298 #if defined(CONFIG_USER_ONLY)
299 cpu_list_lock();
300 #endif
301 env->next_cpu = NULL;
302 penv = &first_cpu;
303 cpu_index = 0;
304 while (*penv != NULL) {
305 penv = &(*penv)->next_cpu;
306 cpu_index++;
307 }
308 cpu->cpu_index = cpu_index;
309 cpu->numa_node = 0;
310 QTAILQ_INIT(&env->breakpoints);
311 QTAILQ_INIT(&env->watchpoints);
312 #ifndef CONFIG_USER_ONLY
313 cpu->thread_id = qemu_get_thread_id();
314 #endif
315 *penv = env;
316 #if defined(CONFIG_USER_ONLY)
317 cpu_list_unlock();
318 #endif
319 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
320 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
321 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
322 cpu_save, cpu_load, env);
323 assert(cc->vmsd == NULL);
324 #endif
325 if (cc->vmsd != NULL) {
326 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
327 }
328 }
329
330 #if defined(TARGET_HAS_ICE)
331 #if defined(CONFIG_USER_ONLY)
332 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
333 {
334 tb_invalidate_phys_page_range(pc, pc + 1, 0);
335 }
336 #else
337 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
338 {
339 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
340 (pc & ~TARGET_PAGE_MASK));
341 }
342 #endif
343 #endif /* TARGET_HAS_ICE */
344
345 #if defined(CONFIG_USER_ONLY)
346 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
347
348 {
349 }
350
351 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
352 int flags, CPUWatchpoint **watchpoint)
353 {
354 return -ENOSYS;
355 }
356 #else
357 /* Add a watchpoint. */
358 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
359 int flags, CPUWatchpoint **watchpoint)
360 {
361 target_ulong len_mask = ~(len - 1);
362 CPUWatchpoint *wp;
363
364 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
365 if ((len & (len - 1)) || (addr & ~len_mask) ||
366 len == 0 || len > TARGET_PAGE_SIZE) {
367 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
368 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
369 return -EINVAL;
370 }
371 wp = g_malloc(sizeof(*wp));
372
373 wp->vaddr = addr;
374 wp->len_mask = len_mask;
375 wp->flags = flags;
376
377 /* keep all GDB-injected watchpoints in front */
378 if (flags & BP_GDB)
379 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
380 else
381 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
382
383 tlb_flush_page(env, addr);
384
385 if (watchpoint)
386 *watchpoint = wp;
387 return 0;
388 }
389
390 /* Remove a specific watchpoint. */
391 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
392 int flags)
393 {
394 target_ulong len_mask = ~(len - 1);
395 CPUWatchpoint *wp;
396
397 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
398 if (addr == wp->vaddr && len_mask == wp->len_mask
399 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
400 cpu_watchpoint_remove_by_ref(env, wp);
401 return 0;
402 }
403 }
404 return -ENOENT;
405 }
406
407 /* Remove a specific watchpoint by reference. */
408 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
409 {
410 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
411
412 tlb_flush_page(env, watchpoint->vaddr);
413
414 g_free(watchpoint);
415 }
416
417 /* Remove all matching watchpoints. */
418 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
419 {
420 CPUWatchpoint *wp, *next;
421
422 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
423 if (wp->flags & mask)
424 cpu_watchpoint_remove_by_ref(env, wp);
425 }
426 }
427 #endif
428
429 /* Add a breakpoint. */
430 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
431 CPUBreakpoint **breakpoint)
432 {
433 #if defined(TARGET_HAS_ICE)
434 CPUBreakpoint *bp;
435
436 bp = g_malloc(sizeof(*bp));
437
438 bp->pc = pc;
439 bp->flags = flags;
440
441 /* keep all GDB-injected breakpoints in front */
442 if (flags & BP_GDB)
443 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
444 else
445 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
446
447 breakpoint_invalidate(env, pc);
448
449 if (breakpoint)
450 *breakpoint = bp;
451 return 0;
452 #else
453 return -ENOSYS;
454 #endif
455 }
456
457 /* Remove a specific breakpoint. */
458 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
459 {
460 #if defined(TARGET_HAS_ICE)
461 CPUBreakpoint *bp;
462
463 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
464 if (bp->pc == pc && bp->flags == flags) {
465 cpu_breakpoint_remove_by_ref(env, bp);
466 return 0;
467 }
468 }
469 return -ENOENT;
470 #else
471 return -ENOSYS;
472 #endif
473 }
474
475 /* Remove a specific breakpoint by reference. */
476 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
477 {
478 #if defined(TARGET_HAS_ICE)
479 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
480
481 breakpoint_invalidate(env, breakpoint->pc);
482
483 g_free(breakpoint);
484 #endif
485 }
486
487 /* Remove all matching breakpoints. */
488 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
489 {
490 #if defined(TARGET_HAS_ICE)
491 CPUBreakpoint *bp, *next;
492
493 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
494 if (bp->flags & mask)
495 cpu_breakpoint_remove_by_ref(env, bp);
496 }
497 #endif
498 }
499
500 /* enable or disable single step mode. EXCP_DEBUG is returned by the
501 CPU loop after each instruction */
502 void cpu_single_step(CPUArchState *env, int enabled)
503 {
504 #if defined(TARGET_HAS_ICE)
505 if (env->singlestep_enabled != enabled) {
506 env->singlestep_enabled = enabled;
507 if (kvm_enabled())
508 kvm_update_guest_debug(env, 0);
509 else {
510 /* must flush all the translated code to avoid inconsistencies */
511 /* XXX: only flush what is necessary */
512 tb_flush(env);
513 }
514 }
515 #endif
516 }
517
518 void cpu_exit(CPUArchState *env)
519 {
520 CPUState *cpu = ENV_GET_CPU(env);
521
522 cpu->exit_request = 1;
523 cpu->tcg_exit_req = 1;
524 }
525
526 void cpu_abort(CPUArchState *env, const char *fmt, ...)
527 {
528 va_list ap;
529 va_list ap2;
530
531 va_start(ap, fmt);
532 va_copy(ap2, ap);
533 fprintf(stderr, "qemu: fatal: ");
534 vfprintf(stderr, fmt, ap);
535 fprintf(stderr, "\n");
536 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
537 if (qemu_log_enabled()) {
538 qemu_log("qemu: fatal: ");
539 qemu_log_vprintf(fmt, ap2);
540 qemu_log("\n");
541 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
542 qemu_log_flush();
543 qemu_log_close();
544 }
545 va_end(ap2);
546 va_end(ap);
547 #if defined(CONFIG_USER_ONLY)
548 {
549 struct sigaction act;
550 sigfillset(&act.sa_mask);
551 act.sa_handler = SIG_DFL;
552 sigaction(SIGABRT, &act, NULL);
553 }
554 #endif
555 abort();
556 }
557
558 CPUArchState *cpu_copy(CPUArchState *env)
559 {
560 CPUArchState *new_env = cpu_init(env->cpu_model_str);
561 CPUArchState *next_cpu = new_env->next_cpu;
562 #if defined(TARGET_HAS_ICE)
563 CPUBreakpoint *bp;
564 CPUWatchpoint *wp;
565 #endif
566
567 memcpy(new_env, env, sizeof(CPUArchState));
568
569 /* Preserve chaining. */
570 new_env->next_cpu = next_cpu;
571
572 /* Clone all break/watchpoints.
