]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: simplify destruction of the phys map
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
94 */
95 PhysPageEntry phys_map;
96 MemoryListener listener;
97 AddressSpace *as;
98 };
99
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
102 MemoryRegion iomem;
103 AddressSpace *as;
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106 } subpage_t;
107
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
114
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
118
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
120
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
124
125 static MemoryRegion io_mem_watch;
126 #endif
127
128 #if !defined(CONFIG_USER_ONLY)
129
130 static void phys_map_node_reserve(unsigned nodes)
131 {
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
139 }
140 }
141
142 static uint16_t phys_map_node_alloc(void)
143 {
144 unsigned i;
145 uint16_t ret;
146
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
153 }
154 return ret;
155 }
156
157 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
158 hwaddr *nb, uint16_t leaf,
159 int level)
160 {
161 PhysPageEntry *p;
162 int i;
163 hwaddr step = (hwaddr)1 << (level * L2_BITS);
164
165 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
166 lp->ptr = phys_map_node_alloc();
167 p = phys_map_nodes[lp->ptr];
168 if (level == 0) {
169 for (i = 0; i < L2_SIZE; i++) {
170 p[i].is_leaf = 1;
171 p[i].ptr = phys_section_unassigned;
172 }
173 }
174 } else {
175 p = phys_map_nodes[lp->ptr];
176 }
177 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
178
179 while (*nb && lp < &p[L2_SIZE]) {
180 if ((*index & (step - 1)) == 0 && *nb >= step) {
181 lp->is_leaf = true;
182 lp->ptr = leaf;
183 *index += step;
184 *nb -= step;
185 } else {
186 phys_page_set_level(lp, index, nb, leaf, level - 1);
187 }
188 ++lp;
189 }
190 }
191
192 static void phys_page_set(AddressSpaceDispatch *d,
193 hwaddr index, hwaddr nb,
194 uint16_t leaf)
195 {
196 /* Wildly overreserve - it doesn't matter much. */
197 phys_map_node_reserve(3 * P_L2_LEVELS);
198
199 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
200 }
201
202 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
203 {
204 PhysPageEntry lp = d->phys_map;
205 PhysPageEntry *p;
206 int i;
207
208 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
209 if (lp.ptr == PHYS_MAP_NODE_NIL) {
210 return &phys_sections[phys_section_unassigned];
211 }
212 p = phys_map_nodes[lp.ptr];
213 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
214 }
215 return &phys_sections[lp.ptr];
216 }
217
218 bool memory_region_is_unassigned(MemoryRegion *mr)
219 {
220 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
221 && mr != &io_mem_watch;
222 }
223
224 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
225 hwaddr addr,
226 bool resolve_subpage)
227 {
228 MemoryRegionSection *section;
229 subpage_t *subpage;
230
231 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
232 if (resolve_subpage && section->mr->subpage) {
233 subpage = container_of(section->mr, subpage_t, iomem);
234 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
235 }
236 return section;
237 }
238
239 static MemoryRegionSection *
240 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
241 hwaddr *plen, bool resolve_subpage)
242 {
243 MemoryRegionSection *section;
244 Int128 diff;
245
246 section = address_space_lookup_region(as, addr, resolve_subpage);
247 /* Compute offset within MemoryRegionSection */
248 addr -= section->offset_within_address_space;
249
250 /* Compute offset within MemoryRegion */
251 *xlat = addr + section->offset_within_region;
252
253 diff = int128_sub(section->mr->size, int128_make64(addr));
254 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
255 return section;
256 }
257
258 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
259 hwaddr *xlat, hwaddr *plen,
260 bool is_write)
261 {
262 IOMMUTLBEntry iotlb;
263 MemoryRegionSection *section;
264 MemoryRegion *mr;
265 hwaddr len = *plen;
266
267 for (;;) {
268 section = address_space_translate_internal(as, addr, &addr, plen, true);
269 mr = section->mr;
270
271 if (!mr->iommu_ops) {
272 break;
273 }
274
275 iotlb = mr->iommu_ops->translate(mr, addr);
276 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
277 | (addr & iotlb.addr_mask));
278 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
279 if (!(iotlb.perm & (1 << is_write))) {
280 mr = &io_mem_unassigned;
281 break;
282 }
283
284 as = iotlb.target_as;
285 }
286
287 *plen = len;
288 *xlat = addr;
289 return mr;
290 }
291
292 MemoryRegionSection *
293 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
294 hwaddr *plen)
295 {
296 MemoryRegionSection *section;
297 section = address_space_translate_internal(as, addr, xlat, plen, false);
298
299 assert(!section->mr->iommu_ops);
300 return section;
301 }
302 #endif
303
304 void cpu_exec_init_all(void)
305 {
306 #if !defined(CONFIG_USER_ONLY)
307 qemu_mutex_init(&ram_list.mutex);
308 memory_map_init();
309 io_mem_init();
310 #endif
311 }
312
313 #if !defined(CONFIG_USER_ONLY)
314
315 static int cpu_common_post_load(void *opaque, int version_id)
316 {
317 CPUState *cpu = opaque;
318
319 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
320 version_id is increased. */
321 cpu->interrupt_request &= ~0x01;
322 tlb_flush(cpu->env_ptr, 1);
323
324 return 0;
325 }
326
327 const VMStateDescription vmstate_cpu_common = {
328 .name = "cpu_common",
329 .version_id = 1,
330 .minimum_version_id = 1,
331 .minimum_version_id_old = 1,
332 .post_load = cpu_common_post_load,
333 .fields = (VMStateField []) {
334 VMSTATE_UINT32(halted, CPUState),
335 VMSTATE_UINT32(interrupt_request, CPUState),
336 VMSTATE_END_OF_LIST()
337 }
338 };
339
340 #endif
341
342 CPUState *qemu_get_cpu(int index)
343 {
344 CPUArchState *env = first_cpu;
345 CPUState *cpu = NULL;
346
347 while (env) {
348 cpu = ENV_GET_CPU(env);
349 if (cpu->cpu_index == index) {
350 break;
351 }
352 env = env->next_cpu;
353 }
354
355 return env ? cpu : NULL;
356 }
357
358 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
359 {
360 CPUArchState *env = first_cpu;
361
362 while (env) {
363 func(ENV_GET_CPU(env), data);
364 env = env->next_cpu;
365 }
366 }
367
368 void cpu_exec_init(CPUArchState *env)
369 {
370 CPUState *cpu = ENV_GET_CPU(env);
371 CPUClass *cc = CPU_GET_CLASS(cpu);
372 CPUArchState **penv;
373 int cpu_index;
374
375 #if defined(CONFIG_USER_ONLY)
376 cpu_list_lock();
377 #endif
378 env->next_cpu = NULL;
379 penv = &first_cpu;
380 cpu_index = 0;
381 while (*penv != NULL) {
382 penv = &(*penv)->next_cpu;
383 cpu_index++;
384 }
385 cpu->cpu_index = cpu_index;
386 cpu->numa_node = 0;
387 QTAILQ_INIT(&env->breakpoints);
388 QTAILQ_INIT(&env->watchpoints);
389 #ifndef CONFIG_USER_ONLY
390 cpu->thread_id = qemu_get_thread_id();
391 #endif
392 *penv = env;
393 #if defined(CONFIG_USER_ONLY)
394 cpu_list_unlock();
395 #endif
396 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
397 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
398 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
399 cpu_save, cpu_load, env);
400 assert(cc->vmsd == NULL);
401 #endif
402 if (cc->vmsd != NULL) {
403 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
404 }
405 }
406
407 #if defined(TARGET_HAS_ICE)
408 #if defined(CONFIG_USER_ONLY)
409 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
410 {
411 tb_invalidate_phys_page_range(pc, pc + 1, 0);
412 }
413 #else
414 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
415 {
416 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
417 (pc & ~TARGET_PAGE_MASK));
418 }
419 #endif
420 #endif /* TARGET_HAS_ICE */
421
422 #if defined(CONFIG_USER_ONLY)
423 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
424
425 {
426 }
427
428 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
429 int flags, CPUWatchpoint **watchpoint)
430 {
431 return -ENOSYS;
432 }
433 #else
434 /* Add a watchpoint. */
435 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
436 int flags, CPUWatchpoint **watchpoint)
437 {
438 target_ulong len_mask = ~(len - 1);
439 CPUWatchpoint *wp;
440
441 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
442 if ((len & (len - 1)) || (addr & ~len_mask) ||
443 len == 0 || len > TARGET_PAGE_SIZE) {
444 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
445 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
446 return -EINVAL;
447 }
448 wp = g_malloc(sizeof(*wp));
449
450 wp->vaddr = addr;
451 wp->len_mask = len_mask;
452 wp->flags = flags;
453
454 /* keep all GDB-injected watchpoints in front */
455 if (flags & BP_GDB)
456 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
457 else
458 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
459
460 tlb_flush_page(env, addr);
461
462 if (watchpoint)
463 *watchpoint = wp;
464 return 0;
465 }
466
467 /* Remove a specific watchpoint. */
468 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
