]> git.proxmox.com Git - qemu.git/blob - exec.c
Remove premature memop TB terminations (Jan Kiszka)
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
35
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #include "kvm.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #endif
46
47 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_FLUSH
49 //#define DEBUG_TLB
50 //#define DEBUG_UNASSIGNED
51
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
55
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
58
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
61 #undef DEBUG_TB_CHECK
62 #endif
63
64 #define SMC_BITMAP_USE_THRESHOLD 10
65
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
68
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
82 #else
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
85 #endif
86
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
90 static int nb_tbs;
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
93
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101 #else
102 #define code_gen_section \
103 __attribute__((aligned (32)))
104 #endif
105
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
112
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
115 int phys_ram_fd;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
120 #endif
121
122 CPUState *first_cpu;
123 /* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
129 int use_icount = 0;
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132 int64_t qemu_icount;
133
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
145
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 } PhysPageDesc;
150
151 #define L2_BITS 10
152 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
153 /* XXX: this is a temporary hack for alpha target.
154 * In the future, this is to be replaced by a multi-level table
155 * to actually be able to handle the complete 64 bits address space.
156 */
157 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
158 #else
159 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
160 #endif
161
162 #define L1_SIZE (1 << L1_BITS)
163 #define L2_SIZE (1 << L2_BITS)
164
165 unsigned long qemu_real_host_page_size;
166 unsigned long qemu_host_page_bits;
167 unsigned long qemu_host_page_size;
168 unsigned long qemu_host_page_mask;
169
170 /* XXX: for system emulation, it could just be an array */
171 static PageDesc *l1_map[L1_SIZE];
172 static PhysPageDesc **l1_phys_map;
173
174 #if !defined(CONFIG_USER_ONLY)
175 static void io_mem_init(void);
176
177 /* io memory support */
178 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
179 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
180 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
181 static int io_mem_nb;
182 static int io_mem_watch;
183 #endif
184
185 /* log support */
186 static const char *logfilename = "/tmp/qemu.log";
187 FILE *logfile;
188 int loglevel;
189 static int log_append = 0;
190
191 /* statistics */
192 static int tlb_flush_count;
193 static int tb_flush_count;
194 static int tb_phys_invalidate_count;
195
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 target_phys_addr_t base;
199 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
200 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
201 void *opaque[TARGET_PAGE_SIZE][2][4];
202 } subpage_t;
203
204 #ifdef _WIN32
205 static void map_exec(void *addr, long size)
206 {
207 DWORD old_protect;
208 VirtualProtect(addr, size,
209 PAGE_EXECUTE_READWRITE, &old_protect);
210
211 }
212 #else
213 static void map_exec(void *addr, long size)
214 {
215 unsigned long start, end, page_size;
216
217 page_size = getpagesize();
218 start = (unsigned long)addr;
219 start &= ~(page_size - 1);
220
221 end = (unsigned long)addr + size;
222 end += page_size - 1;
223 end &= ~(page_size - 1);
224
225 mprotect((void *)start, end - start,
226 PROT_READ | PROT_WRITE | PROT_EXEC);
227 }
228 #endif
229
230 static void page_init(void)
231 {
232 /* NOTE: we can always suppose that qemu_host_page_size >=
233 TARGET_PAGE_SIZE */
234 #ifdef _WIN32
235 {
236 SYSTEM_INFO system_info;
237
238 GetSystemInfo(&system_info);
239 qemu_real_host_page_size = system_info.dwPageSize;
240 }
241 #else
242 qemu_real_host_page_size = getpagesize();
243 #endif
244 if (qemu_host_page_size == 0)
245 qemu_host_page_size = qemu_real_host_page_size;
246 if (qemu_host_page_size < TARGET_PAGE_SIZE)
247 qemu_host_page_size = TARGET_PAGE_SIZE;
248 qemu_host_page_bits = 0;
249 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
250 qemu_host_page_bits++;
251 qemu_host_page_mask = ~(qemu_host_page_size - 1);
252 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
253 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
254
255 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
256 {
257 long long startaddr, endaddr;
258 FILE *f;
259 int n;
260
261 mmap_lock();
262 last_brk = (unsigned long)sbrk(0);
263 f = fopen("/proc/self/maps", "r");
264 if (f) {
265 do {
266 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
267 if (n == 2) {
268 startaddr = MIN(startaddr,
269 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
270 endaddr = MIN(endaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 page_set_flags(startaddr & TARGET_PAGE_MASK,
273 TARGET_PAGE_ALIGN(endaddr),
274 PAGE_RESERVED);
275 }
276 } while (!feof(f));
277 fclose(f);
278 }
279 mmap_unlock();
280 }
281 #endif
282 }
283
284 static inline PageDesc **page_l1_map(target_ulong index)
285 {
286 #if TARGET_LONG_BITS > 32
287 /* Host memory outside guest VM. For 32-bit targets we have already
288 excluded high addresses. */
289 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
290 return NULL;
291 #endif
292 return &l1_map[index >> L2_BITS];
293 }
294
295 static inline PageDesc *page_find_alloc(target_ulong index)
296 {
297 PageDesc **lp, *p;
298 lp = page_l1_map(index);
299 if (!lp)
300 return NULL;
301
302 p = *lp;
303 if (!p) {
304 /* allocate if not found */
305 #if defined(CONFIG_USER_ONLY)
306 unsigned long addr;
307 size_t len = sizeof(PageDesc) * L2_SIZE;
308 /* Don't use qemu_malloc because it may recurse. */
309 p = mmap(0, len, PROT_READ | PROT_WRITE,
310 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
311 *lp = p;
312 addr = h2g(p);
313 if (addr == (target_ulong)addr) {
314 page_set_flags(addr & TARGET_PAGE_MASK,
315 TARGET_PAGE_ALIGN(addr + len),
316 PAGE_RESERVED);
317 }
318 #else
319 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
320 *lp = p;
321 #endif
322 }
323 return p + (index & (L2_SIZE - 1));
324 }
325
326 static inline PageDesc *page_find(target_ulong index)
327 {
328 PageDesc **lp, *p;
329 lp = page_l1_map(index);
330 if (!lp)
331 return NULL;
332
333 p = *lp;
334 if (!p)
335 return 0;
336 return p + (index & (L2_SIZE - 1));
337 }
338
339 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
340 {
341 void **lp, **p;
342 PhysPageDesc *pd;
343
344 p = (void **)l1_phys_map;
345 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
346
347 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
348 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
349 #endif
350 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
351 p = *lp;
352 if (!p) {
353 /* allocate if not found */
354 if (!alloc)
355 return NULL;
356 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
357 memset(p, 0, sizeof(void *) * L1_SIZE);
358 *lp = p;
359 }
360 #endif
361 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
362 pd = *lp;
363 if (!pd) {
364 int i;
365 /* allocate if not found */
366 if (!alloc)
367 return NULL;
368 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
369 *lp = pd;
370 for (i = 0; i < L2_SIZE; i++)
371 pd[i].phys_offset = IO_MEM_UNASSIGNED;
372 }
373 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
374 }
375
376 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
377 {
378 return phys_page_find_alloc(index, 0);
379 }
380
381 #if !defined(CONFIG_USER_ONLY)
382 static void tlb_protect_code(ram_addr_t ram_addr);
383 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
384 target_ulong vaddr);
385 #define mmap_lock() do { } while(0)
386 #define mmap_unlock() do { } while(0)
387 #endif
388
389 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
390
391 #if defined(CONFIG_USER_ONLY)
392 /* Currently it is not recommanded to allocate big chunks of data in
393 user mode. It will change when a dedicated libc will be used */
394 #define USE_STATIC_CODE_GEN_BUFFER
395 #endif
396
397 #ifdef USE_STATIC_CODE_GEN_BUFFER
398 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
399 #endif
400
401 static void code_gen_alloc(unsigned long tb_size)
402 {
403 #ifdef USE_STATIC_CODE_GEN_BUFFER
404 code_gen_buffer = static_code_gen_buffer;
405 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
406 map_exec(code_gen_buffer, code_gen_buffer_size);
407 #else
408 code_gen_buffer_size = tb_size;
409 if (code_gen_buffer_size == 0) {
410 #if defined(CONFIG_USER_ONLY)
411 /* in user mode, phys_ram_size is not meaningful */
412 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
413 #else
414 /* XXX: needs ajustments */
415 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
416 #endif
417 }
418 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
419 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
420 /* The code gen buffer location may have constraints depending on
421 the host cpu and OS */
422 #if defined(__linux__)
423 {
424 int flags;
425 void *start = NULL;
426
427 flags = MAP_PRIVATE | MAP_ANONYMOUS;
428 #if defined(__x86_64__)
429 flags |= MAP_32BIT;
430 /* Cannot map more than that */
431 if (code_gen_buffer_size > (800 * 1024 * 1024))
432 code_gen_buffer_size = (800 * 1024 * 1024);
433 #elif defined(__sparc_v9__)
434 // Map the buffer below 2G, so we can use direct calls and branches
435 flags |= MAP_FIXED;
436 start = (void *) 0x60000000UL;
437 if (code_gen_buffer_size > (512 * 1024 * 1024))
438 code_gen_buffer_size = (512 * 1024 * 1024);
439 #endif
440 code_gen_buffer = mmap(start, code_gen_buffer_size,
441 PROT_WRITE | PROT_READ | PROT_EXEC,
442 flags, -1, 0);
443 if (code_gen_buffer == MAP_FAILED) {
444 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
445 exit(1);
446 }
447 }
448 #elif defined(__FreeBSD__)
449 {
450 int flags;
451 void *addr = NULL;
452 flags = MAP_PRIVATE | MAP_ANONYMOUS;
453 #if defined(__x86_64__)
454 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
455 * 0x40000000 is free */
456 flags |= MAP_FIXED;
457 addr = (void *)0x40000000;
458 /* Cannot map more than that */
459 if (code_gen_buffer_size > (800 * 1024 * 1024))
460 code_gen_buffer_size = (800 * 1024 * 1024);
461 #endif
462 code_gen_buffer = mmap(addr, code_gen_buffer_size,
463 PROT_WRITE | PROT_READ | PROT_EXEC,
464 flags, -1, 0);
465 if (code_gen_buffer == MAP_FAILED) {
466 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
467 exit(1);
468 }
469 }
470 #else
471 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
472 if (!code_gen_buffer) {
473 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
474 exit(1);
475 }
476 map_exec(code_gen_buffer, code_gen_buffer_size);
477 #endif
478 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
479 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
480 code_gen_buffer_max_size = code_gen_buffer_size -
481 code_gen_max_block_size();
482 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
483 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
484 }
485
486 /* Must be called before using the QEMU cpus. 'tb_size' is the size
487 (in bytes) allocated to the translation buffer. Zero means default
488 size. */
489 void cpu_exec_init_all(unsigned long tb_size)
490 {
491 cpu_gen_init();
492 code_gen_alloc(tb_size);
493 code_gen_ptr = code_gen_buffer;
494 page_init();
495 #if !defined(CONFIG_USER_ONLY)
496 io_mem_init();
497 #endif
498 }
499
500 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
501
502 #define CPU_COMMON_SAVE_VERSION 1
503
504 static void cpu_common_save(QEMUFile *f, void *opaque)
505 {
506 CPUState *env = opaque;
507
508 qemu_put_be32s(f, &env->halted);
509 qemu_put_be32s(f, &env->interrupt_request);
510 }
511
512 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
513 {
514 CPUState *env = opaque;
515
516 if (version_id != CPU_COMMON_SAVE_VERSION)
517 return -EINVAL;
518
519 qemu_get_be32s(f, &env->halted);
520 qemu_get_be32s(f, &env->interrupt_request);
521 tlb_flush(env, 1);
522
523 return 0;
524 }
525 #endif
526
527 void cpu_exec_init(CPUState *env)
528 {
529 CPUState **penv;
530 int cpu_index;
531
532 env->next_cpu = NULL;
533 penv = &first_cpu;
534 cpu_index = 0;
535 while (*penv != NULL) {
536 penv = (CPUState **)&(*penv)->next_cpu;
537 cpu_index++;
538 }
539 env->cpu_index = cpu_index;
540 *penv = env;
541 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
542 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
543 cpu_common_save, cpu_common_load, env);
544 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
545 cpu_save, cpu_load, env);
546 #endif
547 }
548
549 static inline void invalidate_page_bitmap(PageDesc *p)
550 {
551 if (p->code_bitmap) {
552 qemu_free(p->code_bitmap);
553 p->code_bitmap = NULL;
554 }
555 p->code_write_count = 0;
556 }
557
558 /* set to NULL all the 'first_tb' fields in all PageDescs */
559 static void page_flush_tb(void)
560 {
561 int i, j;
562 PageDesc *p;
563
564 for(i = 0; i < L1_SIZE; i++) {
565 p = l1_map[i];
566 if (p) {
567 for(j = 0; j < L2_SIZE; j++) {
568 p->first_tb = NULL;
569 invalidate_page_bitmap(p);
570 p++;
571 }
572 }
573 }
574 }
575
576 /* flush all the translation blocks */
577 /* XXX: tb_flush is currently not thread safe */
578 void tb_flush(CPUState *env1)
579 {
580 CPUState *env;
581 #if defined(DEBUG_FLUSH)
582 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
583 (unsigned long)(code_gen_ptr - code_gen_buffer),
584 nb_tbs, nb_tbs > 0 ?
