]> git.proxmox.com Git - qemu.git/blob - exec.c
Add option to use file backed guest memory
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #include <signal.h>
44 #endif
45
46 //#define DEBUG_TB_INVALIDATE
47 //#define DEBUG_FLUSH
48 //#define DEBUG_TLB
49 //#define DEBUG_UNASSIGNED
50
51 /* make various TB consistency checks */
52 //#define DEBUG_TB_CHECK
53 //#define DEBUG_TLB_CHECK
54
55 //#define DEBUG_IOPORT
56 //#define DEBUG_SUBPAGE
57
58 #if !defined(CONFIG_USER_ONLY)
59 /* TB consistency checks only implemented for usermode emulation. */
60 #undef DEBUG_TB_CHECK
61 #endif
62
63 #define SMC_BITMAP_USE_THRESHOLD 10
64
65 #if defined(TARGET_SPARC64)
66 #define TARGET_PHYS_ADDR_SPACE_BITS 41
67 #elif defined(TARGET_SPARC)
68 #define TARGET_PHYS_ADDR_SPACE_BITS 36
69 #elif defined(TARGET_ALPHA)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 42
71 #define TARGET_VIRT_ADDR_SPACE_BITS 42
72 #elif defined(TARGET_PPC64)
73 #define TARGET_PHYS_ADDR_SPACE_BITS 42
74 #elif defined(TARGET_X86_64)
75 #define TARGET_PHYS_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_I386)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 36
78 #else
79 #define TARGET_PHYS_ADDR_SPACE_BITS 32
80 #endif
81
82 static TranslationBlock *tbs;
83 int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 uint8_t *phys_ram_dirty;
115 static int in_migration;
116
117 typedef struct RAMBlock {
118 uint8_t *host;
119 ram_addr_t offset;
120 ram_addr_t length;
121 struct RAMBlock *next;
122 } RAMBlock;
123
124 static RAMBlock *ram_blocks;
125 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
126 then we can no longer assume contiguous ram offsets, and external uses
127 of this variable will break. */
128 ram_addr_t last_ram_offset;
129 #endif
130
131 CPUState *first_cpu;
132 /* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
134 CPUState *cpu_single_env;
135 /* 0 = Do not count executed instructions.
136 1 = Precise instruction counting.
137 2 = Adaptive rate instruction counting. */
138 int use_icount = 0;
139 /* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141 int64_t qemu_icount;
142
143 typedef struct PageDesc {
144 /* list of TBs intersecting this ram page */
145 TranslationBlock *first_tb;
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150 #if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152 #endif
153 } PageDesc;
154
155 typedef struct PhysPageDesc {
156 /* offset in host memory of the page + io_index in the low bits */
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
159 } PhysPageDesc;
160
161 #define L2_BITS 10
162 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163 /* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168 #else
169 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
170 #endif
171
172 #define L1_SIZE (1 << L1_BITS)
173 #define L2_SIZE (1 << L2_BITS)
174
175 unsigned long qemu_real_host_page_size;
176 unsigned long qemu_host_page_bits;
177 unsigned long qemu_host_page_size;
178 unsigned long qemu_host_page_mask;
179
180 /* XXX: for system emulation, it could just be an array */
181 static PageDesc *l1_map[L1_SIZE];
182
183 #if !defined(CONFIG_USER_ONLY)
184 static PhysPageDesc **l1_phys_map;
185
186 static void io_mem_init(void);
187
188 /* io memory support */
189 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
190 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
191 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
192 static char io_mem_used[IO_MEM_NB_ENTRIES];
193 static int io_mem_watch;
194 #endif
195
196 /* log support */
197 #ifdef WIN32
198 static const char *logfilename = "qemu.log";
199 #else
200 static const char *logfilename = "/tmp/qemu.log";
201 #endif
202 FILE *logfile;
203 int loglevel;
204 static int log_append = 0;
205
206 /* statistics */
207 static int tlb_flush_count;
208 static int tb_flush_count;
209 static int tb_phys_invalidate_count;
210
211 #ifdef _WIN32
212 static void map_exec(void *addr, long size)
213 {
214 DWORD old_protect;
215 VirtualProtect(addr, size,
216 PAGE_EXECUTE_READWRITE, &old_protect);
217
218 }
219 #else
220 static void map_exec(void *addr, long size)
221 {
222 unsigned long start, end, page_size;
223
224 page_size = getpagesize();
225 start = (unsigned long)addr;
226 start &= ~(page_size - 1);
227
228 end = (unsigned long)addr + size;
229 end += page_size - 1;
230 end &= ~(page_size - 1);
231
232 mprotect((void *)start, end - start,
233 PROT_READ | PROT_WRITE | PROT_EXEC);
234 }
235 #endif
236
237 static void page_init(void)
238 {
239 /* NOTE: we can always suppose that qemu_host_page_size >=
240 TARGET_PAGE_SIZE */
241 #ifdef _WIN32
242 {
243 SYSTEM_INFO system_info;
244
245 GetSystemInfo(&system_info);
246 qemu_real_host_page_size = system_info.dwPageSize;
247 }
248 #else
249 qemu_real_host_page_size = getpagesize();
250 #endif
251 if (qemu_host_page_size == 0)
252 qemu_host_page_size = qemu_real_host_page_size;
253 if (qemu_host_page_size < TARGET_PAGE_SIZE)
254 qemu_host_page_size = TARGET_PAGE_SIZE;
255 qemu_host_page_bits = 0;
256 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
257 qemu_host_page_bits++;
258 qemu_host_page_mask = ~(qemu_host_page_size - 1);
259 #if !defined(CONFIG_USER_ONLY)
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
262 #endif
263
264 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
265 {
266 long long startaddr, endaddr;
267 FILE *f;
268 int n;
269
270 mmap_lock();
271 last_brk = (unsigned long)sbrk(0);
272 f = fopen("/proc/self/maps", "r");
273 if (f) {
274 do {
275 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
276 if (n == 2) {
277 startaddr = MIN(startaddr,
278 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
279 endaddr = MIN(endaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
281 page_set_flags(startaddr & TARGET_PAGE_MASK,
282 TARGET_PAGE_ALIGN(endaddr),
283 PAGE_RESERVED);
284 }
285 } while (!feof(f));
286 fclose(f);
287 }
288 mmap_unlock();
289 }
290 #endif
291 }
292
293 static inline PageDesc **page_l1_map(target_ulong index)
294 {
295 #if TARGET_LONG_BITS > 32
296 /* Host memory outside guest VM. For 32-bit targets we have already
297 excluded high addresses. */
298 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
299 return NULL;
300 #endif
301 return &l1_map[index >> L2_BITS];
302 }
303
304 static inline PageDesc *page_find_alloc(target_ulong index)
305 {
306 PageDesc **lp, *p;
307 lp = page_l1_map(index);
308 if (!lp)
309 return NULL;
310
311 p = *lp;
312 if (!p) {
313 /* allocate if not found */
314 #if defined(CONFIG_USER_ONLY)
315 size_t len = sizeof(PageDesc) * L2_SIZE;
316 /* Don't use qemu_malloc because it may recurse. */
317 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
318 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
319 *lp = p;
320 if (h2g_valid(p)) {
321 unsigned long addr = h2g(p);
322 page_set_flags(addr & TARGET_PAGE_MASK,
323 TARGET_PAGE_ALIGN(addr + len),
324 PAGE_RESERVED);
325 }
326 #else
327 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
328 *lp = p;
329 #endif
330 }
331 return p + (index & (L2_SIZE - 1));
332 }
333
334 static inline PageDesc *page_find(target_ulong index)
335 {
336 PageDesc **lp, *p;
337 lp = page_l1_map(index);
338 if (!lp)
339 return NULL;
340
341 p = *lp;
342 if (!p) {
343 return NULL;
344 }
345 return p + (index & (L2_SIZE - 1));
346 }
347
348 #if !defined(CONFIG_USER_ONLY)
349 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
350 {
351 void **lp, **p;
352 PhysPageDesc *pd;
353
354 p = (void **)l1_phys_map;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 #endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370 #endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
372 pd = *lp;
373 if (!pd) {
374 int i;
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
380 for (i = 0; i < L2_SIZE; i++) {
381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
384 }
385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
386 }
387
388 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
389 {
390 return phys_page_find_alloc(index, 0);
391 }
392
393 static void tlb_protect_code(ram_addr_t ram_addr);
394 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
395 target_ulong vaddr);
396 #define mmap_lock() do { } while(0)
397 #define mmap_unlock() do { } while(0)
398 #endif
399
400 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
401
402 #if defined(CONFIG_USER_ONLY)
403 /* Currently it is not recommended to allocate big chunks of data in
404 user mode. It will change when a dedicated libc will be used */
405 #define USE_STATIC_CODE_GEN_BUFFER
406 #endif
407
408 #ifdef USE_STATIC_CODE_GEN_BUFFER
409 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
410 #endif
411
412 static void code_gen_alloc(unsigned long tb_size)
413 {
414 #ifdef USE_STATIC_CODE_GEN_BUFFER
415 code_gen_buffer = static_code_gen_buffer;
416 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
417 map_exec(code_gen_buffer, code_gen_buffer_size);
418 #else
419 code_gen_buffer_size = tb_size;
420 if (code_gen_buffer_size == 0) {
421 #if defined(CONFIG_USER_ONLY)
422 /* in user mode, phys_ram_size is not meaningful */
423 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
424 #else
425 /* XXX: needs adjustments */
426 code_gen_buffer_size = (unsigned long)(ram_size / 4);
427 #endif
428 }
429 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
430 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
431 /* The code gen buffer location may have constraints depending on
432 the host cpu and OS */
433 #if defined(__linux__)
434 {
435 int flags;
436 void *start = NULL;
437
438 flags = MAP_PRIVATE | MAP_ANONYMOUS;
439 #if defined(__x86_64__)
440 flags |= MAP_32BIT;
441 /* Cannot map more than that */
442 if (code_gen_buffer_size > (800 * 1024 * 1024))
443 code_gen_buffer_size = (800 * 1024 * 1024);
444 #elif defined(__sparc_v9__)
445 // Map the buffer below 2G, so we can use direct calls and branches
446 flags |= MAP_FIXED;
447 start = (void *) 0x60000000UL;
448 if (code_gen_buffer_size > (512 * 1024 * 1024))
449 code_gen_buffer_size = (512 * 1024 * 1024);
450 #elif defined(__arm__)
451 /* Map the buffer below 32M, so we can use direct calls and branches */
452 flags |= MAP_FIXED;
453 start = (void *) 0x01000000UL;
454 if (code_gen_buffer_size > 16 * 1024 * 1024)
455 code_gen_buffer_size = 16 * 1024 * 1024;
456 #endif
457 code_gen_buffer = mmap(start, code_gen_buffer_size,
458 PROT_WRITE | PROT_READ | PROT_EXEC,
459 flags, -1, 0);
460 if (code_gen_buffer == MAP_FAILED) {
461 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
462 exit(1);
463 }
464 }
465 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
466 {
467 int flags;
468 void *addr = NULL;
469 flags = MAP_PRIVATE | MAP_ANONYMOUS;
470 #if defined(__x86_64__)
471 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
472 * 0x40000000 is free */
473 flags |= MAP_FIXED;
474 addr = (void *)0x40000000;
475 /* Cannot map more than that */
476 if (code_gen_buffer_size > (800 * 1024 * 1024))
477 code_gen_buffer_size = (800 * 1024 * 1024);
478 #endif
479 code_gen_buffer = mmap(addr, code_gen_buffer_size,
480 PROT_WRITE | PROT_READ | PROT_EXEC,
481 flags, -1, 0);
482 if (code_gen_buffer == MAP_FAILED) {
483 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
484 exit(1);
485 }
486 }
487 #else
488 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
489 map_exec(code_gen_buffer, code_gen_buffer_size);
490 #endif
491 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
492 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
493 code_gen_buffer_max_size = code_gen_buffer_size -
494 code_gen_max_block_size();
495 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
496 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
497 }
498
499 /* Must be called before using the QEMU cpus. 'tb_size' is the size
500 (in bytes) allocated to the translation buffer. Zero means default
501 size. */
502 void cpu_exec_init_all(unsigned long tb_size)
503 {
504 cpu_gen_init();
505 code_gen_alloc(tb_size);
506 code_gen_ptr = code_gen_buffer;
507 page_init();
508 #if !defined(CONFIG_USER_ONLY)
509 io_mem_init();
510 #endif
511 }
512
513 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
514
515 static void cpu_common_pre_save(void *opaque)
516 {
517 CPUState *env = opaque;
518
519 cpu_synchronize_state(env);
520 }
521
522 static int cpu_common_pre_load(void *opaque)
523 {
524 CPUState *env = opaque;
525
526 cpu_synchronize_state(env);
527 return 0;
528 }
529
530 static int cpu_common_post_load(void *opaque, int version_id)
531 {
532 CPUState *env = opaque;
533
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
537 tlb_flush(env, 1);
538
539 return 0;
540 }
541
542 static const VMStateDescription vmstate_cpu_common = {
543 .name = "cpu_common",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .minimum_version_id_old = 1,
547 .pre_save = cpu_common_pre_save,
548 .pre_load = cpu_common_pre_load,
549 .post_load = cpu_common_post_load,
550 .fields = (VMStateField []) {
551 VMSTATE_UINT32(halted, CPUState),
552 VMSTATE_UINT32(interrupt_request, CPUState),
553 VMSTATE_END_OF_LIST()
554 }
555 };
556 #endif
557
558 CPUState *qemu_get_cpu(int cpu)
559 {
560 CPUState *env = first_cpu;
561
562 while (env) {
563 if (env->cpu_index == cpu)
564 break;
565 env = env->next_cpu;
566 }
567
568 return env;
569 }
570
571 void cpu_exec_init(CPUState *env)
572 {
573 CPUState **penv;
574 int cpu_index;
575
576 #if defined(CONFIG_USER_ONLY)
577 cpu_list_lock();
578 #endif
579 env->next_cpu = NULL;
580 penv = &first_cpu;
581 cpu_index = 0;
582 while (*penv != NULL) {
583 penv = &(*penv)->next_cpu;
584 cpu_index++;
585 }
586 env->cpu_index = cpu_index;
587 env->numa_node = 0;
588 QTAILQ_INIT(&env->breakpoints);
589 QTAILQ_INIT(&env->watchpoints);
590 *penv = env;
591 #if defined(CONFIG_USER_ONLY)
592 cpu_list_unlock();
593 #endif
594 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
595 vmstate_register(cpu_index, &vmstate_cpu_common, env);
596 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
597 cpu_save, cpu_load, env);
598 #endif
599 }
600
601 static inline void invalidate_page_bitmap(PageDesc *p)
602 {
603 if (p->code_bitmap) {
604 qemu_free(p->code_bitmap);
605 p->code_bitmap = NULL;
606 }
607 p->code_write_count = 0;
608 }
609
610 /* set to NULL all the 'first_tb' fields in all PageDescs */
611 static void page_flush_tb(void)
612 {
613 int i, j;
614 PageDesc *p;
615
616 for(i = 0; i < L1_SIZE; i++) {
617 p = l1_map[i];
618 if (p) {
619 for(j = 0; j < L2_SIZE; j++) {
620 p->first_tb = NULL;
621 invalidate_page_bitmap(p);
622 p++;
623 }
624 }
625 }
626 }
627
628 /* flush all the translation blocks */
629 /* XXX: tb_flush is currently not thread safe */
630 void tb_flush(CPUState *env1)
631 {
632 CPUState *env;
633 #if defined(DEBUG_FLUSH)
634 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
635 (unsigned long)(code_gen_ptr - code_gen_buffer),
636 nb_tbs, nb_tbs > 0 ?
