]> git.proxmox.com Git - qemu.git/blob - exec.c
migration: stable ram block ordering
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
55
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
60
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
64
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
67
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
72
73 #define SMC_BITMAP_USE_THRESHOLD 10
74
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
81
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
97
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
104
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
108
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
111
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
123
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
135
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
147
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
151
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
164
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
170
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
181
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
185
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
192
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
196
197 static void io_mem_init(void);
198
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
206
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
216
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
223
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
226 {
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231 }
232 #else
233 static void map_exec(void *addr, long size)
234 {
235 unsigned long start, end, page_size;
236
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
240
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247 }
248 #endif
249
250 static void page_init(void)
251 {
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
272
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
274 {
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304 #else
305 FILE *f;
306
307 last_brk = (unsigned long)sbrk(0);
308
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
312
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
328 }
329 } while (!feof(f));
330
331 fclose(f);
332 mmap_unlock();
333 }
334 #endif
335 }
336 #endif
337 }
338
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
340 {
341 PageDesc *pd;
342 void **lp;
343 int i;
344
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
356
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
370 }
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
382 }
383
384 #undef ALLOC
385
386 return pd + (index & (L2_SIZE - 1));
387 }
388
389 static inline PageDesc *page_find(tb_page_addr_t index)
390 {
391 return page_find_alloc(index, 0);
392 }
393
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
396 {
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
400
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
403
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
414 }
415
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
419
420 if (!alloc) {
421 return NULL;
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
429 }
430 }
431
432 return pd + (index & (L2_SIZE - 1));
433 }
434
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
436 {
437 return phys_page_find_alloc(index, 0);
438 }
439
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
446
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
454
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
459
460 static void code_gen_alloc(unsigned long tb_size)
461 {
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
482 {
483 int flags;
484 void *start = NULL;
485
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
521 {
522 int flags;
523 void *addr = NULL;
524 flags = MAP_PRIVATE | MAP_ANONYMOUS;
525 #if defined(__x86_64__)
526 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
527 * 0x40000000 is free */
528 flags |= MAP_FIXED;
529 addr = (void *)0x40000000;
530 /* Cannot map more than that */
531 if (code_gen_buffer_size > (800 * 1024 * 1024))
532 code_gen_buffer_size = (800 * 1024 * 1024);
533 #endif
534 code_gen_buffer = mmap(addr, code_gen_buffer_size,
535 PROT_WRITE | PROT_READ | PROT_EXEC,
536 flags, -1, 0);
537 if (code_gen_buffer == MAP_FAILED) {
538 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
539 exit(1);
540 }
541 }
542 #else
543 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
544 map_exec(code_gen_buffer, code_gen_buffer_size);
545 #endif
546 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
547 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
548 code_gen_buffer_max_size = code_gen_buffer_size -
549 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
550 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
551 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
552 }
553
554 /* Must be called before using the QEMU cpus. 'tb_size' is the size
555 (in bytes) allocated to the translation buffer. Zero means default
556 size. */
557 void cpu_exec_init_all(unsigned long tb_size)
558 {
559 cpu_gen_init();
560 code_gen_alloc(tb_size);
561 code_gen_ptr = code_gen_buffer;
562 page_init();
563 #if !defined(CONFIG_USER_ONLY)
564 io_mem_init();
565 #endif
566 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
567 /* There's no guest base to take into account, so go ahead and
568 initialize the prologue now. */
569 tcg_prologue_init(&tcg_ctx);
570 #endif
571 }
572
573 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
574
575 static int cpu_common_post_load(void *opaque, int version_id)
576 {
577 CPUState *env = opaque;
578
579 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
580 version_id is increased. */
581 env->interrupt_request &= ~0x01;
582 tlb_flush(env, 1);
583
584 return 0;
585 }
586
587 static const VMStateDescription vmstate_cpu_common = {
588 .name = "cpu_common",
589 .version_id = 1,
590 .minimum_version_id = 1,
591 .minimum_version_id_old = 1,
592 .post_load = cpu_common_post_load,
593 .fields = (VMStateField []) {
594 VMSTATE_UINT32(halted, CPUState),
595 VMSTATE_UINT32(interrupt_request, CPUState),
596 VMSTATE_END_OF_LIST()
597 }
598 };
599 #endif
600
601 CPUState *qemu_get_cpu(int cpu)
602 {
603 CPUState *env = first_cpu;
604
605 while (env) {
606 if (env->cpu_index == cpu)
607 break;
608 env = env->next_cpu;
609 }
610
611 return env;
612 }
613
614 void cpu_exec_init(CPUState *env)
615 {
616 CPUState **penv;
617 int cpu_index;
618
619 #if defined(CONFIG_USER_ONLY)
620 cpu_list_lock();
621 #endif
622 env->next_cpu = NULL;
623 penv = &first_cpu;
624 cpu_index = 0;
625 while (*penv != NULL) {
626 penv = &(*penv)->next_cpu;
627 cpu_index++;
628 }
629 env->cpu_index = cpu_index;
630 env->numa_node = 0;
631 QTAILQ_INIT(&env->breakpoints);
632 QTAILQ_INIT(&env->watchpoints);
633 *penv = env;
634 #if defined(CONFIG_USER_ONLY)
635 cpu_list_unlock();
636 #endif
637 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
638 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
639 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
640 cpu_save, cpu_load, env);
641 #endif
642 }
643
644 static inline void invalidate_page_bitmap(PageDesc *p)
645 {
646 if (p->code_bitmap) {
647 qemu_free(p->code_bitmap);
648 p->code_bitmap = NULL;
649 }
650 p->code_write_count = 0;
651 }
652
653 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
654
655 static void page_flush_tb_1 (int level, void **lp)
656 {
657 int i;
658
659 if (*lp == NULL) {
660 return;
661 }
662 if (level == 0) {
663 PageDesc *pd = *lp;
664 for (i = 0; i < L2_SIZE; ++i) {
665 pd[i].first_tb = NULL;
666 invalidate_page_bitmap(pd + i);
667 }
668 } else {
669 void **pp = *lp;
670 for (i = 0; i < L2_SIZE; ++i) {
671 page_flush_tb_1 (level - 1, pp + i);
672 }
673 }
674 }
675
676 static void page_flush_tb(void)
677 {
678 int i;
679 for (i = 0; i < V_L1_SIZE; i++) {
680 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
681 }
682 }
683
684 /* flush all the translation blocks */
685 /* XXX: tb_flush is currently not thread safe */
686 void tb_flush(CPUState *env1)
687 {
688 CPUState *env;
689 #if defined(DEBUG_FLUSH)
690 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
691 (unsigned long)(code_gen_ptr - code_gen_buffer),
692 nb_tbs, nb_tbs > 0 ?
693 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
694 #endif
695 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
696 cpu_abort(env1, "Internal error: code buffer overflow\n");
697
698 nb_tbs = 0;
699
700 for(env = first_cpu; env != NULL; env = env->next_cpu) {
701 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
702 }
703
704 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
705 page_flush_tb();
706
707 code_gen_ptr = code_gen_buffer;
708 /* XXX: flush processor icache at this point if cache flush is
709 expensive */
710 tb_flush_count++;
711 }
712
713 #ifdef DEBUG_TB_CHECK
714
715 static void tb_invalidate_check(target_ulong address)
716 {
717 TranslationBlock *tb;
718 int i;
719 address &= TARGET_PAGE_MASK;
720 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
721 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
722 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
723 address >= tb->pc + tb->size)) {
724 printf("ERROR invalidate: address=" TARGET_FMT_lx
725 " PC=%08lx size=%04x\n",
726 address, (long)tb->pc, tb->size);
727 }
728 }
729 }
730 }
731
732 /* verify that all the pages have correct rights for code */
733 static void tb_page_check(void)
734 {
735 TranslationBlock *tb;
736 int i, flags1, flags2;
737
738 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
739 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
740 flags1 = page_get_flags(tb->pc);
741 flags2 = page_get_flags(tb->pc + tb->size - 1);
742 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
743 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
744 (long)tb->pc, tb->size, flags1, flags2);
745 }
746 }
747 }
748 }
749
750 #endif
751
752 /* invalidate one TB */
753 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
754 int next_offset)
755 {
756 TranslationBlock *tb1;
757 for(;;) {
758 tb1 = *ptb;
759 if (tb1 == tb) {
760 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
761 break;
762 }
763 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
764 }
765 }
766
767 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
768 {
769 TranslationBlock *tb1;
770 unsigned int n1;
771
772 for(;;) {
773 tb1 = *ptb;
774 n1 = (long)tb1 & 3;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 if (tb1 == tb) {
777 *ptb = tb1->page_next[n1];
778 break;
779 }
780 ptb = &tb1->page_next[n1];
781 }
782 }
783
784 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
785 {
786 TranslationBlock *tb1, **ptb;
787 unsigned int n1;
788
789 ptb = &tb->jmp_next[n];
790 tb1 = *ptb;
791 if (tb1) {
792 /* find tb(n) in circular list */
793 for(;;) {
794 tb1 = *ptb;
795 n1 = (long)tb1 & 3;
796 tb1 = (TranslationBlock *)((long)tb1 & ~3);
797 if (n1 == n && tb1 == tb)
798 break;
799 if (n1 == 2) {
800 ptb = &tb1->jmp_first;
801 } else {
802 ptb = &tb1->jmp_next[n1];
803 }
804 }
805 /* now we can suppress tb(n) from the list */
806 *ptb = tb->jmp_next[n];
807
808 tb->jmp_next[n] = NULL;
809 }
810 }
811
812 /* reset the jump entry 'n' of a TB so that it is not chained to
813 another TB */
814 static inline void tb_reset_jump(TranslationBlock *tb, int n)
815 {
816 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
817 }
818
819 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
820 {
821 CPUState *env;
822 PageDesc *p;
823 unsigned int h, n1;
824 tb_page_addr_t phys_pc;
825 TranslationBlock *tb1, *tb2;
826
827 /* remove the TB from the hash list */
828 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
829 h = tb_phys_hash_func(phys_pc);
830 tb_remove(&tb_phys_hash[h], tb,
831 offsetof(TranslationBlock, phys_hash_next));
832
833 /* remove the TB from the page list */
834 if (tb->page_addr[0] != page_addr) {
835 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
836 tb_page_remove(&p->first_tb, tb);
837 invalidate_page_bitmap(p);
838 }
839 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
840 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
841 tb_page_remove(&p->first_tb, tb);
842 invalidate_page_bitmap(p);
843 }
844
845 tb_invalidated_flag = 1;
846
847 /* remove the TB from the hash list */
848 h = tb_jmp_cache_hash_func(tb->pc);
849 for(env = first_cpu; env != NULL; env = env->next_cpu) {
850 if (env->tb_jmp_cache[h] == tb)
851 env->tb_jmp_cache[h] = NULL;
852 }
853
854 /* suppress this TB from the two jump lists */
855 tb_jmp_remove(tb, 0);
856 tb_jmp_remove(tb, 1);
857
858 /* suppress any remaining jumps to this TB */
859 tb1 = tb->jmp_first;
860 for(;;) {
861 n1 = (long)tb1 & 3;
862 if (n1 == 2)
863 break;
864 tb1 = (TranslationBlock *)((long)tb1 & ~3);
865 tb2 = tb1->jmp_next[n1];
866 tb_reset_jump(tb1, n1);
867 tb1->jmp_next[n1] = NULL;
868 tb1 = tb2;
869 }
870 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
871
872 tb_phys_invalidate_count++;
873 }
874
