]> git.proxmox.com Git - qemu.git/blob - exec.c
tcg-sparc: Assume v9 cpu always, i.e. force v8plus in 32-bit mode.
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #include "cputlb.h"
61
62 #define WANT_EXEC_OBSOLETE
63 #include "exec-obsolete.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 //#define DEBUG_UNASSIGNED
68
69 /* make various TB consistency checks */
70 //#define DEBUG_TB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32) && !defined(_WIN64)
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 static uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 static int in_migration;
114
115 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
116
117 static MemoryRegion *system_memory;
118 static MemoryRegion *system_io;
119
120 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
121 static MemoryRegion io_mem_subpage_ram;
122
123 #endif
124
125 CPUArchState *first_cpu;
126 /* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
128 DEFINE_TLS(CPUArchState *,cpu_single_env);
129 /* 0 = Do not count executed instructions.
130 1 = Precise instruction counting.
131 2 = Adaptive rate instruction counting. */
132 int use_icount = 0;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 /* In system mode we want L1_MAP to be based on ram offsets,
147 while in user mode we want it to be based on virtual addresses. */
148 #if !defined(CONFIG_USER_ONLY)
149 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
153 #endif
154 #else
155 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
156 #endif
157
158 /* Size of the L2 (and L3, etc) page tables. */
159 #define L2_BITS 10
160 #define L2_SIZE (1 << L2_BITS)
161
162 #define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
165 /* The bits remaining after N lower levels of page tables. */
166 #define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
169 #if V_L1_BITS_REM < 4
170 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171 #else
172 #define V_L1_BITS V_L1_BITS_REM
173 #endif
174
175 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
179 uintptr_t qemu_real_host_page_size;
180 uintptr_t qemu_host_page_size;
181 uintptr_t qemu_host_page_mask;
182
183 /* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185 static void *l1_map[V_L1_SIZE];
186
187 #if !defined(CONFIG_USER_ONLY)
188 typedef struct PhysPageEntry PhysPageEntry;
189
190 static MemoryRegionSection *phys_sections;
191 static unsigned phys_sections_nb, phys_sections_nb_alloc;
192 static uint16_t phys_section_unassigned;
193 static uint16_t phys_section_notdirty;
194 static uint16_t phys_section_rom;
195 static uint16_t phys_section_watch;
196
197 struct PhysPageEntry {
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
201 };
202
203 /* Simple allocator for PhysPageEntry nodes */
204 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
207 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
208
209 /* This is a multi-level map on the physical address space.
210 The bottom level has pointers to MemoryRegionSections. */
211 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
212
213 static void io_mem_init(void);
214 static void memory_map_init(void);
215
216 static MemoryRegion io_mem_watch;
217 #endif
218
219 /* statistics */
220 static int tb_flush_count;
221 static int tb_phys_invalidate_count;
222
223 #ifdef _WIN32
224 static void map_exec(void *addr, long size)
225 {
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230 }
231 #else
232 static void map_exec(void *addr, long size)
233 {
234 unsigned long start, end, page_size;
235
236 page_size = getpagesize();
237 start = (unsigned long)addr;
238 start &= ~(page_size - 1);
239
240 end = (unsigned long)addr + size;
241 end += page_size - 1;
242 end &= ~(page_size - 1);
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246 }
247 #endif
248
249 static void page_init(void)
250 {
251 /* NOTE: we can always suppose that qemu_host_page_size >=
252 TARGET_PAGE_SIZE */
253 #ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260 #else
261 qemu_real_host_page_size = getpagesize();
262 #endif
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268
269 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
270 {
271 #ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
289 } else {
290 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 #endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300 #else
301 FILE *f;
302
303 last_brk = (unsigned long)sbrk(0);
304
305 f = fopen("/compat/linux/proc/self/maps", "r");
306 if (f) {
307 mmap_lock();
308
309 do {
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
324 }
325 } while (!feof(f));
326
327 fclose(f);
328 mmap_unlock();
329 }
330 #endif
331 }
332 #endif
333 }
334
335 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
336 {
337 PageDesc *pd;
338 void **lp;
339 int i;
340
341 #if defined(CONFIG_USER_ONLY)
342 /* We can't use g_malloc because it may recurse into a locked mutex. */
343 # define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
347 } while (0)
348 #else
349 # define ALLOC(P, SIZE) \
350 do { P = g_malloc0(SIZE); } while (0)
351 #endif
352
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
366 }
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
378 }
379
380 #undef ALLOC
381
382 return pd + (index & (L2_SIZE - 1));
383 }
384
385 static inline PageDesc *page_find(tb_page_addr_t index)
386 {
387 return page_find_alloc(index, 0);
388 }
389
390 #if !defined(CONFIG_USER_ONLY)
391
392 static void phys_map_node_reserve(unsigned nodes)
393 {
394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
402 }
403
404 static uint16_t phys_map_node_alloc(void)
405 {
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
412 for (i = 0; i < L2_SIZE; ++i) {
413 phys_map_nodes[ret][i].is_leaf = 0;
414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
415 }
416 return ret;
417 }
418
419 static void phys_map_nodes_reset(void)
420 {
421 phys_map_nodes_nb = 0;
422 }
423
424
425 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
428 {
429 PhysPageEntry *p;
430 int i;
431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
432
433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
438 p[i].is_leaf = 1;
439 p[i].ptr = phys_section_unassigned;
440 }
441 }
442 } else {
443 p = phys_map_nodes[lp->ptr];
444 }
445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
446
447 while (*nb && lp < &p[L2_SIZE]) {
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
450 lp->ptr = leaf;
451 *index += step;
452 *nb -= step;
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
457 }
458 }
459
460 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
462 {
463 /* Wildly overreserve - it doesn't matter much. */
464 phys_map_node_reserve(3 * P_L2_LEVELS);
465
466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
467 }
468
469 MemoryRegionSection *phys_page_find(target_phys_addr_t index)
470 {
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
474 uint16_t s_index = phys_section_unassigned;
475
476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
478 goto not_found;
479 }
480 p = phys_map_nodes[lp.ptr];
481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
482 }
483
484 s_index = lp.ptr;
485 not_found:
486 return &phys_sections[s_index];
487 }
488
489 bool memory_region_is_unassigned(MemoryRegion *mr)
490 {
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494 }
495
496 #define mmap_lock() do { } while(0)
497 #define mmap_unlock() do { } while(0)
498 #endif
499
500 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502 #if defined(CONFIG_USER_ONLY)
503 /* Currently it is not recommended to allocate big chunks of data in
504 user mode. It will change when a dedicated libc will be used */
505 #define USE_STATIC_CODE_GEN_BUFFER
506 #endif
507
508 #ifdef USE_STATIC_CODE_GEN_BUFFER
509 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
511 #endif
512
513 static void code_gen_alloc(unsigned long tb_size)
514 {
515 #ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519 #else
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
522 #if defined(CONFIG_USER_ONLY)
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524 #else
525 /* XXX: needs adjustments */
526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
527 #endif
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533 #if defined(__linux__)
534 {
535 int flags;
536 void *start = NULL;
537
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
544 #elif defined(__sparc__) && HOST_LONG_BITS == 64
545 // Map the buffer below 2G, so we can use direct calls and branches
546 start = (void *) 0x40000000UL;
547 if (code_gen_buffer_size > (512 * 1024 * 1024))
548 code_gen_buffer_size = (512 * 1024 * 1024);
549 #elif defined(__arm__)
550 /* Keep the buffer no bigger than 16MB to branch between blocks */
551 if (code_gen_buffer_size > 16 * 1024 * 1024)
552 code_gen_buffer_size = 16 * 1024 * 1024;
553 #elif defined(__s390x__)
554 /* Map the buffer so that we can use direct calls and branches. */
555 /* We have a +- 4GB range on the branches; leave some slop. */
556 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
557 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
558 }
559 start = (void *)0x90000000UL;
560 #endif
561 code_gen_buffer = mmap(start, code_gen_buffer_size,
562 PROT_WRITE | PROT_READ | PROT_EXEC,
563 flags, -1, 0);
564 if (code_gen_buffer == MAP_FAILED) {
565 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
566 exit(1);
567 }
568 }
569 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
570 || defined(__DragonFly__) || defined(__OpenBSD__) \
571 || defined(__NetBSD__)
572 {
573 int flags;
574 void *addr = NULL;
575 flags = MAP_PRIVATE | MAP_ANONYMOUS;
576 #if defined(__x86_64__)
577 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
578 * 0x40000000 is free */
579 flags |= MAP_FIXED;
580 addr = (void *)0x40000000;
581 /* Cannot map more than that */
582 if (code_gen_buffer_size > (800 * 1024 * 1024))
583 code_gen_buffer_size = (800 * 1024 * 1024);
584 #elif defined(__sparc__) && HOST_LONG_BITS == 64
585 // Map the buffer below 2G, so we can use direct calls and branches
586 addr = (void *) 0x40000000UL;
587 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
588 code_gen_buffer_size = (512 * 1024 * 1024);
589 }
590 #endif
591 code_gen_buffer = mmap(addr, code_gen_buffer_size,
592 PROT_WRITE | PROT_READ | PROT_EXEC,
593 flags, -1, 0);
594 if (code_gen_buffer == MAP_FAILED) {
595 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
596 exit(1);
597 }
598 }
599 #else
600 code_gen_buffer = g_malloc(code_gen_buffer_size);
601 map_exec(code_gen_buffer, code_gen_buffer_size);
602 #endif
603 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
604 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
605 code_gen_buffer_max_size = code_gen_buffer_size -
606 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
607 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
608 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
609 }
610
611 /* Must be called before using the QEMU cpus. 'tb_size' is the size
612 (in bytes) allocated to the translation buffer. Zero means default
613 size. */
614 void tcg_exec_init(unsigned long tb_size)
615 {
616 cpu_gen_init();
617 code_gen_alloc(tb_size);
618 code_gen_ptr = code_gen_buffer;
619 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
620 page_init();
621 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
622 /* There's no guest base to take into account, so go ahead and
623 initialize the prologue now. */
624 tcg_prologue_init(&tcg_ctx);
625 #endif
626 }
627
628 bool tcg_enabled(void)
629 {
630 return code_gen_buffer != NULL;
631 }
632
633 void cpu_exec_init_all(void)
634 {
635 #if !defined(CONFIG_USER_ONLY)
636 memory_map_init();
637 io_mem_init();
638 #endif
639 }
640
641 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
642
643 static int cpu_common_post_load(void *opaque, int version_id)
644 {
645 CPUArchState *env = opaque;
646
647 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
648 version_id is increased. */
649 env->interrupt_request &= ~0x01;
650 tlb_flush(env, 1);
651
652 return 0;
653 }
654
655 static const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .minimum_version_id_old = 1,
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField []) {
662 VMSTATE_UINT32(halted, CPUArchState),
663 VMSTATE_UINT32(interrupt_request, CPUArchState),
664 VMSTATE_END_OF_LIST()
665 }
666 };
667 #endif
668
669 CPUArchState *qemu_get_cpu(int cpu)
670 {
671 CPUArchState *env = first_cpu;
672
673 while (env) {
674 if (env->cpu_index == cpu)
675 break;
676 env = env->next_cpu;
677 }
678
679 return env;
680 }
681
682 void cpu_exec_init(CPUArchState *env)
683 {
684 CPUArchState **penv;
685 int cpu_index;
686
687 #if defined(CONFIG_USER_ONLY)
688 cpu_list_lock();
689 #endif
690 env->next_cpu = NULL;
691 penv = &first_cpu;
692 cpu_index = 0;
693 while (*penv != NULL) {
694 penv = &(*penv)->next_cpu;
695 cpu_index++;
696 }
697 env->cpu_index = cpu_index;
698 env->numa_node = 0;
699 QTAILQ_INIT(&env->breakpoints);
700 QTAILQ_INIT(&env->watchpoints);
701 #ifndef CONFIG_USER_ONLY
702 env->thread_id = qemu_get_thread_id();
703 #endif
704 *penv = env;
705 #if defined(CONFIG_USER_ONLY)
706 cpu_list_unlock();
707 #endif
708 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
709 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
710 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
711 cpu_save, cpu_load, env);
712 #endif
713 }
714
715 /* Allocate a new translation block. Flush the translation buffer if
716 too many translation blocks or too much generated code. */
717 static TranslationBlock *tb_alloc(target_ulong pc)
718 {
719 TranslationBlock *tb;
720
721 if (nb_tbs >= code_gen_max_blocks ||
722 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
723 return NULL;
724 tb = &tbs[nb_tbs++];
725 tb->pc = pc;
726 tb->cflags = 0;
727 return tb;
728 }
729
730 void tb_free(TranslationBlock *tb)
731 {
732 /* In practice this is mostly used for single use temporary TB
733 Ignore the hard cases and just back up if this TB happens to
734 be the last one generated. */
735 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
736 code_gen_ptr = tb->tc_ptr;
737 nb_tbs--;
738 }
739 }
740
741 static inline void invalidate_page_bitmap(PageDesc *p)
742 {
743 if (p->code_bitmap) {
744 g_free(p->code_bitmap);
745 p->code_bitmap = NULL;
746 }
747 p->code_write_count = 0;
748 }
749
750 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
751
752 static void page_flush_tb_1 (int level, void **lp)
753 {
754 int i;
755
756 if (*lp == NULL) {
757 return;
758 }
759 if (level == 0) {
760 PageDesc *pd = *lp;
761 for (i = 0; i < L2_SIZE; ++i) {
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
764 }
765 } else {
766 void **pp = *lp;
767 for (i = 0; i < L2_SIZE; ++i) {
768 page_flush_tb_1 (level - 1, pp + i);
769 }
770 }
771 }
772
773 static void page_flush_tb(void)
774 {
775 int i;
776 for (i = 0; i < V_L1_SIZE; i++) {
777 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
778 }
779 }
780
781 /* flush all the translation blocks */
782 /* XXX: tb_flush is currently not thread safe */
783 void tb_flush(CPUArchState *env1)
784 {
785 CPUArchState *env;
786 #if defined(DEBUG_FLUSH)
787 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
788 (unsigned long)(code_gen_ptr - code_gen_buffer),
789 nb_tbs, nb_tbs > 0 ?