637 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
638 #endif
639 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
640 cpu_abort(env1, "Internal error: code buffer overflow\n");
641
642 nb_tbs = 0;
643
644 for(env = first_cpu; env != NULL; env = env->next_cpu) {
645 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
646 }
647
648 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
649 page_flush_tb();
650
651 code_gen_ptr = code_gen_buffer;
652 /* XXX: flush processor icache at this point if cache flush is
653 expensive */
654 tb_flush_count++;
655 }
656
657 #ifdef DEBUG_TB_CHECK
658
659 static void tb_invalidate_check(target_ulong address)
660 {
661 TranslationBlock *tb;
662 int i;
663 address &= TARGET_PAGE_MASK;
664 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
665 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
666 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
667 address >= tb->pc + tb->size)) {
668 printf("ERROR invalidate: address=" TARGET_FMT_lx
669 " PC=%08lx size=%04x\n",
670 address, (long)tb->pc, tb->size);
671 }
672 }
673 }
674 }
675
676 /* verify that all the pages have correct rights for code */
677 static void tb_page_check(void)
678 {
679 TranslationBlock *tb;
680 int i, flags1, flags2;
681
682 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
683 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
684 flags1 = page_get_flags(tb->pc);
685 flags2 = page_get_flags(tb->pc + tb->size - 1);
686 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
687 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
688 (long)tb->pc, tb->size, flags1, flags2);
689 }
690 }
691 }
692 }
693
694 #endif
695
696 /* invalidate one TB */
697 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
698 int next_offset)
699 {
700 TranslationBlock *tb1;
701 for(;;) {
702 tb1 = *ptb;
703 if (tb1 == tb) {
704 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
705 break;
706 }
707 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
708 }
709 }
710
711 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
712 {
713 TranslationBlock *tb1;
714 unsigned int n1;
715
716 for(;;) {
717 tb1 = *ptb;
718 n1 = (long)tb1 & 3;
719 tb1 = (TranslationBlock *)((long)tb1 & ~3);
720 if (tb1 == tb) {
721 *ptb = tb1->page_next[n1];
722 break;
723 }
724 ptb = &tb1->page_next[n1];
725 }
726 }
727
728 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
729 {
730 TranslationBlock *tb1, **ptb;
731 unsigned int n1;
732
733 ptb = &tb->jmp_next[n];
734 tb1 = *ptb;
735 if (tb1) {
736 /* find tb(n) in circular list */
737 for(;;) {
738 tb1 = *ptb;
739 n1 = (long)tb1 & 3;
740 tb1 = (TranslationBlock *)((long)tb1 & ~3);
741 if (n1 == n && tb1 == tb)
742 break;
743 if (n1 == 2) {
744 ptb = &tb1->jmp_first;
745 } else {
746 ptb = &tb1->jmp_next[n1];
747 }
748 }
749 /* now we can suppress tb(n) from the list */
750 *ptb = tb->jmp_next[n];
751
752 tb->jmp_next[n] = NULL;
753 }
754 }
755
756 /* reset the jump entry 'n' of a TB so that it is not chained to
757 another TB */
758 static inline void tb_reset_jump(TranslationBlock *tb, int n)
759 {
760 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
761 }
762
763 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
764 {
765 CPUState *env;
766 PageDesc *p;
767 unsigned int h, n1;
768 target_phys_addr_t phys_pc;
769 TranslationBlock *tb1, *tb2;
770
771 /* remove the TB from the hash list */
772 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
773 h = tb_phys_hash_func(phys_pc);
774 tb_remove(&tb_phys_hash[h], tb,
775 offsetof(TranslationBlock, phys_hash_next));
776
777 /* remove the TB from the page list */
778 if (tb->page_addr[0] != page_addr) {
779 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
780 tb_page_remove(&p->first_tb, tb);
781 invalidate_page_bitmap(p);
782 }
783 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
784 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788
789 tb_invalidated_flag = 1;
790
791 /* remove the TB from the hash list */
792 h = tb_jmp_cache_hash_func(tb->pc);
793 for(env = first_cpu; env != NULL; env = env->next_cpu) {
794 if (env->tb_jmp_cache[h] == tb)
795 env->tb_jmp_cache[h] = NULL;
796 }
797
798 /* suppress this TB from the two jump lists */
799 tb_jmp_remove(tb, 0);
800 tb_jmp_remove(tb, 1);
801
802 /* suppress any remaining jumps to this TB */
803 tb1 = tb->jmp_first;
804 for(;;) {
805 n1 = (long)tb1 & 3;
806 if (n1 == 2)
807 break;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 tb2 = tb1->jmp_next[n1];
810 tb_reset_jump(tb1, n1);
811 tb1->jmp_next[n1] = NULL;
812 tb1 = tb2;
813 }
814 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
815
816 tb_phys_invalidate_count++;
817 }
818
819 static inline void set_bits(uint8_t *tab, int start, int len)
820 {
821 int end, mask, end1;
822
823 end = start + len;
824 tab += start >> 3;
825 mask = 0xff << (start & 7);
826 if ((start & ~7) == (end & ~7)) {
827 if (start < end) {
828 mask &= ~(0xff << (end & 7));
829 *tab |= mask;
830 }
831 } else {
832 *tab++ |= mask;
833 start = (start + 8) & ~7;
834 end1 = end & ~7;
835 while (start < end1) {
836 *tab++ = 0xff;
837 start += 8;
838 }
839 if (start < end) {
840 mask = ~(0xff << (end & 7));
841 *tab |= mask;
842 }
843 }
844 }
845
846 static void build_page_bitmap(PageDesc *p)
847 {
848 int n, tb_start, tb_end;
849 TranslationBlock *tb;
850
851 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
852
853 tb = p->first_tb;
854 while (tb != NULL) {
855 n = (long)tb & 3;
856 tb = (TranslationBlock *)((long)tb & ~3);
857 /* NOTE: this is subtle as a TB may span two physical pages */
858 if (n == 0) {
859 /* NOTE: tb_end may be after the end of the page, but
860 it is not a problem */
861 tb_start = tb->pc & ~TARGET_PAGE_MASK;
862 tb_end = tb_start + tb->size;
863 if (tb_end > TARGET_PAGE_SIZE)
864 tb_end = TARGET_PAGE_SIZE;
865 } else {
866 tb_start = 0;
867 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
868 }
869 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
870 tb = tb->page_next[n];
871 }
872 }
873
874 TranslationBlock *tb_gen_code(CPUState *env,
875 target_ulong pc, target_ulong cs_base,
876 int flags, int cflags)
877 {
878 TranslationBlock *tb;
879 uint8_t *tc_ptr;
880 target_ulong phys_pc, phys_page2, virt_page2;
881 int code_gen_size;
882
883 phys_pc = get_phys_addr_code(env, pc);
884 tb = tb_alloc(pc);
885 if (!tb) {
886 /* flush must be done */
887 tb_flush(env);
888 /* cannot fail at this point */
889 tb = tb_alloc(pc);
890 /* Don't forget to invalidate previous TB info. */
891 tb_invalidated_flag = 1;
892 }
893 tc_ptr = code_gen_ptr;
894 tb->tc_ptr = tc_ptr;
895 tb->cs_base = cs_base;
896 tb->flags = flags;
897 tb->cflags = cflags;
898 cpu_gen_code(env, tb, &code_gen_size);
899 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
900
901 /* check next page if needed */
902 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
903 phys_page2 = -1;
904 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
905 phys_page2 = get_phys_addr_code(env, virt_page2);
906 }
907 tb_link_phys(tb, phys_pc, phys_page2);
908 return tb;
909 }
910
911 /* invalidate all TBs which intersect with the target physical page
912 starting in range [start;end[. NOTE: start and end must refer to
913 the same physical page. 'is_cpu_write_access' should be true if called
914 from a real cpu write access: the virtual CPU will exit the current
915 TB if code is modified inside this TB. */
916 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
917 int is_cpu_write_access)
918 {
919 TranslationBlock *tb, *tb_next, *saved_tb;
920 CPUState *env = cpu_single_env;
921 target_ulong tb_start, tb_end;
922 PageDesc *p;
923 int n;
924 #ifdef TARGET_HAS_PRECISE_SMC
925 int current_tb_not_found = is_cpu_write_access;
926 TranslationBlock *current_tb = NULL;
927 int current_tb_modified = 0;
928 target_ulong current_pc = 0;
929 target_ulong current_cs_base = 0;
930 int current_flags = 0;
931 #endif /* TARGET_HAS_PRECISE_SMC */
932
933 p = page_find(start >> TARGET_PAGE_BITS);
934 if (!p)
935 return;
936 if (!p->code_bitmap &&
937 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
938 is_cpu_write_access) {
939 /* build code bitmap */
940 build_page_bitmap(p);
941 }
942
943 /* we remove all the TBs in the range [start, end[ */
944 /* XXX: see if in some cases it could be faster to invalidate all the code */
945 tb = p->first_tb;
946 while (tb != NULL) {
947 n = (long)tb & 3;
948 tb = (TranslationBlock *)((long)tb & ~3);
949 tb_next = tb->page_next[n];
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
955 tb_end = tb_start + tb->size;
956 } else {
957 tb_start = tb->page_addr[1];
958 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
959 }
960 if (!(tb_end <= start || tb_start >= end)) {
961 #ifdef TARGET_HAS_PRECISE_SMC
962 if (current_tb_not_found) {
963 current_tb_not_found = 0;
964 current_tb = NULL;
965 if (env->mem_io_pc) {
966 /* now we have a real cpu fault */
967 current_tb = tb_find_pc(env->mem_io_pc);
968 }
969 }
970 if (current_tb == tb &&
971 (current_tb->cflags & CF_COUNT_MASK) != 1) {
972 /* If we are modifying the current TB, we must stop
973 its execution. We could be more precise by checking
974 that the modification is after the current PC, but it
975 would require a specialized function to partially
976 restore the CPU state */
977
978 current_tb_modified = 1;
979 cpu_restore_state(current_tb, env,
980 env->mem_io_pc, NULL);
981 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
982 &current_flags);
983 }
984 #endif /* TARGET_HAS_PRECISE_SMC */
985 /* we need to do that to handle the case where a signal
986 occurs while doing tb_phys_invalidate() */
987 saved_tb = NULL;
988 if (env) {
989 saved_tb = env->current_tb;
990 env->current_tb = NULL;
991 }
992 tb_phys_invalidate(tb, -1);
993 if (env) {
994 env->current_tb = saved_tb;
995 if (env->interrupt_request && env->current_tb)
996 cpu_interrupt(env, env->interrupt_request);
997 }
998 }
999 tb = tb_next;
1000 }
1001 #if !defined(CONFIG_USER_ONLY)
1002 /* if no code remaining, no need to continue to use slow writes */
1003 if (!p->first_tb) {
1004 invalidate_page_bitmap(p);
1005 if (is_cpu_write_access) {
1006 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1007 }
1008 }
1009 #endif
1010 #ifdef TARGET_HAS_PRECISE_SMC
1011 if (current_tb_modified) {
1012 /* we generate a block containing just the instruction
1013 modifying the memory. It will ensure that it cannot modify
1014 itself */
1015 env->current_tb = NULL;
1016 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1017 cpu_resume_from_signal(env, NULL);
1018 }
1019 #endif
1020 }
1021
1022 /* len must be <= 8 and start must be a multiple of len */
1023 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1024 {
1025 PageDesc *p;
1026 int offset, b;
1027 #if 0
1028 if (1) {
1029 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1030 cpu_single_env->mem_io_vaddr, len,
1031 cpu_single_env->eip,
1032 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1033 }
1034 #endif
1035 p = page_find(start >> TARGET_PAGE_BITS);
1036 if (!p)
1037 return;
1038 if (p->code_bitmap) {
1039 offset = start & ~TARGET_PAGE_MASK;
1040 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1041 if (b & ((1 << len) - 1))
1042 goto do_invalidate;
1043 } else {
1044 do_invalidate:
1045 tb_invalidate_phys_page_range(start, start + len, 1);
1046 }
1047 }
1048
1049 #if !defined(CONFIG_SOFTMMU)
1050 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1051 unsigned long pc, void *puc)
1052 {
1053 TranslationBlock *tb;
1054 PageDesc *p;
1055 int n;
1056 #ifdef TARGET_HAS_PRECISE_SMC
1057 TranslationBlock *current_tb = NULL;
1058 CPUState *env = cpu_single_env;
1059 int current_tb_modified = 0;
1060 target_ulong current_pc = 0;
1061 target_ulong current_cs_base = 0;
1062 int current_flags = 0;
1063 #endif
1064
1065 addr &= TARGET_PAGE_MASK;
1066 p = page_find(addr >> TARGET_PAGE_BITS);
1067 if (!p)
1068 return;
1069 tb = p->first_tb;
1070 #ifdef TARGET_HAS_PRECISE_SMC
1071 if (tb && pc != 0) {
1072 current_tb = tb_find_pc(pc);
1073 }
1074 #endif
1075 while (tb != NULL) {
1076 n = (long)tb & 3;
1077 tb = (TranslationBlock *)((long)tb & ~3);
1078 #ifdef TARGET_HAS_PRECISE_SMC
1079 if (current_tb == tb &&
1080 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1081 /* If we are modifying the current TB, we must stop
1082 its execution. We could be more precise by checking
1083 that the modification is after the current PC, but it
1084 would require a specialized function to partially
1085 restore the CPU state */
1086
1087 current_tb_modified = 1;
1088 cpu_restore_state(current_tb, env, pc, puc);
1089 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1090 &current_flags);
1091 }
1092 #endif /* TARGET_HAS_PRECISE_SMC */
1093 tb_phys_invalidate(tb, addr);
1094 tb = tb->page_next[n];
1095 }
1096 p->first_tb = NULL;
1097 #ifdef TARGET_HAS_PRECISE_SMC