585 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
586 #endif
587 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
588 cpu_abort(env1, "Internal error: code buffer overflow\n");
589
590 nb_tbs = 0;
591
592 for(env = first_cpu; env != NULL; env = env->next_cpu) {
593 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
594 }
595
596 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
597 page_flush_tb();
598
599 code_gen_ptr = code_gen_buffer;
600 /* XXX: flush processor icache at this point if cache flush is
601 expensive */
602 tb_flush_count++;
603 }
604
605 #ifdef DEBUG_TB_CHECK
606
607 static void tb_invalidate_check(target_ulong address)
608 {
609 TranslationBlock *tb;
610 int i;
611 address &= TARGET_PAGE_MASK;
612 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
613 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
614 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
615 address >= tb->pc + tb->size)) {
616 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
617 address, (long)tb->pc, tb->size);
618 }
619 }
620 }
621 }
622
623 /* verify that all the pages have correct rights for code */
624 static void tb_page_check(void)
625 {
626 TranslationBlock *tb;
627 int i, flags1, flags2;
628
629 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
630 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
631 flags1 = page_get_flags(tb->pc);
632 flags2 = page_get_flags(tb->pc + tb->size - 1);
633 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
634 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
635 (long)tb->pc, tb->size, flags1, flags2);
636 }
637 }
638 }
639 }
640
641 static void tb_jmp_check(TranslationBlock *tb)
642 {
643 TranslationBlock *tb1;
644 unsigned int n1;
645
646 /* suppress any remaining jumps to this TB */
647 tb1 = tb->jmp_first;
648 for(;;) {
649 n1 = (long)tb1 & 3;
650 tb1 = (TranslationBlock *)((long)tb1 & ~3);
651 if (n1 == 2)
652 break;
653 tb1 = tb1->jmp_next[n1];
654 }
655 /* check end of list */
656 if (tb1 != tb) {
657 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
658 }
659 }
660
661 #endif
662
663 /* invalidate one TB */
664 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
665 int next_offset)
666 {
667 TranslationBlock *tb1;
668 for(;;) {
669 tb1 = *ptb;
670 if (tb1 == tb) {
671 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
672 break;
673 }
674 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
675 }
676 }
677
678 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
679 {
680 TranslationBlock *tb1;
681 unsigned int n1;
682
683 for(;;) {
684 tb1 = *ptb;
685 n1 = (long)tb1 & 3;
686 tb1 = (TranslationBlock *)((long)tb1 & ~3);
687 if (tb1 == tb) {
688 *ptb = tb1->page_next[n1];
689 break;
690 }
691 ptb = &tb1->page_next[n1];
692 }
693 }
694
695 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
696 {
697 TranslationBlock *tb1, **ptb;
698 unsigned int n1;
699
700 ptb = &tb->jmp_next[n];
701 tb1 = *ptb;
702 if (tb1) {
703 /* find tb(n) in circular list */
704 for(;;) {
705 tb1 = *ptb;
706 n1 = (long)tb1 & 3;
707 tb1 = (TranslationBlock *)((long)tb1 & ~3);
708 if (n1 == n && tb1 == tb)
709 break;
710 if (n1 == 2) {
711 ptb = &tb1->jmp_first;
712 } else {
713 ptb = &tb1->jmp_next[n1];
714 }
715 }
716 /* now we can suppress tb(n) from the list */
717 *ptb = tb->jmp_next[n];
718
719 tb->jmp_next[n] = NULL;
720 }
721 }
722
723 /* reset the jump entry 'n' of a TB so that it is not chained to
724 another TB */
725 static inline void tb_reset_jump(TranslationBlock *tb, int n)
726 {
727 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
728 }
729
730 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
731 {
732 CPUState *env;
733 PageDesc *p;
734 unsigned int h, n1;
735 target_phys_addr_t phys_pc;
736 TranslationBlock *tb1, *tb2;
737
738 /* remove the TB from the hash list */
739 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
740 h = tb_phys_hash_func(phys_pc);
741 tb_remove(&tb_phys_hash[h], tb,
742 offsetof(TranslationBlock, phys_hash_next));
743
744 /* remove the TB from the page list */
745 if (tb->page_addr[0] != page_addr) {
746 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
747 tb_page_remove(&p->first_tb, tb);
748 invalidate_page_bitmap(p);
749 }
750 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
751 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
752 tb_page_remove(&p->first_tb, tb);
753 invalidate_page_bitmap(p);
754 }
755
756 tb_invalidated_flag = 1;
757
758 /* remove the TB from the hash list */
759 h = tb_jmp_cache_hash_func(tb->pc);
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 if (env->tb_jmp_cache[h] == tb)
762 env->tb_jmp_cache[h] = NULL;
763 }
764
765 /* suppress this TB from the two jump lists */
766 tb_jmp_remove(tb, 0);
767 tb_jmp_remove(tb, 1);
768
769 /* suppress any remaining jumps to this TB */
770 tb1 = tb->jmp_first;
771 for(;;) {
772 n1 = (long)tb1 & 3;
773 if (n1 == 2)
774 break;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 tb2 = tb1->jmp_next[n1];
777 tb_reset_jump(tb1, n1);
778 tb1->jmp_next[n1] = NULL;
779 tb1 = tb2;
780 }
781 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
782
783 tb_phys_invalidate_count++;
784 }
785
786 static inline void set_bits(uint8_t *tab, int start, int len)
787 {
788 int end, mask, end1;
789
790 end = start + len;
791 tab += start >> 3;
792 mask = 0xff << (start & 7);
793 if ((start & ~7) == (end & ~7)) {
794 if (start < end) {
795 mask &= ~(0xff << (end & 7));
796 *tab |= mask;
797 }
798 } else {
799 *tab++ |= mask;
800 start = (start + 8) & ~7;
801 end1 = end & ~7;
802 while (start < end1) {
803 *tab++ = 0xff;
804 start += 8;
805 }
806 if (start < end) {
807 mask = ~(0xff << (end & 7));
808 *tab |= mask;
809 }
810 }
811 }
812
813 static void build_page_bitmap(PageDesc *p)
814 {
815 int n, tb_start, tb_end;
816 TranslationBlock *tb;
817
818 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
819 if (!p->code_bitmap)
820 return;
821
822 tb = p->first_tb;
823 while (tb != NULL) {
824 n = (long)tb & 3;
825 tb = (TranslationBlock *)((long)tb & ~3);
826 /* NOTE: this is subtle as a TB may span two physical pages */
827 if (n == 0) {
828 /* NOTE: tb_end may be after the end of the page, but
829 it is not a problem */
830 tb_start = tb->pc & ~TARGET_PAGE_MASK;
831 tb_end = tb_start + tb->size;
832 if (tb_end > TARGET_PAGE_SIZE)
833 tb_end = TARGET_PAGE_SIZE;
834 } else {
835 tb_start = 0;
836 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
837 }
838 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
839 tb = tb->page_next[n];
840 }
841 }
842
843 TranslationBlock *tb_gen_code(CPUState *env,
844 target_ulong pc, target_ulong cs_base,
845 int flags, int cflags)
846 {
847 TranslationBlock *tb;
848 uint8_t *tc_ptr;
849 target_ulong phys_pc, phys_page2, virt_page2;
850 int code_gen_size;
851
852 phys_pc = get_phys_addr_code(env, pc);
853 tb = tb_alloc(pc);
854 if (!tb) {
855 /* flush must be done */
856 tb_flush(env);
857 /* cannot fail at this point */
858 tb = tb_alloc(pc);
859 /* Don't forget to invalidate previous TB info. */
860 tb_invalidated_flag = 1;
861 }
862 tc_ptr = code_gen_ptr;
863 tb->tc_ptr = tc_ptr;
864 tb->cs_base = cs_base;
865 tb->flags = flags;
866 tb->cflags = cflags;
867 cpu_gen_code(env, tb, &code_gen_size);
868 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
869
870 /* check next page if needed */
871 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
872 phys_page2 = -1;
873 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
874 phys_page2 = get_phys_addr_code(env, virt_page2);
875 }
876 tb_link_phys(tb, phys_pc, phys_page2);
877 return tb;
878 }
879
880 /* invalidate all TBs which intersect with the target physical page
881 starting in range [start;end[. NOTE: start and end must refer to
882 the same physical page. 'is_cpu_write_access' should be true if called
883 from a real cpu write access: the virtual CPU will exit the current
884 TB if code is modified inside this TB. */
885 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
886 int is_cpu_write_access)
887 {
888 TranslationBlock *tb, *tb_next, *saved_tb;
889 CPUState *env = cpu_single_env;
890 target_ulong tb_start, tb_end;
891 PageDesc *p;
892 int n;
893 #ifdef TARGET_HAS_PRECISE_SMC
894 int current_tb_not_found = is_cpu_write_access;
895 TranslationBlock *current_tb = NULL;
896 int current_tb_modified = 0;
897 target_ulong current_pc = 0;
898 target_ulong current_cs_base = 0;
899 int current_flags = 0;
900 #endif /* TARGET_HAS_PRECISE_SMC */
901
902 p = page_find(start >> TARGET_PAGE_BITS);
903 if (!p)
904 return;
905 if (!p->code_bitmap &&
906 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
907 is_cpu_write_access) {
908 /* build code bitmap */
909 build_page_bitmap(p);
910 }
911
912 /* we remove all the TBs in the range [start, end[ */
913 /* XXX: see if in some cases it could be faster to invalidate all the code */
914 tb = p->first_tb;
915 while (tb != NULL) {
916 n = (long)tb & 3;
917 tb = (TranslationBlock *)((long)tb & ~3);
918 tb_next = tb->page_next[n];
919 /* NOTE: this is subtle as a TB may span two physical pages */
920 if (n == 0) {
921 /* NOTE: tb_end may be after the end of the page, but
922 it is not a problem */
923 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
924 tb_end = tb_start + tb->size;
925 } else {
926 tb_start = tb->page_addr[1];
927 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
928 }
929 if (!(tb_end <= start || tb_start >= end)) {
930 #ifdef TARGET_HAS_PRECISE_SMC
931 if (current_tb_not_found) {
932 current_tb_not_found = 0;
933 current_tb = NULL;
