]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge remote-tracking branch 'riku/linux-user-for-upstream' into staging
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUArchState *env = first_cpu;
355 CPUState *cpu = NULL;
356
357 while (env) {
358 cpu = ENV_GET_CPU(env);
359 if (cpu->cpu_index == index) {
360 break;
361 }
362 env = env->next_cpu;
363 }
364
365 return env ? cpu : NULL;
366 }
367
368 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
369 {
370 CPUArchState *env = first_cpu;
371
372 while (env) {
373 func(ENV_GET_CPU(env), data);
374 env = env->next_cpu;
375 }
376 }
377
378 void cpu_exec_init(CPUArchState *env)
379 {
380 CPUState *cpu = ENV_GET_CPU(env);
381 CPUClass *cc = CPU_GET_CLASS(cpu);
382 CPUArchState **penv;
383 int cpu_index;
384
385 #if defined(CONFIG_USER_ONLY)
386 cpu_list_lock();
387 #endif
388 env->next_cpu = NULL;
389 penv = &first_cpu;
390 cpu_index = 0;
391 while (*penv != NULL) {
392 penv = &(*penv)->next_cpu;
393 cpu_index++;
394 }
395 cpu->cpu_index = cpu_index;
396 cpu->numa_node = 0;
397 QTAILQ_INIT(&env->breakpoints);
398 QTAILQ_INIT(&env->watchpoints);
399 #ifndef CONFIG_USER_ONLY
400 cpu->thread_id = qemu_get_thread_id();
401 #endif
402 *penv = env;
403 #if defined(CONFIG_USER_ONLY)
404 cpu_list_unlock();
405 #endif
406 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
407 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
408 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
409 cpu_save, cpu_load, env);
410 assert(cc->vmsd == NULL);
411 #endif
412 if (cc->vmsd != NULL) {
413 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
414 }
415 }
416
417 #if defined(TARGET_HAS_ICE)
418 #if defined(CONFIG_USER_ONLY)
419 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
420 {
421 tb_invalidate_phys_page_range(pc, pc + 1, 0);
422 }
423 #else
424 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
425 {
426 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
427 (pc & ~TARGET_PAGE_MASK));
428 }
429 #endif
430 #endif /* TARGET_HAS_ICE */
431
432 #if defined(CONFIG_USER_ONLY)
433 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
434
435 {
436 }
437
438 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
439 int flags, CPUWatchpoint **watchpoint)
440 {
441 return -ENOSYS;
442 }
443 #else
444 /* Add a watchpoint. */
445 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
446 int flags, CPUWatchpoint **watchpoint)
447 {
448 target_ulong len_mask = ~(len - 1);
449 CPUWatchpoint *wp;
450
451 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
452 if ((len & (len - 1)) || (addr & ~len_mask) ||
453 len == 0 || len > TARGET_PAGE_SIZE) {
454 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
455 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
456 return -EINVAL;
457 }
458 wp = g_malloc(sizeof(*wp));
459
460 wp->vaddr = addr;
461 wp->len_mask = len_mask;
462 wp->flags = flags;
463
464 /* keep all GDB-injected watchpoints in front */
465 if (flags & BP_GDB)
466 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
467 else
468 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
469
470 tlb_flush_page(env, addr);
471
472 if (watchpoint)
473 *watchpoint = wp;
474 return 0;
475 }
476
477 /* Remove a specific watchpoint. */
478 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
479 int flags)
480 {
481 target_ulong len_mask = ~(len - 1);
482 CPUWatchpoint *wp;
483
484 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
485 if (addr == wp->vaddr && len_mask == wp->len_mask
486 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
487 cpu_watchpoint_remove_by_ref(env, wp);
488 return 0;
489 }
490 }
491 return -ENOENT;
492 }
493
494 /* Remove a specific watchpoint by reference. */
495 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
496 {
497 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
498
499 tlb_flush_page(env, watchpoint->vaddr);
500
501 g_free(watchpoint);
502 }
503
504 /* Remove all matching watchpoints. */
505 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
506 {
507 CPUWatchpoint *wp, *next;
508
509 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
510 if (wp->flags & mask)
511 cpu_watchpoint_remove_by_ref(env, wp);
512 }
513 }
514 #endif
515
516 /* Add a breakpoint. */
517 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
518 CPUBreakpoint **breakpoint)
519 {
520 #if defined(TARGET_HAS_ICE)
521 CPUBreakpoint *bp;
522
523 bp = g_malloc(sizeof(*bp));
524
525 bp->pc = pc;
526 bp->flags = flags;
527
528 /* keep all GDB-injected breakpoints in front */
529 if (flags & BP_GDB)
530 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
531 else
532 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
533
534 breakpoint_invalidate(env, pc);
535
536 if (breakpoint)
537 *breakpoint = bp;
538 return 0;
539 #else
540 return -ENOSYS;
541 #endif
542 }
543
544 /* Remove a specific breakpoint. */
545 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
546 {
547 #if defined(TARGET_HAS_ICE)
548 CPUBreakpoint *bp;
549
550 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
551 if (bp->pc == pc && bp->flags == flags) {
552 cpu_breakpoint_remove_by_ref(env, bp);
553 return 0;
554 }
555 }
556 return -ENOENT;
557 #else
558 return -ENOSYS;
559 #endif
560 }
561
562 /* Remove a specific breakpoint by reference. */
563 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
564 {
565 #if defined(TARGET_HAS_ICE)
566 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
567
568 breakpoint_invalidate(env, breakpoint->pc);
569
570 g_free(breakpoint);
571 #endif
572 }
573
574 /* Remove all matching breakpoints. */
575 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
576 {
577 #if defined(TARGET_HAS_ICE)
578 CPUBreakpoint *bp, *next;
579
580 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
581 if (bp->flags & mask)
582 cpu_breakpoint_remove_by_ref(env, bp);
583 }
584 #endif
585 }
586
587 /* enable or disable single step mode. EXCP_DEBUG is returned by the
588 CPU loop after each instruction */
589 void cpu_single_step(CPUArchState *env, int enabled)
590 {
591 #if defined(TARGET_HAS_ICE)
592 if (env->singlestep_enabled != enabled) {
593 env->singlestep_enabled = enabled;
594 if (kvm_enabled())
595 kvm_update_guest_debug(env, 0);
596 else {
597 /* must flush all the translated code to avoid inconsistencies */
598 /* XXX: only flush what is necessary */
599 tb_flush(env);
600 }
601 }
602 #endif
603 }
604
605 void cpu_abort(CPUArchState *env, const char *fmt, ...)
606 {
607 CPUState *cpu = ENV_GET_CPU(env);
608 va_list ap;
609 va_list ap2;
610
611 va_start(ap, fmt);
612 va_copy(ap2, ap);
613 fprintf(stderr, "qemu: fatal: ");
614 vfprintf(stderr, fmt, ap);
615 fprintf(stderr, "\n");
616 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 if (qemu_log_enabled()) {
618 qemu_log("qemu: fatal: ");
619 qemu_log_vprintf(fmt, ap2);
620 qemu_log("\n");
621 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
622 qemu_log_flush();
623 qemu_log_close();
624 }
625 va_end(ap2);
626 va_end(ap);
627 #if defined(CONFIG_USER_ONLY)
628 {
629 struct sigaction act;
630 sigfillset(&act.sa_mask);
631 act.sa_handler = SIG_DFL;
632 sigaction(SIGABRT, &act, NULL);
633 }
634 #endif
635 abort();
636 }
637
638 CPUArchState *cpu_copy(CPUArchState *env)
639 {
640 CPUArchState *new_env = cpu_init(env->cpu_model_str);
641 CPUArchState *next_cpu = new_env->next_cpu;
642 #if defined(TARGET_HAS_ICE)
643 CPUBreakpoint *bp;
644 CPUWatchpoint *wp;
645 #endif
646
647 memcpy(new_env, env, sizeof(CPUArchState));
648
649 /* Preserve chaining. */
650 new_env->next_cpu = next_cpu;
651
652 /* Clone all break/watchpoints.