1098 if (current_tb_modified) {
1099 /* we generate a block containing just the instruction
1100 modifying the memory. It will ensure that it cannot modify
1101 itself */
1102 env->current_tb = NULL;
1103 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1104 cpu_resume_from_signal(env, puc);
1105 }
1106 #endif
1107 }
1108 #endif
1109
1110 /* add the tb in the target page and protect it if necessary */
1111 static inline void tb_alloc_page(TranslationBlock *tb,
1112 unsigned int n, target_ulong page_addr)
1113 {
1114 PageDesc *p;
1115 TranslationBlock *last_first_tb;
1116
1117 tb->page_addr[n] = page_addr;
1118 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1119 tb->page_next[n] = p->first_tb;
1120 last_first_tb = p->first_tb;
1121 p->first_tb = (TranslationBlock *)((long)tb | n);
1122 invalidate_page_bitmap(p);
1123
1124 #if defined(TARGET_HAS_SMC) || 1
1125
1126 #if defined(CONFIG_USER_ONLY)
1127 if (p->flags & PAGE_WRITE) {
1128 target_ulong addr;
1129 PageDesc *p2;
1130 int prot;
1131
1132 /* force the host page as non writable (writes will have a
1133 page fault + mprotect overhead) */
1134 page_addr &= qemu_host_page_mask;
1135 prot = 0;
1136 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1137 addr += TARGET_PAGE_SIZE) {
1138
1139 p2 = page_find (addr >> TARGET_PAGE_BITS);
1140 if (!p2)
1141 continue;
1142 prot |= p2->flags;
1143 p2->flags &= ~PAGE_WRITE;
1144 page_get_flags(addr);
1145 }
1146 mprotect(g2h(page_addr), qemu_host_page_size,
1147 (prot & PAGE_BITS) & ~PAGE_WRITE);
1148 #ifdef DEBUG_TB_INVALIDATE
1149 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1150 page_addr);
1151 #endif
1152 }
1153 #else
1154 /* if some code is already present, then the pages are already
1155 protected. So we handle the case where only the first TB is
1156 allocated in a physical page */
1157 if (!last_first_tb) {
1158 tlb_protect_code(page_addr);
1159 }
1160 #endif
1161
1162 #endif /* TARGET_HAS_SMC */
1163 }
1164
1165 /* Allocate a new translation block. Flush the translation buffer if
1166 too many translation blocks or too much generated code. */
1167 TranslationBlock *tb_alloc(target_ulong pc)
1168 {
1169 TranslationBlock *tb;
1170
1171 if (nb_tbs >= code_gen_max_blocks ||
1172 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1173 return NULL;
1174 tb = &tbs[nb_tbs++];
1175 tb->pc = pc;
1176 tb->cflags = 0;
1177 return tb;
1178 }
1179
1180 void tb_free(TranslationBlock *tb)
1181 {
1182 /* In practice this is mostly used for single use temporary TB
1183 Ignore the hard cases and just back up if this TB happens to
1184 be the last one generated. */
1185 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1186 code_gen_ptr = tb->tc_ptr;
1187 nb_tbs--;
1188 }
1189 }
1190
1191 /* add a new TB and link it to the physical page tables. phys_page2 is
1192 (-1) to indicate that only one page contains the TB. */
1193 void tb_link_phys(TranslationBlock *tb,
1194 target_ulong phys_pc, target_ulong phys_page2)
1195 {
1196 unsigned int h;
1197 TranslationBlock **ptb;
1198
1199 /* Grab the mmap lock to stop another thread invalidating this TB
1200 before we are done. */
1201 mmap_lock();
1202 /* add in the physical hash table */
1203 h = tb_phys_hash_func(phys_pc);
1204 ptb = &tb_phys_hash[h];
1205 tb->phys_hash_next = *ptb;
1206 *ptb = tb;
1207
1208 /* add in the page list */
1209 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1210 if (phys_page2 != -1)
1211 tb_alloc_page(tb, 1, phys_page2);
1212 else
1213 tb->page_addr[1] = -1;
1214
1215 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1216 tb->jmp_next[0] = NULL;
1217 tb->jmp_next[1] = NULL;
1218
1219 /* init original jump addresses */
1220 if (tb->tb_next_offset[0] != 0xffff)
1221 tb_reset_jump(tb, 0);
1222 if (tb->tb_next_offset[1] != 0xffff)
1223 tb_reset_jump(tb, 1);
1224
1225 #ifdef DEBUG_TB_CHECK
1226 tb_page_check();
1227 #endif
1228 mmap_unlock();
1229 }
1230
1231 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1232 tb[1].tc_ptr. Return NULL if not found */
1233 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1234 {
1235 int m_min, m_max, m;
1236 unsigned long v;
1237 TranslationBlock *tb;
1238
1239 if (nb_tbs <= 0)
1240 return NULL;
1241 if (tc_ptr < (unsigned long)code_gen_buffer ||
1242 tc_ptr >= (unsigned long)code_gen_ptr)
1243 return NULL;
1244 /* binary search (cf Knuth) */
1245 m_min = 0;
1246 m_max = nb_tbs - 1;
1247 while (m_min <= m_max) {
1248 m = (m_min + m_max) >> 1;
1249 tb = &tbs[m];
1250 v = (unsigned long)tb->tc_ptr;
1251 if (v == tc_ptr)
1252 return tb;
1253 else if (tc_ptr < v) {
1254 m_max = m - 1;
1255 } else {
1256 m_min = m + 1;
1257 }
1258 }
1259 return &tbs[m_max];
1260 }
1261
1262 static void tb_reset_jump_recursive(TranslationBlock *tb);
1263
1264 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1265 {
1266 TranslationBlock *tb1, *tb_next, **ptb;
1267 unsigned int n1;
1268
1269 tb1 = tb->jmp_next[n];
1270 if (tb1 != NULL) {
1271 /* find head of list */
1272 for(;;) {
1273 n1 = (long)tb1 & 3;
1274 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1275 if (n1 == 2)
1276 break;
1277 tb1 = tb1->jmp_next[n1];
1278 }
1279 /* we are now sure now that tb jumps to tb1 */
1280 tb_next = tb1;
1281
1282 /* remove tb from the jmp_first list */
1283 ptb = &tb_next->jmp_first;
1284 for(;;) {
1285 tb1 = *ptb;
1286 n1 = (long)tb1 & 3;
1287 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1288 if (n1 == n && tb1 == tb)
1289 break;
1290 ptb = &tb1->jmp_next[n1];
1291 }
1292 *ptb = tb->jmp_next[n];
1293 tb->jmp_next[n] = NULL;
1294
1295 /* suppress the jump to next tb in generated code */
1296 tb_reset_jump(tb, n);
1297
1298 /* suppress jumps in the tb on which we could have jumped */
1299 tb_reset_jump_recursive(tb_next);
1300 }
1301 }
1302
1303 static void tb_reset_jump_recursive(TranslationBlock *tb)
1304 {
1305 tb_reset_jump_recursive2(tb, 0);
1306 tb_reset_jump_recursive2(tb, 1);
1307 }
1308
1309 #if defined(TARGET_HAS_ICE)
1310 #if defined(CONFIG_USER_ONLY)
1311 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1312 {
1313 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1314 }
1315 #else
1316 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317 {
1318 target_phys_addr_t addr;
1319 target_ulong pd;
1320 ram_addr_t ram_addr;
1321 PhysPageDesc *p;
1322
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1332 }
1333 #endif
1334 #endif /* TARGET_HAS_ICE */
1335
1336 #if defined(CONFIG_USER_ONLY)
1337 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1338
1339 {
1340 }
1341
1342 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1343 int flags, CPUWatchpoint **watchpoint)
1344 {
1345 return -ENOSYS;
1346 }
1347 #else
1348 /* Add a watchpoint. */
1349 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1350 int flags, CPUWatchpoint **watchpoint)
1351 {
1352 target_ulong len_mask = ~(len - 1);
1353 CPUWatchpoint *wp;
1354
1355 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1356 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1357 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1358 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1359 return -EINVAL;
1360 }
1361 wp = qemu_malloc(sizeof(*wp));
1362
1363 wp->vaddr = addr;
1364 wp->len_mask = len_mask;
1365 wp->flags = flags;
1366
1367 /* keep all GDB-injected watchpoints in front */
1368 if (flags & BP_GDB)
1369 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1370 else
1371 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1372
1373 tlb_flush_page(env, addr);
1374
1375 if (watchpoint)
1376 *watchpoint = wp;
1377 return 0;
1378 }
1379
1380 /* Remove a specific watchpoint. */
1381 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1382 int flags)
1383 {
1384 target_ulong len_mask = ~(len - 1);
1385 CPUWatchpoint *wp;
1386
1387 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1388 if (addr == wp->vaddr && len_mask == wp->len_mask
1389 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1390 cpu_watchpoint_remove_by_ref(env, wp);
1391 return 0;
1392 }
1393 }
1394 return -ENOENT;
1395 }
1396
1397 /* Remove a specific watchpoint by reference. */
1398 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1399 {
1400 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1401
1402 tlb_flush_page(env, watchpoint->vaddr);
1403
1404 qemu_free(watchpoint);
1405 }
1406
1407 /* Remove all matching watchpoints. */
1408 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1409 {
1410 CPUWatchpoint *wp, *next;
1411
1412 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1413 if (wp->flags & mask)
1414 cpu_watchpoint_remove_by_ref(env, wp);
1415 }
1416 }
1417 #endif
1418
1419 /* Add a breakpoint. */
1420 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1421 CPUBreakpoint **breakpoint)
1422 {
1423 #if defined(TARGET_HAS_ICE)
1424 CPUBreakpoint *bp;
1425
1426 bp = qemu_malloc(sizeof(*bp));
1427
1428 bp->pc = pc;
1429 bp->flags = flags;
1430
1431 /* keep all GDB-injected breakpoints in front */
1432 if (flags & BP_GDB)
1433 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1434 else
1435 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1436
1437 breakpoint_invalidate(env, pc);
1438
1439 if (breakpoint)
1440 *breakpoint = bp;
1441 return 0;
1442 #else
1443 return -ENOSYS;
1444 #endif
1445 }
1446
1447 /* Remove a specific breakpoint. */
1448 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1449 {
1450 #if defined(TARGET_HAS_ICE)
1451 CPUBreakpoint *bp;
1452
1453 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1454 if (bp->pc == pc && bp->flags == flags) {
1455 cpu_breakpoint_remove_by_ref(env, bp);
1456 return 0;
1457 }
1458 }
1459 return -ENOENT;
1460 #else
1461 return -ENOSYS;
1462 #endif
1463 }
1464
1465 /* Remove a specific breakpoint by reference. */
1466 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1467 {
1468 #if defined(TARGET_HAS_ICE)
1469 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1470
1471 breakpoint_invalidate(env, breakpoint->pc);
1472
1473 qemu_free(breakpoint);
1474 #endif
1475 }
1476
1477 /* Remove all matching breakpoints. */
1478 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1479 {
1480 #if defined(TARGET_HAS_ICE)
1481 CPUBreakpoint *bp, *next;
1482
1483 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1484 if (bp->flags & mask)
1485 cpu_breakpoint_remove_by_ref(env, bp);
1486 }
1487 #endif
1488 }
1489
1490 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1491 CPU loop after each instruction */
1492 void cpu_single_step(CPUState *env, int enabled)
1493 {
1494 #if defined(TARGET_HAS_ICE)
1495 if (env->singlestep_enabled != enabled) {
1496 env->singlestep_enabled = enabled;
1497 if (kvm_enabled())
1498 kvm_update_guest_debug(env, 0);
1499 else {
1500 /* must flush all the translated code to avoid inconsistencies */
1501 /* XXX: only flush what is necessary */
1502 tb_flush(env);
1503 }
1504 }
1505 #endif
1506 }
1507
1508 /* enable or disable low levels log */
1509 void cpu_set_log(int log_flags)
1510 {
1511 loglevel = log_flags;
1512 if (loglevel && !logfile) {
1513 logfile = fopen(logfilename, log_append ? "a" : "w");
1514 if (!logfile) {
1515 perror(logfilename);
1516 _exit(1);
1517 }
1518 #if !defined(CONFIG_SOFTMMU)
1519 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1520 {
1521 static char logfile_buf[4096];
1522 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1523 }
1524 #elif !defined(_WIN32)
1525 /* Win32 doesn't support line-buffering and requires size >= 2 */
1526 setvbuf(logfile, NULL, _IOLBF, 0);
1527 #endif
1528 log_append = 1;
1529 }
1530 if (!loglevel && logfile) {
1531 fclose(logfile);
1532 logfile = NULL;
1533 }
1534 }
1535
1536 void cpu_set_log_filename(const char *filename)
1537 {
1538 logfilename = strdup(filename);
1539 if (logfile) {
1540 fclose(logfile);
1541 logfile = NULL;
1542 }
1543 cpu_set_log(loglevel);
1544 }
1545
1546 static void cpu_unlink_tb(CPUState *env)
1547 {
1548 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1549 problem and hope the cpu will stop of its own accord. For userspace
1550 emulation this often isn't actually as bad as it sounds. Often
1551 signals are used primarily to interrupt blocking syscalls. */
1552 TranslationBlock *tb;
1553 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1554
1555 spin_lock(&interrupt_lock);
1556 tb = env->current_tb;
1557 /* if the cpu is currently executing code, we must unlink it and
1558 all the potentially executing TB */
1559 if (tb) {
1560 env->current_tb = NULL;
1561 tb_reset_jump_recursive(tb);
1562 }
1563 spin_unlock(&interrupt_lock);
1564 }
1565
1566 /* mask must never be zero, except for A20 change call */
1567 void cpu_interrupt(CPUState *env, int mask)
1568 {
1569 int old_mask;
1570
1571 old_mask = env->interrupt_request;
1572 env->interrupt_request |= mask;
1573
1574 #ifndef CONFIG_USER_ONLY
1575 /*
1576 * If called from iothread context, wake the target cpu in
1577 * case its halted.