934 if (env->mem_io_pc) {
935 /* now we have a real cpu fault */
936 current_tb = tb_find_pc(env->mem_io_pc);
937 }
938 }
939 if (current_tb == tb &&
940 (current_tb->cflags & CF_COUNT_MASK) != 1) {
941 /* If we are modifying the current TB, we must stop
942 its execution. We could be more precise by checking
943 that the modification is after the current PC, but it
944 would require a specialized function to partially
945 restore the CPU state */
946
947 current_tb_modified = 1;
948 cpu_restore_state(current_tb, env,
949 env->mem_io_pc, NULL);
950 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
951 &current_flags);
952 }
953 #endif /* TARGET_HAS_PRECISE_SMC */
954 /* we need to do that to handle the case where a signal
955 occurs while doing tb_phys_invalidate() */
956 saved_tb = NULL;
957 if (env) {
958 saved_tb = env->current_tb;
959 env->current_tb = NULL;
960 }
961 tb_phys_invalidate(tb, -1);
962 if (env) {
963 env->current_tb = saved_tb;
964 if (env->interrupt_request && env->current_tb)
965 cpu_interrupt(env, env->interrupt_request);
966 }
967 }
968 tb = tb_next;
969 }
970 #if !defined(CONFIG_USER_ONLY)
971 /* if no code remaining, no need to continue to use slow writes */
972 if (!p->first_tb) {
973 invalidate_page_bitmap(p);
974 if (is_cpu_write_access) {
975 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
976 }
977 }
978 #endif
979 #ifdef TARGET_HAS_PRECISE_SMC
980 if (current_tb_modified) {
981 /* we generate a block containing just the instruction
982 modifying the memory. It will ensure that it cannot modify
983 itself */
984 env->current_tb = NULL;
985 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
986 cpu_resume_from_signal(env, NULL);
987 }
988 #endif
989 }
990
991 /* len must be <= 8 and start must be a multiple of len */
992 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
993 {
994 PageDesc *p;
995 int offset, b;
996 #if 0
997 if (1) {
998 if (loglevel) {
999 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1000 cpu_single_env->mem_io_vaddr, len,
1001 cpu_single_env->eip,
1002 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1003 }
1004 }
1005 #endif
1006 p = page_find(start >> TARGET_PAGE_BITS);
1007 if (!p)
1008 return;
1009 if (p->code_bitmap) {
1010 offset = start & ~TARGET_PAGE_MASK;
1011 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1012 if (b & ((1 << len) - 1))
1013 goto do_invalidate;
1014 } else {
1015 do_invalidate:
1016 tb_invalidate_phys_page_range(start, start + len, 1);
1017 }
1018 }
1019
1020 #if !defined(CONFIG_SOFTMMU)
1021 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1022 unsigned long pc, void *puc)
1023 {
1024 TranslationBlock *tb;
1025 PageDesc *p;
1026 int n;
1027 #ifdef TARGET_HAS_PRECISE_SMC
1028 TranslationBlock *current_tb = NULL;
1029 CPUState *env = cpu_single_env;
1030 int current_tb_modified = 0;
1031 target_ulong current_pc = 0;
1032 target_ulong current_cs_base = 0;
1033 int current_flags = 0;
1034 #endif
1035
1036 addr &= TARGET_PAGE_MASK;
1037 p = page_find(addr >> TARGET_PAGE_BITS);
1038 if (!p)
1039 return;
1040 tb = p->first_tb;
1041 #ifdef TARGET_HAS_PRECISE_SMC
1042 if (tb && pc != 0) {
1043 current_tb = tb_find_pc(pc);
1044 }
1045 #endif
1046 while (tb != NULL) {
1047 n = (long)tb & 3;
1048 tb = (TranslationBlock *)((long)tb & ~3);
1049 #ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb == tb &&
1051 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1052 /* If we are modifying the current TB, we must stop
1053 its execution. We could be more precise by checking
1054 that the modification is after the current PC, but it
1055 would require a specialized function to partially
1056 restore the CPU state */
1057
1058 current_tb_modified = 1;
1059 cpu_restore_state(current_tb, env, pc, puc);
1060 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1061 &current_flags);
1062 }
1063 #endif /* TARGET_HAS_PRECISE_SMC */
1064 tb_phys_invalidate(tb, addr);
1065 tb = tb->page_next[n];
1066 }
1067 p->first_tb = NULL;
1068 #ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb_modified) {
1070 /* we generate a block containing just the instruction
1071 modifying the memory. It will ensure that it cannot modify
1072 itself */
1073 env->current_tb = NULL;
1074 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1075 cpu_resume_from_signal(env, puc);
1076 }
1077 #endif
1078 }
1079 #endif
1080
1081 /* add the tb in the target page and protect it if necessary */
1082 static inline void tb_alloc_page(TranslationBlock *tb,
1083 unsigned int n, target_ulong page_addr)
1084 {
1085 PageDesc *p;
1086 TranslationBlock *last_first_tb;
1087
1088 tb->page_addr[n] = page_addr;
1089 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1090 tb->page_next[n] = p->first_tb;
1091 last_first_tb = p->first_tb;
1092 p->first_tb = (TranslationBlock *)((long)tb | n);
1093 invalidate_page_bitmap(p);
1094
1095 #if defined(TARGET_HAS_SMC) || 1
1096
1097 #if defined(CONFIG_USER_ONLY)
1098 if (p->flags & PAGE_WRITE) {
1099 target_ulong addr;
1100 PageDesc *p2;
1101 int prot;
1102
1103 /* force the host page as non writable (writes will have a
1104 page fault + mprotect overhead) */
1105 page_addr &= qemu_host_page_mask;
1106 prot = 0;
1107 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1108 addr += TARGET_PAGE_SIZE) {
1109
1110 p2 = page_find (addr >> TARGET_PAGE_BITS);
1111 if (!p2)
1112 continue;
1113 prot |= p2->flags;
1114 p2->flags &= ~PAGE_WRITE;
1115 page_get_flags(addr);
1116 }
1117 mprotect(g2h(page_addr), qemu_host_page_size,
1118 (prot & PAGE_BITS) & ~PAGE_WRITE);
1119 #ifdef DEBUG_TB_INVALIDATE
1120 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1121 page_addr);
1122 #endif
1123 }
1124 #else
1125 /* if some code is already present, then the pages are already
1126 protected. So we handle the case where only the first TB is
1127 allocated in a physical page */
1128 if (!last_first_tb) {
1129 tlb_protect_code(page_addr);
1130 }
1131 #endif
1132
1133 #endif /* TARGET_HAS_SMC */
1134 }
1135
1136 /* Allocate a new translation block. Flush the translation buffer if
1137 too many translation blocks or too much generated code. */
1138 TranslationBlock *tb_alloc(target_ulong pc)
1139 {
1140 TranslationBlock *tb;
1141
1142 if (nb_tbs >= code_gen_max_blocks ||
1143 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1144 return NULL;
1145 tb = &tbs[nb_tbs++];
1146 tb->pc = pc;
1147 tb->cflags = 0;
1148 return tb;
1149 }
1150
1151 void tb_free(TranslationBlock *tb)
1152 {
1153 /* In practice this is mostly used for single use temporary TB
1154 Ignore the hard cases and just back up if this TB happens to
1155 be the last one generated. */
1156 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1157 code_gen_ptr = tb->tc_ptr;
1158 nb_tbs--;
1159 }
1160 }
1161
1162 /* add a new TB and link it to the physical page tables. phys_page2 is
1163 (-1) to indicate that only one page contains the TB. */
1164 void tb_link_phys(TranslationBlock *tb,
1165 target_ulong phys_pc, target_ulong phys_page2)
1166 {
1167 unsigned int h;
1168 TranslationBlock **ptb;
1169
1170 /* Grab the mmap lock to stop another thread invalidating this TB
1171 before we are done. */
1172 mmap_lock();
1173 /* add in the physical hash table */
1174 h = tb_phys_hash_func(phys_pc);
1175 ptb = &tb_phys_hash[h];
1176 tb->phys_hash_next = *ptb;
1177 *ptb = tb;
1178
1179 /* add in the page list */
1180 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1181 if (phys_page2 != -1)
1182 tb_alloc_page(tb, 1, phys_page2);
1183 else
1184 tb->page_addr[1] = -1;
1185
1186 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1187 tb->jmp_next[0] = NULL;
1188 tb->jmp_next[1] = NULL;
1189
1190 /* init original jump addresses */
1191 if (tb->tb_next_offset[0] != 0xffff)
1192 tb_reset_jump(tb, 0);
1193 if (tb->tb_next_offset[1] != 0xffff)
1194 tb_reset_jump(tb, 1);
1195
1196 #ifdef DEBUG_TB_CHECK
1197 tb_page_check();
1198 #endif
1199 mmap_unlock();
1200 }
1201
1202 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1203 tb[1].tc_ptr. Return NULL if not found */
1204 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1205 {
1206 int m_min, m_max, m;
1207 unsigned long v;
1208 TranslationBlock *tb;
1209
1210 if (nb_tbs <= 0)
1211 return NULL;
1212 if (tc_ptr < (unsigned long)code_gen_buffer ||
1213 tc_ptr >= (unsigned long)code_gen_ptr)
1214 return NULL;
1215 /* binary search (cf Knuth) */
1216 m_min = 0;
1217 m_max = nb_tbs - 1;
1218 while (m_min <= m_max) {
1219 m = (m_min + m_max) >> 1;
1220 tb = &tbs[m];
1221 v = (unsigned long)tb->tc_ptr;
1222 if (v == tc_ptr)
1223 return tb;
1224 else if (tc_ptr < v) {
1225 m_max = m - 1;
1226 } else {
1227 m_min = m + 1;
1228 }
1229 }
1230 return &tbs[m_max];
1231 }
1232
1233 static void tb_reset_jump_recursive(TranslationBlock *tb);
1234
1235 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1236 {
1237 TranslationBlock *tb1, *tb_next, **ptb;
1238 unsigned int n1;
1239
1240 tb1 = tb->jmp_next[n];
1241 if (tb1 != NULL) {
1242 /* find head of list */
1243 for(;;) {
1244 n1 = (long)tb1 & 3;
1245 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1246 if (n1 == 2)
1247 break;
1248 tb1 = tb1->jmp_next[n1];
1249 }
1250 /* we are now sure now that tb jumps to tb1 */
1251 tb_next = tb1;
1252
1253 /* remove tb from the jmp_first list */
1254 ptb = &tb_next->jmp_first;
1255 for(;;) {
1256 tb1 = *ptb;
1257 n1 = (long)tb1 & 3;
1258 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1259 if (n1 == n && tb1 == tb)
1260 break;
1261 ptb = &tb1->jmp_next[n1];
1262 }
1263 *ptb = tb->jmp_next[n];
1264 tb->jmp_next[n] = NULL;
1265