469 int flags)
470 {
471 target_ulong len_mask = ~(len - 1);
472 CPUWatchpoint *wp;
473
474 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
475 if (addr == wp->vaddr && len_mask == wp->len_mask
476 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
477 cpu_watchpoint_remove_by_ref(env, wp);
478 return 0;
479 }
480 }
481 return -ENOENT;
482 }
483
484 /* Remove a specific watchpoint by reference. */
485 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
486 {
487 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
488
489 tlb_flush_page(env, watchpoint->vaddr);
490
491 g_free(watchpoint);
492 }
493
494 /* Remove all matching watchpoints. */
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
496 {
497 CPUWatchpoint *wp, *next;
498
499 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
500 if (wp->flags & mask)
501 cpu_watchpoint_remove_by_ref(env, wp);
502 }
503 }
504 #endif
505
506 /* Add a breakpoint. */
507 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
508 CPUBreakpoint **breakpoint)
509 {
510 #if defined(TARGET_HAS_ICE)
511 CPUBreakpoint *bp;
512
513 bp = g_malloc(sizeof(*bp));
514
515 bp->pc = pc;
516 bp->flags = flags;
517
518 /* keep all GDB-injected breakpoints in front */
519 if (flags & BP_GDB)
520 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
521 else
522 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
523
524 breakpoint_invalidate(env, pc);
525
526 if (breakpoint)
527 *breakpoint = bp;
528 return 0;
529 #else
530 return -ENOSYS;
531 #endif
532 }
533
534 /* Remove a specific breakpoint. */
535 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
536 {
537 #if defined(TARGET_HAS_ICE)
538 CPUBreakpoint *bp;
539
540 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
541 if (bp->pc == pc && bp->flags == flags) {
542 cpu_breakpoint_remove_by_ref(env, bp);
543 return 0;
544 }
545 }
546 return -ENOENT;
547 #else
548 return -ENOSYS;
549 #endif
550 }
551
552 /* Remove a specific breakpoint by reference. */
553 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
554 {
555 #if defined(TARGET_HAS_ICE)
556 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
557
558 breakpoint_invalidate(env, breakpoint->pc);
559
560 g_free(breakpoint);
561 #endif
562 }
563
564 /* Remove all matching breakpoints. */
565 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
566 {
567 #if defined(TARGET_HAS_ICE)
568 CPUBreakpoint *bp, *next;
569
570 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
571 if (bp->flags & mask)
572 cpu_breakpoint_remove_by_ref(env, bp);
573 }
574 #endif
575 }
576
577 /* enable or disable single step mode. EXCP_DEBUG is returned by the
578 CPU loop after each instruction */
579 void cpu_single_step(CPUArchState *env, int enabled)
580 {
581 #if defined(TARGET_HAS_ICE)
582 if (env->singlestep_enabled != enabled) {
583 env->singlestep_enabled = enabled;
584 if (kvm_enabled())
585 kvm_update_guest_debug(env, 0);
586 else {
587 /* must flush all the translated code to avoid inconsistencies */
588 /* XXX: only flush what is necessary */
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 CPUArchState *next_cpu = new_env->next_cpu;
632 #if defined(TARGET_HAS_ICE)
633 CPUBreakpoint *bp;
634 CPUWatchpoint *wp;
635 #endif
636
637 memcpy(new_env, env, sizeof(CPUArchState));
638
639 /* Preserve chaining. */
640 new_env->next_cpu = next_cpu;
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= phys_section_notdirty;
721 } else {
722 iotlb |= phys_section_rom;
723 }
724 } else {
725 iotlb = section - phys_sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = phys_section_watch + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(phys_sections_nb < TARGET_PAGE_SIZE);
759
760 if (phys_sections_nb == phys_sections_nb_alloc) {
761 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
762 phys_sections = g_renew(MemoryRegionSection, phys_sections,
763 phys_sections_nb_alloc);
764 }
765 phys_sections[phys_sections_nb] = *section;
766 return phys_sections_nb++;
767 }
768
769 static void phys_section_destroy(MemoryRegion *mr)
770 {
771 if (mr->subpage) {
772 subpage_t *subpage = container_of(mr, subpage_t, iomem);
773 memory_region_destroy(&subpage->iomem);
774 g_free(subpage);
775 }
776 }
777
778 static void phys_sections_clear(void)
779 {
780 while (phys_sections_nb > 0) {
781 MemoryRegionSection *section = &phys_sections[--phys_sections_nb];
782 phys_section_destroy(section->mr);
783 }
784 phys_map_nodes_nb = 0;
785 }
786
787 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
788 {
789 subpage_t *subpage;
790 hwaddr base = section->offset_within_address_space
791 & TARGET_PAGE_MASK;
792 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
793 MemoryRegionSection subsection = {
794 .offset_within_address_space = base,
795 .size = int128_make64(TARGET_PAGE_SIZE),
796 };
797 hwaddr start, end;
798
799 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
800
801 if (!(existing->mr->subpage)) {
802 subpage = subpage_init(d->as, base);
803 subsection.mr = &subpage->iomem;
804 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
805 phys_section_add(&subsection));
806 } else {
807 subpage = container_of(existing->mr, subpage_t, iomem);
808 }
809 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
810 end = start + int128_get64(section->size) - 1;
811 subpage_register(subpage, start, end, phys_section_add(section));
812 }
813
814
815 static void register_multipage(AddressSpaceDispatch *d,
816 MemoryRegionSection *section)
817 {
818 hwaddr start_addr = section->offset_within_address_space;
819 uint16_t section_index = phys_section_add(section);
820 uint64_t num_pages = int128_get64(int128_rshift(section->size,
821 TARGET_PAGE_BITS));
822
823 assert(num_pages);
824 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
825 }
826
827 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
828 {
829 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
830 MemoryRegionSection now = *section, remain = *section;
831 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
832
833 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
834 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
835 - now.offset_within_address_space;
836
837 now.size = int128_min(int128_make64(left), now.size);
838 register_subpage(d, &now);
839 } else {
840 now.size = int128_zero();
841 }
842 while (int128_ne(remain.size, now.size)) {
843 remain.size = int128_sub(remain.size, now.size);
844 remain.offset_within_address_space += int128_get64(now.size);
845 remain.offset_within_region += int128_get64(now.size);
846 now = remain;
847 if (int128_lt(remain.size, page_size)) {
848 register_subpage(d, &now);
849 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
850 now.size = page_size;
851 register_subpage(d, &now);
852 } else {
853 now.size = int128_and(now.size, int128_neg(page_size));
854 register_multipage(d, &now);
855 }
856 }
857 }
858
859 void qemu_flush_coalesced_mmio_buffer(void)
860 {
861 if (kvm_enabled())
862 kvm_flush_coalesced_mmio_buffer();
863 }
864
865 void qemu_mutex_lock_ramlist(void)
866 {
867 qemu_mutex_lock(&ram_list.mutex);
868 }
869
870 void qemu_mutex_unlock_ramlist(void)
871 {
872 qemu_mutex_unlock(&ram_list.mutex);
873 }
874
875 #if defined(__linux__) && !defined(TARGET_S390X)
876
877 #include <sys/vfs.h>
878
879 #define HUGETLBFS_MAGIC 0x958458f6
880
881 static long gethugepagesize(const char *path)
882 {
883 struct statfs fs;
884 int ret;
885
886 do {
887 ret = statfs(path, &fs);
888 } while (ret != 0 && errno == EINTR);
889
890 if (ret != 0) {
891 perror(path);
892 return 0;
893 }
894
895 if (fs.f_type != HUGETLBFS_MAGIC)
896 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
897
898 return fs.f_bsize;
899 }
900
901 static void *file_ram_alloc(RAMBlock *block,
902 ram_addr_t memory,
903 const char *path)
904 {
905 char *filename;
906 char *sanitized_name;
907 char *c;
908 void *area;
909 int fd;
910 #ifdef MAP_POPULATE
911 int flags;
912 #endif
913 unsigned long hpagesize;
914
915 hpagesize = gethugepagesize(path);
916 if (!hpagesize) {
917 return NULL;
918 }
919
920 if (memory < hpagesize) {
921 return NULL;
922 }
923
924 if (kvm_enabled() && !kvm_has_sync_mmu()) {
925 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
926 return NULL;
927 }
928
929 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
930 sanitized_name = g_strdup(block->mr->name);
931 for (c = sanitized_name; *c != '\0'; c++) {
932 if (*c == '/')
933 *c = '_';
934 }
935
936 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
937 sanitized_name);
938 g_free(sanitized_name);
939
940 fd = mkstemp(filename);
941 if (fd < 0) {
942 perror("unable to create backing store for hugepages");
943 g_free(filename);
944 return NULL;
945 }
946 unlink(filename);
947 g_free(filename);
948
949 memory = (memory+hpagesize-1) & ~(hpagesize-1);
950
951 /*
952 * ftruncate is not supported by hugetlbfs in older
953 * hosts, so don't bother bailing out on errors.
