]> git.proxmox.com Git - qemu.git/blob - exec.c
Uninline get_page_addr_code()
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
117
118 static MemoryRegion *system_memory;
119 static MemoryRegion *system_io;
120
121 #endif
122
123 CPUState *first_cpu;
124 /* current CPU in the current thread. It is only valid inside
125 cpu_exec() */
126 DEFINE_TLS(CPUState *,cpu_single_env);
127 /* 0 = Do not count executed instructions.
128 1 = Precise instruction counting.
129 2 = Adaptive rate instruction counting. */
130 int use_icount = 0;
131
132 typedef struct PageDesc {
133 /* list of TBs intersecting this ram page */
134 TranslationBlock *first_tb;
135 /* in order to optimize self modifying code, we count the number
136 of lookups we do to a given page to use a bitmap */
137 unsigned int code_write_count;
138 uint8_t *code_bitmap;
139 #if defined(CONFIG_USER_ONLY)
140 unsigned long flags;
141 #endif
142 } PageDesc;
143
144 /* In system mode we want L1_MAP to be based on ram offsets,
145 while in user mode we want it to be based on virtual addresses. */
146 #if !defined(CONFIG_USER_ONLY)
147 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
148 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
149 #else
150 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
151 #endif
152 #else
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
154 #endif
155
156 /* Size of the L2 (and L3, etc) page tables. */
157 #define L2_BITS 10
158 #define L2_SIZE (1 << L2_BITS)
159
160 /* The bits remaining after N lower levels of page tables. */
161 #define P_L1_BITS_REM \
162 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
163 #define V_L1_BITS_REM \
164 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
165
166 /* Size of the L1 page table. Avoid silly small sizes. */
167 #if P_L1_BITS_REM < 4
168 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
169 #else
170 #define P_L1_BITS P_L1_BITS_REM
171 #endif
172
173 #if V_L1_BITS_REM < 4
174 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
175 #else
176 #define V_L1_BITS V_L1_BITS_REM
177 #endif
178
179 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
180 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
181
182 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
183 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
184
185 unsigned long qemu_real_host_page_size;
186 unsigned long qemu_host_page_size;
187 unsigned long qemu_host_page_mask;
188
189 /* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191 static void *l1_map[V_L1_SIZE];
192
193 #if !defined(CONFIG_USER_ONLY)
194 typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198 } PhysPageDesc;
199
200 /* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202 static void *l1_phys_map[P_L1_SIZE];
203
204 static void io_mem_init(void);
205 static void memory_map_init(void);
206
207 /* io memory support */
208 CPUWriteMemoryFunc *_io_mem_write[IO_MEM_NB_ENTRIES][4];
209 CPUReadMemoryFunc *_io_mem_read[IO_MEM_NB_ENTRIES][4];
210 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
211 static char io_mem_used[IO_MEM_NB_ENTRIES];
212 static int io_mem_watch;
213 #endif
214
215 /* log support */
216 #ifdef WIN32
217 static const char *logfilename = "qemu.log";
218 #else
219 static const char *logfilename = "/tmp/qemu.log";
220 #endif
221 FILE *logfile;
222 int loglevel;
223 static int log_append = 0;
224
225 /* statistics */
226 #if !defined(CONFIG_USER_ONLY)
227 static int tlb_flush_count;
228 #endif
229 static int tb_flush_count;
230 static int tb_phys_invalidate_count;
231
232 #ifdef _WIN32
233 static void map_exec(void *addr, long size)
234 {
235 DWORD old_protect;
236 VirtualProtect(addr, size,
237 PAGE_EXECUTE_READWRITE, &old_protect);
238
239 }
240 #else
241 static void map_exec(void *addr, long size)
242 {
243 unsigned long start, end, page_size;
244
245 page_size = getpagesize();
246 start = (unsigned long)addr;
247 start &= ~(page_size - 1);
248
249 end = (unsigned long)addr + size;
250 end += page_size - 1;
251 end &= ~(page_size - 1);
252
253 mprotect((void *)start, end - start,
254 PROT_READ | PROT_WRITE | PROT_EXEC);
255 }
256 #endif
257
258 static void page_init(void)
259 {
260 /* NOTE: we can always suppose that qemu_host_page_size >=
261 TARGET_PAGE_SIZE */
262 #ifdef _WIN32
263 {
264 SYSTEM_INFO system_info;
265
266 GetSystemInfo(&system_info);
267 qemu_real_host_page_size = system_info.dwPageSize;
268 }
269 #else
270 qemu_real_host_page_size = getpagesize();
271 #endif
272 if (qemu_host_page_size == 0)
273 qemu_host_page_size = qemu_real_host_page_size;
274 if (qemu_host_page_size < TARGET_PAGE_SIZE)
275 qemu_host_page_size = TARGET_PAGE_SIZE;
276 qemu_host_page_mask = ~(qemu_host_page_size - 1);
277
278 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
279 {
280 #ifdef HAVE_KINFO_GETVMMAP
281 struct kinfo_vmentry *freep;
282 int i, cnt;
283
284 freep = kinfo_getvmmap(getpid(), &cnt);
285 if (freep) {
286 mmap_lock();
287 for (i = 0; i < cnt; i++) {
288 unsigned long startaddr, endaddr;
289
290 startaddr = freep[i].kve_start;
291 endaddr = freep[i].kve_end;
292 if (h2g_valid(startaddr)) {
293 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
294
295 if (h2g_valid(endaddr)) {
296 endaddr = h2g(endaddr);
297 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
298 } else {
299 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
300 endaddr = ~0ul;
301 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
302 #endif
303 }
304 }
305 }
306 free(freep);
307 mmap_unlock();
308 }
309 #else
310 FILE *f;
311
312 last_brk = (unsigned long)sbrk(0);
313
314 f = fopen("/compat/linux/proc/self/maps", "r");
315 if (f) {
316 mmap_lock();
317
318 do {
319 unsigned long startaddr, endaddr;
320 int n;
321
322 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
323
324 if (n == 2 && h2g_valid(startaddr)) {
325 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
326
327 if (h2g_valid(endaddr)) {
328 endaddr = h2g(endaddr);
329 } else {
330 endaddr = ~0ul;
331 }
332 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
333 }
334 } while (!feof(f));
335
336 fclose(f);
337 mmap_unlock();
338 }
339 #endif
340 }
341 #endif
342 }
343
344 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
345 {
346 PageDesc *pd;
347 void **lp;
348 int i;
349
350 #if defined(CONFIG_USER_ONLY)
351 /* We can't use g_malloc because it may recurse into a locked mutex. */
352 # define ALLOC(P, SIZE) \
353 do { \
354 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
355 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
356 } while (0)
357 #else
358 # define ALLOC(P, SIZE) \
359 do { P = g_malloc0(SIZE); } while (0)
360 #endif
361
362 /* Level 1. Always allocated. */
363 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
364
365 /* Level 2..N-1. */
366 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
367 void **p = *lp;
368
369 if (p == NULL) {
370 if (!alloc) {
371 return NULL;
372 }
373 ALLOC(p, sizeof(void *) * L2_SIZE);
374 *lp = p;
375 }
376
377 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
378 }
379
380 pd = *lp;
381 if (pd == NULL) {
382 if (!alloc) {
383 return NULL;
384 }
385 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
386 *lp = pd;
387 }
388
389 #undef ALLOC
390
391 return pd + (index & (L2_SIZE - 1));
392 }
393
394 static inline PageDesc *page_find(tb_page_addr_t index)
395 {
396 return page_find_alloc(index, 0);
397 }
398
399 #if !defined(CONFIG_USER_ONLY)
400 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
401 {
402 PhysPageDesc *pd;
403 void **lp;
404 int i;
405
406 /* Level 1. Always allocated. */
407 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
408
409 /* Level 2..N-1. */
410 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
411 void **p = *lp;
412 if (p == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
416 *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
417 }
418 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
419 }
420
421 pd = *lp;
422 if (pd == NULL) {
423 int i;
424 int first_index = index & ~(L2_SIZE - 1);
425
426 if (!alloc) {
427 return NULL;
428 }
429
430 *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
431
432 for (i = 0; i < L2_SIZE; i++) {
433 pd[i].phys_offset = IO_MEM_UNASSIGNED;
434 pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
435 }
436 }
437
438 return pd + (index & (L2_SIZE - 1));
439 }
440
441 static inline PhysPageDesc phys_page_find(target_phys_addr_t index)
442 {
443 PhysPageDesc *p = phys_page_find_alloc(index, 0);
444
445 if (p) {
446 return *p;
447 } else {
448 return (PhysPageDesc) {
449 .phys_offset = IO_MEM_UNASSIGNED,
450 .region_offset = index << TARGET_PAGE_BITS,
451 };
452 }
453 }
454
455 static void tlb_protect_code(ram_addr_t ram_addr);
456 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
457 target_ulong vaddr);
458 #define mmap_lock() do { } while(0)
459 #define mmap_unlock() do { } while(0)
460 #endif
461
462 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
463
464 #if defined(CONFIG_USER_ONLY)
465 /* Currently it is not recommended to allocate big chunks of data in
466 user mode. It will change when a dedicated libc will be used */
467 #define USE_STATIC_CODE_GEN_BUFFER
468 #endif
469
470 #ifdef USE_STATIC_CODE_GEN_BUFFER
471 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
472 __attribute__((aligned (CODE_GEN_ALIGN)));
473 #endif
474
475 static void code_gen_alloc(unsigned long tb_size)
476 {
477 #ifdef USE_STATIC_CODE_GEN_BUFFER
478 code_gen_buffer = static_code_gen_buffer;
479 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
480 map_exec(code_gen_buffer, code_gen_buffer_size);
481 #else
482 code_gen_buffer_size = tb_size;
483 if (code_gen_buffer_size == 0) {
484 #if defined(CONFIG_USER_ONLY)
485 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
486 #else
487 /* XXX: needs adjustments */
488 code_gen_buffer_size = (unsigned long)(ram_size / 4);
489 #endif
490 }
491 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
492 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
493 /* The code gen buffer location may have constraints depending on
494 the host cpu and OS */
495 #if defined(__linux__)
496 {
497 int flags;
498 void *start = NULL;
499
500 flags = MAP_PRIVATE | MAP_ANONYMOUS;
501 #if defined(__x86_64__)
502 flags |= MAP_32BIT;
503 /* Cannot map more than that */
504 if (code_gen_buffer_size > (800 * 1024 * 1024))
505 code_gen_buffer_size = (800 * 1024 * 1024);
506 #elif defined(__sparc_v9__)
507 // Map the buffer below 2G, so we can use direct calls and branches
508 flags |= MAP_FIXED;
509 start = (void *) 0x60000000UL;
510 if (code_gen_buffer_size > (512 * 1024 * 1024))
511 code_gen_buffer_size = (512 * 1024 * 1024);
512 #elif defined(__arm__)
513 /* Keep the buffer no bigger than 16GB to branch between blocks */