653 Note: Once we support ptrace with hw-debug register access, make sure
654 BP_CPU break/watchpoints are handled correctly on clone. */
655 QTAILQ_INIT(&env->breakpoints);
656 QTAILQ_INIT(&env->watchpoints);
657 #if defined(TARGET_HAS_ICE)
658 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
659 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
660 }
661 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
662 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
663 wp->flags, NULL);
664 }
665 #endif
666
667 return new_env;
668 }
669
670 #if !defined(CONFIG_USER_ONLY)
671 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
672 uintptr_t length)
673 {
674 uintptr_t start1;
675
676 /* we modify the TLB cache so that the dirty bit will be set again
677 when accessing the range */
678 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
679 /* Check that we don't span multiple blocks - this breaks the
680 address comparisons below. */
681 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
682 != (end - 1) - start) {
683 abort();
684 }
685 cpu_tlb_reset_dirty_all(start1, length);
686
687 }
688
689 /* Note: start and end must be within the same ram block. */
690 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
691 int dirty_flags)
692 {
693 uintptr_t length;
694
695 start &= TARGET_PAGE_MASK;
696 end = TARGET_PAGE_ALIGN(end);
697
698 length = end - start;
699 if (length == 0)
700 return;
701 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
702
703 if (tcg_enabled()) {
704 tlb_reset_dirty_range_all(start, end, length);
705 }
706 }
707
708 static int cpu_physical_memory_set_dirty_tracking(int enable)
709 {
710 int ret = 0;
711 in_migration = enable;
712 return ret;
713 }
714
715 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
716 MemoryRegionSection *section,
717 target_ulong vaddr,
718 hwaddr paddr, hwaddr xlat,
719 int prot,
720 target_ulong *address)
721 {
722 hwaddr iotlb;
723 CPUWatchpoint *wp;
724
725 if (memory_region_is_ram(section->mr)) {
726 /* Normal RAM. */
727 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
728 + xlat;
729 if (!section->readonly) {
730 iotlb |= PHYS_SECTION_NOTDIRTY;
731 } else {
732 iotlb |= PHYS_SECTION_ROM;
733 }
734 } else {
735 iotlb = section - address_space_memory.dispatch->sections;
736 iotlb += xlat;
737 }
738
739 /* Make accesses to pages with watchpoints go via the
740 watchpoint trap routines. */
741 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
742 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
743 /* Avoid trapping reads of pages with a write breakpoint. */
744 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
745 iotlb = PHYS_SECTION_WATCH + paddr;
746 *address |= TLB_MMIO;
747 break;
748 }
749 }
750 }
751
752 return iotlb;
753 }
754 #endif /* defined(CONFIG_USER_ONLY) */
755
756 #if !defined(CONFIG_USER_ONLY)
757
758 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
759 uint16_t section);
760 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
761
762 static uint16_t phys_section_add(MemoryRegionSection *section)
763 {
764 /* The physical section number is ORed with a page-aligned
765 * pointer to produce the iotlb entries. Thus it should
766 * never overflow into the page-aligned value.
767 */
768 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
769
770 if (next_map.sections_nb == next_map.sections_nb_alloc) {
771 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
772 16);
773 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
774 next_map.sections_nb_alloc);
775 }
776 next_map.sections[next_map.sections_nb] = *section;
777 memory_region_ref(section->mr);
778 return next_map.sections_nb++;
779 }
780
781 static void phys_section_destroy(MemoryRegion *mr)
782 {
783 memory_region_unref(mr);
784
785 if (mr->subpage) {
786 subpage_t *subpage = container_of(mr, subpage_t, iomem);
787 memory_region_destroy(&subpage->iomem);
788 g_free(subpage);
789 }
790 }
791
792 static void phys_sections_free(PhysPageMap *map)
793 {
794 while (map->sections_nb > 0) {
795 MemoryRegionSection *section = &map->sections[--map->sections_nb];
796 phys_section_destroy(section->mr);
797 }
798 g_free(map->sections);
799 g_free(map->nodes);
800 g_free(map);
801 }
802
803 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
804 {
805 subpage_t *subpage;
806 hwaddr base = section->offset_within_address_space
807 & TARGET_PAGE_MASK;
808 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
809 next_map.nodes, next_map.sections);
810 MemoryRegionSection subsection = {
811 .offset_within_address_space = base,
812 .size = int128_make64(TARGET_PAGE_SIZE),
813 };
814 hwaddr start, end;
815
816 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
817
818 if (!(existing->mr->subpage)) {
819 subpage = subpage_init(d->as, base);
820 subsection.mr = &subpage->iomem;
821 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
822 phys_section_add(&subsection));
823 } else {
824 subpage = container_of(existing->mr, subpage_t, iomem);
825 }
826 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
827 end = start + int128_get64(section->size) - 1;
828 subpage_register(subpage, start, end, phys_section_add(section));
829 }
830
831
832 static void register_multipage(AddressSpaceDispatch *d,
833 MemoryRegionSection *section)
834 {
835 hwaddr start_addr = section->offset_within_address_space;
836 uint16_t section_index = phys_section_add(section);
837 uint64_t num_pages = int128_get64(int128_rshift(section->size,
838 TARGET_PAGE_BITS));
839
840 assert(num_pages);
841 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
842 }
843
844 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
845 {
846 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
847 AddressSpaceDispatch *d = as->next_dispatch;
848 MemoryRegionSection now = *section, remain = *section;
849 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
850
851 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
852 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
853 - now.offset_within_address_space;
854
855 now.size = int128_min(int128_make64(left), now.size);
856 register_subpage(d, &now);
857 } else {
858 now.size = int128_zero();
859 }
860 while (int128_ne(remain.size, now.size)) {
861 remain.size = int128_sub(remain.size, now.size);
862 remain.offset_within_address_space += int128_get64(now.size);
863 remain.offset_within_region += int128_get64(now.size);
864 now = remain;
865 if (int128_lt(remain.size, page_size)) {
866 register_subpage(d, &now);
867 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
868 now.size = page_size;
869 register_subpage(d, &now);
870 } else {
871 now.size = int128_and(now.size, int128_neg(page_size));
872 register_multipage(d, &now);
873 }
874 }
875 }
876
877 void qemu_flush_coalesced_mmio_buffer(void)
878 {
879 if (kvm_enabled())
880 kvm_flush_coalesced_mmio_buffer();
881 }
882
883 void qemu_mutex_lock_ramlist(void)
884 {
885 qemu_mutex_lock(&ram_list.mutex);
886 }
887
888 void qemu_mutex_unlock_ramlist(void)
889 {
890 qemu_mutex_unlock(&ram_list.mutex);
891 }
892
893 #if defined(__linux__) && !defined(TARGET_S390X)
894
895 #include <sys/vfs.h>
896
897 #define HUGETLBFS_MAGIC 0x958458f6
898
899 static long gethugepagesize(const char *path)
900 {
901 struct statfs fs;
902 int ret;
903
904 do {
905 ret = statfs(path, &fs);
906 } while (ret != 0 && errno == EINTR);
907
908 if (ret != 0) {
909 perror(path);
910 return 0;
911 }
912
913 if (fs.f_type != HUGETLBFS_MAGIC)
914 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
915
916 return fs.f_bsize;
917 }
918
919 static void *file_ram_alloc(RAMBlock *block,
920 ram_addr_t memory,
921 const char *path)
922 {
923 char *filename;
924 char *sanitized_name;
925 char *c;
926 void *area;
927 int fd;
928 #ifdef MAP_POPULATE
929 int flags;
930 #endif
931 unsigned long hpagesize;
932
933 hpagesize = gethugepagesize(path);
934 if (!hpagesize) {
935 return NULL;
936 }
937
938 if (memory < hpagesize) {
939 return NULL;
940 }
941
942 if (kvm_enabled() && !kvm_has_sync_mmu()) {
943 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
944 return NULL;
945 }
946
947 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
948 sanitized_name = g_strdup(block->mr->name);
949 for (c = sanitized_name; *c != '\0'; c++) {
950 if (*c == '/')
951 *c = '_';
952 }
953
954 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
955 sanitized_name);
956 g_free(sanitized_name);
957
958 fd = mkstemp(filename);
959 if (fd < 0) {
960 perror("unable to create backing store for hugepages");
961 g_free(filename);
962 return NULL;
963 }
964 unlink(filename);
965 g_free(filename);
966
967 memory = (memory+hpagesize-1) & ~(hpagesize-1);
968
969 /*
970 * ftruncate is not supported by hugetlbfs in older
971 * hosts, so don't bother bailing out on errors.