1578 */
1579 if (!qemu_cpu_self(env)) {
1580 qemu_cpu_kick(env);
1581 return;
1582 }
1583 #endif
1584
1585 if (use_icount) {
1586 env->icount_decr.u16.high = 0xffff;
1587 #ifndef CONFIG_USER_ONLY
1588 if (!can_do_io(env)
1589 && (mask & ~old_mask) != 0) {
1590 cpu_abort(env, "Raised interrupt while not in I/O function");
1591 }
1592 #endif
1593 } else {
1594 cpu_unlink_tb(env);
1595 }
1596 }
1597
1598 void cpu_reset_interrupt(CPUState *env, int mask)
1599 {
1600 env->interrupt_request &= ~mask;
1601 }
1602
1603 void cpu_exit(CPUState *env)
1604 {
1605 env->exit_request = 1;
1606 cpu_unlink_tb(env);
1607 }
1608
1609 const CPULogItem cpu_log_items[] = {
1610 { CPU_LOG_TB_OUT_ASM, "out_asm",
1611 "show generated host assembly code for each compiled TB" },
1612 { CPU_LOG_TB_IN_ASM, "in_asm",
1613 "show target assembly code for each compiled TB" },
1614 { CPU_LOG_TB_OP, "op",
1615 "show micro ops for each compiled TB" },
1616 { CPU_LOG_TB_OP_OPT, "op_opt",
1617 "show micro ops "
1618 #ifdef TARGET_I386
1619 "before eflags optimization and "
1620 #endif
1621 "after liveness analysis" },
1622 { CPU_LOG_INT, "int",
1623 "show interrupts/exceptions in short format" },
1624 { CPU_LOG_EXEC, "exec",
1625 "show trace before each executed TB (lots of logs)" },
1626 { CPU_LOG_TB_CPU, "cpu",
1627 "show CPU state before block translation" },
1628 #ifdef TARGET_I386
1629 { CPU_LOG_PCALL, "pcall",
1630 "show protected mode far calls/returns/exceptions" },
1631 { CPU_LOG_RESET, "cpu_reset",
1632 "show CPU state before CPU resets" },
1633 #endif
1634 #ifdef DEBUG_IOPORT
1635 { CPU_LOG_IOPORT, "ioport",
1636 "show all i/o ports accesses" },
1637 #endif
1638 { 0, NULL, NULL },
1639 };
1640
1641 #ifndef CONFIG_USER_ONLY
1642 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1643 = QLIST_HEAD_INITIALIZER(memory_client_list);
1644
1645 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1646 ram_addr_t size,
1647 ram_addr_t phys_offset)
1648 {
1649 CPUPhysMemoryClient *client;
1650 QLIST_FOREACH(client, &memory_client_list, list) {
1651 client->set_memory(client, start_addr, size, phys_offset);
1652 }
1653 }
1654
1655 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1656 target_phys_addr_t end)
1657 {
1658 CPUPhysMemoryClient *client;
1659 QLIST_FOREACH(client, &memory_client_list, list) {
1660 int r = client->sync_dirty_bitmap(client, start, end);
1661 if (r < 0)
1662 return r;
1663 }
1664 return 0;
1665 }
1666
1667 static int cpu_notify_migration_log(int enable)
1668 {
1669 CPUPhysMemoryClient *client;
1670 QLIST_FOREACH(client, &memory_client_list, list) {
1671 int r = client->migration_log(client, enable);
1672 if (r < 0)
1673 return r;
1674 }
1675 return 0;
1676 }
1677
1678 static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1679 CPUPhysMemoryClient *client)
1680 {
1681 PhysPageDesc *pd;
1682 int l1, l2;
1683
1684 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1685 pd = phys_map[l1];
1686 if (!pd) {
1687 continue;
1688 }
1689 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1690 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1691 continue;
1692 }
1693 client->set_memory(client, pd[l2].region_offset,
1694 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1695 }
1696 }
1697 }
1698
1699 static void phys_page_for_each(CPUPhysMemoryClient *client)
1700 {
1701 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
1702
1703 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1704 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1705 #endif
1706 void **phys_map = (void **)l1_phys_map;
1707 int l1;
1708 if (!l1_phys_map) {
1709 return;
1710 }
1711 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1712 if (phys_map[l1]) {
1713 phys_page_for_each_in_l1_map(phys_map[l1], client);
1714 }
1715 }
1716 #else
1717 if (!l1_phys_map) {
1718 return;
1719 }
1720 phys_page_for_each_in_l1_map(l1_phys_map, client);
1721 #endif
1722 }
1723
1724 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1725 {
1726 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1727 phys_page_for_each(client);
1728 }
1729
1730 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1731 {
1732 QLIST_REMOVE(client, list);
1733 }
1734 #endif
1735
1736 static int cmp1(const char *s1, int n, const char *s2)
1737 {
1738 if (strlen(s2) != n)
1739 return 0;
1740 return memcmp(s1, s2, n) == 0;
1741 }
1742
1743 /* takes a comma separated list of log masks. Return 0 if error. */
1744 int cpu_str_to_log_mask(const char *str)
1745 {
1746 const CPULogItem *item;
1747 int mask;
1748 const char *p, *p1;
1749
1750 p = str;
1751 mask = 0;
1752 for(;;) {
1753 p1 = strchr(p, ',');
1754 if (!p1)
1755 p1 = p + strlen(p);
1756 if(cmp1(p,p1-p,"all")) {
1757 for(item = cpu_log_items; item->mask != 0; item++) {
1758 mask |= item->mask;
1759 }
1760 } else {
1761 for(item = cpu_log_items; item->mask != 0; item++) {
1762 if (cmp1(p, p1 - p, item->name))
1763 goto found;
1764 }
1765 return 0;
1766 }
1767 found:
1768 mask |= item->mask;
1769 if (*p1 != ',')
1770 break;
1771 p = p1 + 1;
1772 }
1773 return mask;
1774 }
1775
1776 void cpu_abort(CPUState *env, const char *fmt, ...)
1777 {
1778 va_list ap;
1779 va_list ap2;
1780
1781 va_start(ap, fmt);
1782 va_copy(ap2, ap);
1783 fprintf(stderr, "qemu: fatal: ");
1784 vfprintf(stderr, fmt, ap);
1785 fprintf(stderr, "\n");
1786 #ifdef TARGET_I386
1787 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1788 #else
1789 cpu_dump_state(env, stderr, fprintf, 0);
1790 #endif
1791 if (qemu_log_enabled()) {
1792 qemu_log("qemu: fatal: ");
1793 qemu_log_vprintf(fmt, ap2);
1794 qemu_log("\n");
1795 #ifdef TARGET_I386
1796 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1797 #else
1798 log_cpu_state(env, 0);
1799 #endif
1800 qemu_log_flush();
1801 qemu_log_close();
1802 }
1803 va_end(ap2);
1804 va_end(ap);
1805 #if defined(CONFIG_USER_ONLY)
1806 {
1807 struct sigaction act;
1808 sigfillset(&act.sa_mask);
1809 act.sa_handler = SIG_DFL;
1810 sigaction(SIGABRT, &act, NULL);
1811 }
1812 #endif
1813 abort();
1814 }
1815
1816 CPUState *cpu_copy(CPUState *env)
1817 {
1818 CPUState *new_env = cpu_init(env->cpu_model_str);
1819 CPUState *next_cpu = new_env->next_cpu;
1820 int cpu_index = new_env->cpu_index;
1821 #if defined(TARGET_HAS_ICE)
1822 CPUBreakpoint *bp;
1823 CPUWatchpoint *wp;
1824 #endif
1825
1826 memcpy(new_env, env, sizeof(CPUState));
1827
1828 /* Preserve chaining and index. */
1829 new_env->next_cpu = next_cpu;
1830 new_env->cpu_index = cpu_index;
1831
1832 /* Clone all break/watchpoints.
