]> git.proxmox.com Git - qemu.git/blob - exec.c
memory: move unassigned_mem_ops to memory.c
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
47
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
50
51 #include "exec/memory-internal.h"
52
53 //#define DEBUG_SUBPAGE
54
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66 DMAContext dma_context_memory;
67
68 MemoryRegion io_mem_rom, io_mem_notdirty;
69 static MemoryRegion io_mem_unassigned, io_mem_subpage_ram;
70
71 #endif
72
73 CPUArchState *first_cpu;
74 /* current CPU in the current thread. It is only valid inside
75 cpu_exec() */
76 DEFINE_TLS(CPUArchState *,cpu_single_env);
77 /* 0 = Do not count executed instructions.
78 1 = Precise instruction counting.
79 2 = Adaptive rate instruction counting. */
80 int use_icount;
81
82 #if !defined(CONFIG_USER_ONLY)
83
84 static MemoryRegionSection *phys_sections;
85 static unsigned phys_sections_nb, phys_sections_nb_alloc;
86 static uint16_t phys_section_unassigned;
87 static uint16_t phys_section_notdirty;
88 static uint16_t phys_section_rom;
89 static uint16_t phys_section_watch;
90
91 /* Simple allocator for PhysPageEntry nodes */
92 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
93 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
94
95 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
96
97 static void io_mem_init(void);
98 static void memory_map_init(void);
99 static void *qemu_safe_ram_ptr(ram_addr_t addr);
100
101 static MemoryRegion io_mem_watch;
102 #endif
103
104 #if !defined(CONFIG_USER_ONLY)
105
106 static void phys_map_node_reserve(unsigned nodes)
107 {
108 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
109 typedef PhysPageEntry Node[L2_SIZE];
110 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
111 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
112 phys_map_nodes_nb + nodes);
113 phys_map_nodes = g_renew(Node, phys_map_nodes,
114 phys_map_nodes_nb_alloc);
115 }
116 }
117
118 static uint16_t phys_map_node_alloc(void)
119 {
120 unsigned i;
121 uint16_t ret;
122
123 ret = phys_map_nodes_nb++;
124 assert(ret != PHYS_MAP_NODE_NIL);
125 assert(ret != phys_map_nodes_nb_alloc);
126 for (i = 0; i < L2_SIZE; ++i) {
127 phys_map_nodes[ret][i].is_leaf = 0;
128 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
129 }
130 return ret;
131 }
132
133 static void phys_map_nodes_reset(void)
134 {
135 phys_map_nodes_nb = 0;
136 }
137
138
139 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
140 hwaddr *nb, uint16_t leaf,
141 int level)
142 {
143 PhysPageEntry *p;
144 int i;
145 hwaddr step = (hwaddr)1 << (level * L2_BITS);
146
147 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
148 lp->ptr = phys_map_node_alloc();
149 p = phys_map_nodes[lp->ptr];
150 if (level == 0) {
151 for (i = 0; i < L2_SIZE; i++) {
152 p[i].is_leaf = 1;
153 p[i].ptr = phys_section_unassigned;
154 }
155 }
156 } else {
157 p = phys_map_nodes[lp->ptr];
158 }
159 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
160
161 while (*nb && lp < &p[L2_SIZE]) {
162 if ((*index & (step - 1)) == 0 && *nb >= step) {
163 lp->is_leaf = true;
164 lp->ptr = leaf;
165 *index += step;
166 *nb -= step;
167 } else {
168 phys_page_set_level(lp, index, nb, leaf, level - 1);
169 }
170 ++lp;
171 }
172 }
173
174 static void phys_page_set(AddressSpaceDispatch *d,
175 hwaddr index, hwaddr nb,
176 uint16_t leaf)
177 {
178 /* Wildly overreserve - it doesn't matter much. */
179 phys_map_node_reserve(3 * P_L2_LEVELS);
180
181 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
182 }
183
184 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
185 {
186 PhysPageEntry lp = d->phys_map;
187 PhysPageEntry *p;
188 int i;
189
190 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
191 if (lp.ptr == PHYS_MAP_NODE_NIL) {
192 return &phys_sections[phys_section_unassigned];
193 }
194 p = phys_map_nodes[lp.ptr];
195 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
196 }
197 return &phys_sections[lp.ptr];
198 }
199
200 bool memory_region_is_unassigned(MemoryRegion *mr)
201 {
202 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
203 && mr != &io_mem_watch;
204 }
205
206 MemoryRegionSection *address_space_translate(AddressSpace *as, hwaddr addr,
207 hwaddr *xlat, hwaddr *plen,
208 bool is_write)
209 {
210 MemoryRegionSection *section;
211 Int128 diff;
212
213 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
214 /* Compute offset within MemoryRegionSection */
215 addr -= section->offset_within_address_space;
216
217 /* Compute offset within MemoryRegion */
218 *xlat = addr + section->offset_within_region;
219
220 diff = int128_sub(section->mr->size, int128_make64(addr));
221 *plen = MIN(int128_get64(diff), *plen);
222 return section;
223 }
224 #endif
225
226 void cpu_exec_init_all(void)
227 {
228 #if !defined(CONFIG_USER_ONLY)
229 qemu_mutex_init(&ram_list.mutex);
230 memory_map_init();
231 io_mem_init();
232 #endif
233 }
234
235 #if !defined(CONFIG_USER_ONLY)
236
237 static int cpu_common_post_load(void *opaque, int version_id)
238 {
239 CPUState *cpu = opaque;
240
241 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
242 version_id is increased. */
243 cpu->interrupt_request &= ~0x01;
244 tlb_flush(cpu->env_ptr, 1);
245
246 return 0;
247 }
248
249 static const VMStateDescription vmstate_cpu_common = {
250 .name = "cpu_common",
251 .version_id = 1,
252 .minimum_version_id = 1,
253 .minimum_version_id_old = 1,
254 .post_load = cpu_common_post_load,
255 .fields = (VMStateField []) {
256 VMSTATE_UINT32(halted, CPUState),
257 VMSTATE_UINT32(interrupt_request, CPUState),
258 VMSTATE_END_OF_LIST()
259 }
260 };
261 #else
262 #define vmstate_cpu_common vmstate_dummy
263 #endif
264
265 CPUState *qemu_get_cpu(int index)
266 {
267 CPUArchState *env = first_cpu;
268 CPUState *cpu = NULL;
269
270 while (env) {
271 cpu = ENV_GET_CPU(env);
272 if (cpu->cpu_index == index) {
273 break;
274 }
275 env = env->next_cpu;
276 }
277
278 return env ? cpu : NULL;
279 }
280
281 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
282 {
283 CPUArchState *env = first_cpu;
284
285 while (env) {
286 func(ENV_GET_CPU(env), data);
287 env = env->next_cpu;
288 }
289 }
290
291 void cpu_exec_init(CPUArchState *env)
292 {
293 CPUState *cpu = ENV_GET_CPU(env);
294 CPUClass *cc = CPU_GET_CLASS(cpu);
295 CPUArchState **penv;
296 int cpu_index;
297
298 #if defined(CONFIG_USER_ONLY)
299 cpu_list_lock();
300 #endif
301 env->next_cpu = NULL;
302 penv = &first_cpu;
303 cpu_index = 0;
304 while (*penv != NULL) {
305 penv = &(*penv)->next_cpu;
306 cpu_index++;
307 }
308 cpu->cpu_index = cpu_index;
309 cpu->numa_node = 0;
310 QTAILQ_INIT(&env->breakpoints);
311 QTAILQ_INIT(&env->watchpoints);
312 #ifndef CONFIG_USER_ONLY
313 cpu->thread_id = qemu_get_thread_id();
314 #endif
315 *penv = env;
316 #if defined(CONFIG_USER_ONLY)
317 cpu_list_unlock();
318 #endif
319 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
320 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
321 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
322 cpu_save, cpu_load, env);
323 assert(cc->vmsd == NULL);
324 #endif
325 if (cc->vmsd != NULL) {
326 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
327 }
328 }
329
330 #if defined(TARGET_HAS_ICE)
331 #if defined(CONFIG_USER_ONLY)
332 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
333 {
334 tb_invalidate_phys_page_range(pc, pc + 1, 0);
335 }
336 #else
337 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
338 {
339 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
340 (pc & ~TARGET_PAGE_MASK));
341 }
342 #endif
343 #endif /* TARGET_HAS_ICE */
344
345 #if defined(CONFIG_USER_ONLY)
346 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
347
348 {
349 }
350
351 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
352 int flags, CPUWatchpoint **watchpoint)
353 {
354 return -ENOSYS;
355 }
356 #else
357 /* Add a watchpoint. */
358 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
359 int flags, CPUWatchpoint **watchpoint)
360 {
361 target_ulong len_mask = ~(len - 1);
362 CPUWatchpoint *wp;
363
364 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
365 if ((len & (len - 1)) || (addr & ~len_mask) ||
366 len == 0 || len > TARGET_PAGE_SIZE) {
367 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
368 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
369 return -EINVAL;
370 }
371 wp = g_malloc(sizeof(*wp));
372
373 wp->vaddr = addr;
374 wp->len_mask = len_mask;
375 wp->flags = flags;
376
377 /* keep all GDB-injected watchpoints in front */
378 if (flags & BP_GDB)
379 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
380 else
381 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
382
383 tlb_flush_page(env, addr);
384
385 if (watchpoint)
386 *watchpoint = wp;
387 return 0;
388 }
389
390 /* Remove a specific watchpoint. */