1266 /* suppress the jump to next tb in generated code */
1267 tb_reset_jump(tb, n);
1268
1269 /* suppress jumps in the tb on which we could have jumped */
1270 tb_reset_jump_recursive(tb_next);
1271 }
1272 }
1273
1274 static void tb_reset_jump_recursive(TranslationBlock *tb)
1275 {
1276 tb_reset_jump_recursive2(tb, 0);
1277 tb_reset_jump_recursive2(tb, 1);
1278 }
1279
1280 #if defined(TARGET_HAS_ICE)
1281 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1282 {
1283 target_phys_addr_t addr;
1284 target_ulong pd;
1285 ram_addr_t ram_addr;
1286 PhysPageDesc *p;
1287
1288 addr = cpu_get_phys_page_debug(env, pc);
1289 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1290 if (!p) {
1291 pd = IO_MEM_UNASSIGNED;
1292 } else {
1293 pd = p->phys_offset;
1294 }
1295 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1296 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1297 }
1298 #endif
1299
1300 /* Add a watchpoint. */
1301 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1302 int flags, CPUWatchpoint **watchpoint)
1303 {
1304 target_ulong len_mask = ~(len - 1);
1305 CPUWatchpoint *wp;
1306
1307 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1308 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1309 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1310 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1311 return -EINVAL;
1312 }
1313 wp = qemu_malloc(sizeof(*wp));
1314 if (!wp)
1315 return -ENOBUFS;
1316
1317 wp->vaddr = addr;
1318 wp->len_mask = len_mask;
1319 wp->flags = flags;
1320
1321 wp->next = env->watchpoints;
1322 wp->prev = NULL;
1323 if (wp->next)
1324 wp->next->prev = wp;
1325 env->watchpoints = wp;
1326
1327 tlb_flush_page(env, addr);
1328
1329 if (watchpoint)
1330 *watchpoint = wp;
1331 return 0;
1332 }
1333
1334 /* Remove a specific watchpoint. */
1335 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1336 int flags)
1337 {
1338 target_ulong len_mask = ~(len - 1);
1339 CPUWatchpoint *wp;
1340
1341 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1342 if (addr == wp->vaddr && len_mask == wp->len_mask
1343 && flags == wp->flags) {
1344 cpu_watchpoint_remove_by_ref(env, wp);
1345 return 0;
1346 }
1347 }
1348 return -ENOENT;
1349 }
1350
1351 /* Remove a specific watchpoint by reference. */
1352 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1353 {
1354 if (watchpoint->next)
1355 watchpoint->next->prev = watchpoint->prev;
1356 if (watchpoint->prev)
1357 watchpoint->prev->next = watchpoint->next;
1358 else
1359 env->watchpoints = watchpoint->next;
1360
1361 tlb_flush_page(env, watchpoint->vaddr);
1362
1363 qemu_free(watchpoint);
1364 }
1365
1366 /* Remove all matching watchpoints. */
1367 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1368 {
1369 CPUWatchpoint *wp;
1370
1371 for (wp = env->watchpoints; wp != NULL; wp = wp->next)
1372 if (wp->flags & mask)
1373 cpu_watchpoint_remove_by_ref(env, wp);
1374 }
1375
1376 /* Add a breakpoint. */
1377 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1378 CPUBreakpoint **breakpoint)
1379 {
1380 #if defined(TARGET_HAS_ICE)
1381 CPUBreakpoint *bp;
1382
1383 bp = qemu_malloc(sizeof(*bp));
1384 if (!bp)
1385 return -ENOBUFS;
1386
1387 bp->pc = pc;
1388 bp->flags = flags;
1389
1390 bp->next = env->breakpoints;
1391 bp->prev = NULL;
1392 if (bp->next)
1393 bp->next->prev = bp;
1394 env->breakpoints = bp;
1395
1396 breakpoint_invalidate(env, pc);
1397
1398 if (breakpoint)
1399 *breakpoint = bp;
1400 return 0;
1401 #else
1402 return -ENOSYS;
1403 #endif
1404 }
1405
1406 /* Remove a specific breakpoint. */
1407 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1408 {
1409 #if defined(TARGET_HAS_ICE)
1410 CPUBreakpoint *bp;
1411
1412 for (bp = env->breakpoints; bp != NULL; bp = bp->next) {
1413 if (bp->pc == pc && bp->flags == flags) {
1414 cpu_breakpoint_remove_by_ref(env, bp);
1415 return 0;
1416 }
1417 }
1418 return -ENOENT;
1419 #else
1420 return -ENOSYS;
1421 #endif
1422 }
1423
1424 /* Remove a specific breakpoint by reference. */
1425 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1426 {
1427 #if defined(TARGET_HAS_ICE)
1428 if (breakpoint->next)
1429 breakpoint->next->prev = breakpoint->prev;
1430 if (breakpoint->prev)
1431 breakpoint->prev->next = breakpoint->next;
1432 else
1433 env->breakpoints = breakpoint->next;
1434
1435 breakpoint_invalidate(env, breakpoint->pc);
1436
1437 qemu_free(breakpoint);
1438 #endif
1439 }
1440
1441 /* Remove all matching breakpoints. */
1442 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1443 {
1444 #if defined(TARGET_HAS_ICE)
1445 CPUBreakpoint *bp;
1446
1447 for (bp = env->breakpoints; bp != NULL; bp = bp->next)
1448 if (bp->flags & mask)
1449 cpu_breakpoint_remove_by_ref(env, bp);
1450 #endif
1451 }
1452
1453 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1454 CPU loop after each instruction */
1455 void cpu_single_step(CPUState *env, int enabled)
1456 {
1457 #if defined(TARGET_HAS_ICE)
1458 if (env->singlestep_enabled != enabled) {
1459 env->singlestep_enabled = enabled;
1460 /* must flush all the translated code to avoid inconsistancies */
1461 /* XXX: only flush what is necessary */
1462 tb_flush(env);
1463 }
1464 #endif
1465 }
1466
1467 /* enable or disable low levels log */
1468 void cpu_set_log(int log_flags)
1469 {
1470 loglevel = log_flags;
1471 if (loglevel && !logfile) {
1472 logfile = fopen(logfilename, log_append ? "a" : "w");
1473 if (!logfile) {
1474 perror(logfilename);
1475 _exit(1);
1476 }
1477 #if !defined(CONFIG_SOFTMMU)
1478 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1479 {
1480 static char logfile_buf[4096];
1481 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1482 }
1483 #else
1484 setvbuf(logfile, NULL, _IOLBF, 0);
1485 #endif
1486 log_append = 1;
1487 }
1488 if (!loglevel && logfile) {
1489 fclose(logfile);
1490 logfile = NULL;
1491 }
1492 }
1493
1494 void cpu_set_log_filename(const char *filename)
1495 {
1496 logfilename = strdup(filename);
1497 if (logfile) {
1498 fclose(logfile);
1499 logfile = NULL;
1500 }
1501 cpu_set_log(loglevel);
1502 }
1503
1504 /* mask must never be zero, except for A20 change call */
1505 void cpu_interrupt(CPUState *env, int mask)
1506 {
1507 #if !defined(USE_NPTL)
1508 TranslationBlock *tb;
1509 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1510 #endif
1511 int old_mask;
1512
1513 old_mask = env->interrupt_request;
1514 /* FIXME: This is probably not threadsafe. A different thread could
1515 be in the middle of a read-modify-write operation. */
1516 env->interrupt_request |= mask;
1517 #if defined(USE_NPTL)
1518 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1519 problem and hope the cpu will stop of its own accord. For userspace
1520 emulation this often isn't actually as bad as it sounds. Often
1521 signals are used primarily to interrupt blocking syscalls. */
1522 #else
1523 if (use_icount) {
1524 env->icount_decr.u16.high = 0xffff;
1525 #ifndef CONFIG_USER_ONLY
1526 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1527 an async event happened and we need to process it. */
1528 if (!can_do_io(env)
1529 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1530 cpu_abort(env, "Raised interrupt while not in I/O function");
1531 }
1532 #endif
1533 } else {
1534 tb = env->current_tb;
1535 /* if the cpu is currently executing code, we must unlink it and
1536 all the potentially executing TB */
1537 if (tb && !testandset(&interrupt_lock)) {
1538 env->current_tb = NULL;
1539 tb_reset_jump_recursive(tb);
1540 resetlock(&interrupt_lock);
1541 }
1542 }
1543 #endif
1544 }
1545
1546 void cpu_reset_interrupt(CPUState *env, int mask)
1547 {
1548 env->interrupt_request &= ~mask;
1549 }
1550
1551 const CPULogItem cpu_log_items[] = {
1552 { CPU_LOG_TB_OUT_ASM, "out_asm",
1553 "show generated host assembly code for each compiled TB" },
1554 { CPU_LOG_TB_IN_ASM, "in_asm",
1555 "show target assembly code for each compiled TB" },
1556 { CPU_LOG_TB_OP, "op",
1557 "show micro ops for each compiled TB" },
1558 { CPU_LOG_TB_OP_OPT, "op_opt",
1559 "show micro ops "
1560 #ifdef TARGET_I386
1561 "before eflags optimization and "
1562 #endif
1563 "after liveness analysis" },
1564 { CPU_LOG_INT, "int",
1565 "show interrupts/exceptions in short format" },
1566 { CPU_LOG_EXEC, "exec",
1567 "show trace before each executed TB (lots of logs)" },
1568 { CPU_LOG_TB_CPU, "cpu",
1569 "show CPU state before block translation" },
1570 #ifdef TARGET_I386
1571 { CPU_LOG_PCALL, "pcall",
1572 "show protected mode far calls/returns/exceptions" },
1573 #endif
1574 #ifdef DEBUG_IOPORT
1575 { CPU_LOG_IOPORT, "ioport",
1576 "show all i/o ports accesses" },
1577 #endif
1578 { 0, NULL, NULL },
1579 };
1580
1581 static int cmp1(const char *s1, int n, const char *s2)
1582 {
1583 if (strlen(s2) != n)
1584 return 0;
1585 return memcmp(s1, s2, n) == 0;
1586 }
1587
1588 /* takes a comma separated list of log masks. Return 0 if error. */
1589 int cpu_str_to_log_mask(const char *str)
1590 {
1591 const CPULogItem *item;
1592 int mask;
1593 const char *p, *p1;
1594
1595 p = str;
1596 mask = 0;
1597 for(;;) {
1598 p1 = strchr(p, ',');
1599 if (!p1)
1600 p1 = p + strlen(p);
1601 if(cmp1(p,p1-p,"all")) {
1602 for(item = cpu_log_items; item->mask != 0; item++) {
1603 mask |= item->mask;
1604 }
1605 } else {
1606 for(item = cpu_log_items; item->mask != 0; item++) {
1607 if (cmp1(p, p1 - p, item->name))
1608 goto found;
1609 }
1610 return 0;
1611 }
1612 found:
1613 mask |= item->mask;
1614 if (*p1 != ',')
1615 break;
1616 p = p1 + 1;
1617 }
1618 return mask;
1619 }
1620
1621 void cpu_abort(CPUState *env, const char *fmt, ...)