875 static inline void set_bits(uint8_t *tab, int start, int len)
876 {
877 int end, mask, end1;
878
879 end = start + len;
880 tab += start >> 3;
881 mask = 0xff << (start & 7);
882 if ((start & ~7) == (end & ~7)) {
883 if (start < end) {
884 mask &= ~(0xff << (end & 7));
885 *tab |= mask;
886 }
887 } else {
888 *tab++ |= mask;
889 start = (start + 8) & ~7;
890 end1 = end & ~7;
891 while (start < end1) {
892 *tab++ = 0xff;
893 start += 8;
894 }
895 if (start < end) {
896 mask = ~(0xff << (end & 7));
897 *tab |= mask;
898 }
899 }
900 }
901
902 static void build_page_bitmap(PageDesc *p)
903 {
904 int n, tb_start, tb_end;
905 TranslationBlock *tb;
906
907 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
908
909 tb = p->first_tb;
910 while (tb != NULL) {
911 n = (long)tb & 3;
912 tb = (TranslationBlock *)((long)tb & ~3);
913 /* NOTE: this is subtle as a TB may span two physical pages */
914 if (n == 0) {
915 /* NOTE: tb_end may be after the end of the page, but
916 it is not a problem */
917 tb_start = tb->pc & ~TARGET_PAGE_MASK;
918 tb_end = tb_start + tb->size;
919 if (tb_end > TARGET_PAGE_SIZE)
920 tb_end = TARGET_PAGE_SIZE;
921 } else {
922 tb_start = 0;
923 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
924 }
925 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
926 tb = tb->page_next[n];
927 }
928 }
929
930 TranslationBlock *tb_gen_code(CPUState *env,
931 target_ulong pc, target_ulong cs_base,
932 int flags, int cflags)
933 {
934 TranslationBlock *tb;
935 uint8_t *tc_ptr;
936 tb_page_addr_t phys_pc, phys_page2;
937 target_ulong virt_page2;
938 int code_gen_size;
939
940 phys_pc = get_page_addr_code(env, pc);
941 tb = tb_alloc(pc);
942 if (!tb) {
943 /* flush must be done */
944 tb_flush(env);
945 /* cannot fail at this point */
946 tb = tb_alloc(pc);
947 /* Don't forget to invalidate previous TB info. */
948 tb_invalidated_flag = 1;
949 }
950 tc_ptr = code_gen_ptr;
951 tb->tc_ptr = tc_ptr;
952 tb->cs_base = cs_base;
953 tb->flags = flags;
954 tb->cflags = cflags;
955 cpu_gen_code(env, tb, &code_gen_size);
956 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
957
958 /* check next page if needed */
959 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
960 phys_page2 = -1;
961 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
962 phys_page2 = get_page_addr_code(env, virt_page2);
963 }
964 tb_link_page(tb, phys_pc, phys_page2);
965 return tb;
966 }
967
968 /* invalidate all TBs which intersect with the target physical page
969 starting in range [start;end[. NOTE: start and end must refer to
970 the same physical page. 'is_cpu_write_access' should be true if called
971 from a real cpu write access: the virtual CPU will exit the current
972 TB if code is modified inside this TB. */
973 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
974 int is_cpu_write_access)
975 {
976 TranslationBlock *tb, *tb_next, *saved_tb;
977 CPUState *env = cpu_single_env;
978 tb_page_addr_t tb_start, tb_end;
979 PageDesc *p;
980 int n;
981 #ifdef TARGET_HAS_PRECISE_SMC
982 int current_tb_not_found = is_cpu_write_access;
983 TranslationBlock *current_tb = NULL;
984 int current_tb_modified = 0;
985 target_ulong current_pc = 0;
986 target_ulong current_cs_base = 0;
987 int current_flags = 0;
988 #endif /* TARGET_HAS_PRECISE_SMC */
989
990 p = page_find(start >> TARGET_PAGE_BITS);
991 if (!p)
992 return;
993 if (!p->code_bitmap &&
994 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
995 is_cpu_write_access) {
996 /* build code bitmap */
997 build_page_bitmap(p);
998 }
999
1000 /* we remove all the TBs in the range [start, end[ */
1001 /* XXX: see if in some cases it could be faster to invalidate all the code */
1002 tb = p->first_tb;
1003 while (tb != NULL) {
1004 n = (long)tb & 3;
1005 tb = (TranslationBlock *)((long)tb & ~3);
1006 tb_next = tb->page_next[n];
1007 /* NOTE: this is subtle as a TB may span two physical pages */
1008 if (n == 0) {
1009 /* NOTE: tb_end may be after the end of the page, but
1010 it is not a problem */
1011 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1012 tb_end = tb_start + tb->size;
1013 } else {
1014 tb_start = tb->page_addr[1];
1015 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1016 }
1017 if (!(tb_end <= start || tb_start >= end)) {
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 if (current_tb_not_found) {
1020 current_tb_not_found = 0;
1021 current_tb = NULL;
1022 if (env->mem_io_pc) {
1023 /* now we have a real cpu fault */
1024 current_tb = tb_find_pc(env->mem_io_pc);
1025 }
1026 }
1027 if (current_tb == tb &&
1028 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1029 /* If we are modifying the current TB, we must stop
1030 its execution. We could be more precise by checking
1031 that the modification is after the current PC, but it
1032 would require a specialized function to partially
1033 restore the CPU state */
1034
1035 current_tb_modified = 1;
1036 cpu_restore_state(current_tb, env,
1037 env->mem_io_pc, NULL);
1038 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1039 &current_flags);
1040 }
1041 #endif /* TARGET_HAS_PRECISE_SMC */
1042 /* we need to do that to handle the case where a signal
1043 occurs while doing tb_phys_invalidate() */
1044 saved_tb = NULL;
1045 if (env) {
1046 saved_tb = env->current_tb;
1047 env->current_tb = NULL;
1048 }
1049 tb_phys_invalidate(tb, -1);
1050 if (env) {
1051 env->current_tb = saved_tb;
1052 if (env->interrupt_request && env->current_tb)
1053 cpu_interrupt(env, env->interrupt_request);
1054 }
1055 }
1056 tb = tb_next;
1057 }
1058 #if !defined(CONFIG_USER_ONLY)
1059 /* if no code remaining, no need to continue to use slow writes */
1060 if (!p->first_tb) {
1061 invalidate_page_bitmap(p);
1062 if (is_cpu_write_access) {
1063 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1064 }
1065 }
1066 #endif
1067 #ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_modified) {
1069 /* we generate a block containing just the instruction
1070 modifying the memory. It will ensure that it cannot modify
1071 itself */
1072 env->current_tb = NULL;
1073 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1074 cpu_resume_from_signal(env, NULL);
1075 }
1076 #endif
1077 }
1078
1079 /* len must be <= 8 and start must be a multiple of len */
1080 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1081 {
1082 PageDesc *p;
1083 int offset, b;
1084 #if 0
1085 if (1) {
1086 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1087 cpu_single_env->mem_io_vaddr, len,
1088 cpu_single_env->eip,
1089 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1090 }
1091 #endif
1092 p = page_find(start >> TARGET_PAGE_BITS);
1093 if (!p)
1094 return;
1095 if (p->code_bitmap) {
1096 offset = start & ~TARGET_PAGE_MASK;
1097 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1098 if (b & ((1 << len) - 1))
1099 goto do_invalidate;
1100 } else {
1101 do_invalidate:
1102 tb_invalidate_phys_page_range(start, start + len, 1);
1103 }
1104 }
1105
1106 #if !defined(CONFIG_SOFTMMU)
1107 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1108 unsigned long pc, void *puc)
1109 {
1110 TranslationBlock *tb;
1111 PageDesc *p;
1112 int n;
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 TranslationBlock *current_tb = NULL;
1115 CPUState *env = cpu_single_env;
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
1120 #endif
1121
1122 addr &= TARGET_PAGE_MASK;
1123 p = page_find(addr >> TARGET_PAGE_BITS);
1124 if (!p)
1125 return;
1126 tb = p->first_tb;
1127 #ifdef TARGET_HAS_PRECISE_SMC
1128 if (tb && pc != 0) {
1129 current_tb = tb_find_pc(pc);
1130 }
1131 #endif
1132 while (tb != NULL) {
1133 n = (long)tb & 3;
1134 tb = (TranslationBlock *)((long)tb & ~3);
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb == tb &&
1137 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1138 /* If we are modifying the current TB, we must stop
1139 its execution. We could be more precise by checking
1140 that the modification is after the current PC, but it
1141 would require a specialized function to partially
1142 restore the CPU state */
1143
1144 current_tb_modified = 1;
1145 cpu_restore_state(current_tb, env, pc, puc);
1146 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1147 &current_flags);
1148 }
1149 #endif /* TARGET_HAS_PRECISE_SMC */
1150 tb_phys_invalidate(tb, addr);
1151 tb = tb->page_next[n];
1152 }
1153 p->first_tb = NULL;
1154 #ifdef TARGET_HAS_PRECISE_SMC
1155 if (current_tb_modified) {
1156 /* we generate a block containing just the instruction
1157 modifying the memory. It will ensure that it cannot modify
1158 itself */
1159 env->current_tb = NULL;
1160 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1161 cpu_resume_from_signal(env, puc);
1162 }
1163 #endif
1164 }
1165 #endif
1166
1167 /* add the tb in the target page and protect it if necessary */
1168 static inline void tb_alloc_page(TranslationBlock *tb,
1169 unsigned int n, tb_page_addr_t page_addr)
1170 {
1171 PageDesc *p;
1172 TranslationBlock *last_first_tb;
1173
1174 tb->page_addr[n] = page_addr;
1175 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1176 tb->page_next[n] = p->first_tb;
1177 last_first_tb = p->first_tb;
1178 p->first_tb = (TranslationBlock *)((long)tb | n);
1179 invalidate_page_bitmap(p);
1180
1181 #if defined(TARGET_HAS_SMC) || 1
1182
1183 #if defined(CONFIG_USER_ONLY)
1184 if (p->flags & PAGE_WRITE) {
1185 target_ulong addr;
1186 PageDesc *p2;
1187 int prot;
1188
1189 /* force the host page as non writable (writes will have a
1190 page fault + mprotect overhead) */
1191 page_addr &= qemu_host_page_mask;
1192 prot = 0;
1193 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1194 addr += TARGET_PAGE_SIZE) {
1195
1196 p2 = page_find (addr >> TARGET_PAGE_BITS);
1197 if (!p2)
1198 continue;
1199 prot |= p2->flags;
1200 p2->flags &= ~PAGE_WRITE;
1201 }
1202 mprotect(g2h(page_addr), qemu_host_page_size,
1203 (prot & PAGE_BITS) & ~PAGE_WRITE);
1204 #ifdef DEBUG_TB_INVALIDATE
1205 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1206 page_addr);
1207 #endif
1208 }
1209 #else
1210 /* if some code is already present, then the pages are already
1211 protected. So we handle the case where only the first TB is
1212 allocated in a physical page */
1213 if (!last_first_tb) {
1214 tlb_protect_code(page_addr);
1215 }
1216 #endif
1217
1218 #endif /* TARGET_HAS_SMC */
1219 }
1220
1221 /* Allocate a new translation block. Flush the translation buffer if
1222 too many translation blocks or too much generated code. */
1223 TranslationBlock *tb_alloc(target_ulong pc)
1224 {
1225 TranslationBlock *tb;
1226
1227 if (nb_tbs >= code_gen_max_blocks ||
1228 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1229 return NULL;
1230 tb = &tbs[nb_tbs++];
1231 tb->pc = pc;
1232 tb->cflags = 0;
1233 return tb;
1234 }
1235
1236 void tb_free(TranslationBlock *tb)
1237 {
1238 /* In practice this is mostly used for single use temporary TB
1239 Ignore the hard cases and just back up if this TB happens to
1240 be the last one generated. */
1241 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1242 code_gen_ptr = tb->tc_ptr;
1243 nb_tbs--;
1244 }
1245 }
1246
1247 /* add a new TB and link it to the physical page tables. phys_page2 is
1248 (-1) to indicate that only one page contains the TB. */
1249 void tb_link_page(TranslationBlock *tb,
1250 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1251 {
1252 unsigned int h;
1253 TranslationBlock **ptb;
1254
1255 /* Grab the mmap lock to stop another thread invalidating this TB
1256 before we are done. */
1257 mmap_lock();
1258 /* add in the physical hash table */
1259 h = tb_phys_hash_func(phys_pc);
1260 ptb = &tb_phys_hash[h];
1261 tb->phys_hash_next = *ptb;
1262 *ptb = tb;
1263
1264 /* add in the page list */
1265 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1266 if (phys_page2 != -1)
1267 tb_alloc_page(tb, 1, phys_page2);
1268 else
1269 tb->page_addr[1] = -1;
1270
1271 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1272 tb->jmp_next[0] = NULL;
1273 tb->jmp_next[1] = NULL;
1274
1275 /* init original jump addresses */
1276 if (tb->tb_next_offset[0] != 0xffff)
1277 tb_reset_jump(tb, 0);
1278 if (tb->tb_next_offset[1] != 0xffff)
1279 tb_reset_jump(tb, 1);
1280
1281 #ifdef DEBUG_TB_CHECK
1282 tb_page_check();
1283 #endif
1284 mmap_unlock();
1285 }
1286
1287 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1288 tb[1].tc_ptr. Return NULL if not found */
1289 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1290 {
1291 int m_min, m_max, m;
1292 unsigned long v;
1293 TranslationBlock *tb;
1294
1295 if (nb_tbs <= 0)
1296 return NULL;
1297 if (tc_ptr < (unsigned long)code_gen_buffer ||
1298 tc_ptr >= (unsigned long)code_gen_ptr)
1299 return NULL;
1300 /* binary search (cf Knuth) */
1301 m_min = 0;
1302 m_max = nb_tbs - 1;
1303 while (m_min <= m_max) {
1304 m = (m_min + m_max) >> 1;
1305 tb = &tbs[m];
1306 v = (unsigned long)tb->tc_ptr;
1307 if (v == tc_ptr)
1308 return tb;
1309 else if (tc_ptr < v) {
1310 m_max = m - 1;
1311 } else {
1312 m_min = m + 1;
1313 }
1314 }
1315 return &tbs[m_max];
1316 }
1317
1318 static void tb_reset_jump_recursive(TranslationBlock *tb);