573 Note: Once we support ptrace with hw-debug register access, make sure
574 BP_CPU break/watchpoints are handled correctly on clone. */
575 QTAILQ_INIT(&env->breakpoints);
576 QTAILQ_INIT(&env->watchpoints);
577 #if defined(TARGET_HAS_ICE)
578 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
579 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
580 }
581 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
582 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
583 wp->flags, NULL);
584 }
585 #endif
586
587 return new_env;
588 }
589
590 #if !defined(CONFIG_USER_ONLY)
591 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
592 uintptr_t length)
593 {
594 uintptr_t start1;
595
596 /* we modify the TLB cache so that the dirty bit will be set again
597 when accessing the range */
598 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
599 /* Check that we don't span multiple blocks - this breaks the
600 address comparisons below. */
601 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
602 != (end - 1) - start) {
603 abort();
604 }
605 cpu_tlb_reset_dirty_all(start1, length);
606
607 }
608
609 /* Note: start and end must be within the same ram block. */
610 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
611 int dirty_flags)
612 {
613 uintptr_t length;
614
615 start &= TARGET_PAGE_MASK;
616 end = TARGET_PAGE_ALIGN(end);
617
618 length = end - start;
619 if (length == 0)
620 return;
621 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
622
623 if (tcg_enabled()) {
624 tlb_reset_dirty_range_all(start, end, length);
625 }
626 }
627
628 static int cpu_physical_memory_set_dirty_tracking(int enable)
629 {
630 int ret = 0;
631 in_migration = enable;
632 return ret;
633 }
634
635 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
636 MemoryRegionSection *section,
637 target_ulong vaddr,
638 hwaddr paddr, hwaddr xlat,
639 int prot,
640 target_ulong *address)
641 {
642 hwaddr iotlb;
643 CPUWatchpoint *wp;
644
645 if (memory_region_is_ram(section->mr)) {
646 /* Normal RAM. */
647 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
648 + xlat;
649 if (!section->readonly) {
650 iotlb |= phys_section_notdirty;
651 } else {
652 iotlb |= phys_section_rom;
653 }
654 } else {
655 iotlb = section - phys_sections;
656 iotlb += xlat;
657 }
658
659 /* Make accesses to pages with watchpoints go via the
660 watchpoint trap routines. */
661 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
662 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
663 /* Avoid trapping reads of pages with a write breakpoint. */
664 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
665 iotlb = phys_section_watch + paddr;
666 *address |= TLB_MMIO;
667 break;
668 }
669 }
670 }
671
672 return iotlb;
673 }
674 #endif /* defined(CONFIG_USER_ONLY) */
675
676 #if !defined(CONFIG_USER_ONLY)
677
678 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
679 typedef struct subpage_t {
680 MemoryRegion iomem;
681 hwaddr base;
682 uint16_t sub_section[TARGET_PAGE_SIZE];
683 } subpage_t;
684
685 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
686 uint16_t section);
687 static subpage_t *subpage_init(hwaddr base);
688 static void destroy_page_desc(uint16_t section_index)
689 {
690 MemoryRegionSection *section = &phys_sections[section_index];
691 MemoryRegion *mr = section->mr;
692
693 if (mr->subpage) {
694 subpage_t *subpage = container_of(mr, subpage_t, iomem);
695 memory_region_destroy(&subpage->iomem);
696 g_free(subpage);
697 }
698 }
699
700 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
701 {
702 unsigned i;
703 PhysPageEntry *p;
704
705 if (lp->ptr == PHYS_MAP_NODE_NIL) {
706 return;
707 }
708
709 p = phys_map_nodes[lp->ptr];
710 for (i = 0; i < L2_SIZE; ++i) {
711 if (!p[i].is_leaf) {
712 destroy_l2_mapping(&p[i], level - 1);
713 } else {
714 destroy_page_desc(p[i].ptr);
715 }
716 }
717 lp->is_leaf = 0;
718 lp->ptr = PHYS_MAP_NODE_NIL;
719 }
720
721 static void destroy_all_mappings(AddressSpaceDispatch *d)
722 {
723 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
724 phys_map_nodes_reset();
725 }
726
727 static uint16_t phys_section_add(MemoryRegionSection *section)
728 {
729 /* The physical section number is ORed with a page-aligned
730 * pointer to produce the iotlb entries. Thus it should
731 * never overflow into the page-aligned value.
732 */
733 assert(phys_sections_nb < TARGET_PAGE_SIZE);
734
735 if (phys_sections_nb == phys_sections_nb_alloc) {
736 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
737 phys_sections = g_renew(MemoryRegionSection, phys_sections,
738 phys_sections_nb_alloc);
739 }
740 phys_sections[phys_sections_nb] = *section;
741 return phys_sections_nb++;
742 }
743
744 static void phys_sections_clear(void)
745 {
746 phys_sections_nb = 0;
747 }
748
749 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
750 {
751 subpage_t *subpage;
752 hwaddr base = section->offset_within_address_space
753 & TARGET_PAGE_MASK;
754 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
755 MemoryRegionSection subsection = {
756 .offset_within_address_space = base,
757 .size = TARGET_PAGE_SIZE,
758 };
759 hwaddr start, end;
760
761 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
762
763 if (!(existing->mr->subpage)) {
764 subpage = subpage_init(base);
765 subsection.mr = &subpage->iomem;
766 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
767 phys_section_add(&subsection));
768 } else {
769 subpage = container_of(existing->mr, subpage_t, iomem);
770 }
771 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
772 end = start + section->size - 1;
773 subpage_register(subpage, start, end, phys_section_add(section));
774 }
775
776
777 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
778 {
779 hwaddr start_addr = section->offset_within_address_space;
780 ram_addr_t size = section->size;
781 hwaddr addr;
782 uint16_t section_index = phys_section_add(section);
783
784 assert(size);
785
786 addr = start_addr;
787 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
788 section_index);
789 }
790
791 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > MAX_PHYS_ADDR_SPACE_BITS)
792
793 static MemoryRegionSection limit(MemoryRegionSection section)
794 {
795 section.size = MIN(section.offset_within_address_space + section.size,
796 MAX_PHYS_ADDR + 1)
797 - section.offset_within_address_space;
798
799 return section;
800 }
801
802 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
803 {
804 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
805 MemoryRegionSection now = limit(*section), remain = limit(*section);
806
807 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
808 || (now.size < TARGET_PAGE_SIZE)) {
809 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
810 - now.offset_within_address_space,
811 now.size);
812 register_subpage(d, &now);
813 remain.size -= now.size;
814 remain.offset_within_address_space += now.size;
815 remain.offset_within_region += now.size;
816 }
817 while (remain.size >= TARGET_PAGE_SIZE) {
818 now = remain;
819 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
820 now.size = TARGET_PAGE_SIZE;
821 register_subpage(d, &now);
822 } else {
823 now.size &= TARGET_PAGE_MASK;
824 register_multipage(d, &now);
825 }
826 remain.size -= now.size;
827 remain.offset_within_address_space += now.size;
828 remain.offset_within_region += now.size;
829 }
830 now = remain;
831 if (now.size) {
832 register_subpage(d, &now);
833 }
834 }
835
836 void qemu_flush_coalesced_mmio_buffer(void)
837 {
838 if (kvm_enabled())
839 kvm_flush_coalesced_mmio_buffer();
840 }
841
842 void qemu_mutex_lock_ramlist(void)
843 {
844 qemu_mutex_lock(&ram_list.mutex);
845 }
846
847 void qemu_mutex_unlock_ramlist(void)
848 {
849 qemu_mutex_unlock(&ram_list.mutex);
850 }
851
852 #if defined(__linux__) && !defined(TARGET_S390X)
853
854 #include <sys/vfs.h>
855
856 #define HUGETLBFS_MAGIC 0x958458f6
857
858 static long gethugepagesize(const char *path)
859 {
860 struct statfs fs;
861 int ret;
862
863 do {
864 ret = statfs(path, &fs);
865 } while (ret != 0 && errno == EINTR);
866
867 if (ret != 0) {
868 perror(path);
869 return 0;
870 }
871
872 if (fs.f_type != HUGETLBFS_MAGIC)
873 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
874
875 return fs.f_bsize;
876 }
877
878 static void *file_ram_alloc(RAMBlock *block,
879 ram_addr_t memory,
880 const char *path)
881 {
882 char *filename;
883 char *sanitized_name;
884 char *c;
885 void *area;
886 int fd;
887 #ifdef MAP_POPULATE
888 int flags;
889 #endif
890 unsigned long hpagesize;
891
892 hpagesize = gethugepagesize(path);
893 if (!hpagesize) {
894 return NULL;
895 }
896
897 if (memory < hpagesize) {
898 return NULL;
899 }
900
901 if (kvm_enabled() && !kvm_has_sync_mmu()) {
902 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
903 return NULL;
904 }
905
906 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
907 sanitized_name = g_strdup(block->mr->name);
908 for (c = sanitized_name; *c != '\0'; c++) {
909 if (*c == '/')
910 *c = '_';
911 }
912
913 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
914 sanitized_name);
915 g_free(sanitized_name);
916
917 fd = mkstemp(filename);
918 if (fd < 0) {
919 perror("unable to create backing store for hugepages");
920 g_free(filename);
921 return NULL;
922 }
923 unlink(filename);
924 g_free(filename);
925
926 memory = (memory+hpagesize-1) & ~(hpagesize-1);
927
928 /*
929 * ftruncate is not supported by hugetlbfs in older
930 * hosts, so don't bother bailing out on errors.