954 * If anything goes wrong with it under other filesystems,
955 * mmap will fail.
956 */
957 if (ftruncate(fd, memory))
958 perror("ftruncate");
959
960 #ifdef MAP_POPULATE
961 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
962 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
963 * to sidestep this quirk.
964 */
965 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
966 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
967 #else
968 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
969 #endif
970 if (area == MAP_FAILED) {
971 perror("file_ram_alloc: can't mmap RAM pages");
972 close(fd);
973 return (NULL);
974 }
975 block->fd = fd;
976 return area;
977 }
978 #endif
979
980 static ram_addr_t find_ram_offset(ram_addr_t size)
981 {
982 RAMBlock *block, *next_block;
983 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
984
985 assert(size != 0); /* it would hand out same offset multiple times */
986
987 if (QTAILQ_EMPTY(&ram_list.blocks))
988 return 0;
989
990 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
991 ram_addr_t end, next = RAM_ADDR_MAX;
992
993 end = block->offset + block->length;
994
995 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
996 if (next_block->offset >= end) {
997 next = MIN(next, next_block->offset);
998 }
999 }
1000 if (next - end >= size && next - end < mingap) {
1001 offset = end;
1002 mingap = next - end;
1003 }
1004 }
1005
1006 if (offset == RAM_ADDR_MAX) {
1007 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1008 (uint64_t)size);
1009 abort();
1010 }
1011
1012 return offset;
1013 }
1014
1015 ram_addr_t last_ram_offset(void)
1016 {
1017 RAMBlock *block;
1018 ram_addr_t last = 0;
1019
1020 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1021 last = MAX(last, block->offset + block->length);
1022
1023 return last;
1024 }
1025
1026 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1027 {
1028 int ret;
1029 QemuOpts *machine_opts;
1030
1031 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1032 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1033 if (machine_opts &&
1034 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1035 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1036 if (ret) {
1037 perror("qemu_madvise");
1038 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1039 "but dump_guest_core=off specified\n");
1040 }
1041 }
1042 }
1043
1044 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1045 {
1046 RAMBlock *new_block, *block;
1047
1048 new_block = NULL;
1049 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1050 if (block->offset == addr) {
1051 new_block = block;
1052 break;
1053 }
1054 }
1055 assert(new_block);
1056 assert(!new_block->idstr[0]);
1057
1058 if (dev) {
1059 char *id = qdev_get_dev_path(dev);
1060 if (id) {
1061 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1062 g_free(id);
1063 }
1064 }
1065 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1066
1067 /* This assumes the iothread lock is taken here too. */
1068 qemu_mutex_lock_ramlist();
1069 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1070 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1071 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1072 new_block->idstr);
1073 abort();
1074 }
1075 }
1076 qemu_mutex_unlock_ramlist();
1077 }
1078
1079 static int memory_try_enable_merging(void *addr, size_t len)
1080 {
1081 QemuOpts *opts;
1082
1083 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1084 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1085 /* disabled by the user */
1086 return 0;
1087 }
1088
1089 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1090 }
1091
1092 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1093 MemoryRegion *mr)
1094 {
1095 RAMBlock *block, *new_block;
1096
1097 size = TARGET_PAGE_ALIGN(size);
1098 new_block = g_malloc0(sizeof(*new_block));
1099
1100 /* This assumes the iothread lock is taken here too. */
1101 qemu_mutex_lock_ramlist();
1102 new_block->mr = mr;
1103 new_block->offset = find_ram_offset(size);
1104 if (host) {
1105 new_block->host = host;
1106 new_block->flags |= RAM_PREALLOC_MASK;
1107 } else {
1108 if (mem_path) {
1109 #if defined (__linux__) && !defined(TARGET_S390X)
1110 new_block->host = file_ram_alloc(new_block, size, mem_path);
1111 if (!new_block->host) {
1112 new_block->host = qemu_anon_ram_alloc(size);
1113 memory_try_enable_merging(new_block->host, size);
1114 }
1115 #else
1116 fprintf(stderr, "-mem-path option unsupported\n");
1117 exit(1);
1118 #endif
1119 } else {
1120 if (xen_enabled()) {
1121 xen_ram_alloc(new_block->offset, size, mr);
1122 } else if (kvm_enabled()) {
1123 /* some s390/kvm configurations have special constraints */
1124 new_block->host = kvm_ram_alloc(size);
1125 } else {
1126 new_block->host = qemu_anon_ram_alloc(size);
1127 }
1128 memory_try_enable_merging(new_block->host, size);
1129 }
1130 }
1131 new_block->length = size;
1132
1133 /* Keep the list sorted from biggest to smallest block. */
1134 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1135 if (block->length < new_block->length) {
1136 break;
1137 }
1138 }
1139 if (block) {
1140 QTAILQ_INSERT_BEFORE(block, new_block, next);
1141 } else {
1142 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1143 }
1144 ram_list.mru_block = NULL;
1145
1146 ram_list.version++;
1147 qemu_mutex_unlock_ramlist();
1148
1149 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1150 last_ram_offset() >> TARGET_PAGE_BITS);
1151 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1152 0, size >> TARGET_PAGE_BITS);
1153 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1154
1155 qemu_ram_setup_dump(new_block->host, size);
1156 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1157
1158 if (kvm_enabled())
1159 kvm_setup_guest_memory(new_block->host, size);
1160
1161 return new_block->offset;
1162 }
1163
1164 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1165 {
1166 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1167 }
1168
1169 void qemu_ram_free_from_ptr(ram_addr_t addr)
1170 {
1171 RAMBlock *block;
1172
1173 /* This assumes the iothread lock is taken here too. */
1174 qemu_mutex_lock_ramlist();
1175 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1176 if (addr == block->offset) {
1177 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1178 ram_list.mru_block = NULL;
1179 ram_list.version++;
1180 g_free(block);
1181 break;
1182 }
1183 }
1184 qemu_mutex_unlock_ramlist();
1185 }
1186
1187 void qemu_ram_free(ram_addr_t addr)
1188 {
1189 RAMBlock *block;
1190
1191 /* This assumes the iothread lock is taken here too. */
1192 qemu_mutex_lock_ramlist();
1193 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1194 if (addr == block->offset) {
1195 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1196 ram_list.mru_block = NULL;
1197 ram_list.version++;
1198 if (block->flags & RAM_PREALLOC_MASK) {
1199 ;
1200 } else if (mem_path) {
1201 #if defined (__linux__) && !defined(TARGET_S390X)
1202 if (block->fd) {
1203 munmap(block->host, block->length);
1204 close(block->fd);
1205 } else {
1206 qemu_anon_ram_free(block->host, block->length);
1207 }
1208 #else
1209 abort();
1210 #endif
1211 } else {
1212 if (xen_enabled()) {
1213 xen_invalidate_map_cache_entry(block->host);
1214 } else {
1215 qemu_anon_ram_free(block->host, block->length);
1216 }
1217 }
1218 g_free(block);
1219 break;
1220 }
1221 }
1222 qemu_mutex_unlock_ramlist();
1223
1224 }
1225