790 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
791 #endif
792 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
793 cpu_abort(env1, "Internal error: code buffer overflow\n");
794
795 nb_tbs = 0;
796
797 for(env = first_cpu; env != NULL; env = env->next_cpu) {
798 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
799 }
800
801 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
802 page_flush_tb();
803
804 code_gen_ptr = code_gen_buffer;
805 /* XXX: flush processor icache at this point if cache flush is
806 expensive */
807 tb_flush_count++;
808 }
809
810 #ifdef DEBUG_TB_CHECK
811
812 static void tb_invalidate_check(target_ulong address)
813 {
814 TranslationBlock *tb;
815 int i;
816 address &= TARGET_PAGE_MASK;
817 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
818 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
819 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
820 address >= tb->pc + tb->size)) {
821 printf("ERROR invalidate: address=" TARGET_FMT_lx
822 " PC=%08lx size=%04x\n",
823 address, (long)tb->pc, tb->size);
824 }
825 }
826 }
827 }
828
829 /* verify that all the pages have correct rights for code */
830 static void tb_page_check(void)
831 {
832 TranslationBlock *tb;
833 int i, flags1, flags2;
834
835 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
836 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
837 flags1 = page_get_flags(tb->pc);
838 flags2 = page_get_flags(tb->pc + tb->size - 1);
839 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
840 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
841 (long)tb->pc, tb->size, flags1, flags2);
842 }
843 }
844 }
845 }
846
847 #endif
848
849 /* invalidate one TB */
850 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
851 int next_offset)
852 {
853 TranslationBlock *tb1;
854 for(;;) {
855 tb1 = *ptb;
856 if (tb1 == tb) {
857 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
858 break;
859 }
860 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
861 }
862 }
863
864 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
865 {
866 TranslationBlock *tb1;
867 unsigned int n1;
868
869 for(;;) {
870 tb1 = *ptb;
871 n1 = (uintptr_t)tb1 & 3;
872 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
873 if (tb1 == tb) {
874 *ptb = tb1->page_next[n1];
875 break;
876 }
877 ptb = &tb1->page_next[n1];
878 }
879 }
880
881 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
882 {
883 TranslationBlock *tb1, **ptb;
884 unsigned int n1;
885
886 ptb = &tb->jmp_next[n];
887 tb1 = *ptb;
888 if (tb1) {
889 /* find tb(n) in circular list */
890 for(;;) {
891 tb1 = *ptb;
892 n1 = (uintptr_t)tb1 & 3;
893 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
894 if (n1 == n && tb1 == tb)
895 break;
896 if (n1 == 2) {
897 ptb = &tb1->jmp_first;
898 } else {
899 ptb = &tb1->jmp_next[n1];
900 }
901 }
902 /* now we can suppress tb(n) from the list */
903 *ptb = tb->jmp_next[n];
904
905 tb->jmp_next[n] = NULL;
906 }
907 }
908
909 /* reset the jump entry 'n' of a TB so that it is not chained to
910 another TB */
911 static inline void tb_reset_jump(TranslationBlock *tb, int n)
912 {
913 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
914 }
915
916 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
917 {
918 CPUArchState *env;
919 PageDesc *p;
920 unsigned int h, n1;
921 tb_page_addr_t phys_pc;
922 TranslationBlock *tb1, *tb2;
923
924 /* remove the TB from the hash list */
925 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
926 h = tb_phys_hash_func(phys_pc);
927 tb_remove(&tb_phys_hash[h], tb,
928 offsetof(TranslationBlock, phys_hash_next));
929
930 /* remove the TB from the page list */
931 if (tb->page_addr[0] != page_addr) {
932 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
933 tb_page_remove(&p->first_tb, tb);
934 invalidate_page_bitmap(p);
935 }
936 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
937 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
938 tb_page_remove(&p->first_tb, tb);
939 invalidate_page_bitmap(p);
940 }
941
942 tb_invalidated_flag = 1;
943
944 /* remove the TB from the hash list */
945 h = tb_jmp_cache_hash_func(tb->pc);
946 for(env = first_cpu; env != NULL; env = env->next_cpu) {
947 if (env->tb_jmp_cache[h] == tb)
948 env->tb_jmp_cache[h] = NULL;
949 }
950
951 /* suppress this TB from the two jump lists */
952 tb_jmp_remove(tb, 0);
953 tb_jmp_remove(tb, 1);
954
955 /* suppress any remaining jumps to this TB */
956 tb1 = tb->jmp_first;
957 for(;;) {
958 n1 = (uintptr_t)tb1 & 3;
959 if (n1 == 2)
960 break;
961 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
962 tb2 = tb1->jmp_next[n1];
963 tb_reset_jump(tb1, n1);
964 tb1->jmp_next[n1] = NULL;
965 tb1 = tb2;
966 }
967 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
968
969 tb_phys_invalidate_count++;
970 }
971
972 static inline void set_bits(uint8_t *tab, int start, int len)
973 {
974 int end, mask, end1;
975
976 end = start + len;
977 tab += start >> 3;
978 mask = 0xff << (start & 7);
979 if ((start & ~7) == (end & ~7)) {
980 if (start < end) {
981 mask &= ~(0xff << (end & 7));
982 *tab |= mask;
983 }
984 } else {
985 *tab++ |= mask;
986 start = (start + 8) & ~7;
987 end1 = end & ~7;
988 while (start < end1) {
989 *tab++ = 0xff;
990 start += 8;
991 }
992 if (start < end) {
993 mask = ~(0xff << (end & 7));
994 *tab |= mask;
995 }
996 }
997 }
998
999 static void build_page_bitmap(PageDesc *p)
1000 {
1001 int n, tb_start, tb_end;
1002 TranslationBlock *tb;
1003
1004 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1005
1006 tb = p->first_tb;
1007 while (tb != NULL) {
1008 n = (uintptr_t)tb & 3;
1009 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1010 /* NOTE: this is subtle as a TB may span two physical pages */
1011 if (n == 0) {
1012 /* NOTE: tb_end may be after the end of the page, but
1013 it is not a problem */
1014 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1015 tb_end = tb_start + tb->size;
1016 if (tb_end > TARGET_PAGE_SIZE)
1017 tb_end = TARGET_PAGE_SIZE;
1018 } else {
1019 tb_start = 0;
1020 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1021 }
1022 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1023 tb = tb->page_next[n];
1024 }
1025 }
1026
1027 TranslationBlock *tb_gen_code(CPUArchState *env,
1028 target_ulong pc, target_ulong cs_base,
1029 int flags, int cflags)
1030 {
1031 TranslationBlock *tb;
1032 uint8_t *tc_ptr;
1033 tb_page_addr_t phys_pc, phys_page2;
1034 target_ulong virt_page2;
1035 int code_gen_size;
1036
1037 phys_pc = get_page_addr_code(env, pc);
1038 tb = tb_alloc(pc);
1039 if (!tb) {
1040 /* flush must be done */
1041 tb_flush(env);
1042 /* cannot fail at this point */
1043 tb = tb_alloc(pc);
1044 /* Don't forget to invalidate previous TB info. */
1045 tb_invalidated_flag = 1;
1046 }
1047 tc_ptr = code_gen_ptr;
1048 tb->tc_ptr = tc_ptr;
1049 tb->cs_base = cs_base;
1050 tb->flags = flags;
1051 tb->cflags = cflags;
1052 cpu_gen_code(env, tb, &code_gen_size);
1053 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1054 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1055
1056 /* check next page if needed */
1057 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1058 phys_page2 = -1;
1059 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1060 phys_page2 = get_page_addr_code(env, virt_page2);
1061 }
1062 tb_link_page(tb, phys_pc, phys_page2);
1063 return tb;
1064 }
1065
1066 /*
1067 * Invalidate all TBs which intersect with the target physical address range
1068 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1069 * 'is_cpu_write_access' should be true if called from a real cpu write
1070 * access: the virtual CPU will exit the current TB if code is modified inside
1071 * this TB.
1072 */
1073 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1074 int is_cpu_write_access)
1075 {
1076 while (start < end) {
1077 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1078 start &= TARGET_PAGE_MASK;
1079 start += TARGET_PAGE_SIZE;
1080 }
1081 }
1082
1083 /*
1084 * Invalidate all TBs which intersect with the target physical address range
1085 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1086 * 'is_cpu_write_access' should be true if called from a real cpu write
1087 * access: the virtual CPU will exit the current TB if code is modified inside
1088 * this TB.
1089 */
1090 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1091 int is_cpu_write_access)
1092 {
1093 TranslationBlock *tb, *tb_next, *saved_tb;
1094 CPUArchState *env = cpu_single_env;
1095 tb_page_addr_t tb_start, tb_end;
1096 PageDesc *p;
1097 int n;
1098 #ifdef TARGET_HAS_PRECISE_SMC
1099 int current_tb_not_found = is_cpu_write_access;
1100 TranslationBlock *current_tb = NULL;
1101 int current_tb_modified = 0;
1102 target_ulong current_pc = 0;
1103 target_ulong current_cs_base = 0;
1104 int current_flags = 0;
1105 #endif /* TARGET_HAS_PRECISE_SMC */
1106
1107 p = page_find(start >> TARGET_PAGE_BITS);
1108 if (!p)
1109 return;
1110 if (!p->code_bitmap &&
1111 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1112 is_cpu_write_access) {
1113 /* build code bitmap */
1114 build_page_bitmap(p);
1115 }
1116
1117 /* we remove all the TBs in the range [start, end[ */
1118 /* XXX: see if in some cases it could be faster to invalidate all the code */
1119 tb = p->first_tb;
1120 while (tb != NULL) {
1121 n = (uintptr_t)tb & 3;
1122 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1123 tb_next = tb->page_next[n];
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1125 if (n == 0) {
1126 /* NOTE: tb_end may be after the end of the page, but
1127 it is not a problem */
1128 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1129 tb_end = tb_start + tb->size;
1130 } else {
1131 tb_start = tb->page_addr[1];
1132 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1133 }
1134 if (!(tb_end <= start || tb_start >= end)) {
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_not_found) {
1137 current_tb_not_found = 0;
1138 current_tb = NULL;
1139 if (env->mem_io_pc) {
1140 /* now we have a real cpu fault */
1141 current_tb = tb_find_pc(env->mem_io_pc);
1142 }
1143 }
1144 if (current_tb == tb &&
1145 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
1151
1152 current_tb_modified = 1;
1153 cpu_restore_state(current_tb, env, env->mem_io_pc);
1154 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1155 &current_flags);
1156 }
1157 #endif /* TARGET_HAS_PRECISE_SMC */
1158 /* we need to do that to handle the case where a signal
1159 occurs while doing tb_phys_invalidate() */
1160 saved_tb = NULL;
1161 if (env) {
1162 saved_tb = env->current_tb;
1163 env->current_tb = NULL;
1164 }
1165 tb_phys_invalidate(tb, -1);
1166 if (env) {
1167 env->current_tb = saved_tb;
1168 if (env->interrupt_request && env->current_tb)
1169 cpu_interrupt(env, env->interrupt_request);
1170 }
1171 }
1172 tb = tb_next;
1173 }
1174 #if !defined(CONFIG_USER_ONLY)
1175 /* if no code remaining, no need to continue to use slow writes */
1176 if (!p->first_tb) {
1177 invalidate_page_bitmap(p);
1178 if (is_cpu_write_access) {
1179 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1180 }
1181 }
1182 #endif
1183 #ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb_modified) {
1185 /* we generate a block containing just the instruction
1186 modifying the memory. It will ensure that it cannot modify
1187 itself */
1188 env->current_tb = NULL;
1189 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1190 cpu_resume_from_signal(env, NULL);
1191 }
1192 #endif
1193 }
1194
1195 /* len must be <= 8 and start must be a multiple of len */
1196 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1197 {
1198 PageDesc *p;
1199 int offset, b;
1200 #if 0
1201 if (1) {
1202 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1203 cpu_single_env->mem_io_vaddr, len,
1204 cpu_single_env->eip,
1205 cpu_single_env->eip +
1206 (intptr_t)cpu_single_env->segs[R_CS].base);
1207 }
1208 #endif
1209 p = page_find(start >> TARGET_PAGE_BITS);
1210 if (!p)
1211 return;
1212 if (p->code_bitmap) {
1213 offset = start & ~TARGET_PAGE_MASK;
1214 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1215 if (b & ((1 << len) - 1))
1216 goto do_invalidate;
1217 } else {
1218 do_invalidate:
1219 tb_invalidate_phys_page_range(start, start + len, 1);
1220 }
1221 }
1222
1223 #if !defined(CONFIG_SOFTMMU)
1224 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1225 uintptr_t pc, void *puc)
1226 {
1227 TranslationBlock *tb;
1228 PageDesc *p;
1229 int n;
1230 #ifdef TARGET_HAS_PRECISE_SMC
1231 TranslationBlock *current_tb = NULL;
1232 CPUArchState *env = cpu_single_env;
1233 int current_tb_modified = 0;
1234 target_ulong current_pc = 0;
1235 target_ulong current_cs_base = 0;
1236 int current_flags = 0;
1237 #endif
1238
1239 addr &= TARGET_PAGE_MASK;
1240 p = page_find(addr >> TARGET_PAGE_BITS);
1241 if (!p)
1242 return;
1243 tb = p->first_tb;
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (tb && pc != 0) {
1246 current_tb = tb_find_pc(pc);
1247 }
1248 #endif
1249 while (tb != NULL) {
1250 n = (uintptr_t)tb & 3;
1251 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1252 #ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1260
1261 current_tb_modified = 1;
1262 cpu_restore_state(current_tb, env, pc);
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1265 }
1266 #endif /* TARGET_HAS_PRECISE_SMC */
1267 tb_phys_invalidate(tb, addr);
1268 tb = tb->page_next[n];
1269 }
1270 p->first_tb = NULL;
1271 #ifdef TARGET_HAS_PRECISE_SMC
1272 if (current_tb_modified) {
1273 /* we generate a block containing just the instruction
1274 modifying the memory. It will ensure that it cannot modify
1275 itself */
1276 env->current_tb = NULL;
1277 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1278 cpu_resume_from_signal(env, puc);