1319
1320 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1321 {
1322 TranslationBlock *tb1, *tb_next, **ptb;
1323 unsigned int n1;
1324
1325 tb1 = tb->jmp_next[n];
1326 if (tb1 != NULL) {
1327 /* find head of list */
1328 for(;;) {
1329 n1 = (long)tb1 & 3;
1330 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1331 if (n1 == 2)
1332 break;
1333 tb1 = tb1->jmp_next[n1];
1334 }
1335 /* we are now sure now that tb jumps to tb1 */
1336 tb_next = tb1;
1337
1338 /* remove tb from the jmp_first list */
1339 ptb = &tb_next->jmp_first;
1340 for(;;) {
1341 tb1 = *ptb;
1342 n1 = (long)tb1 & 3;
1343 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1344 if (n1 == n && tb1 == tb)
1345 break;
1346 ptb = &tb1->jmp_next[n1];
1347 }
1348 *ptb = tb->jmp_next[n];
1349 tb->jmp_next[n] = NULL;
1350
1351 /* suppress the jump to next tb in generated code */
1352 tb_reset_jump(tb, n);
1353
1354 /* suppress jumps in the tb on which we could have jumped */
1355 tb_reset_jump_recursive(tb_next);
1356 }
1357 }
1358
1359 static void tb_reset_jump_recursive(TranslationBlock *tb)
1360 {
1361 tb_reset_jump_recursive2(tb, 0);
1362 tb_reset_jump_recursive2(tb, 1);
1363 }
1364
1365 #if defined(TARGET_HAS_ICE)
1366 #if defined(CONFIG_USER_ONLY)
1367 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1368 {
1369 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1370 }
1371 #else
1372 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1373 {
1374 target_phys_addr_t addr;
1375 target_ulong pd;
1376 ram_addr_t ram_addr;
1377 PhysPageDesc *p;
1378
1379 addr = cpu_get_phys_page_debug(env, pc);
1380 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1381 if (!p) {
1382 pd = IO_MEM_UNASSIGNED;
1383 } else {
1384 pd = p->phys_offset;
1385 }
1386 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1387 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1388 }
1389 #endif
1390 #endif /* TARGET_HAS_ICE */
1391
1392 #if defined(CONFIG_USER_ONLY)
1393 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1394
1395 {
1396 }
1397
1398 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1399 int flags, CPUWatchpoint **watchpoint)
1400 {
1401 return -ENOSYS;
1402 }
1403 #else
1404 /* Add a watchpoint. */
1405 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
1407 {
1408 target_ulong len_mask = ~(len - 1);
1409 CPUWatchpoint *wp;
1410
1411 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1412 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1413 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1414 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1415 return -EINVAL;
1416 }
1417 wp = qemu_malloc(sizeof(*wp));
1418
1419 wp->vaddr = addr;
1420 wp->len_mask = len_mask;
1421 wp->flags = flags;
1422
1423 /* keep all GDB-injected watchpoints in front */
1424 if (flags & BP_GDB)
1425 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1426 else
1427 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1428
1429 tlb_flush_page(env, addr);
1430
1431 if (watchpoint)
1432 *watchpoint = wp;
1433 return 0;
1434 }
1435
1436 /* Remove a specific watchpoint. */
1437 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags)
1439 {
1440 target_ulong len_mask = ~(len - 1);
1441 CPUWatchpoint *wp;
1442
1443 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1444 if (addr == wp->vaddr && len_mask == wp->len_mask
1445 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1446 cpu_watchpoint_remove_by_ref(env, wp);
1447 return 0;
1448 }
1449 }
1450 return -ENOENT;
1451 }
1452
1453 /* Remove a specific watchpoint by reference. */
1454 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1455 {
1456 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1457
1458 tlb_flush_page(env, watchpoint->vaddr);
1459
1460 qemu_free(watchpoint);
1461 }
1462
1463 /* Remove all matching watchpoints. */
1464 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1465 {
1466 CPUWatchpoint *wp, *next;
1467
1468 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1469 if (wp->flags & mask)
1470 cpu_watchpoint_remove_by_ref(env, wp);
1471 }
1472 }
1473 #endif
1474
1475 /* Add a breakpoint. */
1476 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1477 CPUBreakpoint **breakpoint)
1478 {
1479 #if defined(TARGET_HAS_ICE)
1480 CPUBreakpoint *bp;
1481
1482 bp = qemu_malloc(sizeof(*bp));
1483
1484 bp->pc = pc;
1485 bp->flags = flags;
1486
1487 /* keep all GDB-injected breakpoints in front */
1488 if (flags & BP_GDB)
1489 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1490 else
1491 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1492
1493 breakpoint_invalidate(env, pc);
1494
1495 if (breakpoint)
1496 *breakpoint = bp;
1497 return 0;
1498 #else
1499 return -ENOSYS;
1500 #endif
1501 }
1502
1503 /* Remove a specific breakpoint. */
1504 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1505 {
1506 #if defined(TARGET_HAS_ICE)
1507 CPUBreakpoint *bp;
1508
1509 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1510 if (bp->pc == pc && bp->flags == flags) {
1511 cpu_breakpoint_remove_by_ref(env, bp);
1512 return 0;
1513 }
1514 }
1515 return -ENOENT;
1516 #else
1517 return -ENOSYS;
1518 #endif
1519 }
1520
1521 /* Remove a specific breakpoint by reference. */
1522 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1523 {
1524 #if defined(TARGET_HAS_ICE)
1525 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1526
1527 breakpoint_invalidate(env, breakpoint->pc);
1528
1529 qemu_free(breakpoint);
1530 #endif
1531 }
1532
1533 /* Remove all matching breakpoints. */
1534 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1535 {
1536 #if defined(TARGET_HAS_ICE)
1537 CPUBreakpoint *bp, *next;
1538
1539 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1540 if (bp->flags & mask)
1541 cpu_breakpoint_remove_by_ref(env, bp);
1542 }
1543 #endif
1544 }
1545
1546 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1547 CPU loop after each instruction */
1548 void cpu_single_step(CPUState *env, int enabled)
1549 {
1550 #if defined(TARGET_HAS_ICE)
1551 if (env->singlestep_enabled != enabled) {
1552 env->singlestep_enabled = enabled;
1553 if (kvm_enabled())
1554 kvm_update_guest_debug(env, 0);
1555 else {
1556 /* must flush all the translated code to avoid inconsistencies */
1557 /* XXX: only flush what is necessary */
1558 tb_flush(env);
1559 }
1560 }
1561 #endif
1562 }
1563
1564 /* enable or disable low levels log */
1565 void cpu_set_log(int log_flags)
1566 {
1567 loglevel = log_flags;
1568 if (loglevel && !logfile) {
1569 logfile = fopen(logfilename, log_append ? "a" : "w");
1570 if (!logfile) {
1571 perror(logfilename);
1572 _exit(1);
1573 }
1574 #if !defined(CONFIG_SOFTMMU)
1575 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1576 {
1577 static char logfile_buf[4096];
1578 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1579 }
1580 #elif !defined(_WIN32)
1581 /* Win32 doesn't support line-buffering and requires size >= 2 */
1582 setvbuf(logfile, NULL, _IOLBF, 0);
1583 #endif
1584 log_append = 1;
1585 }
1586 if (!loglevel && logfile) {
1587 fclose(logfile);
1588 logfile = NULL;
1589 }
1590 }
1591
1592 void cpu_set_log_filename(const char *filename)
1593 {
1594 logfilename = strdup(filename);
1595 if (logfile) {
1596 fclose(logfile);
1597 logfile = NULL;
1598 }
1599 cpu_set_log(loglevel);
1600 }
1601
1602 static void cpu_unlink_tb(CPUState *env)
1603 {
1604 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1605 problem and hope the cpu will stop of its own accord. For userspace
1606 emulation this often isn't actually as bad as it sounds. Often
1607 signals are used primarily to interrupt blocking syscalls. */
1608 TranslationBlock *tb;
1609 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1610
1611 spin_lock(&interrupt_lock);
1612 tb = env->current_tb;
1613 /* if the cpu is currently executing code, we must unlink it and
1614 all the potentially executing TB */
1615 if (tb) {
1616 env->current_tb = NULL;
1617 tb_reset_jump_recursive(tb);
1618 }
1619 spin_unlock(&interrupt_lock);
1620 }
1621
1622 /* mask must never be zero, except for A20 change call */
1623 void cpu_interrupt(CPUState *env, int mask)
1624 {
1625 int old_mask;
1626
1627 old_mask = env->interrupt_request;
1628 env->interrupt_request |= mask;
1629
1630 #ifndef CONFIG_USER_ONLY
1631 /*
1632 * If called from iothread context, wake the target cpu in
1633 * case its halted.
1634 */
1635 if (!qemu_cpu_self(env)) {
1636 qemu_cpu_kick(env);
1637 return;
1638 }
1639 #endif
1640
1641 if (use_icount) {
1642 env->icount_decr.u16.high = 0xffff;
1643 #ifndef CONFIG_USER_ONLY
1644 if (!can_do_io(env)
1645 && (mask & ~old_mask) != 0) {
1646 cpu_abort(env, "Raised interrupt while not in I/O function");
1647 }
1648 #endif
1649 } else {
1650 cpu_unlink_tb(env);
1651 }
1652 }
1653
1654 void cpu_reset_interrupt(CPUState *env, int mask)
1655 {
1656 env->interrupt_request &= ~mask;
1657 }
1658
1659 void cpu_exit(CPUState *env)
1660 {
1661 env->exit_request = 1;
1662 cpu_unlink_tb(env);
1663 }
1664
1665 const CPULogItem cpu_log_items[] = {
1666 { CPU_LOG_TB_OUT_ASM, "out_asm",
1667 "show generated host assembly code for each compiled TB" },
1668 { CPU_LOG_TB_IN_ASM, "in_asm",
1669 "show target assembly code for each compiled TB" },
1670 { CPU_LOG_TB_OP, "op",
1671 "show micro ops for each compiled TB" },
1672 { CPU_LOG_TB_OP_OPT, "op_opt",
1673 "show micro ops "
1674 #ifdef TARGET_I386
1675 "before eflags optimization and "
1676 #endif
1677 "after liveness analysis" },
1678 { CPU_LOG_INT, "int",
1679 "show interrupts/exceptions in short format" },
1680 { CPU_LOG_EXEC, "exec",
1681 "show trace before each executed TB (lots of logs)" },
1682 { CPU_LOG_TB_CPU, "cpu",
1683 "show CPU state before block translation" },
1684 #ifdef TARGET_I386
1685 { CPU_LOG_PCALL, "pcall",
1686 "show protected mode far calls/returns/exceptions" },
1687 { CPU_LOG_RESET, "cpu_reset",
1688 "show CPU state before CPU resets" },
1689 #endif
1690 #ifdef DEBUG_IOPORT
1691 { CPU_LOG_IOPORT, "ioport",
1692 "show all i/o ports accesses" },
1693 #endif
1694 { 0, NULL, NULL },
1695 };
1696
1697 #ifndef CONFIG_USER_ONLY
1698 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1699 = QLIST_HEAD_INITIALIZER(memory_client_list);
1700
1701 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1702 ram_addr_t size,
1703 ram_addr_t phys_offset)
1704 {
1705 CPUPhysMemoryClient *client;
1706 QLIST_FOREACH(client, &memory_client_list, list) {
1707 client->set_memory(client, start_addr, size, phys_offset);
1708 }
1709 }
1710
1711 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1712 target_phys_addr_t end)
1713 {
1714 CPUPhysMemoryClient *client;
1715 QLIST_FOREACH(client, &memory_client_list, list) {
1716 int r = client->sync_dirty_bitmap(client, start, end);
1717 if (r < 0)
1718 return r;
1719 }
1720 return 0;
1721 }
1722
1723 static int cpu_notify_migration_log(int enable)
1724 {
1725 CPUPhysMemoryClient *client;
1726 QLIST_FOREACH(client, &memory_client_list, list) {
1727 int r = client->migration_log(client, enable);
1728 if (r < 0)
1729 return r;
1730 }
1731 return 0;
1732 }
1733
1734 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1735 int level, void **lp)
1736 {
1737 int i;
1738
1739 if (*lp == NULL) {
1740 return;
1741 }
1742 if (level == 0) {
1743 PhysPageDesc *pd = *lp;
1744 for (i = 0; i < L2_SIZE; ++i) {
1745 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1746 client->set_memory(client, pd[i].region_offset,
1747 TARGET_PAGE_SIZE, pd[i].phys_offset);
1748 }
1749 }
1750 } else {
1751 void **pp = *lp;
1752 for (i = 0; i < L2_SIZE; ++i) {
1753 phys_page_for_each_1(client, level - 1, pp + i);
1754 }
1755 }
1756 }
1757
1758 static void phys_page_for_each(CPUPhysMemoryClient *client)
1759 {
1760 int i;
1761 for (i = 0; i < P_L1_SIZE; ++i) {
1762 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1763 l1_phys_map + 1);
1764 }
1765 }
1766
1767 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1768 {
1769 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1770 phys_page_for_each(client);
1771 }
1772
1773 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1774 {
1775 QLIST_REMOVE(client, list);
1776 }
1777 #endif
1778
1779 static int cmp1(const char *s1, int n, const char *s2)
1780 {
1781 if (strlen(s2) != n)
1782 return 0;
1783 return memcmp(s1, s2, n) == 0;
1784 }
1785
1786 /* takes a comma separated list of log masks. Return 0 if error. */
1787 int cpu_str_to_log_mask(const char *str)
1788 {
1789 const CPULogItem *item;
1790 int mask;
1791 const char *p, *p1;
1792
1793 p = str;
1794 mask = 0;
1795 for(;;) {
1796 p1 = strchr(p, ',');
1797 if (!p1)
1798 p1 = p + strlen(p);
1799 if(cmp1(p,p1-p,"all")) {
1800 for(item = cpu_log_items; item->mask != 0; item++) {
1801 mask |= item->mask;
1802 }
1803 } else {
1804 for(item = cpu_log_items; item->mask != 0; item++) {
1805 if (cmp1(p, p1 - p, item->name))
1806 goto found;
1807 }
1808 return 0;
1809 }
1810 found:
1811 mask |= item->mask;
1812 if (*p1 != ',')
1813 break;
1814 p = p1 + 1;
1815 }
1816 return mask;
1817 }
1818
1819 void cpu_abort(CPUState *env, const char *fmt, ...)