1833 Note: Once we support ptrace with hw-debug register access, make sure
1834 BP_CPU break/watchpoints are handled correctly on clone. */
1835 QTAILQ_INIT(&env->breakpoints);
1836 QTAILQ_INIT(&env->watchpoints);
1837 #if defined(TARGET_HAS_ICE)
1838 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1839 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1840 }
1841 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1842 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1843 wp->flags, NULL);
1844 }
1845 #endif
1846
1847 return new_env;
1848 }
1849
1850 #if !defined(CONFIG_USER_ONLY)
1851
1852 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1853 {
1854 unsigned int i;
1855
1856 /* Discard jump cache entries for any tb which might potentially
1857 overlap the flushed page. */
1858 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1859 memset (&env->tb_jmp_cache[i], 0,
1860 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1861
1862 i = tb_jmp_cache_hash_page(addr);
1863 memset (&env->tb_jmp_cache[i], 0,
1864 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1865 }
1866
1867 static CPUTLBEntry s_cputlb_empty_entry = {
1868 .addr_read = -1,
1869 .addr_write = -1,
1870 .addr_code = -1,
1871 .addend = -1,
1872 };
1873
1874 /* NOTE: if flush_global is true, also flush global entries (not
1875 implemented yet) */
1876 void tlb_flush(CPUState *env, int flush_global)
1877 {
1878 int i;
1879
1880 #if defined(DEBUG_TLB)
1881 printf("tlb_flush:\n");
1882 #endif
1883 /* must reset current TB so that interrupts cannot modify the
1884 links while we are modifying them */
1885 env->current_tb = NULL;
1886
1887 for(i = 0; i < CPU_TLB_SIZE; i++) {
1888 int mmu_idx;
1889 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1890 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1891 }
1892 }
1893
1894 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1895
1896 tlb_flush_count++;
1897 }
1898
1899 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1900 {
1901 if (addr == (tlb_entry->addr_read &
1902 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1903 addr == (tlb_entry->addr_write &
1904 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1905 addr == (tlb_entry->addr_code &
1906 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1907 *tlb_entry = s_cputlb_empty_entry;
1908 }
1909 }
1910
1911 void tlb_flush_page(CPUState *env, target_ulong addr)
1912 {
1913 int i;
1914 int mmu_idx;
1915
1916 #if defined(DEBUG_TLB)
1917 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1918 #endif
1919 /* must reset current TB so that interrupts cannot modify the
1920 links while we are modifying them */
1921 env->current_tb = NULL;
1922
1923 addr &= TARGET_PAGE_MASK;
1924 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1925 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1926 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1927
1928 tlb_flush_jmp_cache(env, addr);
1929 }
1930
1931 /* update the TLBs so that writes to code in the virtual page 'addr'
1932 can be detected */
1933 static void tlb_protect_code(ram_addr_t ram_addr)
1934 {
1935 cpu_physical_memory_reset_dirty(ram_addr,
1936 ram_addr + TARGET_PAGE_SIZE,
1937 CODE_DIRTY_FLAG);
1938 }
1939
1940 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1941 tested for self modifying code */
1942 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1943 target_ulong vaddr)
1944 {
1945 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1946 }
1947
1948 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1949 unsigned long start, unsigned long length)
1950 {
1951 unsigned long addr;
1952 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1953 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1954 if ((addr - start) < length) {
1955 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1956 }
1957 }
1958 }
1959
1960 /* Note: start and end must be within the same ram block. */
1961 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1962 int dirty_flags)
1963 {
1964 CPUState *env;
1965 unsigned long length, start1;
1966 int i, mask, len;
1967 uint8_t *p;
1968
1969 start &= TARGET_PAGE_MASK;
1970 end = TARGET_PAGE_ALIGN(end);
1971
1972 length = end - start;
1973 if (length == 0)
1974 return;
1975 len = length >> TARGET_PAGE_BITS;
1976 mask = ~dirty_flags;
1977 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1978 for(i = 0; i < len; i++)
1979 p[i] &= mask;
1980
1981 /* we modify the TLB cache so that the dirty bit will be set again
1982 when accessing the range */
1983 start1 = (unsigned long)qemu_get_ram_ptr(start);
1984 /* Chek that we don't span multiple blocks - this breaks the
1985 address comparisons below. */
1986 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1987 != (end - 1) - start) {
1988 abort();
1989 }
1990
1991 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1992 int mmu_idx;
1993 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1994 for(i = 0; i < CPU_TLB_SIZE; i++)
1995 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1996 start1, length);
1997 }
1998 }
1999 }
2000
2001 int cpu_physical_memory_set_dirty_tracking(int enable)
2002 {
2003 int ret = 0;
2004 in_migration = enable;
2005 ret = cpu_notify_migration_log(!!enable);
2006 return ret;
2007 }
2008
2009 int cpu_physical_memory_get_dirty_tracking(void)
2010 {
2011 return in_migration;
2012 }
2013
2014 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2015 target_phys_addr_t end_addr)
2016 {
2017 int ret;
2018
2019 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2020 return ret;
2021 }
2022
2023 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2024 {
2025 ram_addr_t ram_addr;
2026 void *p;
2027
2028 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2029 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2030 + tlb_entry->addend);
2031 ram_addr = qemu_ram_addr_from_host(p);
2032 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2033 tlb_entry->addr_write |= TLB_NOTDIRTY;
2034 }
2035 }
2036 }
2037
2038 /* update the TLB according to the current state of the dirty bits */
2039 void cpu_tlb_update_dirty(CPUState *env)
2040 {
2041 int i;
2042 int mmu_idx;
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2046 }
2047 }
2048
2049 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2050 {
2051 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2052 tlb_entry->addr_write = vaddr;
2053 }
2054
2055 /* update the TLB corresponding to virtual page vaddr
2056 so that it is no longer dirty */
2057 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2058 {
2059 int i;
2060 int mmu_idx;
2061
2062 vaddr &= TARGET_PAGE_MASK;
2063 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2064 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2065 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2066 }
2067
2068 /* add a new TLB entry. At most one entry for a given virtual address
2069 is permitted. Return 0 if OK or 2 if the page could not be mapped
2070 (can only happen in non SOFTMMU mode for I/O pages or pages
2071 conflicting with the host address space). */
2072 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2073 target_phys_addr_t paddr, int prot,
2074 int mmu_idx, int is_softmmu)
2075 {
2076 PhysPageDesc *p;
2077 unsigned long pd;
2078 unsigned int index;
2079 target_ulong address;
2080 target_ulong code_address;
2081 target_phys_addr_t addend;
2082 int ret;
2083 CPUTLBEntry *te;
2084 CPUWatchpoint *wp;
2085 target_phys_addr_t iotlb;
2086
2087 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2088 if (!p) {
2089 pd = IO_MEM_UNASSIGNED;
2090 } else {
2091 pd = p->phys_offset;
2092 }
2093 #if defined(DEBUG_TLB)
2094 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2095 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2096 #endif
2097
2098 ret = 0;
2099 address = vaddr;
2100 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2101 /* IO memory case (romd handled later) */
2102 address |= TLB_MMIO;
2103 }
2104 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2105 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2106 /* Normal RAM. */
2107 iotlb = pd & TARGET_PAGE_MASK;
2108 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2109 iotlb |= IO_MEM_NOTDIRTY;
2110 else
2111 iotlb |= IO_MEM_ROM;
2112 } else {
2113 /* IO handlers are currently passed a physical address.
2114 It would be nice to pass an offset from the base address
2115 of that region. This would avoid having to special case RAM,
2116 and avoid full address decoding in every device.
2117 We can't use the high bits of pd for this because
2118 IO_MEM_ROMD uses these as a ram address. */
2119 iotlb = (pd & ~TARGET_PAGE_MASK);
2120 if (p) {
2121 iotlb += p->region_offset;
2122 } else {
2123 iotlb += paddr;
2124 }
2125 }
2126
2127 code_address = address;
2128 /* Make accesses to pages with watchpoints go via the
2129 watchpoint trap routines. */
2130 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2131 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2132 iotlb = io_mem_watch + paddr;
2133 /* TODO: The memory case can be optimized by not trapping
2134 reads of pages with a write breakpoint. */
2135 address |= TLB_MMIO;
2136 }
2137 }
2138
2139 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2140 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2141 te = &env->tlb_table[mmu_idx][index];
2142 te->addend = addend - vaddr;
2143 if (prot & PAGE_READ) {
2144 te->addr_read = address;
2145 } else {
2146 te->addr_read = -1;
2147 }
2148
2149 if (prot & PAGE_EXEC) {
2150 te->addr_code = code_address;
2151 } else {
2152 te->addr_code = -1;
2153 }
2154 if (prot & PAGE_WRITE) {
2155 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2156 (pd & IO_MEM_ROMD)) {
2157 /* Write access calls the I/O callback. */
2158 te->addr_write = address | TLB_MMIO;
2159 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2160 !cpu_physical_memory_is_dirty(pd)) {
2161 te->addr_write = address | TLB_NOTDIRTY;
2162 } else {
2163 te->addr_write = address;
2164 }
2165 } else {
2166 te->addr_write = -1;
2167 }
2168 return ret;
2169 }
2170
2171 #else
2172
2173 void tlb_flush(CPUState *env, int flush_global)
2174 {
2175 }
2176
2177 void tlb_flush_page(CPUState *env, target_ulong addr)
2178 {
2179 }
2180
2181 /*
2182 * Walks guest process memory "regions" one by one
2183 * and calls callback function 'fn' for each region.
2184 */
2185 int walk_memory_regions(void *priv,
2186 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2187 {
2188 unsigned long start, end;
2189 PageDesc *p = NULL;
2190 int i, j, prot, prot1;
2191 int rc = 0;
2192
2193 start = end = -1;
2194 prot = 0;
2195
2196 for (i = 0; i <= L1_SIZE; i++) {
2197 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2198 for (j = 0; j < L2_SIZE; j++) {
2199 prot1 = (p == NULL) ? 0 : p[j].flags;
2200 /*
2201 * "region" is one continuous chunk of memory
2202 * that has same protection flags set.
2203 */
2204 if (prot1 != prot) {
2205 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2206 if (start != -1) {
2207 rc = (*fn)(priv, start, end, prot);
2208 /* callback can stop iteration by returning != 0 */
2209 if (rc != 0)
2210 return (rc);
2211 }
2212 if (prot1 != 0)
2213 start = end;
2214 else
2215 start = -1;
2216 prot = prot1;
2217 }
2218 if (p == NULL)
2219 break;
2220 }
2221 }
2222 return (rc);
2223 }
2224
2225 static int dump_region(void *priv, unsigned long start,
2226 unsigned long end, unsigned long prot)
2227 {
2228 FILE *f = (FILE *)priv;
2229
2230 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2231 start, end, end - start,
2232 ((prot & PAGE_READ) ? 'r' : '-'),
2233 ((prot & PAGE_WRITE) ? 'w' : '-'),
2234 ((prot & PAGE_EXEC) ? 'x' : '-'));
2235
2236 return (0);
2237 }
2238
2239 /* dump memory mappings */
2240 void page_dump(FILE *f)
2241 {
2242 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2243 "start", "end", "size", "prot");
2244 walk_memory_regions(f, dump_region);
2245 }
2246
2247 int page_get_flags(target_ulong address)
2248 {
2249 PageDesc *p;
2250
2251 p = page_find(address >> TARGET_PAGE_BITS);
2252 if (!p)
2253 return 0;
2254 return p->flags;
2255 }
2256
2257 /* modify the flags of a page and invalidate the code if
2258 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2259 depending on PAGE_WRITE */
2260 void page_set_flags(target_ulong start, target_ulong end, int flags)
2261 {
2262 PageDesc *p;
2263 target_ulong addr;
2264
2265 /* mmap_lock should already be held. */
2266 start = start & TARGET_PAGE_MASK;
2267 end = TARGET_PAGE_ALIGN(end);
2268 if (flags & PAGE_WRITE)
2269 flags |= PAGE_WRITE_ORG;
2270 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2271 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2272 /* We may be called for host regions that are outside guest
2273 address space. */
2274 if (!p)
2275 return;
2276 /* if the write protection is set, then we invalidate the code
2277 inside */
2278 if (!(p->flags & PAGE_WRITE) &&
2279 (flags & PAGE_WRITE) &&
2280 p->first_tb) {
2281 tb_invalidate_phys_page(addr, 0, NULL);
2282 }
2283 p->flags = flags;
2284 }
2285 }
2286
2287 int page_check_range(target_ulong start, target_ulong len, int flags)
2288 {
2289 PageDesc *p;
2290 target_ulong end;
2291 target_ulong addr;
2292
2293 if (start + len < start)
2294 /* we've wrapped around */
2295 return -1;
2296
2297 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2298 start = start & TARGET_PAGE_MASK;
2299
2300 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2301 p = page_find(addr >> TARGET_PAGE_BITS);
2302 if( !p )
2303 return -1;
2304 if( !(p->flags & PAGE_VALID) )
2305 return -1;
2306
2307 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2308 return -1;
2309 if (flags & PAGE_WRITE) {
2310 if (!(p->flags & PAGE_WRITE_ORG))
2311 return -1;
2312 /* unprotect the page if it was put read-only because it
2313 contains translated code */
2314 if (!(p->flags & PAGE_WRITE)) {
2315 if (!page_unprotect(addr, 0, NULL))
2316 return -1;
2317 }
2318 return 0;
2319 }
2320 }
2321 return 0;
2322 }
2323
2324 /* called from signal handler: invalidate the code and unprotect the
2325 page. Return TRUE if the fault was successfully handled. */
2326 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2327 {
2328 unsigned int page_index, prot, pindex;
2329 PageDesc *p, *p1;
2330 target_ulong host_start, host_end, addr;
2331
2332 /* Technically this isn't safe inside a signal handler. However we
2333 know this only ever happens in a synchronous SEGV handler, so in
2334 practice it seems to be ok. */
2335 mmap_lock();
2336
2337 host_start = address & qemu_host_page_mask;
2338 page_index = host_start >> TARGET_PAGE_BITS;
2339 p1 = page_find(page_index);
2340 if (!p1) {
2341 mmap_unlock();
2342 return 0;
2343 }
2344 host_end = host_start + qemu_host_page_size;
2345 p = p1;
2346 prot = 0;
2347 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2348 prot |= p->flags;
2349 p++;
2350 }
2351 /* if the page was really writable, then we change its
2352 protection back to writable */
2353 if (prot & PAGE_WRITE_ORG) {
2354 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2355 if (!(p1[pindex].flags & PAGE_WRITE)) {
2356 mprotect((void *)g2h(host_start), qemu_host_page_size,
2357 (prot & PAGE_BITS) | PAGE_WRITE);
2358 p1[pindex].flags |= PAGE_WRITE;
2359 /* and since the content will be modified, we must invalidate
2360 the corresponding translated code. */
2361 tb_invalidate_phys_page(address, pc, puc);
2362 #ifdef DEBUG_TB_CHECK
2363 tb_invalidate_check(address);
2364 #endif
2365 mmap_unlock();
2366 return 1;
2367 }
2368 }
2369 mmap_unlock();
2370 return 0;
2371 }
2372
2373 static inline void tlb_set_dirty(CPUState *env,
2374 unsigned long addr, target_ulong vaddr)
2375 {
2376 }
2377 #endif /* defined(CONFIG_USER_ONLY) */
2378
2379 #if !defined(CONFIG_USER_ONLY)
2380
2381 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2382 typedef struct subpage_t {
2383 target_phys_addr_t base;
2384 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2385 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2386 void *opaque[TARGET_PAGE_SIZE][2][4];
2387 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2388 } subpage_t;
2389
2390 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2391 ram_addr_t memory, ram_addr_t region_offset);
2392 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2393 ram_addr_t orig_memory, ram_addr_t region_offset);
2394 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2395 need_subpage) \
2396 do { \
2397 if (addr > start_addr) \
2398 start_addr2 = 0; \
2399 else { \
2400 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2401 if (start_addr2 > 0) \
2402 need_subpage = 1; \
2403 } \
2404 \
2405 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2406 end_addr2 = TARGET_PAGE_SIZE - 1; \
2407 else { \
2408 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2409 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2410 need_subpage = 1; \
2411 } \
2412 } while (0)
2413
2414 /* register physical memory.