514 if (code_gen_buffer_size > 16 * 1024 * 1024)
515 code_gen_buffer_size = 16 * 1024 * 1024;
516 #elif defined(__s390x__)
517 /* Map the buffer so that we can use direct calls and branches. */
518 /* We have a +- 4GB range on the branches; leave some slop. */
519 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
520 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
521 }
522 start = (void *)0x90000000UL;
523 #endif
524 code_gen_buffer = mmap(start, code_gen_buffer_size,
525 PROT_WRITE | PROT_READ | PROT_EXEC,
526 flags, -1, 0);
527 if (code_gen_buffer == MAP_FAILED) {
528 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
529 exit(1);
530 }
531 }
532 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
533 || defined(__DragonFly__) || defined(__OpenBSD__) \
534 || defined(__NetBSD__)
535 {
536 int flags;
537 void *addr = NULL;
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539 #if defined(__x86_64__)
540 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
541 * 0x40000000 is free */
542 flags |= MAP_FIXED;
543 addr = (void *)0x40000000;
544 /* Cannot map more than that */
545 if (code_gen_buffer_size > (800 * 1024 * 1024))
546 code_gen_buffer_size = (800 * 1024 * 1024);
547 #elif defined(__sparc_v9__)
548 // Map the buffer below 2G, so we can use direct calls and branches
549 flags |= MAP_FIXED;
550 addr = (void *) 0x60000000UL;
551 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
552 code_gen_buffer_size = (512 * 1024 * 1024);
553 }
554 #endif
555 code_gen_buffer = mmap(addr, code_gen_buffer_size,
556 PROT_WRITE | PROT_READ | PROT_EXEC,
557 flags, -1, 0);
558 if (code_gen_buffer == MAP_FAILED) {
559 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
560 exit(1);
561 }
562 }
563 #else
564 code_gen_buffer = g_malloc(code_gen_buffer_size);
565 map_exec(code_gen_buffer, code_gen_buffer_size);
566 #endif
567 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
568 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
569 code_gen_buffer_max_size = code_gen_buffer_size -
570 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
571 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
572 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
573 }
574
575 /* Must be called before using the QEMU cpus. 'tb_size' is the size
576 (in bytes) allocated to the translation buffer. Zero means default
577 size. */
578 void tcg_exec_init(unsigned long tb_size)
579 {
580 cpu_gen_init();
581 code_gen_alloc(tb_size);
582 code_gen_ptr = code_gen_buffer;
583 page_init();
584 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
585 /* There's no guest base to take into account, so go ahead and
586 initialize the prologue now. */
587 tcg_prologue_init(&tcg_ctx);
588 #endif
589 }
590
591 bool tcg_enabled(void)
592 {
593 return code_gen_buffer != NULL;
594 }
595
596 void cpu_exec_init_all(void)
597 {
598 #if !defined(CONFIG_USER_ONLY)
599 memory_map_init();
600 io_mem_init();
601 #endif
602 }
603
604 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
605
606 static int cpu_common_post_load(void *opaque, int version_id)
607 {
608 CPUState *env = opaque;
609
610 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
611 version_id is increased. */
612 env->interrupt_request &= ~0x01;
613 tlb_flush(env, 1);
614
615 return 0;
616 }
617
618 static const VMStateDescription vmstate_cpu_common = {
619 .name = "cpu_common",
620 .version_id = 1,
621 .minimum_version_id = 1,
622 .minimum_version_id_old = 1,
623 .post_load = cpu_common_post_load,
624 .fields = (VMStateField []) {
625 VMSTATE_UINT32(halted, CPUState),
626 VMSTATE_UINT32(interrupt_request, CPUState),
627 VMSTATE_END_OF_LIST()
628 }
629 };
630 #endif
631
632 CPUState *qemu_get_cpu(int cpu)
633 {
634 CPUState *env = first_cpu;
635
636 while (env) {
637 if (env->cpu_index == cpu)
638 break;
639 env = env->next_cpu;
640 }
641
642 return env;
643 }
644
645 void cpu_exec_init(CPUState *env)
646 {
647 CPUState **penv;
648 int cpu_index;
649
650 #if defined(CONFIG_USER_ONLY)
651 cpu_list_lock();
652 #endif
653 env->next_cpu = NULL;
654 penv = &first_cpu;
655 cpu_index = 0;
656 while (*penv != NULL) {
657 penv = &(*penv)->next_cpu;
658 cpu_index++;
659 }
660 env->cpu_index = cpu_index;
661 env->numa_node = 0;
662 QTAILQ_INIT(&env->breakpoints);
663 QTAILQ_INIT(&env->watchpoints);
664 #ifndef CONFIG_USER_ONLY
665 env->thread_id = qemu_get_thread_id();
666 #endif
667 *penv = env;
668 #if defined(CONFIG_USER_ONLY)
669 cpu_list_unlock();
670 #endif
671 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
672 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
673 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
674 cpu_save, cpu_load, env);
675 #endif
676 }
677
678 /* Allocate a new translation block. Flush the translation buffer if
679 too many translation blocks or too much generated code. */
680 static TranslationBlock *tb_alloc(target_ulong pc)
681 {
682 TranslationBlock *tb;
683
684 if (nb_tbs >= code_gen_max_blocks ||
685 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
686 return NULL;
687 tb = &tbs[nb_tbs++];
688 tb->pc = pc;
689 tb->cflags = 0;
690 return tb;
691 }
692
693 void tb_free(TranslationBlock *tb)
694 {
695 /* In practice this is mostly used for single use temporary TB
696 Ignore the hard cases and just back up if this TB happens to
697 be the last one generated. */
698 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
699 code_gen_ptr = tb->tc_ptr;
700 nb_tbs--;
701 }
702 }
703
704 static inline void invalidate_page_bitmap(PageDesc *p)
705 {
706 if (p->code_bitmap) {
707 g_free(p->code_bitmap);
708 p->code_bitmap = NULL;
709 }
710 p->code_write_count = 0;
711 }
712
713 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
714
715 static void page_flush_tb_1 (int level, void **lp)
716 {
717 int i;
718
719 if (*lp == NULL) {
720 return;
721 }
722 if (level == 0) {
723 PageDesc *pd = *lp;
724 for (i = 0; i < L2_SIZE; ++i) {
725 pd[i].first_tb = NULL;
726 invalidate_page_bitmap(pd + i);
727 }
728 } else {
729 void **pp = *lp;
730 for (i = 0; i < L2_SIZE; ++i) {
731 page_flush_tb_1 (level - 1, pp + i);
732 }
733 }
734 }
735
736 static void page_flush_tb(void)
737 {
738 int i;
739 for (i = 0; i < V_L1_SIZE; i++) {
740 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
741 }
742 }
743
744 /* flush all the translation blocks */
745 /* XXX: tb_flush is currently not thread safe */
746 void tb_flush(CPUState *env1)
747 {
748 CPUState *env;
749 #if defined(DEBUG_FLUSH)
750 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
751 (unsigned long)(code_gen_ptr - code_gen_buffer),
752 nb_tbs, nb_tbs > 0 ?
753 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
754 #endif
755 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
756 cpu_abort(env1, "Internal error: code buffer overflow\n");
757
758 nb_tbs = 0;
759
760 for(env = first_cpu; env != NULL; env = env->next_cpu) {
761 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
762 }
763
764 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
765 page_flush_tb();
766
767 code_gen_ptr = code_gen_buffer;
768 /* XXX: flush processor icache at this point if cache flush is
769 expensive */
770 tb_flush_count++;
771 }
772
773 #ifdef DEBUG_TB_CHECK
774
775 static void tb_invalidate_check(target_ulong address)
776 {
777 TranslationBlock *tb;
778 int i;
779 address &= TARGET_PAGE_MASK;
780 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
781 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
782 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
783 address >= tb->pc + tb->size)) {
784 printf("ERROR invalidate: address=" TARGET_FMT_lx
785 " PC=%08lx size=%04x\n",
786 address, (long)tb->pc, tb->size);
787 }
788 }
789 }
790 }
791
792 /* verify that all the pages have correct rights for code */
793 static void tb_page_check(void)
794 {
795 TranslationBlock *tb;
796 int i, flags1, flags2;
797
798 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
799 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
800 flags1 = page_get_flags(tb->pc);
801 flags2 = page_get_flags(tb->pc + tb->size - 1);
802 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
803 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
804 (long)tb->pc, tb->size, flags1, flags2);
805 }
806 }
807 }
808 }
809
810 #endif
811
812 /* invalidate one TB */
813 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
814 int next_offset)
815 {
816 TranslationBlock *tb1;
817 for(;;) {
818 tb1 = *ptb;
819 if (tb1 == tb) {
820 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
821 break;
822 }
823 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
824 }
825 }
826
827 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
828 {
829 TranslationBlock *tb1;
830 unsigned int n1;
831
832 for(;;) {
833 tb1 = *ptb;
834 n1 = (long)tb1 & 3;
835 tb1 = (TranslationBlock *)((long)tb1 & ~3);
836 if (tb1 == tb) {
837 *ptb = tb1->page_next[n1];
838 break;
839 }
840 ptb = &tb1->page_next[n1];
841 }
842 }
843
844 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
845 {
846 TranslationBlock *tb1, **ptb;
847 unsigned int n1;
848
849 ptb = &tb->jmp_next[n];
850 tb1 = *ptb;
851 if (tb1) {
852 /* find tb(n) in circular list */
853 for(;;) {
854 tb1 = *ptb;
855 n1 = (long)tb1 & 3;
856 tb1 = (TranslationBlock *)((long)tb1 & ~3);
857 if (n1 == n && tb1 == tb)
858 break;
859 if (n1 == 2) {
860 ptb = &tb1->jmp_first;
861 } else {
862 ptb = &tb1->jmp_next[n1];
863 }
864 }
865 /* now we can suppress tb(n) from the list */
866 *ptb = tb->jmp_next[n];
867
868 tb->jmp_next[n] = NULL;
869 }
870 }
871
872 /* reset the jump entry 'n' of a TB so that it is not chained to
873 another TB */
874 static inline void tb_reset_jump(TranslationBlock *tb, int n)
875 {
876 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
877 }
878
879 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
880 {
881 CPUState *env;
882 PageDesc *p;
883 unsigned int h, n1;
884 tb_page_addr_t phys_pc;
885 TranslationBlock *tb1, *tb2;
886
887 /* remove the TB from the hash list */
888 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
889 h = tb_phys_hash_func(phys_pc);
890 tb_remove(&tb_phys_hash[h], tb,
891 offsetof(TranslationBlock, phys_hash_next));
892
893 /* remove the TB from the page list */
894 if (tb->page_addr[0] != page_addr) {
895 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
896 tb_page_remove(&p->first_tb, tb);
897 invalidate_page_bitmap(p);
898 }
899 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
900 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
901 tb_page_remove(&p->first_tb, tb);
902 invalidate_page_bitmap(p);
903 }
904
905 tb_invalidated_flag = 1;
906
907 /* remove the TB from the hash list */
908 h = tb_jmp_cache_hash_func(tb->pc);