931 * If anything goes wrong with it under other filesystems,
932 * mmap will fail.
933 */
934 if (ftruncate(fd, memory))
935 perror("ftruncate");
936
937 #ifdef MAP_POPULATE
938 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
939 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
940 * to sidestep this quirk.
941 */
942 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
943 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
944 #else
945 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
946 #endif
947 if (area == MAP_FAILED) {
948 perror("file_ram_alloc: can't mmap RAM pages");
949 close(fd);
950 return (NULL);
951 }
952 block->fd = fd;
953 return area;
954 }
955 #endif
956
957 static ram_addr_t find_ram_offset(ram_addr_t size)
958 {
959 RAMBlock *block, *next_block;
960 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
961
962 assert(size != 0); /* it would hand out same offset multiple times */
963
964 if (QTAILQ_EMPTY(&ram_list.blocks))
965 return 0;
966
967 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
968 ram_addr_t end, next = RAM_ADDR_MAX;
969
970 end = block->offset + block->length;
971
972 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
973 if (next_block->offset >= end) {
974 next = MIN(next, next_block->offset);
975 }
976 }
977 if (next - end >= size && next - end < mingap) {
978 offset = end;
979 mingap = next - end;
980 }
981 }
982
983 if (offset == RAM_ADDR_MAX) {
984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
985 (uint64_t)size);
986 abort();
987 }
988
989 return offset;
990 }
991
992 ram_addr_t last_ram_offset(void)
993 {
994 RAMBlock *block;
995 ram_addr_t last = 0;
996
997 QTAILQ_FOREACH(block, &ram_list.blocks, next)
998 last = MAX(last, block->offset + block->length);
999
1000 return last;
1001 }
1002
1003 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1004 {
1005 int ret;
1006 QemuOpts *machine_opts;
1007
1008 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1009 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1010 if (machine_opts &&
1011 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1012 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1013 if (ret) {
1014 perror("qemu_madvise");
1015 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1016 "but dump_guest_core=off specified\n");
1017 }
1018 }
1019 }
1020
1021 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1022 {
1023 RAMBlock *new_block, *block;
1024
1025 new_block = NULL;
1026 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1027 if (block->offset == addr) {
1028 new_block = block;
1029 break;
1030 }
1031 }
1032 assert(new_block);
1033 assert(!new_block->idstr[0]);
1034
1035 if (dev) {
1036 char *id = qdev_get_dev_path(dev);
1037 if (id) {
1038 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1039 g_free(id);
1040 }
1041 }
1042 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1043
1044 /* This assumes the iothread lock is taken here too. */
1045 qemu_mutex_lock_ramlist();
1046 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1047 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1048 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1049 new_block->idstr);
1050 abort();
1051 }
1052 }
1053 qemu_mutex_unlock_ramlist();
1054 }
1055
1056 static int memory_try_enable_merging(void *addr, size_t len)
1057 {
1058 QemuOpts *opts;
1059
1060 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1061 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1062 /* disabled by the user */
1063 return 0;
1064 }
1065
1066 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1067 }
1068
1069 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1070 MemoryRegion *mr)
1071 {
1072 RAMBlock *block, *new_block;
1073
1074 size = TARGET_PAGE_ALIGN(size);
1075 new_block = g_malloc0(sizeof(*new_block));
1076
1077 /* This assumes the iothread lock is taken here too. */
1078 qemu_mutex_lock_ramlist();
1079 new_block->mr = mr;
1080 new_block->offset = find_ram_offset(size);
1081 if (host) {
1082 new_block->host = host;
1083 new_block->flags |= RAM_PREALLOC_MASK;
1084 } else {
1085 if (mem_path) {
1086 #if defined (__linux__) && !defined(TARGET_S390X)
1087 new_block->host = file_ram_alloc(new_block, size, mem_path);
1088 if (!new_block->host) {
1089 new_block->host = qemu_anon_ram_alloc(size);
1090 memory_try_enable_merging(new_block->host, size);
1091 }
1092 #else
1093 fprintf(stderr, "-mem-path option unsupported\n");
1094 exit(1);
1095 #endif
1096 } else {
1097 if (xen_enabled()) {
1098 xen_ram_alloc(new_block->offset, size, mr);
1099 } else if (kvm_enabled()) {
1100 /* some s390/kvm configurations have special constraints */
1101 new_block->host = kvm_ram_alloc(size);
1102 } else {
1103 new_block->host = qemu_anon_ram_alloc(size);
1104 }
1105 memory_try_enable_merging(new_block->host, size);
1106 }
1107 }
1108 new_block->length = size;
1109
1110 /* Keep the list sorted from biggest to smallest block. */
1111 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1112 if (block->length < new_block->length) {
1113 break;
1114 }
1115 }
1116 if (block) {
1117 QTAILQ_INSERT_BEFORE(block, new_block, next);
1118 } else {
1119 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1120 }
1121 ram_list.mru_block = NULL;
1122
1123 ram_list.version++;
1124 qemu_mutex_unlock_ramlist();
1125
1126 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1127 last_ram_offset() >> TARGET_PAGE_BITS);
1128 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1129 0, size >> TARGET_PAGE_BITS);
1130 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1131
1132 qemu_ram_setup_dump(new_block->host, size);
1133 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1134
1135 if (kvm_enabled())
1136 kvm_setup_guest_memory(new_block->host, size);
1137
1138 return new_block->offset;
1139 }
1140
1141 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1142 {
1143 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1144 }
1145
1146 void qemu_ram_free_from_ptr(ram_addr_t addr)
1147 {
1148 RAMBlock *block;
1149
1150 /* This assumes the iothread lock is taken here too. */
1151 qemu_mutex_lock_ramlist();
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (addr == block->offset) {
1154 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1155 ram_list.mru_block = NULL;
1156 ram_list.version++;
1157 g_free(block);
1158 break;
1159 }
1160 }
1161 qemu_mutex_unlock_ramlist();
1162 }
1163
1164 void qemu_ram_free(ram_addr_t addr)
1165 {
1166 RAMBlock *block;
1167
1168 /* This assumes the iothread lock is taken here too. */
1169 qemu_mutex_lock_ramlist();
1170 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1171 if (addr == block->offset) {
1172 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1173 ram_list.mru_block = NULL;
1174 ram_list.version++;
1175 if (block->flags & RAM_PREALLOC_MASK) {
1176 ;
1177 } else if (mem_path) {
1178 #if defined (__linux__) && !defined(TARGET_S390X)
1179 if (block->fd) {
1180 munmap(block->host, block->length);
1181 close(block->fd);
1182 } else {
1183 qemu_anon_ram_free(block->host, block->length);
1184 }
1185 #else
1186 abort();
1187 #endif
1188 } else {
1189 if (xen_enabled()) {
1190 xen_invalidate_map_cache_entry(block->host);
1191 } else {
1192 qemu_anon_ram_free(block->host, block->length);
1193 }
1194 }
1195 g_free(block);
1196 break;
1197 }
1198 }
1199 qemu_mutex_unlock_ramlist();
1200
1201 }
1202
1203 #ifndef _WIN32
1204 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1205 {
1206 RAMBlock *block;
1207 ram_addr_t offset;
1208 int flags;
1209 void *area, *vaddr;
1210
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 offset = addr - block->offset;
1213 if (offset < block->length) {
1214 vaddr = block->host + offset;
1215 if (block->flags & RAM_PREALLOC_MASK) {
1216 ;
1217 } else {
1218 flags = MAP_FIXED;
1219 munmap(vaddr, length);
1220 if (mem_path) {
1221 #if defined(__linux__) && !defined(TARGET_S390X)
1222 if (block->fd) {
1223 #ifdef MAP_POPULATE
1224 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1225 MAP_PRIVATE;
1226 #else
1227 flags |= MAP_PRIVATE;
1228 #endif
1229 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1230 flags, block->fd, offset);
1231 } else {
1232 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1233 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1234 flags, -1, 0);
1235 }
1236 #else
1237 abort();
1238 #endif
1239 } else {
1240 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1241 flags |= MAP_SHARED | MAP_ANONYMOUS;
1242 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1243 flags, -1, 0);
1244 #else
1245 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1246 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1247 flags, -1, 0);
1248 #endif
1249 }
1250 if (area != vaddr) {
1251 fprintf(stderr, "Could not remap addr: "
1252 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1253 length, addr);
1254 exit(1);
1255 }
1256 memory_try_enable_merging(vaddr, length);
1257 qemu_ram_setup_dump(vaddr, length);
1258 }
1259 return;
1260 }
1261 }
1262 }
1263 #endif /* !_WIN32 */
1264
1265 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1266 With the exception of the softmmu code in this file, this should
1267 only be used for local memory (e.g. video ram) that the device owns,
1268 and knows it isn't going to access beyond the end of the block.