1279 }
1280 #endif
1281 }
1282 #endif
1283
1284 /* add the tb in the target page and protect it if necessary */
1285 static inline void tb_alloc_page(TranslationBlock *tb,
1286 unsigned int n, tb_page_addr_t page_addr)
1287 {
1288 PageDesc *p;
1289 #ifndef CONFIG_USER_ONLY
1290 bool page_already_protected;
1291 #endif
1292
1293 tb->page_addr[n] = page_addr;
1294 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1295 tb->page_next[n] = p->first_tb;
1296 #ifndef CONFIG_USER_ONLY
1297 page_already_protected = p->first_tb != NULL;
1298 #endif
1299 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1300 invalidate_page_bitmap(p);
1301
1302 #if defined(TARGET_HAS_SMC) || 1
1303
1304 #if defined(CONFIG_USER_ONLY)
1305 if (p->flags & PAGE_WRITE) {
1306 target_ulong addr;
1307 PageDesc *p2;
1308 int prot;
1309
1310 /* force the host page as non writable (writes will have a
1311 page fault + mprotect overhead) */
1312 page_addr &= qemu_host_page_mask;
1313 prot = 0;
1314 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1315 addr += TARGET_PAGE_SIZE) {
1316
1317 p2 = page_find (addr >> TARGET_PAGE_BITS);
1318 if (!p2)
1319 continue;
1320 prot |= p2->flags;
1321 p2->flags &= ~PAGE_WRITE;
1322 }
1323 mprotect(g2h(page_addr), qemu_host_page_size,
1324 (prot & PAGE_BITS) & ~PAGE_WRITE);
1325 #ifdef DEBUG_TB_INVALIDATE
1326 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1327 page_addr);
1328 #endif
1329 }
1330 #else
1331 /* if some code is already present, then the pages are already
1332 protected. So we handle the case where only the first TB is
1333 allocated in a physical page */
1334 if (!page_already_protected) {
1335 tlb_protect_code(page_addr);
1336 }
1337 #endif
1338
1339 #endif /* TARGET_HAS_SMC */
1340 }
1341
1342 /* add a new TB and link it to the physical page tables. phys_page2 is
1343 (-1) to indicate that only one page contains the TB. */
1344 void tb_link_page(TranslationBlock *tb,
1345 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1346 {
1347 unsigned int h;
1348 TranslationBlock **ptb;
1349
1350 /* Grab the mmap lock to stop another thread invalidating this TB
1351 before we are done. */
1352 mmap_lock();
1353 /* add in the physical hash table */
1354 h = tb_phys_hash_func(phys_pc);
1355 ptb = &tb_phys_hash[h];
1356 tb->phys_hash_next = *ptb;
1357 *ptb = tb;
1358
1359 /* add in the page list */
1360 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1361 if (phys_page2 != -1)
1362 tb_alloc_page(tb, 1, phys_page2);
1363 else
1364 tb->page_addr[1] = -1;
1365
1366 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1367 tb->jmp_next[0] = NULL;
1368 tb->jmp_next[1] = NULL;
1369
1370 /* init original jump addresses */
1371 if (tb->tb_next_offset[0] != 0xffff)
1372 tb_reset_jump(tb, 0);
1373 if (tb->tb_next_offset[1] != 0xffff)
1374 tb_reset_jump(tb, 1);
1375
1376 #ifdef DEBUG_TB_CHECK
1377 tb_page_check();
1378 #endif
1379 mmap_unlock();
1380 }
1381
1382 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1383 tb[1].tc_ptr. Return NULL if not found */
1384 TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1385 {
1386 int m_min, m_max, m;
1387 uintptr_t v;
1388 TranslationBlock *tb;
1389
1390 if (nb_tbs <= 0)
1391 return NULL;
1392 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1393 tc_ptr >= (uintptr_t)code_gen_ptr) {
1394 return NULL;
1395 }
1396 /* binary search (cf Knuth) */
1397 m_min = 0;
1398 m_max = nb_tbs - 1;
1399 while (m_min <= m_max) {
1400 m = (m_min + m_max) >> 1;
1401 tb = &tbs[m];
1402 v = (uintptr_t)tb->tc_ptr;
1403 if (v == tc_ptr)
1404 return tb;
1405 else if (tc_ptr < v) {
1406 m_max = m - 1;
1407 } else {
1408 m_min = m + 1;
1409 }
1410 }
1411 return &tbs[m_max];
1412 }
1413
1414 static void tb_reset_jump_recursive(TranslationBlock *tb);
1415
1416 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1417 {
1418 TranslationBlock *tb1, *tb_next, **ptb;
1419 unsigned int n1;
1420
1421 tb1 = tb->jmp_next[n];
1422 if (tb1 != NULL) {
1423 /* find head of list */
1424 for(;;) {
1425 n1 = (uintptr_t)tb1 & 3;
1426 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1427 if (n1 == 2)
1428 break;
1429 tb1 = tb1->jmp_next[n1];
1430 }
1431 /* we are now sure now that tb jumps to tb1 */
1432 tb_next = tb1;
1433
1434 /* remove tb from the jmp_first list */
1435 ptb = &tb_next->jmp_first;
1436 for(;;) {
1437 tb1 = *ptb;
1438 n1 = (uintptr_t)tb1 & 3;
1439 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1440 if (n1 == n && tb1 == tb)
1441 break;
1442 ptb = &tb1->jmp_next[n1];
1443 }
1444 *ptb = tb->jmp_next[n];
1445 tb->jmp_next[n] = NULL;
1446
1447 /* suppress the jump to next tb in generated code */
1448 tb_reset_jump(tb, n);
1449
1450 /* suppress jumps in the tb on which we could have jumped */
1451 tb_reset_jump_recursive(tb_next);
1452 }
1453 }
1454
1455 static void tb_reset_jump_recursive(TranslationBlock *tb)
1456 {
1457 tb_reset_jump_recursive2(tb, 0);
1458 tb_reset_jump_recursive2(tb, 1);
1459 }
1460
1461 #if defined(TARGET_HAS_ICE)
1462 #if defined(CONFIG_USER_ONLY)
1463 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1464 {
1465 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1466 }
1467 #else
1468 void tb_invalidate_phys_addr(target_phys_addr_t addr)
1469 {
1470 ram_addr_t ram_addr;
1471 MemoryRegionSection *section;
1472
1473 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1474 if (!(memory_region_is_ram(section->mr)
1475 || (section->mr->rom_device && section->mr->readable))) {
1476 return;
1477 }
1478 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1479 + memory_region_section_addr(section, addr);
1480 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1481 }
1482
1483 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1484 {
1485 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1486 (pc & ~TARGET_PAGE_MASK));
1487 }
1488 #endif
1489 #endif /* TARGET_HAS_ICE */
1490
1491 #if defined(CONFIG_USER_ONLY)
1492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1493
1494 {
1495 }
1496
1497 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1498 int flags, CPUWatchpoint **watchpoint)
1499 {
1500 return -ENOSYS;
1501 }
1502 #else
1503 /* Add a watchpoint. */
1504 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
1505 int flags, CPUWatchpoint **watchpoint)
1506 {
1507 target_ulong len_mask = ~(len - 1);
1508 CPUWatchpoint *wp;
1509
1510 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1511 if ((len & (len - 1)) || (addr & ~len_mask) ||
1512 len == 0 || len > TARGET_PAGE_SIZE) {
1513 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1514 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1515 return -EINVAL;
1516 }
1517 wp = g_malloc(sizeof(*wp));
1518
1519 wp->vaddr = addr;
1520 wp->len_mask = len_mask;
1521 wp->flags = flags;
1522
1523 /* keep all GDB-injected watchpoints in front */
1524 if (flags & BP_GDB)
1525 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1526 else
1527 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1528
1529 tlb_flush_page(env, addr);
1530
1531 if (watchpoint)
1532 *watchpoint = wp;
1533 return 0;
1534 }
1535
1536 /* Remove a specific watchpoint. */
1537 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
1538 int flags)
1539 {
1540 target_ulong len_mask = ~(len - 1);
1541 CPUWatchpoint *wp;
1542
1543 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1544 if (addr == wp->vaddr && len_mask == wp->len_mask
1545 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1546 cpu_watchpoint_remove_by_ref(env, wp);
1547 return 0;
1548 }
1549 }
1550 return -ENOENT;
1551 }
1552
1553 /* Remove a specific watchpoint by reference. */
1554 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
1555 {
1556 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1557
1558 tlb_flush_page(env, watchpoint->vaddr);
1559
1560 g_free(watchpoint);
1561 }
1562
1563 /* Remove all matching watchpoints. */
1564 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
1565 {
1566 CPUWatchpoint *wp, *next;
1567
1568 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1569 if (wp->flags & mask)
1570 cpu_watchpoint_remove_by_ref(env, wp);
1571 }
1572 }
1573 #endif
1574
1575 /* Add a breakpoint. */
1576 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
1577 CPUBreakpoint **breakpoint)
1578 {
1579 #if defined(TARGET_HAS_ICE)
1580 CPUBreakpoint *bp;
1581
1582 bp = g_malloc(sizeof(*bp));
1583
1584 bp->pc = pc;
1585 bp->flags = flags;
1586
1587 /* keep all GDB-injected breakpoints in front */
1588 if (flags & BP_GDB)
1589 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1590 else
1591 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1592
1593 breakpoint_invalidate(env, pc);
1594
1595 if (breakpoint)
1596 *breakpoint = bp;
1597 return 0;
1598 #else
1599 return -ENOSYS;
1600 #endif
1601 }
1602
1603 /* Remove a specific breakpoint. */
1604 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
1605 {
1606 #if defined(TARGET_HAS_ICE)
1607 CPUBreakpoint *bp;
1608
1609 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1610 if (bp->pc == pc && bp->flags == flags) {
1611 cpu_breakpoint_remove_by_ref(env, bp);
1612 return 0;
1613 }
1614 }
1615 return -ENOENT;
1616 #else
1617 return -ENOSYS;
1618 #endif
1619 }
1620
1621 /* Remove a specific breakpoint by reference. */
1622 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
1623 {
1624 #if defined(TARGET_HAS_ICE)
1625 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1626
1627 breakpoint_invalidate(env, breakpoint->pc);
1628
1629 g_free(breakpoint);
1630 #endif
1631 }
1632
1633 /* Remove all matching breakpoints. */
1634 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
1635 {
1636 #if defined(TARGET_HAS_ICE)
1637 CPUBreakpoint *bp, *next;
1638
1639 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1640 if (bp->flags & mask)
1641 cpu_breakpoint_remove_by_ref(env, bp);
1642 }
1643 #endif
1644 }
1645
1646 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1647 CPU loop after each instruction */
1648 void cpu_single_step(CPUArchState *env, int enabled)
1649 {
1650 #if defined(TARGET_HAS_ICE)
1651 if (env->singlestep_enabled != enabled) {
1652 env->singlestep_enabled = enabled;
1653 if (kvm_enabled())
1654 kvm_update_guest_debug(env, 0);
1655 else {
1656 /* must flush all the translated code to avoid inconsistencies */
1657 /* XXX: only flush what is necessary */
1658 tb_flush(env);
1659 }
1660 }
1661 #endif
1662 }
1663
1664 static void cpu_unlink_tb(CPUArchState *env)
1665 {
1666 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1667 problem and hope the cpu will stop of its own accord. For userspace
1668 emulation this often isn't actually as bad as it sounds. Often
1669 signals are used primarily to interrupt blocking syscalls. */
1670 TranslationBlock *tb;
1671 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1672
1673 spin_lock(&interrupt_lock);
1674 tb = env->current_tb;
1675 /* if the cpu is currently executing code, we must unlink it and
1676 all the potentially executing TB */
1677 if (tb) {
1678 env->current_tb = NULL;
1679 tb_reset_jump_recursive(tb);
1680 }
1681 spin_unlock(&interrupt_lock);
1682 }
1683
1684 #ifndef CONFIG_USER_ONLY
1685 /* mask must never be zero, except for A20 change call */
1686 static void tcg_handle_interrupt(CPUArchState *env, int mask)
1687 {
1688 int old_mask;
1689
1690 old_mask = env->interrupt_request;
1691 env->interrupt_request |= mask;
1692
1693 /*
1694 * If called from iothread context, wake the target cpu in
1695 * case its halted.
1696 */
1697 if (!qemu_cpu_is_self(env)) {
1698 qemu_cpu_kick(env);
1699 return;
1700 }
1701
1702 if (use_icount) {
1703 env->icount_decr.u16.high = 0xffff;
1704 if (!can_do_io(env)
1705 && (mask & ~old_mask) != 0) {
1706 cpu_abort(env, "Raised interrupt while not in I/O function");
1707 }
1708 } else {
1709 cpu_unlink_tb(env);
1710 }
1711 }
1712
1713 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1714
1715 #else /* CONFIG_USER_ONLY */
1716
1717 void cpu_interrupt(CPUArchState *env, int mask)
1718 {
1719 env->interrupt_request |= mask;
1720 cpu_unlink_tb(env);
1721 }
1722 #endif /* CONFIG_USER_ONLY */
1723
1724 void cpu_reset_interrupt(CPUArchState *env, int mask)
1725 {
1726 env->interrupt_request &= ~mask;
1727 }
1728
1729 void cpu_exit(CPUArchState *env)
1730 {
1731 env->exit_request = 1;
1732 cpu_unlink_tb(env);
1733 }
1734
1735 void cpu_abort(CPUArchState *env, const char *fmt, ...)
1736 {
1737 va_list ap;
1738 va_list ap2;
1739
1740 va_start(ap, fmt);
1741 va_copy(ap2, ap);
1742 fprintf(stderr, "qemu: fatal: ");
1743 vfprintf(stderr, fmt, ap);
1744 fprintf(stderr, "\n");
1745 #ifdef TARGET_I386
1746 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1747 #else
1748 cpu_dump_state(env, stderr, fprintf, 0);
1749 #endif
1750 if (qemu_log_enabled()) {
1751 qemu_log("qemu: fatal: ");
1752 qemu_log_vprintf(fmt, ap2);
1753 qemu_log("\n");
1754 #ifdef TARGET_I386
1755 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1756 #else
1757 log_cpu_state(env, 0);
1758 #endif
1759 qemu_log_flush();
1760 qemu_log_close();
1761 }
1762 va_end(ap2);
1763 va_end(ap);
1764 #if defined(CONFIG_USER_ONLY)
1765 {
1766 struct sigaction act;
1767 sigfillset(&act.sa_mask);
1768 act.sa_handler = SIG_DFL;
1769 sigaction(SIGABRT, &act, NULL);
1770 }
1771 #endif
1772 abort();
1773 }
1774
1775 CPUArchState *cpu_copy(CPUArchState *env)
1776 {
1777 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1778 CPUArchState *next_cpu = new_env->next_cpu;
1779 int cpu_index = new_env->cpu_index;
1780 #if defined(TARGET_HAS_ICE)
1781 CPUBreakpoint *bp;
1782 CPUWatchpoint *wp;
1783 #endif
1784
1785 memcpy(new_env, env, sizeof(CPUArchState));
1786
1787 /* Preserve chaining and index. */
1788 new_env->next_cpu = next_cpu;
1789 new_env->cpu_index = cpu_index;
1790
1791 /* Clone all break/watchpoints.