1820 {
1821 va_list ap;
1822 va_list ap2;
1823
1824 va_start(ap, fmt);
1825 va_copy(ap2, ap);
1826 fprintf(stderr, "qemu: fatal: ");
1827 vfprintf(stderr, fmt, ap);
1828 fprintf(stderr, "\n");
1829 #ifdef TARGET_I386
1830 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1831 #else
1832 cpu_dump_state(env, stderr, fprintf, 0);
1833 #endif
1834 if (qemu_log_enabled()) {
1835 qemu_log("qemu: fatal: ");
1836 qemu_log_vprintf(fmt, ap2);
1837 qemu_log("\n");
1838 #ifdef TARGET_I386
1839 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1840 #else
1841 log_cpu_state(env, 0);
1842 #endif
1843 qemu_log_flush();
1844 qemu_log_close();
1845 }
1846 va_end(ap2);
1847 va_end(ap);
1848 #if defined(CONFIG_USER_ONLY)
1849 {
1850 struct sigaction act;
1851 sigfillset(&act.sa_mask);
1852 act.sa_handler = SIG_DFL;
1853 sigaction(SIGABRT, &act, NULL);
1854 }
1855 #endif
1856 abort();
1857 }
1858
1859 CPUState *cpu_copy(CPUState *env)
1860 {
1861 CPUState *new_env = cpu_init(env->cpu_model_str);
1862 CPUState *next_cpu = new_env->next_cpu;
1863 int cpu_index = new_env->cpu_index;
1864 #if defined(TARGET_HAS_ICE)
1865 CPUBreakpoint *bp;
1866 CPUWatchpoint *wp;
1867 #endif
1868
1869 memcpy(new_env, env, sizeof(CPUState));
1870
1871 /* Preserve chaining and index. */
1872 new_env->next_cpu = next_cpu;
1873 new_env->cpu_index = cpu_index;
1874
1875 /* Clone all break/watchpoints.
1876 Note: Once we support ptrace with hw-debug register access, make sure
1877 BP_CPU break/watchpoints are handled correctly on clone. */
1878 QTAILQ_INIT(&env->breakpoints);
1879 QTAILQ_INIT(&env->watchpoints);
1880 #if defined(TARGET_HAS_ICE)
1881 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1882 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1883 }
1884 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1885 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1886 wp->flags, NULL);
1887 }
1888 #endif
1889
1890 return new_env;
1891 }
1892
1893 #if !defined(CONFIG_USER_ONLY)
1894
1895 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1896 {
1897 unsigned int i;
1898
1899 /* Discard jump cache entries for any tb which might potentially
1900 overlap the flushed page. */
1901 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1902 memset (&env->tb_jmp_cache[i], 0,
1903 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1904
1905 i = tb_jmp_cache_hash_page(addr);
1906 memset (&env->tb_jmp_cache[i], 0,
1907 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1908 }
1909
1910 static CPUTLBEntry s_cputlb_empty_entry = {
1911 .addr_read = -1,
1912 .addr_write = -1,
1913 .addr_code = -1,
1914 .addend = -1,
1915 };
1916
1917 /* NOTE: if flush_global is true, also flush global entries (not
1918 implemented yet) */
1919 void tlb_flush(CPUState *env, int flush_global)
1920 {
1921 int i;
1922
1923 #if defined(DEBUG_TLB)
1924 printf("tlb_flush:\n");
1925 #endif
1926 /* must reset current TB so that interrupts cannot modify the
1927 links while we are modifying them */
1928 env->current_tb = NULL;
1929
1930 for(i = 0; i < CPU_TLB_SIZE; i++) {
1931 int mmu_idx;
1932 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1933 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1934 }
1935 }
1936
1937 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1938
1939 env->tlb_flush_addr = -1;
1940 env->tlb_flush_mask = 0;
1941 tlb_flush_count++;
1942 }
1943
1944 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1945 {
1946 if (addr == (tlb_entry->addr_read &
1947 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1948 addr == (tlb_entry->addr_write &
1949 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1950 addr == (tlb_entry->addr_code &
1951 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1952 *tlb_entry = s_cputlb_empty_entry;
1953 }
1954 }
1955
1956 void tlb_flush_page(CPUState *env, target_ulong addr)
1957 {
1958 int i;
1959 int mmu_idx;
1960
1961 #if defined(DEBUG_TLB)
1962 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1963 #endif
1964 /* Check if we need to flush due to large pages. */
1965 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1966 #if defined(DEBUG_TLB)
1967 printf("tlb_flush_page: forced full flush ("
1968 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1969 env->tlb_flush_addr, env->tlb_flush_mask);
1970 #endif
1971 tlb_flush(env, 1);
1972 return;
1973 }
1974 /* must reset current TB so that interrupts cannot modify the
1975 links while we are modifying them */
1976 env->current_tb = NULL;
1977
1978 addr &= TARGET_PAGE_MASK;
1979 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1980 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1981 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1982
1983 tlb_flush_jmp_cache(env, addr);
1984 }
1985
1986 /* update the TLBs so that writes to code in the virtual page 'addr'
1987 can be detected */
1988 static void tlb_protect_code(ram_addr_t ram_addr)
1989 {
1990 cpu_physical_memory_reset_dirty(ram_addr,
1991 ram_addr + TARGET_PAGE_SIZE,
1992 CODE_DIRTY_FLAG);
1993 }
1994
1995 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1996 tested for self modifying code */
1997 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1998 target_ulong vaddr)
1999 {
2000 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2001 }
2002
2003 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2004 unsigned long start, unsigned long length)
2005 {
2006 unsigned long addr;
2007 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2008 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2009 if ((addr - start) < length) {
2010 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2011 }
2012 }
2013 }
2014
2015 /* Note: start and end must be within the same ram block. */
2016 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2017 int dirty_flags)
2018 {
2019 CPUState *env;
2020 unsigned long length, start1;
2021 int i;
2022
2023 start &= TARGET_PAGE_MASK;
2024 end = TARGET_PAGE_ALIGN(end);
2025
2026 length = end - start;
2027 if (length == 0)
2028 return;
2029 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2030
2031 /* we modify the TLB cache so that the dirty bit will be set again
2032 when accessing the range */
2033 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2034 /* Chek that we don't span multiple blocks - this breaks the
2035 address comparisons below. */
2036 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2037 != (end - 1) - start) {
2038 abort();
2039 }
2040
2041 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2042 int mmu_idx;
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2046 start1, length);
2047 }
2048 }
2049 }
2050
2051 int cpu_physical_memory_set_dirty_tracking(int enable)
2052 {
2053 int ret = 0;
2054 in_migration = enable;
2055 ret = cpu_notify_migration_log(!!enable);
2056 return ret;
2057 }
2058
2059 int cpu_physical_memory_get_dirty_tracking(void)
2060 {
2061 return in_migration;
2062 }
2063
2064 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2065 target_phys_addr_t end_addr)
2066 {
2067 int ret;
2068
2069 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2070 return ret;
2071 }
2072
2073 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2074 {
2075 ram_addr_t ram_addr;
2076 void *p;
2077
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2080 + tlb_entry->addend);
2081 ram_addr = qemu_ram_addr_from_host_nofail(p);
2082 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2083 tlb_entry->addr_write |= TLB_NOTDIRTY;
2084 }
2085 }
2086 }
2087
2088 /* update the TLB according to the current state of the dirty bits */
2089 void cpu_tlb_update_dirty(CPUState *env)
2090 {
2091 int i;
2092 int mmu_idx;
2093 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2094 for(i = 0; i < CPU_TLB_SIZE; i++)
2095 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2096 }
2097 }
2098
2099 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2100 {
2101 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2102 tlb_entry->addr_write = vaddr;
2103 }
2104
2105 /* update the TLB corresponding to virtual page vaddr
2106 so that it is no longer dirty */
2107 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2108 {
2109 int i;
2110 int mmu_idx;
2111
2112 vaddr &= TARGET_PAGE_MASK;
2113 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2115 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2116 }
2117
2118 /* Our TLB does not support large pages, so remember the area covered by
2119 large pages and trigger a full TLB flush if these are invalidated. */
2120 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2121 target_ulong size)
2122 {
2123 target_ulong mask = ~(size - 1);
2124
2125 if (env->tlb_flush_addr == (target_ulong)-1) {
2126 env->tlb_flush_addr = vaddr & mask;
2127 env->tlb_flush_mask = mask;
2128 return;
2129 }
2130 /* Extend the existing region to include the new page.
2131 This is a compromise between unnecessary flushes and the cost
2132 of maintaining a full variable size TLB. */
2133 mask &= env->tlb_flush_mask;
2134 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2135 mask <<= 1;
2136 }
2137 env->tlb_flush_addr &= mask;
2138 env->tlb_flush_mask = mask;
2139 }
2140
2141 /* Add a new TLB entry. At most one entry for a given virtual address
2142 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2143 supplied size is only used by tlb_flush_page. */
2144 void tlb_set_page(CPUState *env, target_ulong vaddr,
2145 target_phys_addr_t paddr, int prot,
2146 int mmu_idx, target_ulong size)
2147 {
2148 PhysPageDesc *p;
2149 unsigned long pd;
2150 unsigned int index;
2151 target_ulong address;
2152 target_ulong code_address;
2153 unsigned long addend;
2154 CPUTLBEntry *te;
2155 CPUWatchpoint *wp;
2156 target_phys_addr_t iotlb;
2157
2158 assert(size >= TARGET_PAGE_SIZE);
2159 if (size != TARGET_PAGE_SIZE) {
2160 tlb_add_large_page(env, vaddr, size);
2161 }
2162 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2163 if (!p) {
2164 pd = IO_MEM_UNASSIGNED;
2165 } else {
2166 pd = p->phys_offset;
2167 }
2168 #if defined(DEBUG_TLB)
2169 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2170 " prot=%x idx=%d pd=0x%08lx\n",
2171 vaddr, paddr, prot, mmu_idx, pd);
2172 #endif
2173
2174 address = vaddr;
2175 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2176 /* IO memory case (romd handled later) */
2177 address |= TLB_MMIO;
2178 }
2179 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2180 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2181 /* Normal RAM. */
2182 iotlb = pd & TARGET_PAGE_MASK;
2183 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2184 iotlb |= IO_MEM_NOTDIRTY;
2185 else
2186 iotlb |= IO_MEM_ROM;
2187 } else {
2188 /* IO handlers are currently passed a physical address.
2189 It would be nice to pass an offset from the base address
2190 of that region. This would avoid having to special case RAM,
2191 and avoid full address decoding in every device.
