]> git.proxmox.com Git - qemu.git/blob - exec.c
Remove bogus cpu_physical_memory_rw
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
81
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
116
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
123
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
130
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
142
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
154
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
160
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
171
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
174
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
179
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182
183 #if !defined(CONFIG_USER_ONLY)
184 static PhysPageDesc **l1_phys_map;
185
186 static void io_mem_init(void);
187
188 /* io memory support */
189 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
190 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
191 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
192 static char io_mem_used[IO_MEM_NB_ENTRIES];
193 static int io_mem_watch;
194 #endif
195
196 /* log support */
197 #ifdef WIN32
198 static const char *logfilename = "qemu.log";
199 #else
200 static const char *logfilename = "/tmp/qemu.log";
201 #endif
202 FILE *logfile;
203 int loglevel;
204 static int log_append = 0;
205
206 /* statistics */
207 static int tlb_flush_count;
208 static int tb_flush_count;
209 static int tb_phys_invalidate_count;
210
211 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
212 typedef struct subpage_t {
213 target_phys_addr_t base;
214 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
215 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
216 void *opaque[TARGET_PAGE_SIZE][2][4];
217 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
218 } subpage_t;
219
220 #ifdef _WIN32
221 static void map_exec(void *addr, long size)
222 {
223 DWORD old_protect;
224 VirtualProtect(addr, size,
225 PAGE_EXECUTE_READWRITE, &old_protect);
226
227 }
228 #else
229 static void map_exec(void *addr, long size)
230 {
231 unsigned long start, end, page_size;
232
233 page_size = getpagesize();
234 start = (unsigned long)addr;
235 start &= ~(page_size - 1);
236
237 end = (unsigned long)addr + size;
238 end += page_size - 1;
239 end &= ~(page_size - 1);
240
241 mprotect((void *)start, end - start,
242 PROT_READ | PROT_WRITE | PROT_EXEC);
243 }
244 #endif
245
246 static void page_init(void)
247 {
248 /* NOTE: we can always suppose that qemu_host_page_size >=
249 TARGET_PAGE_SIZE */
250 #ifdef _WIN32
251 {
252 SYSTEM_INFO system_info;
253
254 GetSystemInfo(&system_info);
255 qemu_real_host_page_size = system_info.dwPageSize;
256 }
257 #else
258 qemu_real_host_page_size = getpagesize();
259 #endif
260 if (qemu_host_page_size == 0)
261 qemu_host_page_size = qemu_real_host_page_size;
262 if (qemu_host_page_size < TARGET_PAGE_SIZE)
263 qemu_host_page_size = TARGET_PAGE_SIZE;
264 qemu_host_page_bits = 0;
265 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
266 qemu_host_page_bits++;
267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
268 #if !defined(CONFIG_USER_ONLY)
269 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
270 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
271 #endif
272
273 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
274 {
275 long long startaddr, endaddr;
276 FILE *f;
277 int n;
278
279 mmap_lock();
280 last_brk = (unsigned long)sbrk(0);
281 f = fopen("/proc/self/maps", "r");
282 if (f) {
283 do {
284 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
285 if (n == 2) {
286 startaddr = MIN(startaddr,
287 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
288 endaddr = MIN(endaddr,
289 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
290 page_set_flags(startaddr & TARGET_PAGE_MASK,
291 TARGET_PAGE_ALIGN(endaddr),
292 PAGE_RESERVED);
293 }
294 } while (!feof(f));
295 fclose(f);
296 }
297 mmap_unlock();
298 }
299 #endif
300 }
301
302 static inline PageDesc **page_l1_map(target_ulong index)
303 {
304 #if TARGET_LONG_BITS > 32
305 /* Host memory outside guest VM. For 32-bit targets we have already
306 excluded high addresses. */
307 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
308 return NULL;
309 #endif
310 return &l1_map[index >> L2_BITS];
311 }
312
313 static inline PageDesc *page_find_alloc(target_ulong index)
314 {
315 PageDesc **lp, *p;
316 lp = page_l1_map(index);
317 if (!lp)
318 return NULL;
319
320 p = *lp;
321 if (!p) {
322 /* allocate if not found */
323 #if defined(CONFIG_USER_ONLY)
324 size_t len = sizeof(PageDesc) * L2_SIZE;
325 /* Don't use qemu_malloc because it may recurse. */
326 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
327 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
328 *lp = p;
329 if (h2g_valid(p)) {
330 unsigned long addr = h2g(p);
331 page_set_flags(addr & TARGET_PAGE_MASK,
332 TARGET_PAGE_ALIGN(addr + len),
333 PAGE_RESERVED);
334 }
335 #else
336 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
337 *lp = p;
338 #endif
339 }
340 return p + (index & (L2_SIZE - 1));
341 }
342
343 static inline PageDesc *page_find(target_ulong index)
344 {
345 PageDesc **lp, *p;
346 lp = page_l1_map(index);
347 if (!lp)
348 return NULL;
349
350 p = *lp;
351 if (!p) {
352 return NULL;
353 }
354 return p + (index & (L2_SIZE - 1));
355 }
356
357 #if !defined(CONFIG_USER_ONLY)
358 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
359 {
360 void **lp, **p;
361 PhysPageDesc *pd;
362
363 p = (void **)l1_phys_map;
364 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
365
366 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
367 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
368 #endif
369 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
370 p = *lp;
371 if (!p) {
372 /* allocate if not found */
373 if (!alloc)
374 return NULL;
375 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
376 memset(p, 0, sizeof(void *) * L1_SIZE);
377 *lp = p;
378 }
379 #endif
380 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
381 pd = *lp;
382 if (!pd) {
383 int i;
384 /* allocate if not found */
385 if (!alloc)
386 return NULL;
387 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
388 *lp = pd;
389 for (i = 0; i < L2_SIZE; i++) {
390 pd[i].phys_offset = IO_MEM_UNASSIGNED;
391 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
392 }
393 }
394 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
395 }
396
397 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
398 {
399 return phys_page_find_alloc(index, 0);
400 }
401
402 static void tlb_protect_code(ram_addr_t ram_addr);
403 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
404 target_ulong vaddr);
405 #define mmap_lock() do { } while(0)
406 #define mmap_unlock() do { } while(0)
407 #endif
408
409 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
410
411 #if defined(CONFIG_USER_ONLY)
412 /* Currently it is not recommended to allocate big chunks of data in
413 user mode. It will change when a dedicated libc will be used */
414 #define USE_STATIC_CODE_GEN_BUFFER
415 #endif
416
417 #ifdef USE_STATIC_CODE_GEN_BUFFER
418 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
419 #endif
420
421 static void code_gen_alloc(unsigned long tb_size)
422 {
423 #ifdef USE_STATIC_CODE_GEN_BUFFER
424 code_gen_buffer = static_code_gen_buffer;
425 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
426 map_exec(code_gen_buffer, code_gen_buffer_size);
427 #else
428 code_gen_buffer_size = tb_size;
429 if (code_gen_buffer_size == 0) {
430 #if defined(CONFIG_USER_ONLY)
431 /* in user mode, phys_ram_size is not meaningful */
432 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
433 #else
434 /* XXX: needs adjustments */
435 code_gen_buffer_size = (unsigned long)(ram_size / 4);
436 #endif
437 }
438 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
439 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
440 /* The code gen buffer location may have constraints depending on
441 the host cpu and OS */
442 #if defined(__linux__)
443 {
444 int flags;
445 void *start = NULL;
446
447 flags = MAP_PRIVATE | MAP_ANONYMOUS;
448 #if defined(__x86_64__)
449 flags |= MAP_32BIT;
450 /* Cannot map more than that */
451 if (code_gen_buffer_size > (800 * 1024 * 1024))
452 code_gen_buffer_size = (800 * 1024 * 1024);
453 #elif defined(__sparc_v9__)
454 // Map the buffer below 2G, so we can use direct calls and branches
455 flags |= MAP_FIXED;
456 start = (void *) 0x60000000UL;
457 if (code_gen_buffer_size > (512 * 1024 * 1024))
458 code_gen_buffer_size = (512 * 1024 * 1024);
459 #elif defined(__arm__)
460 /* Map the buffer below 32M, so we can use direct calls and branches */
461 flags |= MAP_FIXED;
462 start = (void *) 0x01000000UL;
463 if (code_gen_buffer_size > 16 * 1024 * 1024)
464 code_gen_buffer_size = 16 * 1024 * 1024;
465 #endif
466 code_gen_buffer = mmap(start, code_gen_buffer_size,
467 PROT_WRITE | PROT_READ | PROT_EXEC,
468 flags, -1, 0);
469 if (code_gen_buffer == MAP_FAILED) {
470 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
471 exit(1);
472 }
473 }
474 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
475 {
476 int flags;
477 void *addr = NULL;
478 flags = MAP_PRIVATE | MAP_ANONYMOUS;
479 #if defined(__x86_64__)
480 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
481 * 0x40000000 is free */
482 flags |= MAP_FIXED;
483 addr = (void *)0x40000000;
484 /* Cannot map more than that */
485 if (code_gen_buffer_size > (800 * 1024 * 1024))
486 code_gen_buffer_size = (800 * 1024 * 1024);
487 #endif
488 code_gen_buffer = mmap(addr, code_gen_buffer_size,
489 PROT_WRITE | PROT_READ | PROT_EXEC,
490 flags, -1, 0);
491 if (code_gen_buffer == MAP_FAILED) {
492 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
493 exit(1);
494 }
495 }
496 #else
497 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
498 map_exec(code_gen_buffer, code_gen_buffer_size);
499 #endif
500 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
501 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
502 code_gen_buffer_max_size = code_gen_buffer_size -
503 code_gen_max_block_size();
504 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
505 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
506 }
507
508 /* Must be called before using the QEMU cpus. 'tb_size' is the size
509 (in bytes) allocated to the translation buffer. Zero means default
510 size. */
511 void cpu_exec_init_all(unsigned long tb_size)
512 {
513 cpu_gen_init();
514 code_gen_alloc(tb_size);
515 code_gen_ptr = code_gen_buffer;
516 page_init();
517 #if !defined(CONFIG_USER_ONLY)
518 io_mem_init();
519 #endif
520 }
521
522 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
523
524 static void cpu_common_pre_save(void *opaque)
525 {
526 CPUState *env = opaque;
527
528 cpu_synchronize_state(env);
529 }
530
531 static int cpu_common_pre_load(void *opaque)
532 {
533 CPUState *env = opaque;
534
535 cpu_synchronize_state(env);
536 return 0;
537 }
538
539 static int cpu_common_post_load(void *opaque, int version_id)
540 {
541 CPUState *env = opaque;
542
543 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
544 version_id is increased. */
545 env->interrupt_request &= ~0x01;
546 tlb_flush(env, 1);
547
548 return 0;
549 }
550
551 static const VMStateDescription vmstate_cpu_common = {
552 .name = "cpu_common",
553 .version_id = 1,
554 .minimum_version_id = 1,
555 .minimum_version_id_old = 1,
556 .pre_save = cpu_common_pre_save,
557 .pre_load = cpu_common_pre_load,
558 .post_load = cpu_common_post_load,
559 .fields = (VMStateField []) {
560 VMSTATE_UINT32(halted, CPUState),
561 VMSTATE_UINT32(interrupt_request, CPUState),
562 VMSTATE_END_OF_LIST()
563 }
564 };
565 #endif
566
567 CPUState *qemu_get_cpu(int cpu)
568 {
569 CPUState *env = first_cpu;
570
571 while (env) {
572 if (env->cpu_index == cpu)
573 break;
574 env = env->next_cpu;
575 }
576
577 return env;
578 }
579
580 void cpu_exec_init(CPUState *env)
581 {
582 CPUState **penv;
583 int cpu_index;
584
585 #if defined(CONFIG_USER_ONLY)
586 cpu_list_lock();
587 #endif
588 env->next_cpu = NULL;
589 penv = &first_cpu;
590 cpu_index = 0;
591 while (*penv != NULL) {
592 penv = &(*penv)->next_cpu;
593 cpu_index++;
594 }
595 env->cpu_index = cpu_index;
596 env->numa_node = 0;
597 QTAILQ_INIT(&env->breakpoints);
598 QTAILQ_INIT(&env->watchpoints);
599 *penv = env;
600 #if defined(CONFIG_USER_ONLY)
601 cpu_list_unlock();
602 #endif
603 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
604 vmstate_register(cpu_index, &vmstate_cpu_common, env);
605 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
606 cpu_save, cpu_load, env);
607 #endif
608 }
609
610 static inline void invalidate_page_bitmap(PageDesc *p)
611 {
612 if (p->code_bitmap) {
613 qemu_free(p->code_bitmap);
614 p->code_bitmap = NULL;
615 }
616 p->code_write_count = 0;
617 }
618
619 /* set to NULL all the 'first_tb' fields in all PageDescs */
620 static void page_flush_tb(void)
621 {
622 int i, j;
623 PageDesc *p;
624
625 for(i = 0; i < L1_SIZE; i++) {
626 p = l1_map[i];
627 if (p) {
628 for(j = 0; j < L2_SIZE; j++) {
629 p->first_tb = NULL;
630 invalidate_page_bitmap(p);
631 p++;
632 }
633 }
634 }
635 }
636
637 /* flush all the translation blocks */
638 /* XXX: tb_flush is currently not thread safe */
639 void tb_flush(CPUState *env1)
640 {
641 CPUState *env;
642 #if defined(DEBUG_FLUSH)
643 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
644 (unsigned long)(code_gen_ptr - code_gen_buffer),
645 nb_tbs, nb_tbs > 0 ?