1792 Note: Once we support ptrace with hw-debug register access, make sure
1793 BP_CPU break/watchpoints are handled correctly on clone. */
1794 QTAILQ_INIT(&env->breakpoints);
1795 QTAILQ_INIT(&env->watchpoints);
1796 #if defined(TARGET_HAS_ICE)
1797 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1798 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1799 }
1800 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1801 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1802 wp->flags, NULL);
1803 }
1804 #endif
1805
1806 return new_env;
1807 }
1808
1809 #if !defined(CONFIG_USER_ONLY)
1810 void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
1811 {
1812 unsigned int i;
1813
1814 /* Discard jump cache entries for any tb which might potentially
1815 overlap the flushed page. */
1816 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1817 memset (&env->tb_jmp_cache[i], 0,
1818 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1819
1820 i = tb_jmp_cache_hash_page(addr);
1821 memset (&env->tb_jmp_cache[i], 0,
1822 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1823 }
1824
1825 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1826 uintptr_t length)
1827 {
1828 uintptr_t start1;
1829
1830 /* we modify the TLB cache so that the dirty bit will be set again
1831 when accessing the range */
1832 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1833 /* Check that we don't span multiple blocks - this breaks the
1834 address comparisons below. */
1835 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1836 != (end - 1) - start) {
1837 abort();
1838 }
1839 cpu_tlb_reset_dirty_all(start1, length);
1840
1841 }
1842
1843 /* Note: start and end must be within the same ram block. */
1844 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1845 int dirty_flags)
1846 {
1847 uintptr_t length;
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
1855 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1856
1857 if (tcg_enabled()) {
1858 tlb_reset_dirty_range_all(start, end, length);
1859 }
1860 }
1861
1862 int cpu_physical_memory_set_dirty_tracking(int enable)
1863 {
1864 int ret = 0;
1865 in_migration = enable;
1866 return ret;
1867 }
1868
1869 target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1870 MemoryRegionSection *section,
1871 target_ulong vaddr,
1872 target_phys_addr_t paddr,
1873 int prot,
1874 target_ulong *address)
1875 {
1876 target_phys_addr_t iotlb;
1877 CPUWatchpoint *wp;
1878
1879 if (memory_region_is_ram(section->mr)) {
1880 /* Normal RAM. */
1881 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1882 + memory_region_section_addr(section, paddr);
1883 if (!section->readonly) {
1884 iotlb |= phys_section_notdirty;
1885 } else {
1886 iotlb |= phys_section_rom;
1887 }
1888 } else {
1889 /* IO handlers are currently passed a physical address.
1890 It would be nice to pass an offset from the base address
1891 of that region. This would avoid having to special case RAM,
1892 and avoid full address decoding in every device.
1893 We can't use the high bits of pd for this because
1894 IO_MEM_ROMD uses these as a ram address. */
1895 iotlb = section - phys_sections;
1896 iotlb += memory_region_section_addr(section, paddr);
1897 }
1898
1899 /* Make accesses to pages with watchpoints go via the
1900 watchpoint trap routines. */
1901 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1902 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1903 /* Avoid trapping reads of pages with a write breakpoint. */
1904 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1905 iotlb = phys_section_watch + paddr;
1906 *address |= TLB_MMIO;
1907 break;
1908 }
1909 }
1910 }
1911
1912 return iotlb;
1913 }
1914
1915 #else
1916 /*
1917 * Walks guest process memory "regions" one by one
1918 * and calls callback function 'fn' for each region.
1919 */
1920
1921 struct walk_memory_regions_data
1922 {
1923 walk_memory_regions_fn fn;
1924 void *priv;
1925 uintptr_t start;
1926 int prot;
1927 };
1928
1929 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1930 abi_ulong end, int new_prot)
1931 {
1932 if (data->start != -1ul) {
1933 int rc = data->fn(data->priv, data->start, end, data->prot);
1934 if (rc != 0) {
1935 return rc;
1936 }
1937 }
1938
1939 data->start = (new_prot ? end : -1ul);
1940 data->prot = new_prot;
1941
1942 return 0;
1943 }
1944
1945 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1946 abi_ulong base, int level, void **lp)
1947 {
1948 abi_ulong pa;
1949 int i, rc;
1950
1951 if (*lp == NULL) {
1952 return walk_memory_regions_end(data, base, 0);
1953 }
1954
1955 if (level == 0) {
1956 PageDesc *pd = *lp;
1957 for (i = 0; i < L2_SIZE; ++i) {
1958 int prot = pd[i].flags;
1959
1960 pa = base | (i << TARGET_PAGE_BITS);
1961 if (prot != data->prot) {
1962 rc = walk_memory_regions_end(data, pa, prot);
1963 if (rc != 0) {
1964 return rc;
1965 }
1966 }
1967 }
1968 } else {
1969 void **pp = *lp;
1970 for (i = 0; i < L2_SIZE; ++i) {
1971 pa = base | ((abi_ulong)i <<
1972 (TARGET_PAGE_BITS + L2_BITS * level));
1973 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1974 if (rc != 0) {
1975 return rc;
1976 }
1977 }
1978 }
1979
1980 return 0;
1981 }
1982
1983 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1984 {
1985 struct walk_memory_regions_data data;
1986 uintptr_t i;
1987
1988 data.fn = fn;
1989 data.priv = priv;
1990 data.start = -1ul;
1991 data.prot = 0;
1992
1993 for (i = 0; i < V_L1_SIZE; i++) {
1994 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
1995 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1996 if (rc != 0) {
1997 return rc;
1998 }
1999 }
2000
2001 return walk_memory_regions_end(&data, 0, 0);
2002 }
2003
2004 static int dump_region(void *priv, abi_ulong start,
2005 abi_ulong end, unsigned long prot)
2006 {
2007 FILE *f = (FILE *)priv;
2008
2009 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2010 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2011 start, end, end - start,
2012 ((prot & PAGE_READ) ? 'r' : '-'),
2013 ((prot & PAGE_WRITE) ? 'w' : '-'),
2014 ((prot & PAGE_EXEC) ? 'x' : '-'));
2015
2016 return (0);
2017 }
2018
2019 /* dump memory mappings */
2020 void page_dump(FILE *f)
2021 {
2022 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2023 "start", "end", "size", "prot");
2024 walk_memory_regions(f, dump_region);
2025 }
2026
2027 int page_get_flags(target_ulong address)
2028 {
2029 PageDesc *p;
2030
2031 p = page_find(address >> TARGET_PAGE_BITS);
2032 if (!p)
2033 return 0;
2034 return p->flags;
2035 }
2036
2037 /* Modify the flags of a page and invalidate the code if necessary.
2038 The flag PAGE_WRITE_ORG is positioned automatically depending
2039 on PAGE_WRITE. The mmap_lock should already be held. */
2040 void page_set_flags(target_ulong start, target_ulong end, int flags)
2041 {
2042 target_ulong addr, len;
2043
2044 /* This function should never be called with addresses outside the
2045 guest address space. If this assert fires, it probably indicates
2046 a missing call to h2g_valid. */
2047 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2048 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2049 #endif
2050 assert(start < end);
2051
2052 start = start & TARGET_PAGE_MASK;
2053 end = TARGET_PAGE_ALIGN(end);
2054
2055 if (flags & PAGE_WRITE) {
2056 flags |= PAGE_WRITE_ORG;
2057 }
2058
2059 for (addr = start, len = end - start;
2060 len != 0;
2061 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2062 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2063
2064 /* If the write protection bit is set, then we invalidate
2065 the code inside. */
2066 if (!(p->flags & PAGE_WRITE) &&
2067 (flags & PAGE_WRITE) &&
2068 p->first_tb) {
2069 tb_invalidate_phys_page(addr, 0, NULL);
2070 }
2071 p->flags = flags;
2072 }
2073 }
2074
2075 int page_check_range(target_ulong start, target_ulong len, int flags)
2076 {
2077 PageDesc *p;
2078 target_ulong end;
2079 target_ulong addr;
2080
2081 /* This function should never be called with addresses outside the
2082 guest address space. If this assert fires, it probably indicates
2083 a missing call to h2g_valid. */
2084 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2085 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2086 #endif
2087
2088 if (len == 0) {
2089 return 0;
2090 }
2091 if (start + len - 1 < start) {
2092 /* We've wrapped around. */
2093 return -1;
2094 }
2095
2096 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2097 start = start & TARGET_PAGE_MASK;
2098
2099 for (addr = start, len = end - start;
2100 len != 0;
2101 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2102 p = page_find(addr >> TARGET_PAGE_BITS);
2103 if( !p )
2104 return -1;
2105 if( !(p->flags & PAGE_VALID) )
2106 return -1;
2107
2108 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2109 return -1;
2110 if (flags & PAGE_WRITE) {
2111 if (!(p->flags & PAGE_WRITE_ORG))
2112 return -1;
2113 /* unprotect the page if it was put read-only because it
2114 contains translated code */
2115 if (!(p->flags & PAGE_WRITE)) {
2116 if (!page_unprotect(addr, 0, NULL))
2117 return -1;
2118 }
2119 return 0;
2120 }
2121 }
2122 return 0;
2123 }
2124
2125 /* called from signal handler: invalidate the code and unprotect the
2126 page. Return TRUE if the fault was successfully handled. */
2127 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
2128 {
2129 unsigned int prot;
2130 PageDesc *p;
2131 target_ulong host_start, host_end, addr;
2132
2133 /* Technically this isn't safe inside a signal handler. However we
2134 know this only ever happens in a synchronous SEGV handler, so in
2135 practice it seems to be ok. */
2136 mmap_lock();
2137
2138 p = page_find(address >> TARGET_PAGE_BITS);
2139 if (!p) {
2140 mmap_unlock();
2141 return 0;
2142 }
2143
2144 /* if the page was really writable, then we change its
2145 protection back to writable */
2146 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2147 host_start = address & qemu_host_page_mask;
2148 host_end = host_start + qemu_host_page_size;
2149
2150 prot = 0;
2151 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2152 p = page_find(addr >> TARGET_PAGE_BITS);
2153 p->flags |= PAGE_WRITE;
2154 prot |= p->flags;
2155
2156 /* and since the content will be modified, we must invalidate
2157 the corresponding translated code. */
2158 tb_invalidate_phys_page(addr, pc, puc);
2159 #ifdef DEBUG_TB_CHECK
2160 tb_invalidate_check(addr);
2161 #endif
2162 }
2163 mprotect((void *)g2h(host_start), qemu_host_page_size,
2164 prot & PAGE_BITS);
2165
2166 mmap_unlock();
2167 return 1;
2168 }
2169 mmap_unlock();
2170 return 0;
2171 }
2172 #endif /* defined(CONFIG_USER_ONLY) */
2173
2174 #if !defined(CONFIG_USER_ONLY)
2175
2176 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2177 typedef struct subpage_t {
2178 MemoryRegion iomem;
2179 target_phys_addr_t base;
2180 uint16_t sub_section[TARGET_PAGE_SIZE];
2181 } subpage_t;
2182
2183 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2184 uint16_t section);
2185 static subpage_t *subpage_init(target_phys_addr_t base);
2186 static void destroy_page_desc(uint16_t section_index)
2187 {
2188 MemoryRegionSection *section = &phys_sections[section_index];
2189 MemoryRegion *mr = section->mr;
2190
2191 if (mr->subpage) {
2192 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2193 memory_region_destroy(&subpage->iomem);
2194 g_free(subpage);
2195 }
2196 }
2197
2198 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2199 {
2200 unsigned i;
2201 PhysPageEntry *p;
2202
2203 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2204 return;
2205 }
2206
2207 p = phys_map_nodes[lp->ptr];
2208 for (i = 0; i < L2_SIZE; ++i) {
2209 if (!p[i].is_leaf) {
2210 destroy_l2_mapping(&p[i], level - 1);
2211 } else {
2212 destroy_page_desc(p[i].ptr);
2213 }
2214 }
2215 lp->is_leaf = 0;
2216 lp->ptr = PHYS_MAP_NODE_NIL;
2217 }
2218
2219 static void destroy_all_mappings(void)
2220 {
2221 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2222 phys_map_nodes_reset();
2223 }
2224
2225 static uint16_t phys_section_add(MemoryRegionSection *section)
2226 {
2227 if (phys_sections_nb == phys_sections_nb_alloc) {
2228 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2229 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2230 phys_sections_nb_alloc);
2231 }
2232 phys_sections[phys_sections_nb] = *section;
2233 return phys_sections_nb++;
2234 }
2235
2236 static void phys_sections_clear(void)
2237 {
2238 phys_sections_nb = 0;
2239 }
2240
2241 static void register_subpage(MemoryRegionSection *section)
2242 {
2243 subpage_t *subpage;
2244 target_phys_addr_t base = section->offset_within_address_space
2245 & TARGET_PAGE_MASK;
2246 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2247 MemoryRegionSection subsection = {
2248 .offset_within_address_space = base,
2249 .size = TARGET_PAGE_SIZE,
2250 };
2251 target_phys_addr_t start, end;
2252
2253 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2254
2255 if (!(existing->mr->subpage)) {
2256 subpage = subpage_init(base);
2257 subsection.mr = &subpage->iomem;
2258 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2259 phys_section_add(&subsection));
2260 } else {
2261 subpage = container_of(existing->mr, subpage_t, iomem);
2262 }
2263 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2264 end = start + section->size - 1;
2265 subpage_register(subpage, start, end, phys_section_add(section));
2266 }
2267
2268
2269 static void register_multipage(MemoryRegionSection *section)
2270 {
2271 target_phys_addr_t start_addr = section->offset_within_address_space;
2272 ram_addr_t size = section->size;
2273 target_phys_addr_t addr;
2274 uint16_t section_index = phys_section_add(section);
2275
2276 assert(size);
2277
2278 addr = start_addr;
2279 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2280 section_index);
2281 }
2282
2283 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2284 bool readonly)
2285 {
2286 MemoryRegionSection now = *section, remain = *section;
2287
2288 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2289 || (now.size < TARGET_PAGE_SIZE)) {
2290 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2291 - now.offset_within_address_space,
2292 now.size);
2293 register_subpage(&now);
2294 remain.size -= now.size;
2295 remain.offset_within_address_space += now.size;
2296 remain.offset_within_region += now.size;
2297 }
2298 while (remain.size >= TARGET_PAGE_SIZE) {
2299 now = remain;
2300 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2301 now.size = TARGET_PAGE_SIZE;
2302 register_subpage(&now);
2303 } else {
2304 now.size &= TARGET_PAGE_MASK;
2305 register_multipage(&now);
2306 }
2307 remain.size -= now.size;
2308 remain.offset_within_address_space += now.size;
2309 remain.offset_within_region += now.size;
2310 }
2311 now = remain;
2312 if (now.size) {
2313 register_subpage(&now);
2314 }
2315 }
2316
2317
2318 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2319 {
2320 if (kvm_enabled())
2321 kvm_coalesce_mmio_region(addr, size);
2322 }
2323
2324 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2325 {
2326 if (kvm_enabled())
2327 kvm_uncoalesce_mmio_region(addr, size);
2328 }
2329
2330 void qemu_flush_coalesced_mmio_buffer(void)
2331 {
2332 if (kvm_enabled())
2333 kvm_flush_coalesced_mmio_buffer();
2334 }
2335
2336 #if defined(__linux__) && !defined(TARGET_S390X)
2337
2338 #include <sys/vfs.h>
2339
2340 #define HUGETLBFS_MAGIC 0x958458f6
2341
2342 static long gethugepagesize(const char *path)
2343 {
2344 struct statfs fs;
2345 int ret;
2346
2347 do {
2348 ret = statfs(path, &fs);
2349 } while (ret != 0 && errno == EINTR);
2350
2351 if (ret != 0) {
2352 perror(path);
2353 return 0;
2354 }
2355
2356 if (fs.f_type != HUGETLBFS_MAGIC)
2357 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2358
2359 return fs.f_bsize;
2360 }
2361
2362 static void *file_ram_alloc(RAMBlock *block,
2363 ram_addr_t memory,
2364 const char *path)
2365 {
2366 char *filename;
2367 void *area;
2368 int fd;
2369 #ifdef MAP_POPULATE
2370 int flags;
2371 #endif
2372 unsigned long hpagesize;
2373
2374 hpagesize = gethugepagesize(path);
2375 if (!hpagesize) {
2376 return NULL;
2377 }
2378
2379 if (memory < hpagesize) {
2380 return NULL;
2381 }
2382
2383 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2384 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2385 return NULL;
2386 }
2387
2388 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2389 return NULL;
2390 }
2391
2392 fd = mkstemp(filename);
2393 if (fd < 0) {
2394 perror("unable to create backing store for hugepages");
2395 free(filename);
2396 return NULL;
2397 }
2398 unlink(filename);
2399 free(filename);
2400
2401 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2402
2403 /*
2404 * ftruncate is not supported by hugetlbfs in older
2405 * hosts, so don't bother bailing out on errors.