972 * If anything goes wrong with it under other filesystems,
973 * mmap will fail.
974 */
975 if (ftruncate(fd, memory))
976 perror("ftruncate");
977
978 #ifdef MAP_POPULATE
979 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
980 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
981 * to sidestep this quirk.
982 */
983 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
984 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
985 #else
986 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
987 #endif
988 if (area == MAP_FAILED) {
989 perror("file_ram_alloc: can't mmap RAM pages");
990 close(fd);
991 return (NULL);
992 }
993 block->fd = fd;
994 return area;
995 }
996 #endif
997
998 static ram_addr_t find_ram_offset(ram_addr_t size)
999 {
1000 RAMBlock *block, *next_block;
1001 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1002
1003 assert(size != 0); /* it would hand out same offset multiple times */
1004
1005 if (QTAILQ_EMPTY(&ram_list.blocks))
1006 return 0;
1007
1008 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1009 ram_addr_t end, next = RAM_ADDR_MAX;
1010
1011 end = block->offset + block->length;
1012
1013 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1014 if (next_block->offset >= end) {
1015 next = MIN(next, next_block->offset);
1016 }
1017 }
1018 if (next - end >= size && next - end < mingap) {
1019 offset = end;
1020 mingap = next - end;
1021 }
1022 }
1023
1024 if (offset == RAM_ADDR_MAX) {
1025 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1026 (uint64_t)size);
1027 abort();
1028 }
1029
1030 return offset;
1031 }
1032
1033 ram_addr_t last_ram_offset(void)
1034 {
1035 RAMBlock *block;
1036 ram_addr_t last = 0;
1037
1038 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1039 last = MAX(last, block->offset + block->length);
1040
1041 return last;
1042 }
1043
1044 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1045 {
1046 int ret;
1047
1048 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1049 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1050 "dump-guest-core", true)) {
1051 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1052 if (ret) {
1053 perror("qemu_madvise");
1054 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1055 "but dump_guest_core=off specified\n");
1056 }
1057 }
1058 }
1059
1060 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1061 {
1062 RAMBlock *new_block, *block;
1063
1064 new_block = NULL;
1065 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1066 if (block->offset == addr) {
1067 new_block = block;
1068 break;
1069 }
1070 }
1071 assert(new_block);
1072 assert(!new_block->idstr[0]);
1073
1074 if (dev) {
1075 char *id = qdev_get_dev_path(dev);
1076 if (id) {
1077 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1078 g_free(id);
1079 }
1080 }
1081 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1082
1083 /* This assumes the iothread lock is taken here too. */
1084 qemu_mutex_lock_ramlist();
1085 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1086 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1087 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1088 new_block->idstr);
1089 abort();
1090 }
1091 }
1092 qemu_mutex_unlock_ramlist();
1093 }
1094
1095 static int memory_try_enable_merging(void *addr, size_t len)
1096 {
1097 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1098 /* disabled by the user */
1099 return 0;
1100 }
1101
1102 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1103 }
1104
1105 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1106 MemoryRegion *mr)
1107 {
1108 RAMBlock *block, *new_block;
1109
1110 size = TARGET_PAGE_ALIGN(size);
1111 new_block = g_malloc0(sizeof(*new_block));
1112
1113 /* This assumes the iothread lock is taken here too. */
1114 qemu_mutex_lock_ramlist();
1115 new_block->mr = mr;
1116 new_block->offset = find_ram_offset(size);
1117 if (host) {
1118 new_block->host = host;
1119 new_block->flags |= RAM_PREALLOC_MASK;
1120 } else {
1121 if (mem_path) {
1122 #if defined (__linux__) && !defined(TARGET_S390X)
1123 new_block->host = file_ram_alloc(new_block, size, mem_path);
1124 if (!new_block->host) {
1125 new_block->host = qemu_anon_ram_alloc(size);
1126 memory_try_enable_merging(new_block->host, size);
1127 }
1128 #else
1129 fprintf(stderr, "-mem-path option unsupported\n");
1130 exit(1);
1131 #endif
1132 } else {
1133 if (xen_enabled()) {
1134 xen_ram_alloc(new_block->offset, size, mr);
1135 } else if (kvm_enabled()) {
1136 /* some s390/kvm configurations have special constraints */
1137 new_block->host = kvm_ram_alloc(size);
1138 } else {
1139 new_block->host = qemu_anon_ram_alloc(size);
1140 }
1141 memory_try_enable_merging(new_block->host, size);
1142 }
1143 }
1144 new_block->length = size;
1145
1146 /* Keep the list sorted from biggest to smallest block. */
1147 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1148 if (block->length < new_block->length) {
1149 break;
1150 }
1151 }
1152 if (block) {
1153 QTAILQ_INSERT_BEFORE(block, new_block, next);
1154 } else {
1155 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1156 }
1157 ram_list.mru_block = NULL;
1158
1159 ram_list.version++;
1160 qemu_mutex_unlock_ramlist();
1161
1162 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1163 last_ram_offset() >> TARGET_PAGE_BITS);
1164 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1165 0, size >> TARGET_PAGE_BITS);
1166 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1167
1168 qemu_ram_setup_dump(new_block->host, size);
1169 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1170
1171 if (kvm_enabled())
1172 kvm_setup_guest_memory(new_block->host, size);
1173
1174 return new_block->offset;
1175 }
1176
1177 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1178 {
1179 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1180 }
1181
1182 void qemu_ram_free_from_ptr(ram_addr_t addr)
1183 {
1184 RAMBlock *block;
1185
1186 /* This assumes the iothread lock is taken here too. */
1187 qemu_mutex_lock_ramlist();
1188 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1189 if (addr == block->offset) {
1190 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1191 ram_list.mru_block = NULL;
1192 ram_list.version++;
1193 g_free(block);
1194 break;
1195 }
1196 }
1197 qemu_mutex_unlock_ramlist();
1198 }
1199
1200 void qemu_ram_free(ram_addr_t addr)
1201 {
1202 RAMBlock *block;
1203
1204 /* This assumes the iothread lock is taken here too. */
1205 qemu_mutex_lock_ramlist();
1206 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1207 if (addr == block->offset) {
1208 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1209 ram_list.mru_block = NULL;
1210 ram_list.version++;
1211 if (block->flags & RAM_PREALLOC_MASK) {
1212 ;
1213 } else if (mem_path) {
1214 #if defined (__linux__) && !defined(TARGET_S390X)
1215 if (block->fd) {
1216 munmap(block->host, block->length);
1217 close(block->fd);
1218 } else {
1219 qemu_anon_ram_free(block->host, block->length);
1220 }
1221 #else
1222 abort();
1223 #endif
1224 } else {
1225 if (xen_enabled()) {
1226 xen_invalidate_map_cache_entry(block->host);
1227 } else {
1228 qemu_anon_ram_free(block->host, block->length);
1229 }
1230 }
1231 g_free(block);
1232 break;
1233 }
1234 }
1235 qemu_mutex_unlock_ramlist();
1236
1237 }
1238
1239 #ifndef _WIN32
1240 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1241 {
1242 RAMBlock *block;
1243 ram_addr_t offset;
1244 int flags;
1245 void *area, *vaddr;
1246
1247 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1248 offset = addr - block->offset;
1249 if (offset < block->length) {
1250 vaddr = block->host + offset;
1251 if (block->flags & RAM_PREALLOC_MASK) {
1252 ;
1253 } else {
1254 flags = MAP_FIXED;
1255 munmap(vaddr, length);
1256 if (mem_path) {
1257 #if defined(__linux__) && !defined(TARGET_S390X)
1258 if (block->fd) {
1259 #ifdef MAP_POPULATE
1260 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1261 MAP_PRIVATE;
1262 #else
1263 flags |= MAP_PRIVATE;
1264 #endif
1265 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1266 flags, block->fd, offset);
1267 } else {
1268 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1269 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1270 flags, -1, 0);
1271 }
1272 #else
1273 abort();
1274 #endif
1275 } else {
1276 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1277 flags |= MAP_SHARED | MAP_ANONYMOUS;
1278 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1279 flags, -1, 0);
1280 #else
1281 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1282 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1283 flags, -1, 0);
1284 #endif
1285 }
1286 if (area != vaddr) {
1287 fprintf(stderr, "Could not remap addr: "
1288 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1289 length, addr);
1290 exit(1);
1291 }
1292 memory_try_enable_merging(vaddr, length);
1293 qemu_ram_setup_dump(vaddr, length);
1294 }
1295 return;
1296 }
1297 }
1298 }
1299 #endif /* !_WIN32 */
1300
1301 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1302 {
1303 RAMBlock *block;
1304
1305 /* The list is protected by the iothread lock here. */
1306 block = ram_list.mru_block;
1307 if (block && addr - block->offset < block->length) {
1308 goto found;
1309 }
1310 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1311 if (addr - block->offset < block->length) {
1312 goto found;
1313 }
1314 }
1315
1316 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1317 abort();
1318
1319 found:
1320 ram_list.mru_block = block;
1321 return block;
1322 }
1323
1324 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1325 With the exception of the softmmu code in this file, this should
1326 only be used for local memory (e.g. video ram) that the device owns,
1327 and knows it isn't going to access beyond the end of the block.