391 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
392 int flags)
393 {
394 target_ulong len_mask = ~(len - 1);
395 CPUWatchpoint *wp;
396
397 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
398 if (addr == wp->vaddr && len_mask == wp->len_mask
399 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
400 cpu_watchpoint_remove_by_ref(env, wp);
401 return 0;
402 }
403 }
404 return -ENOENT;
405 }
406
407 /* Remove a specific watchpoint by reference. */
408 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
409 {
410 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
411
412 tlb_flush_page(env, watchpoint->vaddr);
413
414 g_free(watchpoint);
415 }
416
417 /* Remove all matching watchpoints. */
418 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
419 {
420 CPUWatchpoint *wp, *next;
421
422 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
423 if (wp->flags & mask)
424 cpu_watchpoint_remove_by_ref(env, wp);
425 }
426 }
427 #endif
428
429 /* Add a breakpoint. */
430 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
431 CPUBreakpoint **breakpoint)
432 {
433 #if defined(TARGET_HAS_ICE)
434 CPUBreakpoint *bp;
435
436 bp = g_malloc(sizeof(*bp));
437
438 bp->pc = pc;
439 bp->flags = flags;
440
441 /* keep all GDB-injected breakpoints in front */
442 if (flags & BP_GDB)
443 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
444 else
445 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
446
447 breakpoint_invalidate(env, pc);
448
449 if (breakpoint)
450 *breakpoint = bp;
451 return 0;
452 #else
453 return -ENOSYS;
454 #endif
455 }
456
457 /* Remove a specific breakpoint. */
458 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
459 {
460 #if defined(TARGET_HAS_ICE)
461 CPUBreakpoint *bp;
462
463 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
464 if (bp->pc == pc && bp->flags == flags) {
465 cpu_breakpoint_remove_by_ref(env, bp);
466 return 0;
467 }
468 }
469 return -ENOENT;
470 #else
471 return -ENOSYS;
472 #endif
473 }
474
475 /* Remove a specific breakpoint by reference. */
476 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
477 {
478 #if defined(TARGET_HAS_ICE)
479 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
480
481 breakpoint_invalidate(env, breakpoint->pc);
482
483 g_free(breakpoint);
484 #endif
485 }
486
487 /* Remove all matching breakpoints. */
488 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
489 {
490 #if defined(TARGET_HAS_ICE)
491 CPUBreakpoint *bp, *next;
492
493 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
494 if (bp->flags & mask)
495 cpu_breakpoint_remove_by_ref(env, bp);
496 }
497 #endif
498 }
499
500 /* enable or disable single step mode. EXCP_DEBUG is returned by the
501 CPU loop after each instruction */
502 void cpu_single_step(CPUArchState *env, int enabled)
503 {
504 #if defined(TARGET_HAS_ICE)
505 if (env->singlestep_enabled != enabled) {
506 env->singlestep_enabled = enabled;
507 if (kvm_enabled())
508 kvm_update_guest_debug(env, 0);
509 else {
510 /* must flush all the translated code to avoid inconsistencies */
511 /* XXX: only flush what is necessary */
512 tb_flush(env);
513 }
514 }
515 #endif
516 }
517
518 void cpu_exit(CPUArchState *env)
519 {
520 CPUState *cpu = ENV_GET_CPU(env);
521
522 cpu->exit_request = 1;
523 cpu->tcg_exit_req = 1;
524 }
525
526 void cpu_abort(CPUArchState *env, const char *fmt, ...)
527 {
528 va_list ap;
529 va_list ap2;
530
531 va_start(ap, fmt);
532 va_copy(ap2, ap);
533 fprintf(stderr, "qemu: fatal: ");
534 vfprintf(stderr, fmt, ap);
535 fprintf(stderr, "\n");
536 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
537 if (qemu_log_enabled()) {
538 qemu_log("qemu: fatal: ");
539 qemu_log_vprintf(fmt, ap2);
540 qemu_log("\n");
541 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
542 qemu_log_flush();
543 qemu_log_close();
544 }
545 va_end(ap2);
546 va_end(ap);
547 #if defined(CONFIG_USER_ONLY)
548 {
549 struct sigaction act;
550 sigfillset(&act.sa_mask);
551 act.sa_handler = SIG_DFL;
552 sigaction(SIGABRT, &act, NULL);
553 }
554 #endif
555 abort();
556 }
557
558 CPUArchState *cpu_copy(CPUArchState *env)
559 {
560 CPUArchState *new_env = cpu_init(env->cpu_model_str);
561 CPUArchState *next_cpu = new_env->next_cpu;
562 #if defined(TARGET_HAS_ICE)
563 CPUBreakpoint *bp;
564 CPUWatchpoint *wp;
565 #endif
566
567 memcpy(new_env, env, sizeof(CPUArchState));
568
569 /* Preserve chaining. */
570 new_env->next_cpu = next_cpu;
571
572 /* Clone all break/watchpoints.
573 Note: Once we support ptrace with hw-debug register access, make sure
574 BP_CPU break/watchpoints are handled correctly on clone. */
575 QTAILQ_INIT(&env->breakpoints);
576 QTAILQ_INIT(&env->watchpoints);
577 #if defined(TARGET_HAS_ICE)
578 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
579 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
580 }
581 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
582 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
583 wp->flags, NULL);
584 }
585 #endif
586
587 return new_env;
588 }
589
590 #if !defined(CONFIG_USER_ONLY)
591 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
592 uintptr_t length)
593 {
594 uintptr_t start1;
595
596 /* we modify the TLB cache so that the dirty bit will be set again
597 when accessing the range */
598 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
599 /* Check that we don't span multiple blocks - this breaks the
600 address comparisons below. */
601 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
602 != (end - 1) - start) {
603 abort();
604 }
605 cpu_tlb_reset_dirty_all(start1, length);
606
607 }
608
609 /* Note: start and end must be within the same ram block. */
610 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
611 int dirty_flags)
612 {
613 uintptr_t length;
614
615 start &= TARGET_PAGE_MASK;
616 end = TARGET_PAGE_ALIGN(end);
617
618 length = end - start;
619 if (length == 0)
620 return;
621 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
622
623 if (tcg_enabled()) {
624 tlb_reset_dirty_range_all(start, end, length);
625 }
626 }
627
628 static int cpu_physical_memory_set_dirty_tracking(int enable)
629 {
630 int ret = 0;
631 in_migration = enable;
632 return ret;
633 }
634
635 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
636 MemoryRegionSection *section,
637 target_ulong vaddr,
638 hwaddr paddr, hwaddr xlat,
639 int prot,
640 target_ulong *address)
641 {
642 hwaddr iotlb;
643 CPUWatchpoint *wp;
644
645 if (memory_region_is_ram(section->mr)) {
646 /* Normal RAM. */
647 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
648 + xlat;
649 if (!section->readonly) {
650 iotlb |= phys_section_notdirty;
651 } else {
652 iotlb |= phys_section_rom;
653 }
654 } else {
655 iotlb = section - phys_sections;
656 iotlb += xlat;
657 }
658
659 /* Make accesses to pages with watchpoints go via the
660 watchpoint trap routines. */
661 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
662 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
663 /* Avoid trapping reads of pages with a write breakpoint. */
664 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
665 iotlb = phys_section_watch + paddr;
666 *address |= TLB_MMIO;
667 break;
668 }
669 }
670 }
671
672 return iotlb;
673 }
674 #endif /* defined(CONFIG_USER_ONLY) */
675
676 #if !defined(CONFIG_USER_ONLY)
677
678 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
679 typedef struct subpage_t {
680 MemoryRegion iomem;
681 hwaddr base;
682 uint16_t sub_section[TARGET_PAGE_SIZE];
683 } subpage_t;
684
685 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
686 uint16_t section);
687 static subpage_t *subpage_init(hwaddr base);
688 static void destroy_page_desc(uint16_t section_index)
689 {
690 MemoryRegionSection *section = &phys_sections[section_index];
691 MemoryRegion *mr = section->mr;
692
693 if (mr->subpage) {
694 subpage_t *subpage = container_of(mr, subpage_t, iomem);
695 memory_region_destroy(&subpage->iomem);
696 g_free(subpage);
697 }
698 }
699
700 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
701 {
702 unsigned i;
703 PhysPageEntry *p;
704
705 if (lp->ptr == PHYS_MAP_NODE_NIL) {
706 return;
707 }
708
709 p = phys_map_nodes[lp->ptr];
710 for (i = 0; i < L2_SIZE; ++i) {
711 if (!p[i].is_leaf) {
712 destroy_l2_mapping(&p[i], level - 1);
713 } else {
714 destroy_page_desc(p[i].ptr);
715 }
716 }
717 lp->is_leaf = 0;
718 lp->ptr = PHYS_MAP_NODE_NIL;
719 }
720
721 static void destroy_all_mappings(AddressSpaceDispatch *d)
722 {
723 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
724 phys_map_nodes_reset();
725 }
726
727 static uint16_t phys_section_add(MemoryRegionSection *section)
728 {
729 /* The physical section number is ORed with a page-aligned
730 * pointer to produce the iotlb entries. Thus it should
731 * never overflow into the page-aligned value.