646 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
647 #endif
648 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
649 cpu_abort(env1, "Internal error: code buffer overflow\n");
650
651 nb_tbs = 0;
652
653 for(env = first_cpu; env != NULL; env = env->next_cpu) {
654 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
655 }
656
657 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
658 page_flush_tb();
659
660 code_gen_ptr = code_gen_buffer;
661 /* XXX: flush processor icache at this point if cache flush is
662 expensive */
663 tb_flush_count++;
664 }
665
666 #ifdef DEBUG_TB_CHECK
667
668 static void tb_invalidate_check(target_ulong address)
669 {
670 TranslationBlock *tb;
671 int i;
672 address &= TARGET_PAGE_MASK;
673 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
674 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
675 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
676 address >= tb->pc + tb->size)) {
677 printf("ERROR invalidate: address=" TARGET_FMT_lx
678 " PC=%08lx size=%04x\n",
679 address, (long)tb->pc, tb->size);
680 }
681 }
682 }
683 }
684
685 /* verify that all the pages have correct rights for code */
686 static void tb_page_check(void)
687 {
688 TranslationBlock *tb;
689 int i, flags1, flags2;
690
691 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
692 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
693 flags1 = page_get_flags(tb->pc);
694 flags2 = page_get_flags(tb->pc + tb->size - 1);
695 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
696 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
697 (long)tb->pc, tb->size, flags1, flags2);
698 }
699 }
700 }
701 }
702
703 #endif
704
705 /* invalidate one TB */
706 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
707 int next_offset)
708 {
709 TranslationBlock *tb1;
710 for(;;) {
711 tb1 = *ptb;
712 if (tb1 == tb) {
713 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
714 break;
715 }
716 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
717 }
718 }
719
720 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
721 {
722 TranslationBlock *tb1;
723 unsigned int n1;
724
725 for(;;) {
726 tb1 = *ptb;
727 n1 = (long)tb1 & 3;
728 tb1 = (TranslationBlock *)((long)tb1 & ~3);
729 if (tb1 == tb) {
730 *ptb = tb1->page_next[n1];
731 break;
732 }
733 ptb = &tb1->page_next[n1];
734 }
735 }
736
737 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
738 {
739 TranslationBlock *tb1, **ptb;
740 unsigned int n1;
741
742 ptb = &tb->jmp_next[n];
743 tb1 = *ptb;
744 if (tb1) {
745 /* find tb(n) in circular list */
746 for(;;) {
747 tb1 = *ptb;
748 n1 = (long)tb1 & 3;
749 tb1 = (TranslationBlock *)((long)tb1 & ~3);
750 if (n1 == n && tb1 == tb)
751 break;
752 if (n1 == 2) {
753 ptb = &tb1->jmp_first;
754 } else {
755 ptb = &tb1->jmp_next[n1];
756 }
757 }
758 /* now we can suppress tb(n) from the list */
759 *ptb = tb->jmp_next[n];
760
761 tb->jmp_next[n] = NULL;
762 }
763 }
764
765 /* reset the jump entry 'n' of a TB so that it is not chained to
766 another TB */
767 static inline void tb_reset_jump(TranslationBlock *tb, int n)
768 {
769 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
770 }
771
772 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
773 {
774 CPUState *env;
775 PageDesc *p;
776 unsigned int h, n1;
777 target_phys_addr_t phys_pc;
778 TranslationBlock *tb1, *tb2;
779
780 /* remove the TB from the hash list */
781 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
782 h = tb_phys_hash_func(phys_pc);
783 tb_remove(&tb_phys_hash[h], tb,
784 offsetof(TranslationBlock, phys_hash_next));
785
786 /* remove the TB from the page list */
787 if (tb->page_addr[0] != page_addr) {
788 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
789 tb_page_remove(&p->first_tb, tb);
790 invalidate_page_bitmap(p);
791 }
792 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
793 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
794 tb_page_remove(&p->first_tb, tb);
795 invalidate_page_bitmap(p);
796 }
797
798 tb_invalidated_flag = 1;
799
800 /* remove the TB from the hash list */
801 h = tb_jmp_cache_hash_func(tb->pc);
802 for(env = first_cpu; env != NULL; env = env->next_cpu) {
803 if (env->tb_jmp_cache[h] == tb)
804 env->tb_jmp_cache[h] = NULL;
805 }
806
807 /* suppress this TB from the two jump lists */
808 tb_jmp_remove(tb, 0);
809 tb_jmp_remove(tb, 1);
810
811 /* suppress any remaining jumps to this TB */
812 tb1 = tb->jmp_first;
813 for(;;) {
814 n1 = (long)tb1 & 3;
815 if (n1 == 2)
816 break;
817 tb1 = (TranslationBlock *)((long)tb1 & ~3);
818 tb2 = tb1->jmp_next[n1];
819 tb_reset_jump(tb1, n1);
820 tb1->jmp_next[n1] = NULL;
821 tb1 = tb2;
822 }
823 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
824
825 tb_phys_invalidate_count++;
826 }
827
828 static inline void set_bits(uint8_t *tab, int start, int len)
829 {
830 int end, mask, end1;
831
832 end = start + len;
833 tab += start >> 3;
834 mask = 0xff << (start & 7);
835 if ((start & ~7) == (end & ~7)) {
836 if (start < end) {
837 mask &= ~(0xff << (end & 7));
838 *tab |= mask;
839 }
840 } else {
841 *tab++ |= mask;
842 start = (start + 8) & ~7;
843 end1 = end & ~7;
844 while (start < end1) {
845 *tab++ = 0xff;
846 start += 8;
847 }
848 if (start < end) {
849 mask = ~(0xff << (end & 7));
850 *tab |= mask;
851 }
852 }
853 }
854
855 static void build_page_bitmap(PageDesc *p)
856 {
857 int n, tb_start, tb_end;
858 TranslationBlock *tb;
859
860 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
861
862 tb = p->first_tb;
863 while (tb != NULL) {
864 n = (long)tb & 3;
865 tb = (TranslationBlock *)((long)tb & ~3);
866 /* NOTE: this is subtle as a TB may span two physical pages */
867 if (n == 0) {
868 /* NOTE: tb_end may be after the end of the page, but
869 it is not a problem */
870 tb_start = tb->pc & ~TARGET_PAGE_MASK;
871 tb_end = tb_start + tb->size;
872 if (tb_end > TARGET_PAGE_SIZE)
873 tb_end = TARGET_PAGE_SIZE;
874 } else {
875 tb_start = 0;
876 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
877 }
878 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
879 tb = tb->page_next[n];
880 }
881 }
882
883 TranslationBlock *tb_gen_code(CPUState *env,
884 target_ulong pc, target_ulong cs_base,
885 int flags, int cflags)
886 {
887 TranslationBlock *tb;
888 uint8_t *tc_ptr;
889 target_ulong phys_pc, phys_page2, virt_page2;
890 int code_gen_size;
891
892 phys_pc = get_phys_addr_code(env, pc);
893 tb = tb_alloc(pc);
894 if (!tb) {
895 /* flush must be done */
896 tb_flush(env);
897 /* cannot fail at this point */
898 tb = tb_alloc(pc);
899 /* Don't forget to invalidate previous TB info. */
900 tb_invalidated_flag = 1;
901 }
902 tc_ptr = code_gen_ptr;
903 tb->tc_ptr = tc_ptr;
904 tb->cs_base = cs_base;
905 tb->flags = flags;
906 tb->cflags = cflags;
907 cpu_gen_code(env, tb, &code_gen_size);
908 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
909
910 /* check next page if needed */
911 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
912 phys_page2 = -1;
913 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
914 phys_page2 = get_phys_addr_code(env, virt_page2);
915 }
916 tb_link_phys(tb, phys_pc, phys_page2);
917 return tb;
918 }
919
920 /* invalidate all TBs which intersect with the target physical page
921 starting in range [start;end[. NOTE: start and end must refer to
922 the same physical page. 'is_cpu_write_access' should be true if called
923 from a real cpu write access: the virtual CPU will exit the current
924 TB if code is modified inside this TB. */
925 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
926 int is_cpu_write_access)
927 {
928 TranslationBlock *tb, *tb_next, *saved_tb;
929 CPUState *env = cpu_single_env;
930 target_ulong tb_start, tb_end;
931 PageDesc *p;
932 int n;
933 #ifdef TARGET_HAS_PRECISE_SMC
934 int current_tb_not_found = is_cpu_write_access;
935 TranslationBlock *current_tb = NULL;
936 int current_tb_modified = 0;
937 target_ulong current_pc = 0;
938 target_ulong current_cs_base = 0;
939 int current_flags = 0;
940 #endif /* TARGET_HAS_PRECISE_SMC */
941
942 p = page_find(start >> TARGET_PAGE_BITS);
943 if (!p)
944 return;
945 if (!p->code_bitmap &&
946 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
947 is_cpu_write_access) {
948 /* build code bitmap */
949 build_page_bitmap(p);
950 }
951
952 /* we remove all the TBs in the range [start, end[ */
953 /* XXX: see if in some cases it could be faster to invalidate all the code */
954 tb = p->first_tb;
955 while (tb != NULL) {
956 n = (long)tb & 3;
957 tb = (TranslationBlock *)((long)tb & ~3);
958 tb_next = tb->page_next[n];
959 /* NOTE: this is subtle as a TB may span two physical pages */
960 if (n == 0) {
961 /* NOTE: tb_end may be after the end of the page, but
962 it is not a problem */
963 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
964 tb_end = tb_start + tb->size;
965 } else {
966 tb_start = tb->page_addr[1];
967 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
968 }
969 if (!(tb_end <= start || tb_start >= end)) {
970 #ifdef TARGET_HAS_PRECISE_SMC
971 if (current_tb_not_found) {
972 current_tb_not_found = 0;
973 current_tb = NULL;
974 if (env->mem_io_pc) {
975 /* now we have a real cpu fault */
976 current_tb = tb_find_pc(env->mem_io_pc);
977 }
978 }
979 if (current_tb == tb &&
980 (current_tb->cflags & CF_COUNT_MASK) != 1) {
981 /* If we are modifying the current TB, we must stop
982 its execution. We could be more precise by checking
983 that the modification is after the current PC, but it
984 would require a specialized function to partially
985 restore the CPU state */
986
987 current_tb_modified = 1;
988 cpu_restore_state(current_tb, env,
989 env->mem_io_pc, NULL);
990 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
991 &current_flags);
992 }
993 #endif /* TARGET_HAS_PRECISE_SMC */
994 /* we need to do that to handle the case where a signal
995 occurs while doing tb_phys_invalidate() */
996 saved_tb = NULL;
997 if (env) {
998 saved_tb = env->current_tb;
999 env->current_tb = NULL;
1000 }
1001 tb_phys_invalidate(tb, -1);
1002 if (env) {
1003 env->current_tb = saved_tb;
1004 if (env->interrupt_request && env->current_tb)
1005 cpu_interrupt(env, env->interrupt_request);
1006 }
1007 }
1008 tb = tb_next;
1009 }
1010 #if !defined(CONFIG_USER_ONLY)
1011 /* if no code remaining, no need to continue to use slow writes */
1012 if (!p->first_tb) {
1013 invalidate_page_bitmap(p);
1014 if (is_cpu_write_access) {
1015 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1016 }
1017 }
1018 #endif
1019 #ifdef TARGET_HAS_PRECISE_SMC
1020 if (current_tb_modified) {
1021 /* we generate a block containing just the instruction
1022 modifying the memory. It will ensure that it cannot modify
1023 itself */
1024 env->current_tb = NULL;
1025 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1026 cpu_resume_from_signal(env, NULL);
1027 }
1028 #endif
1029 }
1030
1031 /* len must be <= 8 and start must be a multiple of len */
1032 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1033 {
1034 PageDesc *p;
1035 int offset, b;
1036 #if 0
1037 if (1) {
1038 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1039 cpu_single_env->mem_io_vaddr, len,
1040 cpu_single_env->eip,
1041 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1042 }
1043 #endif
1044 p = page_find(start >> TARGET_PAGE_BITS);
1045 if (!p)
1046 return;
1047 if (p->code_bitmap) {
1048 offset = start & ~TARGET_PAGE_MASK;
1049 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1050 if (b & ((1 << len) - 1))
1051 goto do_invalidate;
1052 } else {
1053 do_invalidate:
1054 tb_invalidate_phys_page_range(start, start + len, 1);
1055 }
1056 }
1057
1058 #if !defined(CONFIG_SOFTMMU)
1059 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1060 unsigned long pc, void *puc)
1061 {
1062 TranslationBlock *tb;
1063 PageDesc *p;
1064 int n;
1065 #ifdef TARGET_HAS_PRECISE_SMC
1066 TranslationBlock *current_tb = NULL;
1067 CPUState *env = cpu_single_env;
1068 int current_tb_modified = 0;
1069 target_ulong current_pc = 0;
1070 target_ulong current_cs_base = 0;
1071 int current_flags = 0;
1072 #endif
1073
1074 addr &= TARGET_PAGE_MASK;
1075 p = page_find(addr >> TARGET_PAGE_BITS);
1076 if (!p)
1077 return;
1078 tb = p->first_tb;
1079 #ifdef TARGET_HAS_PRECISE_SMC
1080 if (tb && pc != 0) {
1081 current_tb = tb_find_pc(pc);
1082 }
1083 #endif
1084 while (tb != NULL) {
1085 n = (long)tb & 3;
1086 tb = (TranslationBlock *)((long)tb & ~3);
1087 #ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb == tb &&
1089 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1090 /* If we are modifying the current TB, we must stop
1091 its execution. We could be more precise by checking
1092 that the modification is after the current PC, but it
1093 would require a specialized function to partially
1094 restore the CPU state */
1095
1096 current_tb_modified = 1;
1097 cpu_restore_state(current_tb, env, pc, puc);
1098 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1099 &current_flags);
1100 }
1101 #endif /* TARGET_HAS_PRECISE_SMC */