1226 #ifndef _WIN32
1227 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1228 {
1229 RAMBlock *block;
1230 ram_addr_t offset;
1231 int flags;
1232 void *area, *vaddr;
1233
1234 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1235 offset = addr - block->offset;
1236 if (offset < block->length) {
1237 vaddr = block->host + offset;
1238 if (block->flags & RAM_PREALLOC_MASK) {
1239 ;
1240 } else {
1241 flags = MAP_FIXED;
1242 munmap(vaddr, length);
1243 if (mem_path) {
1244 #if defined(__linux__) && !defined(TARGET_S390X)
1245 if (block->fd) {
1246 #ifdef MAP_POPULATE
1247 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1248 MAP_PRIVATE;
1249 #else
1250 flags |= MAP_PRIVATE;
1251 #endif
1252 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1253 flags, block->fd, offset);
1254 } else {
1255 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1256 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1257 flags, -1, 0);
1258 }
1259 #else
1260 abort();
1261 #endif
1262 } else {
1263 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1264 flags |= MAP_SHARED | MAP_ANONYMOUS;
1265 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1266 flags, -1, 0);
1267 #else
1268 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1269 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1270 flags, -1, 0);
1271 #endif
1272 }
1273 if (area != vaddr) {
1274 fprintf(stderr, "Could not remap addr: "
1275 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1276 length, addr);
1277 exit(1);
1278 }
1279 memory_try_enable_merging(vaddr, length);
1280 qemu_ram_setup_dump(vaddr, length);
1281 }
1282 return;
1283 }
1284 }
1285 }
1286 #endif /* !_WIN32 */
1287
1288 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1289 With the exception of the softmmu code in this file, this should
1290 only be used for local memory (e.g. video ram) that the device owns,
1291 and knows it isn't going to access beyond the end of the block.
1292
1293 It should not be used for general purpose DMA.
1294 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1295 */
1296 void *qemu_get_ram_ptr(ram_addr_t addr)
1297 {
1298 RAMBlock *block;
1299
1300 /* The list is protected by the iothread lock here. */
1301 block = ram_list.mru_block;
1302 if (block && addr - block->offset < block->length) {
1303 goto found;
1304 }
1305 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1306 if (addr - block->offset < block->length) {
1307 goto found;
1308 }
1309 }
1310
1311 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1312 abort();
1313
1314 found:
1315 ram_list.mru_block = block;
1316 if (xen_enabled()) {
1317 /* We need to check if the requested address is in the RAM
1318 * because we don't want to map the entire memory in QEMU.
1319 * In that case just map until the end of the page.
1320 */
1321 if (block->offset == 0) {
1322 return xen_map_cache(addr, 0, 0);
1323 } else if (block->host == NULL) {
1324 block->host =
1325 xen_map_cache(block->offset, block->length, 1);
1326 }
1327 }
1328 return block->host + (addr - block->offset);
1329 }
1330
1331 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1332 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1333 *
1334 * ??? Is this still necessary?
1335 */
1336 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1337 {
1338 RAMBlock *block;
1339
1340 /* The list is protected by the iothread lock here. */
1341 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1342 if (addr - block->offset < block->length) {
1343 if (xen_enabled()) {
1344 /* We need to check if the requested address is in the RAM
1345 * because we don't want to map the entire memory in QEMU.
1346 * In that case just map until the end of the page.
1347 */
1348 if (block->offset == 0) {
1349 return xen_map_cache(addr, 0, 0);
1350 } else if (block->host == NULL) {
1351 block->host =
1352 xen_map_cache(block->offset, block->length, 1);
1353 }
1354 }
1355 return block->host + (addr - block->offset);
1356 }
1357 }
1358
1359 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1360 abort();
1361
1362 return NULL;
1363 }
1364
1365 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1366 * but takes a size argument */
1367 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1368 {
1369 if (*size == 0) {
1370 return NULL;
1371 }
1372 if (xen_enabled()) {
1373 return xen_map_cache(addr, *size, 1);
1374 } else {
1375 RAMBlock *block;
1376
1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1378 if (addr - block->offset < block->length) {
1379 if (addr - block->offset + *size > block->length)
1380 *size = block->length - addr + block->offset;
1381 return block->host + (addr - block->offset);
1382 }
1383 }
1384
1385 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1386 abort();
1387 }
1388 }
1389
1390 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1391 {
1392 RAMBlock *block;
1393 uint8_t *host = ptr;
1394
1395 if (xen_enabled()) {
1396 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1397 return 0;
1398 }
1399
1400 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1401 /* This case append when the block is not mapped. */
1402 if (block->host == NULL) {
1403 continue;
1404 }
1405 if (host - block->host < block->length) {
1406 *ram_addr = block->offset + (host - block->host);
1407 return 0;
1408 }
1409 }
1410
1411 return -1;
1412 }
1413
1414 /* Some of the softmmu routines need to translate from a host pointer
1415 (typically a TLB entry) back to a ram offset. */
1416 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1417 {
1418 ram_addr_t ram_addr;
1419
1420 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1421 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1422 abort();
1423 }
1424 return ram_addr;
1425 }
1426
1427 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1428 uint64_t val, unsigned size)
1429 {
1430 int dirty_flags;
1431 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1432 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1433 tb_invalidate_phys_page_fast(ram_addr, size);
1434 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1435 }
1436 switch (size) {
1437 case 1:
1438 stb_p(qemu_get_ram_ptr(ram_addr), val);
1439 break;
1440 case 2:
1441 stw_p(qemu_get_ram_ptr(ram_addr), val);
1442 break;
1443 case 4:
1444 stl_p(qemu_get_ram_ptr(ram_addr), val);
1445 break;
1446 default:
1447 abort();
1448 }
1449 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1450 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1451 /* we remove the notdirty callback only if the code has been
1452 flushed */
1453 if (dirty_flags == 0xff)
1454 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1455 }
1456
1457 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1458 unsigned size, bool is_write)
1459 {
1460 return is_write;
1461 }
1462
1463 static const MemoryRegionOps notdirty_mem_ops = {
1464 .write = notdirty_mem_write,
1465 .valid.accepts = notdirty_mem_accepts,
1466 .endianness = DEVICE_NATIVE_ENDIAN,
1467 };
1468
1469 /* Generate a debug exception if a watchpoint has been hit. */
1470 static void check_watchpoint(int offset, int len_mask, int flags)
1471 {
1472 CPUArchState *env = cpu_single_env;
1473 target_ulong pc, cs_base;
1474 target_ulong vaddr;
1475 CPUWatchpoint *wp;
1476 int cpu_flags;
1477
1478 if (env->watchpoint_hit) {
1479 /* We re-entered the check after replacing the TB. Now raise
1480 * the debug interrupt so that is will trigger after the
1481 * current instruction. */