1328
1329 It should not be used for general purpose DMA.
1330 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1331 */
1332 void *qemu_get_ram_ptr(ram_addr_t addr)
1333 {
1334 RAMBlock *block = qemu_get_ram_block(addr);
1335
1336 if (xen_enabled()) {
1337 /* We need to check if the requested address is in the RAM
1338 * because we don't want to map the entire memory in QEMU.
1339 * In that case just map until the end of the page.
1340 */
1341 if (block->offset == 0) {
1342 return xen_map_cache(addr, 0, 0);
1343 } else if (block->host == NULL) {
1344 block->host =
1345 xen_map_cache(block->offset, block->length, 1);
1346 }
1347 }
1348 return block->host + (addr - block->offset);
1349 }
1350
1351 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1352 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1353 *
1354 * ??? Is this still necessary?
1355 */
1356 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1357 {
1358 RAMBlock *block;
1359
1360 /* The list is protected by the iothread lock here. */
1361 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1362 if (addr - block->offset < block->length) {
1363 if (xen_enabled()) {
1364 /* We need to check if the requested address is in the RAM
1365 * because we don't want to map the entire memory in QEMU.
1366 * In that case just map until the end of the page.
1367 */
1368 if (block->offset == 0) {
1369 return xen_map_cache(addr, 0, 0);
1370 } else if (block->host == NULL) {
1371 block->host =
1372 xen_map_cache(block->offset, block->length, 1);
1373 }
1374 }
1375 return block->host + (addr - block->offset);
1376 }
1377 }
1378
1379 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1380 abort();
1381
1382 return NULL;
1383 }
1384
1385 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1386 * but takes a size argument */
1387 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1388 {
1389 if (*size == 0) {
1390 return NULL;
1391 }
1392 if (xen_enabled()) {
1393 return xen_map_cache(addr, *size, 1);
1394 } else {
1395 RAMBlock *block;
1396
1397 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1398 if (addr - block->offset < block->length) {
1399 if (addr - block->offset + *size > block->length)
1400 *size = block->length - addr + block->offset;
1401 return block->host + (addr - block->offset);
1402 }
1403 }
1404
1405 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1406 abort();
1407 }
1408 }
1409
1410 /* Some of the softmmu routines need to translate from a host pointer
1411 (typically a TLB entry) back to a ram offset. */
1412 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1413 {
1414 RAMBlock *block;
1415 uint8_t *host = ptr;
1416
1417 if (xen_enabled()) {
1418 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1419 return qemu_get_ram_block(*ram_addr)->mr;
1420 }
1421
1422 block = ram_list.mru_block;
1423 if (block && block->host && host - block->host < block->length) {
1424 goto found;
1425 }
1426
1427 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1428 /* This case append when the block is not mapped. */
1429 if (block->host == NULL) {
1430 continue;
1431 }
1432 if (host - block->host < block->length) {
1433 goto found;
1434 }
1435 }
1436
1437 return NULL;
1438
1439 found:
1440 *ram_addr = block->offset + (host - block->host);
1441 return block->mr;
1442 }
1443
1444 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1445 uint64_t val, unsigned size)
1446 {
1447 int dirty_flags;
1448 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1449 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1450 tb_invalidate_phys_page_fast(ram_addr, size);
1451 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1452 }
1453 switch (size) {
1454 case 1:
1455 stb_p(qemu_get_ram_ptr(ram_addr), val);
1456 break;
1457 case 2:
1458 stw_p(qemu_get_ram_ptr(ram_addr), val);
1459 break;
1460 case 4:
1461 stl_p(qemu_get_ram_ptr(ram_addr), val);
1462 break;
1463 default:
1464 abort();
1465 }
1466 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1467 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1468 /* we remove the notdirty callback only if the code has been
1469 flushed */
1470 if (dirty_flags == 0xff)
1471 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1472 }
1473
1474 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1475 unsigned size, bool is_write)
1476 {
1477 return is_write;
1478 }
1479
1480 static const MemoryRegionOps notdirty_mem_ops = {
1481 .write = notdirty_mem_write,
1482 .valid.accepts = notdirty_mem_accepts,
1483 .endianness = DEVICE_NATIVE_ENDIAN,
1484 };
1485
1486 /* Generate a debug exception if a watchpoint has been hit. */
1487 static void check_watchpoint(int offset, int len_mask, int flags)
1488 {
1489 CPUArchState *env = cpu_single_env;
1490 target_ulong pc, cs_base;
1491 target_ulong vaddr;
1492 CPUWatchpoint *wp;
1493 int cpu_flags;
1494
1495 if (env->watchpoint_hit) {
1496 /* We re-entered the check after replacing the TB. Now raise
1497 * the debug interrupt so that is will trigger after the
1498 * current instruction. */
1499 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1500 return;
1501 }
1502 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1503 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1504 if ((vaddr == (wp->vaddr & len_mask) ||
1505 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1506 wp->flags |= BP_WATCHPOINT_HIT;
1507 if (!env->watchpoint_hit) {
1508 env->watchpoint_hit = wp;
1509 tb_check_watchpoint(env);
1510 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1511 env->exception_index = EXCP_DEBUG;
1512 cpu_loop_exit(env);
1513 } else {
1514 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1515 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1516 cpu_resume_from_signal(env, NULL);
1517 }
1518 }
1519 } else {
1520 wp->flags &= ~BP_WATCHPOINT_HIT;
1521 }
1522 }
1523 }
1524