1269
1270 It should not be used for general purpose DMA.
1271 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1272 */
1273 void *qemu_get_ram_ptr(ram_addr_t addr)
1274 {
1275 RAMBlock *block;
1276
1277 /* The list is protected by the iothread lock here. */
1278 block = ram_list.mru_block;
1279 if (block && addr - block->offset < block->length) {
1280 goto found;
1281 }
1282 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1283 if (addr - block->offset < block->length) {
1284 goto found;
1285 }
1286 }
1287
1288 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1289 abort();
1290
1291 found:
1292 ram_list.mru_block = block;
1293 if (xen_enabled()) {
1294 /* We need to check if the requested address is in the RAM
1295 * because we don't want to map the entire memory in QEMU.
1296 * In that case just map until the end of the page.
1297 */
1298 if (block->offset == 0) {
1299 return xen_map_cache(addr, 0, 0);
1300 } else if (block->host == NULL) {
1301 block->host =
1302 xen_map_cache(block->offset, block->length, 1);
1303 }
1304 }
1305 return block->host + (addr - block->offset);
1306 }
1307
1308 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1309 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1310 *
1311 * ??? Is this still necessary?
1312 */
1313 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1314 {
1315 RAMBlock *block;
1316
1317 /* The list is protected by the iothread lock here. */
1318 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1319 if (addr - block->offset < block->length) {
1320 if (xen_enabled()) {
1321 /* We need to check if the requested address is in the RAM
1322 * because we don't want to map the entire memory in QEMU.
1323 * In that case just map until the end of the page.
1324 */
1325 if (block->offset == 0) {
1326 return xen_map_cache(addr, 0, 0);
1327 } else if (block->host == NULL) {
1328 block->host =
1329 xen_map_cache(block->offset, block->length, 1);
1330 }
1331 }
1332 return block->host + (addr - block->offset);
1333 }
1334 }
1335
1336 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1337 abort();
1338
1339 return NULL;
1340 }
1341
1342 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1343 * but takes a size argument */
1344 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1345 {
1346 if (*size == 0) {
1347 return NULL;
1348 }
1349 if (xen_enabled()) {
1350 return xen_map_cache(addr, *size, 1);
1351 } else {
1352 RAMBlock *block;
1353
1354 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1355 if (addr - block->offset < block->length) {
1356 if (addr - block->offset + *size > block->length)
1357 *size = block->length - addr + block->offset;
1358 return block->host + (addr - block->offset);
1359 }
1360 }
1361
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1364 }
1365 }
1366
1367 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1368 {
1369 RAMBlock *block;
1370 uint8_t *host = ptr;
1371
1372 if (xen_enabled()) {
1373 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1374 return 0;
1375 }
1376
1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1378 /* This case append when the block is not mapped. */
1379 if (block->host == NULL) {
1380 continue;
1381 }
1382 if (host - block->host < block->length) {
1383 *ram_addr = block->offset + (host - block->host);
1384 return 0;
1385 }
1386 }
1387
1388 return -1;
1389 }
1390
1391 /* Some of the softmmu routines need to translate from a host pointer
1392 (typically a TLB entry) back to a ram offset. */
1393 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1394 {
1395 ram_addr_t ram_addr;
1396
1397 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1398 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1399 abort();
1400 }
1401 return ram_addr;
1402 }
1403
1404 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1405 uint64_t val, unsigned size)
1406 {
1407 int dirty_flags;
1408 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1409 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1410 tb_invalidate_phys_page_fast(ram_addr, size);
1411 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1412 }
1413 switch (size) {
1414 case 1:
1415 stb_p(qemu_get_ram_ptr(ram_addr), val);
1416 break;
1417 case 2:
1418 stw_p(qemu_get_ram_ptr(ram_addr), val);
1419 break;
1420 case 4:
1421 stl_p(qemu_get_ram_ptr(ram_addr), val);
1422 break;
1423 default:
1424 abort();
1425 }
1426 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1427 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1428 /* we remove the notdirty callback only if the code has been
1429 flushed */
1430 if (dirty_flags == 0xff)
1431 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1432 }
1433
1434 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1435 unsigned size, bool is_write)
1436 {
1437 return is_write;
1438 }
1439
1440 static const MemoryRegionOps notdirty_mem_ops = {
1441 .write = notdirty_mem_write,
1442 .valid.accepts = notdirty_mem_accepts,
1443 .endianness = DEVICE_NATIVE_ENDIAN,
1444 };
1445
1446 /* Generate a debug exception if a watchpoint has been hit. */
1447 static void check_watchpoint(int offset, int len_mask, int flags)
1448 {
1449 CPUArchState *env = cpu_single_env;
1450 target_ulong pc, cs_base;
1451 target_ulong vaddr;
1452 CPUWatchpoint *wp;
1453 int cpu_flags;
1454
1455 if (env->watchpoint_hit) {
1456 /* We re-entered the check after replacing the TB. Now raise
1457 * the debug interrupt so that is will trigger after the
1458 * current instruction. */
1459 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1460 return;
1461 }
1462 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1463 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1464 if ((vaddr == (wp->vaddr & len_mask) ||
1465 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1466 wp->flags |= BP_WATCHPOINT_HIT;
1467 if (!env->watchpoint_hit) {
1468 env->watchpoint_hit = wp;
1469 tb_check_watchpoint(env);
1470 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1471 env->exception_index = EXCP_DEBUG;
1472 cpu_loop_exit(env);
1473 } else {
1474 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1475 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1476 cpu_resume_from_signal(env, NULL);
1477 }
1478 }
1479 } else {
1480 wp->flags &= ~BP_WATCHPOINT_HIT;
1481 }
1482 }
1483 }
1484
1485 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1486 so these check for a hit then pass through to the normal out-of-line
1487 phys routines. */
1488 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1489 unsigned size)
1490 {
1491 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1492 switch (size) {
1493 case 1: return ldub_phys(addr);
1494 case 2: return lduw_phys(addr);
1495 case 4: return ldl_phys(addr);
1496 default: abort();
1497 }
1498 }
1499
1500 static void watch_mem_write(void *opaque, hwaddr addr,
1501 uint64_t val, unsigned size)
1502 {
1503 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1504 switch (size) {
1505 case 1:
1506 stb_phys(addr, val);
1507 break;
1508 case 2:
1509 stw_phys(addr, val);
1510 break;
1511 case 4:
1512 stl_phys(addr, val);
1513 break;
1514 default: abort();
1515 }
1516 }
1517
1518 static const MemoryRegionOps watch_mem_ops = {
1519 .read = watch_mem_read,
1520 .write = watch_mem_write,
1521 .endianness = DEVICE_NATIVE_ENDIAN,