2415 For RAM, 'size' must be a multiple of the target page size.
2416 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2417 io memory page. The address used when calling the IO function is
2418 the offset from the start of the region, plus region_offset. Both
2419 start_addr and region_offset are rounded down to a page boundary
2420 before calculating this offset. This should not be a problem unless
2421 the low bits of start_addr and region_offset differ. */
2422 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2423 ram_addr_t size,
2424 ram_addr_t phys_offset,
2425 ram_addr_t region_offset)
2426 {
2427 target_phys_addr_t addr, end_addr;
2428 PhysPageDesc *p;
2429 CPUState *env;
2430 ram_addr_t orig_size = size;
2431 void *subpage;
2432
2433 cpu_notify_set_memory(start_addr, size, phys_offset);
2434
2435 if (phys_offset == IO_MEM_UNASSIGNED) {
2436 region_offset = start_addr;
2437 }
2438 region_offset &= TARGET_PAGE_MASK;
2439 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2440 end_addr = start_addr + (target_phys_addr_t)size;
2441 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2442 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2443 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2444 ram_addr_t orig_memory = p->phys_offset;
2445 target_phys_addr_t start_addr2, end_addr2;
2446 int need_subpage = 0;
2447
2448 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2449 need_subpage);
2450 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2451 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2452 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2453 &p->phys_offset, orig_memory,
2454 p->region_offset);
2455 } else {
2456 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2457 >> IO_MEM_SHIFT];
2458 }
2459 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2460 region_offset);
2461 p->region_offset = 0;
2462 } else {
2463 p->phys_offset = phys_offset;
2464 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2465 (phys_offset & IO_MEM_ROMD))
2466 phys_offset += TARGET_PAGE_SIZE;
2467 }
2468 } else {
2469 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2470 p->phys_offset = phys_offset;
2471 p->region_offset = region_offset;
2472 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2473 (phys_offset & IO_MEM_ROMD)) {
2474 phys_offset += TARGET_PAGE_SIZE;
2475 } else {
2476 target_phys_addr_t start_addr2, end_addr2;
2477 int need_subpage = 0;
2478
2479 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2480 end_addr2, need_subpage);
2481
2482 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2483 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2484 &p->phys_offset, IO_MEM_UNASSIGNED,
2485 addr & TARGET_PAGE_MASK);
2486 subpage_register(subpage, start_addr2, end_addr2,
2487 phys_offset, region_offset);
2488 p->region_offset = 0;
2489 }
2490 }
2491 }
2492 region_offset += TARGET_PAGE_SIZE;
2493 }
2494
2495 /* since each CPU stores ram addresses in its TLB cache, we must
2496 reset the modified entries */
2497 /* XXX: slow ! */
2498 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2499 tlb_flush(env, 1);
2500 }
2501 }
2502
2503 /* XXX: temporary until new memory mapping API */
2504 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2505 {
2506 PhysPageDesc *p;
2507
2508 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2509 if (!p)
2510 return IO_MEM_UNASSIGNED;
2511 return p->phys_offset;
2512 }
2513
2514 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2515 {
2516 if (kvm_enabled())
2517 kvm_coalesce_mmio_region(addr, size);
2518 }
2519
2520 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2521 {
2522 if (kvm_enabled())
2523 kvm_uncoalesce_mmio_region(addr, size);
2524 }
2525
2526 void qemu_flush_coalesced_mmio_buffer(void)
2527 {
2528 if (kvm_enabled())
2529 kvm_flush_coalesced_mmio_buffer();
2530 }
2531
2532 #if defined(__linux__) && !defined(TARGET_S390X)
2533
2534 #include <sys/vfs.h>
2535
2536 #define HUGETLBFS_MAGIC 0x958458f6
2537
2538 static long gethugepagesize(const char *path)
2539 {
2540 struct statfs fs;
2541 int ret;
2542
2543 do {
2544 ret = statfs(path, &fs);
2545 } while (ret != 0 && errno == EINTR);
2546
2547 if (ret != 0) {
2548 perror("statfs");
2549 return 0;
2550 }
2551
2552 if (fs.f_type != HUGETLBFS_MAGIC)
2553 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2554
2555 return fs.f_bsize;
2556 }
2557
2558 static void *file_ram_alloc(ram_addr_t memory, const char *path)
2559 {
2560 char *filename;
2561 void *area;
2562 int fd;
2563 #ifdef MAP_POPULATE
2564 int flags;
2565 #endif
2566 unsigned long hpagesize;
2567
2568 hpagesize = gethugepagesize(path);
2569 if (!hpagesize) {
2570 return NULL;
2571 }
2572
2573 if (memory < hpagesize) {
2574 return NULL;
2575 }
2576
2577 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2578 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2579 return NULL;
2580 }
2581
2582 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2583 return NULL;
2584 }
2585
2586 fd = mkstemp(filename);
2587 if (fd < 0) {
2588 perror("mkstemp");
2589 free(filename);
2590 return NULL;
2591 }
2592 unlink(filename);
2593 free(filename);
2594
2595 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2596
2597 /*
2598 * ftruncate is not supported by hugetlbfs in older
2599 * hosts, so don't bother bailing out on errors.
2600 * If anything goes wrong with it under other filesystems,
2601 * mmap will fail.
2602 */
2603 if (ftruncate(fd, memory))
2604 perror("ftruncate");
2605
2606 #ifdef MAP_POPULATE
2607 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2608 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2609 * to sidestep this quirk.
2610 */
2611 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2612 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2613 #else
2614 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2615 #endif
2616 if (area == MAP_FAILED) {
2617 perror("file_ram_alloc: can't mmap RAM pages");
2618 close(fd);
2619 return (NULL);
2620 }
2621 return area;
2622 }
2623 #endif
2624
2625 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2626 {
2627 RAMBlock *new_block;
2628
2629 size = TARGET_PAGE_ALIGN(size);
2630 new_block = qemu_malloc(sizeof(*new_block));
2631
2632 if (mem_path) {
2633 #if defined (__linux__) && !defined(TARGET_S390X)
2634 new_block->host = file_ram_alloc(size, mem_path);
2635 if (!new_block->host)
2636 exit(1);
2637 #else
2638 fprintf(stderr, "-mem-path option unsupported\n");
2639 exit(1);
2640 #endif
2641 } else {
2642 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2643 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2644 new_block->host = mmap((void*)0x1000000, size,
2645 PROT_EXEC|PROT_READ|PROT_WRITE,
2646 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2647 #else
2648 new_block->host = qemu_vmalloc(size);
2649 #endif
2650 #ifdef MADV_MERGEABLE
2651 madvise(new_block->host, size, MADV_MERGEABLE);
2652 #endif
2653 }
2654 new_block->offset = last_ram_offset;
2655 new_block->length = size;
2656
2657 new_block->next = ram_blocks;
2658 ram_blocks = new_block;
2659
2660 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2661 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2662 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2663 0xff, size >> TARGET_PAGE_BITS);
2664
2665 last_ram_offset += size;
2666
2667 if (kvm_enabled())
2668 kvm_setup_guest_memory(new_block->host, size);
2669
2670 return new_block->offset;
2671 }
2672
2673 void qemu_ram_free(ram_addr_t addr)
2674 {
2675 /* TODO: implement this. */
2676 }
2677
2678 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2679 With the exception of the softmmu code in this file, this should
2680 only be used for local memory (e.g. video ram) that the device owns,
2681 and knows it isn't going to access beyond the end of the block.
2682
2683 It should not be used for general purpose DMA.
2684 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2685 */
2686 void *qemu_get_ram_ptr(ram_addr_t addr)
2687 {
2688 RAMBlock *prev;
2689 RAMBlock **prevp;
2690 RAMBlock *block;
2691
2692 prev = NULL;
2693 prevp = &ram_blocks;
2694 block = ram_blocks;
2695 while (block && (block->offset > addr
2696 || block->offset + block->length <= addr)) {
2697 if (prev)
2698 prevp = &prev->next;
2699 prev = block;
2700 block = block->next;
2701 }
2702 if (!block) {
2703 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2704 abort();
2705 }
2706 /* Move this entry to to start of the list. */
2707 if (prev) {
2708 prev->next = block->next;
2709 block->next = *prevp;
2710 *prevp = block;
2711 }
2712 return block->host + (addr - block->offset);
2713 }
2714
2715 /* Some of the softmmu routines need to translate from a host pointer
2716 (typically a TLB entry) back to a ram offset. */
2717 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2718 {
2719 RAMBlock *prev;
2720 RAMBlock *block;
2721 uint8_t *host = ptr;
2722
2723 prev = NULL;
2724 block = ram_blocks;
2725 while (block && (block->host > host
2726 || block->host + block->length <= host)) {
2727 prev = block;
2728 block = block->next;
2729 }
2730 if (!block) {
2731 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2732 abort();
2733 }
2734 return block->offset + (host - block->host);
2735 }
2736
2737 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2738 {
2739 #ifdef DEBUG_UNASSIGNED
2740 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2741 #endif
2742 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2743 do_unassigned_access(addr, 0, 0, 0, 1);
2744 #endif
2745 return 0;
2746 }
2747
2748 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2749 {
2750 #ifdef DEBUG_UNASSIGNED
2751 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2752 #endif
2753 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2754 do_unassigned_access(addr, 0, 0, 0, 2);
2755 #endif
2756 return 0;
2757 }
2758
2759 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2760 {
2761 #ifdef DEBUG_UNASSIGNED
2762 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2763 #endif
2764 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2765 do_unassigned_access(addr, 0, 0, 0, 4);
2766 #endif
2767 return 0;
2768 }
2769
2770 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2771 {
2772 #ifdef DEBUG_UNASSIGNED
2773 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2774 #endif
2775 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2776 do_unassigned_access(addr, 1, 0, 0, 1);
2777 #endif
2778 }
2779
2780 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2781 {
2782 #ifdef DEBUG_UNASSIGNED
2783 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2784 #endif
2785 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2786 do_unassigned_access(addr, 1, 0, 0, 2);
2787 #endif
2788 }
2789
2790 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2791 {
2792 #ifdef DEBUG_UNASSIGNED
2793 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2794 #endif
2795 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2796 do_unassigned_access(addr, 1, 0, 0, 4);
2797 #endif
2798 }
2799
2800 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2801 unassigned_mem_readb,
2802 unassigned_mem_readw,
2803 unassigned_mem_readl,
2804 };
2805
2806 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2807 unassigned_mem_writeb,
2808 unassigned_mem_writew,
2809 unassigned_mem_writel,
2810 };
2811
2812 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2813 uint32_t val)
2814 {
2815 int dirty_flags;
2816 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2817 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2818 #if !defined(CONFIG_USER_ONLY)
2819 tb_invalidate_phys_page_fast(ram_addr, 1);
2820 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2821 #endif
2822 }
2823 stb_p(qemu_get_ram_ptr(ram_addr), val);
2824 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2826 /* we remove the notdirty callback only if the code has been
2827 flushed */
2828 if (dirty_flags == 0xff)
2829 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2830 }
2831
2832 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2833 uint32_t val)
2834 {
2835 int dirty_flags;
2836 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2837 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2838 #if !defined(CONFIG_USER_ONLY)
2839 tb_invalidate_phys_page_fast(ram_addr, 2);
2840 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2841 #endif
2842 }
2843 stw_p(qemu_get_ram_ptr(ram_addr), val);
2844 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2845 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2846 /* we remove the notdirty callback only if the code has been
2847 flushed */
2848 if (dirty_flags == 0xff)
2849 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2850 }
2851
2852 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2853 uint32_t val)
2854 {
2855 int dirty_flags;
2856 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2857 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2858 #if !defined(CONFIG_USER_ONLY)
2859 tb_invalidate_phys_page_fast(ram_addr, 4);
2860 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2861 #endif
2862 }
2863 stl_p(qemu_get_ram_ptr(ram_addr), val);
2864 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2865 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2866 /* we remove the notdirty callback only if the code has been
2867 flushed */
2868 if (dirty_flags == 0xff)
2869 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2870 }
2871
2872 static CPUReadMemoryFunc * const error_mem_read[3] = {
2873 NULL, /* never used */
2874 NULL, /* never used */
2875 NULL, /* never used */
2876 };
2877
2878 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2879 notdirty_mem_writeb,
2880 notdirty_mem_writew,
2881 notdirty_mem_writel,
2882 };
2883
2884 /* Generate a debug exception if a watchpoint has been hit. */
2885 static void check_watchpoint(int offset, int len_mask, int flags)
2886 {
2887 CPUState *env = cpu_single_env;
2888 target_ulong pc, cs_base;
2889 TranslationBlock *tb;
2890 target_ulong vaddr;
2891 CPUWatchpoint *wp;
2892 int cpu_flags;
2893
2894 if (env->watchpoint_hit) {
2895 /* We re-entered the check after replacing the TB. Now raise
2896 * the debug interrupt so that is will trigger after the
2897 * current instruction. */
2898 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2899 return;
2900 }
2901 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2902 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2903 if ((vaddr == (wp->vaddr & len_mask) ||
2904 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2905 wp->flags |= BP_WATCHPOINT_HIT;
2906 if (!env->watchpoint_hit) {
2907 env->watchpoint_hit = wp;
2908 tb = tb_find_pc(env->mem_io_pc);
2909 if (!tb) {