1525 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1526 so these check for a hit then pass through to the normal out-of-line
1527 phys routines. */
1528 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1529 unsigned size)
1530 {
1531 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1532 switch (size) {
1533 case 1: return ldub_phys(addr);
1534 case 2: return lduw_phys(addr);
1535 case 4: return ldl_phys(addr);
1536 default: abort();
1537 }
1538 }
1539
1540 static void watch_mem_write(void *opaque, hwaddr addr,
1541 uint64_t val, unsigned size)
1542 {
1543 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1544 switch (size) {
1545 case 1:
1546 stb_phys(addr, val);
1547 break;
1548 case 2:
1549 stw_phys(addr, val);
1550 break;
1551 case 4:
1552 stl_phys(addr, val);
1553 break;
1554 default: abort();
1555 }
1556 }
1557
1558 static const MemoryRegionOps watch_mem_ops = {
1559 .read = watch_mem_read,
1560 .write = watch_mem_write,
1561 .endianness = DEVICE_NATIVE_ENDIAN,
1562 };
1563
1564 static uint64_t subpage_read(void *opaque, hwaddr addr,
1565 unsigned len)
1566 {
1567 subpage_t *subpage = opaque;
1568 uint8_t buf[4];
1569
1570 #if defined(DEBUG_SUBPAGE)
1571 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1572 subpage, len, addr);
1573 #endif
1574 address_space_read(subpage->as, addr + subpage->base, buf, len);
1575 switch (len) {
1576 case 1:
1577 return ldub_p(buf);
1578 case 2:
1579 return lduw_p(buf);
1580 case 4:
1581 return ldl_p(buf);
1582 default:
1583 abort();
1584 }
1585 }
1586
1587 static void subpage_write(void *opaque, hwaddr addr,
1588 uint64_t value, unsigned len)
1589 {
1590 subpage_t *subpage = opaque;
1591 uint8_t buf[4];
1592
1593 #if defined(DEBUG_SUBPAGE)
1594 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1595 " value %"PRIx64"\n",
1596 __func__, subpage, len, addr, value);
1597 #endif
1598 switch (len) {
1599 case 1:
1600 stb_p(buf, value);
1601 break;
1602 case 2:
1603 stw_p(buf, value);
1604 break;
1605 case 4:
1606 stl_p(buf, value);
1607 break;
1608 default:
1609 abort();
1610 }
1611 address_space_write(subpage->as, addr + subpage->base, buf, len);
1612 }
1613
1614 static bool subpage_accepts(void *opaque, hwaddr addr,
1615 unsigned size, bool is_write)
1616 {
1617 subpage_t *subpage = opaque;
1618 #if defined(DEBUG_SUBPAGE)
1619 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1620 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1621 #endif
1622
1623 return address_space_access_valid(subpage->as, addr + subpage->base,
1624 size, is_write);
1625 }
1626
1627 static const MemoryRegionOps subpage_ops = {
1628 .read = subpage_read,
1629 .write = subpage_write,
1630 .valid.accepts = subpage_accepts,
1631 .endianness = DEVICE_NATIVE_ENDIAN,
1632 };
1633
1634 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1635 uint16_t section)
1636 {
1637 int idx, eidx;
1638
1639 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1640 return -1;
1641 idx = SUBPAGE_IDX(start);
1642 eidx = SUBPAGE_IDX(end);
1643 #if defined(DEBUG_SUBPAGE)
1644 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1645 mmio, start, end, idx, eidx, memory);
1646 #endif
1647 for (; idx <= eidx; idx++) {
1648 mmio->sub_section[idx] = section;
1649 }
1650
1651 return 0;
1652 }
1653
1654 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1655 {
1656 subpage_t *mmio;
1657
1658 mmio = g_malloc0(sizeof(subpage_t));
1659
1660 mmio->as = as;
1661 mmio->base = base;
1662 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1663 "subpage", TARGET_PAGE_SIZE);
1664 mmio->iomem.subpage = true;
1665 #if defined(DEBUG_SUBPAGE)
1666 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1667 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1668 #endif
1669 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1670
1671 return mmio;
1672 }
1673
1674 static uint16_t dummy_section(MemoryRegion *mr)
1675 {
1676 MemoryRegionSection section = {
1677 .mr = mr,
1678 .offset_within_address_space = 0,
1679 .offset_within_region = 0,
1680 .size = int128_2_64(),
1681 };
1682
1683 return phys_section_add(&section);
1684 }
1685
1686 MemoryRegion *iotlb_to_region(hwaddr index)
1687 {
1688 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1689 }
1690
1691 static void io_mem_init(void)
1692 {
1693 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1694 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1695 "unassigned", UINT64_MAX);
1696 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1697 "notdirty", UINT64_MAX);
1698 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1699 "watch", UINT64_MAX);
1700 }
1701
1702 static void mem_begin(MemoryListener *listener)
1703 {
1704 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1705 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1706
1707 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1708 d->as = as;
1709 as->next_dispatch = d;
1710 }
1711
1712 static void mem_commit(MemoryListener *listener)
1713 {
1714 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1715 AddressSpaceDispatch *cur = as->dispatch;
1716 AddressSpaceDispatch *next = as->next_dispatch;
1717
1718 next->nodes = next_map.nodes;
1719 next->sections = next_map.sections;
1720
1721 as->dispatch = next;
1722 g_free(cur);
1723 }
1724
1725 static void core_begin(MemoryListener *listener)
1726 {
1727 uint16_t n;
1728
1729 prev_map = g_new(PhysPageMap, 1);
1730 *prev_map = next_map;
1731
1732 memset(&next_map, 0, sizeof(next_map));
1733 n = dummy_section(&io_mem_unassigned);
1734 assert(n == PHYS_SECTION_UNASSIGNED);
1735 n = dummy_section(&io_mem_notdirty);
1736 assert(n == PHYS_SECTION_NOTDIRTY);
1737 n = dummy_section(&io_mem_rom);
1738 assert(n == PHYS_SECTION_ROM);
1739 n = dummy_section(&io_mem_watch);
1740 assert(n == PHYS_SECTION_WATCH);
1741 }
1742
1743 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1744 * All AddressSpaceDispatch instances have switched to the next map.