1482 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1483 return;
1484 }
1485 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1486 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1487 if ((vaddr == (wp->vaddr & len_mask) ||
1488 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1489 wp->flags |= BP_WATCHPOINT_HIT;
1490 if (!env->watchpoint_hit) {
1491 env->watchpoint_hit = wp;
1492 tb_check_watchpoint(env);
1493 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1494 env->exception_index = EXCP_DEBUG;
1495 cpu_loop_exit(env);
1496 } else {
1497 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1498 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1499 cpu_resume_from_signal(env, NULL);
1500 }
1501 }
1502 } else {
1503 wp->flags &= ~BP_WATCHPOINT_HIT;
1504 }
1505 }
1506 }
1507
1508 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1509 so these check for a hit then pass through to the normal out-of-line
1510 phys routines. */
1511 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1512 unsigned size)
1513 {
1514 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1515 switch (size) {
1516 case 1: return ldub_phys(addr);
1517 case 2: return lduw_phys(addr);
1518 case 4: return ldl_phys(addr);
1519 default: abort();
1520 }
1521 }
1522
1523 static void watch_mem_write(void *opaque, hwaddr addr,
1524 uint64_t val, unsigned size)
1525 {
1526 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1527 switch (size) {
1528 case 1:
1529 stb_phys(addr, val);
1530 break;
1531 case 2:
1532 stw_phys(addr, val);
1533 break;
1534 case 4:
1535 stl_phys(addr, val);
1536 break;
1537 default: abort();
1538 }
1539 }
1540
1541 static const MemoryRegionOps watch_mem_ops = {
1542 .read = watch_mem_read,
1543 .write = watch_mem_write,
1544 .endianness = DEVICE_NATIVE_ENDIAN,
1545 };
1546
1547 static uint64_t subpage_read(void *opaque, hwaddr addr,
1548 unsigned len)
1549 {
1550 subpage_t *subpage = opaque;
1551 uint8_t buf[4];
1552
1553 #if defined(DEBUG_SUBPAGE)
1554 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1555 subpage, len, addr);
1556 #endif
1557 address_space_read(subpage->as, addr + subpage->base, buf, len);
1558 switch (len) {
1559 case 1:
1560 return ldub_p(buf);
1561 case 2:
1562 return lduw_p(buf);
1563 case 4:
1564 return ldl_p(buf);
1565 default:
1566 abort();
1567 }
1568 }
1569
1570 static void subpage_write(void *opaque, hwaddr addr,
1571 uint64_t value, unsigned len)
1572 {
1573 subpage_t *subpage = opaque;
1574 uint8_t buf[4];
1575
1576 #if defined(DEBUG_SUBPAGE)
1577 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1578 " value %"PRIx64"\n",
1579 __func__, subpage, len, addr, value);
1580 #endif
1581 switch (len) {
1582 case 1:
1583 stb_p(buf, value);
1584 break;
1585 case 2:
1586 stw_p(buf, value);
1587 break;
1588 case 4:
1589 stl_p(buf, value);
1590 break;
1591 default:
1592 abort();
1593 }
1594 address_space_write(subpage->as, addr + subpage->base, buf, len);
1595 }
1596
1597 static bool subpage_accepts(void *opaque, hwaddr addr,
1598 unsigned size, bool is_write)
1599 {
1600 subpage_t *subpage = opaque;
1601 #if defined(DEBUG_SUBPAGE)
1602 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1603 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1604 #endif
1605
1606 return address_space_access_valid(subpage->as, addr + subpage->base,
1607 size, is_write);
1608 }
1609
1610 static const MemoryRegionOps subpage_ops = {
1611 .read = subpage_read,
1612 .write = subpage_write,
1613 .valid.accepts = subpage_accepts,
1614 .endianness = DEVICE_NATIVE_ENDIAN,
1615 };
1616
1617 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1618 uint16_t section)
1619 {
1620 int idx, eidx;
1621
1622 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1623 return -1;
1624 idx = SUBPAGE_IDX(start);
1625 eidx = SUBPAGE_IDX(end);
1626 #if defined(DEBUG_SUBPAGE)
1627 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1628 mmio, start, end, idx, eidx, memory);
1629 #endif
1630 for (; idx <= eidx; idx++) {
1631 mmio->sub_section[idx] = section;
1632 }
1633
1634 return 0;
1635 }
1636
1637 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1638 {
1639 subpage_t *mmio;
1640
1641 mmio = g_malloc0(sizeof(subpage_t));
1642
1643 mmio->as = as;
1644 mmio->base = base;
1645 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1646 "subpage", TARGET_PAGE_SIZE);
1647 mmio->iomem.subpage = true;
1648 #if defined(DEBUG_SUBPAGE)
1649 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1650 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1651 #endif
1652 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1653
1654 return mmio;
1655 }
1656
1657 static uint16_t dummy_section(MemoryRegion *mr)
1658 {
1659 MemoryRegionSection section = {
1660 .mr = mr,
1661 .offset_within_address_space = 0,
1662 .offset_within_region = 0,
1663 .size = int128_2_64(),
1664 };
1665
1666 return phys_section_add(&section);
1667 }
1668
1669 MemoryRegion *iotlb_to_region(hwaddr index)
1670 {
1671 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1672 }
1673
1674 static void io_mem_init(void)
1675 {
1676 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1677 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1678 "unassigned", UINT64_MAX);
1679 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1680 "notdirty", UINT64_MAX);
1681 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1682 "watch", UINT64_MAX);
1683 }
1684
1685 static void mem_begin(MemoryListener *listener)
1686 {
1687 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1688
1689 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1690 }
1691
1692 static void core_begin(MemoryListener *listener)
1693 {
1694 phys_sections_clear();
1695 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1696 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1697 phys_section_rom = dummy_section(&io_mem_rom);
1698 phys_section_watch = dummy_section(&io_mem_watch);
1699 }
1700
1701 static void tcg_commit(MemoryListener *listener)
1702 {
1703 CPUArchState *env;
1704
1705 /* since each CPU stores ram addresses in its TLB cache, we must
1706 reset the modified entries */
1707 /* XXX: slow ! */
1708 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1709 tlb_flush(env, 1);
1710 }
1711 }
1712
1713 static void core_log_global_start(MemoryListener *listener)
1714 {
1715 cpu_physical_memory_set_dirty_tracking(1);
1716 }
1717
1718 static void core_log_global_stop(MemoryListener *listener)
1719 {
1720 cpu_physical_memory_set_dirty_tracking(0);
1721 }
1722
1723 static MemoryListener core_memory_listener = {
1724 .begin = core_begin,
1725 .log_global_start = core_log_global_start,
1726 .log_global_stop = core_log_global_stop,
1727 .priority = 1,
1728 };
1729
1730 static MemoryListener tcg_memory_listener = {
1731 .commit = tcg_commit,
1732 };
1733
1734 void address_space_init_dispatch(AddressSpace *as)
1735 {
1736 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1737
1738 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1739 d->listener = (MemoryListener) {
1740 .begin = mem_begin,
1741 .region_add = mem_add,
1742 .region_nop = mem_add,
1743 .priority = 0,
1744 };
1745 d->as = as;
1746 as->dispatch = d;
1747 memory_listener_register(&d->listener, as);
1748 }
1749
1750 void address_space_destroy_dispatch(AddressSpace *as)
1751 {
1752 AddressSpaceDispatch *d = as->dispatch;
1753
1754 memory_listener_unregister(&d->listener);
1755 g_free(d);