1622 {
1623 va_list ap;
1624 va_list ap2;
1625
1626 va_start(ap, fmt);
1627 va_copy(ap2, ap);
1628 fprintf(stderr, "qemu: fatal: ");
1629 vfprintf(stderr, fmt, ap);
1630 fprintf(stderr, "\n");
1631 #ifdef TARGET_I386
1632 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1633 #else
1634 cpu_dump_state(env, stderr, fprintf, 0);
1635 #endif
1636 if (logfile) {
1637 fprintf(logfile, "qemu: fatal: ");
1638 vfprintf(logfile, fmt, ap2);
1639 fprintf(logfile, "\n");
1640 #ifdef TARGET_I386
1641 cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1642 #else
1643 cpu_dump_state(env, logfile, fprintf, 0);
1644 #endif
1645 fflush(logfile);
1646 fclose(logfile);
1647 }
1648 va_end(ap2);
1649 va_end(ap);
1650 abort();
1651 }
1652
1653 CPUState *cpu_copy(CPUState *env)
1654 {
1655 CPUState *new_env = cpu_init(env->cpu_model_str);
1656 /* preserve chaining and index */
1657 CPUState *next_cpu = new_env->next_cpu;
1658 int cpu_index = new_env->cpu_index;
1659 memcpy(new_env, env, sizeof(CPUState));
1660 new_env->next_cpu = next_cpu;
1661 new_env->cpu_index = cpu_index;
1662 return new_env;
1663 }
1664
1665 #if !defined(CONFIG_USER_ONLY)
1666
1667 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1668 {
1669 unsigned int i;
1670
1671 /* Discard jump cache entries for any tb which might potentially
1672 overlap the flushed page. */
1673 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1674 memset (&env->tb_jmp_cache[i], 0,
1675 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1676
1677 i = tb_jmp_cache_hash_page(addr);
1678 memset (&env->tb_jmp_cache[i], 0,
1679 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1680 }
1681
1682 /* NOTE: if flush_global is true, also flush global entries (not
1683 implemented yet) */
1684 void tlb_flush(CPUState *env, int flush_global)
1685 {
1686 int i;
1687
1688 #if defined(DEBUG_TLB)
1689 printf("tlb_flush:\n");
1690 #endif
1691 /* must reset current TB so that interrupts cannot modify the
1692 links while we are modifying them */
1693 env->current_tb = NULL;
1694
1695 for(i = 0; i < CPU_TLB_SIZE; i++) {
1696 env->tlb_table[0][i].addr_read = -1;
1697 env->tlb_table[0][i].addr_write = -1;
1698 env->tlb_table[0][i].addr_code = -1;
1699 env->tlb_table[1][i].addr_read = -1;
1700 env->tlb_table[1][i].addr_write = -1;
1701 env->tlb_table[1][i].addr_code = -1;
1702 #if (NB_MMU_MODES >= 3)
1703 env->tlb_table[2][i].addr_read = -1;
1704 env->tlb_table[2][i].addr_write = -1;
1705 env->tlb_table[2][i].addr_code = -1;
1706 #if (NB_MMU_MODES == 4)
1707 env->tlb_table[3][i].addr_read = -1;
1708 env->tlb_table[3][i].addr_write = -1;
1709 env->tlb_table[3][i].addr_code = -1;
1710 #endif
1711 #endif
1712 }
1713
1714 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1715
1716 #ifdef USE_KQEMU
1717 if (env->kqemu_enabled) {
1718 kqemu_flush(env, flush_global);
1719 }
1720 #endif
1721 tlb_flush_count++;
1722 }
1723
1724 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1725 {
1726 if (addr == (tlb_entry->addr_read &
1727 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1728 addr == (tlb_entry->addr_write &
1729 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1730 addr == (tlb_entry->addr_code &
1731 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1732 tlb_entry->addr_read = -1;
1733 tlb_entry->addr_write = -1;
1734 tlb_entry->addr_code = -1;
1735 }
1736 }
1737
1738 void tlb_flush_page(CPUState *env, target_ulong addr)
1739 {
1740 int i;
1741
1742 #if defined(DEBUG_TLB)
1743 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1744 #endif
1745 /* must reset current TB so that interrupts cannot modify the
1746 links while we are modifying them */
1747 env->current_tb = NULL;
1748
1749 addr &= TARGET_PAGE_MASK;
1750 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1751 tlb_flush_entry(&env->tlb_table[0][i], addr);
1752 tlb_flush_entry(&env->tlb_table[1][i], addr);
1753 #if (NB_MMU_MODES >= 3)
1754 tlb_flush_entry(&env->tlb_table[2][i], addr);
1755 #if (NB_MMU_MODES == 4)
1756 tlb_flush_entry(&env->tlb_table[3][i], addr);
1757 #endif
1758 #endif
1759
1760 tlb_flush_jmp_cache(env, addr);
1761
1762 #ifdef USE_KQEMU
1763 if (env->kqemu_enabled) {
1764 kqemu_flush_page(env, addr);
1765 }
1766 #endif
1767 }
1768
1769 /* update the TLBs so that writes to code in the virtual page 'addr'
1770 can be detected */
1771 static void tlb_protect_code(ram_addr_t ram_addr)
1772 {
1773 cpu_physical_memory_reset_dirty(ram_addr,
1774 ram_addr + TARGET_PAGE_SIZE,
1775 CODE_DIRTY_FLAG);
1776 }
1777
1778 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1779 tested for self modifying code */
1780 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1781 target_ulong vaddr)
1782 {
1783 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1784 }
1785
1786 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1787 unsigned long start, unsigned long length)
1788 {
1789 unsigned long addr;
1790 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1791 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1792 if ((addr - start) < length) {
1793 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1794 }
1795 }
1796 }
1797
1798 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1799 int dirty_flags)
1800 {
1801 CPUState *env;
1802 unsigned long length, start1;
1803 int i, mask, len;
1804 uint8_t *p;
1805
1806 start &= TARGET_PAGE_MASK;
1807 end = TARGET_PAGE_ALIGN(end);
1808
1809 length = end - start;
1810 if (length == 0)
1811 return;
1812 len = length >> TARGET_PAGE_BITS;
1813 #ifdef USE_KQEMU
1814 /* XXX: should not depend on cpu context */
1815 env = first_cpu;
1816 if (env->kqemu_enabled) {
1817 ram_addr_t addr;
1818 addr = start;
1819 for(i = 0; i < len; i++) {
1820 kqemu_set_notdirty(env, addr);
1821 addr += TARGET_PAGE_SIZE;
1822 }
1823 }
1824 #endif
1825 mask = ~dirty_flags;
1826 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1827 for(i = 0; i < len; i++)
1828 p[i] &= mask;
1829
1830 /* we modify the TLB cache so that the dirty bit will be set again
1831 when accessing the range */
1832 start1 = start + (unsigned long)phys_ram_base;
1833 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1834 for(i = 0; i < CPU_TLB_SIZE; i++)
1835 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1836 for(i = 0; i < CPU_TLB_SIZE; i++)
1837 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1838 #if (NB_MMU_MODES >= 3)
1839 for(i = 0; i < CPU_TLB_SIZE; i++)
1840 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1841 #if (NB_MMU_MODES == 4)
1842 for(i = 0; i < CPU_TLB_SIZE; i++)
1843 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1844 #endif
1845 #endif
1846 }
1847 }
1848
1849 int cpu_physical_memory_set_dirty_tracking(int enable)
1850 {
1851 in_migration = enable;
1852 return 0;
1853 }
1854
1855 int cpu_physical_memory_get_dirty_tracking(void)
1856 {
1857 return in_migration;
1858 }
1859
1860 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1861 {
1862 ram_addr_t ram_addr;
1863
1864 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1865 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1866 tlb_entry->addend - (unsigned long)phys_ram_base;
1867 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1868 tlb_entry->addr_write |= TLB_NOTDIRTY;
1869 }
1870 }
1871 }
1872
1873 /* update the TLB according to the current state of the dirty bits */
1874 void cpu_tlb_update_dirty(CPUState *env)
1875 {
1876 int i;
1877 for(i = 0; i < CPU_TLB_SIZE; i++)
1878 tlb_update_dirty(&env->tlb_table[0][i]);
1879 for(i = 0; i < CPU_TLB_SIZE; i++)
1880 tlb_update_dirty(&env->tlb_table[1][i]);
1881 #if (NB_MMU_MODES >= 3)
1882 for(i = 0; i < CPU_TLB_SIZE; i++)
1883 tlb_update_dirty(&env->tlb_table[2][i]);
1884 #if (NB_MMU_MODES == 4)
1885 for(i = 0; i < CPU_TLB_SIZE; i++)
1886 tlb_update_dirty(&env->tlb_table[3][i]);
1887 #endif
1888 #endif
1889 }
1890
1891 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1892 {
1893 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1894 tlb_entry->addr_write = vaddr;
1895 }
1896
1897 /* update the TLB corresponding to virtual page vaddr
1898 so that it is no longer dirty */
1899 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1900 {
1901 int i;
1902
1903 vaddr &= TARGET_PAGE_MASK;
1904 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1905 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1906 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1907 #if (NB_MMU_MODES >= 3)
1908 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1909 #if (NB_MMU_MODES == 4)
1910 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1911 #endif
1912 #endif
1913 }
1914
1915 /* add a new TLB entry. At most one entry for a given virtual address
1916 is permitted. Return 0 if OK or 2 if the page could not be mapped
1917 (can only happen in non SOFTMMU mode for I/O pages or pages
1918 conflicting with the host address space). */
1919 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1920 target_phys_addr_t paddr, int prot,
1921 int mmu_idx, int is_softmmu)
1922 {
1923 PhysPageDesc *p;
1924 unsigned long pd;
1925 unsigned int index;
1926 target_ulong address;
1927 target_ulong code_address;
1928 target_phys_addr_t addend;
1929 int ret;
1930 CPUTLBEntry *te;
1931 CPUWatchpoint *wp;
1932 target_phys_addr_t iotlb;
1933
1934 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1935 if (!p) {
1936 pd = IO_MEM_UNASSIGNED;
1937 } else {
1938 pd = p->phys_offset;
1939 }
1940 #if defined(DEBUG_TLB)
1941 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1942 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1943 #endif
1944
1945 ret = 0;
1946 address = vaddr;
1947 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1948 /* IO memory case (romd handled later) */
1949 address |= TLB_MMIO;
1950 }
1951 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1952 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1953 /* Normal RAM. */
1954 iotlb = pd & TARGET_PAGE_MASK;
1955 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1956 iotlb |= IO_MEM_NOTDIRTY;
1957 else
1958 iotlb |= IO_MEM_ROM;
1959 } else {
1960 /* IO handlers are currently passed a phsical address.
1961 It would be nice to pass an offset from the base address
1962 of that region. This would avoid having to special case RAM,
1963 and avoid full address decoding in every device.