909 for(env = first_cpu; env != NULL; env = env->next_cpu) {
910 if (env->tb_jmp_cache[h] == tb)
911 env->tb_jmp_cache[h] = NULL;
912 }
913
914 /* suppress this TB from the two jump lists */
915 tb_jmp_remove(tb, 0);
916 tb_jmp_remove(tb, 1);
917
918 /* suppress any remaining jumps to this TB */
919 tb1 = tb->jmp_first;
920 for(;;) {
921 n1 = (long)tb1 & 3;
922 if (n1 == 2)
923 break;
924 tb1 = (TranslationBlock *)((long)tb1 & ~3);
925 tb2 = tb1->jmp_next[n1];
926 tb_reset_jump(tb1, n1);
927 tb1->jmp_next[n1] = NULL;
928 tb1 = tb2;
929 }
930 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
931
932 tb_phys_invalidate_count++;
933 }
934
935 static inline void set_bits(uint8_t *tab, int start, int len)
936 {
937 int end, mask, end1;
938
939 end = start + len;
940 tab += start >> 3;
941 mask = 0xff << (start & 7);
942 if ((start & ~7) == (end & ~7)) {
943 if (start < end) {
944 mask &= ~(0xff << (end & 7));
945 *tab |= mask;
946 }
947 } else {
948 *tab++ |= mask;
949 start = (start + 8) & ~7;
950 end1 = end & ~7;
951 while (start < end1) {
952 *tab++ = 0xff;
953 start += 8;
954 }
955 if (start < end) {
956 mask = ~(0xff << (end & 7));
957 *tab |= mask;
958 }
959 }
960 }
961
962 static void build_page_bitmap(PageDesc *p)
963 {
964 int n, tb_start, tb_end;
965 TranslationBlock *tb;
966
967 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
968
969 tb = p->first_tb;
970 while (tb != NULL) {
971 n = (long)tb & 3;
972 tb = (TranslationBlock *)((long)tb & ~3);
973 /* NOTE: this is subtle as a TB may span two physical pages */
974 if (n == 0) {
975 /* NOTE: tb_end may be after the end of the page, but
976 it is not a problem */
977 tb_start = tb->pc & ~TARGET_PAGE_MASK;
978 tb_end = tb_start + tb->size;
979 if (tb_end > TARGET_PAGE_SIZE)
980 tb_end = TARGET_PAGE_SIZE;
981 } else {
982 tb_start = 0;
983 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
984 }
985 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
986 tb = tb->page_next[n];
987 }
988 }
989
990 TranslationBlock *tb_gen_code(CPUState *env,
991 target_ulong pc, target_ulong cs_base,
992 int flags, int cflags)
993 {
994 TranslationBlock *tb;
995 uint8_t *tc_ptr;
996 tb_page_addr_t phys_pc, phys_page2;
997 target_ulong virt_page2;
998 int code_gen_size;
999
1000 phys_pc = get_page_addr_code(env, pc);
1001 tb = tb_alloc(pc);
1002 if (!tb) {
1003 /* flush must be done */
1004 tb_flush(env);
1005 /* cannot fail at this point */
1006 tb = tb_alloc(pc);
1007 /* Don't forget to invalidate previous TB info. */
1008 tb_invalidated_flag = 1;
1009 }
1010 tc_ptr = code_gen_ptr;
1011 tb->tc_ptr = tc_ptr;
1012 tb->cs_base = cs_base;
1013 tb->flags = flags;
1014 tb->cflags = cflags;
1015 cpu_gen_code(env, tb, &code_gen_size);
1016 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1017
1018 /* check next page if needed */
1019 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1020 phys_page2 = -1;
1021 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1022 phys_page2 = get_page_addr_code(env, virt_page2);
1023 }
1024 tb_link_page(tb, phys_pc, phys_page2);
1025 return tb;
1026 }
1027
1028 /* invalidate all TBs which intersect with the target physical page
1029 starting in range [start;end[. NOTE: start and end must refer to
1030 the same physical page. 'is_cpu_write_access' should be true if called
1031 from a real cpu write access: the virtual CPU will exit the current
1032 TB if code is modified inside this TB. */
1033 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1034 int is_cpu_write_access)
1035 {
1036 TranslationBlock *tb, *tb_next, *saved_tb;
1037 CPUState *env = cpu_single_env;
1038 tb_page_addr_t tb_start, tb_end;
1039 PageDesc *p;
1040 int n;
1041 #ifdef TARGET_HAS_PRECISE_SMC
1042 int current_tb_not_found = is_cpu_write_access;
1043 TranslationBlock *current_tb = NULL;
1044 int current_tb_modified = 0;
1045 target_ulong current_pc = 0;
1046 target_ulong current_cs_base = 0;
1047 int current_flags = 0;
1048 #endif /* TARGET_HAS_PRECISE_SMC */
1049
1050 p = page_find(start >> TARGET_PAGE_BITS);
1051 if (!p)
1052 return;
1053 if (!p->code_bitmap &&
1054 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1055 is_cpu_write_access) {
1056 /* build code bitmap */
1057 build_page_bitmap(p);
1058 }
1059
1060 /* we remove all the TBs in the range [start, end[ */
1061 /* XXX: see if in some cases it could be faster to invalidate all the code */
1062 tb = p->first_tb;
1063 while (tb != NULL) {
1064 n = (long)tb & 3;
1065 tb = (TranslationBlock *)((long)tb & ~3);
1066 tb_next = tb->page_next[n];
1067 /* NOTE: this is subtle as a TB may span two physical pages */
1068 if (n == 0) {
1069 /* NOTE: tb_end may be after the end of the page, but
1070 it is not a problem */
1071 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1072 tb_end = tb_start + tb->size;
1073 } else {
1074 tb_start = tb->page_addr[1];
1075 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1076 }
1077 if (!(tb_end <= start || tb_start >= end)) {
1078 #ifdef TARGET_HAS_PRECISE_SMC
1079 if (current_tb_not_found) {
1080 current_tb_not_found = 0;
1081 current_tb = NULL;
1082 if (env->mem_io_pc) {
1083 /* now we have a real cpu fault */
1084 current_tb = tb_find_pc(env->mem_io_pc);
1085 }
1086 }
1087 if (current_tb == tb &&
1088 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1089 /* If we are modifying the current TB, we must stop
1090 its execution. We could be more precise by checking
1091 that the modification is after the current PC, but it
1092 would require a specialized function to partially
1093 restore the CPU state */
1094
1095 current_tb_modified = 1;
1096 cpu_restore_state(current_tb, env, env->mem_io_pc);
1097 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1098 &current_flags);
1099 }
1100 #endif /* TARGET_HAS_PRECISE_SMC */
1101 /* we need to do that to handle the case where a signal
1102 occurs while doing tb_phys_invalidate() */
1103 saved_tb = NULL;
1104 if (env) {
1105 saved_tb = env->current_tb;
1106 env->current_tb = NULL;
1107 }
1108 tb_phys_invalidate(tb, -1);
1109 if (env) {
1110 env->current_tb = saved_tb;
1111 if (env->interrupt_request && env->current_tb)
1112 cpu_interrupt(env, env->interrupt_request);
1113 }
1114 }
1115 tb = tb_next;
1116 }
1117 #if !defined(CONFIG_USER_ONLY)
1118 /* if no code remaining, no need to continue to use slow writes */
1119 if (!p->first_tb) {
1120 invalidate_page_bitmap(p);
1121 if (is_cpu_write_access) {
1122 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1123 }
1124 }
1125 #endif
1126 #ifdef TARGET_HAS_PRECISE_SMC
1127 if (current_tb_modified) {
1128 /* we generate a block containing just the instruction
1129 modifying the memory. It will ensure that it cannot modify
1130 itself */
1131 env->current_tb = NULL;
1132 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1133 cpu_resume_from_signal(env, NULL);
1134 }
1135 #endif
1136 }
1137
1138 /* len must be <= 8 and start must be a multiple of len */
1139 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1140 {
1141 PageDesc *p;
1142 int offset, b;
1143 #if 0
1144 if (1) {
1145 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1146 cpu_single_env->mem_io_vaddr, len,
1147 cpu_single_env->eip,
1148 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1149 }
1150 #endif
1151 p = page_find(start >> TARGET_PAGE_BITS);
1152 if (!p)
1153 return;
1154 if (p->code_bitmap) {
1155 offset = start & ~TARGET_PAGE_MASK;
1156 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1157 if (b & ((1 << len) - 1))
1158 goto do_invalidate;
1159 } else {
1160 do_invalidate:
1161 tb_invalidate_phys_page_range(start, start + len, 1);
1162 }
1163 }
1164
1165 #if !defined(CONFIG_SOFTMMU)
1166 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1167 unsigned long pc, void *puc)
1168 {
1169 TranslationBlock *tb;
1170 PageDesc *p;
1171 int n;
1172 #ifdef TARGET_HAS_PRECISE_SMC
1173 TranslationBlock *current_tb = NULL;
1174 CPUState *env = cpu_single_env;
1175 int current_tb_modified = 0;
1176 target_ulong current_pc = 0;
1177 target_ulong current_cs_base = 0;
1178 int current_flags = 0;
1179 #endif
1180
1181 addr &= TARGET_PAGE_MASK;
1182 p = page_find(addr >> TARGET_PAGE_BITS);
1183 if (!p)
1184 return;
1185 tb = p->first_tb;
1186 #ifdef TARGET_HAS_PRECISE_SMC
1187 if (tb && pc != 0) {
1188 current_tb = tb_find_pc(pc);
1189 }
1190 #endif
1191 while (tb != NULL) {
1192 n = (long)tb & 3;
1193 tb = (TranslationBlock *)((long)tb & ~3);
1194 #ifdef TARGET_HAS_PRECISE_SMC
1195 if (current_tb == tb &&
1196 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1197 /* If we are modifying the current TB, we must stop
1198 its execution. We could be more precise by checking
1199 that the modification is after the current PC, but it
1200 would require a specialized function to partially
1201 restore the CPU state */
1202
1203 current_tb_modified = 1;
1204 cpu_restore_state(current_tb, env, pc);
1205 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1206 &current_flags);
1207 }
1208 #endif /* TARGET_HAS_PRECISE_SMC */
1209 tb_phys_invalidate(tb, addr);
1210 tb = tb->page_next[n];
1211 }
1212 p->first_tb = NULL;
1213 #ifdef TARGET_HAS_PRECISE_SMC
1214 if (current_tb_modified) {
1215 /* we generate a block containing just the instruction
1216 modifying the memory. It will ensure that it cannot modify
1217 itself */
1218 env->current_tb = NULL;
1219 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1220 cpu_resume_from_signal(env, puc);
1221 }
1222 #endif
1223 }
1224 #endif
1225
1226 /* add the tb in the target page and protect it if necessary */
1227 static inline void tb_alloc_page(TranslationBlock *tb,
1228 unsigned int n, tb_page_addr_t page_addr)
1229 {
1230 PageDesc *p;
1231 #ifndef CONFIG_USER_ONLY
1232 bool page_already_protected;
1233 #endif
1234
1235 tb->page_addr[n] = page_addr;
1236 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1237 tb->page_next[n] = p->first_tb;
1238 #ifndef CONFIG_USER_ONLY
1239 page_already_protected = p->first_tb != NULL;
1240 #endif
1241 p->first_tb = (TranslationBlock *)((long)tb | n);
1242 invalidate_page_bitmap(p);
1243
1244 #if defined(TARGET_HAS_SMC) || 1
1245
1246 #if defined(CONFIG_USER_ONLY)
1247 if (p->flags & PAGE_WRITE) {
1248 target_ulong addr;
1249 PageDesc *p2;
1250 int prot;
1251
1252 /* force the host page as non writable (writes will have a
1253 page fault + mprotect overhead) */
1254 page_addr &= qemu_host_page_mask;
1255 prot = 0;
1256 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1257 addr += TARGET_PAGE_SIZE) {
1258
1259 p2 = page_find (addr >> TARGET_PAGE_BITS);
1260 if (!p2)
1261 continue;
1262 prot |= p2->flags;
1263 p2->flags &= ~PAGE_WRITE;
1264 }
1265 mprotect(g2h(page_addr), qemu_host_page_size,
1266 (prot & PAGE_BITS) & ~PAGE_WRITE);
1267 #ifdef DEBUG_TB_INVALIDATE