1745 */
1746 static void core_commit(MemoryListener *listener)
1747 {
1748 phys_sections_free(prev_map);
1749 }
1750
1751 static void tcg_commit(MemoryListener *listener)
1752 {
1753 CPUArchState *env;
1754
1755 /* since each CPU stores ram addresses in its TLB cache, we must
1756 reset the modified entries */
1757 /* XXX: slow ! */
1758 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1759 tlb_flush(env, 1);
1760 }
1761 }
1762
1763 static void core_log_global_start(MemoryListener *listener)
1764 {
1765 cpu_physical_memory_set_dirty_tracking(1);
1766 }
1767
1768 static void core_log_global_stop(MemoryListener *listener)
1769 {
1770 cpu_physical_memory_set_dirty_tracking(0);
1771 }
1772
1773 static MemoryListener core_memory_listener = {
1774 .begin = core_begin,
1775 .commit = core_commit,
1776 .log_global_start = core_log_global_start,
1777 .log_global_stop = core_log_global_stop,
1778 .priority = 1,
1779 };
1780
1781 static MemoryListener tcg_memory_listener = {
1782 .commit = tcg_commit,
1783 };
1784
1785 void address_space_init_dispatch(AddressSpace *as)
1786 {
1787 as->dispatch = NULL;
1788 as->dispatch_listener = (MemoryListener) {
1789 .begin = mem_begin,
1790 .commit = mem_commit,
1791 .region_add = mem_add,
1792 .region_nop = mem_add,
1793 .priority = 0,
1794 };
1795 memory_listener_register(&as->dispatch_listener, as);
1796 }
1797
1798 void address_space_destroy_dispatch(AddressSpace *as)
1799 {
1800 AddressSpaceDispatch *d = as->dispatch;
1801
1802 memory_listener_unregister(&as->dispatch_listener);
1803 g_free(d);
1804 as->dispatch = NULL;
1805 }
1806
1807 static void memory_map_init(void)
1808 {
1809 system_memory = g_malloc(sizeof(*system_memory));
1810 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1811 address_space_init(&address_space_memory, system_memory, "memory");
1812
1813 system_io = g_malloc(sizeof(*system_io));
1814 memory_region_init(system_io, NULL, "io", 65536);
1815 address_space_init(&address_space_io, system_io, "I/O");
1816
1817 memory_listener_register(&core_memory_listener, &address_space_memory);
1818 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1819 }
1820
1821 MemoryRegion *get_system_memory(void)
1822 {
1823 return system_memory;
1824 }
1825
1826 MemoryRegion *get_system_io(void)
1827 {
1828 return system_io;
1829 }
1830
1831 #endif /* !defined(CONFIG_USER_ONLY) */
1832
1833 /* physical memory access (slow version, mainly for debug) */
1834 #if defined(CONFIG_USER_ONLY)
1835 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1836 uint8_t *buf, int len, int is_write)
1837 {
1838 int l, flags;
1839 target_ulong page;
1840 void * p;
1841
1842 while (len > 0) {
1843 page = addr & TARGET_PAGE_MASK;
1844 l = (page + TARGET_PAGE_SIZE) - addr;
1845 if (l > len)
1846 l = len;
1847 flags = page_get_flags(page);
1848 if (!(flags & PAGE_VALID))
1849 return -1;
1850 if (is_write) {
1851 if (!(flags & PAGE_WRITE))
1852 return -1;
1853 /* XXX: this code should not depend on lock_user */
1854 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1855 return -1;
1856 memcpy(p, buf, l);
1857 unlock_user(p, addr, l);
1858 } else {
1859 if (!(flags & PAGE_READ))
1860 return -1;
1861 /* XXX: this code should not depend on lock_user */
1862 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1863 return -1;
1864 memcpy(buf, p, l);
1865 unlock_user(p, addr, 0);
1866 }
1867 len -= l;
1868 buf += l;
1869 addr += l;
1870 }
1871 return 0;
1872 }
1873
1874 #else
1875
1876 static void invalidate_and_set_dirty(hwaddr addr,
1877 hwaddr length)
1878 {
1879 if (!cpu_physical_memory_is_dirty(addr)) {
1880 /* invalidate code */
1881 tb_invalidate_phys_page_range(addr, addr + length, 0);
1882 /* set dirty bit */
1883 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1884 }
1885 xen_modified_memory(addr, length);
1886 }
1887
1888 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1889 {
1890 if (memory_region_is_ram(mr)) {
1891 return !(is_write && mr->readonly);
1892 }
1893 if (memory_region_is_romd(mr)) {
1894 return !is_write;
1895 }
1896
1897 return false;
1898 }
1899
1900 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1901 {
1902 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1903 return 4;
1904 }
1905 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1906 return 2;
1907 }
1908 return 1;
1909 }
1910
1911 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1912 int len, bool is_write)
1913 {
1914 hwaddr l;
1915 uint8_t *ptr;
1916 uint64_t val;
1917 hwaddr addr1;
1918 MemoryRegion *mr;
1919 bool error = false;
1920
1921 while (len > 0) {
1922 l = len;
1923 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1924
1925 if (is_write) {
1926 if (!memory_access_is_direct(mr, is_write)) {
1927 l = memory_access_size(mr, l, addr1);
1928 /* XXX: could force cpu_single_env to NULL to avoid
1929 potential bugs */
1930 if (l == 4) {
1931 /* 32 bit write access */
1932 val = ldl_p(buf);
1933 error |= io_mem_write(mr, addr1, val, 4);
1934 } else if (l == 2) {
1935 /* 16 bit write access */
1936 val = lduw_p(buf);
1937 error |= io_mem_write(mr, addr1, val, 2);
1938 } else {
1939 /* 8 bit write access */
1940 val = ldub_p(buf);
1941 error |= io_mem_write(mr, addr1, val, 1);
1942 }
1943 } else {
1944 addr1 += memory_region_get_ram_addr(mr);
1945 /* RAM case */
1946 ptr = qemu_get_ram_ptr(addr1);
1947 memcpy(ptr, buf, l);
1948 invalidate_and_set_dirty(addr1, l);
1949 }
1950 } else {
1951 if (!memory_access_is_direct(mr, is_write)) {
1952 /* I/O case */
1953 l = memory_access_size(mr, l, addr1);
1954 if (l == 4) {
1955 /* 32 bit read access */
1956 error |= io_mem_read(mr, addr1, &val, 4);
1957 stl_p(buf, val);
1958 } else if (l == 2) {
1959 /* 16 bit read access */
1960 error |= io_mem_read(mr, addr1, &val, 2);
1961 stw_p(buf, val);
1962 } else {
1963 /* 8 bit read access */
1964 error |= io_mem_read(mr, addr1, &val, 1);
1965 stb_p(buf, val);
1966 }
1967 } else {
1968 /* RAM case */
1969 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1970 memcpy(buf, ptr, l);
1971 }
1972 }
1973 len -= l;
1974 buf += l;
1975 addr += l;
1976 }
1977
1978 return error;
1979 }
1980
1981 bool address_space_write(AddressSpace *as, hwaddr addr,
1982 const uint8_t *buf, int len)
1983 {
1984 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1985 }
1986
1987 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1988 {
1989 return address_space_rw(as, addr, buf, len, false);
1990 }
1991
1992
1993 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1994 int len, int is_write)
1995 {
1996 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1997 }
1998
1999 /* used for ROM loading : can write in RAM and ROM */
2000 void cpu_physical_memory_write_rom(hwaddr addr,
2001 const uint8_t *buf, int len)
2002 {
2003 hwaddr l;
2004 uint8_t *ptr;
2005 hwaddr addr1;
2006 MemoryRegion *mr;
2007
2008 while (len > 0) {
2009 l = len;
2010 mr = address_space_translate(&address_space_memory,
2011 addr, &addr1, &l, true);
2012
2013 if (!(memory_region_is_ram(mr) ||
2014 memory_region_is_romd(mr))) {
2015 /* do nothing */
2016 } else {
2017 addr1 += memory_region_get_ram_addr(mr);
2018 /* ROM/RAM case */
2019 ptr = qemu_get_ram_ptr(addr1);
2020 memcpy(ptr, buf, l);
2021 invalidate_and_set_dirty(addr1, l);
2022 }
2023 len -= l;
2024 buf += l;
2025 addr += l;
2026 }
2027 }
2028
2029 typedef struct {
2030 MemoryRegion *mr;
2031 void *buffer;
2032 hwaddr addr;
2033 hwaddr len;
2034 } BounceBuffer;
2035
2036 static BounceBuffer bounce;
2037
2038 typedef struct MapClient {
2039 void *opaque;
2040 void (*callback)(void *opaque);
2041 QLIST_ENTRY(MapClient) link;
2042 } MapClient;
2043
2044 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2045 = QLIST_HEAD_INITIALIZER(map_client_list);
2046
2047 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2048 {
2049 MapClient *client = g_malloc(sizeof(*client));
2050
2051 client->opaque = opaque;
2052 client->callback = callback;
2053 QLIST_INSERT_HEAD(&map_client_list, client, link);
2054 return client;
2055 }
2056
2057 static void cpu_unregister_map_client(void *_client)
2058 {
2059 MapClient *client = (MapClient *)_client;
2060
2061 QLIST_REMOVE(client, link);
2062 g_free(client);
2063 }
2064
2065 static void cpu_notify_map_clients(void)
2066 {
2067 MapClient *client;
2068
2069 while (!QLIST_EMPTY(&map_client_list)) {
2070 client = QLIST_FIRST(&map_client_list);
2071 client->callback(client->opaque);
2072 cpu_unregister_map_client(client);
2073 }
2074 }
2075
2076 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2077 {
2078 MemoryRegion *mr;
2079 hwaddr l, xlat;
2080
2081 while (len > 0) {
2082 l = len;
2083 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2084 if (!memory_access_is_direct(mr, is_write)) {
2085 l = memory_access_size(mr, l, addr);
2086 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2087 return false;
2088 }
2089 }
2090
2091 len -= l;
2092 addr += l;
2093 }
2094 return true;
2095 }
2096
2097 /* Map a physical memory region into a host virtual address.