732 */
733 assert(phys_sections_nb < TARGET_PAGE_SIZE);
734
735 if (phys_sections_nb == phys_sections_nb_alloc) {
736 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
737 phys_sections = g_renew(MemoryRegionSection, phys_sections,
738 phys_sections_nb_alloc);
739 }
740 phys_sections[phys_sections_nb] = *section;
741 return phys_sections_nb++;
742 }
743
744 static void phys_sections_clear(void)
745 {
746 phys_sections_nb = 0;
747 }
748
749 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
750 {
751 subpage_t *subpage;
752 hwaddr base = section->offset_within_address_space
753 & TARGET_PAGE_MASK;
754 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
755 MemoryRegionSection subsection = {
756 .offset_within_address_space = base,
757 .size = TARGET_PAGE_SIZE,
758 };
759 hwaddr start, end;
760
761 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
762
763 if (!(existing->mr->subpage)) {
764 subpage = subpage_init(base);
765 subsection.mr = &subpage->iomem;
766 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
767 phys_section_add(&subsection));
768 } else {
769 subpage = container_of(existing->mr, subpage_t, iomem);
770 }
771 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
772 end = start + section->size - 1;
773 subpage_register(subpage, start, end, phys_section_add(section));
774 }
775
776
777 static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
778 {
779 hwaddr start_addr = section->offset_within_address_space;
780 ram_addr_t size = section->size;
781 hwaddr addr;
782 uint16_t section_index = phys_section_add(section);
783
784 assert(size);
785
786 addr = start_addr;
787 phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
788 section_index);
789 }
790
791 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > MAX_PHYS_ADDR_SPACE_BITS)
792
793 static MemoryRegionSection limit(MemoryRegionSection section)
794 {
795 section.size = MIN(section.offset_within_address_space + section.size,
796 MAX_PHYS_ADDR + 1)
797 - section.offset_within_address_space;
798
799 return section;
800 }
801
802 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
803 {
804 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
805 MemoryRegionSection now = limit(*section), remain = limit(*section);
806
807 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
808 || (now.size < TARGET_PAGE_SIZE)) {
809 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
810 - now.offset_within_address_space,
811 now.size);
812 register_subpage(d, &now);
813 remain.size -= now.size;
814 remain.offset_within_address_space += now.size;
815 remain.offset_within_region += now.size;
816 }
817 while (remain.size >= TARGET_PAGE_SIZE) {
818 now = remain;
819 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
820 now.size = TARGET_PAGE_SIZE;
821 register_subpage(d, &now);
822 } else {
823 now.size &= TARGET_PAGE_MASK;
824 register_multipage(d, &now);
825 }
826 remain.size -= now.size;
827 remain.offset_within_address_space += now.size;
828 remain.offset_within_region += now.size;
829 }
830 now = remain;
831 if (now.size) {
832 register_subpage(d, &now);
833 }
834 }
835
836 void qemu_flush_coalesced_mmio_buffer(void)
837 {
838 if (kvm_enabled())
839 kvm_flush_coalesced_mmio_buffer();
840 }
841
842 void qemu_mutex_lock_ramlist(void)
843 {
844 qemu_mutex_lock(&ram_list.mutex);
845 }
846
847 void qemu_mutex_unlock_ramlist(void)
848 {
849 qemu_mutex_unlock(&ram_list.mutex);
850 }
851
852 #if defined(__linux__) && !defined(TARGET_S390X)
853
854 #include <sys/vfs.h>
855
856 #define HUGETLBFS_MAGIC 0x958458f6
857
858 static long gethugepagesize(const char *path)
859 {
860 struct statfs fs;
861 int ret;
862
863 do {
864 ret = statfs(path, &fs);
865 } while (ret != 0 && errno == EINTR);
866
867 if (ret != 0) {
868 perror(path);
869 return 0;
870 }
871
872 if (fs.f_type != HUGETLBFS_MAGIC)
873 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
874
875 return fs.f_bsize;
876 }
877
878 static void *file_ram_alloc(RAMBlock *block,
879 ram_addr_t memory,
880 const char *path)
881 {
882 char *filename;
883 char *sanitized_name;
884 char *c;
885 void *area;
886 int fd;
887 #ifdef MAP_POPULATE
888 int flags;
889 #endif
890 unsigned long hpagesize;
891
892 hpagesize = gethugepagesize(path);
893 if (!hpagesize) {
894 return NULL;
895 }
896
897 if (memory < hpagesize) {
898 return NULL;
899 }
900
901 if (kvm_enabled() && !kvm_has_sync_mmu()) {
902 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
903 return NULL;
904 }
905
906 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
907 sanitized_name = g_strdup(block->mr->name);
908 for (c = sanitized_name; *c != '\0'; c++) {
909 if (*c == '/')
910 *c = '_';
911 }
912
913 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
914 sanitized_name);
915 g_free(sanitized_name);
916
917 fd = mkstemp(filename);
918 if (fd < 0) {
919 perror("unable to create backing store for hugepages");
920 g_free(filename);
921 return NULL;
922 }
923 unlink(filename);
924 g_free(filename);
925
926 memory = (memory+hpagesize-1) & ~(hpagesize-1);
927
928 /*
929 * ftruncate is not supported by hugetlbfs in older
930 * hosts, so don't bother bailing out on errors.
931 * If anything goes wrong with it under other filesystems,
932 * mmap will fail.
933 */
934 if (ftruncate(fd, memory))
935 perror("ftruncate");
936
937 #ifdef MAP_POPULATE
938 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
939 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
940 * to sidestep this quirk.