1268 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1269 page_addr);
1270 #endif
1271 }
1272 #else
1273 /* if some code is already present, then the pages are already
1274 protected. So we handle the case where only the first TB is
1275 allocated in a physical page */
1276 if (!page_already_protected) {
1277 tlb_protect_code(page_addr);
1278 }
1279 #endif
1280
1281 #endif /* TARGET_HAS_SMC */
1282 }
1283
1284 /* add a new TB and link it to the physical page tables. phys_page2 is
1285 (-1) to indicate that only one page contains the TB. */
1286 void tb_link_page(TranslationBlock *tb,
1287 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1288 {
1289 unsigned int h;
1290 TranslationBlock **ptb;
1291
1292 /* Grab the mmap lock to stop another thread invalidating this TB
1293 before we are done. */
1294 mmap_lock();
1295 /* add in the physical hash table */
1296 h = tb_phys_hash_func(phys_pc);
1297 ptb = &tb_phys_hash[h];
1298 tb->phys_hash_next = *ptb;
1299 *ptb = tb;
1300
1301 /* add in the page list */
1302 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1303 if (phys_page2 != -1)
1304 tb_alloc_page(tb, 1, phys_page2);
1305 else
1306 tb->page_addr[1] = -1;
1307
1308 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1309 tb->jmp_next[0] = NULL;
1310 tb->jmp_next[1] = NULL;
1311
1312 /* init original jump addresses */
1313 if (tb->tb_next_offset[0] != 0xffff)
1314 tb_reset_jump(tb, 0);
1315 if (tb->tb_next_offset[1] != 0xffff)
1316 tb_reset_jump(tb, 1);
1317
1318 #ifdef DEBUG_TB_CHECK
1319 tb_page_check();
1320 #endif
1321 mmap_unlock();
1322 }
1323
1324 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1325 tb[1].tc_ptr. Return NULL if not found */
1326 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1327 {
1328 int m_min, m_max, m;
1329 unsigned long v;
1330 TranslationBlock *tb;
1331
1332 if (nb_tbs <= 0)
1333 return NULL;
1334 if (tc_ptr < (unsigned long)code_gen_buffer ||
1335 tc_ptr >= (unsigned long)code_gen_ptr)
1336 return NULL;
1337 /* binary search (cf Knuth) */
1338 m_min = 0;
1339 m_max = nb_tbs - 1;
1340 while (m_min <= m_max) {
1341 m = (m_min + m_max) >> 1;
1342 tb = &tbs[m];
1343 v = (unsigned long)tb->tc_ptr;
1344 if (v == tc_ptr)
1345 return tb;
1346 else if (tc_ptr < v) {
1347 m_max = m - 1;
1348 } else {
1349 m_min = m + 1;
1350 }
1351 }
1352 return &tbs[m_max];
1353 }
1354
1355 static void tb_reset_jump_recursive(TranslationBlock *tb);
1356
1357 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1358 {
1359 TranslationBlock *tb1, *tb_next, **ptb;
1360 unsigned int n1;
1361
1362 tb1 = tb->jmp_next[n];
1363 if (tb1 != NULL) {
1364 /* find head of list */
1365 for(;;) {
1366 n1 = (long)tb1 & 3;
1367 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1368 if (n1 == 2)
1369 break;
1370 tb1 = tb1->jmp_next[n1];
1371 }
1372 /* we are now sure now that tb jumps to tb1 */
1373 tb_next = tb1;
1374
1375 /* remove tb from the jmp_first list */
1376 ptb = &tb_next->jmp_first;
1377 for(;;) {
1378 tb1 = *ptb;
1379 n1 = (long)tb1 & 3;
1380 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1381 if (n1 == n && tb1 == tb)
1382 break;
1383 ptb = &tb1->jmp_next[n1];
1384 }
1385 *ptb = tb->jmp_next[n];
1386 tb->jmp_next[n] = NULL;
1387
1388 /* suppress the jump to next tb in generated code */
1389 tb_reset_jump(tb, n);
1390
1391 /* suppress jumps in the tb on which we could have jumped */
1392 tb_reset_jump_recursive(tb_next);
1393 }
1394 }
1395
1396 static void tb_reset_jump_recursive(TranslationBlock *tb)
1397 {
1398 tb_reset_jump_recursive2(tb, 0);
1399 tb_reset_jump_recursive2(tb, 1);
1400 }
1401
1402 #if defined(TARGET_HAS_ICE)
1403 #if defined(CONFIG_USER_ONLY)
1404 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1405 {
1406 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1407 }
1408 #else
1409 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1410 {
1411 target_phys_addr_t addr;
1412 target_ulong pd;
1413 ram_addr_t ram_addr;
1414 PhysPageDesc p;
1415
1416 addr = cpu_get_phys_page_debug(env, pc);
1417 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1418 pd = p.phys_offset;
1419 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1420 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1421 }
1422 #endif
1423 #endif /* TARGET_HAS_ICE */
1424
1425 #if defined(CONFIG_USER_ONLY)
1426 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1427
1428 {
1429 }
1430
1431 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
1433 {
1434 return -ENOSYS;
1435 }
1436 #else
1437 /* Add a watchpoint. */
1438 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1439 int flags, CPUWatchpoint **watchpoint)
1440 {
1441 target_ulong len_mask = ~(len - 1);
1442 CPUWatchpoint *wp;
1443
1444 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1445 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1446 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1447 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1448 return -EINVAL;
1449 }
1450 wp = g_malloc(sizeof(*wp));
1451
1452 wp->vaddr = addr;
1453 wp->len_mask = len_mask;
1454 wp->flags = flags;
1455
1456 /* keep all GDB-injected watchpoints in front */
1457 if (flags & BP_GDB)
1458 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1459 else
1460 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1461
1462 tlb_flush_page(env, addr);
1463
1464 if (watchpoint)
1465 *watchpoint = wp;
1466 return 0;
1467 }
1468
1469 /* Remove a specific watchpoint. */
1470 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1471 int flags)
1472 {
1473 target_ulong len_mask = ~(len - 1);
1474 CPUWatchpoint *wp;
1475
1476 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1477 if (addr == wp->vaddr && len_mask == wp->len_mask
1478 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1479 cpu_watchpoint_remove_by_ref(env, wp);
1480 return 0;
1481 }
1482 }
1483 return -ENOENT;
1484 }
1485
1486 /* Remove a specific watchpoint by reference. */
1487 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1488 {
1489 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1490
1491 tlb_flush_page(env, watchpoint->vaddr);
1492
1493 g_free(watchpoint);
1494 }
1495
1496 /* Remove all matching watchpoints. */
1497 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1498 {
1499 CPUWatchpoint *wp, *next;
1500
1501 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1502 if (wp->flags & mask)
1503 cpu_watchpoint_remove_by_ref(env, wp);
1504 }
1505 }
1506 #endif
1507
1508 /* Add a breakpoint. */
1509 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1510 CPUBreakpoint **breakpoint)
1511 {
1512 #if defined(TARGET_HAS_ICE)
1513 CPUBreakpoint *bp;
1514
1515 bp = g_malloc(sizeof(*bp));
1516
1517 bp->pc = pc;
1518 bp->flags = flags;
1519
1520 /* keep all GDB-injected breakpoints in front */
1521 if (flags & BP_GDB)
1522 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1523 else
1524 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1525
1526 breakpoint_invalidate(env, pc);
1527
1528 if (breakpoint)
1529 *breakpoint = bp;
1530 return 0;
1531 #else
1532 return -ENOSYS;
1533 #endif
1534 }
1535
1536 /* Remove a specific breakpoint. */
1537 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1538 {
1539 #if defined(TARGET_HAS_ICE)
1540 CPUBreakpoint *bp;
1541
1542 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1543 if (bp->pc == pc && bp->flags == flags) {
1544 cpu_breakpoint_remove_by_ref(env, bp);
1545 return 0;
1546 }
1547 }
1548 return -ENOENT;
1549 #else
1550 return -ENOSYS;
1551 #endif
1552 }
1553
1554 /* Remove a specific breakpoint by reference. */
1555 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1556 {
1557 #if defined(TARGET_HAS_ICE)
1558 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1559
1560 breakpoint_invalidate(env, breakpoint->pc);
1561
1562 g_free(breakpoint);
1563 #endif
1564 }
1565
1566 /* Remove all matching breakpoints. */
1567 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1568 {
1569 #if defined(TARGET_HAS_ICE)
1570 CPUBreakpoint *bp, *next;
1571
1572 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1573 if (bp->flags & mask)
1574 cpu_breakpoint_remove_by_ref(env, bp);
1575 }
1576 #endif
1577 }
1578
1579 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1580 CPU loop after each instruction */
1581 void cpu_single_step(CPUState *env, int enabled)
1582 {
1583 #if defined(TARGET_HAS_ICE)
1584 if (env->singlestep_enabled != enabled) {
1585 env->singlestep_enabled = enabled;
1586 if (kvm_enabled())
1587 kvm_update_guest_debug(env, 0);
1588 else {
1589 /* must flush all the translated code to avoid inconsistencies */
1590 /* XXX: only flush what is necessary */
1591 tb_flush(env);
1592 }
1593 }
1594 #endif
1595 }
1596
1597 /* enable or disable low levels log */
1598 void cpu_set_log(int log_flags)
1599 {
1600 loglevel = log_flags;
1601 if (loglevel && !logfile) {
1602 logfile = fopen(logfilename, log_append ? "a" : "w");
1603 if (!logfile) {
1604 perror(logfilename);
1605 _exit(1);
1606 }
1607 #if !defined(CONFIG_SOFTMMU)
1608 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1609 {
1610 static char logfile_buf[4096];
1611 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1612 }
1613 #elif defined(_WIN32)
1614 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1615 setvbuf(logfile, NULL, _IONBF, 0);
1616 #else
1617 setvbuf(logfile, NULL, _IOLBF, 0);
1618 #endif
1619 log_append = 1;
1620 }
1621 if (!loglevel && logfile) {
1622 fclose(logfile);
1623 logfile = NULL;
1624 }
1625 }
1626
1627 void cpu_set_log_filename(const char *filename)
1628 {
1629 logfilename = strdup(filename);
1630 if (logfile) {
1631 fclose(logfile);
1632 logfile = NULL;
1633 }
1634 cpu_set_log(loglevel);
1635 }
1636
1637 static void cpu_unlink_tb(CPUState *env)
1638 {
1639 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1640 problem and hope the cpu will stop of its own accord. For userspace
1641 emulation this often isn't actually as bad as it sounds. Often
1642 signals are used primarily to interrupt blocking syscalls. */
1643 TranslationBlock *tb;
1644 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1645
1646 spin_lock(&interrupt_lock);
1647 tb = env->current_tb;
1648 /* if the cpu is currently executing code, we must unlink it and
1649 all the potentially executing TB */
1650 if (tb) {
1651 env->current_tb = NULL;
1652 tb_reset_jump_recursive(tb);
1653 }
1654 spin_unlock(&interrupt_lock);
1655 }
1656
1657 #ifndef CONFIG_USER_ONLY
1658 /* mask must never be zero, except for A20 change call */
1659 static void tcg_handle_interrupt(CPUState *env, int mask)
1660 {
1661 int old_mask;
1662
1663 old_mask = env->interrupt_request;
1664 env->interrupt_request |= mask;
1665
1666 /*
1667 * If called from iothread context, wake the target cpu in
1668 * case its halted.