2406 * If anything goes wrong with it under other filesystems,
2407 * mmap will fail.
2408 */
2409 if (ftruncate(fd, memory))
2410 perror("ftruncate");
2411
2412 #ifdef MAP_POPULATE
2413 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2414 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2415 * to sidestep this quirk.
2416 */
2417 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2418 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2419 #else
2420 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2421 #endif
2422 if (area == MAP_FAILED) {
2423 perror("file_ram_alloc: can't mmap RAM pages");
2424 close(fd);
2425 return (NULL);
2426 }
2427 block->fd = fd;
2428 return area;
2429 }
2430 #endif
2431
2432 static ram_addr_t find_ram_offset(ram_addr_t size)
2433 {
2434 RAMBlock *block, *next_block;
2435 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2436
2437 if (QLIST_EMPTY(&ram_list.blocks))
2438 return 0;
2439
2440 QLIST_FOREACH(block, &ram_list.blocks, next) {
2441 ram_addr_t end, next = RAM_ADDR_MAX;
2442
2443 end = block->offset + block->length;
2444
2445 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2446 if (next_block->offset >= end) {
2447 next = MIN(next, next_block->offset);
2448 }
2449 }
2450 if (next - end >= size && next - end < mingap) {
2451 offset = end;
2452 mingap = next - end;
2453 }
2454 }
2455
2456 if (offset == RAM_ADDR_MAX) {
2457 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2458 (uint64_t)size);
2459 abort();
2460 }
2461
2462 return offset;
2463 }
2464
2465 static ram_addr_t last_ram_offset(void)
2466 {
2467 RAMBlock *block;
2468 ram_addr_t last = 0;
2469
2470 QLIST_FOREACH(block, &ram_list.blocks, next)
2471 last = MAX(last, block->offset + block->length);
2472
2473 return last;
2474 }
2475
2476 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2477 {
2478 int ret;
2479 QemuOpts *machine_opts;
2480
2481 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2482 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2483 if (machine_opts &&
2484 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
2485 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2486 if (ret) {
2487 perror("qemu_madvise");
2488 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2489 "but dump_guest_core=off specified\n");
2490 }
2491 }
2492 }
2493
2494 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2495 {
2496 RAMBlock *new_block, *block;
2497
2498 new_block = NULL;
2499 QLIST_FOREACH(block, &ram_list.blocks, next) {
2500 if (block->offset == addr) {
2501 new_block = block;
2502 break;
2503 }
2504 }
2505 assert(new_block);
2506 assert(!new_block->idstr[0]);
2507
2508 if (dev) {
2509 char *id = qdev_get_dev_path(dev);
2510 if (id) {
2511 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2512 g_free(id);
2513 }
2514 }
2515 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2516
2517 QLIST_FOREACH(block, &ram_list.blocks, next) {
2518 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2519 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2520 new_block->idstr);
2521 abort();
2522 }
2523 }
2524 }
2525
2526 static int memory_try_enable_merging(void *addr, size_t len)
2527 {
2528 QemuOpts *opts;
2529
2530 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2531 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
2532 /* disabled by the user */
2533 return 0;
2534 }
2535
2536 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2537 }
2538
2539 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2540 MemoryRegion *mr)
2541 {
2542 RAMBlock *new_block;
2543
2544 size = TARGET_PAGE_ALIGN(size);
2545 new_block = g_malloc0(sizeof(*new_block));
2546
2547 new_block->mr = mr;
2548 new_block->offset = find_ram_offset(size);
2549 if (host) {
2550 new_block->host = host;
2551 new_block->flags |= RAM_PREALLOC_MASK;
2552 } else {
2553 if (mem_path) {
2554 #if defined (__linux__) && !defined(TARGET_S390X)
2555 new_block->host = file_ram_alloc(new_block, size, mem_path);
2556 if (!new_block->host) {
2557 new_block->host = qemu_vmalloc(size);
2558 memory_try_enable_merging(new_block->host, size);
2559 }
2560 #else
2561 fprintf(stderr, "-mem-path option unsupported\n");
2562 exit(1);
2563 #endif
2564 } else {
2565 if (xen_enabled()) {
2566 xen_ram_alloc(new_block->offset, size, mr);
2567 } else if (kvm_enabled()) {
2568 /* some s390/kvm configurations have special constraints */
2569 new_block->host = kvm_vmalloc(size);
2570 } else {
2571 new_block->host = qemu_vmalloc(size);
2572 }
2573 memory_try_enable_merging(new_block->host, size);
2574 }
2575 }
2576 new_block->length = size;
2577
2578 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2579
2580 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2581 last_ram_offset() >> TARGET_PAGE_BITS);
2582 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2583 0, size >> TARGET_PAGE_BITS);
2584 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
2585
2586 qemu_ram_setup_dump(new_block->host, size);
2587
2588 if (kvm_enabled())
2589 kvm_setup_guest_memory(new_block->host, size);
2590
2591 return new_block->offset;
2592 }
2593
2594 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2595 {
2596 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2597 }
2598
2599 void qemu_ram_free_from_ptr(ram_addr_t addr)
2600 {
2601 RAMBlock *block;
2602
2603 QLIST_FOREACH(block, &ram_list.blocks, next) {
2604 if (addr == block->offset) {
2605 QLIST_REMOVE(block, next);
2606 g_free(block);
2607 return;
2608 }
2609 }
2610 }
2611
2612 void qemu_ram_free(ram_addr_t addr)
2613 {
2614 RAMBlock *block;
2615
2616 QLIST_FOREACH(block, &ram_list.blocks, next) {
2617 if (addr == block->offset) {
2618 QLIST_REMOVE(block, next);
2619 if (block->flags & RAM_PREALLOC_MASK) {
2620 ;
2621 } else if (mem_path) {
2622 #if defined (__linux__) && !defined(TARGET_S390X)
2623 if (block->fd) {
2624 munmap(block->host, block->length);
2625 close(block->fd);
2626 } else {
2627 qemu_vfree(block->host);
2628 }
2629 #else
2630 abort();
2631 #endif
2632 } else {
2633 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2634 munmap(block->host, block->length);
2635 #else
2636 if (xen_enabled()) {
2637 xen_invalidate_map_cache_entry(block->host);
2638 } else {
2639 qemu_vfree(block->host);
2640 }
2641 #endif
2642 }
2643 g_free(block);
2644 return;
2645 }
2646 }
2647
2648 }
2649
2650 #ifndef _WIN32
2651 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2652 {
2653 RAMBlock *block;
2654 ram_addr_t offset;
2655 int flags;
2656 void *area, *vaddr;
2657
2658 QLIST_FOREACH(block, &ram_list.blocks, next) {
2659 offset = addr - block->offset;
2660 if (offset < block->length) {
2661 vaddr = block->host + offset;
2662 if (block->flags & RAM_PREALLOC_MASK) {
2663 ;
2664 } else {
2665 flags = MAP_FIXED;
2666 munmap(vaddr, length);
2667 if (mem_path) {
2668 #if defined(__linux__) && !defined(TARGET_S390X)
2669 if (block->fd) {
2670 #ifdef MAP_POPULATE
2671 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2672 MAP_PRIVATE;
2673 #else
2674 flags |= MAP_PRIVATE;
2675 #endif
2676 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2677 flags, block->fd, offset);
2678 } else {
2679 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2680 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2681 flags, -1, 0);
2682 }
2683 #else
2684 abort();
2685 #endif
2686 } else {
2687 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2688 flags |= MAP_SHARED | MAP_ANONYMOUS;
2689 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2690 flags, -1, 0);
2691 #else
2692 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2693 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2694 flags, -1, 0);
2695 #endif
2696 }
2697 if (area != vaddr) {
2698 fprintf(stderr, "Could not remap addr: "
2699 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2700 length, addr);
2701 exit(1);
2702 }
2703 memory_try_enable_merging(vaddr, length);
2704 qemu_ram_setup_dump(vaddr, length);
2705 }
2706 return;
2707 }
2708 }
2709 }
2710 #endif /* !_WIN32 */
2711
2712 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2713 With the exception of the softmmu code in this file, this should
2714 only be used for local memory (e.g. video ram) that the device owns,
2715 and knows it isn't going to access beyond the end of the block.
2716
2717 It should not be used for general purpose DMA.
2718 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2719 */
2720 void *qemu_get_ram_ptr(ram_addr_t addr)
2721 {
2722 RAMBlock *block;
2723
2724 QLIST_FOREACH(block, &ram_list.blocks, next) {
2725 if (addr - block->offset < block->length) {
2726 /* Move this entry to to start of the list. */
2727 if (block != QLIST_FIRST(&ram_list.blocks)) {
2728 QLIST_REMOVE(block, next);
2729 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2730 }
2731 if (xen_enabled()) {
2732 /* We need to check if the requested address is in the RAM
2733 * because we don't want to map the entire memory in QEMU.
2734 * In that case just map until the end of the page.
2735 */
2736 if (block->offset == 0) {
2737 return xen_map_cache(addr, 0, 0);
2738 } else if (block->host == NULL) {
2739 block->host =
2740 xen_map_cache(block->offset, block->length, 1);
2741 }
2742 }
2743 return block->host + (addr - block->offset);
2744 }
2745 }
2746
2747 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2748 abort();
2749
2750 return NULL;
2751 }
2752
2753 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2754 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2755 */
2756 void *qemu_safe_ram_ptr(ram_addr_t addr)
2757 {
2758 RAMBlock *block;
2759
2760 QLIST_FOREACH(block, &ram_list.blocks, next) {
2761 if (addr - block->offset < block->length) {
2762 if (xen_enabled()) {
2763 /* We need to check if the requested address is in the RAM
2764 * because we don't want to map the entire memory in QEMU.
2765 * In that case just map until the end of the page.