1964 We can't use the high bits of pd for this because
1965 IO_MEM_ROMD uses these as a ram address. */
1966 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
1967 }
1968
1969 code_address = address;
1970 /* Make accesses to pages with watchpoints go via the
1971 watchpoint trap routines. */
1972 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
1973 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1974 iotlb = io_mem_watch + paddr;
1975 /* TODO: The memory case can be optimized by not trapping
1976 reads of pages with a write breakpoint. */
1977 address |= TLB_MMIO;
1978 }
1979 }
1980
1981 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1982 env->iotlb[mmu_idx][index] = iotlb - vaddr;
1983 te = &env->tlb_table[mmu_idx][index];
1984 te->addend = addend - vaddr;
1985 if (prot & PAGE_READ) {
1986 te->addr_read = address;
1987 } else {
1988 te->addr_read = -1;
1989 }
1990
1991 if (prot & PAGE_EXEC) {
1992 te->addr_code = code_address;
1993 } else {
1994 te->addr_code = -1;
1995 }
1996 if (prot & PAGE_WRITE) {
1997 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
1998 (pd & IO_MEM_ROMD)) {
1999 /* Write access calls the I/O callback. */
2000 te->addr_write = address | TLB_MMIO;
2001 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2002 !cpu_physical_memory_is_dirty(pd)) {
2003 te->addr_write = address | TLB_NOTDIRTY;
2004 } else {
2005 te->addr_write = address;
2006 }
2007 } else {
2008 te->addr_write = -1;
2009 }
2010 return ret;
2011 }
2012
2013 #else
2014
2015 void tlb_flush(CPUState *env, int flush_global)
2016 {
2017 }
2018
2019 void tlb_flush_page(CPUState *env, target_ulong addr)
2020 {
2021 }
2022
2023 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2024 target_phys_addr_t paddr, int prot,
2025 int mmu_idx, int is_softmmu)
2026 {
2027 return 0;
2028 }
2029
2030 /* dump memory mappings */
2031 void page_dump(FILE *f)
2032 {
2033 unsigned long start, end;
2034 int i, j, prot, prot1;
2035 PageDesc *p;
2036
2037 fprintf(f, "%-8s %-8s %-8s %s\n",
2038 "start", "end", "size", "prot");
2039 start = -1;
2040 end = -1;
2041 prot = 0;
2042 for(i = 0; i <= L1_SIZE; i++) {
2043 if (i < L1_SIZE)
2044 p = l1_map[i];
2045 else
2046 p = NULL;
2047 for(j = 0;j < L2_SIZE; j++) {
2048 if (!p)
2049 prot1 = 0;
2050 else
2051 prot1 = p[j].flags;
2052 if (prot1 != prot) {
2053 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2054 if (start != -1) {
2055 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2056 start, end, end - start,
2057 prot & PAGE_READ ? 'r' : '-',
2058 prot & PAGE_WRITE ? 'w' : '-',
2059 prot & PAGE_EXEC ? 'x' : '-');
2060 }
2061 if (prot1 != 0)
2062 start = end;
2063 else
2064 start = -1;
2065 prot = prot1;
2066 }
2067 if (!p)
2068 break;
2069 }
2070 }
2071 }
2072
2073 int page_get_flags(target_ulong address)
2074 {
2075 PageDesc *p;
2076
2077 p = page_find(address >> TARGET_PAGE_BITS);
2078 if (!p)
2079 return 0;
2080 return p->flags;
2081 }
2082
2083 /* modify the flags of a page and invalidate the code if
2084 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2085 depending on PAGE_WRITE */
2086 void page_set_flags(target_ulong start, target_ulong end, int flags)
2087 {
2088 PageDesc *p;
2089 target_ulong addr;
2090
2091 /* mmap_lock should already be held. */
2092 start = start & TARGET_PAGE_MASK;
2093 end = TARGET_PAGE_ALIGN(end);
2094 if (flags & PAGE_WRITE)
2095 flags |= PAGE_WRITE_ORG;
2096 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2097 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2098 /* We may be called for host regions that are outside guest
2099 address space. */
2100 if (!p)
2101 return;
2102 /* if the write protection is set, then we invalidate the code
2103 inside */
2104 if (!(p->flags & PAGE_WRITE) &&
2105 (flags & PAGE_WRITE) &&
2106 p->first_tb) {
2107 tb_invalidate_phys_page(addr, 0, NULL);
2108 }
2109 p->flags = flags;
2110 }
2111 }
2112
2113 int page_check_range(target_ulong start, target_ulong len, int flags)
2114 {
2115 PageDesc *p;
2116 target_ulong end;
2117 target_ulong addr;
2118
2119 if (start + len < start)
2120 /* we've wrapped around */
2121 return -1;
2122
2123 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2124 start = start & TARGET_PAGE_MASK;
2125
2126 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2127 p = page_find(addr >> TARGET_PAGE_BITS);
2128 if( !p )
2129 return -1;
2130 if( !(p->flags & PAGE_VALID) )
2131 return -1;
2132
2133 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2134 return -1;
2135 if (flags & PAGE_WRITE) {
2136 if (!(p->flags & PAGE_WRITE_ORG))
2137 return -1;
2138 /* unprotect the page if it was put read-only because it
2139 contains translated code */
2140 if (!(p->flags & PAGE_WRITE)) {
2141 if (!page_unprotect(addr, 0, NULL))
2142 return -1;
2143 }
2144 return 0;
2145 }
2146 }
2147 return 0;
2148 }
2149
2150 /* called from signal handler: invalidate the code and unprotect the
2151 page. Return TRUE if the fault was succesfully handled. */
2152 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2153 {
2154 unsigned int page_index, prot, pindex;
2155 PageDesc *p, *p1;
2156 target_ulong host_start, host_end, addr;
2157
2158 /* Technically this isn't safe inside a signal handler. However we
2159 know this only ever happens in a synchronous SEGV handler, so in
2160 practice it seems to be ok. */
2161 mmap_lock();
2162
2163 host_start = address & qemu_host_page_mask;
2164 page_index = host_start >> TARGET_PAGE_BITS;
2165 p1 = page_find(page_index);
2166 if (!p1) {
2167 mmap_unlock();
2168 return 0;
2169 }
2170 host_end = host_start + qemu_host_page_size;
2171 p = p1;
2172 prot = 0;
2173 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2174 prot |= p->flags;
2175 p++;
2176 }
2177 /* if the page was really writable, then we change its
2178 protection back to writable */
2179 if (prot & PAGE_WRITE_ORG) {
2180 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2181 if (!(p1[pindex].flags & PAGE_WRITE)) {
2182 mprotect((void *)g2h(host_start), qemu_host_page_size,
2183 (prot & PAGE_BITS) | PAGE_WRITE);
2184 p1[pindex].flags |= PAGE_WRITE;
2185 /* and since the content will be modified, we must invalidate
2186 the corresponding translated code. */
2187 tb_invalidate_phys_page(address, pc, puc);
2188 #ifdef DEBUG_TB_CHECK
2189 tb_invalidate_check(address);
2190 #endif
2191 mmap_unlock();
2192 return 1;
2193 }
2194 }
2195 mmap_unlock();
2196 return 0;
2197 }
2198
2199 static inline void tlb_set_dirty(CPUState *env,
2200 unsigned long addr, target_ulong vaddr)
2201 {
2202 }
2203 #endif /* defined(CONFIG_USER_ONLY) */
2204
2205 #if !defined(CONFIG_USER_ONLY)
2206 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2207 ram_addr_t memory);
2208 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2209 ram_addr_t orig_memory);
2210 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2211 need_subpage) \
2212 do { \
2213 if (addr > start_addr) \
2214 start_addr2 = 0; \
2215 else { \
2216 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2217 if (start_addr2 > 0) \
2218 need_subpage = 1; \
2219 } \
2220 \
2221 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2222 end_addr2 = TARGET_PAGE_SIZE - 1; \
2223 else { \
2224 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2225 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2226 need_subpage = 1; \
2227 } \
2228 } while (0)
2229
2230 /* register physical memory. 'size' must be a multiple of the target
2231 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2232 io memory page */
2233 void cpu_register_physical_memory(target_phys_addr_t start_addr,
2234 ram_addr_t size,
2235 ram_addr_t phys_offset)
2236 {
2237 target_phys_addr_t addr, end_addr;
2238 PhysPageDesc *p;
2239 CPUState *env;
2240 ram_addr_t orig_size = size;
2241 void *subpage;
2242
2243 #ifdef USE_KQEMU
2244 /* XXX: should not depend on cpu context */
2245 env = first_cpu;
2246 if (env->kqemu_enabled) {
2247 kqemu_set_phys_mem(start_addr, size, phys_offset);
2248 }
2249 #endif
2250 if (kvm_enabled())
2251 kvm_set_phys_mem(start_addr, size, phys_offset);
2252
2253 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2254 end_addr = start_addr + (target_phys_addr_t)size;
2255 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2256 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2257 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2258 ram_addr_t orig_memory = p->phys_offset;
2259 target_phys_addr_t start_addr2, end_addr2;
2260 int need_subpage = 0;
2261
2262 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2263 need_subpage);
2264 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2265 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2266 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2267 &p->phys_offset, orig_memory);
2268 } else {
2269 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2270 >> IO_MEM_SHIFT];
2271 }
2272 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2273 } else {
2274 p->phys_offset = phys_offset;
2275 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2276 (phys_offset & IO_MEM_ROMD))
2277 phys_offset += TARGET_PAGE_SIZE;
2278 }
2279 } else {
2280 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2281 p->phys_offset = phys_offset;
2282 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2283 (phys_offset & IO_MEM_ROMD))
2284 phys_offset += TARGET_PAGE_SIZE;
2285 else {
2286 target_phys_addr_t start_addr2, end_addr2;
2287 int need_subpage = 0;
2288
2289 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2290 end_addr2, need_subpage);
2291
2292 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2293 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2294 &p->phys_offset, IO_MEM_UNASSIGNED);
2295 subpage_register(subpage, start_addr2, end_addr2,
2296 phys_offset);
2297 }
2298 }
2299 }
2300 }
2301
2302 /* since each CPU stores ram addresses in its TLB cache, we must
2303 reset the modified entries */
2304 /* XXX: slow ! */
2305 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2306 tlb_flush(env, 1);
2307 }
2308 }
2309
2310 /* XXX: temporary until new memory mapping API */
2311 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2312 {
2313 PhysPageDesc *p;
2314
2315 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2316 if (!p)
2317 return IO_MEM_UNASSIGNED;
2318 return p->phys_offset;
2319 }
2320
2321 /* XXX: better than nothing */
2322 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2323 {
2324 ram_addr_t addr;
2325 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2326 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2327 (uint64_t)size, (uint64_t)phys_ram_size);
2328 abort();
2329 }
2330 addr = phys_ram_alloc_offset;
2331 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2332 return addr;
2333 }
2334
2335 void qemu_ram_free(ram_addr_t addr)
2336 {
2337 }
2338
2339 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2340 {
2341 #ifdef DEBUG_UNASSIGNED
2342 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2343 #endif
2344 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2345 do_unassigned_access(addr, 0, 0, 0, 1);
2346 #endif
2347 return 0;
2348 }
2349
2350 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2351 {
2352 #ifdef DEBUG_UNASSIGNED
2353 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2354 #endif
2355 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2356 do_unassigned_access(addr, 0, 0, 0, 2);
2357 #endif
2358 return 0;
2359 }
2360
2361 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2362 {
2363 #ifdef DEBUG_UNASSIGNED
2364 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2365 #endif
2366 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2367 do_unassigned_access(addr, 0, 0, 0, 4);
2368 #endif
2369 return 0;
2370 }
2371
2372 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2373 {
2374 #ifdef DEBUG_UNASSIGNED
2375 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2376 #endif
2377 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2378 do_unassigned_access(addr, 1, 0, 0, 1);
2379 #endif
2380 }
2381
2382 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2383 {
2384 #ifdef DEBUG_UNASSIGNED
2385 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2386 #endif
2387 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2388 do_unassigned_access(addr, 1, 0, 0, 2);
2389 #endif
2390 }
2391
2392 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2393 {
2394 #ifdef DEBUG_UNASSIGNED
2395 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2396 #endif
2397 #if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2398 do_unassigned_access(addr, 1, 0, 0, 4);
2399 #endif
2400 }
2401
2402 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2403 unassigned_mem_readb,
2404 unassigned_mem_readw,
2405 unassigned_mem_readl,
2406 };
2407
2408 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2409 unassigned_mem_writeb,
2410 unassigned_mem_writew,
2411 unassigned_mem_writel,
2412 };
2413
2414 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2415 uint32_t val)
2416 {
2417 int dirty_flags;
2418 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2419 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2420 #if !defined(CONFIG_USER_ONLY)
2421 tb_invalidate_phys_page_fast(ram_addr, 1);
2422 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2423 #endif
2424 }
2425 stb_p(phys_ram_base + ram_addr, val);
2426 #ifdef USE_KQEMU
2427 if (cpu_single_env->kqemu_enabled &&