1102 tb_phys_invalidate(tb, addr);
1103 tb = tb->page_next[n];
1104 }
1105 p->first_tb = NULL;
1106 #ifdef TARGET_HAS_PRECISE_SMC
1107 if (current_tb_modified) {
1108 /* we generate a block containing just the instruction
1109 modifying the memory. It will ensure that it cannot modify
1110 itself */
1111 env->current_tb = NULL;
1112 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1113 cpu_resume_from_signal(env, puc);
1114 }
1115 #endif
1116 }
1117 #endif
1118
1119 /* add the tb in the target page and protect it if necessary */
1120 static inline void tb_alloc_page(TranslationBlock *tb,
1121 unsigned int n, target_ulong page_addr)
1122 {
1123 PageDesc *p;
1124 TranslationBlock *last_first_tb;
1125
1126 tb->page_addr[n] = page_addr;
1127 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1128 tb->page_next[n] = p->first_tb;
1129 last_first_tb = p->first_tb;
1130 p->first_tb = (TranslationBlock *)((long)tb | n);
1131 invalidate_page_bitmap(p);
1132
1133 #if defined(TARGET_HAS_SMC) || 1
1134
1135 #if defined(CONFIG_USER_ONLY)
1136 if (p->flags & PAGE_WRITE) {
1137 target_ulong addr;
1138 PageDesc *p2;
1139 int prot;
1140
1141 /* force the host page as non writable (writes will have a
1142 page fault + mprotect overhead) */
1143 page_addr &= qemu_host_page_mask;
1144 prot = 0;
1145 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1146 addr += TARGET_PAGE_SIZE) {
1147
1148 p2 = page_find (addr >> TARGET_PAGE_BITS);
1149 if (!p2)
1150 continue;
1151 prot |= p2->flags;
1152 p2->flags &= ~PAGE_WRITE;
1153 page_get_flags(addr);
1154 }
1155 mprotect(g2h(page_addr), qemu_host_page_size,
1156 (prot & PAGE_BITS) & ~PAGE_WRITE);
1157 #ifdef DEBUG_TB_INVALIDATE
1158 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1159 page_addr);
1160 #endif
1161 }
1162 #else
1163 /* if some code is already present, then the pages are already
1164 protected. So we handle the case where only the first TB is
1165 allocated in a physical page */
1166 if (!last_first_tb) {
1167 tlb_protect_code(page_addr);
1168 }
1169 #endif
1170
1171 #endif /* TARGET_HAS_SMC */
1172 }
1173
1174 /* Allocate a new translation block. Flush the translation buffer if
1175 too many translation blocks or too much generated code. */
1176 TranslationBlock *tb_alloc(target_ulong pc)
1177 {
1178 TranslationBlock *tb;
1179
1180 if (nb_tbs >= code_gen_max_blocks ||
1181 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1182 return NULL;
1183 tb = &tbs[nb_tbs++];
1184 tb->pc = pc;
1185 tb->cflags = 0;
1186 return tb;
1187 }
1188
1189 void tb_free(TranslationBlock *tb)
1190 {
1191 /* In practice this is mostly used for single use temporary TB
1192 Ignore the hard cases and just back up if this TB happens to
1193 be the last one generated. */
1194 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1195 code_gen_ptr = tb->tc_ptr;
1196 nb_tbs--;
1197 }
1198 }
1199
1200 /* add a new TB and link it to the physical page tables. phys_page2 is
1201 (-1) to indicate that only one page contains the TB. */
1202 void tb_link_phys(TranslationBlock *tb,
1203 target_ulong phys_pc, target_ulong phys_page2)
1204 {
1205 unsigned int h;
1206 TranslationBlock **ptb;
1207
1208 /* Grab the mmap lock to stop another thread invalidating this TB
1209 before we are done. */
1210 mmap_lock();
1211 /* add in the physical hash table */
1212 h = tb_phys_hash_func(phys_pc);
1213 ptb = &tb_phys_hash[h];
1214 tb->phys_hash_next = *ptb;
1215 *ptb = tb;
1216
1217 /* add in the page list */
1218 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1219 if (phys_page2 != -1)
1220 tb_alloc_page(tb, 1, phys_page2);
1221 else
1222 tb->page_addr[1] = -1;
1223
1224 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1225 tb->jmp_next[0] = NULL;
1226 tb->jmp_next[1] = NULL;
1227
1228 /* init original jump addresses */
1229 if (tb->tb_next_offset[0] != 0xffff)
1230 tb_reset_jump(tb, 0);
1231 if (tb->tb_next_offset[1] != 0xffff)
1232 tb_reset_jump(tb, 1);
1233
1234 #ifdef DEBUG_TB_CHECK
1235 tb_page_check();
1236 #endif
1237 mmap_unlock();
1238 }
1239
1240 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1241 tb[1].tc_ptr. Return NULL if not found */
1242 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1243 {
1244 int m_min, m_max, m;
1245 unsigned long v;
1246 TranslationBlock *tb;
1247
1248 if (nb_tbs <= 0)
1249 return NULL;
1250 if (tc_ptr < (unsigned long)code_gen_buffer ||
1251 tc_ptr >= (unsigned long)code_gen_ptr)
1252 return NULL;
1253 /* binary search (cf Knuth) */
1254 m_min = 0;
1255 m_max = nb_tbs - 1;
1256 while (m_min <= m_max) {
1257 m = (m_min + m_max) >> 1;
1258 tb = &tbs[m];
1259 v = (unsigned long)tb->tc_ptr;
1260 if (v == tc_ptr)
1261 return tb;
1262 else if (tc_ptr < v) {
1263 m_max = m - 1;
1264 } else {
1265 m_min = m + 1;
1266 }
1267 }
1268 return &tbs[m_max];
1269 }
1270
1271 static void tb_reset_jump_recursive(TranslationBlock *tb);
1272
1273 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1274 {
1275 TranslationBlock *tb1, *tb_next, **ptb;
1276 unsigned int n1;
1277
1278 tb1 = tb->jmp_next[n];
1279 if (tb1 != NULL) {
1280 /* find head of list */
1281 for(;;) {
1282 n1 = (long)tb1 & 3;
1283 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1284 if (n1 == 2)
1285 break;
1286 tb1 = tb1->jmp_next[n1];
1287 }
1288 /* we are now sure now that tb jumps to tb1 */
1289 tb_next = tb1;
1290
1291 /* remove tb from the jmp_first list */
1292 ptb = &tb_next->jmp_first;
1293 for(;;) {
1294 tb1 = *ptb;
1295 n1 = (long)tb1 & 3;
1296 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1297 if (n1 == n && tb1 == tb)
1298 break;
1299 ptb = &tb1->jmp_next[n1];
1300 }
1301 *ptb = tb->jmp_next[n];
1302 tb->jmp_next[n] = NULL;
1303
1304 /* suppress the jump to next tb in generated code */
1305 tb_reset_jump(tb, n);
1306
1307 /* suppress jumps in the tb on which we could have jumped */
1308 tb_reset_jump_recursive(tb_next);
1309 }
1310 }
1311
1312 static void tb_reset_jump_recursive(TranslationBlock *tb)
1313 {
1314 tb_reset_jump_recursive2(tb, 0);
1315 tb_reset_jump_recursive2(tb, 1);
1316 }
1317
1318 #if defined(TARGET_HAS_ICE)
1319 #if defined(CONFIG_USER_ONLY)
1320 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1321 {
1322 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1323 }
1324 #else
1325 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1326 {
1327 target_phys_addr_t addr;
1328 target_ulong pd;
1329 ram_addr_t ram_addr;
1330 PhysPageDesc *p;
1331
1332 addr = cpu_get_phys_page_debug(env, pc);
1333 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1334 if (!p) {
1335 pd = IO_MEM_UNASSIGNED;
1336 } else {
1337 pd = p->phys_offset;
1338 }
1339 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1340 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1341 }
1342 #endif
1343 #endif /* TARGET_HAS_ICE */
1344
1345 /* Add a watchpoint. */
1346 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1347 int flags, CPUWatchpoint **watchpoint)
1348 {
1349 target_ulong len_mask = ~(len - 1);
1350 CPUWatchpoint *wp;
1351
1352 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1353 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1354 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1355 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1356 return -EINVAL;
1357 }
1358 wp = qemu_malloc(sizeof(*wp));
1359
1360 wp->vaddr = addr;
1361 wp->len_mask = len_mask;
1362 wp->flags = flags;
1363
1364 /* keep all GDB-injected watchpoints in front */
1365 if (flags & BP_GDB)
1366 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1367 else
1368 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1369
1370 tlb_flush_page(env, addr);
1371
1372 if (watchpoint)
1373 *watchpoint = wp;
1374 return 0;
1375 }
1376
1377 /* Remove a specific watchpoint. */
1378 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1379 int flags)
1380 {
1381 target_ulong len_mask = ~(len - 1);
1382 CPUWatchpoint *wp;
1383
1384 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1385 if (addr == wp->vaddr && len_mask == wp->len_mask
1386 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1387 cpu_watchpoint_remove_by_ref(env, wp);
1388 return 0;
1389 }
1390 }
1391 return -ENOENT;
1392 }
1393
1394 /* Remove a specific watchpoint by reference. */
1395 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1396 {
1397 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1398
1399 tlb_flush_page(env, watchpoint->vaddr);
1400
1401 qemu_free(watchpoint);
1402 }
1403
1404 /* Remove all matching watchpoints. */
1405 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1406 {
1407 CPUWatchpoint *wp, *next;
1408
1409 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1410 if (wp->flags & mask)
1411 cpu_watchpoint_remove_by_ref(env, wp);
1412 }
1413 }
1414
1415 /* Add a breakpoint. */
1416 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1417 CPUBreakpoint **breakpoint)
1418 {
1419 #if defined(TARGET_HAS_ICE)
1420 CPUBreakpoint *bp;
1421
1422 bp = qemu_malloc(sizeof(*bp));
1423
1424 bp->pc = pc;
1425 bp->flags = flags;
1426
1427 /* keep all GDB-injected breakpoints in front */
1428 if (flags & BP_GDB)
1429 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1430 else
1431 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1432
1433 breakpoint_invalidate(env, pc);
1434
1435 if (breakpoint)
1436 *breakpoint = bp;
1437 return 0;
1438 #else
1439 return -ENOSYS;
1440 #endif
1441 }
1442
1443 /* Remove a specific breakpoint. */
1444 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1445 {
1446 #if defined(TARGET_HAS_ICE)
1447 CPUBreakpoint *bp;
1448
1449 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1450 if (bp->pc == pc && bp->flags == flags) {
1451 cpu_breakpoint_remove_by_ref(env, bp);
1452 return 0;
1453 }
1454 }
1455 return -ENOENT;
1456 #else
1457 return -ENOSYS;
1458 #endif
1459 }
1460
1461 /* Remove a specific breakpoint by reference. */
1462 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1463 {
1464 #if defined(TARGET_HAS_ICE)
1465 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1466
1467 breakpoint_invalidate(env, breakpoint->pc);
1468
1469 qemu_free(breakpoint);
1470 #endif
1471 }
1472
1473 /* Remove all matching breakpoints. */
1474 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1475 {
1476 #if defined(TARGET_HAS_ICE)
1477 CPUBreakpoint *bp, *next;
1478
1479 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1480 if (bp->flags & mask)
1481 cpu_breakpoint_remove_by_ref(env, bp);
1482 }
1483 #endif
1484 }
1485
1486 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1487 CPU loop after each instruction */
1488 void cpu_single_step(CPUState *env, int enabled)
1489 {
1490 #if defined(TARGET_HAS_ICE)
1491 if (env->singlestep_enabled != enabled) {
1492 env->singlestep_enabled = enabled;
1493 if (kvm_enabled())
1494 kvm_update_guest_debug(env, 0);
1495 else {
1496 /* must flush all the translated code to avoid inconsistencies */
1497 /* XXX: only flush what is necessary */
1498 tb_flush(env);
1499 }
1500 }
1501 #endif
1502 }
1503
1504 /* enable or disable low levels log */
1505 void cpu_set_log(int log_flags)
1506 {
1507 loglevel = log_flags;
1508 if (loglevel && !logfile) {
1509 logfile = fopen(logfilename, log_append ? "a" : "w");
1510 if (!logfile) {
1511 perror(logfilename);
1512 _exit(1);
1513 }
1514 #if !defined(CONFIG_SOFTMMU)
1515 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1516 {
1517 static char logfile_buf[4096];
1518 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1519 }
1520 #elif !defined(_WIN32)
1521 /* Win32 doesn't support line-buffering and requires size >= 2 */
1522 setvbuf(logfile, NULL, _IOLBF, 0);
1523 #endif
1524 log_append = 1;
1525 }
1526 if (!loglevel && logfile) {
1527 fclose(logfile);
1528 logfile = NULL;
1529 }
1530 }
1531
1532 void cpu_set_log_filename(const char *filename)
1533 {
1534 logfilename = strdup(filename);
1535 if (logfile) {
1536 fclose(logfile);
1537 logfile = NULL;
1538 }
1539 cpu_set_log(loglevel);
1540 }
1541
1542 static void cpu_unlink_tb(CPUState *env)
1543 {
1544 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1545 problem and hope the cpu will stop of its own accord. For userspace
1546 emulation this often isn't actually as bad as it sounds. Often
1547 signals are used primarily to interrupt blocking syscalls. */
1548 TranslationBlock *tb;
1549 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1550
1551 spin_lock(&interrupt_lock);
1552 tb = env->current_tb;
1553 /* if the cpu is currently executing code, we must unlink it and
1554 all the potentially executing TB */
1555 if (tb) {
1556 env->current_tb = NULL;
1557 tb_reset_jump_recursive(tb);
1558 }
1559 spin_unlock(&interrupt_lock);
1560 }
1561
1562 /* mask must never be zero, except for A20 change call */
1563 void cpu_interrupt(CPUState *env, int mask)
1564 {
1565 int old_mask;
1566
1567 old_mask = env->interrupt_request;
1568 env->interrupt_request |= mask;
1569
1570 #ifndef CONFIG_USER_ONLY
1571 /*
1572 * If called from iothread context, wake the target cpu in
1573 * case its halted.