2910 cpu_abort(env, "check_watchpoint: could not find TB for "
2911 "pc=%p", (void *)env->mem_io_pc);
2912 }
2913 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2914 tb_phys_invalidate(tb, -1);
2915 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2916 env->exception_index = EXCP_DEBUG;
2917 } else {
2918 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2919 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2920 }
2921 cpu_resume_from_signal(env, NULL);
2922 }
2923 } else {
2924 wp->flags &= ~BP_WATCHPOINT_HIT;
2925 }
2926 }
2927 }
2928
2929 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2930 so these check for a hit then pass through to the normal out-of-line
2931 phys routines. */
2932 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2933 {
2934 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2935 return ldub_phys(addr);
2936 }
2937
2938 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2939 {
2940 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2941 return lduw_phys(addr);
2942 }
2943
2944 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2945 {
2946 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2947 return ldl_phys(addr);
2948 }
2949
2950 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2951 uint32_t val)
2952 {
2953 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2954 stb_phys(addr, val);
2955 }
2956
2957 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2958 uint32_t val)
2959 {
2960 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2961 stw_phys(addr, val);
2962 }
2963
2964 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2965 uint32_t val)
2966 {
2967 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2968 stl_phys(addr, val);
2969 }
2970
2971 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2972 watch_mem_readb,
2973 watch_mem_readw,
2974 watch_mem_readl,
2975 };
2976
2977 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2978 watch_mem_writeb,
2979 watch_mem_writew,
2980 watch_mem_writel,
2981 };
2982
2983 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2984 unsigned int len)
2985 {
2986 uint32_t ret;
2987 unsigned int idx;
2988
2989 idx = SUBPAGE_IDX(addr);
2990 #if defined(DEBUG_SUBPAGE)
2991 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2992 mmio, len, addr, idx);
2993 #endif
2994 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2995 addr + mmio->region_offset[idx][0][len]);
2996
2997 return ret;
2998 }
2999
3000 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3001 uint32_t value, unsigned int len)
3002 {
3003 unsigned int idx;
3004
3005 idx = SUBPAGE_IDX(addr);
3006 #if defined(DEBUG_SUBPAGE)
3007 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3008 mmio, len, addr, idx, value);
3009 #endif
3010 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3011 addr + mmio->region_offset[idx][1][len],
3012 value);
3013 }
3014
3015 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3016 {
3017 #if defined(DEBUG_SUBPAGE)
3018 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3019 #endif
3020
3021 return subpage_readlen(opaque, addr, 0);
3022 }
3023
3024 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3025 uint32_t value)
3026 {
3027 #if defined(DEBUG_SUBPAGE)
3028 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3029 #endif
3030 subpage_writelen(opaque, addr, value, 0);
3031 }
3032
3033 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3034 {
3035 #if defined(DEBUG_SUBPAGE)
3036 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3037 #endif
3038
3039 return subpage_readlen(opaque, addr, 1);
3040 }
3041
3042 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3043 uint32_t value)
3044 {
3045 #if defined(DEBUG_SUBPAGE)
3046 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3047 #endif
3048 subpage_writelen(opaque, addr, value, 1);
3049 }
3050
3051 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3052 {
3053 #if defined(DEBUG_SUBPAGE)
3054 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3055 #endif
3056
3057 return subpage_readlen(opaque, addr, 2);
3058 }
3059
3060 static void subpage_writel (void *opaque,
3061 target_phys_addr_t addr, uint32_t value)
3062 {
3063 #if defined(DEBUG_SUBPAGE)
3064 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3065 #endif
3066 subpage_writelen(opaque, addr, value, 2);
3067 }
3068
3069 static CPUReadMemoryFunc * const subpage_read[] = {
3070 &subpage_readb,
3071 &subpage_readw,
3072 &subpage_readl,
3073 };
3074
3075 static CPUWriteMemoryFunc * const subpage_write[] = {
3076 &subpage_writeb,
3077 &subpage_writew,
3078 &subpage_writel,
3079 };
3080
3081 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3082 ram_addr_t memory, ram_addr_t region_offset)
3083 {
3084 int idx, eidx;
3085 unsigned int i;
3086
3087 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3088 return -1;
3089 idx = SUBPAGE_IDX(start);
3090 eidx = SUBPAGE_IDX(end);
3091 #if defined(DEBUG_SUBPAGE)
3092 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3093 mmio, start, end, idx, eidx, memory);
3094 #endif
3095 memory >>= IO_MEM_SHIFT;
3096 for (; idx <= eidx; idx++) {
3097 for (i = 0; i < 4; i++) {
3098 if (io_mem_read[memory][i]) {
3099 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3100 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3101 mmio->region_offset[idx][0][i] = region_offset;
3102 }
3103 if (io_mem_write[memory][i]) {
3104 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3105 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3106 mmio->region_offset[idx][1][i] = region_offset;
3107 }
3108 }
3109 }
3110
3111 return 0;
3112 }
3113
3114 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3115 ram_addr_t orig_memory, ram_addr_t region_offset)
3116 {
3117 subpage_t *mmio;
3118 int subpage_memory;
3119
3120 mmio = qemu_mallocz(sizeof(subpage_t));
3121
3122 mmio->base = base;
3123 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3124 #if defined(DEBUG_SUBPAGE)
3125 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3126 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3127 #endif
3128 *phys = subpage_memory | IO_MEM_SUBPAGE;
3129 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
3130 region_offset);
3131
3132 return mmio;
3133 }
3134
3135 static int get_free_io_mem_idx(void)
3136 {
3137 int i;
3138
3139 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3140 if (!io_mem_used[i]) {
3141 io_mem_used[i] = 1;
3142 return i;
3143 }
3144 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3145 return -1;
3146 }
3147
3148 /* mem_read and mem_write are arrays of functions containing the
3149 function to access byte (index 0), word (index 1) and dword (index
3150 2). Functions can be omitted with a NULL function pointer.
3151 If io_index is non zero, the corresponding io zone is
3152 modified. If it is zero, a new io zone is allocated. The return
3153 value can be used with cpu_register_physical_memory(). (-1) is
3154 returned if error. */
3155 static int cpu_register_io_memory_fixed(int io_index,
3156 CPUReadMemoryFunc * const *mem_read,
3157 CPUWriteMemoryFunc * const *mem_write,
3158 void *opaque)
3159 {
3160 int i, subwidth = 0;
3161
3162 if (io_index <= 0) {
3163 io_index = get_free_io_mem_idx();
3164 if (io_index == -1)
3165 return io_index;
3166 } else {
3167 io_index >>= IO_MEM_SHIFT;
3168 if (io_index >= IO_MEM_NB_ENTRIES)
3169 return -1;
3170 }
3171
3172 for(i = 0;i < 3; i++) {
3173 if (!mem_read[i] || !mem_write[i])
3174 subwidth = IO_MEM_SUBWIDTH;
3175 io_mem_read[io_index][i] = mem_read[i];
3176 io_mem_write[io_index][i] = mem_write[i];
3177 }
3178 io_mem_opaque[io_index] = opaque;
3179 return (io_index << IO_MEM_SHIFT) | subwidth;
3180 }
3181
3182 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3183 CPUWriteMemoryFunc * const *mem_write,
3184 void *opaque)
3185 {
3186 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3187 }
3188
3189 void cpu_unregister_io_memory(int io_table_address)
3190 {
3191 int i;
3192 int io_index = io_table_address >> IO_MEM_SHIFT;
3193
3194 for (i=0;i < 3; i++) {
3195 io_mem_read[io_index][i] = unassigned_mem_read[i];
3196 io_mem_write[io_index][i] = unassigned_mem_write[i];
3197 }
3198 io_mem_opaque[io_index] = NULL;
3199 io_mem_used[io_index] = 0;
3200 }
3201
3202 static void io_mem_init(void)
3203 {
3204 int i;
3205
3206 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3207 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3208 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3209 for (i=0; i<5; i++)
3210 io_mem_used[i] = 1;
3211
3212 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3213 watch_mem_write, NULL);
3214 }
3215
3216 #endif /* !defined(CONFIG_USER_ONLY) */
3217
3218 /* physical memory access (slow version, mainly for debug) */
3219 #if defined(CONFIG_USER_ONLY)
3220 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3221 uint8_t *buf, int len, int is_write)
3222 {
3223 int l, flags;
3224 target_ulong page;
3225 void * p;
3226
3227 while (len > 0) {
3228 page = addr & TARGET_PAGE_MASK;
3229 l = (page + TARGET_PAGE_SIZE) - addr;
3230 if (l > len)
3231 l = len;
3232 flags = page_get_flags(page);
3233 if (!(flags & PAGE_VALID))
3234 return -1;
3235 if (is_write) {
3236 if (!(flags & PAGE_WRITE))
3237 return -1;
3238 /* XXX: this code should not depend on lock_user */
3239 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3240 return -1;
3241 memcpy(p, buf, l);
3242 unlock_user(p, addr, l);
3243 } else {
3244 if (!(flags & PAGE_READ))
3245 return -1;
3246 /* XXX: this code should not depend on lock_user */
3247 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3248 return -1;
3249 memcpy(buf, p, l);
3250 unlock_user(p, addr, 0);
3251 }
3252 len -= l;
3253 buf += l;
3254 addr += l;
3255 }
3256 return 0;
3257 }
3258
3259 #else
3260 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3261 int len, int is_write)
3262 {
3263 int l, io_index;
3264 uint8_t *ptr;
3265 uint32_t val;
3266 target_phys_addr_t page;
3267 unsigned long pd;
3268 PhysPageDesc *p;
3269
3270 while (len > 0) {
3271 page = addr & TARGET_PAGE_MASK;
3272 l = (page + TARGET_PAGE_SIZE) - addr;
3273 if (l > len)
3274 l = len;
3275 p = phys_page_find(page >> TARGET_PAGE_BITS);
3276 if (!p) {
3277 pd = IO_MEM_UNASSIGNED;
3278 } else {
3279 pd = p->phys_offset;
3280 }
3281
3282 if (is_write) {
3283 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3284 target_phys_addr_t addr1 = addr;
3285 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3286 if (p)
3287 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3288 /* XXX: could force cpu_single_env to NULL to avoid
3289 potential bugs */
3290 if (l >= 4 && ((addr1 & 3) == 0)) {
3291 /* 32 bit write access */
3292 val = ldl_p(buf);
3293 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3294 l = 4;
3295 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3296 /* 16 bit write access */
3297 val = lduw_p(buf);
3298 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3299 l = 2;
3300 } else {
3301 /* 8 bit write access */
3302 val = ldub_p(buf);
3303 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3304 l = 1;
3305 }
3306 } else {
3307 unsigned long addr1;
3308 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3309 /* RAM case */
3310 ptr = qemu_get_ram_ptr(addr1);
3311 memcpy(ptr, buf, l);
3312 if (!cpu_physical_memory_is_dirty(addr1)) {
3313 /* invalidate code */
3314 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3315 /* set dirty bit */
3316 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3317 (0xff & ~CODE_DIRTY_FLAG);
3318 }
3319 }
3320 } else {
3321 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3322 !(pd & IO_MEM_ROMD)) {
3323 target_phys_addr_t addr1 = addr;
3324 /* I/O case */
3325 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3326 if (p)
3327 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3328 if (l >= 4 && ((addr1 & 3) == 0)) {
3329 /* 32 bit read access */
3330 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3331 stl_p(buf, val);
3332 l = 4;
3333 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3334 /* 16 bit read access */
3335 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3336 stw_p(buf, val);
3337 l = 2;
3338 } else {
3339 /* 8 bit read access */
3340 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3341 stb_p(buf, val);
3342 l = 1;
3343 }
3344 } else {
3345 /* RAM case */
3346 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3347 (addr & ~TARGET_PAGE_MASK);
3348 memcpy(buf, ptr, l);
3349 }
3350 }
3351 len -= l;
3352 buf += l;
3353 addr += l;
3354 }
3355 }
3356
3357 /* used for ROM loading : can write in RAM and ROM */
3358 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3359 const uint8_t *buf, int len)
3360 {
3361 int l;
3362 uint8_t *ptr;
3363 target_phys_addr_t page;
3364 unsigned long pd;
3365 PhysPageDesc *p;
3366
3367 while (len > 0) {
3368 page = addr & TARGET_PAGE_MASK;
3369 l = (page + TARGET_PAGE_SIZE) - addr;
3370 if (l > len)
3371 l = len;
3372 p = phys_page_find(page >> TARGET_PAGE_BITS);
3373 if (!p) {
3374 pd = IO_MEM_UNASSIGNED;
3375 } else {
3376 pd = p->phys_offset;
3377 }
3378
3379 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3380 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3381 !(pd & IO_MEM_ROMD)) {
3382 /* do nothing */
3383 } else {
3384 unsigned long addr1;
3385 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3386 /* ROM/RAM case */
3387 ptr = qemu_get_ram_ptr(addr1);
3388 memcpy(ptr, buf, l);
3389 }
3390 len -= l;
3391 buf += l;
3392 addr += l;
3393 }
3394 }
3395
3396 typedef struct {
3397 void *buffer;
3398 target_phys_addr_t addr;
3399 target_phys_addr_t len;
3400 } BounceBuffer;
3401
3402 static BounceBuffer bounce;
3403
3404 typedef struct MapClient {
3405 void *opaque;
3406 void (*callback)(void *opaque);
3407 QLIST_ENTRY(MapClient) link;
3408 } MapClient;
3409
3410 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3411 = QLIST_HEAD_INITIALIZER(map_client_list);
3412
3413 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3414 {
3415 MapClient *client = qemu_malloc(sizeof(*client));
3416
3417 client->opaque = opaque;
3418 client->callback = callback;
3419 QLIST_INSERT_HEAD(&map_client_list, client, link);
3420 return client;
3421 }
3422
3423 void cpu_unregister_map_client(void *_client)
3424 {
3425 MapClient *client = (MapClient *)_client;
3426
3427 QLIST_REMOVE(client, link);
3428 qemu_free(client);
3429 }
3430
3431 static void cpu_notify_map_clients(void)
3432 {
3433 MapClient *client;
3434
3435 while (!QLIST_EMPTY(&map_client_list)) {
3436 client = QLIST_FIRST(&map_client_list);
3437 client->callback(client->opaque);
3438 cpu_unregister_map_client(client);
3439 }
3440 }
3441
3442 /* Map a physical memory region into a host virtual address.