1756 as->dispatch = NULL;
1757 }
1758
1759 static void memory_map_init(void)
1760 {
1761 system_memory = g_malloc(sizeof(*system_memory));
1762 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1763 address_space_init(&address_space_memory, system_memory, "memory");
1764
1765 system_io = g_malloc(sizeof(*system_io));
1766 memory_region_init(system_io, NULL, "io", 65536);
1767 address_space_init(&address_space_io, system_io, "I/O");
1768
1769 memory_listener_register(&core_memory_listener, &address_space_memory);
1770 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1771 }
1772
1773 MemoryRegion *get_system_memory(void)
1774 {
1775 return system_memory;
1776 }
1777
1778 MemoryRegion *get_system_io(void)
1779 {
1780 return system_io;
1781 }
1782
1783 #endif /* !defined(CONFIG_USER_ONLY) */
1784
1785 /* physical memory access (slow version, mainly for debug) */
1786 #if defined(CONFIG_USER_ONLY)
1787 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1788 uint8_t *buf, int len, int is_write)
1789 {
1790 int l, flags;
1791 target_ulong page;
1792 void * p;
1793
1794 while (len > 0) {
1795 page = addr & TARGET_PAGE_MASK;
1796 l = (page + TARGET_PAGE_SIZE) - addr;
1797 if (l > len)
1798 l = len;
1799 flags = page_get_flags(page);
1800 if (!(flags & PAGE_VALID))
1801 return -1;
1802 if (is_write) {
1803 if (!(flags & PAGE_WRITE))
1804 return -1;
1805 /* XXX: this code should not depend on lock_user */
1806 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1807 return -1;
1808 memcpy(p, buf, l);
1809 unlock_user(p, addr, l);
1810 } else {
1811 if (!(flags & PAGE_READ))
1812 return -1;
1813 /* XXX: this code should not depend on lock_user */
1814 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1815 return -1;
1816 memcpy(buf, p, l);
1817 unlock_user(p, addr, 0);
1818 }
1819 len -= l;
1820 buf += l;
1821 addr += l;
1822 }
1823 return 0;
1824 }
1825
1826 #else
1827
1828 static void invalidate_and_set_dirty(hwaddr addr,
1829 hwaddr length)
1830 {
1831 if (!cpu_physical_memory_is_dirty(addr)) {
1832 /* invalidate code */
1833 tb_invalidate_phys_page_range(addr, addr + length, 0);
1834 /* set dirty bit */
1835 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1836 }
1837 xen_modified_memory(addr, length);
1838 }
1839
1840 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1841 {
1842 if (memory_region_is_ram(mr)) {
1843 return !(is_write && mr->readonly);
1844 }
1845 if (memory_region_is_romd(mr)) {
1846 return !is_write;
1847 }
1848
1849 return false;
1850 }
1851
1852 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1853 {
1854 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1855 return 4;
1856 }
1857 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1858 return 2;
1859 }
1860 return 1;
1861 }
1862
1863 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1864 int len, bool is_write)
1865 {
1866 hwaddr l;
1867 uint8_t *ptr;
1868 uint64_t val;
1869 hwaddr addr1;
1870 MemoryRegion *mr;
1871 bool error = false;
1872
1873 while (len > 0) {
1874 l = len;
1875 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1876
1877 if (is_write) {
1878 if (!memory_access_is_direct(mr, is_write)) {
1879 l = memory_access_size(mr, l, addr1);
1880 /* XXX: could force cpu_single_env to NULL to avoid
1881 potential bugs */
1882 if (l == 4) {
1883 /* 32 bit write access */
1884 val = ldl_p(buf);
1885 error |= io_mem_write(mr, addr1, val, 4);
1886 } else if (l == 2) {
1887 /* 16 bit write access */
1888 val = lduw_p(buf);
1889 error |= io_mem_write(mr, addr1, val, 2);
1890 } else {
1891 /* 8 bit write access */
1892 val = ldub_p(buf);
1893 error |= io_mem_write(mr, addr1, val, 1);
1894 }
1895 } else {
1896 addr1 += memory_region_get_ram_addr(mr);
1897 /* RAM case */
1898 ptr = qemu_get_ram_ptr(addr1);
1899 memcpy(ptr, buf, l);
1900 invalidate_and_set_dirty(addr1, l);
1901 }
1902 } else {
1903 if (!memory_access_is_direct(mr, is_write)) {
1904 /* I/O case */
1905 l = memory_access_size(mr, l, addr1);
1906 if (l == 4) {
1907 /* 32 bit read access */
1908 error |= io_mem_read(mr, addr1, &val, 4);
1909 stl_p(buf, val);
1910 } else if (l == 2) {
1911 /* 16 bit read access */
1912 error |= io_mem_read(mr, addr1, &val, 2);
1913 stw_p(buf, val);
1914 } else {
1915 /* 8 bit read access */
1916 error |= io_mem_read(mr, addr1, &val, 1);
1917 stb_p(buf, val);
1918 }
1919 } else {
1920 /* RAM case */
1921 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1922 memcpy(buf, ptr, l);
1923 }
1924 }
1925 len -= l;
1926 buf += l;
1927 addr += l;
1928 }
1929
1930 return error;
1931 }
1932
1933 bool address_space_write(AddressSpace *as, hwaddr addr,
1934 const uint8_t *buf, int len)
1935 {
1936 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1937 }
1938
1939 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1940 {
1941 return address_space_rw(as, addr, buf, len, false);
1942 }
1943
1944
1945 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1946 int len, int is_write)
1947 {
1948 address_space_rw(&address_space_memory, addr, buf, len, is_write);
1949 }
1950
1951 /* used for ROM loading : can write in RAM and ROM */
1952 void cpu_physical_memory_write_rom(hwaddr addr,
1953 const uint8_t *buf, int len)
1954 {
1955 hwaddr l;
1956 uint8_t *ptr;
1957 hwaddr addr1;
1958 MemoryRegion *mr;
1959
1960 while (len > 0) {
1961 l = len;
1962 mr = address_space_translate(&address_space_memory,
1963 addr, &addr1, &l, true);
1964
1965 if (!(memory_region_is_ram(mr) ||
1966 memory_region_is_romd(mr))) {
1967 /* do nothing */
1968 } else {
1969 addr1 += memory_region_get_ram_addr(mr);
1970 /* ROM/RAM case */
1971 ptr = qemu_get_ram_ptr(addr1);
1972 memcpy(ptr, buf, l);
1973 invalidate_and_set_dirty(addr1, l);
1974 }
1975 len -= l;
1976 buf += l;
1977 addr += l;
1978 }
1979 }
1980
1981 typedef struct {
1982 void *buffer;
1983 hwaddr addr;
1984 hwaddr len;
1985 } BounceBuffer;
1986
1987 static BounceBuffer bounce;
1988
1989 typedef struct MapClient {
1990 void *opaque;
1991 void (*callback)(void *opaque);
1992 QLIST_ENTRY(MapClient) link;
1993 } MapClient;
1994
1995 static QLIST_HEAD(map_client_list, MapClient) map_client_list
1996 = QLIST_HEAD_INITIALIZER(map_client_list);
1997
1998 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
1999 {
2000 MapClient *client = g_malloc(sizeof(*client));
2001
2002 client->opaque = opaque;
2003 client->callback = callback;
2004 QLIST_INSERT_HEAD(&map_client_list, client, link);
2005 return client;
2006 }
2007
2008 static void cpu_unregister_map_client(void *_client)
2009 {
2010 MapClient *client = (MapClient *)_client;
2011
2012 QLIST_REMOVE(client, link);
2013 g_free(client);
2014 }
2015
2016 static void cpu_notify_map_clients(void)
2017 {
2018 MapClient *client;
2019
2020 while (!QLIST_EMPTY(&map_client_list)) {
2021 client = QLIST_FIRST(&map_client_list);
2022 client->callback(client->opaque);
2023 cpu_unregister_map_client(client);
2024 }
2025 }
2026
2027 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2028 {
2029 MemoryRegion *mr;
2030 hwaddr l, xlat;
2031
2032 while (len > 0) {
2033 l = len;
2034 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2035 if (!memory_access_is_direct(mr, is_write)) {
2036 l = memory_access_size(mr, l, addr);
2037 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2038 return false;
2039 }
2040 }
2041
2042 len -= l;
2043 addr += l;
2044 }
2045 return true;
2046 }
2047
2048 /* Map a physical memory region into a host virtual address.