1574 */
1575 if (!qemu_cpu_self(env)) {
1576 qemu_cpu_kick(env);
1577 return;
1578 }
1579 #endif
1580
1581 if (use_icount) {
1582 env->icount_decr.u16.high = 0xffff;
1583 #ifndef CONFIG_USER_ONLY
1584 if (!can_do_io(env)
1585 && (mask & ~old_mask) != 0) {
1586 cpu_abort(env, "Raised interrupt while not in I/O function");
1587 }
1588 #endif
1589 } else {
1590 cpu_unlink_tb(env);
1591 }
1592 }
1593
1594 void cpu_reset_interrupt(CPUState *env, int mask)
1595 {
1596 env->interrupt_request &= ~mask;
1597 }
1598
1599 void cpu_exit(CPUState *env)
1600 {
1601 env->exit_request = 1;
1602 cpu_unlink_tb(env);
1603 }
1604
1605 const CPULogItem cpu_log_items[] = {
1606 { CPU_LOG_TB_OUT_ASM, "out_asm",
1607 "show generated host assembly code for each compiled TB" },
1608 { CPU_LOG_TB_IN_ASM, "in_asm",
1609 "show target assembly code for each compiled TB" },
1610 { CPU_LOG_TB_OP, "op",
1611 "show micro ops for each compiled TB" },
1612 { CPU_LOG_TB_OP_OPT, "op_opt",
1613 "show micro ops "
1614 #ifdef TARGET_I386
1615 "before eflags optimization and "
1616 #endif
1617 "after liveness analysis" },
1618 { CPU_LOG_INT, "int",
1619 "show interrupts/exceptions in short format" },
1620 { CPU_LOG_EXEC, "exec",
1621 "show trace before each executed TB (lots of logs)" },
1622 { CPU_LOG_TB_CPU, "cpu",
1623 "show CPU state before block translation" },
1624 #ifdef TARGET_I386
1625 { CPU_LOG_PCALL, "pcall",
1626 "show protected mode far calls/returns/exceptions" },
1627 { CPU_LOG_RESET, "cpu_reset",
1628 "show CPU state before CPU resets" },
1629 #endif
1630 #ifdef DEBUG_IOPORT
1631 { CPU_LOG_IOPORT, "ioport",
1632 "show all i/o ports accesses" },
1633 #endif
1634 { 0, NULL, NULL },
1635 };
1636
1637 #ifndef CONFIG_USER_ONLY
1638 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1639 = QLIST_HEAD_INITIALIZER(memory_client_list);
1640
1641 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1642 ram_addr_t size,
1643 ram_addr_t phys_offset)
1644 {
1645 CPUPhysMemoryClient *client;
1646 QLIST_FOREACH(client, &memory_client_list, list) {
1647 client->set_memory(client, start_addr, size, phys_offset);
1648 }
1649 }
1650
1651 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1652 target_phys_addr_t end)
1653 {
1654 CPUPhysMemoryClient *client;
1655 QLIST_FOREACH(client, &memory_client_list, list) {
1656 int r = client->sync_dirty_bitmap(client, start, end);
1657 if (r < 0)
1658 return r;
1659 }
1660 return 0;
1661 }
1662
1663 static int cpu_notify_migration_log(int enable)
1664 {
1665 CPUPhysMemoryClient *client;
1666 QLIST_FOREACH(client, &memory_client_list, list) {
1667 int r = client->migration_log(client, enable);
1668 if (r < 0)
1669 return r;
1670 }
1671 return 0;
1672 }
1673
1674 static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1675 CPUPhysMemoryClient *client)
1676 {
1677 PhysPageDesc *pd;
1678 int l1, l2;
1679
1680 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1681 pd = phys_map[l1];
1682 if (!pd) {
1683 continue;
1684 }
1685 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1686 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1687 continue;
1688 }
1689 client->set_memory(client, pd[l2].region_offset,
1690 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1691 }
1692 }
1693 }
1694
1695 static void phys_page_for_each(CPUPhysMemoryClient *client)
1696 {
1697 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
1698
1699 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1700 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1701 #endif
1702 void **phys_map = (void **)l1_phys_map;
1703 int l1;
1704 if (!l1_phys_map) {
1705 return;
1706 }
1707 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1708 if (phys_map[l1]) {
1709 phys_page_for_each_in_l1_map(phys_map[l1], client);
1710 }
1711 }
1712 #else
1713 if (!l1_phys_map) {
1714 return;
1715 }
1716 phys_page_for_each_in_l1_map(l1_phys_map, client);
1717 #endif
1718 }
1719
1720 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1721 {
1722 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1723 phys_page_for_each(client);
1724 }
1725
1726 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1727 {
1728 QLIST_REMOVE(client, list);
1729 }
1730 #endif
1731
1732 static int cmp1(const char *s1, int n, const char *s2)
1733 {
1734 if (strlen(s2) != n)
1735 return 0;
1736 return memcmp(s1, s2, n) == 0;
1737 }
1738
1739 /* takes a comma separated list of log masks. Return 0 if error. */
1740 int cpu_str_to_log_mask(const char *str)
1741 {
1742 const CPULogItem *item;
1743 int mask;
1744 const char *p, *p1;
1745
1746 p = str;
1747 mask = 0;
1748 for(;;) {
1749 p1 = strchr(p, ',');
1750 if (!p1)
1751 p1 = p + strlen(p);
1752 if(cmp1(p,p1-p,"all")) {
1753 for(item = cpu_log_items; item->mask != 0; item++) {
1754 mask |= item->mask;
1755 }
1756 } else {
1757 for(item = cpu_log_items; item->mask != 0; item++) {
1758 if (cmp1(p, p1 - p, item->name))
1759 goto found;
1760 }
1761 return 0;
1762 }
1763 found:
1764 mask |= item->mask;
1765 if (*p1 != ',')
1766 break;
1767 p = p1 + 1;
1768 }
1769 return mask;
1770 }
1771
1772 void cpu_abort(CPUState *env, const char *fmt, ...)
1773 {
1774 va_list ap;
1775 va_list ap2;
1776
1777 va_start(ap, fmt);
1778 va_copy(ap2, ap);
1779 fprintf(stderr, "qemu: fatal: ");
1780 vfprintf(stderr, fmt, ap);
1781 fprintf(stderr, "\n");
1782 #ifdef TARGET_I386
1783 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1784 #else
1785 cpu_dump_state(env, stderr, fprintf, 0);
1786 #endif
1787 if (qemu_log_enabled()) {
1788 qemu_log("qemu: fatal: ");
1789 qemu_log_vprintf(fmt, ap2);
1790 qemu_log("\n");
1791 #ifdef TARGET_I386
1792 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1793 #else
1794 log_cpu_state(env, 0);
1795 #endif
1796 qemu_log_flush();
1797 qemu_log_close();
1798 }
1799 va_end(ap2);
1800 va_end(ap);
1801 #if defined(CONFIG_USER_ONLY)
1802 {
1803 struct sigaction act;
1804 sigfillset(&act.sa_mask);
1805 act.sa_handler = SIG_DFL;
1806 sigaction(SIGABRT, &act, NULL);
1807 }
1808 #endif
1809 abort();
1810 }
1811
1812 CPUState *cpu_copy(CPUState *env)
1813 {
1814 CPUState *new_env = cpu_init(env->cpu_model_str);
1815 CPUState *next_cpu = new_env->next_cpu;
1816 int cpu_index = new_env->cpu_index;
1817 #if defined(TARGET_HAS_ICE)
1818 CPUBreakpoint *bp;
1819 CPUWatchpoint *wp;
1820 #endif
1821
1822 memcpy(new_env, env, sizeof(CPUState));
1823
1824 /* Preserve chaining and index. */
1825 new_env->next_cpu = next_cpu;
1826 new_env->cpu_index = cpu_index;
1827
1828 /* Clone all break/watchpoints.