3443 * May map a subset of the requested range, given by and returned in *plen.
3444 * May return NULL if resources needed to perform the mapping are exhausted.
3445 * Use only for reads OR writes - not for read-modify-write operations.
3446 * Use cpu_register_map_client() to know when retrying the map operation is
3447 * likely to succeed.
3448 */
3449 void *cpu_physical_memory_map(target_phys_addr_t addr,
3450 target_phys_addr_t *plen,
3451 int is_write)
3452 {
3453 target_phys_addr_t len = *plen;
3454 target_phys_addr_t done = 0;
3455 int l;
3456 uint8_t *ret = NULL;
3457 uint8_t *ptr;
3458 target_phys_addr_t page;
3459 unsigned long pd;
3460 PhysPageDesc *p;
3461 unsigned long addr1;
3462
3463 while (len > 0) {
3464 page = addr & TARGET_PAGE_MASK;
3465 l = (page + TARGET_PAGE_SIZE) - addr;
3466 if (l > len)
3467 l = len;
3468 p = phys_page_find(page >> TARGET_PAGE_BITS);
3469 if (!p) {
3470 pd = IO_MEM_UNASSIGNED;
3471 } else {
3472 pd = p->phys_offset;
3473 }
3474
3475 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3476 if (done || bounce.buffer) {
3477 break;
3478 }
3479 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3480 bounce.addr = addr;
3481 bounce.len = l;
3482 if (!is_write) {
3483 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3484 }
3485 ptr = bounce.buffer;
3486 } else {
3487 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3488 ptr = qemu_get_ram_ptr(addr1);
3489 }
3490 if (!done) {
3491 ret = ptr;
3492 } else if (ret + done != ptr) {
3493 break;
3494 }
3495
3496 len -= l;
3497 addr += l;
3498 done += l;
3499 }
3500 *plen = done;
3501 return ret;
3502 }
3503
3504 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3505 * Will also mark the memory as dirty if is_write == 1. access_len gives
3506 * the amount of memory that was actually read or written by the caller.
3507 */
3508 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3509 int is_write, target_phys_addr_t access_len)
3510 {
3511 if (buffer != bounce.buffer) {
3512 if (is_write) {
3513 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3514 while (access_len) {
3515 unsigned l;
3516 l = TARGET_PAGE_SIZE;
3517 if (l > access_len)
3518 l = access_len;
3519 if (!cpu_physical_memory_is_dirty(addr1)) {
3520 /* invalidate code */
3521 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3522 /* set dirty bit */
3523 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3524 (0xff & ~CODE_DIRTY_FLAG);
3525 }
3526 addr1 += l;
3527 access_len -= l;
3528 }
3529 }
3530 return;
3531 }
3532 if (is_write) {
3533 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3534 }
3535 qemu_vfree(bounce.buffer);
3536 bounce.buffer = NULL;
3537 cpu_notify_map_clients();
3538 }
3539
3540 /* warning: addr must be aligned */
3541 uint32_t ldl_phys(target_phys_addr_t addr)
3542 {
3543 int io_index;
3544 uint8_t *ptr;
3545 uint32_t val;
3546 unsigned long pd;
3547 PhysPageDesc *p;
3548
3549 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3550 if (!p) {
3551 pd = IO_MEM_UNASSIGNED;
3552 } else {
3553 pd = p->phys_offset;
3554 }
3555
3556 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3557 !(pd & IO_MEM_ROMD)) {
3558 /* I/O case */
3559 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3560 if (p)
3561 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3562 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3563 } else {
3564 /* RAM case */
3565 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3566 (addr & ~TARGET_PAGE_MASK);
3567 val = ldl_p(ptr);
3568 }
3569 return val;
3570 }
3571
3572 /* warning: addr must be aligned */
3573 uint64_t ldq_phys(target_phys_addr_t addr)
3574 {
3575 int io_index;
3576 uint8_t *ptr;
3577 uint64_t val;
3578 unsigned long pd;
3579 PhysPageDesc *p;
3580
3581 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3582 if (!p) {
3583 pd = IO_MEM_UNASSIGNED;
3584 } else {
3585 pd = p->phys_offset;
3586 }
3587
3588 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3589 !(pd & IO_MEM_ROMD)) {
3590 /* I/O case */
3591 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3592 if (p)
3593 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3594 #ifdef TARGET_WORDS_BIGENDIAN
3595 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3596 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3597 #else
3598 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3599 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3600 #endif
3601 } else {
3602 /* RAM case */
3603 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3604 (addr & ~TARGET_PAGE_MASK);
3605 val = ldq_p(ptr);
3606 }
3607 return val;
3608 }
3609
3610 /* XXX: optimize */
3611 uint32_t ldub_phys(target_phys_addr_t addr)
3612 {
3613 uint8_t val;
3614 cpu_physical_memory_read(addr, &val, 1);
3615 return val;
3616 }
3617
3618 /* XXX: optimize */
3619 uint32_t lduw_phys(target_phys_addr_t addr)
3620 {
3621 uint16_t val;
3622 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3623 return tswap16(val);
3624 }
3625
3626 /* warning: addr must be aligned. The ram page is not masked as dirty
3627 and the code inside is not invalidated. It is useful if the dirty
3628 bits are used to track modified PTEs */
3629 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3630 {
3631 int io_index;
3632 uint8_t *ptr;
3633 unsigned long pd;
3634 PhysPageDesc *p;
3635
3636 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3637 if (!p) {
3638 pd = IO_MEM_UNASSIGNED;
3639 } else {
3640 pd = p->phys_offset;
3641 }
3642
3643 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3644 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3645 if (p)
3646 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3647 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3648 } else {
3649 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3650 ptr = qemu_get_ram_ptr(addr1);
3651 stl_p(ptr, val);
3652
3653 if (unlikely(in_migration)) {
3654 if (!cpu_physical_memory_is_dirty(addr1)) {
3655 /* invalidate code */
3656 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3657 /* set dirty bit */
3658 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3659 (0xff & ~CODE_DIRTY_FLAG);
3660 }
3661 }
3662 }
3663 }
3664
3665 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3666 {
3667 int io_index;
3668 uint8_t *ptr;
3669 unsigned long pd;
3670 PhysPageDesc *p;
3671
3672 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3673 if (!p) {
3674 pd = IO_MEM_UNASSIGNED;
3675 } else {
3676 pd = p->phys_offset;
3677 }
3678
3679 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3680 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3681 if (p)
3682 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3683 #ifdef TARGET_WORDS_BIGENDIAN
3684 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3685 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3686 #else
3687 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3688 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3689 #endif
3690 } else {
3691 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3692 (addr & ~TARGET_PAGE_MASK);
3693 stq_p(ptr, val);
3694 }
3695 }
3696
3697 /* warning: addr must be aligned */
3698 void stl_phys(target_phys_addr_t addr, uint32_t val)
3699 {
3700 int io_index;
3701 uint8_t *ptr;
3702 unsigned long pd;
3703 PhysPageDesc *p;
3704
3705 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3706 if (!p) {
3707 pd = IO_MEM_UNASSIGNED;
3708 } else {
3709 pd = p->phys_offset;
3710 }
3711
3712 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3713 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3714 if (p)
3715 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3716 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3717 } else {
3718 unsigned long addr1;
3719 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3720 /* RAM case */
3721 ptr = qemu_get_ram_ptr(addr1);
3722 stl_p(ptr, val);
3723 if (!cpu_physical_memory_is_dirty(addr1)) {
3724 /* invalidate code */
3725 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3726 /* set dirty bit */
3727 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3728 (0xff & ~CODE_DIRTY_FLAG);
3729 }
3730 }
3731 }
3732
3733 /* XXX: optimize */
3734 void stb_phys(target_phys_addr_t addr, uint32_t val)
3735 {
3736 uint8_t v = val;
3737 cpu_physical_memory_write(addr, &v, 1);
3738 }
3739
3740 /* XXX: optimize */
3741 void stw_phys(target_phys_addr_t addr, uint32_t val)
3742 {
3743 uint16_t v = tswap16(val);
3744 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3745 }
3746
3747 /* XXX: optimize */
3748 void stq_phys(target_phys_addr_t addr, uint64_t val)
3749 {
3750 val = tswap64(val);
3751 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3752 }
3753
3754 /* virtual memory access for debug (includes writing to ROM) */
3755 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3756 uint8_t *buf, int len, int is_write)
3757 {
3758 int l;
3759 target_phys_addr_t phys_addr;
3760 target_ulong page;
3761
3762 while (len > 0) {
3763 page = addr & TARGET_PAGE_MASK;
3764 phys_addr = cpu_get_phys_page_debug(env, page);
3765 /* if no physical page mapped, return an error */
3766 if (phys_addr == -1)
3767 return -1;
3768 l = (page + TARGET_PAGE_SIZE) - addr;
3769 if (l > len)
3770 l = len;
3771 phys_addr += (addr & ~TARGET_PAGE_MASK);
3772 if (is_write)
3773 cpu_physical_memory_write_rom(phys_addr, buf, l);
3774 else
3775 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3776 len -= l;
3777 buf += l;
3778 addr += l;
3779 }
3780 return 0;
3781 }
3782 #endif
3783
3784 /* in deterministic execution mode, instructions doing device I/Os
3785 must be at the end of the TB */
3786 void cpu_io_recompile(CPUState *env, void *retaddr)
3787 {
3788 TranslationBlock *tb;
3789 uint32_t n, cflags;
3790 target_ulong pc, cs_base;
3791 uint64_t flags;
3792
3793 tb = tb_find_pc((unsigned long)retaddr);
3794 if (!tb) {
3795 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3796 retaddr);
3797 }
3798 n = env->icount_decr.u16.low + tb->icount;
3799 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3800 /* Calculate how many instructions had been executed before the fault
3801 occurred. */
3802 n = n - env->icount_decr.u16.low;
3803 /* Generate a new TB ending on the I/O insn. */
3804 n++;
3805 /* On MIPS and SH, delay slot instructions can only be restarted if
3806 they were already the first instruction in the TB. If this is not
3807 the first instruction in a TB then re-execute the preceding
3808 branch. */
3809 #if defined(TARGET_MIPS)
3810 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3811 env->active_tc.PC -= 4;
3812 env->icount_decr.u16.low++;
3813 env->hflags &= ~MIPS_HFLAG_BMASK;
3814 }
3815 #elif defined(TARGET_SH4)
3816 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3817 && n > 1) {
3818 env->pc -= 2;
3819 env->icount_decr.u16.low++;
3820 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3821 }
3822 #endif
3823 /* This should never happen. */
3824 if (n > CF_COUNT_MASK)
3825 cpu_abort(env, "TB too big during recompile");
3826
3827 cflags = n | CF_LAST_IO;
3828 pc = tb->pc;
3829 cs_base = tb->cs_base;
3830 flags = tb->flags;
3831 tb_phys_invalidate(tb, -1);
3832 /* FIXME: In theory this could raise an exception. In practice
3833 we have already translated the block once so it's probably ok. */
3834 tb_gen_code(env, pc, cs_base, flags, cflags);
3835 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3836 the first in the TB) then we end up generating a whole new TB and
3837 repeating the fault, which is horribly inefficient.
3838 Better would be to execute just this insn uncached, or generate a
3839 second new TB. */
3840 cpu_resume_from_signal(env, NULL);
3841 }
3842
3843 void dump_exec_info(FILE *f,
3844 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3845 {
3846 int i, target_code_size, max_target_code_size;
3847 int direct_jmp_count, direct_jmp2_count, cross_page;
3848 TranslationBlock *tb;
3849
3850 target_code_size = 0;
3851 max_target_code_size = 0;
3852 cross_page = 0;
3853 direct_jmp_count = 0;
3854 direct_jmp2_count = 0;
3855 for(i = 0; i < nb_tbs; i++) {
3856 tb = &tbs[i];
3857 target_code_size += tb->size;
3858 if (tb->size > max_target_code_size)
3859 max_target_code_size = tb->size;
3860 if (tb->page_addr[1] != -1)
3861 cross_page++;
3862 if (tb->tb_next_offset[0] != 0xffff) {
3863 direct_jmp_count++;
3864 if (tb->tb_next_offset[1] != 0xffff) {
3865 direct_jmp2_count++;
3866 }
3867 }
3868 }
3869 /* XXX: avoid using doubles ? */
3870 cpu_fprintf(f, "Translation buffer state:\n");
3871 cpu_fprintf(f, "gen code size %ld/%ld\n",
3872 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3873 cpu_fprintf(f, "TB count %d/%d\n",
3874 nb_tbs, code_gen_max_blocks);
3875 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3876 nb_tbs ? target_code_size / nb_tbs : 0,
3877 max_target_code_size);
3878 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3879 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3880 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3881 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3882 cross_page,
3883 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3884 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3885 direct_jmp_count,
3886 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3887 direct_jmp2_count,
3888 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3889 cpu_fprintf(f, "\nStatistics:\n");
3890 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3891 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3892 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3893 tcg_dump_info(f, cpu_fprintf);
3894 }
3895
3896 #if !defined(CONFIG_USER_ONLY)
3897
3898 #define MMUSUFFIX _cmmu
3899 #define GETPC() NULL
3900 #define env cpu_single_env
3901 #define SOFTMMU_CODE_ACCESS
3902
3903 #define SHIFT 0
3904 #include "softmmu_template.h"
3905
3906 #define SHIFT 1
3907 #include "softmmu_template.h"
3908
3909 #define SHIFT 2
3910 #include "softmmu_template.h"
3911
3912 #define SHIFT 3
3913 #include "softmmu_template.h"
3914
3915 #undef env
3916
3917 #endif