1522 };
1523
1524 static uint64_t subpage_read(void *opaque, hwaddr addr,
1525 unsigned len)
1526 {
1527 subpage_t *mmio = opaque;
1528 unsigned int idx = SUBPAGE_IDX(addr);
1529 MemoryRegionSection *section;
1530 #if defined(DEBUG_SUBPAGE)
1531 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1532 mmio, len, addr, idx);
1533 #endif
1534
1535 section = &phys_sections[mmio->sub_section[idx]];
1536 addr += mmio->base;
1537 addr -= section->offset_within_address_space;
1538 addr += section->offset_within_region;
1539 return io_mem_read(section->mr, addr, len);
1540 }
1541
1542 static void subpage_write(void *opaque, hwaddr addr,
1543 uint64_t value, unsigned len)
1544 {
1545 subpage_t *mmio = opaque;
1546 unsigned int idx = SUBPAGE_IDX(addr);
1547 MemoryRegionSection *section;
1548 #if defined(DEBUG_SUBPAGE)
1549 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1550 " idx %d value %"PRIx64"\n",
1551 __func__, mmio, len, addr, idx, value);
1552 #endif
1553
1554 section = &phys_sections[mmio->sub_section[idx]];
1555 addr += mmio->base;
1556 addr -= section->offset_within_address_space;
1557 addr += section->offset_within_region;
1558 io_mem_write(section->mr, addr, value, len);
1559 }
1560
1561 static const MemoryRegionOps subpage_ops = {
1562 .read = subpage_read,
1563 .write = subpage_write,
1564 .endianness = DEVICE_NATIVE_ENDIAN,
1565 };
1566
1567 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1568 unsigned size)
1569 {
1570 ram_addr_t raddr = addr;
1571 void *ptr = qemu_get_ram_ptr(raddr);
1572 switch (size) {
1573 case 1: return ldub_p(ptr);
1574 case 2: return lduw_p(ptr);
1575 case 4: return ldl_p(ptr);
1576 default: abort();
1577 }
1578 }
1579
1580 static void subpage_ram_write(void *opaque, hwaddr addr,
1581 uint64_t value, unsigned size)
1582 {
1583 ram_addr_t raddr = addr;
1584 void *ptr = qemu_get_ram_ptr(raddr);
1585 switch (size) {
1586 case 1: return stb_p(ptr, value);
1587 case 2: return stw_p(ptr, value);
1588 case 4: return stl_p(ptr, value);
1589 default: abort();
1590 }
1591 }
1592
1593 static const MemoryRegionOps subpage_ram_ops = {
1594 .read = subpage_ram_read,
1595 .write = subpage_ram_write,
1596 .endianness = DEVICE_NATIVE_ENDIAN,
1597 };
1598
1599 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1600 uint16_t section)
1601 {
1602 int idx, eidx;
1603
1604 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1605 return -1;
1606 idx = SUBPAGE_IDX(start);
1607 eidx = SUBPAGE_IDX(end);
1608 #if defined(DEBUG_SUBPAGE)
1609 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1610 mmio, start, end, idx, eidx, memory);
1611 #endif
1612 if (memory_region_is_ram(phys_sections[section].mr)) {
1613 MemoryRegionSection new_section = phys_sections[section];
1614 new_section.mr = &io_mem_subpage_ram;
1615 section = phys_section_add(&new_section);
1616 }
1617 for (; idx <= eidx; idx++) {
1618 mmio->sub_section[idx] = section;
1619 }
1620
1621 return 0;
1622 }
1623
1624 static subpage_t *subpage_init(hwaddr base)
1625 {
1626 subpage_t *mmio;
1627
1628 mmio = g_malloc0(sizeof(subpage_t));
1629
1630 mmio->base = base;
1631 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1632 "subpage", TARGET_PAGE_SIZE);
1633 mmio->iomem.subpage = true;
1634 #if defined(DEBUG_SUBPAGE)
1635 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1636 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1637 #endif
1638 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1639
1640 return mmio;
1641 }
1642
1643 static uint16_t dummy_section(MemoryRegion *mr)
1644 {
1645 MemoryRegionSection section = {
1646 .mr = mr,
1647 .offset_within_address_space = 0,
1648 .offset_within_region = 0,
1649 .size = UINT64_MAX,
1650 };
1651
1652 return phys_section_add(&section);
1653 }
1654
1655 MemoryRegion *iotlb_to_region(hwaddr index)
1656 {
1657 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1658 }
1659
1660 static void io_mem_init(void)
1661 {
1662 memory_region_init_io(&io_mem_rom, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1663 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1664 "unassigned", UINT64_MAX);
1665 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1666 "notdirty", UINT64_MAX);
1667 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1668 "subpage-ram", UINT64_MAX);
1669 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1670 "watch", UINT64_MAX);
1671 }
1672
1673 static void mem_begin(MemoryListener *listener)
1674 {
1675 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1676
1677 destroy_all_mappings(d);
1678 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1679 }
1680
1681 static void core_begin(MemoryListener *listener)
1682 {
1683 phys_sections_clear();
1684 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1685 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1686 phys_section_rom = dummy_section(&io_mem_rom);
1687 phys_section_watch = dummy_section(&io_mem_watch);
1688 }
1689
1690 static void tcg_commit(MemoryListener *listener)
1691 {
1692 CPUArchState *env;
1693
1694 /* since each CPU stores ram addresses in its TLB cache, we must
1695 reset the modified entries */
1696 /* XXX: slow ! */
1697 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1698 tlb_flush(env, 1);
1699 }
1700 }
1701
1702 static void core_log_global_start(MemoryListener *listener)
1703 {
1704 cpu_physical_memory_set_dirty_tracking(1);
1705 }
1706
1707 static void core_log_global_stop(MemoryListener *listener)
1708 {
1709 cpu_physical_memory_set_dirty_tracking(0);
1710 }
1711
1712 static void io_region_add(MemoryListener *listener,
1713 MemoryRegionSection *section)
1714 {
1715 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1716
1717 mrio->mr = section->mr;
1718 mrio->offset = section->offset_within_region;
1719 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1720 section->offset_within_address_space, section->size);
1721 ioport_register(&mrio->iorange);
1722 }
1723
1724 static void io_region_del(MemoryListener *listener,
1725 MemoryRegionSection *section)
1726 {
1727 isa_unassign_ioport(section->offset_within_address_space, section->size);
1728 }
1729
1730 static MemoryListener core_memory_listener = {
1731 .begin = core_begin,
1732 .log_global_start = core_log_global_start,
1733 .log_global_stop = core_log_global_stop,
1734 .priority = 1,
1735 };
1736
1737 static MemoryListener io_memory_listener = {
1738 .region_add = io_region_add,
1739 .region_del = io_region_del,
1740 .priority = 0,
1741 };
1742
1743 static MemoryListener tcg_memory_listener = {
1744 .commit = tcg_commit,
1745 };
1746
1747 void address_space_init_dispatch(AddressSpace *as)
1748 {
1749 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1750
1751 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1752 d->listener = (MemoryListener) {
1753 .begin = mem_begin,
1754 .region_add = mem_add,
1755 .region_nop = mem_add,
1756 .priority = 0,
1757 };
1758 as->dispatch = d;
1759 memory_listener_register(&d->listener, as);
1760 }
1761
1762 void address_space_destroy_dispatch(AddressSpace *as)
1763 {
1764 AddressSpaceDispatch *d = as->dispatch;
1765
1766 memory_listener_unregister(&d->listener);
1767 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1768 g_free(d);
1769 as->dispatch = NULL;
1770 }
1771
1772 static void memory_map_init(void)
1773 {