1829 Note: Once we support ptrace with hw-debug register access, make sure
1830 BP_CPU break/watchpoints are handled correctly on clone. */
1831 QTAILQ_INIT(&env->breakpoints);
1832 QTAILQ_INIT(&env->watchpoints);
1833 #if defined(TARGET_HAS_ICE)
1834 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1835 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1836 }
1837 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1838 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1839 wp->flags, NULL);
1840 }
1841 #endif
1842
1843 return new_env;
1844 }
1845
1846 #if !defined(CONFIG_USER_ONLY)
1847
1848 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1849 {
1850 unsigned int i;
1851
1852 /* Discard jump cache entries for any tb which might potentially
1853 overlap the flushed page. */
1854 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1855 memset (&env->tb_jmp_cache[i], 0,
1856 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1857
1858 i = tb_jmp_cache_hash_page(addr);
1859 memset (&env->tb_jmp_cache[i], 0,
1860 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1861 }
1862
1863 static CPUTLBEntry s_cputlb_empty_entry = {
1864 .addr_read = -1,
1865 .addr_write = -1,
1866 .addr_code = -1,
1867 .addend = -1,
1868 };
1869
1870 /* NOTE: if flush_global is true, also flush global entries (not
1871 implemented yet) */
1872 void tlb_flush(CPUState *env, int flush_global)
1873 {
1874 int i;
1875
1876 #if defined(DEBUG_TLB)
1877 printf("tlb_flush:\n");
1878 #endif
1879 /* must reset current TB so that interrupts cannot modify the
1880 links while we are modifying them */
1881 env->current_tb = NULL;
1882
1883 for(i = 0; i < CPU_TLB_SIZE; i++) {
1884 int mmu_idx;
1885 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1886 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1887 }
1888 }
1889
1890 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1891
1892 tlb_flush_count++;
1893 }
1894
1895 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1896 {
1897 if (addr == (tlb_entry->addr_read &
1898 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1899 addr == (tlb_entry->addr_write &
1900 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1901 addr == (tlb_entry->addr_code &
1902 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1903 *tlb_entry = s_cputlb_empty_entry;
1904 }
1905 }
1906
1907 void tlb_flush_page(CPUState *env, target_ulong addr)
1908 {
1909 int i;
1910 int mmu_idx;
1911
1912 #if defined(DEBUG_TLB)
1913 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1914 #endif
1915 /* must reset current TB so that interrupts cannot modify the
1916 links while we are modifying them */
1917 env->current_tb = NULL;
1918
1919 addr &= TARGET_PAGE_MASK;
1920 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1921 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1922 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1923
1924 tlb_flush_jmp_cache(env, addr);
1925 }
1926
1927 /* update the TLBs so that writes to code in the virtual page 'addr'
1928 can be detected */
1929 static void tlb_protect_code(ram_addr_t ram_addr)
1930 {
1931 cpu_physical_memory_reset_dirty(ram_addr,
1932 ram_addr + TARGET_PAGE_SIZE,
1933 CODE_DIRTY_FLAG);
1934 }
1935
1936 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1937 tested for self modifying code */
1938 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1939 target_ulong vaddr)
1940 {
1941 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1942 }
1943
1944 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1945 unsigned long start, unsigned long length)
1946 {
1947 unsigned long addr;
1948 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1949 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1950 if ((addr - start) < length) {
1951 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1952 }
1953 }
1954 }
1955
1956 /* Note: start and end must be within the same ram block. */
1957 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1958 int dirty_flags)
1959 {
1960 CPUState *env;
1961 unsigned long length, start1;
1962 int i, mask, len;
1963 uint8_t *p;
1964
1965 start &= TARGET_PAGE_MASK;
1966 end = TARGET_PAGE_ALIGN(end);
1967
1968 length = end - start;
1969 if (length == 0)
1970 return;
1971 len = length >> TARGET_PAGE_BITS;
1972 mask = ~dirty_flags;
1973 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1974 for(i = 0; i < len; i++)
1975 p[i] &= mask;
1976
1977 /* we modify the TLB cache so that the dirty bit will be set again
1978 when accessing the range */
1979 start1 = (unsigned long)qemu_get_ram_ptr(start);
1980 /* Chek that we don't span multiple blocks - this breaks the
1981 address comparisons below. */
1982 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1983 != (end - 1) - start) {
1984 abort();
1985 }
1986
1987 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1988 int mmu_idx;
1989 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1990 for(i = 0; i < CPU_TLB_SIZE; i++)
1991 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1992 start1, length);
1993 }
1994 }
1995 }
1996
1997 int cpu_physical_memory_set_dirty_tracking(int enable)
1998 {
1999 int ret = 0;
2000 in_migration = enable;
2001 ret = cpu_notify_migration_log(!!enable);
2002 return ret;
2003 }
2004
2005 int cpu_physical_memory_get_dirty_tracking(void)
2006 {
2007 return in_migration;
2008 }
2009
2010 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2011 target_phys_addr_t end_addr)
2012 {
2013 int ret;
2014
2015 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2016 return ret;
2017 }
2018
2019 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2020 {
2021 ram_addr_t ram_addr;
2022 void *p;
2023
2024 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2025 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2026 + tlb_entry->addend);
2027 ram_addr = qemu_ram_addr_from_host(p);
2028 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2029 tlb_entry->addr_write |= TLB_NOTDIRTY;
2030 }
2031 }
2032 }
2033
2034 /* update the TLB according to the current state of the dirty bits */
2035 void cpu_tlb_update_dirty(CPUState *env)
2036 {
2037 int i;
2038 int mmu_idx;
2039 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2040 for(i = 0; i < CPU_TLB_SIZE; i++)
2041 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2042 }
2043 }
2044
2045 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2046 {
2047 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2048 tlb_entry->addr_write = vaddr;
2049 }
2050
2051 /* update the TLB corresponding to virtual page vaddr
2052 so that it is no longer dirty */
2053 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2054 {
2055 int i;
2056 int mmu_idx;
2057
2058 vaddr &= TARGET_PAGE_MASK;
2059 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2060 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2061 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2062 }
2063
2064 /* add a new TLB entry. At most one entry for a given virtual address
2065 is permitted. Return 0 if OK or 2 if the page could not be mapped
2066 (can only happen in non SOFTMMU mode for I/O pages or pages
2067 conflicting with the host address space). */
2068 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2069 target_phys_addr_t paddr, int prot,
2070 int mmu_idx, int is_softmmu)
2071 {
2072 PhysPageDesc *p;
2073 unsigned long pd;
2074 unsigned int index;
2075 target_ulong address;
2076 target_ulong code_address;
2077 target_phys_addr_t addend;
2078 int ret;
2079 CPUTLBEntry *te;
2080 CPUWatchpoint *wp;
2081 target_phys_addr_t iotlb;
2082
2083 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2084 if (!p) {
2085 pd = IO_MEM_UNASSIGNED;
2086 } else {
2087 pd = p->phys_offset;
2088 }
2089 #if defined(DEBUG_TLB)
2090 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2091 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2092 #endif
2093
2094 ret = 0;
2095 address = vaddr;
2096 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2097 /* IO memory case (romd handled later) */
2098 address |= TLB_MMIO;
2099 }
2100 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2101 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2102 /* Normal RAM. */
2103 iotlb = pd & TARGET_PAGE_MASK;
2104 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2105 iotlb |= IO_MEM_NOTDIRTY;
2106 else
2107 iotlb |= IO_MEM_ROM;
2108 } else {
2109 /* IO handlers are currently passed a physical address.
2110 It would be nice to pass an offset from the base address
2111 of that region. This would avoid having to special case RAM,
2112 and avoid full address decoding in every device.
2113 We can't use the high bits of pd for this because
2114 IO_MEM_ROMD uses these as a ram address. */
2115 iotlb = (pd & ~TARGET_PAGE_MASK);
2116 if (p) {
2117 iotlb += p->region_offset;
2118 } else {
2119 iotlb += paddr;
2120 }
2121 }
2122
2123 code_address = address;
2124 /* Make accesses to pages with watchpoints go via the
2125 watchpoint trap routines. */
2126 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2127 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2128 iotlb = io_mem_watch + paddr;
2129 /* TODO: The memory case can be optimized by not trapping
2130 reads of pages with a write breakpoint. */
2131 address |= TLB_MMIO;
2132 }
2133 }
2134
2135 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2136 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2137 te = &env->tlb_table[mmu_idx][index];
2138 te->addend = addend - vaddr;
2139 if (prot & PAGE_READ) {
2140 te->addr_read = address;
2141 } else {
2142 te->addr_read = -1;
2143 }
2144
2145 if (prot & PAGE_EXEC) {
2146 te->addr_code = code_address;
2147 } else {
2148 te->addr_code = -1;
2149 }
2150 if (prot & PAGE_WRITE) {
2151 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2152 (pd & IO_MEM_ROMD)) {
2153 /* Write access calls the I/O callback. */
2154 te->addr_write = address | TLB_MMIO;
2155 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2156 !cpu_physical_memory_is_dirty(pd)) {
2157 te->addr_write = address | TLB_NOTDIRTY;
2158 } else {
2159 te->addr_write = address;
2160 }
2161 } else {
2162 te->addr_write = -1;
2163 }
2164 return ret;
2165 }
2166
2167 #else
2168
2169 void tlb_flush(CPUState *env, int flush_global)
2170 {
2171 }
2172
2173 void tlb_flush_page(CPUState *env, target_ulong addr)
2174 {
2175 }
2176
2177 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2178 target_phys_addr_t paddr, int prot,
2179 int mmu_idx, int is_softmmu)
2180 {
2181 return 0;
2182 }
2183
2184 /*
2185 * Walks guest process memory "regions" one by one
2186 * and calls callback function 'fn' for each region.
2187 */
2188 int walk_memory_regions(void *priv,
2189 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2190 {
2191 unsigned long start, end;
2192 PageDesc *p = NULL;
2193 int i, j, prot, prot1;
2194 int rc = 0;
2195
2196 start = end = -1;
2197 prot = 0;
2198
2199 for (i = 0; i <= L1_SIZE; i++) {
2200 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2201 for (j = 0; j < L2_SIZE; j++) {
2202 prot1 = (p == NULL) ? 0 : p[j].flags;
2203 /*
2204 * "region" is one continuous chunk of memory
2205 * that has same protection flags set.
2206 */
2207 if (prot1 != prot) {
2208 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2209 if (start != -1) {
2210 rc = (*fn)(priv, start, end, prot);
2211 /* callback can stop iteration by returning != 0 */
2212 if (rc != 0)
2213 return (rc);
2214 }
2215 if (prot1 != 0)
2216 start = end;
2217 else
2218 start = -1;
2219 prot = prot1;
2220 }
2221 if (p == NULL)
2222 break;
2223 }
2224 }
2225 return (rc);
2226 }
2227
2228 static int dump_region(void *priv, unsigned long start,
2229 unsigned long end, unsigned long prot)
2230 {
2231 FILE *f = (FILE *)priv;
2232
2233 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2234 start, end, end - start,
2235 ((prot & PAGE_READ) ? 'r' : '-'),
2236 ((prot & PAGE_WRITE) ? 'w' : '-'),
2237 ((prot & PAGE_EXEC) ? 'x' : '-'));
2238
2239 return (0);
2240 }
2241
2242 /* dump memory mappings */
2243 void page_dump(FILE *f)
2244 {
2245 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2246 "start", "end", "size", "prot");
2247 walk_memory_regions(f, dump_region);
2248 }
2249
2250 int page_get_flags(target_ulong address)
2251 {
2252 PageDesc *p;
2253
2254 p = page_find(address >> TARGET_PAGE_BITS);
2255 if (!p)
2256 return 0;
2257 return p->flags;
2258 }
2259
2260 /* modify the flags of a page and invalidate the code if
2261 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2262 depending on PAGE_WRITE */
2263 void page_set_flags(target_ulong start, target_ulong end, int flags)
2264 {
2265 PageDesc *p;
2266 target_ulong addr;
2267
2268 /* mmap_lock should already be held. */
2269 start = start & TARGET_PAGE_MASK;
2270 end = TARGET_PAGE_ALIGN(end);
2271 if (flags & PAGE_WRITE)
2272 flags |= PAGE_WRITE_ORG;
2273 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2274 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2275 /* We may be called for host regions that are outside guest
2276 address space. */
2277 if (!p)
2278 return;
2279 /* if the write protection is set, then we invalidate the code
2280 inside */
2281 if (!(p->flags & PAGE_WRITE) &&
2282 (flags & PAGE_WRITE) &&
2283 p->first_tb) {
2284 tb_invalidate_phys_page(addr, 0, NULL);
2285 }
2286 p->flags = flags;
2287 }
2288 }
2289
2290 int page_check_range(target_ulong start, target_ulong len, int flags)
2291 {
2292 PageDesc *p;
2293 target_ulong end;
2294 target_ulong addr;
2295
2296 if (start + len < start)
2297 /* we've wrapped around */
2298 return -1;
2299
2300 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2301 start = start & TARGET_PAGE_MASK;
2302
2303 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2304 p = page_find(addr >> TARGET_PAGE_BITS);
2305 if( !p )
2306 return -1;
2307 if( !(p->flags & PAGE_VALID) )
2308 return -1;
2309
2310 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2311 return -1;
2312 if (flags & PAGE_WRITE) {
2313 if (!(p->flags & PAGE_WRITE_ORG))
2314 return -1;
2315 /* unprotect the page if it was put read-only because it
2316 contains translated code */
2317 if (!(p->flags & PAGE_WRITE)) {
2318 if (!page_unprotect(addr, 0, NULL))
2319 return -1;
2320 }
2321 return 0;
2322 }
2323 }
2324 return 0;
2325 }
2326
2327 /* called from signal handler: invalidate the code and unprotect the
2328 page. Return TRUE if the fault was successfully handled. */
2329 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2330 {
2331 unsigned int page_index, prot, pindex;
2332 PageDesc *p, *p1;
2333 target_ulong host_start, host_end, addr;
2334
2335 /* Technically this isn't safe inside a signal handler. However we
2336 know this only ever happens in a synchronous SEGV handler, so in
2337 practice it seems to be ok. */
2338 mmap_lock();
2339
2340 host_start = address & qemu_host_page_mask;
2341 page_index = host_start >> TARGET_PAGE_BITS;
2342 p1 = page_find(page_index);
2343 if (!p1) {
2344 mmap_unlock();
2345 return 0;
2346 }
2347 host_end = host_start + qemu_host_page_size;
2348 p = p1;
2349 prot = 0;
2350 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2351 prot |= p->flags;
2352 p++;
2353 }
2354 /* if the page was really writable, then we change its
2355 protection back to writable */
2356 if (prot & PAGE_WRITE_ORG) {
2357 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2358 if (!(p1[pindex].flags & PAGE_WRITE)) {
2359 mprotect((void *)g2h(host_start), qemu_host_page_size,
2360 (prot & PAGE_BITS) | PAGE_WRITE);
2361 p1[pindex].flags |= PAGE_WRITE;
2362 /* and since the content will be modified, we must invalidate
2363 the corresponding translated code. */
2364 tb_invalidate_phys_page(address, pc, puc);
2365 #ifdef DEBUG_TB_CHECK
2366 tb_invalidate_check(address);
2367 #endif
2368 mmap_unlock();
2369 return 1;
2370 }
2371 }
2372 mmap_unlock();
2373 return 0;
2374 }
2375
2376 static inline void tlb_set_dirty(CPUState *env,
2377 unsigned long addr, target_ulong vaddr)
2378 {
2379 }
2380 #endif /* defined(CONFIG_USER_ONLY) */
2381
2382 #if !defined(CONFIG_USER_ONLY)
2383
2384 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2385 ram_addr_t memory, ram_addr_t region_offset);
2386 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2387 ram_addr_t orig_memory, ram_addr_t region_offset);
2388 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2389 need_subpage) \
2390 do { \
2391 if (addr > start_addr) \
2392 start_addr2 = 0; \
2393 else { \
2394 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2395 if (start_addr2 > 0) \
2396 need_subpage = 1; \
2397 } \
2398 \
2399 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2400 end_addr2 = TARGET_PAGE_SIZE - 1; \
2401 else { \
2402 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2403 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2404 need_subpage = 1; \
2405 } \
2406 } while (0)
2407
2408 /* register physical memory.