941 */
942 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
943 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
944 #else
945 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
946 #endif
947 if (area == MAP_FAILED) {
948 perror("file_ram_alloc: can't mmap RAM pages");
949 close(fd);
950 return (NULL);
951 }
952 block->fd = fd;
953 return area;
954 }
955 #endif
956
957 static ram_addr_t find_ram_offset(ram_addr_t size)
958 {
959 RAMBlock *block, *next_block;
960 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
961
962 assert(size != 0); /* it would hand out same offset multiple times */
963
964 if (QTAILQ_EMPTY(&ram_list.blocks))
965 return 0;
966
967 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
968 ram_addr_t end, next = RAM_ADDR_MAX;
969
970 end = block->offset + block->length;
971
972 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
973 if (next_block->offset >= end) {
974 next = MIN(next, next_block->offset);
975 }
976 }
977 if (next - end >= size && next - end < mingap) {
978 offset = end;
979 mingap = next - end;
980 }
981 }
982
983 if (offset == RAM_ADDR_MAX) {
984 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
985 (uint64_t)size);
986 abort();
987 }
988
989 return offset;
990 }
991
992 ram_addr_t last_ram_offset(void)
993 {
994 RAMBlock *block;
995 ram_addr_t last = 0;
996
997 QTAILQ_FOREACH(block, &ram_list.blocks, next)
998 last = MAX(last, block->offset + block->length);
999
1000 return last;
1001 }
1002
1003 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1004 {
1005 int ret;
1006 QemuOpts *machine_opts;
1007
1008 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1009 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1010 if (machine_opts &&
1011 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1012 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1013 if (ret) {
1014 perror("qemu_madvise");
1015 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1016 "but dump_guest_core=off specified\n");
1017 }
1018 }
1019 }
1020
1021 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1022 {
1023 RAMBlock *new_block, *block;
1024
1025 new_block = NULL;
1026 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1027 if (block->offset == addr) {
1028 new_block = block;
1029 break;
1030 }
1031 }
1032 assert(new_block);
1033 assert(!new_block->idstr[0]);
1034
1035 if (dev) {
1036 char *id = qdev_get_dev_path(dev);
1037 if (id) {
1038 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1039 g_free(id);
1040 }
1041 }
1042 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1043
1044 /* This assumes the iothread lock is taken here too. */
1045 qemu_mutex_lock_ramlist();
1046 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1047 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1048 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1049 new_block->idstr);
1050 abort();
1051 }
1052 }
1053 qemu_mutex_unlock_ramlist();
1054 }
1055
1056 static int memory_try_enable_merging(void *addr, size_t len)
1057 {
1058 QemuOpts *opts;
1059
1060 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1061 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1062 /* disabled by the user */
1063 return 0;
1064 }
1065
1066 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1067 }
1068
1069 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1070 MemoryRegion *mr)
1071 {
1072 RAMBlock *block, *new_block;
1073
1074 size = TARGET_PAGE_ALIGN(size);
1075 new_block = g_malloc0(sizeof(*new_block));
1076
1077 /* This assumes the iothread lock is taken here too. */
1078 qemu_mutex_lock_ramlist();
1079 new_block->mr = mr;
1080 new_block->offset = find_ram_offset(size);
1081 if (host) {
1082 new_block->host = host;
1083 new_block->flags |= RAM_PREALLOC_MASK;
1084 } else {
1085 if (mem_path) {
1086 #if defined (__linux__) && !defined(TARGET_S390X)
1087 new_block->host = file_ram_alloc(new_block, size, mem_path);
1088 if (!new_block->host) {
1089 new_block->host = qemu_anon_ram_alloc(size);
1090 memory_try_enable_merging(new_block->host, size);
1091 }
1092 #else
1093 fprintf(stderr, "-mem-path option unsupported\n");
1094 exit(1);
1095 #endif
1096 } else {
1097 if (xen_enabled()) {
1098 xen_ram_alloc(new_block->offset, size, mr);
1099 } else if (kvm_enabled()) {
1100 /* some s390/kvm configurations have special constraints */
1101 new_block->host = kvm_ram_alloc(size);
1102 } else {
1103 new_block->host = qemu_anon_ram_alloc(size);
1104 }
1105 memory_try_enable_merging(new_block->host, size);
1106 }
1107 }
1108 new_block->length = size;
1109
1110 /* Keep the list sorted from biggest to smallest block. */
1111 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1112 if (block->length < new_block->length) {
1113 break;
1114 }
1115 }
1116 if (block) {
1117 QTAILQ_INSERT_BEFORE(block, new_block, next);
1118 } else {
1119 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1120 }
1121 ram_list.mru_block = NULL;
1122
1123 ram_list.version++;
1124 qemu_mutex_unlock_ramlist();
1125
1126 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1127 last_ram_offset() >> TARGET_PAGE_BITS);
1128 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1129 0, size >> TARGET_PAGE_BITS);
1130 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1131
1132 qemu_ram_setup_dump(new_block->host, size);
1133 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1134
1135 if (kvm_enabled())
1136 kvm_setup_guest_memory(new_block->host, size);
1137
1138 return new_block->offset;
1139 }
1140
1141 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1142 {
1143 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1144 }
1145
1146 void qemu_ram_free_from_ptr(ram_addr_t addr)
1147 {
1148 RAMBlock *block;
1149
1150 /* This assumes the iothread lock is taken here too. */
1151 qemu_mutex_lock_ramlist();
1152 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1153 if (addr == block->offset) {
1154 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1155 ram_list.mru_block = NULL;
1156 ram_list.version++;
1157 g_free(block);
1158 break;
1159 }
1160 }
1161 qemu_mutex_unlock_ramlist();
1162 }
1163
1164 void qemu_ram_free(ram_addr_t addr)
1165 {
1166 RAMBlock *block;
1167
1168 /* This assumes the iothread lock is taken here too. */
1169 qemu_mutex_lock_ramlist();
1170 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1171 if (addr == block->offset) {
1172 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1173 ram_list.mru_block = NULL;
1174 ram_list.version++;
1175 if (block->flags & RAM_PREALLOC_MASK) {
1176 ;
1177 } else if (mem_path) {
1178 #if defined (__linux__) && !defined(TARGET_S390X)
1179 if (block->fd) {
1180 munmap(block->host, block->length);
1181 close(block->fd);
1182 } else {
1183 qemu_anon_ram_free(block->host, block->length);
1184 }
1185 #else
1186 abort();
1187 #endif
1188 } else {
1189 if (xen_enabled()) {
1190 xen_invalidate_map_cache_entry(block->host);
1191 } else {
1192 qemu_anon_ram_free(block->host, block->length);
1193 }
1194 }
1195 g_free(block);
1196 break;
1197 }
1198 }
1199 qemu_mutex_unlock_ramlist();
1200
1201 }
1202
1203 #ifndef _WIN32
1204 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1205 {
1206 RAMBlock *block;
1207 ram_addr_t offset;
1208 int flags;
1209 void *area, *vaddr;
1210
1211 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1212 offset = addr - block->offset;
1213 if (offset < block->length) {
1214 vaddr = block->host + offset;
1215 if (block->flags & RAM_PREALLOC_MASK) {
1216 ;
1217 } else {
1218 flags = MAP_FIXED;
1219 munmap(vaddr, length);
1220 if (mem_path) {
1221 #if defined(__linux__) && !defined(TARGET_S390X)
1222 if (block->fd) {
1223 #ifdef MAP_POPULATE
1224 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1225 MAP_PRIVATE;
1226 #else
1227 flags |= MAP_PRIVATE;
1228 #endif
1229 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1230 flags, block->fd, offset);
1231 } else {
1232 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1233 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1234 flags, -1, 0);
1235 }
1236 #else
1237 abort();
1238 #endif
1239 } else {
1240 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1241 flags |= MAP_SHARED | MAP_ANONYMOUS;
1242 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1243 flags, -1, 0);
1244 #else
1245 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1246 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1247 flags, -1, 0);
1248 #endif
1249 }
1250 if (area != vaddr) {
1251 fprintf(stderr, "Could not remap addr: "
1252 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1253 length, addr);
1254 exit(1);
1255 }
1256 memory_try_enable_merging(vaddr, length);
1257 qemu_ram_setup_dump(vaddr, length);
1258 }
1259 return;
1260 }
1261 }
1262 }
1263 #endif /* !_WIN32 */
1264
1265 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1266 With the exception of the softmmu code in this file, this should
1267 only be used for local memory (e.g. video ram) that the device owns,
1268 and knows it isn't going to access beyond the end of the block.
1269
1270 It should not be used for general purpose DMA.
1271 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1272 */
1273 void *qemu_get_ram_ptr(ram_addr_t addr)
1274 {
1275 RAMBlock *block;
1276
1277 /* The list is protected by the iothread lock here. */
1278 block = ram_list.mru_block;
1279 if (block && addr - block->offset < block->length) {
1280 goto found;
1281 }
1282 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1283 if (addr - block->offset < block->length) {
1284 goto found;
1285 }
1286 }
1287
1288 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1289 abort();
1290
1291 found:
1292 ram_list.mru_block = block;
1293 if (xen_enabled()) {
1294 /* We need to check if the requested address is in the RAM
1295 * because we don't want to map the entire memory in QEMU.
1296 * In that case just map until the end of the page.
1297 */
1298 if (block->offset == 0) {
1299 return xen_map_cache(addr, 0, 0);
1300 } else if (block->host == NULL) {
1301 block->host =
1302 xen_map_cache(block->offset, block->length, 1);
1303 }
1304 }
1305 return block->host + (addr - block->offset);
1306 }
1307
1308 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1309 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1310 *
1311 * ??? Is this still necessary?
1312 */
1313 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1314 {
1315 RAMBlock *block;
1316
1317 /* The list is protected by the iothread lock here. */
1318 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1319 if (addr - block->offset < block->length) {
1320 if (xen_enabled()) {
1321 /* We need to check if the requested address is in the RAM
1322 * because we don't want to map the entire memory in QEMU.
1323 * In that case just map until the end of the page.