2192 We can't use the high bits of pd for this because
2193 IO_MEM_ROMD uses these as a ram address. */
2194 iotlb = (pd & ~TARGET_PAGE_MASK);
2195 if (p) {
2196 iotlb += p->region_offset;
2197 } else {
2198 iotlb += paddr;
2199 }
2200 }
2201
2202 code_address = address;
2203 /* Make accesses to pages with watchpoints go via the
2204 watchpoint trap routines. */
2205 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2206 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2207 /* Avoid trapping reads of pages with a write breakpoint. */
2208 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2209 iotlb = io_mem_watch + paddr;
2210 address |= TLB_MMIO;
2211 break;
2212 }
2213 }
2214 }
2215
2216 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2217 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2218 te = &env->tlb_table[mmu_idx][index];
2219 te->addend = addend - vaddr;
2220 if (prot & PAGE_READ) {
2221 te->addr_read = address;
2222 } else {
2223 te->addr_read = -1;
2224 }
2225
2226 if (prot & PAGE_EXEC) {
2227 te->addr_code = code_address;
2228 } else {
2229 te->addr_code = -1;
2230 }
2231 if (prot & PAGE_WRITE) {
2232 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2233 (pd & IO_MEM_ROMD)) {
2234 /* Write access calls the I/O callback. */
2235 te->addr_write = address | TLB_MMIO;
2236 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2237 !cpu_physical_memory_is_dirty(pd)) {
2238 te->addr_write = address | TLB_NOTDIRTY;
2239 } else {
2240 te->addr_write = address;
2241 }
2242 } else {
2243 te->addr_write = -1;
2244 }
2245 }
2246
2247 #else
2248
2249 void tlb_flush(CPUState *env, int flush_global)
2250 {
2251 }
2252
2253 void tlb_flush_page(CPUState *env, target_ulong addr)
2254 {
2255 }
2256
2257 /*
2258 * Walks guest process memory "regions" one by one
2259 * and calls callback function 'fn' for each region.
2260 */
2261
2262 struct walk_memory_regions_data
2263 {
2264 walk_memory_regions_fn fn;
2265 void *priv;
2266 unsigned long start;
2267 int prot;
2268 };
2269
2270 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2271 abi_ulong end, int new_prot)
2272 {
2273 if (data->start != -1ul) {
2274 int rc = data->fn(data->priv, data->start, end, data->prot);
2275 if (rc != 0) {
2276 return rc;
2277 }
2278 }
2279
2280 data->start = (new_prot ? end : -1ul);
2281 data->prot = new_prot;
2282
2283 return 0;
2284 }
2285
2286 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2287 abi_ulong base, int level, void **lp)
2288 {
2289 abi_ulong pa;
2290 int i, rc;
2291
2292 if (*lp == NULL) {
2293 return walk_memory_regions_end(data, base, 0);
2294 }
2295
2296 if (level == 0) {
2297 PageDesc *pd = *lp;
2298 for (i = 0; i < L2_SIZE; ++i) {
2299 int prot = pd[i].flags;
2300
2301 pa = base | (i << TARGET_PAGE_BITS);
2302 if (prot != data->prot) {
2303 rc = walk_memory_regions_end(data, pa, prot);
2304 if (rc != 0) {
2305 return rc;
2306 }
2307 }
2308 }
2309 } else {
2310 void **pp = *lp;
2311 for (i = 0; i < L2_SIZE; ++i) {
2312 pa = base | ((abi_ulong)i <<
2313 (TARGET_PAGE_BITS + L2_BITS * level));
2314 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2315 if (rc != 0) {
2316 return rc;
2317 }
2318 }
2319 }
2320
2321 return 0;
2322 }
2323
2324 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2325 {
2326 struct walk_memory_regions_data data;
2327 unsigned long i;
2328
2329 data.fn = fn;
2330 data.priv = priv;
2331 data.start = -1ul;
2332 data.prot = 0;
2333
2334 for (i = 0; i < V_L1_SIZE; i++) {
2335 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2336 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2337 if (rc != 0) {
2338 return rc;
2339 }
2340 }
2341
2342 return walk_memory_regions_end(&data, 0, 0);
2343 }
2344
2345 static int dump_region(void *priv, abi_ulong start,
2346 abi_ulong end, unsigned long prot)
2347 {
2348 FILE *f = (FILE *)priv;
2349
2350 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2351 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2352 start, end, end - start,
2353 ((prot & PAGE_READ) ? 'r' : '-'),
2354 ((prot & PAGE_WRITE) ? 'w' : '-'),
2355 ((prot & PAGE_EXEC) ? 'x' : '-'));
2356
2357 return (0);
2358 }
2359
2360 /* dump memory mappings */
2361 void page_dump(FILE *f)
2362 {
2363 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2364 "start", "end", "size", "prot");
2365 walk_memory_regions(f, dump_region);
2366 }
2367
2368 int page_get_flags(target_ulong address)
2369 {
2370 PageDesc *p;
2371
2372 p = page_find(address >> TARGET_PAGE_BITS);
2373 if (!p)
2374 return 0;
2375 return p->flags;
2376 }
2377
2378 /* Modify the flags of a page and invalidate the code if necessary.
2379 The flag PAGE_WRITE_ORG is positioned automatically depending
2380 on PAGE_WRITE. The mmap_lock should already be held. */
2381 void page_set_flags(target_ulong start, target_ulong end, int flags)
2382 {
2383 target_ulong addr, len;
2384
2385 /* This function should never be called with addresses outside the
2386 guest address space. If this assert fires, it probably indicates
2387 a missing call to h2g_valid. */
2388 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2389 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2390 #endif
2391 assert(start < end);
2392
2393 start = start & TARGET_PAGE_MASK;
2394 end = TARGET_PAGE_ALIGN(end);
2395
2396 if (flags & PAGE_WRITE) {
2397 flags |= PAGE_WRITE_ORG;
2398 }
2399
2400 for (addr = start, len = end - start;
2401 len != 0;
2402 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2403 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2404
2405 /* If the write protection bit is set, then we invalidate
2406 the code inside. */
2407 if (!(p->flags & PAGE_WRITE) &&
2408 (flags & PAGE_WRITE) &&
2409 p->first_tb) {
2410 tb_invalidate_phys_page(addr, 0, NULL);
2411 }
2412 p->flags = flags;
2413 }
2414 }
2415
2416 int page_check_range(target_ulong start, target_ulong len, int flags)
2417 {
2418 PageDesc *p;
2419 target_ulong end;
2420 target_ulong addr;
2421
2422 /* This function should never be called with addresses outside the
2423 guest address space. If this assert fires, it probably indicates
2424 a missing call to h2g_valid. */
2425 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2426 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2427 #endif
2428
2429 if (len == 0) {
2430 return 0;
2431 }
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
2434 return -1;
2435 }
2436
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2439
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2444 if( !p )
2445 return -1;
2446 if( !(p->flags & PAGE_VALID) )
2447 return -1;
2448
2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2450 return -1;
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2453 return -1;
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2458 return -1;
2459 }
2460 return 0;
2461 }
2462 }
2463 return 0;
2464 }
2465
2466 /* called from signal handler: invalidate the code and unprotect the
2467 page. Return TRUE if the fault was successfully handled. */
2468 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2469 {
2470 unsigned int prot;
2471 PageDesc *p;
2472 target_ulong host_start, host_end, addr;
2473
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2477 mmap_lock();
2478
2479 p = page_find(address >> TARGET_PAGE_BITS);
2480 if (!p) {
2481 mmap_unlock();
2482 return 0;
2483 }
2484
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2490
2491 prot = 0;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2495 prot |= p->flags;
2496
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
2499 tb_invalidate_phys_page(addr, pc, puc);
2500 #ifdef DEBUG_TB_CHECK
2501 tb_invalidate_check(addr);
2502 #endif
2503 }
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2505 prot & PAGE_BITS);
2506
2507 mmap_unlock();
2508 return 1;
2509 }
2510 mmap_unlock();
2511 return 0;
2512 }
2513
2514 static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
2516 {
2517 }
2518 #endif /* defined(CONFIG_USER_ONLY) */
2519
2520 #if !defined(CONFIG_USER_ONLY)
2521
2522 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523 typedef struct subpage_t {
2524 target_phys_addr_t base;
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2527 } subpage_t;
2528
2529 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
2531 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
2534 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2535 need_subpage) \
2536 do { \
2537 if (addr > start_addr) \
2538 start_addr2 = 0; \
2539 else { \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2542 need_subpage = 1; \
2543 } \
2544 \
2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2547 else { \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2550 need_subpage = 1; \
2551 } \
2552 } while (0)
2553
2554 /* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
2559 start_addr and region_offset are rounded down to a page boundary
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
2562 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2563 ram_addr_t size,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
2566 {
2567 target_phys_addr_t addr, end_addr;
2568 PhysPageDesc *p;
2569 CPUState *env;
2570 ram_addr_t orig_size = size;
2571 subpage_t *subpage;
2572
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2574
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2577 }
2578 region_offset &= TARGET_PAGE_MASK;
2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2580 end_addr = start_addr + (target_phys_addr_t)size;
2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
2586 int need_subpage = 0;
2587
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2589 need_subpage);
2590 if (need_subpage) {
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2593 &p->phys_offset, orig_memory,
2594 p->region_offset);
2595 } else {
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2597 >> IO_MEM_SHIFT];
2598 }
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2600 region_offset);
2601 p->region_offset = 0;
2602 } else {
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2607 }
2608 } else {
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
2611 p->region_offset = region_offset;
2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2613 (phys_offset & IO_MEM_ROMD)) {
2614 phys_offset += TARGET_PAGE_SIZE;
2615 } else {
2616 target_phys_addr_t start_addr2, end_addr2;
2617 int need_subpage = 0;
2618
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2621
2622 if (need_subpage) {
2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2624 &p->phys_offset, IO_MEM_UNASSIGNED,
2625 addr & TARGET_PAGE_MASK);
2626 subpage_register(subpage, start_addr2, end_addr2,
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
2629 }
2630 }
2631 }
2632 region_offset += TARGET_PAGE_SIZE;
2633 }
2634
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 /* XXX: slow ! */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2639 tlb_flush(env, 1);
2640 }
2641 }
2642
2643 /* XXX: temporary until new memory mapping API */
2644 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2645 {
2646 PhysPageDesc *p;
2647
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2649 if (!p)
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2652 }
2653
2654 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2655 {
2656 if (kvm_enabled())
2657 kvm_coalesce_mmio_region(addr, size);
2658 }
2659
2660 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2661 {
2662 if (kvm_enabled())
2663 kvm_uncoalesce_mmio_region(addr, size);
2664 }
2665
2666 void qemu_flush_coalesced_mmio_buffer(void)
2667 {
2668 if (kvm_enabled())
2669 kvm_flush_coalesced_mmio_buffer();
2670 }
2671
2672 #if defined(__linux__) && !defined(TARGET_S390X)
2673
2674 #include <sys/vfs.h>
2675
2676 #define HUGETLBFS_MAGIC 0x958458f6
2677
2678 static long gethugepagesize(const char *path)
2679 {
2680 struct statfs fs;
2681 int ret;
2682
2683 do {
2684 ret = statfs(path, &fs);
2685 } while (ret != 0 && errno == EINTR);
2686
2687 if (ret != 0) {
2688 perror(path);
2689 return 0;
2690 }
2691
2692 if (fs.f_type != HUGETLBFS_MAGIC)
2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2694
2695 return fs.f_bsize;
2696 }
2697
2698 static void *file_ram_alloc(RAMBlock *block,
2699 ram_addr_t memory,
2700 const char *path)
2701 {
2702 char *filename;
2703 void *area;
2704 int fd;
2705 #ifdef MAP_POPULATE
2706 int flags;
2707 #endif
2708 unsigned long hpagesize;
2709
2710 hpagesize = gethugepagesize(path);
2711 if (!hpagesize) {
2712 return NULL;
2713 }
2714
2715 if (memory < hpagesize) {
2716 return NULL;
2717 }
2718
2719 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2720 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2721 return NULL;
2722 }
2723
2724 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2725 return NULL;
2726 }
2727
2728 fd = mkstemp(filename);
2729 if (fd < 0) {
2730 perror("unable to create backing store for hugepages");
2731 free(filename);
2732 return NULL;
2733 }
2734 unlink(filename);
2735 free(filename);
2736
2737 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2738
2739 /*
2740 * ftruncate is not supported by hugetlbfs in older
2741 * hosts, so don't bother bailing out on errors.
2742 * If anything goes wrong with it under other filesystems,
2743 * mmap will fail.
2744 */
2745 if (ftruncate(fd, memory))
2746 perror("ftruncate");
2747
2748 #ifdef MAP_POPULATE
2749 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2750 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2751 * to sidestep this quirk.