2098 * May map a subset of the requested range, given by and returned in *plen.
2099 * May return NULL if resources needed to perform the mapping are exhausted.
2100 * Use only for reads OR writes - not for read-modify-write operations.
2101 * Use cpu_register_map_client() to know when retrying the map operation is
2102 * likely to succeed.
2103 */
2104 void *address_space_map(AddressSpace *as,
2105 hwaddr addr,
2106 hwaddr *plen,
2107 bool is_write)
2108 {
2109 hwaddr len = *plen;
2110 hwaddr done = 0;
2111 hwaddr l, xlat, base;
2112 MemoryRegion *mr, *this_mr;
2113 ram_addr_t raddr;
2114
2115 if (len == 0) {
2116 return NULL;
2117 }
2118
2119 l = len;
2120 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2121 if (!memory_access_is_direct(mr, is_write)) {
2122 if (bounce.buffer) {
2123 return NULL;
2124 }
2125 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2126 bounce.addr = addr;
2127 bounce.len = l;
2128
2129 memory_region_ref(mr);
2130 bounce.mr = mr;
2131 if (!is_write) {
2132 address_space_read(as, addr, bounce.buffer, l);
2133 }
2134
2135 *plen = l;
2136 return bounce.buffer;
2137 }
2138
2139 base = xlat;
2140 raddr = memory_region_get_ram_addr(mr);
2141
2142 for (;;) {
2143 len -= l;
2144 addr += l;
2145 done += l;
2146 if (len == 0) {
2147 break;
2148 }
2149
2150 l = len;
2151 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2152 if (this_mr != mr || xlat != base + done) {
2153 break;
2154 }
2155 }
2156
2157 memory_region_ref(mr);
2158 *plen = done;
2159 return qemu_ram_ptr_length(raddr + base, plen);
2160 }
2161
2162 /* Unmaps a memory region previously mapped by address_space_map().
2163 * Will also mark the memory as dirty if is_write == 1. access_len gives
2164 * the amount of memory that was actually read or written by the caller.
2165 */
2166 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2167 int is_write, hwaddr access_len)
2168 {
2169 if (buffer != bounce.buffer) {
2170 MemoryRegion *mr;
2171 ram_addr_t addr1;
2172
2173 mr = qemu_ram_addr_from_host(buffer, &addr1);
2174 assert(mr != NULL);
2175 if (is_write) {
2176 while (access_len) {
2177 unsigned l;
2178 l = TARGET_PAGE_SIZE;
2179 if (l > access_len)
2180 l = access_len;
2181 invalidate_and_set_dirty(addr1, l);
2182 addr1 += l;
2183 access_len -= l;
2184 }
2185 }
2186 if (xen_enabled()) {
2187 xen_invalidate_map_cache_entry(buffer);
2188 }
2189 memory_region_unref(mr);
2190 return;
2191 }
2192 if (is_write) {
2193 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2194 }
2195 qemu_vfree(bounce.buffer);
2196 bounce.buffer = NULL;
2197 memory_region_unref(bounce.mr);
2198 cpu_notify_map_clients();
2199 }
2200
2201 void *cpu_physical_memory_map(hwaddr addr,
2202 hwaddr *plen,
2203 int is_write)
2204 {
2205 return address_space_map(&address_space_memory, addr, plen, is_write);
2206 }
2207
2208 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2209 int is_write, hwaddr access_len)
2210 {
2211 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2212 }
2213
2214 /* warning: addr must be aligned */
2215 static inline uint32_t ldl_phys_internal(hwaddr addr,
2216 enum device_endian endian)
2217 {
2218 uint8_t *ptr;
2219 uint64_t val;
2220 MemoryRegion *mr;
2221 hwaddr l = 4;
2222 hwaddr addr1;
2223
2224 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2225 false);
2226 if (l < 4 || !memory_access_is_direct(mr, false)) {
2227 /* I/O case */
2228 io_mem_read(mr, addr1, &val, 4);
2229 #if defined(TARGET_WORDS_BIGENDIAN)
2230 if (endian == DEVICE_LITTLE_ENDIAN) {
2231 val = bswap32(val);
2232 }
2233 #else
2234 if (endian == DEVICE_BIG_ENDIAN) {
2235 val = bswap32(val);
2236 }
2237 #endif
2238 } else {
2239 /* RAM case */
2240 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2241 & TARGET_PAGE_MASK)
2242 + addr1);
2243 switch (endian) {
2244 case DEVICE_LITTLE_ENDIAN:
2245 val = ldl_le_p(ptr);
2246 break;
2247 case DEVICE_BIG_ENDIAN:
2248 val = ldl_be_p(ptr);
2249 break;
2250 default:
2251 val = ldl_p(ptr);
2252 break;
2253 }
2254 }
2255 return val;
2256 }
2257
2258 uint32_t ldl_phys(hwaddr addr)
2259 {
2260 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2261 }
2262
2263 uint32_t ldl_le_phys(hwaddr addr)
2264 {
2265 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2266 }
2267
2268 uint32_t ldl_be_phys(hwaddr addr)
2269 {
2270 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2271 }
2272
2273 /* warning: addr must be aligned */
2274 static inline uint64_t ldq_phys_internal(hwaddr addr,
2275 enum device_endian endian)
2276 {
2277 uint8_t *ptr;
2278 uint64_t val;
2279 MemoryRegion *mr;
2280 hwaddr l = 8;
2281 hwaddr addr1;
2282
2283 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2284 false);
2285 if (l < 8 || !memory_access_is_direct(mr, false)) {
2286 /* I/O case */
2287 io_mem_read(mr, addr1, &val, 8);
2288 #if defined(TARGET_WORDS_BIGENDIAN)
2289 if (endian == DEVICE_LITTLE_ENDIAN) {
2290 val = bswap64(val);
2291 }
2292 #else
2293 if (endian == DEVICE_BIG_ENDIAN) {
2294 val = bswap64(val);
2295 }
2296 #endif
2297 } else {
2298 /* RAM case */
2299 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2300 & TARGET_PAGE_MASK)
2301 + addr1);
2302 switch (endian) {
2303 case DEVICE_LITTLE_ENDIAN:
2304 val = ldq_le_p(ptr);
2305 break;
2306 case DEVICE_BIG_ENDIAN:
2307 val = ldq_be_p(ptr);
2308 break;
2309 default:
2310 val = ldq_p(ptr);
2311 break;
2312 }
2313 }
2314 return val;
2315 }
2316
2317 uint64_t ldq_phys(hwaddr addr)
2318 {
2319 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2320 }
2321
2322 uint64_t ldq_le_phys(hwaddr addr)
2323 {
2324 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2325 }
2326
2327 uint64_t ldq_be_phys(hwaddr addr)
2328 {
2329 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2330 }
2331
2332 /* XXX: optimize */
2333 uint32_t ldub_phys(hwaddr addr)
2334 {
2335 uint8_t val;
2336 cpu_physical_memory_read(addr, &val, 1);
2337 return val;
2338 }
2339
2340 /* warning: addr must be aligned */
2341 static inline uint32_t lduw_phys_internal(hwaddr addr,
2342 enum device_endian endian)
2343 {
2344 uint8_t *ptr;
2345 uint64_t val;
2346 MemoryRegion *mr;
2347 hwaddr l = 2;
2348 hwaddr addr1;
2349
2350 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2351 false);
2352 if (l < 2 || !memory_access_is_direct(mr, false)) {
2353 /* I/O case */
2354 io_mem_read(mr, addr1, &val, 2);
2355 #if defined(TARGET_WORDS_BIGENDIAN)
2356 if (endian == DEVICE_LITTLE_ENDIAN) {
2357 val = bswap16(val);
2358 }
2359 #else
2360 if (endian == DEVICE_BIG_ENDIAN) {
2361 val = bswap16(val);
2362 }
2363 #endif
2364 } else {
2365 /* RAM case */
2366 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2367 & TARGET_PAGE_MASK)
2368 + addr1);
2369 switch (endian) {