1669 */
1670 if (!qemu_cpu_is_self(env)) {
1671 qemu_cpu_kick(env);
1672 return;
1673 }
1674
1675 if (use_icount) {
1676 env->icount_decr.u16.high = 0xffff;
1677 if (!can_do_io(env)
1678 && (mask & ~old_mask) != 0) {
1679 cpu_abort(env, "Raised interrupt while not in I/O function");
1680 }
1681 } else {
1682 cpu_unlink_tb(env);
1683 }
1684 }
1685
1686 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1687
1688 #else /* CONFIG_USER_ONLY */
1689
1690 void cpu_interrupt(CPUState *env, int mask)
1691 {
1692 env->interrupt_request |= mask;
1693 cpu_unlink_tb(env);
1694 }
1695 #endif /* CONFIG_USER_ONLY */
1696
1697 void cpu_reset_interrupt(CPUState *env, int mask)
1698 {
1699 env->interrupt_request &= ~mask;
1700 }
1701
1702 void cpu_exit(CPUState *env)
1703 {
1704 env->exit_request = 1;
1705 cpu_unlink_tb(env);
1706 }
1707
1708 const CPULogItem cpu_log_items[] = {
1709 { CPU_LOG_TB_OUT_ASM, "out_asm",
1710 "show generated host assembly code for each compiled TB" },
1711 { CPU_LOG_TB_IN_ASM, "in_asm",
1712 "show target assembly code for each compiled TB" },
1713 { CPU_LOG_TB_OP, "op",
1714 "show micro ops for each compiled TB" },
1715 { CPU_LOG_TB_OP_OPT, "op_opt",
1716 "show micro ops "
1717 #ifdef TARGET_I386
1718 "before eflags optimization and "
1719 #endif
1720 "after liveness analysis" },
1721 { CPU_LOG_INT, "int",
1722 "show interrupts/exceptions in short format" },
1723 { CPU_LOG_EXEC, "exec",
1724 "show trace before each executed TB (lots of logs)" },
1725 { CPU_LOG_TB_CPU, "cpu",
1726 "show CPU state before block translation" },
1727 #ifdef TARGET_I386
1728 { CPU_LOG_PCALL, "pcall",
1729 "show protected mode far calls/returns/exceptions" },
1730 { CPU_LOG_RESET, "cpu_reset",
1731 "show CPU state before CPU resets" },
1732 #endif
1733 #ifdef DEBUG_IOPORT
1734 { CPU_LOG_IOPORT, "ioport",
1735 "show all i/o ports accesses" },
1736 #endif
1737 { 0, NULL, NULL },
1738 };
1739
1740 static int cmp1(const char *s1, int n, const char *s2)
1741 {
1742 if (strlen(s2) != n)
1743 return 0;
1744 return memcmp(s1, s2, n) == 0;
1745 }
1746
1747 /* takes a comma separated list of log masks. Return 0 if error. */
1748 int cpu_str_to_log_mask(const char *str)
1749 {
1750 const CPULogItem *item;
1751 int mask;
1752 const char *p, *p1;
1753
1754 p = str;
1755 mask = 0;
1756 for(;;) {
1757 p1 = strchr(p, ',');
1758 if (!p1)
1759 p1 = p + strlen(p);
1760 if(cmp1(p,p1-p,"all")) {
1761 for(item = cpu_log_items; item->mask != 0; item++) {
1762 mask |= item->mask;
1763 }
1764 } else {
1765 for(item = cpu_log_items; item->mask != 0; item++) {
1766 if (cmp1(p, p1 - p, item->name))
1767 goto found;
1768 }
1769 return 0;
1770 }
1771 found:
1772 mask |= item->mask;
1773 if (*p1 != ',')
1774 break;
1775 p = p1 + 1;
1776 }
1777 return mask;
1778 }
1779
1780 void cpu_abort(CPUState *env, const char *fmt, ...)
1781 {
1782 va_list ap;
1783 va_list ap2;
1784
1785 va_start(ap, fmt);
1786 va_copy(ap2, ap);
1787 fprintf(stderr, "qemu: fatal: ");
1788 vfprintf(stderr, fmt, ap);
1789 fprintf(stderr, "\n");
1790 #ifdef TARGET_I386
1791 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1792 #else
1793 cpu_dump_state(env, stderr, fprintf, 0);
1794 #endif
1795 if (qemu_log_enabled()) {
1796 qemu_log("qemu: fatal: ");
1797 qemu_log_vprintf(fmt, ap2);
1798 qemu_log("\n");
1799 #ifdef TARGET_I386
1800 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1801 #else
1802 log_cpu_state(env, 0);
1803 #endif
1804 qemu_log_flush();
1805 qemu_log_close();
1806 }
1807 va_end(ap2);
1808 va_end(ap);
1809 #if defined(CONFIG_USER_ONLY)
1810 {
1811 struct sigaction act;
1812 sigfillset(&act.sa_mask);
1813 act.sa_handler = SIG_DFL;
1814 sigaction(SIGABRT, &act, NULL);
1815 }
1816 #endif
1817 abort();
1818 }
1819
1820 CPUState *cpu_copy(CPUState *env)
1821 {
1822 CPUState *new_env = cpu_init(env->cpu_model_str);
1823 CPUState *next_cpu = new_env->next_cpu;
1824 int cpu_index = new_env->cpu_index;
1825 #if defined(TARGET_HAS_ICE)
1826 CPUBreakpoint *bp;
1827 CPUWatchpoint *wp;
1828 #endif
1829
1830 memcpy(new_env, env, sizeof(CPUState));
1831
1832 /* Preserve chaining and index. */
1833 new_env->next_cpu = next_cpu;
1834 new_env->cpu_index = cpu_index;
1835
1836 /* Clone all break/watchpoints.
1837 Note: Once we support ptrace with hw-debug register access, make sure
1838 BP_CPU break/watchpoints are handled correctly on clone. */
1839 QTAILQ_INIT(&env->breakpoints);
1840 QTAILQ_INIT(&env->watchpoints);
1841 #if defined(TARGET_HAS_ICE)
1842 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1843 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1844 }
1845 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1846 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1847 wp->flags, NULL);
1848 }
1849 #endif
1850
1851 return new_env;
1852 }
1853
1854 #if !defined(CONFIG_USER_ONLY)
1855
1856 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1857 {
1858 unsigned int i;
1859
1860 /* Discard jump cache entries for any tb which might potentially
1861 overlap the flushed page. */
1862 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1863 memset (&env->tb_jmp_cache[i], 0,
1864 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1865
1866 i = tb_jmp_cache_hash_page(addr);
1867 memset (&env->tb_jmp_cache[i], 0,
1868 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1869 }
1870
1871 static CPUTLBEntry s_cputlb_empty_entry = {
1872 .addr_read = -1,
1873 .addr_write = -1,
1874 .addr_code = -1,
1875 .addend = -1,
1876 };
1877
1878 /* NOTE: if flush_global is true, also flush global entries (not
1879 implemented yet) */
1880 void tlb_flush(CPUState *env, int flush_global)
1881 {
1882 int i;
1883
1884 #if defined(DEBUG_TLB)
1885 printf("tlb_flush:\n");
1886 #endif
1887 /* must reset current TB so that interrupts cannot modify the
1888 links while we are modifying them */
1889 env->current_tb = NULL;
1890
1891 for(i = 0; i < CPU_TLB_SIZE; i++) {
1892 int mmu_idx;
1893 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1894 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1895 }
1896 }
1897
1898 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1899
1900 env->tlb_flush_addr = -1;
1901 env->tlb_flush_mask = 0;
1902 tlb_flush_count++;
1903 }
1904
1905 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1906 {
1907 if (addr == (tlb_entry->addr_read &
1908 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1909 addr == (tlb_entry->addr_write &
1910 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1911 addr == (tlb_entry->addr_code &
1912 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1913 *tlb_entry = s_cputlb_empty_entry;
1914 }
1915 }
1916
1917 void tlb_flush_page(CPUState *env, target_ulong addr)
1918 {
1919 int i;
1920 int mmu_idx;
1921
1922 #if defined(DEBUG_TLB)
1923 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1924 #endif
1925 /* Check if we need to flush due to large pages. */
1926 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1927 #if defined(DEBUG_TLB)
1928 printf("tlb_flush_page: forced full flush ("
1929 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1930 env->tlb_flush_addr, env->tlb_flush_mask);
1931 #endif
1932 tlb_flush(env, 1);
1933 return;
1934 }
1935 /* must reset current TB so that interrupts cannot modify the
1936 links while we are modifying them */
1937 env->current_tb = NULL;
1938
1939 addr &= TARGET_PAGE_MASK;
1940 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1941 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1942 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1943
1944 tlb_flush_jmp_cache(env, addr);
1945 }
1946
1947 /* update the TLBs so that writes to code in the virtual page 'addr'
1948 can be detected */
1949 static void tlb_protect_code(ram_addr_t ram_addr)
1950 {
1951 cpu_physical_memory_reset_dirty(ram_addr,
1952 ram_addr + TARGET_PAGE_SIZE,
1953 CODE_DIRTY_FLAG);
1954 }
1955
1956 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1957 tested for self modifying code */
1958 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1959 target_ulong vaddr)
1960 {
1961 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1962 }
1963
1964 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1965 unsigned long start, unsigned long length)
1966 {
1967 unsigned long addr;
1968 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1969 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1970 if ((addr - start) < length) {
1971 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1972 }
1973 }
1974 }
1975
1976 /* Note: start and end must be within the same ram block. */
1977 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1978 int dirty_flags)
1979 {
1980 CPUState *env;
1981 unsigned long length, start1;
1982 int i;
1983
1984 start &= TARGET_PAGE_MASK;
1985 end = TARGET_PAGE_ALIGN(end);
1986
1987 length = end - start;
1988 if (length == 0)
1989 return;
1990 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
1991
1992 /* we modify the TLB cache so that the dirty bit will be set again
1993 when accessing the range */
1994 start1 = (unsigned long)qemu_safe_ram_ptr(start);
1995 /* Check that we don't span multiple blocks - this breaks the
1996 address comparisons below. */
1997 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
1998 != (end - 1) - start) {
1999 abort();
2000 }
2001
2002 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2003 int mmu_idx;
2004 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2005 for(i = 0; i < CPU_TLB_SIZE; i++)
2006 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2007 start1, length);
2008 }
2009 }
2010 }
2011
2012 int cpu_physical_memory_set_dirty_tracking(int enable)
2013 {
2014 int ret = 0;
2015 in_migration = enable;
2016 return ret;
2017 }
2018
2019 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2020 {
2021 ram_addr_t ram_addr;
2022 void *p;
2023
2024 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2025 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2026 + tlb_entry->addend);
2027 ram_addr = qemu_ram_addr_from_host_nofail(p);
2028 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2029 tlb_entry->addr_write |= TLB_NOTDIRTY;
2030 }
2031 }
2032 }
2033
2034 /* update the TLB according to the current state of the dirty bits */
2035 void cpu_tlb_update_dirty(CPUState *env)
2036 {
2037 int i;
2038 int mmu_idx;
2039 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2040 for(i = 0; i < CPU_TLB_SIZE; i++)
2041 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2042 }
2043 }
2044
2045 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2046 {
2047 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2048 tlb_entry->addr_write = vaddr;
2049 }
2050
2051 /* update the TLB corresponding to virtual page vaddr
2052 so that it is no longer dirty */
2053 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2054 {
2055 int i;
2056 int mmu_idx;
2057
2058 vaddr &= TARGET_PAGE_MASK;
2059 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2060 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2061 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2062 }
2063
2064 /* Our TLB does not support large pages, so remember the area covered by
2065 large pages and trigger a full TLB flush if these are invalidated. */
2066 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2067 target_ulong size)
2068 {
2069 target_ulong mask = ~(size - 1);
2070
2071 if (env->tlb_flush_addr == (target_ulong)-1) {
2072 env->tlb_flush_addr = vaddr & mask;
2073 env->tlb_flush_mask = mask;
2074 return;
2075 }
2076 /* Extend the existing region to include the new page.