1774 system_memory = g_malloc(sizeof(*system_memory));
1775 memory_region_init(system_memory, "system", INT64_MAX);
1776 address_space_init(&address_space_memory, system_memory);
1777 address_space_memory.name = "memory";
1778
1779 system_io = g_malloc(sizeof(*system_io));
1780 memory_region_init(system_io, "io", 65536);
1781 address_space_init(&address_space_io, system_io);
1782 address_space_io.name = "I/O";
1783
1784 memory_listener_register(&core_memory_listener, &address_space_memory);
1785 memory_listener_register(&io_memory_listener, &address_space_io);
1786 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1787
1788 dma_context_init(&dma_context_memory, &address_space_memory,
1789 NULL, NULL, NULL);
1790 }
1791
1792 MemoryRegion *get_system_memory(void)
1793 {
1794 return system_memory;
1795 }
1796
1797 MemoryRegion *get_system_io(void)
1798 {
1799 return system_io;
1800 }
1801
1802 #endif /* !defined(CONFIG_USER_ONLY) */
1803
1804 /* physical memory access (slow version, mainly for debug) */
1805 #if defined(CONFIG_USER_ONLY)
1806 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1807 uint8_t *buf, int len, int is_write)
1808 {
1809 int l, flags;
1810 target_ulong page;
1811 void * p;
1812
1813 while (len > 0) {
1814 page = addr & TARGET_PAGE_MASK;
1815 l = (page + TARGET_PAGE_SIZE) - addr;
1816 if (l > len)
1817 l = len;
1818 flags = page_get_flags(page);
1819 if (!(flags & PAGE_VALID))
1820 return -1;
1821 if (is_write) {
1822 if (!(flags & PAGE_WRITE))
1823 return -1;
1824 /* XXX: this code should not depend on lock_user */
1825 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1826 return -1;
1827 memcpy(p, buf, l);
1828 unlock_user(p, addr, l);
1829 } else {
1830 if (!(flags & PAGE_READ))
1831 return -1;
1832 /* XXX: this code should not depend on lock_user */
1833 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1834 return -1;
1835 memcpy(buf, p, l);
1836 unlock_user(p, addr, 0);
1837 }
1838 len -= l;
1839 buf += l;
1840 addr += l;
1841 }
1842 return 0;
1843 }
1844
1845 #else
1846
1847 static void invalidate_and_set_dirty(hwaddr addr,
1848 hwaddr length)
1849 {
1850 if (!cpu_physical_memory_is_dirty(addr)) {
1851 /* invalidate code */
1852 tb_invalidate_phys_page_range(addr, addr + length, 0);
1853 /* set dirty bit */
1854 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1855 }
1856 xen_modified_memory(addr, length);
1857 }
1858
1859 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1860 {
1861 if (memory_region_is_ram(mr)) {
1862 return !(is_write && mr->readonly);
1863 }
1864 if (memory_region_is_romd(mr)) {
1865 return !is_write;
1866 }
1867
1868 return false;
1869 }
1870
1871 static inline int memory_access_size(int l, hwaddr addr)
1872 {
1873 if (l >= 4 && ((addr & 3) == 0)) {
1874 return 4;
1875 }
1876 if (l >= 2 && ((addr & 1) == 0)) {
1877 return 2;
1878 }
1879 return 1;
1880 }
1881
1882 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1883 int len, bool is_write)
1884 {
1885 hwaddr l;
1886 uint8_t *ptr;
1887 uint32_t val;
1888 hwaddr addr1;
1889 MemoryRegionSection *section;
1890
1891 while (len > 0) {
1892 l = len;
1893 section = address_space_translate(as, addr, &addr1, &l, is_write);
1894
1895 if (is_write) {
1896 if (!memory_access_is_direct(section->mr, is_write)) {
1897 l = memory_access_size(l, addr1);
1898 /* XXX: could force cpu_single_env to NULL to avoid
1899 potential bugs */
1900 if (l == 4) {
1901 /* 32 bit write access */
1902 val = ldl_p(buf);
1903 io_mem_write(section->mr, addr1, val, 4);
1904 } else if (l == 2) {
1905 /* 16 bit write access */
1906 val = lduw_p(buf);
1907 io_mem_write(section->mr, addr1, val, 2);
1908 } else {
1909 /* 8 bit write access */
1910 val = ldub_p(buf);
1911 io_mem_write(section->mr, addr1, val, 1);
1912 }
1913 } else {
1914 addr1 += memory_region_get_ram_addr(section->mr);
1915 /* RAM case */
1916 ptr = qemu_get_ram_ptr(addr1);
1917 memcpy(ptr, buf, l);
1918 invalidate_and_set_dirty(addr1, l);
1919 }
1920 } else {
1921 if (!memory_access_is_direct(section->mr, is_write)) {
1922 /* I/O case */
1923 l = memory_access_size(l, addr1);
1924 if (l == 4) {
1925 /* 32 bit read access */
1926 val = io_mem_read(section->mr, addr1, 4);
1927 stl_p(buf, val);
1928 } else if (l == 2) {
1929 /* 16 bit read access */
1930 val = io_mem_read(section->mr, addr1, 2);
1931 stw_p(buf, val);
1932 } else {
1933 /* 8 bit read access */
1934 val = io_mem_read(section->mr, addr1, 1);
1935 stb_p(buf, val);
1936 }
1937 } else {
1938 /* RAM case */
1939 ptr = qemu_get_ram_ptr(section->mr->ram_addr + addr1);
1940 memcpy(buf, ptr, l);
1941 }
1942 }
1943 len -= l;
1944 buf += l;
1945 addr += l;
1946 }
1947 }
1948
1949 void address_space_write(AddressSpace *as, hwaddr addr,
1950 const uint8_t *buf, int len)
1951 {
1952 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1953 }
1954
1955 /**
1956 * address_space_read: read from an address space.
1957 *
1958 * @as: #AddressSpace to be accessed
1959 * @addr: address within that address space
1960 * @buf: buffer with the data transferred
1961 */
1962 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1963 {
1964 address_space_rw(as, addr, buf, len, false);
1965 }
1966
1967
1968 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1969 int len, int is_write)
1970 {
1971 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1972 }
1973
1974 /* used for ROM loading : can write in RAM and ROM */
1975 void cpu_physical_memory_write_rom(hwaddr addr,
1976 const uint8_t *buf, int len)
1977 {
1978 hwaddr l;
1979 uint8_t *ptr;
1980 hwaddr addr1;
1981 MemoryRegionSection *section;
1982
1983 while (len > 0) {
1984 l = len;
1985 section = address_space_translate(&address_space_memory,
1986 addr, &addr1, &l, true);
1987
1988 if (!(memory_region_is_ram(section->mr) ||
1989 memory_region_is_romd(section->mr))) {
1990 /* do nothing */
1991 } else {
1992 addr1 += memory_region_get_ram_addr(section->mr);
1993 /* ROM/RAM case */
1994 ptr = qemu_get_ram_ptr(addr1);
1995 memcpy(ptr, buf, l);
1996 invalidate_and_set_dirty(addr1, l);
1997 }
1998 len -= l;
1999 buf += l;
2000 addr += l;
2001 }
2002 }
2003
2004 typedef struct {
2005 void *buffer;
2006 hwaddr addr;
2007 hwaddr len;
2008 } BounceBuffer;
2009
2010 static BounceBuffer bounce;
2011
2012 typedef struct MapClient {
2013 void *opaque;
2014 void (*callback)(void *opaque);
2015 QLIST_ENTRY(MapClient) link;
2016 } MapClient;
2017
2018 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2019 = QLIST_HEAD_INITIALIZER(map_client_list);
2020
2021 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2022 {
2023 MapClient *client = g_malloc(sizeof(*client));
2024
2025 client->opaque = opaque;
2026 client->callback = callback;
2027 QLIST_INSERT_HEAD(&map_client_list, client, link);
2028 return client;
2029 }
2030
2031 static void cpu_unregister_map_client(void *_client)
2032 {
2033 MapClient *client = (MapClient *)_client;
2034
2035 QLIST_REMOVE(client, link);
2036 g_free(client);
2037 }
2038
2039 static void cpu_notify_map_clients(void)
2040 {
2041 MapClient *client;
2042
2043 while (!QLIST_EMPTY(&map_client_list)) {
2044 client = QLIST_FIRST(&map_client_list);
2045 client->callback(client->opaque);
2046 cpu_unregister_map_client(client);
2047 }
2048 }
2049
2050 /* Map a physical memory region into a host virtual address.