2752 */
2753 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2755 #else
2756 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2757 #endif
2758 if (area == MAP_FAILED) {
2759 perror("file_ram_alloc: can't mmap RAM pages");
2760 close(fd);
2761 return (NULL);
2762 }
2763 block->fd = fd;
2764 return area;
2765 }
2766 #endif
2767
2768 static ram_addr_t find_ram_offset(ram_addr_t size)
2769 {
2770 RAMBlock *block, *next_block;
2771 ram_addr_t offset = 0, mingap = ULONG_MAX;
2772
2773 if (QLIST_EMPTY(&ram_list.blocks))
2774 return 0;
2775
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 ram_addr_t end, next = ULONG_MAX;
2778
2779 end = block->offset + block->length;
2780
2781 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2782 if (next_block->offset >= end) {
2783 next = MIN(next, next_block->offset);
2784 }
2785 }
2786 if (next - end >= size && next - end < mingap) {
2787 offset = end;
2788 mingap = next - end;
2789 }
2790 }
2791 return offset;
2792 }
2793
2794 static ram_addr_t last_ram_offset(void)
2795 {
2796 RAMBlock *block;
2797 ram_addr_t last = 0;
2798
2799 QLIST_FOREACH(block, &ram_list.blocks, next)
2800 last = MAX(last, block->offset + block->length);
2801
2802 return last;
2803 }
2804
2805 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2806 ram_addr_t size, void *host)
2807 {
2808 RAMBlock *new_block, *block;
2809
2810 size = TARGET_PAGE_ALIGN(size);
2811 new_block = qemu_mallocz(sizeof(*new_block));
2812
2813 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2814 char *id = dev->parent_bus->info->get_dev_path(dev);
2815 if (id) {
2816 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2817 qemu_free(id);
2818 }
2819 }
2820 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2821
2822 QLIST_FOREACH(block, &ram_list.blocks, next) {
2823 if (!strcmp(block->idstr, new_block->idstr)) {
2824 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2825 new_block->idstr);
2826 abort();
2827 }
2828 }
2829
2830 if (host) {
2831 new_block->host = host;
2832 } else {
2833 if (mem_path) {
2834 #if defined (__linux__) && !defined(TARGET_S390X)
2835 new_block->host = file_ram_alloc(new_block, size, mem_path);
2836 if (!new_block->host) {
2837 new_block->host = qemu_vmalloc(size);
2838 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2839 }
2840 #else
2841 fprintf(stderr, "-mem-path option unsupported\n");
2842 exit(1);
2843 #endif
2844 } else {
2845 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2846 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2847 new_block->host = mmap((void*)0x1000000, size,
2848 PROT_EXEC|PROT_READ|PROT_WRITE,
2849 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2850 #else
2851 new_block->host = qemu_vmalloc(size);
2852 #endif
2853 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2854 }
2855 }
2856
2857 new_block->offset = find_ram_offset(size);
2858 new_block->length = size;
2859
2860 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2861 fprintf(stderr, "alloc ram %s len 0x%x\n", new_block->idstr, (int)new_block->length);
2862
2863 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2864 last_ram_offset() >> TARGET_PAGE_BITS);
2865 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2866 0xff, size >> TARGET_PAGE_BITS);
2867
2868 if (kvm_enabled())
2869 kvm_setup_guest_memory(new_block->host, size);
2870
2871 return new_block->offset;
2872 }
2873
2874 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2875 {
2876 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2877 }
2878
2879 void qemu_ram_free(ram_addr_t addr)
2880 {
2881 RAMBlock *block;
2882
2883 QLIST_FOREACH(block, &ram_list.blocks, next) {
2884 if (addr == block->offset) {
2885 QLIST_REMOVE(block, next);
2886 if (mem_path) {
2887 #if defined (__linux__) && !defined(TARGET_S390X)
2888 if (block->fd) {
2889 munmap(block->host, block->length);
2890 close(block->fd);
2891 } else {
2892 qemu_vfree(block->host);
2893 }
2894 #endif
2895 } else {
2896 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2897 munmap(block->host, block->length);
2898 #else
2899 qemu_vfree(block->host);
2900 #endif
2901 }
2902 qemu_free(block);
2903 return;
2904 }
2905 }
2906
2907 }
2908
2909 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2910 With the exception of the softmmu code in this file, this should
2911 only be used for local memory (e.g. video ram) that the device owns,
2912 and knows it isn't going to access beyond the end of the block.
2913
2914 It should not be used for general purpose DMA.
2915 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2916 */
2917 void *qemu_get_ram_ptr(ram_addr_t addr)
2918 {
2919 RAMBlock *block;
2920
2921 QLIST_FOREACH(block, &ram_list.blocks, next) {
2922 if (addr - block->offset < block->length) {
2923 QLIST_REMOVE(block, next);
2924 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2925 return block->host + (addr - block->offset);
2926 }
2927 }
2928
2929 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2930 abort();
2931
2932 return NULL;
2933 }
2934
2935 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2936 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2937 */
2938 void *qemu_safe_ram_ptr(ram_addr_t addr)
2939 {
2940 RAMBlock *block;
2941
2942 QLIST_FOREACH(block, &ram_list.blocks, next) {
2943 if (addr - block->offset < block->length) {
2944 return block->host + (addr - block->offset);
2945 }
2946 }
2947
2948 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2949 abort();
2950
2951 return NULL;
2952 }
2953
2954 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2955 {
2956 RAMBlock *block;
2957 uint8_t *host = ptr;
2958
2959 QLIST_FOREACH(block, &ram_list.blocks, next) {
2960 if (host - block->host < block->length) {
2961 *ram_addr = block->offset + (host - block->host);
2962 return 0;
2963 }
2964 }
2965 return -1;
2966 }
2967
2968 /* Some of the softmmu routines need to translate from a host pointer
2969 (typically a TLB entry) back to a ram offset. */
2970 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2971 {
2972 ram_addr_t ram_addr;
2973
2974 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2975 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2976 abort();
2977 }
2978 return ram_addr;
2979 }
2980
2981 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2982 {
2983 #ifdef DEBUG_UNASSIGNED
2984 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2985 #endif
2986 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2987 do_unassigned_access(addr, 0, 0, 0, 1);
2988 #endif
2989 return 0;
2990 }
2991
2992 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2993 {
2994 #ifdef DEBUG_UNASSIGNED
2995 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2996 #endif
2997 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2998 do_unassigned_access(addr, 0, 0, 0, 2);
2999 #endif
3000 return 0;
3001 }
3002
3003 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3004 {
3005 #ifdef DEBUG_UNASSIGNED
3006 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3007 #endif
3008 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3009 do_unassigned_access(addr, 0, 0, 0, 4);
3010 #endif
3011 return 0;
3012 }
3013
3014 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3015 {
3016 #ifdef DEBUG_UNASSIGNED
3017 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3018 #endif
3019 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3020 do_unassigned_access(addr, 1, 0, 0, 1);
3021 #endif
3022 }
3023
3024 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3025 {
3026 #ifdef DEBUG_UNASSIGNED
3027 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3028 #endif
3029 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3030 do_unassigned_access(addr, 1, 0, 0, 2);
3031 #endif
3032 }
3033
3034 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3035 {
3036 #ifdef DEBUG_UNASSIGNED
3037 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3038 #endif
3039 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3040 do_unassigned_access(addr, 1, 0, 0, 4);
3041 #endif
3042 }
3043
3044 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3045 unassigned_mem_readb,
3046 unassigned_mem_readw,
3047 unassigned_mem_readl,
3048 };
3049
3050 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3051 unassigned_mem_writeb,
3052 unassigned_mem_writew,
3053 unassigned_mem_writel,
3054 };
3055
3056 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3057 uint32_t val)
3058 {
3059 int dirty_flags;
3060 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3061 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3062 #if !defined(CONFIG_USER_ONLY)
3063 tb_invalidate_phys_page_fast(ram_addr, 1);
3064 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3065 #endif
3066 }
3067 stb_p(qemu_get_ram_ptr(ram_addr), val);
3068 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3069 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3070 /* we remove the notdirty callback only if the code has been
3071 flushed */
3072 if (dirty_flags == 0xff)
3073 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3074 }
3075
3076 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3077 uint32_t val)
3078 {
3079 int dirty_flags;
3080 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3081 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3082 #if !defined(CONFIG_USER_ONLY)
3083 tb_invalidate_phys_page_fast(ram_addr, 2);
3084 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3085 #endif
3086 }
3087 stw_p(qemu_get_ram_ptr(ram_addr), val);
3088 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3089 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3090 /* we remove the notdirty callback only if the code has been
3091 flushed */
3092 if (dirty_flags == 0xff)
3093 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3094 }
3095
3096 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3097 uint32_t val)
3098 {
3099 int dirty_flags;
3100 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3101 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3102 #if !defined(CONFIG_USER_ONLY)
3103 tb_invalidate_phys_page_fast(ram_addr, 4);
3104 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3105 #endif
3106 }
3107 stl_p(qemu_get_ram_ptr(ram_addr), val);
3108 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3109 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3110 /* we remove the notdirty callback only if the code has been
3111 flushed */
3112 if (dirty_flags == 0xff)
3113 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3114 }
3115
3116 static CPUReadMemoryFunc * const error_mem_read[3] = {
3117 NULL, /* never used */
3118 NULL, /* never used */
3119 NULL, /* never used */
3120 };
3121
3122 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3123 notdirty_mem_writeb,
3124 notdirty_mem_writew,
3125 notdirty_mem_writel,
3126 };
3127
3128 /* Generate a debug exception if a watchpoint has been hit. */
3129 static void check_watchpoint(int offset, int len_mask, int flags)
3130 {
3131 CPUState *env = cpu_single_env;
3132 target_ulong pc, cs_base;
3133 TranslationBlock *tb;
3134 target_ulong vaddr;
3135 CPUWatchpoint *wp;
3136 int cpu_flags;
3137
3138 if (env->watchpoint_hit) {
3139 /* We re-entered the check after replacing the TB. Now raise
3140 * the debug interrupt so that is will trigger after the
3141 * current instruction. */
3142 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3143 return;
3144 }
3145 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3146 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3147 if ((vaddr == (wp->vaddr & len_mask) ||
3148 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3149 wp->flags |= BP_WATCHPOINT_HIT;
3150 if (!env->watchpoint_hit) {
3151 env->watchpoint_hit = wp;
3152 tb = tb_find_pc(env->mem_io_pc);
3153 if (!tb) {
3154 cpu_abort(env, "check_watchpoint: could not find TB for "
3155 "pc=%p", (void *)env->mem_io_pc);
3156 }
3157 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3158 tb_phys_invalidate(tb, -1);
3159 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3160 env->exception_index = EXCP_DEBUG;
3161 } else {
3162 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3163 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3164 }
3165 cpu_resume_from_signal(env, NULL);
3166 }
3167 } else {
3168 wp->flags &= ~BP_WATCHPOINT_HIT;
3169 }
3170 }
3171 }
3172
3173 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3174 so these check for a hit then pass through to the normal out-of-line
3175 phys routines. */
3176 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3177 {
3178 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3179 return ldub_phys(addr);
3180 }
3181
3182 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3183 {
3184 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3185 return lduw_phys(addr);
3186 }
3187
3188 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3189 {
3190 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3191 return ldl_phys(addr);
3192 }
3193
3194 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3195 uint32_t val)
3196 {
3197 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3198 stb_phys(addr, val);
3199 }
3200
3201 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3202 uint32_t val)
3203 {
3204 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3205 stw_phys(addr, val);
3206 }
3207
3208 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3209 uint32_t val)
3210 {
3211 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3212 stl_phys(addr, val);
3213 }
3214
3215 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3216 watch_mem_readb,
3217 watch_mem_readw,
3218 watch_mem_readl,
3219 };
3220
3221 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3222 watch_mem_writeb,
3223 watch_mem_writew,
3224 watch_mem_writel,
3225 };
3226
3227 static inline uint32_t subpage_readlen (subpage_t *mmio,
3228 target_phys_addr_t addr,
3229 unsigned int len)
3230 {
3231 unsigned int idx = SUBPAGE_IDX(addr);
3232 #if defined(DEBUG_SUBPAGE)
3233 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3234 mmio, len, addr, idx);
3235 #endif
3236
3237 addr += mmio->region_offset[idx];
3238 idx = mmio->sub_io_index[idx];
3239 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3240 }
3241
3242 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3243 uint32_t value, unsigned int len)
3244 {
3245 unsigned int idx = SUBPAGE_IDX(addr);
3246 #if defined(DEBUG_SUBPAGE)
3247 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3248 __func__, mmio, len, addr, idx, value);
3249 #endif
3250
3251 addr += mmio->region_offset[idx];
3252 idx = mmio->sub_io_index[idx];
3253 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3254 }
3255
3256 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3257 {
3258 return subpage_readlen(opaque, addr, 0);
3259 }
3260
3261 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3262 uint32_t value)
3263 {
3264 subpage_writelen(opaque, addr, value, 0);
3265 }
3266
3267 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3268 {
3269 return subpage_readlen(opaque, addr, 1);
3270 }
3271
3272 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3273 uint32_t value)
3274 {
3275 subpage_writelen(opaque, addr, value, 1);
3276 }
3277
3278 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3279 {
3280 return subpage_readlen(opaque, addr, 2);
3281 }
3282
3283 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3284 uint32_t value)
3285 {
3286 subpage_writelen(opaque, addr, value, 2);
3287 }
3288
3289 static CPUReadMemoryFunc * const subpage_read[] = {
3290 &subpage_readb,
3291 &subpage_readw,
3292 &subpage_readl,
3293 };
3294
3295 static CPUWriteMemoryFunc * const subpage_write[] = {
3296 &subpage_writeb,
3297 &subpage_writew,
3298 &subpage_writel,
3299 };
3300
3301 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3302 ram_addr_t memory, ram_addr_t region_offset)
3303 {
3304 int idx, eidx;
3305
3306 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3307 return -1;
3308 idx = SUBPAGE_IDX(start);
3309 eidx = SUBPAGE_IDX(end);
3310 #if defined(DEBUG_SUBPAGE)
3311 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3312 mmio, start, end, idx, eidx, memory);
3313 #endif
3314 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3315 memory = IO_MEM_UNASSIGNED;
3316 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3317 for (; idx <= eidx; idx++) {
3318 mmio->sub_io_index[idx] = memory;
3319 mmio->region_offset[idx] = region_offset;
3320 }
3321
3322 return 0;
3323 }
3324
3325 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3326 ram_addr_t orig_memory,
3327 ram_addr_t region_offset)
3328 {
3329 subpage_t *mmio;
3330 int subpage_memory;
3331
3332 mmio = qemu_mallocz(sizeof(subpage_t));
3333
3334 mmio->base = base;
3335 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3336 #if defined(DEBUG_SUBPAGE)
3337 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3338 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3339 #endif
3340 *phys = subpage_memory | IO_MEM_SUBPAGE;
3341 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3342
3343 return mmio;
3344 }
3345
3346 static int get_free_io_mem_idx(void)
3347 {
3348 int i;
3349
3350 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3351 if (!io_mem_used[i]) {
3352 io_mem_used[i] = 1;
3353 return i;
3354 }
3355 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3356 return -1;
3357 }
3358
3359 /* mem_read and mem_write are arrays of functions containing the
3360 function to access byte (index 0), word (index 1) and dword (index
3361 2). Functions can be omitted with a NULL function pointer.