2766 */
2767 if (block->offset == 0) {
2768 return xen_map_cache(addr, 0, 0);
2769 } else if (block->host == NULL) {
2770 block->host =
2771 xen_map_cache(block->offset, block->length, 1);
2772 }
2773 }
2774 return block->host + (addr - block->offset);
2775 }
2776 }
2777
2778 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2779 abort();
2780
2781 return NULL;
2782 }
2783
2784 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2785 * but takes a size argument */
2786 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
2787 {
2788 if (*size == 0) {
2789 return NULL;
2790 }
2791 if (xen_enabled()) {
2792 return xen_map_cache(addr, *size, 1);
2793 } else {
2794 RAMBlock *block;
2795
2796 QLIST_FOREACH(block, &ram_list.blocks, next) {
2797 if (addr - block->offset < block->length) {
2798 if (addr - block->offset + *size > block->length)
2799 *size = block->length - addr + block->offset;
2800 return block->host + (addr - block->offset);
2801 }
2802 }
2803
2804 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2805 abort();
2806 }
2807 }
2808
2809 void qemu_put_ram_ptr(void *addr)
2810 {
2811 trace_qemu_put_ram_ptr(addr);
2812 }
2813
2814 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2815 {
2816 RAMBlock *block;
2817 uint8_t *host = ptr;
2818
2819 if (xen_enabled()) {
2820 *ram_addr = xen_ram_addr_from_mapcache(ptr);
2821 return 0;
2822 }
2823
2824 QLIST_FOREACH(block, &ram_list.blocks, next) {
2825 /* This case append when the block is not mapped. */
2826 if (block->host == NULL) {
2827 continue;
2828 }
2829 if (host - block->host < block->length) {
2830 *ram_addr = block->offset + (host - block->host);
2831 return 0;
2832 }
2833 }
2834
2835 return -1;
2836 }
2837
2838 /* Some of the softmmu routines need to translate from a host pointer
2839 (typically a TLB entry) back to a ram offset. */
2840 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2841 {
2842 ram_addr_t ram_addr;
2843
2844 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2845 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2846 abort();
2847 }
2848 return ram_addr;
2849 }
2850
2851 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2852 unsigned size)
2853 {
2854 #ifdef DEBUG_UNASSIGNED
2855 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2856 #endif
2857 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2858 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
2859 #endif
2860 return 0;
2861 }
2862
2863 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2864 uint64_t val, unsigned size)
2865 {
2866 #ifdef DEBUG_UNASSIGNED
2867 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
2868 #endif
2869 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2870 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
2871 #endif
2872 }
2873
2874 static const MemoryRegionOps unassigned_mem_ops = {
2875 .read = unassigned_mem_read,
2876 .write = unassigned_mem_write,
2877 .endianness = DEVICE_NATIVE_ENDIAN,
2878 };
2879
2880 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2881 unsigned size)
2882 {
2883 abort();
2884 }
2885
2886 static void error_mem_write(void *opaque, target_phys_addr_t addr,
2887 uint64_t value, unsigned size)
2888 {
2889 abort();
2890 }
2891
2892 static const MemoryRegionOps error_mem_ops = {
2893 .read = error_mem_read,
2894 .write = error_mem_write,
2895 .endianness = DEVICE_NATIVE_ENDIAN,
2896 };
2897
2898 static const MemoryRegionOps rom_mem_ops = {
2899 .read = error_mem_read,
2900 .write = unassigned_mem_write,
2901 .endianness = DEVICE_NATIVE_ENDIAN,
2902 };
2903
2904 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2905 uint64_t val, unsigned size)
2906 {
2907 int dirty_flags;
2908 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2909 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2910 #if !defined(CONFIG_USER_ONLY)
2911 tb_invalidate_phys_page_fast(ram_addr, size);
2912 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
2913 #endif
2914 }
2915 switch (size) {
2916 case 1:
2917 stb_p(qemu_get_ram_ptr(ram_addr), val);
2918 break;
2919 case 2:
2920 stw_p(qemu_get_ram_ptr(ram_addr), val);
2921 break;
2922 case 4:
2923 stl_p(qemu_get_ram_ptr(ram_addr), val);
2924 break;
2925 default:
2926 abort();
2927 }
2928 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2929 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
2930 /* we remove the notdirty callback only if the code has been
2931 flushed */
2932 if (dirty_flags == 0xff)
2933 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2934 }
2935
2936 static const MemoryRegionOps notdirty_mem_ops = {
2937 .read = error_mem_read,
2938 .write = notdirty_mem_write,
2939 .endianness = DEVICE_NATIVE_ENDIAN,
2940 };
2941
2942 /* Generate a debug exception if a watchpoint has been hit. */
2943 static void check_watchpoint(int offset, int len_mask, int flags)
2944 {
2945 CPUArchState *env = cpu_single_env;
2946 target_ulong pc, cs_base;
2947 TranslationBlock *tb;
2948 target_ulong vaddr;
2949 CPUWatchpoint *wp;
2950 int cpu_flags;
2951
2952 if (env->watchpoint_hit) {
2953 /* We re-entered the check after replacing the TB. Now raise
2954 * the debug interrupt so that is will trigger after the
2955 * current instruction. */
2956 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2957 return;
2958 }
2959 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2960 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2961 if ((vaddr == (wp->vaddr & len_mask) ||
2962 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2963 wp->flags |= BP_WATCHPOINT_HIT;
2964 if (!env->watchpoint_hit) {
2965 env->watchpoint_hit = wp;
2966 tb = tb_find_pc(env->mem_io_pc);
2967 if (!tb) {
2968 cpu_abort(env, "check_watchpoint: could not find TB for "
2969 "pc=%p", (void *)env->mem_io_pc);
2970 }
2971 cpu_restore_state(tb, env, env->mem_io_pc);
2972 tb_phys_invalidate(tb, -1);
2973 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2974 env->exception_index = EXCP_DEBUG;
2975 cpu_loop_exit(env);
2976 } else {
2977 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2978 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2979 cpu_resume_from_signal(env, NULL);
2980 }
2981 }
2982 } else {
2983 wp->flags &= ~BP_WATCHPOINT_HIT;
2984 }
2985 }
2986 }
2987
2988 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2989 so these check for a hit then pass through to the normal out-of-line
2990 phys routines. */
2991 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2992 unsigned size)
2993 {
2994 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2995 switch (size) {
2996 case 1: return ldub_phys(addr);
2997 case 2: return lduw_phys(addr);
2998 case 4: return ldl_phys(addr);
2999 default: abort();
3000 }
3001 }
3002
3003 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3004 uint64_t val, unsigned size)
3005 {
3006 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3007 switch (size) {
3008 case 1:
3009 stb_phys(addr, val);
3010 break;
3011 case 2:
3012 stw_phys(addr, val);
3013 break;
3014 case 4:
3015 stl_phys(addr, val);
3016 break;
3017 default: abort();
3018 }
3019 }
3020
3021 static const MemoryRegionOps watch_mem_ops = {
3022 .read = watch_mem_read,
3023 .write = watch_mem_write,
3024 .endianness = DEVICE_NATIVE_ENDIAN,
3025 };
3026
3027 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3028 unsigned len)
3029 {
3030 subpage_t *mmio = opaque;
3031 unsigned int idx = SUBPAGE_IDX(addr);
3032 MemoryRegionSection *section;
3033 #if defined(DEBUG_SUBPAGE)
3034 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3035 mmio, len, addr, idx);
3036 #endif
3037
3038 section = &phys_sections[mmio->sub_section[idx]];
3039 addr += mmio->base;
3040 addr -= section->offset_within_address_space;
3041 addr += section->offset_within_region;
3042 return io_mem_read(section->mr, addr, len);
3043 }
3044
3045 static void subpage_write(void *opaque, target_phys_addr_t addr,
3046 uint64_t value, unsigned len)
3047 {
3048 subpage_t *mmio = opaque;
3049 unsigned int idx = SUBPAGE_IDX(addr);
3050 MemoryRegionSection *section;
3051 #if defined(DEBUG_SUBPAGE)
3052 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3053 " idx %d value %"PRIx64"\n",
3054 __func__, mmio, len, addr, idx, value);
3055 #endif
3056
3057 section = &phys_sections[mmio->sub_section[idx]];
3058 addr += mmio->base;
3059 addr -= section->offset_within_address_space;
3060 addr += section->offset_within_region;
3061 io_mem_write(section->mr, addr, value, len);
3062 }
3063
3064 static const MemoryRegionOps subpage_ops = {
3065 .read = subpage_read,
3066 .write = subpage_write,
3067 .endianness = DEVICE_NATIVE_ENDIAN,
3068 };
3069
3070 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3071 unsigned size)
3072 {
3073 ram_addr_t raddr = addr;
3074 void *ptr = qemu_get_ram_ptr(raddr);
3075 switch (size) {
3076 case 1: return ldub_p(ptr);
3077 case 2: return lduw_p(ptr);
3078 case 4: return ldl_p(ptr);
3079 default: abort();
3080 }
3081 }
3082
3083 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3084 uint64_t value, unsigned size)
3085 {
3086 ram_addr_t raddr = addr;
3087 void *ptr = qemu_get_ram_ptr(raddr);
3088 switch (size) {
3089 case 1: return stb_p(ptr, value);
3090 case 2: return stw_p(ptr, value);
3091 case 4: return stl_p(ptr, value);
3092 default: abort();
3093 }
3094 }
3095
3096 static const MemoryRegionOps subpage_ram_ops = {
3097 .read = subpage_ram_read,
3098 .write = subpage_ram_write,
3099 .endianness = DEVICE_NATIVE_ENDIAN,
3100 };
3101
3102 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3103 uint16_t section)
3104 {
3105 int idx, eidx;
3106
3107 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3108 return -1;
3109 idx = SUBPAGE_IDX(start);
3110 eidx = SUBPAGE_IDX(end);
3111 #if defined(DEBUG_SUBPAGE)
3112 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3113 mmio, start, end, idx, eidx, memory);
3114 #endif
3115 if (memory_region_is_ram(phys_sections[section].mr)) {
3116 MemoryRegionSection new_section = phys_sections[section];
3117 new_section.mr = &io_mem_subpage_ram;
3118 section = phys_section_add(&new_section);
3119 }
3120 for (; idx <= eidx; idx++) {
3121 mmio->sub_section[idx] = section;
3122 }
3123
3124 return 0;
3125 }
3126
3127 static subpage_t *subpage_init(target_phys_addr_t base)
3128 {
3129 subpage_t *mmio;
3130
3131 mmio = g_malloc0(sizeof(subpage_t));
3132
3133 mmio->base = base;
3134 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3135 "subpage", TARGET_PAGE_SIZE);
3136 mmio->iomem.subpage = true;
3137 #if defined(DEBUG_SUBPAGE)
3138 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3139 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3140 #endif
3141 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3142
3143 return mmio;
3144 }
3145
3146 static uint16_t dummy_section(MemoryRegion *mr)
3147 {
3148 MemoryRegionSection section = {
3149 .mr = mr,
3150 .offset_within_address_space = 0,
3151 .offset_within_region = 0,
3152 .size = UINT64_MAX,
3153 };
3154
3155 return phys_section_add(&section);
3156 }
3157
3158 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3159 {
3160 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3161 }
3162
3163 static void io_mem_init(void)
3164 {
3165 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3166 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3167 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3168 "unassigned", UINT64_MAX);
3169 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3170 "notdirty", UINT64_MAX);
3171 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3172 "subpage-ram", UINT64_MAX);
3173 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3174 "watch", UINT64_MAX);
3175 }
3176
3177 static void core_begin(MemoryListener *listener)
3178 {
3179 destroy_all_mappings();
3180 phys_sections_clear();
3181 phys_map.ptr = PHYS_MAP_NODE_NIL;
3182 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3183 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3184 phys_section_rom = dummy_section(&io_mem_rom);
3185 phys_section_watch = dummy_section(&io_mem_watch);
3186 }
3187
3188 static void core_commit(MemoryListener *listener)
3189 {
3190 CPUArchState *env;
3191
3192 /* since each CPU stores ram addresses in its TLB cache, we must
3193 reset the modified entries */
3194 /* XXX: slow ! */
3195 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3196 tlb_flush(env, 1);
3197 }
3198 }
3199
3200 static void core_region_add(MemoryListener *listener,
3201 MemoryRegionSection *section)
3202 {
3203 cpu_register_physical_memory_log(section, section->readonly);
3204 }
3205
3206 static void core_region_del(MemoryListener *listener,
3207 MemoryRegionSection *section)
3208 {
3209 }
3210
3211 static void core_region_nop(MemoryListener *listener,
3212 MemoryRegionSection *section)
3213 {
3214 cpu_register_physical_memory_log(section, section->readonly);
3215 }
3216
3217 static void core_log_start(MemoryListener *listener,
3218 MemoryRegionSection *section)
3219 {
3220 }
3221
3222 static void core_log_stop(MemoryListener *listener,
3223 MemoryRegionSection *section)
3224 {
3225 }
3226
3227 static void core_log_sync(MemoryListener *listener,
3228 MemoryRegionSection *section)
3229 {
3230 }
3231
3232 static void core_log_global_start(MemoryListener *listener)
3233 {
3234 cpu_physical_memory_set_dirty_tracking(1);
3235 }
3236
3237 static void core_log_global_stop(MemoryListener *listener)
3238 {
3239 cpu_physical_memory_set_dirty_tracking(0);
3240 }
3241
3242 static void core_eventfd_add(MemoryListener *listener,
3243 MemoryRegionSection *section,
3244 bool match_data, uint64_t data, EventNotifier *e)
3245 {
3246 }
3247
3248 static void core_eventfd_del(MemoryListener *listener,
3249 MemoryRegionSection *section,
3250 bool match_data, uint64_t data, EventNotifier *e)
3251 {
3252 }
3253
3254 static void io_begin(MemoryListener *listener)
3255 {
3256 }
3257
3258 static void io_commit(MemoryListener *listener)
3259 {
3260 }
3261
3262 static void io_region_add(MemoryListener *listener,