2077 This is a compromise between unnecessary flushes and the cost
2078 of maintaining a full variable size TLB. */
2079 mask &= env->tlb_flush_mask;
2080 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2081 mask <<= 1;
2082 }
2083 env->tlb_flush_addr &= mask;
2084 env->tlb_flush_mask = mask;
2085 }
2086
2087 static bool is_ram_rom(ram_addr_t pd)
2088 {
2089 pd &= ~TARGET_PAGE_MASK;
2090 return pd == IO_MEM_RAM || pd == IO_MEM_ROM;
2091 }
2092
2093 static bool is_ram_rom_romd(ram_addr_t pd)
2094 {
2095 return is_ram_rom(pd) || (pd & IO_MEM_ROMD);
2096 }
2097
2098 /* Add a new TLB entry. At most one entry for a given virtual address
2099 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2100 supplied size is only used by tlb_flush_page. */
2101 void tlb_set_page(CPUState *env, target_ulong vaddr,
2102 target_phys_addr_t paddr, int prot,
2103 int mmu_idx, target_ulong size)
2104 {
2105 PhysPageDesc p;
2106 unsigned long pd;
2107 unsigned int index;
2108 target_ulong address;
2109 target_ulong code_address;
2110 unsigned long addend;
2111 CPUTLBEntry *te;
2112 CPUWatchpoint *wp;
2113 target_phys_addr_t iotlb;
2114
2115 assert(size >= TARGET_PAGE_SIZE);
2116 if (size != TARGET_PAGE_SIZE) {
2117 tlb_add_large_page(env, vaddr, size);
2118 }
2119 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2120 pd = p.phys_offset;
2121 #if defined(DEBUG_TLB)
2122 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2123 " prot=%x idx=%d pd=0x%08lx\n",
2124 vaddr, paddr, prot, mmu_idx, pd);
2125 #endif
2126
2127 address = vaddr;
2128 if (!is_ram_rom_romd(pd)) {
2129 /* IO memory case (romd handled later) */
2130 address |= TLB_MMIO;
2131 }
2132 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2133 if (is_ram_rom(pd)) {
2134 /* Normal RAM. */
2135 iotlb = pd & TARGET_PAGE_MASK;
2136 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2137 iotlb |= IO_MEM_NOTDIRTY;
2138 else
2139 iotlb |= IO_MEM_ROM;
2140 } else {
2141 /* IO handlers are currently passed a physical address.
2142 It would be nice to pass an offset from the base address
2143 of that region. This would avoid having to special case RAM,
2144 and avoid full address decoding in every device.
2145 We can't use the high bits of pd for this because
2146 IO_MEM_ROMD uses these as a ram address. */
2147 iotlb = (pd & ~TARGET_PAGE_MASK);
2148 iotlb += p.region_offset;
2149 }
2150
2151 code_address = address;
2152 /* Make accesses to pages with watchpoints go via the
2153 watchpoint trap routines. */
2154 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2155 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2156 /* Avoid trapping reads of pages with a write breakpoint. */
2157 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2158 iotlb = io_mem_watch + paddr;
2159 address |= TLB_MMIO;
2160 break;
2161 }
2162 }
2163 }
2164
2165 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2166 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2167 te = &env->tlb_table[mmu_idx][index];
2168 te->addend = addend - vaddr;
2169 if (prot & PAGE_READ) {
2170 te->addr_read = address;
2171 } else {
2172 te->addr_read = -1;
2173 }
2174
2175 if (prot & PAGE_EXEC) {
2176 te->addr_code = code_address;
2177 } else {
2178 te->addr_code = -1;
2179 }
2180 if (prot & PAGE_WRITE) {
2181 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2182 (pd & IO_MEM_ROMD)) {
2183 /* Write access calls the I/O callback. */
2184 te->addr_write = address | TLB_MMIO;
2185 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2186 !cpu_physical_memory_is_dirty(pd)) {
2187 te->addr_write = address | TLB_NOTDIRTY;
2188 } else {
2189 te->addr_write = address;
2190 }
2191 } else {
2192 te->addr_write = -1;
2193 }
2194 }
2195
2196 #else
2197
2198 void tlb_flush(CPUState *env, int flush_global)
2199 {
2200 }
2201
2202 void tlb_flush_page(CPUState *env, target_ulong addr)
2203 {
2204 }
2205
2206 /*
2207 * Walks guest process memory "regions" one by one
2208 * and calls callback function 'fn' for each region.
2209 */
2210
2211 struct walk_memory_regions_data
2212 {
2213 walk_memory_regions_fn fn;
2214 void *priv;
2215 unsigned long start;
2216 int prot;
2217 };
2218
2219 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2220 abi_ulong end, int new_prot)
2221 {
2222 if (data->start != -1ul) {
2223 int rc = data->fn(data->priv, data->start, end, data->prot);
2224 if (rc != 0) {
2225 return rc;
2226 }
2227 }
2228
2229 data->start = (new_prot ? end : -1ul);
2230 data->prot = new_prot;
2231
2232 return 0;
2233 }
2234
2235 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2236 abi_ulong base, int level, void **lp)
2237 {
2238 abi_ulong pa;
2239 int i, rc;
2240
2241 if (*lp == NULL) {
2242 return walk_memory_regions_end(data, base, 0);
2243 }
2244
2245 if (level == 0) {
2246 PageDesc *pd = *lp;
2247 for (i = 0; i < L2_SIZE; ++i) {
2248 int prot = pd[i].flags;
2249
2250 pa = base | (i << TARGET_PAGE_BITS);
2251 if (prot != data->prot) {
2252 rc = walk_memory_regions_end(data, pa, prot);
2253 if (rc != 0) {
2254 return rc;
2255 }
2256 }
2257 }
2258 } else {
2259 void **pp = *lp;
2260 for (i = 0; i < L2_SIZE; ++i) {
2261 pa = base | ((abi_ulong)i <<
2262 (TARGET_PAGE_BITS + L2_BITS * level));
2263 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2264 if (rc != 0) {
2265 return rc;
2266 }
2267 }
2268 }
2269
2270 return 0;
2271 }
2272
2273 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2274 {
2275 struct walk_memory_regions_data data;
2276 unsigned long i;
2277
2278 data.fn = fn;
2279 data.priv = priv;
2280 data.start = -1ul;
2281 data.prot = 0;
2282
2283 for (i = 0; i < V_L1_SIZE; i++) {
2284 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2285 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2286 if (rc != 0) {
2287 return rc;
2288 }
2289 }
2290
2291 return walk_memory_regions_end(&data, 0, 0);
2292 }
2293
2294 static int dump_region(void *priv, abi_ulong start,
2295 abi_ulong end, unsigned long prot)
2296 {
2297 FILE *f = (FILE *)priv;
2298
2299 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2300 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2301 start, end, end - start,
2302 ((prot & PAGE_READ) ? 'r' : '-'),
2303 ((prot & PAGE_WRITE) ? 'w' : '-'),
2304 ((prot & PAGE_EXEC) ? 'x' : '-'));
2305
2306 return (0);
2307 }
2308
2309 /* dump memory mappings */
2310 void page_dump(FILE *f)
2311 {
2312 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2313 "start", "end", "size", "prot");
2314 walk_memory_regions(f, dump_region);
2315 }
2316
2317 int page_get_flags(target_ulong address)
2318 {
2319 PageDesc *p;
2320
2321 p = page_find(address >> TARGET_PAGE_BITS);
2322 if (!p)
2323 return 0;
2324 return p->flags;
2325 }
2326
2327 /* Modify the flags of a page and invalidate the code if necessary.
2328 The flag PAGE_WRITE_ORG is positioned automatically depending
2329 on PAGE_WRITE. The mmap_lock should already be held. */
2330 void page_set_flags(target_ulong start, target_ulong end, int flags)
2331 {
2332 target_ulong addr, len;
2333
2334 /* This function should never be called with addresses outside the
2335 guest address space. If this assert fires, it probably indicates
2336 a missing call to h2g_valid. */
2337 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2338 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2339 #endif
2340 assert(start < end);
2341
2342 start = start & TARGET_PAGE_MASK;
2343 end = TARGET_PAGE_ALIGN(end);
2344
2345 if (flags & PAGE_WRITE) {
2346 flags |= PAGE_WRITE_ORG;
2347 }
2348
2349 for (addr = start, len = end - start;
2350 len != 0;
2351 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2352 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2353
2354 /* If the write protection bit is set, then we invalidate
2355 the code inside. */
2356 if (!(p->flags & PAGE_WRITE) &&
2357 (flags & PAGE_WRITE) &&
2358 p->first_tb) {
2359 tb_invalidate_phys_page(addr, 0, NULL);
2360 }
2361 p->flags = flags;
2362 }
2363 }
2364
2365 int page_check_range(target_ulong start, target_ulong len, int flags)
2366 {
2367 PageDesc *p;
2368 target_ulong end;
2369 target_ulong addr;
2370
2371 /* This function should never be called with addresses outside the
2372 guest address space. If this assert fires, it probably indicates
2373 a missing call to h2g_valid. */
2374 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2375 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2376 #endif
2377
2378 if (len == 0) {
2379 return 0;
2380 }
2381 if (start + len - 1 < start) {
2382 /* We've wrapped around. */
2383 return -1;
2384 }
2385
2386 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2387 start = start & TARGET_PAGE_MASK;
2388
2389 for (addr = start, len = end - start;
2390 len != 0;
2391 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2392 p = page_find(addr >> TARGET_PAGE_BITS);
2393 if( !p )
2394 return -1;
2395 if( !(p->flags & PAGE_VALID) )
2396 return -1;
2397
2398 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2399 return -1;
2400 if (flags & PAGE_WRITE) {
2401 if (!(p->flags & PAGE_WRITE_ORG))
2402 return -1;
2403 /* unprotect the page if it was put read-only because it
2404 contains translated code */
2405 if (!(p->flags & PAGE_WRITE)) {
2406 if (!page_unprotect(addr, 0, NULL))
2407 return -1;
2408 }
2409 return 0;
2410 }
2411 }
2412 return 0;
2413 }
2414
2415 /* called from signal handler: invalidate the code and unprotect the
2416 page. Return TRUE if the fault was successfully handled. */
2417 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2418 {
2419 unsigned int prot;
2420 PageDesc *p;
2421 target_ulong host_start, host_end, addr;
2422
2423 /* Technically this isn't safe inside a signal handler. However we
2424 know this only ever happens in a synchronous SEGV handler, so in
2425 practice it seems to be ok. */
2426 mmap_lock();
2427
2428 p = page_find(address >> TARGET_PAGE_BITS);
2429 if (!p) {
2430 mmap_unlock();
2431 return 0;
2432 }
2433
2434 /* if the page was really writable, then we change its
2435 protection back to writable */
2436 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2437 host_start = address & qemu_host_page_mask;
2438 host_end = host_start + qemu_host_page_size;
2439
2440 prot = 0;
2441 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2442 p = page_find(addr >> TARGET_PAGE_BITS);
2443 p->flags |= PAGE_WRITE;
2444 prot |= p->flags;
2445
2446 /* and since the content will be modified, we must invalidate
2447 the corresponding translated code. */
2448 tb_invalidate_phys_page(addr, pc, puc);
2449 #ifdef DEBUG_TB_CHECK
2450 tb_invalidate_check(addr);
2451 #endif
2452 }
2453 mprotect((void *)g2h(host_start), qemu_host_page_size,
2454 prot & PAGE_BITS);
2455
2456 mmap_unlock();
2457 return 1;
2458 }
2459 mmap_unlock();
2460 return 0;
2461 }
2462
2463 static inline void tlb_set_dirty(CPUState *env,
2464 unsigned long addr, target_ulong vaddr)
2465 {
2466 }
2467 #endif /* defined(CONFIG_USER_ONLY) */
2468
2469 #if !defined(CONFIG_USER_ONLY)
2470
2471 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2472 typedef struct subpage_t {
2473 target_phys_addr_t base;
2474 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2475 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2476 } subpage_t;
2477
2478 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2479 ram_addr_t memory, ram_addr_t region_offset);
2480 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2481 ram_addr_t orig_memory,
2482 ram_addr_t region_offset);
2483 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2484 need_subpage) \
2485 do { \
2486 if (addr > start_addr) \
2487 start_addr2 = 0; \
2488 else { \
2489 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2490 if (start_addr2 > 0) \
2491 need_subpage = 1; \
2492 } \
2493 \
2494 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2495 end_addr2 = TARGET_PAGE_SIZE - 1; \
2496 else { \
2497 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2498 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2499 need_subpage = 1; \
2500 } \
2501 } while (0)
2502
2503 /* register physical memory.