1324 */
1325 if (block->offset == 0) {
1326 return xen_map_cache(addr, 0, 0);
1327 } else if (block->host == NULL) {
1328 block->host =
1329 xen_map_cache(block->offset, block->length, 1);
1330 }
1331 }
1332 return block->host + (addr - block->offset);
1333 }
1334 }
1335
1336 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1337 abort();
1338
1339 return NULL;
1340 }
1341
1342 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1343 * but takes a size argument */
1344 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1345 {
1346 if (*size == 0) {
1347 return NULL;
1348 }
1349 if (xen_enabled()) {
1350 return xen_map_cache(addr, *size, 1);
1351 } else {
1352 RAMBlock *block;
1353
1354 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1355 if (addr - block->offset < block->length) {
1356 if (addr - block->offset + *size > block->length)
1357 *size = block->length - addr + block->offset;
1358 return block->host + (addr - block->offset);
1359 }
1360 }
1361
1362 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1363 abort();
1364 }
1365 }
1366
1367 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1368 {
1369 RAMBlock *block;
1370 uint8_t *host = ptr;
1371
1372 if (xen_enabled()) {
1373 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1374 return 0;
1375 }
1376
1377 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1378 /* This case append when the block is not mapped. */
1379 if (block->host == NULL) {
1380 continue;
1381 }
1382 if (host - block->host < block->length) {
1383 *ram_addr = block->offset + (host - block->host);
1384 return 0;
1385 }
1386 }
1387
1388 return -1;
1389 }
1390
1391 /* Some of the softmmu routines need to translate from a host pointer
1392 (typically a TLB entry) back to a ram offset. */
1393 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1394 {
1395 ram_addr_t ram_addr;
1396
1397 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1398 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1399 abort();
1400 }
1401 return ram_addr;
1402 }
1403
1404 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1405 uint64_t val, unsigned size)
1406 {
1407 int dirty_flags;
1408 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1409 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1410 tb_invalidate_phys_page_fast(ram_addr, size);
1411 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1412 }
1413 switch (size) {
1414 case 1:
1415 stb_p(qemu_get_ram_ptr(ram_addr), val);
1416 break;
1417 case 2:
1418 stw_p(qemu_get_ram_ptr(ram_addr), val);
1419 break;
1420 case 4:
1421 stl_p(qemu_get_ram_ptr(ram_addr), val);
1422 break;
1423 default:
1424 abort();
1425 }
1426 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1427 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1428 /* we remove the notdirty callback only if the code has been
1429 flushed */
1430 if (dirty_flags == 0xff)
1431 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1432 }
1433
1434 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1435 unsigned size, bool is_write)
1436 {
1437 return is_write;
1438 }
1439
1440 static const MemoryRegionOps notdirty_mem_ops = {
1441 .write = notdirty_mem_write,
1442 .valid.accepts = notdirty_mem_accepts,
1443 .endianness = DEVICE_NATIVE_ENDIAN,
1444 };
1445
1446 /* Generate a debug exception if a watchpoint has been hit. */
1447 static void check_watchpoint(int offset, int len_mask, int flags)
1448 {
1449 CPUArchState *env = cpu_single_env;
1450 target_ulong pc, cs_base;
1451 target_ulong vaddr;
1452 CPUWatchpoint *wp;
1453 int cpu_flags;
1454
1455 if (env->watchpoint_hit) {
1456 /* We re-entered the check after replacing the TB. Now raise
1457 * the debug interrupt so that is will trigger after the
1458 * current instruction. */
1459 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1460 return;
1461 }
1462 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1463 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1464 if ((vaddr == (wp->vaddr & len_mask) ||
1465 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1466 wp->flags |= BP_WATCHPOINT_HIT;
1467 if (!env->watchpoint_hit) {
1468 env->watchpoint_hit = wp;
1469 tb_check_watchpoint(env);
1470 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1471 env->exception_index = EXCP_DEBUG;
1472 cpu_loop_exit(env);
1473 } else {
1474 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1475 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1476 cpu_resume_from_signal(env, NULL);
1477 }
1478 }
1479 } else {
1480 wp->flags &= ~BP_WATCHPOINT_HIT;
1481 }
1482 }
1483 }
1484
1485 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1486 so these check for a hit then pass through to the normal out-of-line
1487 phys routines. */
1488 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1489 unsigned size)
1490 {
1491 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1492 switch (size) {
1493 case 1: return ldub_phys(addr);
1494 case 2: return lduw_phys(addr);
1495 case 4: return ldl_phys(addr);
1496 default: abort();
1497 }
1498 }
1499
1500 static void watch_mem_write(void *opaque, hwaddr addr,
1501 uint64_t val, unsigned size)
1502 {
1503 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1504 switch (size) {
1505 case 1:
1506 stb_phys(addr, val);
1507 break;
1508 case 2:
1509 stw_phys(addr, val);
1510 break;
1511 case 4:
1512 stl_phys(addr, val);
1513 break;
1514 default: abort();
1515 }
1516 }
1517
1518 static const MemoryRegionOps watch_mem_ops = {
1519 .read = watch_mem_read,
1520 .write = watch_mem_write,
1521 .endianness = DEVICE_NATIVE_ENDIAN,
1522 };
1523
1524 static uint64_t subpage_read(void *opaque, hwaddr addr,
1525 unsigned len)
1526 {
1527 subpage_t *mmio = opaque;
1528 unsigned int idx = SUBPAGE_IDX(addr);
1529 MemoryRegionSection *section;
1530 #if defined(DEBUG_SUBPAGE)
1531 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
1532 mmio, len, addr, idx);
1533 #endif
1534
1535 section = &phys_sections[mmio->sub_section[idx]];
1536 addr += mmio->base;
1537 addr -= section->offset_within_address_space;
1538 addr += section->offset_within_region;
1539 return io_mem_read(section->mr, addr, len);
1540 }
1541
1542 static void subpage_write(void *opaque, hwaddr addr,
1543 uint64_t value, unsigned len)
1544 {
1545 subpage_t *mmio = opaque;
1546 unsigned int idx = SUBPAGE_IDX(addr);
1547 MemoryRegionSection *section;
1548 #if defined(DEBUG_SUBPAGE)
1549 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1550 " idx %d value %"PRIx64"\n",
1551 __func__, mmio, len, addr, idx, value);
1552 #endif
1553
1554 section = &phys_sections[mmio->sub_section[idx]];
1555 addr += mmio->base;
1556 addr -= section->offset_within_address_space;
1557 addr += section->offset_within_region;
1558 io_mem_write(section->mr, addr, value, len);
1559 }
1560
1561 static const MemoryRegionOps subpage_ops = {
1562 .read = subpage_read,
1563 .write = subpage_write,
1564 .endianness = DEVICE_NATIVE_ENDIAN,
1565 };
1566
1567 static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
1568 unsigned size)
1569 {
1570 ram_addr_t raddr = addr;
1571 void *ptr = qemu_get_ram_ptr(raddr);
1572 switch (size) {
1573 case 1: return ldub_p(ptr);
1574 case 2: return lduw_p(ptr);
1575 case 4: return ldl_p(ptr);
1576 default: abort();
1577 }
1578 }
1579
1580 static void subpage_ram_write(void *opaque, hwaddr addr,
1581 uint64_t value, unsigned size)
1582 {
1583 ram_addr_t raddr = addr;
1584 void *ptr = qemu_get_ram_ptr(raddr);
1585 switch (size) {
1586 case 1: return stb_p(ptr, value);
1587 case 2: return stw_p(ptr, value);
1588 case 4: return stl_p(ptr, value);
1589 default: abort();
1590 }
1591 }
1592
1593 static const MemoryRegionOps subpage_ram_ops = {
1594 .read = subpage_ram_read,
1595 .write = subpage_ram_write,
1596 .endianness = DEVICE_NATIVE_ENDIAN,
1597 };
1598
1599 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1600 uint16_t section)
1601 {
1602 int idx, eidx;
1603
1604 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1605 return -1;
1606 idx = SUBPAGE_IDX(start);
1607 eidx = SUBPAGE_IDX(end);
1608 #if defined(DEBUG_SUBPAGE)
1609 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1610 mmio, start, end, idx, eidx, memory);
1611 #endif
1612 if (memory_region_is_ram(phys_sections[section].mr)) {
1613 MemoryRegionSection new_section = phys_sections[section];
1614 new_section.mr = &io_mem_subpage_ram;
1615 section = phys_section_add(&new_section);
1616 }
1617 for (; idx <= eidx; idx++) {
1618 mmio->sub_section[idx] = section;
1619 }
1620
1621 return 0;
1622 }
1623
1624 static subpage_t *subpage_init(hwaddr base)
1625 {
1626 subpage_t *mmio;
1627
1628 mmio = g_malloc0(sizeof(subpage_t));
1629
1630 mmio->base = base;
1631 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1632 "subpage", TARGET_PAGE_SIZE);