2051 * May map a subset of the requested range, given by and returned in *plen.
2052 * May return NULL if resources needed to perform the mapping are exhausted.
2053 * Use only for reads OR writes - not for read-modify-write operations.
2054 * Use cpu_register_map_client() to know when retrying the map operation is
2055 * likely to succeed.
2056 */
2057 void *address_space_map(AddressSpace *as,
2058 hwaddr addr,
2059 hwaddr *plen,
2060 bool is_write)
2061 {
2062 hwaddr len = *plen;
2063 hwaddr todo = 0;
2064 hwaddr l, xlat;
2065 MemoryRegionSection *section;
2066 ram_addr_t raddr = RAM_ADDR_MAX;
2067 ram_addr_t rlen;
2068 void *ret;
2069
2070 while (len > 0) {
2071 l = len;
2072 section = address_space_translate(as, addr, &xlat, &l, is_write);
2073
2074 if (!memory_access_is_direct(section->mr, is_write)) {
2075 if (todo || bounce.buffer) {
2076 break;
2077 }
2078 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2079 bounce.addr = addr;
2080 bounce.len = l;
2081 if (!is_write) {
2082 address_space_read(as, addr, bounce.buffer, l);
2083 }
2084
2085 *plen = l;
2086 return bounce.buffer;
2087 }
2088 if (!todo) {
2089 raddr = memory_region_get_ram_addr(section->mr) + xlat;
2090 } else {
2091 if (memory_region_get_ram_addr(section->mr) + xlat != raddr + todo) {
2092 break;
2093 }
2094 }
2095
2096 len -= l;
2097 addr += l;
2098 todo += l;
2099 }
2100 rlen = todo;
2101 ret = qemu_ram_ptr_length(raddr, &rlen);
2102 *plen = rlen;
2103 return ret;
2104 }
2105
2106 /* Unmaps a memory region previously mapped by address_space_map().
2107 * Will also mark the memory as dirty if is_write == 1. access_len gives
2108 * the amount of memory that was actually read or written by the caller.
2109 */
2110 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2111 int is_write, hwaddr access_len)
2112 {
2113 if (buffer != bounce.buffer) {
2114 if (is_write) {
2115 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2116 while (access_len) {
2117 unsigned l;
2118 l = TARGET_PAGE_SIZE;
2119 if (l > access_len)
2120 l = access_len;
2121 invalidate_and_set_dirty(addr1, l);
2122 addr1 += l;
2123 access_len -= l;
2124 }
2125 }
2126 if (xen_enabled()) {
2127 xen_invalidate_map_cache_entry(buffer);
2128 }
2129 return;
2130 }
2131 if (is_write) {
2132 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2133 }
2134 qemu_vfree(bounce.buffer);
2135 bounce.buffer = NULL;
2136 cpu_notify_map_clients();
2137 }
2138
2139 void *cpu_physical_memory_map(hwaddr addr,
2140 hwaddr *plen,
2141 int is_write)
2142 {
2143 return address_space_map(&address_space_memory, addr, plen, is_write);
2144 }
2145
2146 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2147 int is_write, hwaddr access_len)
2148 {
2149 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2150 }
2151
2152 /* warning: addr must be aligned */
2153 static inline uint32_t ldl_phys_internal(hwaddr addr,
2154 enum device_endian endian)
2155 {
2156 uint8_t *ptr;
2157 uint32_t val;
2158 MemoryRegionSection *section;
2159 hwaddr l = 4;
2160 hwaddr addr1;
2161
2162 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2163 false);
2164 if (l < 4 || !memory_access_is_direct(section->mr, false)) {
2165 /* I/O case */
2166 val = io_mem_read(section->mr, addr1, 4);
2167 #if defined(TARGET_WORDS_BIGENDIAN)
2168 if (endian == DEVICE_LITTLE_ENDIAN) {
2169 val = bswap32(val);
2170 }
2171 #else
2172 if (endian == DEVICE_BIG_ENDIAN) {
2173 val = bswap32(val);
2174 }
2175 #endif
2176 } else {
2177 /* RAM case */
2178 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2179 & TARGET_PAGE_MASK)
2180 + addr1);
2181 switch (endian) {
2182 case DEVICE_LITTLE_ENDIAN:
2183 val = ldl_le_p(ptr);
2184 break;
2185 case DEVICE_BIG_ENDIAN:
2186 val = ldl_be_p(ptr);
2187 break;
2188 default:
2189 val = ldl_p(ptr);
2190 break;
2191 }
2192 }
2193 return val;
2194 }
2195
2196 uint32_t ldl_phys(hwaddr addr)
2197 {
2198 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2199 }
2200
2201 uint32_t ldl_le_phys(hwaddr addr)
2202 {
2203 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2204 }
2205
2206 uint32_t ldl_be_phys(hwaddr addr)
2207 {
2208 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2209 }
2210
2211 /* warning: addr must be aligned */
2212 static inline uint64_t ldq_phys_internal(hwaddr addr,
2213 enum device_endian endian)
2214 {
2215 uint8_t *ptr;
2216 uint64_t val;
2217 MemoryRegionSection *section;
2218 hwaddr l = 8;
2219 hwaddr addr1;
2220
2221 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2222 false);
2223 if (l < 8 || !memory_access_is_direct(section->mr, false)) {
2224 /* I/O case */
2225
2226 /* XXX This is broken when device endian != cpu endian.