2504 For RAM, 'size' must be a multiple of the target page size.
2505 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2506 io memory page. The address used when calling the IO function is
2507 the offset from the start of the region, plus region_offset. Both
2508 start_addr and region_offset are rounded down to a page boundary
2509 before calculating this offset. This should not be a problem unless
2510 the low bits of start_addr and region_offset differ. */
2511 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2512 ram_addr_t size,
2513 ram_addr_t phys_offset,
2514 ram_addr_t region_offset,
2515 bool log_dirty)
2516 {
2517 target_phys_addr_t addr, end_addr;
2518 PhysPageDesc *p;
2519 CPUState *env;
2520 ram_addr_t orig_size = size;
2521 subpage_t *subpage;
2522
2523 assert(size);
2524
2525 if (phys_offset == IO_MEM_UNASSIGNED) {
2526 region_offset = start_addr;
2527 }
2528 region_offset &= TARGET_PAGE_MASK;
2529 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2530 end_addr = start_addr + (target_phys_addr_t)size;
2531
2532 addr = start_addr;
2533 do {
2534 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 0);
2535 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2536 ram_addr_t orig_memory = p->phys_offset;
2537 target_phys_addr_t start_addr2, end_addr2;
2538 int need_subpage = 0;
2539
2540 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2541 need_subpage);
2542 if (need_subpage) {
2543 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2544 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2545 &p->phys_offset, orig_memory,
2546 p->region_offset);
2547 } else {
2548 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2549 >> IO_MEM_SHIFT];
2550 }
2551 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2552 region_offset);
2553 p->region_offset = 0;
2554 } else {
2555 p->phys_offset = phys_offset;
2556 p->region_offset = region_offset;
2557 if (is_ram_rom_romd(phys_offset))
2558 phys_offset += TARGET_PAGE_SIZE;
2559 }
2560 } else {
2561 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2562 p->phys_offset = phys_offset;
2563 p->region_offset = region_offset;
2564 if (is_ram_rom_romd(phys_offset)) {
2565 phys_offset += TARGET_PAGE_SIZE;
2566 } else {
2567 target_phys_addr_t start_addr2, end_addr2;
2568 int need_subpage = 0;
2569
2570 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2571 end_addr2, need_subpage);
2572
2573 if (need_subpage) {
2574 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2575 &p->phys_offset, IO_MEM_UNASSIGNED,
2576 addr & TARGET_PAGE_MASK);
2577 subpage_register(subpage, start_addr2, end_addr2,
2578 phys_offset, region_offset);
2579 p->region_offset = 0;
2580 }
2581 }
2582 }
2583 region_offset += TARGET_PAGE_SIZE;
2584 addr += TARGET_PAGE_SIZE;
2585 } while (addr != end_addr);
2586
2587 /* since each CPU stores ram addresses in its TLB cache, we must
2588 reset the modified entries */
2589 /* XXX: slow ! */
2590 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2591 tlb_flush(env, 1);
2592 }
2593 }
2594
2595 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2596 {
2597 if (kvm_enabled())
2598 kvm_coalesce_mmio_region(addr, size);
2599 }
2600
2601 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2602 {
2603 if (kvm_enabled())
2604 kvm_uncoalesce_mmio_region(addr, size);
2605 }
2606
2607 void qemu_flush_coalesced_mmio_buffer(void)
2608 {
2609 if (kvm_enabled())
2610 kvm_flush_coalesced_mmio_buffer();
2611 }
2612
2613 #if defined(__linux__) && !defined(TARGET_S390X)
2614
2615 #include <sys/vfs.h>
2616
2617 #define HUGETLBFS_MAGIC 0x958458f6
2618
2619 static long gethugepagesize(const char *path)
2620 {
2621 struct statfs fs;
2622 int ret;
2623
2624 do {
2625 ret = statfs(path, &fs);
2626 } while (ret != 0 && errno == EINTR);
2627
2628 if (ret != 0) {
2629 perror(path);
2630 return 0;
2631 }
2632
2633 if (fs.f_type != HUGETLBFS_MAGIC)
2634 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2635
2636 return fs.f_bsize;
2637 }
2638
2639 static void *file_ram_alloc(RAMBlock *block,
2640 ram_addr_t memory,
2641 const char *path)
2642 {
2643 char *filename;
2644 void *area;
2645 int fd;
2646 #ifdef MAP_POPULATE
2647 int flags;
2648 #endif
2649 unsigned long hpagesize;
2650
2651 hpagesize = gethugepagesize(path);
2652 if (!hpagesize) {
2653 return NULL;
2654 }
2655
2656 if (memory < hpagesize) {
2657 return NULL;
2658 }
2659
2660 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2661 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2662 return NULL;
2663 }
2664
2665 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2666 return NULL;
2667 }
2668
2669 fd = mkstemp(filename);
2670 if (fd < 0) {
2671 perror("unable to create backing store for hugepages");
2672 free(filename);
2673 return NULL;
2674 }
2675 unlink(filename);
2676 free(filename);
2677
2678 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2679
2680 /*
2681 * ftruncate is not supported by hugetlbfs in older
2682 * hosts, so don't bother bailing out on errors.
2683 * If anything goes wrong with it under other filesystems,
2684 * mmap will fail.
2685 */
2686 if (ftruncate(fd, memory))
2687 perror("ftruncate");
2688
2689 #ifdef MAP_POPULATE
2690 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2691 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2692 * to sidestep this quirk.
2693 */
2694 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2695 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2696 #else
2697 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2698 #endif
2699 if (area == MAP_FAILED) {
2700 perror("file_ram_alloc: can't mmap RAM pages");
2701 close(fd);
2702 return (NULL);
2703 }
2704 block->fd = fd;
2705 return area;
2706 }
2707 #endif
2708
2709 static ram_addr_t find_ram_offset(ram_addr_t size)
2710 {
2711 RAMBlock *block, *next_block;
2712 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2713
2714 if (QLIST_EMPTY(&ram_list.blocks))
2715 return 0;
2716
2717 QLIST_FOREACH(block, &ram_list.blocks, next) {
2718 ram_addr_t end, next = RAM_ADDR_MAX;
2719
2720 end = block->offset + block->length;
2721
2722 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2723 if (next_block->offset >= end) {
2724 next = MIN(next, next_block->offset);
2725 }
2726 }
2727 if (next - end >= size && next - end < mingap) {
2728 offset = end;
2729 mingap = next - end;
2730 }
2731 }
2732
2733 if (offset == RAM_ADDR_MAX) {
2734 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2735 (uint64_t)size);
2736 abort();
2737 }
2738
2739 return offset;
2740 }
2741
2742 static ram_addr_t last_ram_offset(void)
2743 {
2744 RAMBlock *block;
2745 ram_addr_t last = 0;
2746
2747 QLIST_FOREACH(block, &ram_list.blocks, next)
2748 last = MAX(last, block->offset + block->length);
2749
2750 return last;
2751 }
2752
2753 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2754 {
2755 RAMBlock *new_block, *block;
2756
2757 new_block = NULL;
2758 QLIST_FOREACH(block, &ram_list.blocks, next) {
2759 if (block->offset == addr) {
2760 new_block = block;
2761 break;
2762 }
2763 }
2764 assert(new_block);
2765 assert(!new_block->idstr[0]);
2766
2767 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2768 char *id = dev->parent_bus->info->get_dev_path(dev);
2769 if (id) {
2770 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2771 g_free(id);
2772 }
2773 }
2774 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2775
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2779 new_block->idstr);
2780 abort();
2781 }
2782 }
2783 }
2784
2785 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2786 MemoryRegion *mr)
2787 {
2788 RAMBlock *new_block;
2789
2790 size = TARGET_PAGE_ALIGN(size);
2791 new_block = g_malloc0(sizeof(*new_block));
2792
2793 new_block->mr = mr;
2794 new_block->offset = find_ram_offset(size);
2795 if (host) {
2796 new_block->host = host;
2797 new_block->flags |= RAM_PREALLOC_MASK;
2798 } else {
2799 if (mem_path) {
2800 #if defined (__linux__) && !defined(TARGET_S390X)
2801 new_block->host = file_ram_alloc(new_block, size, mem_path);
2802 if (!new_block->host) {
2803 new_block->host = qemu_vmalloc(size);
2804 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2805 }
2806 #else
2807 fprintf(stderr, "-mem-path option unsupported\n");
2808 exit(1);
2809 #endif
2810 } else {
2811 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2812 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2813 an system defined value, which is at least 256GB. Larger systems
2814 have larger values. We put the guest between the end of data
2815 segment (system break) and this value. We use 32GB as a base to
2816 have enough room for the system break to grow. */
2817 new_block->host = mmap((void*)0x800000000, size,
2818 PROT_EXEC|PROT_READ|PROT_WRITE,
2819 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2820 if (new_block->host == MAP_FAILED) {
2821 fprintf(stderr, "Allocating RAM failed\n");
2822 abort();
2823 }
2824 #else
2825 if (xen_enabled()) {
2826 xen_ram_alloc(new_block->offset, size, mr);
2827 } else {
2828 new_block->host = qemu_vmalloc(size);
2829 }
2830 #endif
2831 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2832 }
2833 }
2834 new_block->length = size;
2835
2836 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2837
2838 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2839 last_ram_offset() >> TARGET_PAGE_BITS);
2840 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2841 0xff, size >> TARGET_PAGE_BITS);
2842
2843 if (kvm_enabled())
2844 kvm_setup_guest_memory(new_block->host, size);
2845
2846 return new_block->offset;
2847 }
2848
2849 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2850 {
2851 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2852 }
2853
2854 void qemu_ram_free_from_ptr(ram_addr_t addr)
2855 {
2856 RAMBlock *block;
2857
2858 QLIST_FOREACH(block, &ram_list.blocks, next) {
2859 if (addr == block->offset) {
2860 QLIST_REMOVE(block, next);
2861 g_free(block);
2862 return;
2863 }
2864 }
2865 }
2866
2867 void qemu_ram_free(ram_addr_t addr)
2868 {
2869 RAMBlock *block;
2870
2871 QLIST_FOREACH(block, &ram_list.blocks, next) {
2872 if (addr == block->offset) {
2873 QLIST_REMOVE(block, next);
2874 if (block->flags & RAM_PREALLOC_MASK) {
2875 ;
2876 } else if (mem_path) {
2877 #if defined (__linux__) && !defined(TARGET_S390X)
2878 if (block->fd) {
2879 munmap(block->host, block->length);
2880 close(block->fd);
2881 } else {
2882 qemu_vfree(block->host);
2883 }
2884 #else
2885 abort();
2886 #endif
2887 } else {
2888 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2889 munmap(block->host, block->length);
2890 #else
2891 if (xen_enabled()) {
2892 xen_invalidate_map_cache_entry(block->host);
2893 } else {
2894 qemu_vfree(block->host);
2895 }
2896 #endif
2897 }
2898 g_free(block);
2899 return;
2900 }
2901 }
2902
2903 }
2904
2905 #ifndef _WIN32
2906 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2907 {
2908 RAMBlock *block;
2909 ram_addr_t offset;
2910 int flags;
2911 void *area, *vaddr;
2912
2913 QLIST_FOREACH(block, &ram_list.blocks, next) {
2914 offset = addr - block->offset;
2915 if (offset < block->length) {
2916 vaddr = block->host + offset;
2917 if (block->flags & RAM_PREALLOC_MASK) {
2918 ;
2919 } else {
2920 flags = MAP_FIXED;
2921 munmap(vaddr, length);
2922 if (mem_path) {
2923 #if defined(__linux__) && !defined(TARGET_S390X)
2924 if (block->fd) {
2925 #ifdef MAP_POPULATE
2926 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2927 MAP_PRIVATE;
2928 #else
2929 flags |= MAP_PRIVATE;
2930 #endif
2931 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2932 flags, block->fd, offset);
2933 } else {
2934 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2935 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2936 flags, -1, 0);
2937 }
2938 #else
2939 abort();
2940 #endif
2941 } else {
2942 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2943 flags |= MAP_SHARED | MAP_ANONYMOUS;
2944 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2945 flags, -1, 0);
2946 #else
2947 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2948 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2949 flags, -1, 0);
2950 #endif
2951 }
2952 if (area != vaddr) {
2953 fprintf(stderr, "Could not remap addr: "
2954 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2955 length, addr);
2956 exit(1);
2957 }
2958 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
2959 }
2960 return;
2961 }
2962 }
2963 }
2964 #endif /* !_WIN32 */
2965
2966 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2967 With the exception of the softmmu code in this file, this should
2968 only be used for local memory (e.g. video ram) that the device owns,
2969 and knows it isn't going to access beyond the end of the block.