2049 * May map a subset of the requested range, given by and returned in *plen.
2050 * May return NULL if resources needed to perform the mapping are exhausted.
2051 * Use only for reads OR writes - not for read-modify-write operations.
2052 * Use cpu_register_map_client() to know when retrying the map operation is
2053 * likely to succeed.
2054 */
2055 void *address_space_map(AddressSpace *as,
2056 hwaddr addr,
2057 hwaddr *plen,
2058 bool is_write)
2059 {
2060 hwaddr len = *plen;
2061 hwaddr todo = 0;
2062 hwaddr l, xlat;
2063 MemoryRegion *mr;
2064 ram_addr_t raddr = RAM_ADDR_MAX;
2065 ram_addr_t rlen;
2066 void *ret;
2067
2068 while (len > 0) {
2069 l = len;
2070 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2071
2072 if (!memory_access_is_direct(mr, is_write)) {
2073 if (todo || bounce.buffer) {
2074 break;
2075 }
2076 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2077 bounce.addr = addr;
2078 bounce.len = l;
2079 if (!is_write) {
2080 address_space_read(as, addr, bounce.buffer, l);
2081 }
2082
2083 *plen = l;
2084 return bounce.buffer;
2085 }
2086 if (!todo) {
2087 raddr = memory_region_get_ram_addr(mr) + xlat;
2088 } else {
2089 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2090 break;
2091 }
2092 }
2093
2094 len -= l;
2095 addr += l;
2096 todo += l;
2097 }
2098 rlen = todo;
2099 ret = qemu_ram_ptr_length(raddr, &rlen);
2100 *plen = rlen;
2101 return ret;
2102 }
2103
2104 /* Unmaps a memory region previously mapped by address_space_map().
2105 * Will also mark the memory as dirty if is_write == 1. access_len gives
2106 * the amount of memory that was actually read or written by the caller.
2107 */
2108 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2109 int is_write, hwaddr access_len)
2110 {
2111 if (buffer != bounce.buffer) {
2112 if (is_write) {
2113 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2114 while (access_len) {
2115 unsigned l;
2116 l = TARGET_PAGE_SIZE;
2117 if (l > access_len)
2118 l = access_len;
2119 invalidate_and_set_dirty(addr1, l);
2120 addr1 += l;
2121 access_len -= l;
2122 }
2123 }
2124 if (xen_enabled()) {
2125 xen_invalidate_map_cache_entry(buffer);
2126 }
2127 return;
2128 }
2129 if (is_write) {
2130 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2131 }
2132 qemu_vfree(bounce.buffer);
2133 bounce.buffer = NULL;
2134 cpu_notify_map_clients();
2135 }
2136
2137 void *cpu_physical_memory_map(hwaddr addr,
2138 hwaddr *plen,
2139 int is_write)
2140 {
2141 return address_space_map(&address_space_memory, addr, plen, is_write);
2142 }
2143
2144 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2145 int is_write, hwaddr access_len)
2146 {
2147 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2148 }
2149
2150 /* warning: addr must be aligned */
2151 static inline uint32_t ldl_phys_internal(hwaddr addr,
2152 enum device_endian endian)
2153 {
2154 uint8_t *ptr;
2155 uint64_t val;
2156 MemoryRegion *mr;
2157 hwaddr l = 4;
2158 hwaddr addr1;
2159
2160 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2161 false);
2162 if (l < 4 || !memory_access_is_direct(mr, false)) {
2163 /* I/O case */
2164 io_mem_read(mr, addr1, &val, 4);
2165 #if defined(TARGET_WORDS_BIGENDIAN)
2166 if (endian == DEVICE_LITTLE_ENDIAN) {
2167 val = bswap32(val);
2168 }
2169 #else
2170 if (endian == DEVICE_BIG_ENDIAN) {
2171 val = bswap32(val);
2172 }
2173 #endif
2174 } else {
2175 /* RAM case */
2176 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2177 & TARGET_PAGE_MASK)
2178 + addr1);
2179 switch (endian) {
2180 case DEVICE_LITTLE_ENDIAN:
2181 val = ldl_le_p(ptr);
2182 break;
2183 case DEVICE_BIG_ENDIAN:
2184 val = ldl_be_p(ptr);
2185 break;
2186 default:
2187 val = ldl_p(ptr);
2188 break;
2189 }
2190 }
2191 return val;
2192 }
2193
2194 uint32_t ldl_phys(hwaddr addr)
2195 {
2196 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2197 }
2198
2199 uint32_t ldl_le_phys(hwaddr addr)
2200 {
2201 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2202 }
2203
2204 uint32_t ldl_be_phys(hwaddr addr)
2205 {
2206 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2207 }
2208
2209 /* warning: addr must be aligned */
2210 static inline uint64_t ldq_phys_internal(hwaddr addr,
2211 enum device_endian endian)
2212 {
2213 uint8_t *ptr;
2214 uint64_t val;
2215 MemoryRegion *mr;
2216 hwaddr l = 8;
2217 hwaddr addr1;
2218
2219 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2220 false);
2221 if (l < 8 || !memory_access_is_direct(mr, false)) {
2222 /* I/O case */
2223 io_mem_read(mr, addr1, &val, 8);
2224 #if defined(TARGET_WORDS_BIGENDIAN)
2225 if (endian == DEVICE_LITTLE_ENDIAN) {
2226 val = bswap64(val);
2227 }
2228 #else
2229 if (endian == DEVICE_BIG_ENDIAN) {
2230 val = bswap64(val);
2231 }
2232 #endif
2233 } else {
2234 /* RAM case */
2235 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2236 & TARGET_PAGE_MASK)
2237 + addr1);
2238 switch (endian) {
2239 case DEVICE_LITTLE_ENDIAN:
2240 val = ldq_le_p(ptr);
2241 break;
2242 case DEVICE_BIG_ENDIAN:
2243 val = ldq_be_p(ptr);
2244 break;
2245 default:
2246 val = ldq_p(ptr);
2247 break;
2248 }
2249 }
2250 return val;
2251 }
2252
2253 uint64_t ldq_phys(hwaddr addr)
2254 {
2255 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2256 }
2257
2258 uint64_t ldq_le_phys(hwaddr addr)
2259 {
2260 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2261 }
2262
2263 uint64_t ldq_be_phys(hwaddr addr)
2264 {
2265 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2266 }
2267
2268 /* XXX: optimize */
2269 uint32_t ldub_phys(hwaddr addr)
2270 {
2271 uint8_t val;
2272 cpu_physical_memory_read(addr, &val, 1);
2273 return val;
2274 }
2275
2276 /* warning: addr must be aligned */
2277 static inline uint32_t lduw_phys_internal(hwaddr addr,
2278 enum device_endian endian)
2279 {
2280 uint8_t *ptr;
2281 uint64_t val;
2282 MemoryRegion *mr;
2283 hwaddr l = 2;
2284 hwaddr addr1;
2285
2286 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2287 false);
2288 if (l < 2 || !memory_access_is_direct(mr, false)) {
2289 /* I/O case */
2290 io_mem_read(mr, addr1, &val, 2);
2291 #if defined(TARGET_WORDS_BIGENDIAN)
2292 if (endian == DEVICE_LITTLE_ENDIAN) {
2293 val = bswap16(val);
2294 }
2295 #else
2296 if (endian == DEVICE_BIG_ENDIAN) {
2297 val = bswap16(val);
2298 }
2299 #endif
2300 } else {
2301 /* RAM case */
2302 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2303 & TARGET_PAGE_MASK)
2304 + addr1);
2305 switch (endian) {
2306 case DEVICE_LITTLE_ENDIAN:
2307 val = lduw_le_p(ptr);
2308 break;
2309 case DEVICE_BIG_ENDIAN:
2310 val = lduw_be_p(ptr);