2227 Fix and add "endian" variable check */
2228 #ifdef TARGET_WORDS_BIGENDIAN
2229 val = io_mem_read(section->mr, addr1, 4) << 32;
2230 val |= io_mem_read(section->mr, addr1 + 4, 4);
2231 #else
2232 val = io_mem_read(section->mr, addr1, 4);
2233 val |= io_mem_read(section->mr, addr1 + 4, 4) << 32;
2234 #endif
2235 } else {
2236 /* RAM case */
2237 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2238 & TARGET_PAGE_MASK)
2239 + addr1);
2240 switch (endian) {
2241 case DEVICE_LITTLE_ENDIAN:
2242 val = ldq_le_p(ptr);
2243 break;
2244 case DEVICE_BIG_ENDIAN:
2245 val = ldq_be_p(ptr);
2246 break;
2247 default:
2248 val = ldq_p(ptr);
2249 break;
2250 }
2251 }
2252 return val;
2253 }
2254
2255 uint64_t ldq_phys(hwaddr addr)
2256 {
2257 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2258 }
2259
2260 uint64_t ldq_le_phys(hwaddr addr)
2261 {
2262 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2263 }
2264
2265 uint64_t ldq_be_phys(hwaddr addr)
2266 {
2267 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2268 }
2269
2270 /* XXX: optimize */
2271 uint32_t ldub_phys(hwaddr addr)
2272 {
2273 uint8_t val;
2274 cpu_physical_memory_read(addr, &val, 1);
2275 return val;
2276 }
2277
2278 /* warning: addr must be aligned */
2279 static inline uint32_t lduw_phys_internal(hwaddr addr,
2280 enum device_endian endian)
2281 {
2282 uint8_t *ptr;
2283 uint64_t val;
2284 MemoryRegionSection *section;
2285 hwaddr l = 2;
2286 hwaddr addr1;
2287
2288 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2289 false);
2290 if (l < 2 || !memory_access_is_direct(section->mr, false)) {
2291 /* I/O case */
2292 val = io_mem_read(section->mr, addr1, 2);
2293 #if defined(TARGET_WORDS_BIGENDIAN)
2294 if (endian == DEVICE_LITTLE_ENDIAN) {
2295 val = bswap16(val);
2296 }
2297 #else
2298 if (endian == DEVICE_BIG_ENDIAN) {
2299 val = bswap16(val);
2300 }
2301 #endif
2302 } else {
2303 /* RAM case */
2304 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2305 & TARGET_PAGE_MASK)
2306 + addr1);
2307 switch (endian) {
2308 case DEVICE_LITTLE_ENDIAN:
2309 val = lduw_le_p(ptr);
2310 break;
2311 case DEVICE_BIG_ENDIAN:
2312 val = lduw_be_p(ptr);
2313 break;
2314 default:
2315 val = lduw_p(ptr);
2316 break;
2317 }
2318 }
2319 return val;
2320 }
2321
2322 uint32_t lduw_phys(hwaddr addr)
2323 {
2324 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2325 }
2326
2327 uint32_t lduw_le_phys(hwaddr addr)
2328 {
2329 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2330 }
2331
2332 uint32_t lduw_be_phys(hwaddr addr)
2333 {
2334 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2335 }
2336
2337 /* warning: addr must be aligned. The ram page is not masked as dirty
2338 and the code inside is not invalidated. It is useful if the dirty
2339 bits are used to track modified PTEs */
2340 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2341 {
2342 uint8_t *ptr;
2343 MemoryRegionSection *section;
2344 hwaddr l = 4;
2345 hwaddr addr1;
2346
2347 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2348 true);
2349 if (l < 4 || !memory_access_is_direct(section->mr, true)) {
2350 io_mem_write(section->mr, addr1, val, 4);
2351 } else {
2352 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2353 ptr = qemu_get_ram_ptr(addr1);
2354 stl_p(ptr, val);
2355
2356 if (unlikely(in_migration)) {
2357 if (!cpu_physical_memory_is_dirty(addr1)) {
2358 /* invalidate code */
2359 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2360 /* set dirty bit */
2361 cpu_physical_memory_set_dirty_flags(
2362 addr1, (0xff & ~CODE_DIRTY_FLAG));
2363 }
2364 }
2365 }
2366 }
2367
2368 /* warning: addr must be aligned */
2369 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2370 enum device_endian endian)
2371 {
2372 uint8_t *ptr;
2373 MemoryRegionSection *section;
2374 hwaddr l = 4;
2375 hwaddr addr1;
2376
2377 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2378 true);
2379 if (l < 4 || !memory_access_is_direct(section->mr, true)) {
2380 #if defined(TARGET_WORDS_BIGENDIAN)
2381 if (endian == DEVICE_LITTLE_ENDIAN) {
2382 val = bswap32(val);
2383 }
2384 #else
2385 if (endian == DEVICE_BIG_ENDIAN) {
2386 val = bswap32(val);
2387 }
2388 #endif
2389 io_mem_write(section->mr, addr1, val, 4);
2390 } else {
2391 /* RAM case */
2392 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2393 ptr = qemu_get_ram_ptr(addr1);
2394 switch (endian) {
2395 case DEVICE_LITTLE_ENDIAN:
2396 stl_le_p(ptr, val);
2397 break;
2398 case DEVICE_BIG_ENDIAN:
2399 stl_be_p(ptr, val);
2400 break;
2401 default:
2402 stl_p(ptr, val);
2403 break;
2404 }
2405 invalidate_and_set_dirty(addr1, 4);
2406 }
2407 }
2408
2409 void stl_phys(hwaddr addr, uint32_t val)
2410 {
2411 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2412 }
2413
2414 void stl_le_phys(hwaddr addr, uint32_t val)
2415 {
2416 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2417 }
2418
2419 void stl_be_phys(hwaddr addr, uint32_t val)
2420 {
2421 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2422 }
2423
2424 /* XXX: optimize */
2425 void stb_phys(hwaddr addr, uint32_t val)
2426 {
2427 uint8_t v = val;
2428 cpu_physical_memory_write(addr, &v, 1);
2429 }
2430
2431 /* warning: addr must be aligned */
2432 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2433 enum device_endian endian)
2434 {
2435 uint8_t *ptr;
2436 MemoryRegionSection *section;
2437 hwaddr l = 2;
2438 hwaddr addr1;
2439
2440 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2441 true);
2442 if (l < 2 || !memory_access_is_direct(section->mr, true)) {
2443 #if defined(TARGET_WORDS_BIGENDIAN)
2444 if (endian == DEVICE_LITTLE_ENDIAN) {
2445 val = bswap16(val);
2446 }
2447 #else
2448 if (endian == DEVICE_BIG_ENDIAN) {
2449 val = bswap16(val);
2450 }
2451 #endif
2452 io_mem_write(section->mr, addr1, val, 2);
2453 } else {
2454 /* RAM case */
2455 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2456 ptr = qemu_get_ram_ptr(addr1);
2457 switch (endian) {
2458 case DEVICE_LITTLE_ENDIAN:
2459 stw_le_p(ptr, val);
2460 break;
2461 case DEVICE_BIG_ENDIAN:
2462 stw_be_p(ptr, val);
2463 break;
2464 default:
2465 stw_p(ptr, val);
2466 break;
2467 }
2468 invalidate_and_set_dirty(addr1, 2);
2469 }
2470 }
2471
2472 void stw_phys(hwaddr addr, uint32_t val)
2473 {
2474 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2475 }
2476
2477 void stw_le_phys(hwaddr addr, uint32_t val)
2478 {
2479 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2480 }
2481
2482 void stw_be_phys(hwaddr addr, uint32_t val)
2483 {
2484 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2485 }
2486
2487 /* XXX: optimize */
2488 void stq_phys(hwaddr addr, uint64_t val)
2489 {
2490 val = tswap64(val);
2491 cpu_physical_memory_write(addr, &val, 8);
2492 }
2493
2494 void stq_le_phys(hwaddr addr, uint64_t val)
2495 {
2496 val = cpu_to_le64(val);
2497 cpu_physical_memory_write(addr, &val, 8);
2498 }
2499
2500 void stq_be_phys(hwaddr addr, uint64_t val)
2501 {
2502 val = cpu_to_be64(val);
2503 cpu_physical_memory_write(addr, &val, 8);
2504 }
2505
2506 /* virtual memory access for debug (includes writing to ROM) */
2507 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2508 uint8_t *buf, int len, int is_write)
2509 {
2510 int l;
2511 hwaddr phys_addr;
2512 target_ulong page;
2513
2514 while (len > 0) {
2515 page = addr & TARGET_PAGE_MASK;
2516 phys_addr = cpu_get_phys_page_debug(env, page);
2517 /* if no physical page mapped, return an error */
2518 if (phys_addr == -1)
2519 return -1;
2520 l = (page + TARGET_PAGE_SIZE) - addr;
2521 if (l > len)
2522 l = len;
2523 phys_addr += (addr & ~TARGET_PAGE_MASK);
2524 if (is_write)
2525 cpu_physical_memory_write_rom(phys_addr, buf, l);
2526 else
2527 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2528 len -= l;
2529 buf += l;
2530 addr += l;
2531 }
2532 return 0;
2533 }
2534 #endif
2535
2536 #if !defined(CONFIG_USER_ONLY)
2537
2538 /*
2539 * A helper function for the _utterly broken_ virtio device model to find out if
2540 * it's running on a big endian machine. Don't do this at home kids!
2541 */
2542 bool virtio_is_big_endian(void);
2543 bool virtio_is_big_endian(void)
2544 {
2545 #if defined(TARGET_WORDS_BIGENDIAN)
2546 return true;
2547 #else
2548 return false;
2549 #endif
2550 }
2551
2552 #endif
2553
2554 #ifndef CONFIG_USER_ONLY
2555 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2556 {
2557 MemoryRegionSection *section;
2558 hwaddr l = 1;
2559
2560 section = address_space_translate(&address_space_memory,
2561 phys_addr, &phys_addr, &l, false);
2562
2563 return !(memory_region_is_ram(section->mr) ||
2564 memory_region_is_romd(section->mr));
2565 }
2566 #endif