2409 For RAM, 'size' must be a multiple of the target page size.
2410 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2411 io memory page. The address used when calling the IO function is
2412 the offset from the start of the region, plus region_offset. Both
2413 start_addr and region_offset are rounded down to a page boundary
2414 before calculating this offset. This should not be a problem unless
2415 the low bits of start_addr and region_offset differ. */
2416 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2417 ram_addr_t size,
2418 ram_addr_t phys_offset,
2419 ram_addr_t region_offset)
2420 {
2421 target_phys_addr_t addr, end_addr;
2422 PhysPageDesc *p;
2423 CPUState *env;
2424 ram_addr_t orig_size = size;
2425 void *subpage;
2426
2427 cpu_notify_set_memory(start_addr, size, phys_offset);
2428
2429 if (phys_offset == IO_MEM_UNASSIGNED) {
2430 region_offset = start_addr;
2431 }
2432 region_offset &= TARGET_PAGE_MASK;
2433 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2434 end_addr = start_addr + (target_phys_addr_t)size;
2435 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2437 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2438 ram_addr_t orig_memory = p->phys_offset;
2439 target_phys_addr_t start_addr2, end_addr2;
2440 int need_subpage = 0;
2441
2442 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2443 need_subpage);
2444 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2445 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2446 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2447 &p->phys_offset, orig_memory,
2448 p->region_offset);
2449 } else {
2450 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2451 >> IO_MEM_SHIFT];
2452 }
2453 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2454 region_offset);
2455 p->region_offset = 0;
2456 } else {
2457 p->phys_offset = phys_offset;
2458 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2459 (phys_offset & IO_MEM_ROMD))
2460 phys_offset += TARGET_PAGE_SIZE;
2461 }
2462 } else {
2463 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2464 p->phys_offset = phys_offset;
2465 p->region_offset = region_offset;
2466 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2467 (phys_offset & IO_MEM_ROMD)) {
2468 phys_offset += TARGET_PAGE_SIZE;
2469 } else {
2470 target_phys_addr_t start_addr2, end_addr2;
2471 int need_subpage = 0;
2472
2473 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2474 end_addr2, need_subpage);
2475
2476 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2477 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2478 &p->phys_offset, IO_MEM_UNASSIGNED,
2479 addr & TARGET_PAGE_MASK);
2480 subpage_register(subpage, start_addr2, end_addr2,
2481 phys_offset, region_offset);
2482 p->region_offset = 0;
2483 }
2484 }
2485 }
2486 region_offset += TARGET_PAGE_SIZE;
2487 }
2488
2489 /* since each CPU stores ram addresses in its TLB cache, we must
2490 reset the modified entries */
2491 /* XXX: slow ! */
2492 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2493 tlb_flush(env, 1);
2494 }
2495 }
2496
2497 /* XXX: temporary until new memory mapping API */
2498 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2499 {
2500 PhysPageDesc *p;
2501
2502 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2503 if (!p)
2504 return IO_MEM_UNASSIGNED;
2505 return p->phys_offset;
2506 }
2507
2508 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2509 {
2510 if (kvm_enabled())
2511 kvm_coalesce_mmio_region(addr, size);
2512 }
2513
2514 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2515 {
2516 if (kvm_enabled())
2517 kvm_uncoalesce_mmio_region(addr, size);
2518 }
2519
2520 void qemu_flush_coalesced_mmio_buffer(void)
2521 {
2522 if (kvm_enabled())
2523 kvm_flush_coalesced_mmio_buffer();
2524 }
2525
2526 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2527 {
2528 RAMBlock *new_block;
2529
2530 size = TARGET_PAGE_ALIGN(size);
2531 new_block = qemu_malloc(sizeof(*new_block));
2532
2533 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2534 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2535 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2536 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2537 #else
2538 new_block->host = qemu_vmalloc(size);
2539 #endif
2540 #ifdef MADV_MERGEABLE
2541 madvise(new_block->host, size, MADV_MERGEABLE);
2542 #endif
2543 new_block->offset = last_ram_offset;
2544 new_block->length = size;
2545
2546 new_block->next = ram_blocks;
2547 ram_blocks = new_block;
2548
2549 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2550 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2551 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2552 0xff, size >> TARGET_PAGE_BITS);
2553
2554 last_ram_offset += size;
2555
2556 if (kvm_enabled())
2557 kvm_setup_guest_memory(new_block->host, size);
2558
2559 return new_block->offset;
2560 }
2561
2562 void qemu_ram_free(ram_addr_t addr)
2563 {
2564 /* TODO: implement this. */
2565 }
2566
2567 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2568 With the exception of the softmmu code in this file, this should
2569 only be used for local memory (e.g. video ram) that the device owns,
2570 and knows it isn't going to access beyond the end of the block.
2571
2572 It should not be used for general purpose DMA.
2573 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2574 */
2575 void *qemu_get_ram_ptr(ram_addr_t addr)
2576 {
2577 RAMBlock *prev;
2578 RAMBlock **prevp;
2579 RAMBlock *block;
2580
2581 prev = NULL;
2582 prevp = &ram_blocks;
2583 block = ram_blocks;
2584 while (block && (block->offset > addr
2585 || block->offset + block->length <= addr)) {
2586 if (prev)
2587 prevp = &prev->next;
2588 prev = block;
2589 block = block->next;
2590 }
2591 if (!block) {
2592 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2593 abort();
2594 }
2595 /* Move this entry to to start of the list. */
2596 if (prev) {
2597 prev->next = block->next;
2598 block->next = *prevp;
2599 *prevp = block;
2600 }
2601 return block->host + (addr - block->offset);
2602 }
2603
2604 /* Some of the softmmu routines need to translate from a host pointer
2605 (typically a TLB entry) back to a ram offset. */
2606 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2607 {
2608 RAMBlock *prev;
2609 RAMBlock *block;
2610 uint8_t *host = ptr;
2611
2612 prev = NULL;
2613 block = ram_blocks;
2614 while (block && (block->host > host
2615 || block->host + block->length <= host)) {
2616 prev = block;
2617 block = block->next;
2618 }
2619 if (!block) {
2620 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2621 abort();
2622 }
2623 return block->offset + (host - block->host);
2624 }
2625
2626 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2627 {
2628 #ifdef DEBUG_UNASSIGNED
2629 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2630 #endif
2631 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2632 do_unassigned_access(addr, 0, 0, 0, 1);
2633 #endif
2634 return 0;
2635 }
2636
2637 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2638 {
2639 #ifdef DEBUG_UNASSIGNED
2640 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2641 #endif
2642 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2643 do_unassigned_access(addr, 0, 0, 0, 2);
2644 #endif
2645 return 0;
2646 }
2647
2648 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2649 {
2650 #ifdef DEBUG_UNASSIGNED
2651 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2652 #endif
2653 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2654 do_unassigned_access(addr, 0, 0, 0, 4);
2655 #endif
2656 return 0;
2657 }
2658
2659 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2660 {
2661 #ifdef DEBUG_UNASSIGNED
2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2663 #endif
2664 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2665 do_unassigned_access(addr, 1, 0, 0, 1);
2666 #endif
2667 }
2668
2669 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2670 {
2671 #ifdef DEBUG_UNASSIGNED
2672 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2673 #endif
2674 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2675 do_unassigned_access(addr, 1, 0, 0, 2);
2676 #endif
2677 }
2678
2679 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2680 {
2681 #ifdef DEBUG_UNASSIGNED
2682 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2683 #endif
2684 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2685 do_unassigned_access(addr, 1, 0, 0, 4);
2686 #endif
2687 }
2688
2689 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2690 unassigned_mem_readb,
2691 unassigned_mem_readw,
2692 unassigned_mem_readl,
2693 };
2694
2695 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2696 unassigned_mem_writeb,
2697 unassigned_mem_writew,
2698 unassigned_mem_writel,
2699 };
2700
2701 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2702 uint32_t val)
2703 {
2704 int dirty_flags;
2705 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2706 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2707 #if !defined(CONFIG_USER_ONLY)
2708 tb_invalidate_phys_page_fast(ram_addr, 1);
2709 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2710 #endif
2711 }
2712 stb_p(qemu_get_ram_ptr(ram_addr), val);
2713 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2714 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2715 /* we remove the notdirty callback only if the code has been
2716 flushed */
2717 if (dirty_flags == 0xff)
2718 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2719 }
2720
2721 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2722 uint32_t val)
2723 {
2724 int dirty_flags;
2725 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2726 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2727 #if !defined(CONFIG_USER_ONLY)
2728 tb_invalidate_phys_page_fast(ram_addr, 2);
2729 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2730 #endif
2731 }
2732 stw_p(qemu_get_ram_ptr(ram_addr), val);
2733 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2734 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2735 /* we remove the notdirty callback only if the code has been
2736 flushed */
2737 if (dirty_flags == 0xff)
2738 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2739 }
2740
2741 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2742 uint32_t val)
2743 {
2744 int dirty_flags;
2745 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2746 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2747 #if !defined(CONFIG_USER_ONLY)
2748 tb_invalidate_phys_page_fast(ram_addr, 4);
2749 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2750 #endif
2751 }
2752 stl_p(qemu_get_ram_ptr(ram_addr), val);
2753 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2754 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2755 /* we remove the notdirty callback only if the code has been
2756 flushed */
2757 if (dirty_flags == 0xff)
2758 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2759 }
2760
2761 static CPUReadMemoryFunc * const error_mem_read[3] = {
2762 NULL, /* never used */
2763 NULL, /* never used */
2764 NULL, /* never used */
2765 };
2766
2767 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2768 notdirty_mem_writeb,
2769 notdirty_mem_writew,
2770 notdirty_mem_writel,
2771 };
2772
2773 /* Generate a debug exception if a watchpoint has been hit. */
2774 static void check_watchpoint(int offset, int len_mask, int flags)
2775 {
2776 CPUState *env = cpu_single_env;
2777 target_ulong pc, cs_base;
2778 TranslationBlock *tb;
2779 target_ulong vaddr;
2780 CPUWatchpoint *wp;
2781 int cpu_flags;
2782
2783 if (env->watchpoint_hit) {
2784 /* We re-entered the check after replacing the TB. Now raise
2785 * the debug interrupt so that is will trigger after the
2786 * current instruction. */
2787 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2788 return;
2789 }
2790 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2791 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2792 if ((vaddr == (wp->vaddr & len_mask) ||
2793 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2794 wp->flags |= BP_WATCHPOINT_HIT;
2795 if (!env->watchpoint_hit) {
2796 env->watchpoint_hit = wp;
2797 tb = tb_find_pc(env->mem_io_pc);
2798 if (!tb) {
2799 cpu_abort(env, "check_watchpoint: could not find TB for "
2800 "pc=%p", (void *)env->mem_io_pc);
2801 }
2802 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2803 tb_phys_invalidate(tb, -1);
2804 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2805 env->exception_index = EXCP_DEBUG;
2806 } else {
2807 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2808 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2809 }
2810 cpu_resume_from_signal(env, NULL);
2811 }
2812 } else {
2813 wp->flags &= ~BP_WATCHPOINT_HIT;
2814 }
2815 }
2816 }
2817
2818 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2819 so these check for a hit then pass through to the normal out-of-line
2820 phys routines. */
2821 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2822 {
2823 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2824 return ldub_phys(addr);
2825 }
2826
2827 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2828 {
2829 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2830 return lduw_phys(addr);
2831 }
2832
2833 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2834 {
2835 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2836 return ldl_phys(addr);
2837 }
2838
2839 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2840 uint32_t val)
2841 {
2842 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2843 stb_phys(addr, val);
2844 }
2845
2846 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2847 uint32_t val)
2848 {
2849 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2850 stw_phys(addr, val);
2851 }
2852
2853 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2854 uint32_t val)
2855 {
2856 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2857 stl_phys(addr, val);
2858 }
2859
2860 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2861 watch_mem_readb,
2862 watch_mem_readw,
2863 watch_mem_readl,
2864 };
2865
2866 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2867 watch_mem_writeb,
2868 watch_mem_writew,
2869 watch_mem_writel,
2870 };
2871
2872 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2873 unsigned int len)
2874 {
2875 uint32_t ret;
2876 unsigned int idx;
2877
2878 idx = SUBPAGE_IDX(addr);
2879 #if defined(DEBUG_SUBPAGE)
2880 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2881 mmio, len, addr, idx);
2882 #endif
2883 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2884 addr + mmio->region_offset[idx][0][len]);
2885
2886 return ret;
2887 }
2888
2889 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2890 uint32_t value, unsigned int len)
2891 {
2892 unsigned int idx;
2893
2894 idx = SUBPAGE_IDX(addr);
2895 #if defined(DEBUG_SUBPAGE)
2896 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2897 mmio, len, addr, idx, value);
2898 #endif
2899 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2900 addr + mmio->region_offset[idx][1][len],
2901 value);
2902 }
2903
2904 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2905 {
2906 #if defined(DEBUG_SUBPAGE)
2907 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2908 #endif
2909
2910 return subpage_readlen(opaque, addr, 0);
2911 }
2912
2913 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2914 uint32_t value)
2915 {
2916 #if defined(DEBUG_SUBPAGE)
2917 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2918 #endif
2919 subpage_writelen(opaque, addr, value, 0);
2920 }
2921
2922 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2923 {
2924 #if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2926 #endif
2927
2928 return subpage_readlen(opaque, addr, 1);
2929 }
2930
2931 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2932 uint32_t value)
2933 {
2934 #if defined(DEBUG_SUBPAGE)
2935 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2936 #endif
2937 subpage_writelen(opaque, addr, value, 1);
2938 }
2939
2940 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2941 {
2942 #if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2944 #endif
2945
2946 return subpage_readlen(opaque, addr, 2);
2947 }
2948
2949 static void subpage_writel (void *opaque,
2950 target_phys_addr_t addr, uint32_t value)
2951 {
2952 #if defined(DEBUG_SUBPAGE)
2953 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2954 #endif
2955 subpage_writelen(opaque, addr, value, 2);
2956 }
2957
2958 static CPUReadMemoryFunc * const subpage_read[] = {
2959 &subpage_readb,
2960 &subpage_readw,
2961 &subpage_readl,
2962 };
2963
2964 static CPUWriteMemoryFunc * const subpage_write[] = {
2965 &subpage_writeb,
2966 &subpage_writew,
2967 &subpage_writel,
2968 };
2969
2970 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2971 ram_addr_t memory, ram_addr_t region_offset)
2972 {
2973 int idx, eidx;
2974 unsigned int i;
2975
2976 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2977 return -1;
2978 idx = SUBPAGE_IDX(start);
2979 eidx = SUBPAGE_IDX(end);
2980 #if defined(DEBUG_SUBPAGE)
2981 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2982 mmio, start, end, idx, eidx, memory);
2983 #endif
2984 memory >>= IO_MEM_SHIFT;
2985 for (; idx <= eidx; idx++) {
2986 for (i = 0; i < 4; i++) {
2987 if (io_mem_read[memory][i]) {
2988 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2989 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2990 mmio->region_offset[idx][0][i] = region_offset;
2991 }
2992 if (io_mem_write[memory][i]) {
2993 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2994 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2995 mmio->region_offset[idx][1][i] = region_offset;
2996 }
2997 }
2998 }
2999
3000 return 0;
3001 }
3002
3003 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3004 ram_addr_t orig_memory, ram_addr_t region_offset)
3005 {
3006 subpage_t *mmio;
3007 int subpage_memory;
3008
3009 mmio = qemu_mallocz(sizeof(subpage_t));
3010
3011 mmio->base = base;
3012 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3013 #if defined(DEBUG_SUBPAGE)
3014 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3015 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3016 #endif
3017 *phys = subpage_memory | IO_MEM_SUBPAGE;
3018 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3019 region_offset);
3020
3021 return mmio;
3022 }
3023
3024 static int get_free_io_mem_idx(void)
3025 {
3026 int i;
3027
3028 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3029 if (!io_mem_used[i]) {
3030 io_mem_used[i] = 1;
3031 return i;
3032 }
3033 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3034 return -1;
3035 }
3036
3037 /* mem_read and mem_write are arrays of functions containing the
3038 function to access byte (index 0), word (index 1) and dword (index
3039 2). Functions can be omitted with a NULL function pointer.