2311 break;
2312 default:
2313 val = lduw_p(ptr);
2314 break;
2315 }
2316 }
2317 return val;
2318 }
2319
2320 uint32_t lduw_phys(hwaddr addr)
2321 {
2322 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2323 }
2324
2325 uint32_t lduw_le_phys(hwaddr addr)
2326 {
2327 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2328 }
2329
2330 uint32_t lduw_be_phys(hwaddr addr)
2331 {
2332 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2333 }
2334
2335 /* warning: addr must be aligned. The ram page is not masked as dirty
2336 and the code inside is not invalidated. It is useful if the dirty
2337 bits are used to track modified PTEs */
2338 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2339 {
2340 uint8_t *ptr;
2341 MemoryRegion *mr;
2342 hwaddr l = 4;
2343 hwaddr addr1;
2344
2345 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2346 true);
2347 if (l < 4 || !memory_access_is_direct(mr, true)) {
2348 io_mem_write(mr, addr1, val, 4);
2349 } else {
2350 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2351 ptr = qemu_get_ram_ptr(addr1);
2352 stl_p(ptr, val);
2353
2354 if (unlikely(in_migration)) {
2355 if (!cpu_physical_memory_is_dirty(addr1)) {
2356 /* invalidate code */
2357 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2358 /* set dirty bit */
2359 cpu_physical_memory_set_dirty_flags(
2360 addr1, (0xff & ~CODE_DIRTY_FLAG));
2361 }
2362 }
2363 }
2364 }
2365
2366 /* warning: addr must be aligned */
2367 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2368 enum device_endian endian)
2369 {
2370 uint8_t *ptr;
2371 MemoryRegion *mr;
2372 hwaddr l = 4;
2373 hwaddr addr1;
2374
2375 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2376 true);
2377 if (l < 4 || !memory_access_is_direct(mr, true)) {
2378 #if defined(TARGET_WORDS_BIGENDIAN)
2379 if (endian == DEVICE_LITTLE_ENDIAN) {
2380 val = bswap32(val);
2381 }
2382 #else
2383 if (endian == DEVICE_BIG_ENDIAN) {
2384 val = bswap32(val);
2385 }
2386 #endif
2387 io_mem_write(mr, addr1, val, 4);
2388 } else {
2389 /* RAM case */
2390 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2391 ptr = qemu_get_ram_ptr(addr1);
2392 switch (endian) {
2393 case DEVICE_LITTLE_ENDIAN:
2394 stl_le_p(ptr, val);
2395 break;
2396 case DEVICE_BIG_ENDIAN:
2397 stl_be_p(ptr, val);
2398 break;
2399 default:
2400 stl_p(ptr, val);
2401 break;
2402 }
2403 invalidate_and_set_dirty(addr1, 4);
2404 }
2405 }
2406
2407 void stl_phys(hwaddr addr, uint32_t val)
2408 {
2409 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2410 }
2411
2412 void stl_le_phys(hwaddr addr, uint32_t val)
2413 {
2414 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2415 }
2416
2417 void stl_be_phys(hwaddr addr, uint32_t val)
2418 {
2419 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2420 }
2421
2422 /* XXX: optimize */
2423 void stb_phys(hwaddr addr, uint32_t val)
2424 {
2425 uint8_t v = val;
2426 cpu_physical_memory_write(addr, &v, 1);
2427 }
2428
2429 /* warning: addr must be aligned */
2430 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2431 enum device_endian endian)
2432 {
2433 uint8_t *ptr;
2434 MemoryRegion *mr;
2435 hwaddr l = 2;
2436 hwaddr addr1;
2437
2438 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2439 true);
2440 if (l < 2 || !memory_access_is_direct(mr, true)) {
2441 #if defined(TARGET_WORDS_BIGENDIAN)
2442 if (endian == DEVICE_LITTLE_ENDIAN) {
2443 val = bswap16(val);
2444 }
2445 #else
2446 if (endian == DEVICE_BIG_ENDIAN) {
2447 val = bswap16(val);
2448 }
2449 #endif
2450 io_mem_write(mr, addr1, val, 2);
2451 } else {
2452 /* RAM case */
2453 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2454 ptr = qemu_get_ram_ptr(addr1);
2455 switch (endian) {
2456 case DEVICE_LITTLE_ENDIAN:
2457 stw_le_p(ptr, val);
2458 break;
2459 case DEVICE_BIG_ENDIAN:
2460 stw_be_p(ptr, val);
2461 break;
2462 default:
2463 stw_p(ptr, val);
2464 break;
2465 }
2466 invalidate_and_set_dirty(addr1, 2);
2467 }
2468 }
2469
2470 void stw_phys(hwaddr addr, uint32_t val)
2471 {
2472 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2473 }
2474
2475 void stw_le_phys(hwaddr addr, uint32_t val)
2476 {
2477 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2478 }
2479
2480 void stw_be_phys(hwaddr addr, uint32_t val)
2481 {
2482 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2483 }
2484
2485 /* XXX: optimize */
2486 void stq_phys(hwaddr addr, uint64_t val)
2487 {
2488 val = tswap64(val);
2489 cpu_physical_memory_write(addr, &val, 8);
2490 }
2491
2492 void stq_le_phys(hwaddr addr, uint64_t val)
2493 {
2494 val = cpu_to_le64(val);
2495 cpu_physical_memory_write(addr, &val, 8);
2496 }
2497
2498 void stq_be_phys(hwaddr addr, uint64_t val)
2499 {
2500 val = cpu_to_be64(val);
2501 cpu_physical_memory_write(addr, &val, 8);
2502 }
2503
2504 /* virtual memory access for debug (includes writing to ROM) */
2505 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2506 uint8_t *buf, int len, int is_write)
2507 {
2508 int l;
2509 hwaddr phys_addr;
2510 target_ulong page;
2511
2512 while (len > 0) {
2513 page = addr & TARGET_PAGE_MASK;
2514 phys_addr = cpu_get_phys_page_debug(env, page);
2515 /* if no physical page mapped, return an error */
2516 if (phys_addr == -1)
2517 return -1;
2518 l = (page + TARGET_PAGE_SIZE) - addr;
2519 if (l > len)
2520 l = len;
2521 phys_addr += (addr & ~TARGET_PAGE_MASK);
2522 if (is_write)
2523 cpu_physical_memory_write_rom(phys_addr, buf, l);
2524 else
2525 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2526 len -= l;
2527 buf += l;
2528 addr += l;
2529 }
2530 return 0;
2531 }
2532 #endif
2533
2534 #if !defined(CONFIG_USER_ONLY)
2535
2536 /*
2537 * A helper function for the _utterly broken_ virtio device model to find out if
2538 * it's running on a big endian machine. Don't do this at home kids!
2539 */
2540 bool virtio_is_big_endian(void);
2541 bool virtio_is_big_endian(void)
2542 {
2543 #if defined(TARGET_WORDS_BIGENDIAN)
2544 return true;
2545 #else
2546 return false;
2547 #endif
2548 }
2549
2550 #endif
2551
2552 #ifndef CONFIG_USER_ONLY
2553 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2554 {
2555 MemoryRegion*mr;
2556 hwaddr l = 1;
2557
2558 mr = address_space_translate(&address_space_memory,
2559 phys_addr, &phys_addr, &l, false);
2560
2561 return !(memory_region_is_ram(mr) ||
2562 memory_region_is_romd(mr));
2563 }
2564
2565 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2566 {
2567 RAMBlock *block;
2568
2569 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2570 func(block->host, block->offset, block->length, opaque);
2571 }
2572 }
2573 #endif