2370 case DEVICE_LITTLE_ENDIAN:
2371 val = lduw_le_p(ptr);
2372 break;
2373 case DEVICE_BIG_ENDIAN:
2374 val = lduw_be_p(ptr);
2375 break;
2376 default:
2377 val = lduw_p(ptr);
2378 break;
2379 }
2380 }
2381 return val;
2382 }
2383
2384 uint32_t lduw_phys(hwaddr addr)
2385 {
2386 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2387 }
2388
2389 uint32_t lduw_le_phys(hwaddr addr)
2390 {
2391 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2392 }
2393
2394 uint32_t lduw_be_phys(hwaddr addr)
2395 {
2396 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2397 }
2398
2399 /* warning: addr must be aligned. The ram page is not masked as dirty
2400 and the code inside is not invalidated. It is useful if the dirty
2401 bits are used to track modified PTEs */
2402 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2403 {
2404 uint8_t *ptr;
2405 MemoryRegion *mr;
2406 hwaddr l = 4;
2407 hwaddr addr1;
2408
2409 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2410 true);
2411 if (l < 4 || !memory_access_is_direct(mr, true)) {
2412 io_mem_write(mr, addr1, val, 4);
2413 } else {
2414 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2415 ptr = qemu_get_ram_ptr(addr1);
2416 stl_p(ptr, val);
2417
2418 if (unlikely(in_migration)) {
2419 if (!cpu_physical_memory_is_dirty(addr1)) {
2420 /* invalidate code */
2421 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2422 /* set dirty bit */
2423 cpu_physical_memory_set_dirty_flags(
2424 addr1, (0xff & ~CODE_DIRTY_FLAG));
2425 }
2426 }
2427 }
2428 }
2429
2430 /* warning: addr must be aligned */
2431 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2432 enum device_endian endian)
2433 {
2434 uint8_t *ptr;
2435 MemoryRegion *mr;
2436 hwaddr l = 4;
2437 hwaddr addr1;
2438
2439 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2440 true);
2441 if (l < 4 || !memory_access_is_direct(mr, true)) {
2442 #if defined(TARGET_WORDS_BIGENDIAN)
2443 if (endian == DEVICE_LITTLE_ENDIAN) {
2444 val = bswap32(val);
2445 }
2446 #else
2447 if (endian == DEVICE_BIG_ENDIAN) {
2448 val = bswap32(val);
2449 }
2450 #endif
2451 io_mem_write(mr, addr1, val, 4);
2452 } else {
2453 /* RAM case */
2454 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2455 ptr = qemu_get_ram_ptr(addr1);
2456 switch (endian) {
2457 case DEVICE_LITTLE_ENDIAN:
2458 stl_le_p(ptr, val);
2459 break;
2460 case DEVICE_BIG_ENDIAN:
2461 stl_be_p(ptr, val);
2462 break;
2463 default:
2464 stl_p(ptr, val);
2465 break;
2466 }
2467 invalidate_and_set_dirty(addr1, 4);
2468 }
2469 }
2470
2471 void stl_phys(hwaddr addr, uint32_t val)
2472 {
2473 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2474 }
2475
2476 void stl_le_phys(hwaddr addr, uint32_t val)
2477 {
2478 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2479 }
2480
2481 void stl_be_phys(hwaddr addr, uint32_t val)
2482 {
2483 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2484 }
2485
2486 /* XXX: optimize */
2487 void stb_phys(hwaddr addr, uint32_t val)
2488 {
2489 uint8_t v = val;
2490 cpu_physical_memory_write(addr, &v, 1);
2491 }
2492
2493 /* warning: addr must be aligned */
2494 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2495 enum device_endian endian)
2496 {
2497 uint8_t *ptr;
2498 MemoryRegion *mr;
2499 hwaddr l = 2;
2500 hwaddr addr1;
2501
2502 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2503 true);
2504 if (l < 2 || !memory_access_is_direct(mr, true)) {
2505 #if defined(TARGET_WORDS_BIGENDIAN)
2506 if (endian == DEVICE_LITTLE_ENDIAN) {
2507 val = bswap16(val);
2508 }
2509 #else
2510 if (endian == DEVICE_BIG_ENDIAN) {
2511 val = bswap16(val);
2512 }
2513 #endif
2514 io_mem_write(mr, addr1, val, 2);
2515 } else {
2516 /* RAM case */
2517 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2518 ptr = qemu_get_ram_ptr(addr1);
2519 switch (endian) {
2520 case DEVICE_LITTLE_ENDIAN:
2521 stw_le_p(ptr, val);
2522 break;
2523 case DEVICE_BIG_ENDIAN:
2524 stw_be_p(ptr, val);
2525 break;
2526 default:
2527 stw_p(ptr, val);
2528 break;
2529 }
2530 invalidate_and_set_dirty(addr1, 2);
2531 }
2532 }
2533
2534 void stw_phys(hwaddr addr, uint32_t val)
2535 {
2536 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2537 }
2538
2539 void stw_le_phys(hwaddr addr, uint32_t val)
2540 {
2541 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2542 }
2543
2544 void stw_be_phys(hwaddr addr, uint32_t val)
2545 {
2546 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2547 }
2548
2549 /* XXX: optimize */
2550 void stq_phys(hwaddr addr, uint64_t val)
2551 {
2552 val = tswap64(val);
2553 cpu_physical_memory_write(addr, &val, 8);
2554 }
2555
2556 void stq_le_phys(hwaddr addr, uint64_t val)
2557 {
2558 val = cpu_to_le64(val);
2559 cpu_physical_memory_write(addr, &val, 8);
2560 }
2561
2562 void stq_be_phys(hwaddr addr, uint64_t val)
2563 {
2564 val = cpu_to_be64(val);
2565 cpu_physical_memory_write(addr, &val, 8);
2566 }
2567
2568 /* virtual memory access for debug (includes writing to ROM) */
2569 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2570 uint8_t *buf, int len, int is_write)
2571 {
2572 int l;
2573 hwaddr phys_addr;
2574 target_ulong page;
2575
2576 while (len > 0) {
2577 page = addr & TARGET_PAGE_MASK;
2578 phys_addr = cpu_get_phys_page_debug(env, page);
2579 /* if no physical page mapped, return an error */
2580 if (phys_addr == -1)
2581 return -1;
2582 l = (page + TARGET_PAGE_SIZE) - addr;
2583 if (l > len)
2584 l = len;
2585 phys_addr += (addr & ~TARGET_PAGE_MASK);
2586 if (is_write)
2587 cpu_physical_memory_write_rom(phys_addr, buf, l);
2588 else
2589 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2590 len -= l;
2591 buf += l;
2592 addr += l;
2593 }
2594 return 0;
2595 }
2596 #endif
2597
2598 #if !defined(CONFIG_USER_ONLY)
2599
2600 /*
2601 * A helper function for the _utterly broken_ virtio device model to find out if
2602 * it's running on a big endian machine. Don't do this at home kids!
2603 */
2604 bool virtio_is_big_endian(void);
2605 bool virtio_is_big_endian(void)
2606 {
2607 #if defined(TARGET_WORDS_BIGENDIAN)
2608 return true;
2609 #else
2610 return false;
2611 #endif
2612 }
2613
2614 #endif
2615
2616 #ifndef CONFIG_USER_ONLY
2617 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2618 {
2619 MemoryRegion*mr;
2620 hwaddr l = 1;
2621
2622 mr = address_space_translate(&address_space_memory,
2623 phys_addr, &phys_addr, &l, false);
2624
2625 return !(memory_region_is_ram(mr) ||
2626 memory_region_is_romd(mr));
2627 }
2628
2629 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2630 {
2631 RAMBlock *block;
2632
2633 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2634 func(block->host, block->offset, block->length, opaque);
2635 }
2636 }
2637 #endif