3263 MemoryRegionSection *section)
3264 {
3265 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3266
3267 mrio->mr = section->mr;
3268 mrio->offset = section->offset_within_region;
3269 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3270 section->offset_within_address_space, section->size);
3271 ioport_register(&mrio->iorange);
3272 }
3273
3274 static void io_region_del(MemoryListener *listener,
3275 MemoryRegionSection *section)
3276 {
3277 isa_unassign_ioport(section->offset_within_address_space, section->size);
3278 }
3279
3280 static void io_region_nop(MemoryListener *listener,
3281 MemoryRegionSection *section)
3282 {
3283 }
3284
3285 static void io_log_start(MemoryListener *listener,
3286 MemoryRegionSection *section)
3287 {
3288 }
3289
3290 static void io_log_stop(MemoryListener *listener,
3291 MemoryRegionSection *section)
3292 {
3293 }
3294
3295 static void io_log_sync(MemoryListener *listener,
3296 MemoryRegionSection *section)
3297 {
3298 }
3299
3300 static void io_log_global_start(MemoryListener *listener)
3301 {
3302 }
3303
3304 static void io_log_global_stop(MemoryListener *listener)
3305 {
3306 }
3307
3308 static void io_eventfd_add(MemoryListener *listener,
3309 MemoryRegionSection *section,
3310 bool match_data, uint64_t data, EventNotifier *e)
3311 {
3312 }
3313
3314 static void io_eventfd_del(MemoryListener *listener,
3315 MemoryRegionSection *section,
3316 bool match_data, uint64_t data, EventNotifier *e)
3317 {
3318 }
3319
3320 static MemoryListener core_memory_listener = {
3321 .begin = core_begin,
3322 .commit = core_commit,
3323 .region_add = core_region_add,
3324 .region_del = core_region_del,
3325 .region_nop = core_region_nop,
3326 .log_start = core_log_start,
3327 .log_stop = core_log_stop,
3328 .log_sync = core_log_sync,
3329 .log_global_start = core_log_global_start,
3330 .log_global_stop = core_log_global_stop,
3331 .eventfd_add = core_eventfd_add,
3332 .eventfd_del = core_eventfd_del,
3333 .priority = 0,
3334 };
3335
3336 static MemoryListener io_memory_listener = {
3337 .begin = io_begin,
3338 .commit = io_commit,
3339 .region_add = io_region_add,
3340 .region_del = io_region_del,
3341 .region_nop = io_region_nop,
3342 .log_start = io_log_start,
3343 .log_stop = io_log_stop,
3344 .log_sync = io_log_sync,
3345 .log_global_start = io_log_global_start,
3346 .log_global_stop = io_log_global_stop,
3347 .eventfd_add = io_eventfd_add,
3348 .eventfd_del = io_eventfd_del,
3349 .priority = 0,
3350 };
3351
3352 static void memory_map_init(void)
3353 {
3354 system_memory = g_malloc(sizeof(*system_memory));
3355 memory_region_init(system_memory, "system", INT64_MAX);
3356 set_system_memory_map(system_memory);
3357
3358 system_io = g_malloc(sizeof(*system_io));
3359 memory_region_init(system_io, "io", 65536);
3360 set_system_io_map(system_io);
3361
3362 memory_listener_register(&core_memory_listener, system_memory);
3363 memory_listener_register(&io_memory_listener, system_io);
3364 }
3365
3366 MemoryRegion *get_system_memory(void)
3367 {
3368 return system_memory;
3369 }
3370
3371 MemoryRegion *get_system_io(void)
3372 {
3373 return system_io;
3374 }
3375
3376 #endif /* !defined(CONFIG_USER_ONLY) */
3377
3378 /* physical memory access (slow version, mainly for debug) */
3379 #if defined(CONFIG_USER_ONLY)
3380 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
3381 uint8_t *buf, int len, int is_write)
3382 {
3383 int l, flags;
3384 target_ulong page;
3385 void * p;
3386
3387 while (len > 0) {
3388 page = addr & TARGET_PAGE_MASK;
3389 l = (page + TARGET_PAGE_SIZE) - addr;
3390 if (l > len)
3391 l = len;
3392 flags = page_get_flags(page);
3393 if (!(flags & PAGE_VALID))
3394 return -1;
3395 if (is_write) {
3396 if (!(flags & PAGE_WRITE))
3397 return -1;
3398 /* XXX: this code should not depend on lock_user */
3399 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3400 return -1;
3401 memcpy(p, buf, l);
3402 unlock_user(p, addr, l);
3403 } else {
3404 if (!(flags & PAGE_READ))
3405 return -1;
3406 /* XXX: this code should not depend on lock_user */
3407 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3408 return -1;
3409 memcpy(buf, p, l);
3410 unlock_user(p, addr, 0);
3411 }
3412 len -= l;
3413 buf += l;
3414 addr += l;
3415 }
3416 return 0;
3417 }
3418
3419 #else
3420 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3421 int len, int is_write)
3422 {
3423 int l;
3424 uint8_t *ptr;
3425 uint32_t val;
3426 target_phys_addr_t page;
3427 MemoryRegionSection *section;
3428
3429 while (len > 0) {
3430 page = addr & TARGET_PAGE_MASK;
3431 l = (page + TARGET_PAGE_SIZE) - addr;
3432 if (l > len)
3433 l = len;
3434 section = phys_page_find(page >> TARGET_PAGE_BITS);
3435
3436 if (is_write) {
3437 if (!memory_region_is_ram(section->mr)) {
3438 target_phys_addr_t addr1;
3439 addr1 = memory_region_section_addr(section, addr);
3440 /* XXX: could force cpu_single_env to NULL to avoid
3441 potential bugs */
3442 if (l >= 4 && ((addr1 & 3) == 0)) {
3443 /* 32 bit write access */
3444 val = ldl_p(buf);
3445 io_mem_write(section->mr, addr1, val, 4);
3446 l = 4;
3447 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3448 /* 16 bit write access */
3449 val = lduw_p(buf);
3450 io_mem_write(section->mr, addr1, val, 2);
3451 l = 2;
3452 } else {
3453 /* 8 bit write access */
3454 val = ldub_p(buf);
3455 io_mem_write(section->mr, addr1, val, 1);
3456 l = 1;
3457 }
3458 } else if (!section->readonly) {
3459 ram_addr_t addr1;
3460 addr1 = memory_region_get_ram_addr(section->mr)
3461 + memory_region_section_addr(section, addr);
3462 /* RAM case */
3463 ptr = qemu_get_ram_ptr(addr1);
3464 memcpy(ptr, buf, l);
3465 if (!cpu_physical_memory_is_dirty(addr1)) {
3466 /* invalidate code */
3467 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3468 /* set dirty bit */
3469 cpu_physical_memory_set_dirty_flags(
3470 addr1, (0xff & ~CODE_DIRTY_FLAG));
3471 }
3472 qemu_put_ram_ptr(ptr);
3473 }
3474 } else {
3475 if (!(memory_region_is_ram(section->mr) ||
3476 memory_region_is_romd(section->mr))) {
3477 target_phys_addr_t addr1;
3478 /* I/O case */
3479 addr1 = memory_region_section_addr(section, addr);
3480 if (l >= 4 && ((addr1 & 3) == 0)) {
3481 /* 32 bit read access */
3482 val = io_mem_read(section->mr, addr1, 4);
3483 stl_p(buf, val);
3484 l = 4;
3485 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3486 /* 16 bit read access */
3487 val = io_mem_read(section->mr, addr1, 2);
3488 stw_p(buf, val);
3489 l = 2;
3490 } else {
3491 /* 8 bit read access */
3492 val = io_mem_read(section->mr, addr1, 1);
3493 stb_p(buf, val);
3494 l = 1;
3495 }
3496 } else {
3497 /* RAM case */
3498 ptr = qemu_get_ram_ptr(section->mr->ram_addr
3499 + memory_region_section_addr(section,
3500 addr));
3501 memcpy(buf, ptr, l);
3502 qemu_put_ram_ptr(ptr);
3503 }
3504 }
3505 len -= l;
3506 buf += l;
3507 addr += l;
3508 }
3509 }
3510
3511 /* used for ROM loading : can write in RAM and ROM */
3512 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3513 const uint8_t *buf, int len)
3514 {
3515 int l;
3516 uint8_t *ptr;
3517 target_phys_addr_t page;
3518 MemoryRegionSection *section;
3519
3520 while (len > 0) {
3521 page = addr & TARGET_PAGE_MASK;
3522 l = (page + TARGET_PAGE_SIZE) - addr;
3523 if (l > len)
3524 l = len;
3525 section = phys_page_find(page >> TARGET_PAGE_BITS);
3526
3527 if (!(memory_region_is_ram(section->mr) ||
3528 memory_region_is_romd(section->mr))) {
3529 /* do nothing */
3530 } else {
3531 unsigned long addr1;
3532 addr1 = memory_region_get_ram_addr(section->mr)
3533 + memory_region_section_addr(section, addr);
3534 /* ROM/RAM case */
3535 ptr = qemu_get_ram_ptr(addr1);
3536 memcpy(ptr, buf, l);
3537 if (!cpu_physical_memory_is_dirty(addr1)) {
3538 /* invalidate code */
3539 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3540 /* set dirty bit */
3541 cpu_physical_memory_set_dirty_flags(
3542 addr1, (0xff & ~CODE_DIRTY_FLAG));
3543 }
3544 qemu_put_ram_ptr(ptr);
3545 }
3546 len -= l;
3547 buf += l;
3548 addr += l;
3549 }
3550 }
3551
3552 typedef struct {
3553 void *buffer;
3554 target_phys_addr_t addr;
3555 target_phys_addr_t len;
3556 } BounceBuffer;
3557
3558 static BounceBuffer bounce;
3559
3560 typedef struct MapClient {
3561 void *opaque;
3562 void (*callback)(void *opaque);
3563 QLIST_ENTRY(MapClient) link;
3564 } MapClient;
3565
3566 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3567 = QLIST_HEAD_INITIALIZER(map_client_list);
3568
3569 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3570 {
3571 MapClient *client = g_malloc(sizeof(*client));
3572
3573 client->opaque = opaque;
3574 client->callback = callback;
3575 QLIST_INSERT_HEAD(&map_client_list, client, link);
3576 return client;
3577 }
3578
3579 void cpu_unregister_map_client(void *_client)
3580 {
3581 MapClient *client = (MapClient *)_client;
3582
3583 QLIST_REMOVE(client, link);
3584 g_free(client);
3585 }
3586
3587 static void cpu_notify_map_clients(void)
3588 {
3589 MapClient *client;
3590
3591 while (!QLIST_EMPTY(&map_client_list)) {
3592 client = QLIST_FIRST(&map_client_list);
3593 client->callback(client->opaque);
3594 cpu_unregister_map_client(client);
3595 }
3596 }
3597
3598 /* Map a physical memory region into a host virtual address.
3599 * May map a subset of the requested range, given by and returned in *plen.
3600 * May return NULL if resources needed to perform the mapping are exhausted.
3601 * Use only for reads OR writes - not for read-modify-write operations.
3602 * Use cpu_register_map_client() to know when retrying the map operation is
3603 * likely to succeed.
3604 */
3605 void *cpu_physical_memory_map(target_phys_addr_t addr,
3606 target_phys_addr_t *plen,
3607 int is_write)
3608 {
3609 target_phys_addr_t len = *plen;
3610 target_phys_addr_t todo = 0;
3611 int l;
3612 target_phys_addr_t page;
3613 MemoryRegionSection *section;
3614 ram_addr_t raddr = RAM_ADDR_MAX;
3615 ram_addr_t rlen;
3616 void *ret;
3617
3618 while (len > 0) {
3619 page = addr & TARGET_PAGE_MASK;
3620 l = (page + TARGET_PAGE_SIZE) - addr;
3621 if (l > len)
3622 l = len;
3623 section = phys_page_find(page >> TARGET_PAGE_BITS);
3624
3625 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3626 if (todo || bounce.buffer) {
3627 break;
3628 }
3629 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3630 bounce.addr = addr;
3631 bounce.len = l;
3632 if (!is_write) {
3633 cpu_physical_memory_read(addr, bounce.buffer, l);
3634 }
3635
3636 *plen = l;
3637 return bounce.buffer;
3638 }
3639 if (!todo) {
3640 raddr = memory_region_get_ram_addr(section->mr)
3641 + memory_region_section_addr(section, addr);
3642 }
3643
3644 len -= l;
3645 addr += l;
3646 todo += l;
3647 }
3648 rlen = todo;
3649 ret = qemu_ram_ptr_length(raddr, &rlen);
3650 *plen = rlen;
3651 return ret;
3652 }
3653
3654 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3655 * Will also mark the memory as dirty if is_write == 1. access_len gives
3656 * the amount of memory that was actually read or written by the caller.
3657 */
3658 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3659 int is_write, target_phys_addr_t access_len)
3660 {
3661 if (buffer != bounce.buffer) {
3662 if (is_write) {
3663 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3664 while (access_len) {
3665 unsigned l;
3666 l = TARGET_PAGE_SIZE;
3667 if (l > access_len)
3668 l = access_len;
3669 if (!cpu_physical_memory_is_dirty(addr1)) {
3670 /* invalidate code */
3671 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3672 /* set dirty bit */
3673 cpu_physical_memory_set_dirty_flags(
3674 addr1, (0xff & ~CODE_DIRTY_FLAG));
3675 }
3676 addr1 += l;
3677 access_len -= l;
3678 }
3679 }
3680 if (xen_enabled()) {
3681 xen_invalidate_map_cache_entry(buffer);
3682 }
3683 return;
3684 }
3685 if (is_write) {
3686 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3687 }
3688 qemu_vfree(bounce.buffer);
3689 bounce.buffer = NULL;
3690 cpu_notify_map_clients();
3691 }
3692
3693 /* warning: addr must be aligned */
3694 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3695 enum device_endian endian)
3696 {
3697 uint8_t *ptr;
3698 uint32_t val;
3699 MemoryRegionSection *section;
3700
3701 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3702
3703 if (!(memory_region_is_ram(section->mr) ||
3704 memory_region_is_romd(section->mr))) {
3705 /* I/O case */
3706 addr = memory_region_section_addr(section, addr);
3707 val = io_mem_read(section->mr, addr, 4);
3708 #if defined(TARGET_WORDS_BIGENDIAN)
3709 if (endian == DEVICE_LITTLE_ENDIAN) {
3710 val = bswap32(val);
3711 }
3712 #else
3713 if (endian == DEVICE_BIG_ENDIAN) {
3714 val = bswap32(val);
3715 }
3716 #endif
3717 } else {
3718 /* RAM case */
3719 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3720 & TARGET_PAGE_MASK)
3721 + memory_region_section_addr(section, addr));
3722 switch (endian) {
3723 case DEVICE_LITTLE_ENDIAN:
3724 val = ldl_le_p(ptr);
3725 break;
3726 case DEVICE_BIG_ENDIAN:
3727 val = ldl_be_p(ptr);
3728 break;
3729 default:
3730 val = ldl_p(ptr);
3731 break;
3732 }
3733 }
3734 return val;
3735 }
3736
3737 uint32_t ldl_phys(target_phys_addr_t addr)
3738 {
3739 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3740 }
3741
3742 uint32_t ldl_le_phys(target_phys_addr_t addr)
3743 {
3744 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3745 }
3746
3747 uint32_t ldl_be_phys(target_phys_addr_t addr)
3748 {
3749 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3750 }
3751
3752 /* warning: addr must be aligned */
3753 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3754 enum device_endian endian)
3755 {
3756 uint8_t *ptr;
3757 uint64_t val;
3758 MemoryRegionSection *section;
3759
3760 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3761
3762 if (!(memory_region_is_ram(section->mr) ||
3763 memory_region_is_romd(section->mr))) {
3764 /* I/O case */
3765 addr = memory_region_section_addr(section, addr);
3766
3767 /* XXX This is broken when device endian != cpu endian.