3040 If io_index is non zero, the corresponding io zone is
3041 modified. If it is zero, a new io zone is allocated. The return
3042 value can be used with cpu_register_physical_memory(). (-1) is
3043 returned if error. */
3044 static int cpu_register_io_memory_fixed(int io_index,
3045 CPUReadMemoryFunc * const *mem_read,
3046 CPUWriteMemoryFunc * const *mem_write,
3047 void *opaque)
3048 {
3049 int i, subwidth = 0;
3050
3051 if (io_index <= 0) {
3052 io_index = get_free_io_mem_idx();
3053 if (io_index == -1)
3054 return io_index;
3055 } else {
3056 io_index >>= IO_MEM_SHIFT;
3057 if (io_index >= IO_MEM_NB_ENTRIES)
3058 return -1;
3059 }
3060
3061 for(i = 0;i < 3; i++) {
3062 if (!mem_read[i] || !mem_write[i])
3063 subwidth = IO_MEM_SUBWIDTH;
3064 io_mem_read[io_index][i] = mem_read[i];
3065 io_mem_write[io_index][i] = mem_write[i];
3066 }
3067 io_mem_opaque[io_index] = opaque;
3068 return (io_index << IO_MEM_SHIFT) | subwidth;
3069 }
3070
3071 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3072 CPUWriteMemoryFunc * const *mem_write,
3073 void *opaque)
3074 {
3075 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3076 }
3077
3078 void cpu_unregister_io_memory(int io_table_address)
3079 {
3080 int i;
3081 int io_index = io_table_address >> IO_MEM_SHIFT;
3082
3083 for (i=0;i < 3; i++) {
3084 io_mem_read[io_index][i] = unassigned_mem_read[i];
3085 io_mem_write[io_index][i] = unassigned_mem_write[i];
3086 }
3087 io_mem_opaque[io_index] = NULL;
3088 io_mem_used[io_index] = 0;
3089 }
3090
3091 static void io_mem_init(void)
3092 {
3093 int i;
3094
3095 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3096 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3097 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3098 for (i=0; i<5; i++)
3099 io_mem_used[i] = 1;
3100
3101 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3102 watch_mem_write, NULL);
3103 }
3104
3105 #endif /* !defined(CONFIG_USER_ONLY) */
3106
3107 /* physical memory access (slow version, mainly for debug) */
3108 #if defined(CONFIG_USER_ONLY)
3109 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3110 uint8_t *buf, int len, int is_write)
3111 {
3112 int l, flags;
3113 target_ulong page;
3114 void * p;
3115
3116 while (len > 0) {
3117 page = addr & TARGET_PAGE_MASK;
3118 l = (page + TARGET_PAGE_SIZE) - addr;
3119 if (l > len)
3120 l = len;
3121 flags = page_get_flags(page);
3122 if (!(flags & PAGE_VALID))
3123 return -1;
3124 if (is_write) {
3125 if (!(flags & PAGE_WRITE))
3126 return -1;
3127 /* XXX: this code should not depend on lock_user */
3128 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3129 return -1;
3130 memcpy(p, buf, l);
3131 unlock_user(p, addr, l);
3132 } else {
3133 if (!(flags & PAGE_READ))
3134 return -1;
3135 /* XXX: this code should not depend on lock_user */
3136 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3137 return -1;
3138 memcpy(buf, p, l);
3139 unlock_user(p, addr, 0);
3140 }
3141 len -= l;
3142 buf += l;
3143 addr += l;
3144 }
3145 return 0;
3146 }
3147
3148 #else
3149 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3150 int len, int is_write)
3151 {
3152 int l, io_index;
3153 uint8_t *ptr;
3154 uint32_t val;
3155 target_phys_addr_t page;
3156 unsigned long pd;
3157 PhysPageDesc *p;
3158
3159 while (len > 0) {
3160 page = addr & TARGET_PAGE_MASK;
3161 l = (page + TARGET_PAGE_SIZE) - addr;
3162 if (l > len)
3163 l = len;
3164 p = phys_page_find(page >> TARGET_PAGE_BITS);
3165 if (!p) {
3166 pd = IO_MEM_UNASSIGNED;
3167 } else {
3168 pd = p->phys_offset;
3169 }
3170
3171 if (is_write) {
3172 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3173 target_phys_addr_t addr1 = addr;
3174 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3175 if (p)
3176 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3177 /* XXX: could force cpu_single_env to NULL to avoid
3178 potential bugs */
3179 if (l >= 4 && ((addr1 & 3) == 0)) {
3180 /* 32 bit write access */
3181 val = ldl_p(buf);
3182 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3183 l = 4;
3184 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3185 /* 16 bit write access */
3186 val = lduw_p(buf);
3187 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3188 l = 2;
3189 } else {
3190 /* 8 bit write access */
3191 val = ldub_p(buf);
3192 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3193 l = 1;
3194 }
3195 } else {
3196 unsigned long addr1;
3197 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3198 /* RAM case */
3199 ptr = qemu_get_ram_ptr(addr1);
3200 memcpy(ptr, buf, l);
3201 if (!cpu_physical_memory_is_dirty(addr1)) {
3202 /* invalidate code */
3203 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3204 /* set dirty bit */
3205 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3206 (0xff & ~CODE_DIRTY_FLAG);
3207 }
3208 }
3209 } else {
3210 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3211 !(pd & IO_MEM_ROMD)) {
3212 target_phys_addr_t addr1 = addr;
3213 /* I/O case */
3214 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3215 if (p)
3216 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3217 if (l >= 4 && ((addr1 & 3) == 0)) {
3218 /* 32 bit read access */
3219 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3220 stl_p(buf, val);
3221 l = 4;
3222 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3223 /* 16 bit read access */
3224 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3225 stw_p(buf, val);
3226 l = 2;
3227 } else {
3228 /* 8 bit read access */
3229 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3230 stb_p(buf, val);
3231 l = 1;
3232 }
3233 } else {
3234 /* RAM case */
3235 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3236 (addr & ~TARGET_PAGE_MASK);
3237 memcpy(buf, ptr, l);
3238 }
3239 }
3240 len -= l;
3241 buf += l;
3242 addr += l;
3243 }
3244 }
3245
3246 /* used for ROM loading : can write in RAM and ROM */
3247 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3248 const uint8_t *buf, int len)
3249 {
3250 int l;
3251 uint8_t *ptr;
3252 target_phys_addr_t page;
3253 unsigned long pd;
3254 PhysPageDesc *p;
3255
3256 while (len > 0) {
3257 page = addr & TARGET_PAGE_MASK;
3258 l = (page + TARGET_PAGE_SIZE) - addr;
3259 if (l > len)
3260 l = len;
3261 p = phys_page_find(page >> TARGET_PAGE_BITS);
3262 if (!p) {
3263 pd = IO_MEM_UNASSIGNED;
3264 } else {
3265 pd = p->phys_offset;
3266 }
3267
3268 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3269 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3270 !(pd & IO_MEM_ROMD)) {
3271 /* do nothing */
3272 } else {
3273 unsigned long addr1;
3274 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3275 /* ROM/RAM case */
3276 ptr = qemu_get_ram_ptr(addr1);
3277 memcpy(ptr, buf, l);
3278 }
3279 len -= l;
3280 buf += l;
3281 addr += l;
3282 }
3283 }
3284
3285 typedef struct {
3286 void *buffer;
3287 target_phys_addr_t addr;
3288 target_phys_addr_t len;
3289 } BounceBuffer;
3290
3291 static BounceBuffer bounce;
3292
3293 typedef struct MapClient {
3294 void *opaque;
3295 void (*callback)(void *opaque);
3296 QLIST_ENTRY(MapClient) link;
3297 } MapClient;
3298
3299 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3300 = QLIST_HEAD_INITIALIZER(map_client_list);
3301
3302 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3303 {
3304 MapClient *client = qemu_malloc(sizeof(*client));
3305
3306 client->opaque = opaque;
3307 client->callback = callback;
3308 QLIST_INSERT_HEAD(&map_client_list, client, link);
3309 return client;
3310 }
3311
3312 void cpu_unregister_map_client(void *_client)
3313 {
3314 MapClient *client = (MapClient *)_client;
3315
3316 QLIST_REMOVE(client, link);
3317 qemu_free(client);
3318 }
3319
3320 static void cpu_notify_map_clients(void)
3321 {
3322 MapClient *client;
3323
3324 while (!QLIST_EMPTY(&map_client_list)) {
3325 client = QLIST_FIRST(&map_client_list);
3326 client->callback(client->opaque);
3327 cpu_unregister_map_client(client);
3328 }
3329 }
3330
3331 /* Map a physical memory region into a host virtual address.
3332 * May map a subset of the requested range, given by and returned in *plen.
3333 * May return NULL if resources needed to perform the mapping are exhausted.
3334 * Use only for reads OR writes - not for read-modify-write operations.
3335 * Use cpu_register_map_client() to know when retrying the map operation is
3336 * likely to succeed.