1633 mmio->iomem.subpage = true;
1634 #if defined(DEBUG_SUBPAGE)
1635 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1636 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1637 #endif
1638 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1639
1640 return mmio;
1641 }
1642
1643 static uint16_t dummy_section(MemoryRegion *mr)
1644 {
1645 MemoryRegionSection section = {
1646 .mr = mr,
1647 .offset_within_address_space = 0,
1648 .offset_within_region = 0,
1649 .size = UINT64_MAX,
1650 };
1651
1652 return phys_section_add(&section);
1653 }
1654
1655 MemoryRegion *iotlb_to_region(hwaddr index)
1656 {
1657 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1658 }
1659
1660 static void io_mem_init(void)
1661 {
1662 memory_region_init_io(&io_mem_rom, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1663 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1664 "unassigned", UINT64_MAX);
1665 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1666 "notdirty", UINT64_MAX);
1667 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
1668 "subpage-ram", UINT64_MAX);
1669 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1670 "watch", UINT64_MAX);
1671 }
1672
1673 static void mem_begin(MemoryListener *listener)
1674 {
1675 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1676
1677 destroy_all_mappings(d);
1678 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1679 }
1680
1681 static void core_begin(MemoryListener *listener)
1682 {
1683 phys_sections_clear();
1684 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1685 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1686 phys_section_rom = dummy_section(&io_mem_rom);
1687 phys_section_watch = dummy_section(&io_mem_watch);
1688 }
1689
1690 static void tcg_commit(MemoryListener *listener)
1691 {
1692 CPUArchState *env;
1693
1694 /* since each CPU stores ram addresses in its TLB cache, we must
1695 reset the modified entries */
1696 /* XXX: slow ! */
1697 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1698 tlb_flush(env, 1);
1699 }
1700 }
1701
1702 static void core_log_global_start(MemoryListener *listener)
1703 {
1704 cpu_physical_memory_set_dirty_tracking(1);
1705 }
1706
1707 static void core_log_global_stop(MemoryListener *listener)
1708 {
1709 cpu_physical_memory_set_dirty_tracking(0);
1710 }
1711
1712 static void io_region_add(MemoryListener *listener,
1713 MemoryRegionSection *section)
1714 {
1715 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1716
1717 mrio->mr = section->mr;
1718 mrio->offset = section->offset_within_region;
1719 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1720 section->offset_within_address_space, section->size);
1721 ioport_register(&mrio->iorange);
1722 }
1723
1724 static void io_region_del(MemoryListener *listener,
1725 MemoryRegionSection *section)
1726 {
1727 isa_unassign_ioport(section->offset_within_address_space, section->size);
1728 }
1729
1730 static MemoryListener core_memory_listener = {
1731 .begin = core_begin,
1732 .log_global_start = core_log_global_start,
1733 .log_global_stop = core_log_global_stop,
1734 .priority = 1,
1735 };
1736
1737 static MemoryListener io_memory_listener = {
1738 .region_add = io_region_add,
1739 .region_del = io_region_del,
1740 .priority = 0,
1741 };
1742
1743 static MemoryListener tcg_memory_listener = {
1744 .commit = tcg_commit,
1745 };
1746
1747 void address_space_init_dispatch(AddressSpace *as)
1748 {
1749 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1750
1751 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1752 d->listener = (MemoryListener) {
1753 .begin = mem_begin,
1754 .region_add = mem_add,
1755 .region_nop = mem_add,
1756 .priority = 0,
1757 };
1758 as->dispatch = d;
1759 memory_listener_register(&d->listener, as);
1760 }
1761
1762 void address_space_destroy_dispatch(AddressSpace *as)
1763 {
1764 AddressSpaceDispatch *d = as->dispatch;
1765
1766 memory_listener_unregister(&d->listener);
1767 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1768 g_free(d);
1769 as->dispatch = NULL;
1770 }
1771
1772 static void memory_map_init(void)
1773 {
1774 system_memory = g_malloc(sizeof(*system_memory));
1775 memory_region_init(system_memory, "system", INT64_MAX);
1776 address_space_init(&address_space_memory, system_memory);
1777 address_space_memory.name = "memory";
1778
1779 system_io = g_malloc(sizeof(*system_io));
1780 memory_region_init(system_io, "io", 65536);
1781 address_space_init(&address_space_io, system_io);
1782 address_space_io.name = "I/O";
1783
1784 memory_listener_register(&core_memory_listener, &address_space_memory);
1785 memory_listener_register(&io_memory_listener, &address_space_io);
1786 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1787
1788 dma_context_init(&dma_context_memory, &address_space_memory,
1789 NULL, NULL, NULL);
1790 }
1791
1792 MemoryRegion *get_system_memory(void)
1793 {
1794 return system_memory;
1795 }
1796
1797 MemoryRegion *get_system_io(void)
1798 {
1799 return system_io;
1800 }
1801
1802 #endif /* !defined(CONFIG_USER_ONLY) */
1803
1804 /* physical memory access (slow version, mainly for debug) */
1805 #if defined(CONFIG_USER_ONLY)
1806 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1807 uint8_t *buf, int len, int is_write)
1808 {
1809 int l, flags;
1810 target_ulong page;
1811 void * p;
1812
1813 while (len > 0) {
1814 page = addr & TARGET_PAGE_MASK;
1815 l = (page + TARGET_PAGE_SIZE) - addr;
1816 if (l > len)
1817 l = len;
1818 flags = page_get_flags(page);
1819 if (!(flags & PAGE_VALID))
1820 return -1;
1821 if (is_write) {
1822 if (!(flags & PAGE_WRITE))
1823 return -1;
1824 /* XXX: this code should not depend on lock_user */
1825 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1826 return -1;
1827 memcpy(p, buf, l);
1828 unlock_user(p, addr, l);
1829 } else {
1830 if (!(flags & PAGE_READ))
1831 return -1;
1832 /* XXX: this code should not depend on lock_user */
1833 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1834 return -1;
1835 memcpy(buf, p, l);
1836 unlock_user(p, addr, 0);
1837 }
1838 len -= l;
1839 buf += l;
1840 addr += l;
1841 }
1842 return 0;
1843 }
1844
1845 #else
1846
1847 static void invalidate_and_set_dirty(hwaddr addr,
1848 hwaddr length)
1849 {
1850 if (!cpu_physical_memory_is_dirty(addr)) {
1851 /* invalidate code */
1852 tb_invalidate_phys_page_range(addr, addr + length, 0);
1853 /* set dirty bit */
1854 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1855 }
1856 xen_modified_memory(addr, length);
1857 }
1858
1859 void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1860 int len, bool is_write)
1861 {
1862 hwaddr l;
1863 uint8_t *ptr;
1864 uint32_t val;
1865 hwaddr addr1;
1866 MemoryRegionSection *section;
1867
1868 while (len > 0) {
1869 l = len;
1870 section = address_space_translate(as, addr, &addr1, &l, is_write);
1871
1872 if (is_write) {
1873 if (!memory_region_is_ram(section->mr)) {
1874 /* XXX: could force cpu_single_env to NULL to avoid
1875 potential bugs */
1876 if (l >= 4 && ((addr1 & 3) == 0)) {
1877 /* 32 bit write access */
1878 val = ldl_p(buf);
1879 io_mem_write(section->mr, addr1, val, 4);
1880 l = 4;
1881 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1882 /* 16 bit write access */
1883 val = lduw_p(buf);
1884 io_mem_write(section->mr, addr1, val, 2);
1885 l = 2;
1886 } else {
1887 /* 8 bit write access */
1888 val = ldub_p(buf);
1889 io_mem_write(section->mr, addr1, val, 1);
1890 l = 1;
1891 }
1892 } else if (!section->readonly) {
1893 addr1 += memory_region_get_ram_addr(section->mr);
1894 /* RAM case */
1895 ptr = qemu_get_ram_ptr(addr1);
1896 memcpy(ptr, buf, l);
1897 invalidate_and_set_dirty(addr1, l);
1898 }
1899 } else {
1900 if (!(memory_region_is_ram(section->mr) ||
1901 memory_region_is_romd(section->mr))) {
1902 /* I/O case */
1903 if (l >= 4 && ((addr1 & 3) == 0)) {
1904 /* 32 bit read access */
1905 val = io_mem_read(section->mr, addr1, 4);
1906 stl_p(buf, val);
1907 l = 4;
1908 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1909 /* 16 bit read access */
1910 val = io_mem_read(section->mr, addr1, 2);
1911 stw_p(buf, val);
1912 l = 2;
1913 } else {
1914 /* 8 bit read access */
1915 val = io_mem_read(section->mr, addr1, 1);
1916 stb_p(buf, val);
1917 l = 1;
1918 }
1919 } else {
1920 /* RAM case */
1921 ptr = qemu_get_ram_ptr(section->mr->ram_addr + addr1);
1922 memcpy(buf, ptr, l);
1923 }
1924 }
1925 len -= l;
1926 buf += l;
1927 addr += l;
1928 }
1929 }
1930
1931 void address_space_write(AddressSpace *as, hwaddr addr,
1932 const uint8_t *buf, int len)
1933 {
1934 address_space_rw(as, addr, (uint8_t *)buf, len, true);
1935 }
1936
1937 /**
1938 * address_space_read: read from an address space.