3768 Fix and add "endian" variable check */
3769 #ifdef TARGET_WORDS_BIGENDIAN
3770 val = io_mem_read(section->mr, addr, 4) << 32;
3771 val |= io_mem_read(section->mr, addr + 4, 4);
3772 #else
3773 val = io_mem_read(section->mr, addr, 4);
3774 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
3775 #endif
3776 } else {
3777 /* RAM case */
3778 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3779 & TARGET_PAGE_MASK)
3780 + memory_region_section_addr(section, addr));
3781 switch (endian) {
3782 case DEVICE_LITTLE_ENDIAN:
3783 val = ldq_le_p(ptr);
3784 break;
3785 case DEVICE_BIG_ENDIAN:
3786 val = ldq_be_p(ptr);
3787 break;
3788 default:
3789 val = ldq_p(ptr);
3790 break;
3791 }
3792 }
3793 return val;
3794 }
3795
3796 uint64_t ldq_phys(target_phys_addr_t addr)
3797 {
3798 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3799 }
3800
3801 uint64_t ldq_le_phys(target_phys_addr_t addr)
3802 {
3803 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3804 }
3805
3806 uint64_t ldq_be_phys(target_phys_addr_t addr)
3807 {
3808 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3809 }
3810
3811 /* XXX: optimize */
3812 uint32_t ldub_phys(target_phys_addr_t addr)
3813 {
3814 uint8_t val;
3815 cpu_physical_memory_read(addr, &val, 1);
3816 return val;
3817 }
3818
3819 /* warning: addr must be aligned */
3820 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3821 enum device_endian endian)
3822 {
3823 uint8_t *ptr;
3824 uint64_t val;
3825 MemoryRegionSection *section;
3826
3827 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3828
3829 if (!(memory_region_is_ram(section->mr) ||
3830 memory_region_is_romd(section->mr))) {
3831 /* I/O case */
3832 addr = memory_region_section_addr(section, addr);
3833 val = io_mem_read(section->mr, addr, 2);
3834 #if defined(TARGET_WORDS_BIGENDIAN)
3835 if (endian == DEVICE_LITTLE_ENDIAN) {
3836 val = bswap16(val);
3837 }
3838 #else
3839 if (endian == DEVICE_BIG_ENDIAN) {
3840 val = bswap16(val);
3841 }
3842 #endif
3843 } else {
3844 /* RAM case */
3845 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3846 & TARGET_PAGE_MASK)
3847 + memory_region_section_addr(section, addr));
3848 switch (endian) {
3849 case DEVICE_LITTLE_ENDIAN:
3850 val = lduw_le_p(ptr);
3851 break;
3852 case DEVICE_BIG_ENDIAN:
3853 val = lduw_be_p(ptr);
3854 break;
3855 default:
3856 val = lduw_p(ptr);
3857 break;
3858 }
3859 }
3860 return val;
3861 }
3862
3863 uint32_t lduw_phys(target_phys_addr_t addr)
3864 {
3865 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3866 }
3867
3868 uint32_t lduw_le_phys(target_phys_addr_t addr)
3869 {
3870 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3871 }
3872
3873 uint32_t lduw_be_phys(target_phys_addr_t addr)
3874 {
3875 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3876 }
3877
3878 /* warning: addr must be aligned. The ram page is not masked as dirty
3879 and the code inside is not invalidated. It is useful if the dirty
3880 bits are used to track modified PTEs */
3881 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3882 {
3883 uint8_t *ptr;
3884 MemoryRegionSection *section;
3885
3886 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3887
3888 if (!memory_region_is_ram(section->mr) || section->readonly) {
3889 addr = memory_region_section_addr(section, addr);
3890 if (memory_region_is_ram(section->mr)) {
3891 section = &phys_sections[phys_section_rom];
3892 }
3893 io_mem_write(section->mr, addr, val, 4);
3894 } else {
3895 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
3896 & TARGET_PAGE_MASK)
3897 + memory_region_section_addr(section, addr);
3898 ptr = qemu_get_ram_ptr(addr1);
3899 stl_p(ptr, val);
3900
3901 if (unlikely(in_migration)) {
3902 if (!cpu_physical_memory_is_dirty(addr1)) {
3903 /* invalidate code */
3904 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3905 /* set dirty bit */
3906 cpu_physical_memory_set_dirty_flags(
3907 addr1, (0xff & ~CODE_DIRTY_FLAG));
3908 }
3909 }
3910 }
3911 }
3912
3913 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3914 {
3915 uint8_t *ptr;
3916 MemoryRegionSection *section;
3917
3918 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3919
3920 if (!memory_region_is_ram(section->mr) || section->readonly) {
3921 addr = memory_region_section_addr(section, addr);
3922 if (memory_region_is_ram(section->mr)) {
3923 section = &phys_sections[phys_section_rom];
3924 }
3925 #ifdef TARGET_WORDS_BIGENDIAN
3926 io_mem_write(section->mr, addr, val >> 32, 4);
3927 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
3928 #else
3929 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3930 io_mem_write(section->mr, addr + 4, val >> 32, 4);
3931 #endif
3932 } else {
3933 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
3934 & TARGET_PAGE_MASK)
3935 + memory_region_section_addr(section, addr));
3936 stq_p(ptr, val);
3937 }
3938 }
3939
3940 /* warning: addr must be aligned */
3941 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3942 enum device_endian endian)
3943 {
3944 uint8_t *ptr;
3945 MemoryRegionSection *section;
3946
3947 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3948
3949 if (!memory_region_is_ram(section->mr) || section->readonly) {
3950 addr = memory_region_section_addr(section, addr);
3951 if (memory_region_is_ram(section->mr)) {
3952 section = &phys_sections[phys_section_rom];
3953 }
3954 #if defined(TARGET_WORDS_BIGENDIAN)
3955 if (endian == DEVICE_LITTLE_ENDIAN) {
3956 val = bswap32(val);
3957 }
3958 #else
3959 if (endian == DEVICE_BIG_ENDIAN) {
3960 val = bswap32(val);
3961 }
3962 #endif
3963 io_mem_write(section->mr, addr, val, 4);
3964 } else {
3965 unsigned long addr1;
3966 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
3967 + memory_region_section_addr(section, addr);
3968 /* RAM case */
3969 ptr = qemu_get_ram_ptr(addr1);
3970 switch (endian) {
3971 case DEVICE_LITTLE_ENDIAN:
3972 stl_le_p(ptr, val);
3973 break;
3974 case DEVICE_BIG_ENDIAN:
3975 stl_be_p(ptr, val);
3976 break;
3977 default:
3978 stl_p(ptr, val);
3979 break;
3980 }
3981 if (!cpu_physical_memory_is_dirty(addr1)) {
3982 /* invalidate code */
3983 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3984 /* set dirty bit */
3985 cpu_physical_memory_set_dirty_flags(addr1,
3986 (0xff & ~CODE_DIRTY_FLAG));
3987 }
3988 }
3989 }
3990
3991 void stl_phys(target_phys_addr_t addr, uint32_t val)
3992 {
3993 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3994 }
3995
3996 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3997 {
3998 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3999 }
4000
4001 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4002 {
4003 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4004 }
4005
4006 /* XXX: optimize */
4007 void stb_phys(target_phys_addr_t addr, uint32_t val)
4008 {
4009 uint8_t v = val;
4010 cpu_physical_memory_write(addr, &v, 1);
4011 }
4012
4013 /* warning: addr must be aligned */
4014 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4015 enum device_endian endian)
4016 {
4017 uint8_t *ptr;
4018 MemoryRegionSection *section;
4019
4020 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4021
4022 if (!memory_region_is_ram(section->mr) || section->readonly) {
4023 addr = memory_region_section_addr(section, addr);
4024 if (memory_region_is_ram(section->mr)) {
4025 section = &phys_sections[phys_section_rom];
4026 }
4027 #if defined(TARGET_WORDS_BIGENDIAN)
4028 if (endian == DEVICE_LITTLE_ENDIAN) {
4029 val = bswap16(val);
4030 }
4031 #else
4032 if (endian == DEVICE_BIG_ENDIAN) {
4033 val = bswap16(val);
4034 }
4035 #endif
4036 io_mem_write(section->mr, addr, val, 2);
4037 } else {
4038 unsigned long addr1;
4039 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4040 + memory_region_section_addr(section, addr);
4041 /* RAM case */
4042 ptr = qemu_get_ram_ptr(addr1);
4043 switch (endian) {
4044 case DEVICE_LITTLE_ENDIAN:
4045 stw_le_p(ptr, val);
4046 break;
4047 case DEVICE_BIG_ENDIAN:
4048 stw_be_p(ptr, val);
4049 break;
4050 default:
4051 stw_p(ptr, val);
4052 break;
4053 }
4054 if (!cpu_physical_memory_is_dirty(addr1)) {
4055 /* invalidate code */
4056 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4057 /* set dirty bit */
4058 cpu_physical_memory_set_dirty_flags(addr1,
4059 (0xff & ~CODE_DIRTY_FLAG));
4060 }
4061 }
4062 }
4063
4064 void stw_phys(target_phys_addr_t addr, uint32_t val)
4065 {
4066 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4067 }
4068
4069 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4070 {
4071 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4072 }
4073
4074 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4075 {
4076 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4077 }
4078
4079 /* XXX: optimize */
4080 void stq_phys(target_phys_addr_t addr, uint64_t val)
4081 {
4082 val = tswap64(val);
4083 cpu_physical_memory_write(addr, &val, 8);
4084 }
4085
4086 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4087 {
4088 val = cpu_to_le64(val);
4089 cpu_physical_memory_write(addr, &val, 8);
4090 }
4091
4092 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4093 {
4094 val = cpu_to_be64(val);
4095 cpu_physical_memory_write(addr, &val, 8);
4096 }
4097
4098 /* virtual memory access for debug (includes writing to ROM) */
4099 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
4100 uint8_t *buf, int len, int is_write)
4101 {
4102 int l;
4103 target_phys_addr_t phys_addr;
4104 target_ulong page;
4105
4106 while (len > 0) {
4107 page = addr & TARGET_PAGE_MASK;
4108 phys_addr = cpu_get_phys_page_debug(env, page);
4109 /* if no physical page mapped, return an error */
4110 if (phys_addr == -1)
4111 return -1;
4112 l = (page + TARGET_PAGE_SIZE) - addr;
4113 if (l > len)
4114 l = len;
4115 phys_addr += (addr & ~TARGET_PAGE_MASK);
4116 if (is_write)
4117 cpu_physical_memory_write_rom(phys_addr, buf, l);
4118 else
4119 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4120 len -= l;
4121 buf += l;
4122 addr += l;
4123 }
4124 return 0;
4125 }
4126 #endif
4127
4128 /* in deterministic execution mode, instructions doing device I/Os
4129 must be at the end of the TB */
4130 void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
4131 {
4132 TranslationBlock *tb;
4133 uint32_t n, cflags;
4134 target_ulong pc, cs_base;
4135 uint64_t flags;
4136
4137 tb = tb_find_pc(retaddr);
4138 if (!tb) {
4139 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4140 (void *)retaddr);
4141 }
4142 n = env->icount_decr.u16.low + tb->icount;
4143 cpu_restore_state(tb, env, retaddr);
4144 /* Calculate how many instructions had been executed before the fault
4145 occurred. */
4146 n = n - env->icount_decr.u16.low;
4147 /* Generate a new TB ending on the I/O insn. */
4148 n++;
4149 /* On MIPS and SH, delay slot instructions can only be restarted if
4150 they were already the first instruction in the TB. If this is not
4151 the first instruction in a TB then re-execute the preceding
4152 branch. */
4153 #if defined(TARGET_MIPS)
4154 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4155 env->active_tc.PC -= 4;
4156 env->icount_decr.u16.low++;
4157 env->hflags &= ~MIPS_HFLAG_BMASK;
4158 }
4159 #elif defined(TARGET_SH4)
4160 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4161 && n > 1) {
4162 env->pc -= 2;
4163 env->icount_decr.u16.low++;
4164 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4165 }
4166 #endif
4167 /* This should never happen. */
4168 if (n > CF_COUNT_MASK)
4169 cpu_abort(env, "TB too big during recompile");
4170
4171 cflags = n | CF_LAST_IO;
4172 pc = tb->pc;
4173 cs_base = tb->cs_base;
4174 flags = tb->flags;
4175 tb_phys_invalidate(tb, -1);
4176 /* FIXME: In theory this could raise an exception. In practice
4177 we have already translated the block once so it's probably ok. */
4178 tb_gen_code(env, pc, cs_base, flags, cflags);
4179 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4180 the first in the TB) then we end up generating a whole new TB and
4181 repeating the fault, which is horribly inefficient.
4182 Better would be to execute just this insn uncached, or generate a
4183 second new TB. */
4184 cpu_resume_from_signal(env, NULL);
4185 }
4186
4187 #if !defined(CONFIG_USER_ONLY)
4188
4189 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4190 {
4191 int i, target_code_size, max_target_code_size;
4192 int direct_jmp_count, direct_jmp2_count, cross_page;
4193 TranslationBlock *tb;
4194
4195 target_code_size = 0;
4196 max_target_code_size = 0;
4197 cross_page = 0;
4198 direct_jmp_count = 0;
4199 direct_jmp2_count = 0;
4200 for(i = 0; i < nb_tbs; i++) {
4201 tb = &tbs[i];
4202 target_code_size += tb->size;
4203 if (tb->size > max_target_code_size)
4204 max_target_code_size = tb->size;
4205 if (tb->page_addr[1] != -1)
4206 cross_page++;
4207 if (tb->tb_next_offset[0] != 0xffff) {
4208 direct_jmp_count++;
4209 if (tb->tb_next_offset[1] != 0xffff) {
4210 direct_jmp2_count++;
4211 }
4212 }
4213 }
4214 /* XXX: avoid using doubles ? */
4215 cpu_fprintf(f, "Translation buffer state:\n");
4216 cpu_fprintf(f, "gen code size %td/%ld\n",
4217 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4218 cpu_fprintf(f, "TB count %d/%d\n",
4219 nb_tbs, code_gen_max_blocks);
4220 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4221 nb_tbs ? target_code_size / nb_tbs : 0,
4222 max_target_code_size);
4223 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4224 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4225 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4226 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4227 cross_page,
4228 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4229 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4230 direct_jmp_count,
4231 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4232 direct_jmp2_count,
4233 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4234 cpu_fprintf(f, "\nStatistics:\n");
4235 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4236 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4237 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4238 tcg_dump_info(f, cpu_fprintf);
4239 }
4240
4241 /*
4242 * A helper function for the _utterly broken_ virtio device model to find out if
4243 * it's running on a big endian machine. Don't do this at home kids!
4244 */
4245 bool virtio_is_big_endian(void);
4246 bool virtio_is_big_endian(void)
4247 {
4248 #if defined(TARGET_WORDS_BIGENDIAN)
4249 return true;
4250 #else
4251 return false;
4252 #endif
4253 }
4254
4255 #endif
4256
4257 #ifndef CONFIG_USER_ONLY
4258 bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4259 {
4260 MemoryRegionSection *section;
4261
4262 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4263
4264 return !(memory_region_is_ram(section->mr) ||
4265 memory_region_is_romd(section->mr));
4266 }
4267 #endif