2428 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2429 kqemu_modify_page(cpu_single_env, ram_addr);
2430 #endif
2431 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2432 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2433 /* we remove the notdirty callback only if the code has been
2434 flushed */
2435 if (dirty_flags == 0xff)
2436 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2437 }
2438
2439 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2440 uint32_t val)
2441 {
2442 int dirty_flags;
2443 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2444 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2445 #if !defined(CONFIG_USER_ONLY)
2446 tb_invalidate_phys_page_fast(ram_addr, 2);
2447 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2448 #endif
2449 }
2450 stw_p(phys_ram_base + ram_addr, val);
2451 #ifdef USE_KQEMU
2452 if (cpu_single_env->kqemu_enabled &&
2453 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2454 kqemu_modify_page(cpu_single_env, ram_addr);
2455 #endif
2456 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2457 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2458 /* we remove the notdirty callback only if the code has been
2459 flushed */
2460 if (dirty_flags == 0xff)
2461 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2462 }
2463
2464 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2465 uint32_t val)
2466 {
2467 int dirty_flags;
2468 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2469 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2470 #if !defined(CONFIG_USER_ONLY)
2471 tb_invalidate_phys_page_fast(ram_addr, 4);
2472 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2473 #endif
2474 }
2475 stl_p(phys_ram_base + ram_addr, val);
2476 #ifdef USE_KQEMU
2477 if (cpu_single_env->kqemu_enabled &&
2478 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2479 kqemu_modify_page(cpu_single_env, ram_addr);
2480 #endif
2481 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2482 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2483 /* we remove the notdirty callback only if the code has been
2484 flushed */
2485 if (dirty_flags == 0xff)
2486 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2487 }
2488
2489 static CPUReadMemoryFunc *error_mem_read[3] = {
2490 NULL, /* never used */
2491 NULL, /* never used */
2492 NULL, /* never used */
2493 };
2494
2495 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2496 notdirty_mem_writeb,
2497 notdirty_mem_writew,
2498 notdirty_mem_writel,
2499 };
2500
2501 /* Generate a debug exception if a watchpoint has been hit. */
2502 static void check_watchpoint(int offset, int len_mask, int flags)
2503 {
2504 CPUState *env = cpu_single_env;
2505 target_ulong pc, cs_base;
2506 TranslationBlock *tb;
2507 target_ulong vaddr;
2508 CPUWatchpoint *wp;
2509 int cpu_flags;
2510
2511 if (env->watchpoint_hit) {
2512 /* We re-entered the check after replacing the TB. Now raise
2513 * the debug interrupt so that is will trigger after the
2514 * current instruction. */
2515 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2516 return;
2517 }
2518 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2519 for (wp = env->watchpoints; wp != NULL; wp = wp->next) {
2520 if ((vaddr == (wp->vaddr & len_mask) ||
2521 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2522 env->watchpoint_hit = wp;
2523 tb = tb_find_pc(env->mem_io_pc);
2524 if (!tb) {
2525 cpu_abort(env, "check_watchpoint: could not find TB for pc=%p",
2526 (void *)env->mem_io_pc);
2527 }
2528 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2529 tb_phys_invalidate(tb, -1);
2530 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2531 env->exception_index = EXCP_DEBUG;
2532 } else {
2533 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2534 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2535 }
2536 cpu_resume_from_signal(env, NULL);
2537 }
2538 }
2539 }
2540
2541 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2542 so these check for a hit then pass through to the normal out-of-line
2543 phys routines. */
2544 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2545 {
2546 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2547 return ldub_phys(addr);
2548 }
2549
2550 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2551 {
2552 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2553 return lduw_phys(addr);
2554 }
2555
2556 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2557 {
2558 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2559 return ldl_phys(addr);
2560 }
2561
2562 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2563 uint32_t val)
2564 {
2565 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2566 stb_phys(addr, val);
2567 }
2568
2569 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2570 uint32_t val)
2571 {
2572 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2573 stw_phys(addr, val);
2574 }
2575
2576 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2577 uint32_t val)
2578 {
2579 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2580 stl_phys(addr, val);
2581 }
2582
2583 static CPUReadMemoryFunc *watch_mem_read[3] = {
2584 watch_mem_readb,
2585 watch_mem_readw,
2586 watch_mem_readl,
2587 };
2588
2589 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2590 watch_mem_writeb,
2591 watch_mem_writew,
2592 watch_mem_writel,
2593 };
2594
2595 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2596 unsigned int len)
2597 {
2598 uint32_t ret;
2599 unsigned int idx;
2600
2601 idx = SUBPAGE_IDX(addr - mmio->base);
2602 #if defined(DEBUG_SUBPAGE)
2603 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2604 mmio, len, addr, idx);
2605 #endif
2606 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2607
2608 return ret;
2609 }
2610
2611 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2612 uint32_t value, unsigned int len)
2613 {
2614 unsigned int idx;
2615
2616 idx = SUBPAGE_IDX(addr - mmio->base);
2617 #if defined(DEBUG_SUBPAGE)
2618 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2619 mmio, len, addr, idx, value);
2620 #endif
2621 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2622 }
2623
2624 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2625 {
2626 #if defined(DEBUG_SUBPAGE)
2627 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2628 #endif
2629
2630 return subpage_readlen(opaque, addr, 0);
2631 }
2632
2633 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2634 uint32_t value)
2635 {
2636 #if defined(DEBUG_SUBPAGE)
2637 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2638 #endif
2639 subpage_writelen(opaque, addr, value, 0);
2640 }
2641
2642 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2643 {
2644 #if defined(DEBUG_SUBPAGE)
2645 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2646 #endif
2647
2648 return subpage_readlen(opaque, addr, 1);
2649 }
2650
2651 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2652 uint32_t value)
2653 {
2654 #if defined(DEBUG_SUBPAGE)
2655 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2656 #endif
2657 subpage_writelen(opaque, addr, value, 1);
2658 }
2659
2660 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2661 {
2662 #if defined(DEBUG_SUBPAGE)
2663 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2664 #endif
2665
2666 return subpage_readlen(opaque, addr, 2);
2667 }
2668
2669 static void subpage_writel (void *opaque,
2670 target_phys_addr_t addr, uint32_t value)
2671 {
2672 #if defined(DEBUG_SUBPAGE)
2673 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2674 #endif
2675 subpage_writelen(opaque, addr, value, 2);
2676 }
2677
2678 static CPUReadMemoryFunc *subpage_read[] = {
2679 &subpage_readb,
2680 &subpage_readw,
2681 &subpage_readl,
2682 };
2683
2684 static CPUWriteMemoryFunc *subpage_write[] = {
2685 &subpage_writeb,
2686 &subpage_writew,
2687 &subpage_writel,
2688 };
2689
2690 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2691 ram_addr_t memory)
2692 {
2693 int idx, eidx;
2694 unsigned int i;
2695
2696 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2697 return -1;
2698 idx = SUBPAGE_IDX(start);
2699 eidx = SUBPAGE_IDX(end);
2700 #if defined(DEBUG_SUBPAGE)
2701 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2702 mmio, start, end, idx, eidx, memory);
2703 #endif
2704 memory >>= IO_MEM_SHIFT;
2705 for (; idx <= eidx; idx++) {
2706 for (i = 0; i < 4; i++) {
2707 if (io_mem_read[memory][i]) {
2708 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2709 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2710 }
2711 if (io_mem_write[memory][i]) {
2712 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2713 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2714 }
2715 }
2716 }
2717
2718 return 0;
2719 }
2720
2721 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2722 ram_addr_t orig_memory)
2723 {
2724 subpage_t *mmio;
2725 int subpage_memory;
2726
2727 mmio = qemu_mallocz(sizeof(subpage_t));
2728 if (mmio != NULL) {
2729 mmio->base = base;
2730 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2731 #if defined(DEBUG_SUBPAGE)
2732 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2733 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2734 #endif
2735 *phys = subpage_memory | IO_MEM_SUBPAGE;
2736 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
2737 }
2738
2739 return mmio;
2740 }
2741
2742 static void io_mem_init(void)
2743 {
2744 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2745 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2746 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2747 io_mem_nb = 5;
2748
2749 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2750 watch_mem_write, NULL);
2751 /* alloc dirty bits array */
2752 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2753 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2754 }
2755
2756 /* mem_read and mem_write are arrays of functions containing the
2757 function to access byte (index 0), word (index 1) and dword (index
2758 2). Functions can be omitted with a NULL function pointer. The
2759 registered functions may be modified dynamically later.
2760 If io_index is non zero, the corresponding io zone is
2761 modified. If it is zero, a new io zone is allocated. The return
2762 value can be used with cpu_register_physical_memory(). (-1) is
2763 returned if error. */
2764 int cpu_register_io_memory(int io_index,
2765 CPUReadMemoryFunc **mem_read,
2766 CPUWriteMemoryFunc **mem_write,
2767 void *opaque)
2768 {
2769 int i, subwidth = 0;
2770
2771 if (io_index <= 0) {
2772 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
2773 return -1;
2774 io_index = io_mem_nb++;
2775 } else {
2776 if (io_index >= IO_MEM_NB_ENTRIES)
2777 return -1;
2778 }
2779
2780 for(i = 0;i < 3; i++) {
2781 if (!mem_read[i] || !mem_write[i])
2782 subwidth = IO_MEM_SUBWIDTH;
2783 io_mem_read[io_index][i] = mem_read[i];
2784 io_mem_write[io_index][i] = mem_write[i];
2785 }
2786 io_mem_opaque[io_index] = opaque;
2787 return (io_index << IO_MEM_SHIFT) | subwidth;
2788 }
2789
2790 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2791 {
2792 return io_mem_write[io_index >> IO_MEM_SHIFT];
2793 }
2794
2795 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2796 {
2797 return io_mem_read[io_index >> IO_MEM_SHIFT];
2798 }
2799
2800 #endif /* !defined(CONFIG_USER_ONLY) */
2801
2802 /* physical memory access (slow version, mainly for debug) */
2803 #if defined(CONFIG_USER_ONLY)
2804 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2805 int len, int is_write)
2806 {
2807 int l, flags;
2808 target_ulong page;
2809 void * p;
2810
2811 while (len > 0) {
2812 page = addr & TARGET_PAGE_MASK;
2813 l = (page + TARGET_PAGE_SIZE) - addr;
2814 if (l > len)
2815 l = len;
2816 flags = page_get_flags(page);
2817 if (!(flags & PAGE_VALID))
2818 return;
2819 if (is_write) {
2820 if (!(flags & PAGE_WRITE))
2821 return;
2822 /* XXX: this code should not depend on lock_user */
2823 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2824 /* FIXME - should this return an error rather than just fail? */
2825 return;
2826 memcpy(p, buf, l);
2827 unlock_user(p, addr, l);
2828 } else {
2829 if (!(flags & PAGE_READ))
2830 return;
2831 /* XXX: this code should not depend on lock_user */
2832 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2833 /* FIXME - should this return an error rather than just fail? */
2834 return;
2835 memcpy(buf, p, l);
2836 unlock_user(p, addr, 0);
2837 }
2838 len -= l;
2839 buf += l;
2840 addr += l;
2841 }
2842 }
2843
2844 #else
2845 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2846 int len, int is_write)
2847 {
2848 int l, io_index;
2849 uint8_t *ptr;
2850 uint32_t val;
2851 target_phys_addr_t page;
2852 unsigned long pd;
2853 PhysPageDesc *p;
2854
2855 while (len > 0) {
2856 page = addr & TARGET_PAGE_MASK;
2857 l = (page + TARGET_PAGE_SIZE) - addr;
2858 if (l > len)
2859 l = len;
2860 p = phys_page_find(page >> TARGET_PAGE_BITS);
2861 if (!p) {
2862 pd = IO_MEM_UNASSIGNED;
2863 } else {
2864 pd = p->phys_offset;
2865 }
2866
2867 if (is_write) {
2868 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2869 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2870 /* XXX: could force cpu_single_env to NULL to avoid
2871 potential bugs */
2872 if (l >= 4 && ((addr & 3) == 0)) {
2873 /* 32 bit write access */
2874 val = ldl_p(buf);
2875 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
2876 l = 4;
2877 } else if (l >= 2 && ((addr & 1) == 0)) {