1939 *
1940 * @as: #AddressSpace to be accessed
1941 * @addr: address within that address space
1942 * @buf: buffer with the data transferred
1943 */
1944 void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
1945 {
1946 address_space_rw(as, addr, buf, len, false);
1947 }
1948
1949
1950 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
1951 int len, int is_write)
1952 {
1953 return address_space_rw(&address_space_memory, addr, buf, len, is_write);
1954 }
1955
1956 /* used for ROM loading : can write in RAM and ROM */
1957 void cpu_physical_memory_write_rom(hwaddr addr,
1958 const uint8_t *buf, int len)
1959 {
1960 hwaddr l;
1961 uint8_t *ptr;
1962 hwaddr addr1;
1963 MemoryRegionSection *section;
1964
1965 while (len > 0) {
1966 l = len;
1967 section = address_space_translate(&address_space_memory,
1968 addr, &addr1, &l, true);
1969
1970 if (!(memory_region_is_ram(section->mr) ||
1971 memory_region_is_romd(section->mr))) {
1972 /* do nothing */
1973 } else {
1974 addr1 += memory_region_get_ram_addr(section->mr);
1975 /* ROM/RAM case */
1976 ptr = qemu_get_ram_ptr(addr1);
1977 memcpy(ptr, buf, l);
1978 invalidate_and_set_dirty(addr1, l);
1979 }
1980 len -= l;
1981 buf += l;
1982 addr += l;
1983 }
1984 }
1985
1986 typedef struct {
1987 void *buffer;
1988 hwaddr addr;
1989 hwaddr len;
1990 } BounceBuffer;
1991
1992 static BounceBuffer bounce;
1993
1994 typedef struct MapClient {
1995 void *opaque;
1996 void (*callback)(void *opaque);
1997 QLIST_ENTRY(MapClient) link;
1998 } MapClient;
1999
2000 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2001 = QLIST_HEAD_INITIALIZER(map_client_list);
2002
2003 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2004 {
2005 MapClient *client = g_malloc(sizeof(*client));
2006
2007 client->opaque = opaque;
2008 client->callback = callback;
2009 QLIST_INSERT_HEAD(&map_client_list, client, link);
2010 return client;
2011 }
2012
2013 static void cpu_unregister_map_client(void *_client)
2014 {
2015 MapClient *client = (MapClient *)_client;
2016
2017 QLIST_REMOVE(client, link);
2018 g_free(client);
2019 }
2020
2021 static void cpu_notify_map_clients(void)
2022 {
2023 MapClient *client;
2024
2025 while (!QLIST_EMPTY(&map_client_list)) {
2026 client = QLIST_FIRST(&map_client_list);
2027 client->callback(client->opaque);
2028 cpu_unregister_map_client(client);
2029 }
2030 }
2031
2032 /* Map a physical memory region into a host virtual address.
2033 * May map a subset of the requested range, given by and returned in *plen.
2034 * May return NULL if resources needed to perform the mapping are exhausted.
2035 * Use only for reads OR writes - not for read-modify-write operations.
2036 * Use cpu_register_map_client() to know when retrying the map operation is
2037 * likely to succeed.
2038 */
2039 void *address_space_map(AddressSpace *as,
2040 hwaddr addr,
2041 hwaddr *plen,
2042 bool is_write)
2043 {
2044 hwaddr len = *plen;
2045 hwaddr todo = 0;
2046 hwaddr l, xlat;
2047 MemoryRegionSection *section;
2048 ram_addr_t raddr = RAM_ADDR_MAX;
2049 ram_addr_t rlen;
2050 void *ret;
2051
2052 while (len > 0) {
2053 l = len;
2054 section = address_space_translate(as, addr, &xlat, &l, is_write);
2055
2056 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
2057 if (todo || bounce.buffer) {
2058 break;
2059 }
2060 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2061 bounce.addr = addr;
2062 bounce.len = l;
2063 if (!is_write) {
2064 address_space_read(as, addr, bounce.buffer, l);
2065 }
2066
2067 *plen = l;
2068 return bounce.buffer;
2069 }
2070 if (!todo) {
2071 raddr = memory_region_get_ram_addr(section->mr) + xlat;
2072 } else {
2073 if (memory_region_get_ram_addr(section->mr) + xlat != raddr + todo) {
2074 break;
2075 }
2076 }
2077
2078 len -= l;
2079 addr += l;
2080 todo += l;
2081 }
2082 rlen = todo;
2083 ret = qemu_ram_ptr_length(raddr, &rlen);
2084 *plen = rlen;
2085 return ret;
2086 }
2087
2088 /* Unmaps a memory region previously mapped by address_space_map().
2089 * Will also mark the memory as dirty if is_write == 1. access_len gives
2090 * the amount of memory that was actually read or written by the caller.
2091 */
2092 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2093 int is_write, hwaddr access_len)
2094 {
2095 if (buffer != bounce.buffer) {
2096 if (is_write) {
2097 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2098 while (access_len) {
2099 unsigned l;
2100 l = TARGET_PAGE_SIZE;
2101 if (l > access_len)
2102 l = access_len;
2103 invalidate_and_set_dirty(addr1, l);
2104 addr1 += l;
2105 access_len -= l;
2106 }
2107 }
2108 if (xen_enabled()) {
2109 xen_invalidate_map_cache_entry(buffer);
2110 }
2111 return;
2112 }
2113 if (is_write) {
2114 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2115 }
2116 qemu_vfree(bounce.buffer);
2117 bounce.buffer = NULL;
2118 cpu_notify_map_clients();
2119 }
2120
2121 void *cpu_physical_memory_map(hwaddr addr,
2122 hwaddr *plen,
2123 int is_write)
2124 {
2125 return address_space_map(&address_space_memory, addr, plen, is_write);
2126 }
2127
2128 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2129 int is_write, hwaddr access_len)
2130 {
2131 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2132 }
2133
2134 /* warning: addr must be aligned */
2135 static inline uint32_t ldl_phys_internal(hwaddr addr,
2136 enum device_endian endian)
2137 {
2138 uint8_t *ptr;
2139 uint32_t val;
2140 MemoryRegionSection *section;
2141 hwaddr l = 4;
2142 hwaddr addr1;
2143
2144 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2145 false);
2146 if (l < 4 ||
2147 !(memory_region_is_ram(section->mr) ||
2148 memory_region_is_romd(section->mr))) {
2149 /* I/O case */
2150 val = io_mem_read(section->mr, addr1, 4);
2151 #if defined(TARGET_WORDS_BIGENDIAN)
2152 if (endian == DEVICE_LITTLE_ENDIAN) {
2153 val = bswap32(val);
2154 }
2155 #else
2156 if (endian == DEVICE_BIG_ENDIAN) {
2157 val = bswap32(val);
2158 }
2159 #endif
2160 } else {
2161 /* RAM case */
2162 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2163 & TARGET_PAGE_MASK)
2164 + addr1);
2165 switch (endian) {
2166 case DEVICE_LITTLE_ENDIAN:
2167 val = ldl_le_p(ptr);
2168 break;
2169 case DEVICE_BIG_ENDIAN:
2170 val = ldl_be_p(ptr);
2171 break;
2172 default:
2173 val = ldl_p(ptr);
2174 break;
2175 }
2176 }
2177 return val;
2178 }
2179
2180 uint32_t ldl_phys(hwaddr addr)
2181 {
2182 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2183 }
2184
2185 uint32_t ldl_le_phys(hwaddr addr)
2186 {
2187 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2188 }
2189
2190 uint32_t ldl_be_phys(hwaddr addr)
2191 {
2192 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2193 }
2194
2195 /* warning: addr must be aligned */
2196 static inline uint64_t ldq_phys_internal(hwaddr addr,
2197 enum device_endian endian)
2198 {
2199 uint8_t *ptr;
2200 uint64_t val;
2201 MemoryRegionSection *section;
2202 hwaddr l = 8;
2203 hwaddr addr1;
2204
2205 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2206 false);
2207 if (l < 8 ||
2208 !(memory_region_is_ram(section->mr) ||
2209 memory_region_is_romd(section->mr))) {
2210 /* I/O case */
2211
2212 /* XXX This is broken when device endian != cpu endian.