3362 If io_index is non zero, the corresponding io zone is
3363 modified. If it is zero, a new io zone is allocated. The return
3364 value can be used with cpu_register_physical_memory(). (-1) is
3365 returned if error. */
3366 static int cpu_register_io_memory_fixed(int io_index,
3367 CPUReadMemoryFunc * const *mem_read,
3368 CPUWriteMemoryFunc * const *mem_write,
3369 void *opaque)
3370 {
3371 int i;
3372
3373 if (io_index <= 0) {
3374 io_index = get_free_io_mem_idx();
3375 if (io_index == -1)
3376 return io_index;
3377 } else {
3378 io_index >>= IO_MEM_SHIFT;
3379 if (io_index >= IO_MEM_NB_ENTRIES)
3380 return -1;
3381 }
3382
3383 for (i = 0; i < 3; ++i) {
3384 io_mem_read[io_index][i]
3385 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3386 }
3387 for (i = 0; i < 3; ++i) {
3388 io_mem_write[io_index][i]
3389 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3390 }
3391 io_mem_opaque[io_index] = opaque;
3392
3393 return (io_index << IO_MEM_SHIFT);
3394 }
3395
3396 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3397 CPUWriteMemoryFunc * const *mem_write,
3398 void *opaque)
3399 {
3400 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3401 }
3402
3403 void cpu_unregister_io_memory(int io_table_address)
3404 {
3405 int i;
3406 int io_index = io_table_address >> IO_MEM_SHIFT;
3407
3408 for (i=0;i < 3; i++) {
3409 io_mem_read[io_index][i] = unassigned_mem_read[i];
3410 io_mem_write[io_index][i] = unassigned_mem_write[i];
3411 }
3412 io_mem_opaque[io_index] = NULL;
3413 io_mem_used[io_index] = 0;
3414 }
3415
3416 static void io_mem_init(void)
3417 {
3418 int i;
3419
3420 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3421 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3422 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3423 for (i=0; i<5; i++)
3424 io_mem_used[i] = 1;
3425
3426 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3427 watch_mem_write, NULL);
3428 }
3429
3430 #endif /* !defined(CONFIG_USER_ONLY) */
3431
3432 /* physical memory access (slow version, mainly for debug) */
3433 #if defined(CONFIG_USER_ONLY)
3434 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3435 uint8_t *buf, int len, int is_write)
3436 {
3437 int l, flags;
3438 target_ulong page;
3439 void * p;
3440
3441 while (len > 0) {
3442 page = addr & TARGET_PAGE_MASK;
3443 l = (page + TARGET_PAGE_SIZE) - addr;
3444 if (l > len)
3445 l = len;
3446 flags = page_get_flags(page);
3447 if (!(flags & PAGE_VALID))
3448 return -1;
3449 if (is_write) {
3450 if (!(flags & PAGE_WRITE))
3451 return -1;
3452 /* XXX: this code should not depend on lock_user */
3453 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3454 return -1;
3455 memcpy(p, buf, l);
3456 unlock_user(p, addr, l);
3457 } else {
3458 if (!(flags & PAGE_READ))
3459 return -1;
3460 /* XXX: this code should not depend on lock_user */
3461 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3462 return -1;
3463 memcpy(buf, p, l);
3464 unlock_user(p, addr, 0);
3465 }
3466 len -= l;
3467 buf += l;
3468 addr += l;
3469 }
3470 return 0;
3471 }
3472
3473 #else
3474 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3475 int len, int is_write)
3476 {
3477 int l, io_index;
3478 uint8_t *ptr;
3479 uint32_t val;
3480 target_phys_addr_t page;
3481 unsigned long pd;
3482 PhysPageDesc *p;
3483
3484 while (len > 0) {
3485 page = addr & TARGET_PAGE_MASK;
3486 l = (page + TARGET_PAGE_SIZE) - addr;
3487 if (l > len)
3488 l = len;
3489 p = phys_page_find(page >> TARGET_PAGE_BITS);
3490 if (!p) {
3491 pd = IO_MEM_UNASSIGNED;
3492 } else {
3493 pd = p->phys_offset;
3494 }
3495
3496 if (is_write) {
3497 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3498 target_phys_addr_t addr1 = addr;
3499 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3500 if (p)
3501 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3502 /* XXX: could force cpu_single_env to NULL to avoid
3503 potential bugs */
3504 if (l >= 4 && ((addr1 & 3) == 0)) {
3505 /* 32 bit write access */
3506 val = ldl_p(buf);
3507 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3508 l = 4;
3509 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3510 /* 16 bit write access */
3511 val = lduw_p(buf);
3512 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3513 l = 2;
3514 } else {
3515 /* 8 bit write access */
3516 val = ldub_p(buf);
3517 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3518 l = 1;
3519 }
3520 } else {
3521 unsigned long addr1;
3522 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3523 /* RAM case */
3524 ptr = qemu_get_ram_ptr(addr1);
3525 memcpy(ptr, buf, l);
3526 if (!cpu_physical_memory_is_dirty(addr1)) {
3527 /* invalidate code */
3528 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3529 /* set dirty bit */
3530 cpu_physical_memory_set_dirty_flags(
3531 addr1, (0xff & ~CODE_DIRTY_FLAG));
3532 }
3533 }
3534 } else {
3535 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3536 !(pd & IO_MEM_ROMD)) {
3537 target_phys_addr_t addr1 = addr;
3538 /* I/O case */
3539 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3540 if (p)
3541 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3542 if (l >= 4 && ((addr1 & 3) == 0)) {
3543 /* 32 bit read access */
3544 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3545 stl_p(buf, val);
3546 l = 4;
3547 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3548 /* 16 bit read access */
3549 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3550 stw_p(buf, val);
3551 l = 2;
3552 } else {
3553 /* 8 bit read access */
3554 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3555 stb_p(buf, val);
3556 l = 1;
3557 }
3558 } else {
3559 /* RAM case */
3560 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3561 (addr & ~TARGET_PAGE_MASK);
3562 memcpy(buf, ptr, l);
3563 }
3564 }
3565 len -= l;
3566 buf += l;
3567 addr += l;
3568 }
3569 }
3570
3571 /* used for ROM loading : can write in RAM and ROM */
3572 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3573 const uint8_t *buf, int len)
3574 {
3575 int l;
3576 uint8_t *ptr;
3577 target_phys_addr_t page;
3578 unsigned long pd;
3579 PhysPageDesc *p;
3580
3581 while (len > 0) {
3582 page = addr & TARGET_PAGE_MASK;
3583 l = (page + TARGET_PAGE_SIZE) - addr;
3584 if (l > len)
3585 l = len;
3586 p = phys_page_find(page >> TARGET_PAGE_BITS);
3587 if (!p) {
3588 pd = IO_MEM_UNASSIGNED;
3589 } else {
3590 pd = p->phys_offset;
3591 }
3592
3593 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3594 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3595 !(pd & IO_MEM_ROMD)) {
3596 /* do nothing */
3597 } else {
3598 unsigned long addr1;
3599 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3600 /* ROM/RAM case */
3601 ptr = qemu_get_ram_ptr(addr1);
3602 memcpy(ptr, buf, l);
3603 }
3604 len -= l;
3605 buf += l;
3606 addr += l;
3607 }
3608 }
3609
3610 typedef struct {
3611 void *buffer;
3612 target_phys_addr_t addr;
3613 target_phys_addr_t len;
3614 } BounceBuffer;
3615
3616 static BounceBuffer bounce;
3617
3618 typedef struct MapClient {
3619 void *opaque;
3620 void (*callback)(void *opaque);
3621 QLIST_ENTRY(MapClient) link;
3622 } MapClient;
3623
3624 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3625 = QLIST_HEAD_INITIALIZER(map_client_list);
3626
3627 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3628 {
3629 MapClient *client = qemu_malloc(sizeof(*client));
3630
3631 client->opaque = opaque;
3632 client->callback = callback;
3633 QLIST_INSERT_HEAD(&map_client_list, client, link);
3634 return client;
3635 }
3636
3637 void cpu_unregister_map_client(void *_client)
3638 {
3639 MapClient *client = (MapClient *)_client;
3640
3641 QLIST_REMOVE(client, link);
3642 qemu_free(client);
3643 }
3644
3645 static void cpu_notify_map_clients(void)
3646 {
3647 MapClient *client;
3648
3649 while (!QLIST_EMPTY(&map_client_list)) {
3650 client = QLIST_FIRST(&map_client_list);
3651 client->callback(client->opaque);
3652 cpu_unregister_map_client(client);
3653 }
3654 }
3655
3656 /* Map a physical memory region into a host virtual address.
3657 * May map a subset of the requested range, given by and returned in *plen.
3658 * May return NULL if resources needed to perform the mapping are exhausted.
3659 * Use only for reads OR writes - not for read-modify-write operations.
3660 * Use cpu_register_map_client() to know when retrying the map operation is
3661 * likely to succeed.
3662 */
3663 void *cpu_physical_memory_map(target_phys_addr_t addr,
3664 target_phys_addr_t *plen,
3665 int is_write)
3666 {
3667 target_phys_addr_t len = *plen;
3668 target_phys_addr_t done = 0;
3669 int l;
3670 uint8_t *ret = NULL;
3671 uint8_t *ptr;
3672 target_phys_addr_t page;
3673 unsigned long pd;
3674 PhysPageDesc *p;
3675 unsigned long addr1;
3676
3677 while (len > 0) {
3678 page = addr & TARGET_PAGE_MASK;
3679 l = (page + TARGET_PAGE_SIZE) - addr;
3680 if (l > len)
3681 l = len;
3682 p = phys_page_find(page >> TARGET_PAGE_BITS);
3683 if (!p) {
3684 pd = IO_MEM_UNASSIGNED;
3685 } else {
3686 pd = p->phys_offset;
3687 }
3688
3689 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3690 if (done || bounce.buffer) {
3691 break;
3692 }
3693 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3694 bounce.addr = addr;
3695 bounce.len = l;
3696 if (!is_write) {
3697 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3698 }
3699 ptr = bounce.buffer;
3700 } else {
3701 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3702 ptr = qemu_get_ram_ptr(addr1);
3703 }
3704 if (!done) {
3705 ret = ptr;
3706 } else if (ret + done != ptr) {
3707 break;
3708 }
3709
3710 len -= l;
3711 addr += l;
3712 done += l;
3713 }
3714 *plen = done;
3715 return ret;
3716 }
3717
3718 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3719 * Will also mark the memory as dirty if is_write == 1. access_len gives
3720 * the amount of memory that was actually read or written by the caller.