2878 /* 16 bit write access */
2879 val = lduw_p(buf);
2880 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
2881 l = 2;
2882 } else {
2883 /* 8 bit write access */
2884 val = ldub_p(buf);
2885 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
2886 l = 1;
2887 }
2888 } else {
2889 unsigned long addr1;
2890 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2891 /* RAM case */
2892 ptr = phys_ram_base + addr1;
2893 memcpy(ptr, buf, l);
2894 if (!cpu_physical_memory_is_dirty(addr1)) {
2895 /* invalidate code */
2896 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2897 /* set dirty bit */
2898 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2899 (0xff & ~CODE_DIRTY_FLAG);
2900 }
2901 }
2902 } else {
2903 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2904 !(pd & IO_MEM_ROMD)) {
2905 /* I/O case */
2906 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2907 if (l >= 4 && ((addr & 3) == 0)) {
2908 /* 32 bit read access */
2909 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2910 stl_p(buf, val);
2911 l = 4;
2912 } else if (l >= 2 && ((addr & 1) == 0)) {
2913 /* 16 bit read access */
2914 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
2915 stw_p(buf, val);
2916 l = 2;
2917 } else {
2918 /* 8 bit read access */
2919 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
2920 stb_p(buf, val);
2921 l = 1;
2922 }
2923 } else {
2924 /* RAM case */
2925 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
2926 (addr & ~TARGET_PAGE_MASK);
2927 memcpy(buf, ptr, l);
2928 }
2929 }
2930 len -= l;
2931 buf += l;
2932 addr += l;
2933 }
2934 }
2935
2936 /* used for ROM loading : can write in RAM and ROM */
2937 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
2938 const uint8_t *buf, int len)
2939 {
2940 int l;
2941 uint8_t *ptr;
2942 target_phys_addr_t page;
2943 unsigned long pd;
2944 PhysPageDesc *p;
2945
2946 while (len > 0) {
2947 page = addr & TARGET_PAGE_MASK;
2948 l = (page + TARGET_PAGE_SIZE) - addr;
2949 if (l > len)
2950 l = len;
2951 p = phys_page_find(page >> TARGET_PAGE_BITS);
2952 if (!p) {
2953 pd = IO_MEM_UNASSIGNED;
2954 } else {
2955 pd = p->phys_offset;
2956 }
2957
2958 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2959 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
2960 !(pd & IO_MEM_ROMD)) {
2961 /* do nothing */
2962 } else {
2963 unsigned long addr1;
2964 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2965 /* ROM/RAM case */
2966 ptr = phys_ram_base + addr1;
2967 memcpy(ptr, buf, l);
2968 }
2969 len -= l;
2970 buf += l;
2971 addr += l;
2972 }
2973 }
2974
2975
2976 /* warning: addr must be aligned */
2977 uint32_t ldl_phys(target_phys_addr_t addr)
2978 {
2979 int io_index;
2980 uint8_t *ptr;
2981 uint32_t val;
2982 unsigned long pd;
2983 PhysPageDesc *p;
2984
2985 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2986 if (!p) {
2987 pd = IO_MEM_UNASSIGNED;
2988 } else {
2989 pd = p->phys_offset;
2990 }
2991
2992 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2993 !(pd & IO_MEM_ROMD)) {
2994 /* I/O case */
2995 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2996 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
2997 } else {
2998 /* RAM case */
2999 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3000 (addr & ~TARGET_PAGE_MASK);
3001 val = ldl_p(ptr);
3002 }
3003 return val;
3004 }
3005
3006 /* warning: addr must be aligned */
3007 uint64_t ldq_phys(target_phys_addr_t addr)
3008 {
3009 int io_index;
3010 uint8_t *ptr;
3011 uint64_t val;
3012 unsigned long pd;
3013 PhysPageDesc *p;
3014
3015 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3016 if (!p) {
3017 pd = IO_MEM_UNASSIGNED;
3018 } else {
3019 pd = p->phys_offset;
3020 }
3021
3022 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3023 !(pd & IO_MEM_ROMD)) {
3024 /* I/O case */
3025 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3026 #ifdef TARGET_WORDS_BIGENDIAN
3027 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3028 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3029 #else
3030 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3031 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3032 #endif
3033 } else {
3034 /* RAM case */
3035 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3036 (addr & ~TARGET_PAGE_MASK);
3037 val = ldq_p(ptr);
3038 }
3039 return val;
3040 }
3041
3042 /* XXX: optimize */
3043 uint32_t ldub_phys(target_phys_addr_t addr)
3044 {
3045 uint8_t val;
3046 cpu_physical_memory_read(addr, &val, 1);
3047 return val;
3048 }
3049
3050 /* XXX: optimize */
3051 uint32_t lduw_phys(target_phys_addr_t addr)
3052 {
3053 uint16_t val;
3054 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3055 return tswap16(val);
3056 }
3057
3058 /* warning: addr must be aligned. The ram page is not masked as dirty
3059 and the code inside is not invalidated. It is useful if the dirty
3060 bits are used to track modified PTEs */
3061 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3062 {
3063 int io_index;
3064 uint8_t *ptr;
3065 unsigned long pd;
3066 PhysPageDesc *p;
3067
3068 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3069 if (!p) {
3070 pd = IO_MEM_UNASSIGNED;
3071 } else {
3072 pd = p->phys_offset;
3073 }
3074
3075 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3076 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3077 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3078 } else {
3079 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3080 ptr = phys_ram_base + addr1;
3081 stl_p(ptr, val);
3082
3083 if (unlikely(in_migration)) {
3084 if (!cpu_physical_memory_is_dirty(addr1)) {
3085 /* invalidate code */
3086 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3087 /* set dirty bit */
3088 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3089 (0xff & ~CODE_DIRTY_FLAG);
3090 }
3091 }
3092 }
3093 }
3094
3095 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3096 {
3097 int io_index;
3098 uint8_t *ptr;
3099 unsigned long pd;
3100 PhysPageDesc *p;
3101
3102 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3103 if (!p) {
3104 pd = IO_MEM_UNASSIGNED;
3105 } else {
3106 pd = p->phys_offset;
3107 }
3108
3109 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3110 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3111 #ifdef TARGET_WORDS_BIGENDIAN
3112 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3113 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3114 #else
3115 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3116 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3117 #endif
3118 } else {
3119 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3120 (addr & ~TARGET_PAGE_MASK);
3121 stq_p(ptr, val);
3122 }
3123 }
3124
3125 /* warning: addr must be aligned */
3126 void stl_phys(target_phys_addr_t addr, uint32_t val)
3127 {
3128 int io_index;
3129 uint8_t *ptr;
3130 unsigned long pd;
3131 PhysPageDesc *p;
3132
3133 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3134 if (!p) {
3135 pd = IO_MEM_UNASSIGNED;
3136 } else {
3137 pd = p->phys_offset;
3138 }
3139
3140 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3141 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3142 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3143 } else {
3144 unsigned long addr1;
3145 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3146 /* RAM case */
3147 ptr = phys_ram_base + addr1;
3148 stl_p(ptr, val);
3149 if (!cpu_physical_memory_is_dirty(addr1)) {
3150 /* invalidate code */
3151 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3152 /* set dirty bit */
3153 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3154 (0xff & ~CODE_DIRTY_FLAG);
3155 }
3156 }
3157 }
3158
3159 /* XXX: optimize */
3160 void stb_phys(target_phys_addr_t addr, uint32_t val)
3161 {
3162 uint8_t v = val;
3163 cpu_physical_memory_write(addr, &v, 1);
3164 }
3165
3166 /* XXX: optimize */
3167 void stw_phys(target_phys_addr_t addr, uint32_t val)
3168 {
3169 uint16_t v = tswap16(val);
3170 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3171 }
3172
3173 /* XXX: optimize */
3174 void stq_phys(target_phys_addr_t addr, uint64_t val)
3175 {
3176 val = tswap64(val);
3177 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3178 }
3179
3180 #endif
3181
3182 /* virtual memory access for debug */
3183 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3184 uint8_t *buf, int len, int is_write)
3185 {
3186 int l;
3187 target_phys_addr_t phys_addr;
3188 target_ulong page;
3189
3190 while (len > 0) {
3191 page = addr & TARGET_PAGE_MASK;
3192 phys_addr = cpu_get_phys_page_debug(env, page);
3193 /* if no physical page mapped, return an error */
3194 if (phys_addr == -1)
3195 return -1;
3196 l = (page + TARGET_PAGE_SIZE) - addr;
3197 if (l > len)
3198 l = len;
3199 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3200 buf, l, is_write);
3201 len -= l;
3202 buf += l;
3203 addr += l;
3204 }
3205 return 0;
3206 }
3207
3208 /* in deterministic execution mode, instructions doing device I/Os
3209 must be at the end of the TB */
3210 void cpu_io_recompile(CPUState *env, void *retaddr)
3211 {
3212 TranslationBlock *tb;
3213 uint32_t n, cflags;
3214 target_ulong pc, cs_base;
3215 uint64_t flags;
3216
3217 tb = tb_find_pc((unsigned long)retaddr);
3218 if (!tb) {
3219 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3220 retaddr);
3221 }
3222 n = env->icount_decr.u16.low + tb->icount;
3223 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3224 /* Calculate how many instructions had been executed before the fault
3225 occurred. */
3226 n = n - env->icount_decr.u16.low;
3227 /* Generate a new TB ending on the I/O insn. */
3228 n++;
3229 /* On MIPS and SH, delay slot instructions can only be restarted if
3230 they were already the first instruction in the TB. If this is not
3231 the first instruction in a TB then re-execute the preceding
3232 branch. */
3233 #if defined(TARGET_MIPS)
3234 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3235 env->active_tc.PC -= 4;
3236 env->icount_decr.u16.low++;
3237 env->hflags &= ~MIPS_HFLAG_BMASK;
3238 }
3239 #elif defined(TARGET_SH4)
3240 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3241 && n > 1) {
3242 env->pc -= 2;
3243 env->icount_decr.u16.low++;
3244 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3245 }
3246 #endif
3247 /* This should never happen. */
3248 if (n > CF_COUNT_MASK)
3249 cpu_abort(env, "TB too big during recompile");
3250
3251 cflags = n | CF_LAST_IO;
3252 pc = tb->pc;
3253 cs_base = tb->cs_base;
3254 flags = tb->flags;
3255 tb_phys_invalidate(tb, -1);
3256 /* FIXME: In theory this could raise an exception. In practice
3257 we have already translated the block once so it's probably ok. */
3258 tb_gen_code(env, pc, cs_base, flags, cflags);
3259 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3260 the first in the TB) then we end up generating a whole new TB and
3261 repeating the fault, which is horribly inefficient.
3262 Better would be to execute just this insn uncached, or generate a
3263 second new TB. */
3264 cpu_resume_from_signal(env, NULL);
3265 }
3266
3267 void dump_exec_info(FILE *f,
3268 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3269 {
3270 int i, target_code_size, max_target_code_size;
3271 int direct_jmp_count, direct_jmp2_count, cross_page;
3272 TranslationBlock *tb;
3273
3274 target_code_size = 0;
3275 max_target_code_size = 0;
3276 cross_page = 0;
3277 direct_jmp_count = 0;
3278 direct_jmp2_count = 0;
3279 for(i = 0; i < nb_tbs; i++) {
3280 tb = &tbs[i];
3281 target_code_size += tb->size;
3282 if (tb->size > max_target_code_size)
3283 max_target_code_size = tb->size;
3284 if (tb->page_addr[1] != -1)
3285 cross_page++;
3286 if (tb->tb_next_offset[0] != 0xffff) {
3287 direct_jmp_count++;
3288 if (tb->tb_next_offset[1] != 0xffff) {
3289 direct_jmp2_count++;
3290 }
3291 }
3292 }
3293 /* XXX: avoid using doubles ? */
3294 cpu_fprintf(f, "Translation buffer state:\n");
3295 cpu_fprintf(f, "gen code size %ld/%ld\n",
3296 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3297 cpu_fprintf(f, "TB count %d/%d\n",
3298 nb_tbs, code_gen_max_blocks);
3299 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3300 nb_tbs ? target_code_size / nb_tbs : 0,
3301 max_target_code_size);
3302 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3303 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3304 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3305 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3306 cross_page,
3307 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3308 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3309 direct_jmp_count,
3310 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3311 direct_jmp2_count,
3312 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3313 cpu_fprintf(f, "\nStatistics:\n");
3314 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3315 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3316 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3317 tcg_dump_info(f, cpu_fprintf);
3318 }
3319
3320 #if !defined(CONFIG_USER_ONLY)
3321
3322 #define MMUSUFFIX _cmmu
3323 #define GETPC() NULL
3324 #define env cpu_single_env
3325 #define SOFTMMU_CODE_ACCESS
3326
3327 #define SHIFT 0
3328 #include "softmmu_template.h"
3329
3330 #define SHIFT 1
3331 #include "softmmu_template.h"
3332
3333 #define SHIFT 2
3334 #include "softmmu_template.h"
3335
3336 #define SHIFT 3
3337 #include "softmmu_template.h"
3338
3339 #undef env
3340
3341 #endif