3337 */
3338 void *cpu_physical_memory_map(target_phys_addr_t addr,
3339 target_phys_addr_t *plen,
3340 int is_write)
3341 {
3342 target_phys_addr_t len = *plen;
3343 target_phys_addr_t done = 0;
3344 int l;
3345 uint8_t *ret = NULL;
3346 uint8_t *ptr;
3347 target_phys_addr_t page;
3348 unsigned long pd;
3349 PhysPageDesc *p;
3350 unsigned long addr1;
3351
3352 while (len > 0) {
3353 page = addr & TARGET_PAGE_MASK;
3354 l = (page + TARGET_PAGE_SIZE) - addr;
3355 if (l > len)
3356 l = len;
3357 p = phys_page_find(page >> TARGET_PAGE_BITS);
3358 if (!p) {
3359 pd = IO_MEM_UNASSIGNED;
3360 } else {
3361 pd = p->phys_offset;
3362 }
3363
3364 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3365 if (done || bounce.buffer) {
3366 break;
3367 }
3368 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3369 bounce.addr = addr;
3370 bounce.len = l;
3371 if (!is_write) {
3372 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3373 }
3374 ptr = bounce.buffer;
3375 } else {
3376 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3377 ptr = qemu_get_ram_ptr(addr1);
3378 }
3379 if (!done) {
3380 ret = ptr;
3381 } else if (ret + done != ptr) {
3382 break;
3383 }
3384
3385 len -= l;
3386 addr += l;
3387 done += l;
3388 }
3389 *plen = done;
3390 return ret;
3391 }
3392
3393 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3394 * Will also mark the memory as dirty if is_write == 1. access_len gives
3395 * the amount of memory that was actually read or written by the caller.
3396 */
3397 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3398 int is_write, target_phys_addr_t access_len)
3399 {
3400 if (buffer != bounce.buffer) {
3401 if (is_write) {
3402 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3403 while (access_len) {
3404 unsigned l;
3405 l = TARGET_PAGE_SIZE;
3406 if (l > access_len)
3407 l = access_len;
3408 if (!cpu_physical_memory_is_dirty(addr1)) {
3409 /* invalidate code */
3410 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3411 /* set dirty bit */
3412 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3413 (0xff & ~CODE_DIRTY_FLAG);
3414 }
3415 addr1 += l;
3416 access_len -= l;
3417 }
3418 }
3419 return;
3420 }
3421 if (is_write) {
3422 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3423 }
3424 qemu_vfree(bounce.buffer);
3425 bounce.buffer = NULL;
3426 cpu_notify_map_clients();
3427 }
3428
3429 /* warning: addr must be aligned */
3430 uint32_t ldl_phys(target_phys_addr_t addr)
3431 {
3432 int io_index;
3433 uint8_t *ptr;
3434 uint32_t val;
3435 unsigned long pd;
3436 PhysPageDesc *p;
3437
3438 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3439 if (!p) {
3440 pd = IO_MEM_UNASSIGNED;
3441 } else {
3442 pd = p->phys_offset;
3443 }
3444
3445 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3446 !(pd & IO_MEM_ROMD)) {
3447 /* I/O case */
3448 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3449 if (p)
3450 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3451 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3452 } else {
3453 /* RAM case */
3454 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3455 (addr & ~TARGET_PAGE_MASK);
3456 val = ldl_p(ptr);
3457 }
3458 return val;
3459 }
3460
3461 /* warning: addr must be aligned */
3462 uint64_t ldq_phys(target_phys_addr_t addr)
3463 {
3464 int io_index;
3465 uint8_t *ptr;
3466 uint64_t val;
3467 unsigned long pd;
3468 PhysPageDesc *p;
3469
3470 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3471 if (!p) {
3472 pd = IO_MEM_UNASSIGNED;
3473 } else {
3474 pd = p->phys_offset;
3475 }
3476
3477 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3478 !(pd & IO_MEM_ROMD)) {
3479 /* I/O case */
3480 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3481 if (p)
3482 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3483 #ifdef TARGET_WORDS_BIGENDIAN
3484 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3485 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3486 #else
3487 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3488 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3489 #endif
3490 } else {
3491 /* RAM case */
3492 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3493 (addr & ~TARGET_PAGE_MASK);
3494 val = ldq_p(ptr);
3495 }
3496 return val;
3497 }
3498
3499 /* XXX: optimize */
3500 uint32_t ldub_phys(target_phys_addr_t addr)
3501 {
3502 uint8_t val;
3503 cpu_physical_memory_read(addr, &val, 1);
3504 return val;
3505 }
3506
3507 /* XXX: optimize */
3508 uint32_t lduw_phys(target_phys_addr_t addr)
3509 {
3510 uint16_t val;
3511 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3512 return tswap16(val);
3513 }
3514
3515 /* warning: addr must be aligned. The ram page is not masked as dirty
3516 and the code inside is not invalidated. It is useful if the dirty
3517 bits are used to track modified PTEs */
3518 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3519 {
3520 int io_index;
3521 uint8_t *ptr;
3522 unsigned long pd;
3523 PhysPageDesc *p;
3524
3525 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3526 if (!p) {
3527 pd = IO_MEM_UNASSIGNED;
3528 } else {
3529 pd = p->phys_offset;
3530 }
3531
3532 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3533 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3534 if (p)
3535 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3536 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3537 } else {
3538 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3539 ptr = qemu_get_ram_ptr(addr1);
3540 stl_p(ptr, val);
3541
3542 if (unlikely(in_migration)) {
3543 if (!cpu_physical_memory_is_dirty(addr1)) {
3544 /* invalidate code */
3545 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3546 /* set dirty bit */
3547 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3548 (0xff & ~CODE_DIRTY_FLAG);
3549 }
3550 }
3551 }
3552 }
3553
3554 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3555 {
3556 int io_index;
3557 uint8_t *ptr;
3558 unsigned long pd;
3559 PhysPageDesc *p;
3560
3561 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3562 if (!p) {
3563 pd = IO_MEM_UNASSIGNED;
3564 } else {
3565 pd = p->phys_offset;
3566 }
3567
3568 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3569 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3570 if (p)
3571 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3572 #ifdef TARGET_WORDS_BIGENDIAN
3573 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3574 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3575 #else
3576 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3577 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3578 #endif
3579 } else {
3580 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3581 (addr & ~TARGET_PAGE_MASK);
3582 stq_p(ptr, val);
3583 }
3584 }
3585
3586 /* warning: addr must be aligned */
3587 void stl_phys(target_phys_addr_t addr, uint32_t val)
3588 {
3589 int io_index;
3590 uint8_t *ptr;
3591 unsigned long pd;
3592 PhysPageDesc *p;
3593
3594 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3595 if (!p) {
3596 pd = IO_MEM_UNASSIGNED;
3597 } else {
3598 pd = p->phys_offset;
3599 }
3600
3601 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3602 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3603 if (p)
3604 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3605 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3606 } else {
3607 unsigned long addr1;
3608 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3609 /* RAM case */
3610 ptr = qemu_get_ram_ptr(addr1);
3611 stl_p(ptr, val);
3612 if (!cpu_physical_memory_is_dirty(addr1)) {
3613 /* invalidate code */
3614 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3615 /* set dirty bit */
3616 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3617 (0xff & ~CODE_DIRTY_FLAG);
3618 }
3619 }
3620 }
3621
3622 /* XXX: optimize */
3623 void stb_phys(target_phys_addr_t addr, uint32_t val)
3624 {
3625 uint8_t v = val;
3626 cpu_physical_memory_write(addr, &v, 1);
3627 }
3628
3629 /* XXX: optimize */
3630 void stw_phys(target_phys_addr_t addr, uint32_t val)
3631 {
3632 uint16_t v = tswap16(val);
3633 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3634 }
3635
3636 /* XXX: optimize */
3637 void stq_phys(target_phys_addr_t addr, uint64_t val)
3638 {
3639 val = tswap64(val);
3640 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3641 }
3642
3643 /* virtual memory access for debug (includes writing to ROM) */
3644 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3645 uint8_t *buf, int len, int is_write)
3646 {
3647 int l;
3648 target_phys_addr_t phys_addr;
3649 target_ulong page;
3650
3651 while (len > 0) {
3652 page = addr & TARGET_PAGE_MASK;
3653 phys_addr = cpu_get_phys_page_debug(env, page);
3654 /* if no physical page mapped, return an error */
3655 if (phys_addr == -1)
3656 return -1;
3657 l = (page + TARGET_PAGE_SIZE) - addr;
3658 if (l > len)
3659 l = len;
3660 phys_addr += (addr & ~TARGET_PAGE_MASK);
3661 if (is_write)
3662 cpu_physical_memory_write_rom(phys_addr, buf, l);
3663 else
3664 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3665 len -= l;
3666 buf += l;
3667 addr += l;
3668 }
3669 return 0;
3670 }
3671 #endif
3672
3673 /* in deterministic execution mode, instructions doing device I/Os
3674 must be at the end of the TB */
3675 void cpu_io_recompile(CPUState *env, void *retaddr)
3676 {
3677 TranslationBlock *tb;
3678 uint32_t n, cflags;
3679 target_ulong pc, cs_base;
3680 uint64_t flags;
3681
3682 tb = tb_find_pc((unsigned long)retaddr);
3683 if (!tb) {
3684 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3685 retaddr);
3686 }
3687 n = env->icount_decr.u16.low + tb->icount;
3688 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3689 /* Calculate how many instructions had been executed before the fault
3690 occurred. */
3691 n = n - env->icount_decr.u16.low;
3692 /* Generate a new TB ending on the I/O insn. */
3693 n++;
3694 /* On MIPS and SH, delay slot instructions can only be restarted if
3695 they were already the first instruction in the TB. If this is not
3696 the first instruction in a TB then re-execute the preceding
3697 branch. */
3698 #if defined(TARGET_MIPS)
3699 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3700 env->active_tc.PC -= 4;
3701 env->icount_decr.u16.low++;
3702 env->hflags &= ~MIPS_HFLAG_BMASK;
3703 }
3704 #elif defined(TARGET_SH4)
3705 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3706 && n > 1) {
3707 env->pc -= 2;
3708 env->icount_decr.u16.low++;
3709 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3710 }
3711 #endif
3712 /* This should never happen. */
3713 if (n > CF_COUNT_MASK)
3714 cpu_abort(env, "TB too big during recompile");
3715
3716 cflags = n | CF_LAST_IO;
3717 pc = tb->pc;
3718 cs_base = tb->cs_base;
3719 flags = tb->flags;
3720 tb_phys_invalidate(tb, -1);
3721 /* FIXME: In theory this could raise an exception. In practice
3722 we have already translated the block once so it's probably ok. */
3723 tb_gen_code(env, pc, cs_base, flags, cflags);
3724 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3725 the first in the TB) then we end up generating a whole new TB and
3726 repeating the fault, which is horribly inefficient.
3727 Better would be to execute just this insn uncached, or generate a
3728 second new TB. */
3729 cpu_resume_from_signal(env, NULL);
3730 }
3731
3732 void dump_exec_info(FILE *f,
3733 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3734 {
3735 int i, target_code_size, max_target_code_size;
3736 int direct_jmp_count, direct_jmp2_count, cross_page;
3737 TranslationBlock *tb;
3738
3739 target_code_size = 0;
3740 max_target_code_size = 0;
3741 cross_page = 0;
3742 direct_jmp_count = 0;
3743 direct_jmp2_count = 0;
3744 for(i = 0; i < nb_tbs; i++) {
3745 tb = &tbs[i];
3746 target_code_size += tb->size;
3747 if (tb->size > max_target_code_size)
3748 max_target_code_size = tb->size;
3749 if (tb->page_addr[1] != -1)
3750 cross_page++;
3751 if (tb->tb_next_offset[0] != 0xffff) {
3752 direct_jmp_count++;
3753 if (tb->tb_next_offset[1] != 0xffff) {
3754 direct_jmp2_count++;
3755 }
3756 }
3757 }
3758 /* XXX: avoid using doubles ? */
3759 cpu_fprintf(f, "Translation buffer state:\n");
3760 cpu_fprintf(f, "gen code size %ld/%ld\n",
3761 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3762 cpu_fprintf(f, "TB count %d/%d\n",
3763 nb_tbs, code_gen_max_blocks);
3764 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3765 nb_tbs ? target_code_size / nb_tbs : 0,
3766 max_target_code_size);
3767 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3768 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3769 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3770 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3771 cross_page,
3772 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3773 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3774 direct_jmp_count,
3775 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3776 direct_jmp2_count,
3777 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3778 cpu_fprintf(f, "\nStatistics:\n");
3779 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3780 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3781 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3782 tcg_dump_info(f, cpu_fprintf);
3783 }
3784
3785 #if !defined(CONFIG_USER_ONLY)
3786
3787 #define MMUSUFFIX _cmmu
3788 #define GETPC() NULL
3789 #define env cpu_single_env
3790 #define SOFTMMU_CODE_ACCESS
3791
3792 #define SHIFT 0
3793 #include "softmmu_template.h"
3794
3795 #define SHIFT 1
3796 #include "softmmu_template.h"
3797
3798 #define SHIFT 2
3799 #include "softmmu_template.h"
3800
3801 #define SHIFT 3
3802 #include "softmmu_template.h"
3803
3804 #undef env
3805
3806 #endif