3721 */
3722 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3723 int is_write, target_phys_addr_t access_len)
3724 {
3725 if (buffer != bounce.buffer) {
3726 if (is_write) {
3727 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3728 while (access_len) {
3729 unsigned l;
3730 l = TARGET_PAGE_SIZE;
3731 if (l > access_len)
3732 l = access_len;
3733 if (!cpu_physical_memory_is_dirty(addr1)) {
3734 /* invalidate code */
3735 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3736 /* set dirty bit */
3737 cpu_physical_memory_set_dirty_flags(
3738 addr1, (0xff & ~CODE_DIRTY_FLAG));
3739 }
3740 addr1 += l;
3741 access_len -= l;
3742 }
3743 }
3744 return;
3745 }
3746 if (is_write) {
3747 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3748 }
3749 qemu_vfree(bounce.buffer);
3750 bounce.buffer = NULL;
3751 cpu_notify_map_clients();
3752 }
3753
3754 /* warning: addr must be aligned */
3755 uint32_t ldl_phys(target_phys_addr_t addr)
3756 {
3757 int io_index;
3758 uint8_t *ptr;
3759 uint32_t val;
3760 unsigned long pd;
3761 PhysPageDesc *p;
3762
3763 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3764 if (!p) {
3765 pd = IO_MEM_UNASSIGNED;
3766 } else {
3767 pd = p->phys_offset;
3768 }
3769
3770 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3771 !(pd & IO_MEM_ROMD)) {
3772 /* I/O case */
3773 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3774 if (p)
3775 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3776 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3777 } else {
3778 /* RAM case */
3779 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3780 (addr & ~TARGET_PAGE_MASK);
3781 val = ldl_p(ptr);
3782 }
3783 return val;
3784 }
3785
3786 /* warning: addr must be aligned */
3787 uint64_t ldq_phys(target_phys_addr_t addr)
3788 {
3789 int io_index;
3790 uint8_t *ptr;
3791 uint64_t val;
3792 unsigned long pd;
3793 PhysPageDesc *p;
3794
3795 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3796 if (!p) {
3797 pd = IO_MEM_UNASSIGNED;
3798 } else {
3799 pd = p->phys_offset;
3800 }
3801
3802 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3803 !(pd & IO_MEM_ROMD)) {
3804 /* I/O case */
3805 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3806 if (p)
3807 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3808 #ifdef TARGET_WORDS_BIGENDIAN
3809 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3810 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3811 #else
3812 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3813 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3814 #endif
3815 } else {
3816 /* RAM case */
3817 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3818 (addr & ~TARGET_PAGE_MASK);
3819 val = ldq_p(ptr);
3820 }
3821 return val;
3822 }
3823
3824 /* XXX: optimize */
3825 uint32_t ldub_phys(target_phys_addr_t addr)
3826 {
3827 uint8_t val;
3828 cpu_physical_memory_read(addr, &val, 1);
3829 return val;
3830 }
3831
3832 /* warning: addr must be aligned */
3833 uint32_t lduw_phys(target_phys_addr_t addr)
3834 {
3835 int io_index;
3836 uint8_t *ptr;
3837 uint64_t val;
3838 unsigned long pd;
3839 PhysPageDesc *p;
3840
3841 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3842 if (!p) {
3843 pd = IO_MEM_UNASSIGNED;
3844 } else {
3845 pd = p->phys_offset;
3846 }
3847
3848 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3849 !(pd & IO_MEM_ROMD)) {
3850 /* I/O case */
3851 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3852 if (p)
3853 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3854 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3855 } else {
3856 /* RAM case */
3857 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3858 (addr & ~TARGET_PAGE_MASK);
3859 val = lduw_p(ptr);
3860 }
3861 return val;
3862 }
3863
3864 /* warning: addr must be aligned. The ram page is not masked as dirty
3865 and the code inside is not invalidated. It is useful if the dirty
3866 bits are used to track modified PTEs */
3867 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3868 {
3869 int io_index;
3870 uint8_t *ptr;
3871 unsigned long pd;
3872 PhysPageDesc *p;
3873
3874 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3875 if (!p) {
3876 pd = IO_MEM_UNASSIGNED;
3877 } else {
3878 pd = p->phys_offset;
3879 }
3880
3881 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3882 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3883 if (p)
3884 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3885 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3886 } else {
3887 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3888 ptr = qemu_get_ram_ptr(addr1);
3889 stl_p(ptr, val);
3890
3891 if (unlikely(in_migration)) {
3892 if (!cpu_physical_memory_is_dirty(addr1)) {
3893 /* invalidate code */
3894 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3895 /* set dirty bit */
3896 cpu_physical_memory_set_dirty_flags(
3897 addr1, (0xff & ~CODE_DIRTY_FLAG));
3898 }
3899 }
3900 }
3901 }
3902
3903 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3904 {
3905 int io_index;
3906 uint8_t *ptr;
3907 unsigned long pd;
3908 PhysPageDesc *p;
3909
3910 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3911 if (!p) {
3912 pd = IO_MEM_UNASSIGNED;
3913 } else {
3914 pd = p->phys_offset;
3915 }
3916
3917 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3918 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3919 if (p)
3920 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3921 #ifdef TARGET_WORDS_BIGENDIAN
3922 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3923 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3924 #else
3925 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3926 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3927 #endif
3928 } else {
3929 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3930 (addr & ~TARGET_PAGE_MASK);
3931 stq_p(ptr, val);
3932 }
3933 }
3934
3935 /* warning: addr must be aligned */
3936 void stl_phys(target_phys_addr_t addr, uint32_t val)
3937 {
3938 int io_index;
3939 uint8_t *ptr;
3940 unsigned long pd;
3941 PhysPageDesc *p;
3942
3943 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3944 if (!p) {
3945 pd = IO_MEM_UNASSIGNED;
3946 } else {
3947 pd = p->phys_offset;
3948 }
3949
3950 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3951 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3952 if (p)
3953 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3954 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3955 } else {
3956 unsigned long addr1;
3957 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3958 /* RAM case */
3959 ptr = qemu_get_ram_ptr(addr1);
3960 stl_p(ptr, val);
3961 if (!cpu_physical_memory_is_dirty(addr1)) {
3962 /* invalidate code */
3963 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3964 /* set dirty bit */
3965 cpu_physical_memory_set_dirty_flags(addr1,
3966 (0xff & ~CODE_DIRTY_FLAG));
3967 }
3968 }
3969 }
3970
3971 /* XXX: optimize */
3972 void stb_phys(target_phys_addr_t addr, uint32_t val)
3973 {
3974 uint8_t v = val;
3975 cpu_physical_memory_write(addr, &v, 1);
3976 }
3977
3978 /* warning: addr must be aligned */
3979 void stw_phys(target_phys_addr_t addr, uint32_t val)
3980 {
3981 int io_index;
3982 uint8_t *ptr;
3983 unsigned long pd;
3984 PhysPageDesc *p;
3985
3986 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3987 if (!p) {
3988 pd = IO_MEM_UNASSIGNED;
3989 } else {
3990 pd = p->phys_offset;
3991 }
3992
3993 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3994 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3995 if (p)
3996 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3997 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3998 } else {
3999 unsigned long addr1;
4000 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4001 /* RAM case */
4002 ptr = qemu_get_ram_ptr(addr1);
4003 stw_p(ptr, val);
4004 if (!cpu_physical_memory_is_dirty(addr1)) {
4005 /* invalidate code */
4006 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4007 /* set dirty bit */
4008 cpu_physical_memory_set_dirty_flags(addr1,
4009 (0xff & ~CODE_DIRTY_FLAG));
4010 }
4011 }
4012 }
4013
4014 /* XXX: optimize */
4015 void stq_phys(target_phys_addr_t addr, uint64_t val)
4016 {
4017 val = tswap64(val);
4018 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4019 }
4020
4021 /* virtual memory access for debug (includes writing to ROM) */
4022 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4023 uint8_t *buf, int len, int is_write)
4024 {
4025 int l;
4026 target_phys_addr_t phys_addr;
4027 target_ulong page;
4028
4029 while (len > 0) {
4030 page = addr & TARGET_PAGE_MASK;
4031 phys_addr = cpu_get_phys_page_debug(env, page);
4032 /* if no physical page mapped, return an error */
4033 if (phys_addr == -1)
4034 return -1;
4035 l = (page + TARGET_PAGE_SIZE) - addr;
4036 if (l > len)
4037 l = len;
4038 phys_addr += (addr & ~TARGET_PAGE_MASK);
4039 if (is_write)
4040 cpu_physical_memory_write_rom(phys_addr, buf, l);
4041 else
4042 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4043 len -= l;
4044 buf += l;
4045 addr += l;
4046 }
4047 return 0;
4048 }
4049 #endif
4050
4051 /* in deterministic execution mode, instructions doing device I/Os
4052 must be at the end of the TB */
4053 void cpu_io_recompile(CPUState *env, void *retaddr)
4054 {
4055 TranslationBlock *tb;
4056 uint32_t n, cflags;
4057 target_ulong pc, cs_base;
4058 uint64_t flags;
4059
4060 tb = tb_find_pc((unsigned long)retaddr);
4061 if (!tb) {
4062 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4063 retaddr);
4064 }
4065 n = env->icount_decr.u16.low + tb->icount;
4066 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4067 /* Calculate how many instructions had been executed before the fault
4068 occurred. */
4069 n = n - env->icount_decr.u16.low;
4070 /* Generate a new TB ending on the I/O insn. */
4071 n++;
4072 /* On MIPS and SH, delay slot instructions can only be restarted if
4073 they were already the first instruction in the TB. If this is not
4074 the first instruction in a TB then re-execute the preceding
4075 branch. */
4076 #if defined(TARGET_MIPS)
4077 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4078 env->active_tc.PC -= 4;
4079 env->icount_decr.u16.low++;
4080 env->hflags &= ~MIPS_HFLAG_BMASK;
4081 }
4082 #elif defined(TARGET_SH4)
4083 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4084 && n > 1) {
4085 env->pc -= 2;
4086 env->icount_decr.u16.low++;
4087 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4088 }
4089 #endif
4090 /* This should never happen. */
4091 if (n > CF_COUNT_MASK)
4092 cpu_abort(env, "TB too big during recompile");
4093
4094 cflags = n | CF_LAST_IO;
4095 pc = tb->pc;
4096 cs_base = tb->cs_base;
4097 flags = tb->flags;
4098 tb_phys_invalidate(tb, -1);
4099 /* FIXME: In theory this could raise an exception. In practice
4100 we have already translated the block once so it's probably ok. */
4101 tb_gen_code(env, pc, cs_base, flags, cflags);
4102 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4103 the first in the TB) then we end up generating a whole new TB and
4104 repeating the fault, which is horribly inefficient.
4105 Better would be to execute just this insn uncached, or generate a
4106 second new TB. */
4107 cpu_resume_from_signal(env, NULL);
4108 }
4109
4110 #if !defined(CONFIG_USER_ONLY)
4111
4112 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4113 {
4114 int i, target_code_size, max_target_code_size;
4115 int direct_jmp_count, direct_jmp2_count, cross_page;
4116 TranslationBlock *tb;
4117
4118 target_code_size = 0;
4119 max_target_code_size = 0;
4120 cross_page = 0;
4121 direct_jmp_count = 0;
4122 direct_jmp2_count = 0;
4123 for(i = 0; i < nb_tbs; i++) {
4124 tb = &tbs[i];
4125 target_code_size += tb->size;
4126 if (tb->size > max_target_code_size)
4127 max_target_code_size = tb->size;
4128 if (tb->page_addr[1] != -1)
4129 cross_page++;
4130 if (tb->tb_next_offset[0] != 0xffff) {
4131 direct_jmp_count++;
4132 if (tb->tb_next_offset[1] != 0xffff) {
4133 direct_jmp2_count++;
4134 }
4135 }
4136 }
4137 /* XXX: avoid using doubles ? */
4138 cpu_fprintf(f, "Translation buffer state:\n");
4139 cpu_fprintf(f, "gen code size %td/%ld\n",
4140 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4141 cpu_fprintf(f, "TB count %d/%d\n",
4142 nb_tbs, code_gen_max_blocks);
4143 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4144 nb_tbs ? target_code_size / nb_tbs : 0,
4145 max_target_code_size);
4146 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4147 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4148 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4149 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4150 cross_page,
4151 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4152 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4153 direct_jmp_count,
4154 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4155 direct_jmp2_count,
4156 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4157 cpu_fprintf(f, "\nStatistics:\n");
4158 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4159 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4160 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4161 tcg_dump_info(f, cpu_fprintf);
4162 }
4163
4164 #define MMUSUFFIX _cmmu
4165 #define GETPC() NULL
4166 #define env cpu_single_env
4167 #define SOFTMMU_CODE_ACCESS
4168
4169 #define SHIFT 0
4170 #include "softmmu_template.h"
4171
4172 #define SHIFT 1
4173 #include "softmmu_template.h"
4174
4175 #define SHIFT 2
4176 #include "softmmu_template.h"
4177
4178 #define SHIFT 3
4179 #include "softmmu_template.h"
4180
4181 #undef env
4182
4183 #endif