2213 Fix and add "endian" variable check */
2214 #ifdef TARGET_WORDS_BIGENDIAN
2215 val = io_mem_read(section->mr, addr1, 4) << 32;
2216 val |= io_mem_read(section->mr, addr1 + 4, 4);
2217 #else
2218 val = io_mem_read(section->mr, addr1, 4);
2219 val |= io_mem_read(section->mr, addr1 + 4, 4) << 32;
2220 #endif
2221 } else {
2222 /* RAM case */
2223 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2224 & TARGET_PAGE_MASK)
2225 + addr1);
2226 switch (endian) {
2227 case DEVICE_LITTLE_ENDIAN:
2228 val = ldq_le_p(ptr);
2229 break;
2230 case DEVICE_BIG_ENDIAN:
2231 val = ldq_be_p(ptr);
2232 break;
2233 default:
2234 val = ldq_p(ptr);
2235 break;
2236 }
2237 }
2238 return val;
2239 }
2240
2241 uint64_t ldq_phys(hwaddr addr)
2242 {
2243 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2244 }
2245
2246 uint64_t ldq_le_phys(hwaddr addr)
2247 {
2248 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2249 }
2250
2251 uint64_t ldq_be_phys(hwaddr addr)
2252 {
2253 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2254 }
2255
2256 /* XXX: optimize */
2257 uint32_t ldub_phys(hwaddr addr)
2258 {
2259 uint8_t val;
2260 cpu_physical_memory_read(addr, &val, 1);
2261 return val;
2262 }
2263
2264 /* warning: addr must be aligned */
2265 static inline uint32_t lduw_phys_internal(hwaddr addr,
2266 enum device_endian endian)
2267 {
2268 uint8_t *ptr;
2269 uint64_t val;
2270 MemoryRegionSection *section;
2271 hwaddr l = 2;
2272 hwaddr addr1;
2273
2274 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2275 false);
2276 if (l < 2 ||
2277 !(memory_region_is_ram(section->mr) ||
2278 memory_region_is_romd(section->mr))) {
2279 /* I/O case */
2280 val = io_mem_read(section->mr, addr1, 2);
2281 #if defined(TARGET_WORDS_BIGENDIAN)
2282 if (endian == DEVICE_LITTLE_ENDIAN) {
2283 val = bswap16(val);
2284 }
2285 #else
2286 if (endian == DEVICE_BIG_ENDIAN) {
2287 val = bswap16(val);
2288 }
2289 #endif
2290 } else {
2291 /* RAM case */
2292 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
2293 & TARGET_PAGE_MASK)
2294 + addr1);
2295 switch (endian) {
2296 case DEVICE_LITTLE_ENDIAN:
2297 val = lduw_le_p(ptr);
2298 break;
2299 case DEVICE_BIG_ENDIAN:
2300 val = lduw_be_p(ptr);
2301 break;
2302 default:
2303 val = lduw_p(ptr);
2304 break;
2305 }
2306 }
2307 return val;
2308 }
2309
2310 uint32_t lduw_phys(hwaddr addr)
2311 {
2312 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2313 }
2314
2315 uint32_t lduw_le_phys(hwaddr addr)
2316 {
2317 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2318 }
2319
2320 uint32_t lduw_be_phys(hwaddr addr)
2321 {
2322 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2323 }
2324
2325 /* warning: addr must be aligned. The ram page is not masked as dirty
2326 and the code inside is not invalidated. It is useful if the dirty
2327 bits are used to track modified PTEs */
2328 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2329 {
2330 uint8_t *ptr;
2331 MemoryRegionSection *section;
2332 hwaddr l = 4;
2333 hwaddr addr1;
2334
2335 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2336 true);
2337 if (l < 4 || !memory_region_is_ram(section->mr) || section->readonly) {
2338 if (memory_region_is_ram(section->mr)) {
2339 section = &phys_sections[phys_section_rom];
2340 }
2341 io_mem_write(section->mr, addr1, val, 4);
2342 } else {
2343 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2344 ptr = qemu_get_ram_ptr(addr1);
2345 stl_p(ptr, val);
2346
2347 if (unlikely(in_migration)) {
2348 if (!cpu_physical_memory_is_dirty(addr1)) {
2349 /* invalidate code */
2350 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2351 /* set dirty bit */
2352 cpu_physical_memory_set_dirty_flags(
2353 addr1, (0xff & ~CODE_DIRTY_FLAG));
2354 }
2355 }
2356 }
2357 }
2358
2359 /* warning: addr must be aligned */
2360 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2361 enum device_endian endian)
2362 {
2363 uint8_t *ptr;
2364 MemoryRegionSection *section;
2365 hwaddr l = 4;
2366 hwaddr addr1;
2367
2368 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2369 true);
2370 if (l < 4 || !memory_region_is_ram(section->mr) || section->readonly) {
2371 if (memory_region_is_ram(section->mr)) {
2372 section = &phys_sections[phys_section_rom];
2373 }
2374 #if defined(TARGET_WORDS_BIGENDIAN)
2375 if (endian == DEVICE_LITTLE_ENDIAN) {
2376 val = bswap32(val);
2377 }
2378 #else
2379 if (endian == DEVICE_BIG_ENDIAN) {
2380 val = bswap32(val);
2381 }
2382 #endif
2383 io_mem_write(section->mr, addr1, val, 4);
2384 } else {
2385 /* RAM case */
2386 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2387 ptr = qemu_get_ram_ptr(addr1);
2388 switch (endian) {
2389 case DEVICE_LITTLE_ENDIAN:
2390 stl_le_p(ptr, val);
2391 break;
2392 case DEVICE_BIG_ENDIAN:
2393 stl_be_p(ptr, val);
2394 break;
2395 default:
2396 stl_p(ptr, val);
2397 break;
2398 }
2399 invalidate_and_set_dirty(addr1, 4);
2400 }
2401 }
2402
2403 void stl_phys(hwaddr addr, uint32_t val)
2404 {
2405 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2406 }
2407
2408 void stl_le_phys(hwaddr addr, uint32_t val)
2409 {
2410 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2411 }
2412
2413 void stl_be_phys(hwaddr addr, uint32_t val)
2414 {
2415 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2416 }
2417
2418 /* XXX: optimize */
2419 void stb_phys(hwaddr addr, uint32_t val)
2420 {
2421 uint8_t v = val;
2422 cpu_physical_memory_write(addr, &v, 1);
2423 }
2424
2425 /* warning: addr must be aligned */
2426 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2427 enum device_endian endian)
2428 {
2429 uint8_t *ptr;
2430 MemoryRegionSection *section;
2431 hwaddr l = 2;
2432 hwaddr addr1;
2433
2434 section = address_space_translate(&address_space_memory, addr, &addr1, &l,
2435 true);
2436 if (l < 2 || !memory_region_is_ram(section->mr) || section->readonly) {
2437 if (memory_region_is_ram(section->mr)) {
2438 section = &phys_sections[phys_section_rom];
2439 }
2440 #if defined(TARGET_WORDS_BIGENDIAN)
2441 if (endian == DEVICE_LITTLE_ENDIAN) {
2442 val = bswap16(val);
2443 }
2444 #else
2445 if (endian == DEVICE_BIG_ENDIAN) {
2446 val = bswap16(val);
2447 }
2448 #endif
2449 io_mem_write(section->mr, addr1, val, 2);
2450 } else {
2451 /* RAM case */
2452 addr1 += memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK;
2453 ptr = qemu_get_ram_ptr(addr1);
2454 switch (endian) {
2455 case DEVICE_LITTLE_ENDIAN:
2456 stw_le_p(ptr, val);
2457 break;
2458 case DEVICE_BIG_ENDIAN:
2459 stw_be_p(ptr, val);
2460 break;
2461 default:
2462 stw_p(ptr, val);
2463 break;
2464 }
2465 invalidate_and_set_dirty(addr1, 2);
2466 }
2467 }
2468
2469 void stw_phys(hwaddr addr, uint32_t val)
2470 {
2471 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2472 }
2473
2474 void stw_le_phys(hwaddr addr, uint32_t val)
2475 {
2476 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2477 }
2478
2479 void stw_be_phys(hwaddr addr, uint32_t val)
2480 {
2481 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2482 }
2483
2484 /* XXX: optimize */
2485 void stq_phys(hwaddr addr, uint64_t val)
2486 {
2487 val = tswap64(val);
2488 cpu_physical_memory_write(addr, &val, 8);
2489 }
2490
2491 void stq_le_phys(hwaddr addr, uint64_t val)
2492 {
2493 val = cpu_to_le64(val);
2494 cpu_physical_memory_write(addr, &val, 8);
2495 }
2496
2497 void stq_be_phys(hwaddr addr, uint64_t val)
2498 {
2499 val = cpu_to_be64(val);
2500 cpu_physical_memory_write(addr, &val, 8);
2501 }
2502
2503 /* virtual memory access for debug (includes writing to ROM) */
2504 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2505 uint8_t *buf, int len, int is_write)
2506 {
2507 int l;
2508 hwaddr phys_addr;
2509 target_ulong page;
2510
2511 while (len > 0) {
2512 page = addr & TARGET_PAGE_MASK;
2513 phys_addr = cpu_get_phys_page_debug(env, page);
2514 /* if no physical page mapped, return an error */
2515 if (phys_addr == -1)
2516 return -1;
2517 l = (page + TARGET_PAGE_SIZE) - addr;
2518 if (l > len)
2519 l = len;
2520 phys_addr += (addr & ~TARGET_PAGE_MASK);
2521 if (is_write)
2522 cpu_physical_memory_write_rom(phys_addr, buf, l);
2523 else
2524 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2525 len -= l;
2526 buf += l;
2527 addr += l;
2528 }
2529 return 0;
2530 }
2531 #endif
2532
2533 #if !defined(CONFIG_USER_ONLY)
2534
2535 /*
2536 * A helper function for the _utterly broken_ virtio device model to find out if
2537 * it's running on a big endian machine. Don't do this at home kids!
2538 */
2539 bool virtio_is_big_endian(void);
2540 bool virtio_is_big_endian(void)
2541 {
2542 #if defined(TARGET_WORDS_BIGENDIAN)
2543 return true;
2544 #else
2545 return false;
2546 #endif
2547 }
2548
2549 #endif
2550
2551 #ifndef CONFIG_USER_ONLY
2552 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2553 {
2554 MemoryRegionSection *section;
2555 hwaddr l = 1;
2556
2557 section = address_space_translate(&address_space_memory,
2558 phys_addr, &phys_addr, &l, false);
2559
2560 return !(memory_region_is_ram(section->mr) ||
2561 memory_region_is_romd(section->mr));
2562 }
2563 #endif