2970
2971 It should not be used for general purpose DMA.
2972 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2973 */
2974 void *qemu_get_ram_ptr(ram_addr_t addr)
2975 {
2976 RAMBlock *block;
2977
2978 QLIST_FOREACH(block, &ram_list.blocks, next) {
2979 if (addr - block->offset < block->length) {
2980 /* Move this entry to to start of the list. */
2981 if (block != QLIST_FIRST(&ram_list.blocks)) {
2982 QLIST_REMOVE(block, next);
2983 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2984 }
2985 if (xen_enabled()) {
2986 /* We need to check if the requested address is in the RAM
2987 * because we don't want to map the entire memory in QEMU.
2988 * In that case just map until the end of the page.
2989 */
2990 if (block->offset == 0) {
2991 return xen_map_cache(addr, 0, 0);
2992 } else if (block->host == NULL) {
2993 block->host =
2994 xen_map_cache(block->offset, block->length, 1);
2995 }
2996 }
2997 return block->host + (addr - block->offset);
2998 }
2999 }
3000
3001 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3002 abort();
3003
3004 return NULL;
3005 }
3006
3007 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3008 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3009 */
3010 void *qemu_safe_ram_ptr(ram_addr_t addr)
3011 {
3012 RAMBlock *block;
3013
3014 QLIST_FOREACH(block, &ram_list.blocks, next) {
3015 if (addr - block->offset < block->length) {
3016 if (xen_enabled()) {
3017 /* We need to check if the requested address is in the RAM
3018 * because we don't want to map the entire memory in QEMU.
3019 * In that case just map until the end of the page.
3020 */
3021 if (block->offset == 0) {
3022 return xen_map_cache(addr, 0, 0);
3023 } else if (block->host == NULL) {
3024 block->host =
3025 xen_map_cache(block->offset, block->length, 1);
3026 }
3027 }
3028 return block->host + (addr - block->offset);
3029 }
3030 }
3031
3032 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3033 abort();
3034
3035 return NULL;
3036 }
3037
3038 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3039 * but takes a size argument */
3040 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3041 {
3042 if (*size == 0) {
3043 return NULL;
3044 }
3045 if (xen_enabled()) {
3046 return xen_map_cache(addr, *size, 1);
3047 } else {
3048 RAMBlock *block;
3049
3050 QLIST_FOREACH(block, &ram_list.blocks, next) {
3051 if (addr - block->offset < block->length) {
3052 if (addr - block->offset + *size > block->length)
3053 *size = block->length - addr + block->offset;
3054 return block->host + (addr - block->offset);
3055 }
3056 }
3057
3058 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3059 abort();
3060 }
3061 }
3062
3063 void qemu_put_ram_ptr(void *addr)
3064 {
3065 trace_qemu_put_ram_ptr(addr);
3066 }
3067
3068 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3069 {
3070 RAMBlock *block;
3071 uint8_t *host = ptr;
3072
3073 if (xen_enabled()) {
3074 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3075 return 0;
3076 }
3077
3078 QLIST_FOREACH(block, &ram_list.blocks, next) {
3079 /* This case append when the block is not mapped. */
3080 if (block->host == NULL) {
3081 continue;
3082 }
3083 if (host - block->host < block->length) {
3084 *ram_addr = block->offset + (host - block->host);
3085 return 0;
3086 }
3087 }
3088
3089 return -1;
3090 }
3091
3092 /* Some of the softmmu routines need to translate from a host pointer
3093 (typically a TLB entry) back to a ram offset. */
3094 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3095 {
3096 ram_addr_t ram_addr;
3097
3098 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3099 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3100 abort();
3101 }
3102 return ram_addr;
3103 }
3104
3105 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3106 {
3107 #ifdef DEBUG_UNASSIGNED
3108 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3109 #endif
3110 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3111 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
3112 #endif
3113 return 0;
3114 }
3115
3116 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3117 {
3118 #ifdef DEBUG_UNASSIGNED
3119 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3120 #endif
3121 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3122 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
3123 #endif
3124 return 0;
3125 }
3126
3127 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3128 {
3129 #ifdef DEBUG_UNASSIGNED
3130 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3131 #endif
3132 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3133 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
3134 #endif
3135 return 0;
3136 }
3137
3138 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3139 {
3140 #ifdef DEBUG_UNASSIGNED
3141 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3142 #endif
3143 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3144 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
3145 #endif
3146 }
3147
3148 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3149 {
3150 #ifdef DEBUG_UNASSIGNED
3151 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3152 #endif
3153 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3154 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
3155 #endif
3156 }
3157
3158 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3159 {
3160 #ifdef DEBUG_UNASSIGNED
3161 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3162 #endif
3163 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3164 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
3165 #endif
3166 }
3167
3168 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3169 unassigned_mem_readb,
3170 unassigned_mem_readw,
3171 unassigned_mem_readl,
3172 };
3173
3174 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3175 unassigned_mem_writeb,
3176 unassigned_mem_writew,
3177 unassigned_mem_writel,
3178 };
3179
3180 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3181 uint32_t val)
3182 {
3183 int dirty_flags;
3184 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3185 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3186 #if !defined(CONFIG_USER_ONLY)
3187 tb_invalidate_phys_page_fast(ram_addr, 1);
3188 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3189 #endif
3190 }
3191 stb_p(qemu_get_ram_ptr(ram_addr), val);
3192 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3193 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3194 /* we remove the notdirty callback only if the code has been
3195 flushed */
3196 if (dirty_flags == 0xff)
3197 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3198 }
3199
3200 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3201 uint32_t val)
3202 {
3203 int dirty_flags;
3204 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3205 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3206 #if !defined(CONFIG_USER_ONLY)
3207 tb_invalidate_phys_page_fast(ram_addr, 2);
3208 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3209 #endif
3210 }
3211 stw_p(qemu_get_ram_ptr(ram_addr), val);
3212 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3213 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3214 /* we remove the notdirty callback only if the code has been
3215 flushed */
3216 if (dirty_flags == 0xff)
3217 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3218 }
3219
3220 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3221 uint32_t val)
3222 {
3223 int dirty_flags;
3224 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3225 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3226 #if !defined(CONFIG_USER_ONLY)
3227 tb_invalidate_phys_page_fast(ram_addr, 4);
3228 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3229 #endif
3230 }
3231 stl_p(qemu_get_ram_ptr(ram_addr), val);
3232 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3233 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3234 /* we remove the notdirty callback only if the code has been
3235 flushed */
3236 if (dirty_flags == 0xff)
3237 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3238 }
3239
3240 static CPUReadMemoryFunc * const error_mem_read[3] = {
3241 NULL, /* never used */
3242 NULL, /* never used */
3243 NULL, /* never used */
3244 };
3245
3246 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3247 notdirty_mem_writeb,
3248 notdirty_mem_writew,
3249 notdirty_mem_writel,
3250 };
3251
3252 /* Generate a debug exception if a watchpoint has been hit. */
3253 static void check_watchpoint(int offset, int len_mask, int flags)
3254 {
3255 CPUState *env = cpu_single_env;
3256 target_ulong pc, cs_base;
3257 TranslationBlock *tb;
3258 target_ulong vaddr;
3259 CPUWatchpoint *wp;
3260 int cpu_flags;
3261
3262 if (env->watchpoint_hit) {
3263 /* We re-entered the check after replacing the TB. Now raise
3264 * the debug interrupt so that is will trigger after the
3265 * current instruction. */
3266 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3267 return;
3268 }
3269 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3270 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3271 if ((vaddr == (wp->vaddr & len_mask) ||
3272 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3273 wp->flags |= BP_WATCHPOINT_HIT;
3274 if (!env->watchpoint_hit) {
3275 env->watchpoint_hit = wp;
3276 tb = tb_find_pc(env->mem_io_pc);
3277 if (!tb) {
3278 cpu_abort(env, "check_watchpoint: could not find TB for "
3279 "pc=%p", (void *)env->mem_io_pc);
3280 }
3281 cpu_restore_state(tb, env, env->mem_io_pc);
3282 tb_phys_invalidate(tb, -1);
3283 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3284 env->exception_index = EXCP_DEBUG;
3285 } else {
3286 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3287 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3288 }
3289 cpu_resume_from_signal(env, NULL);
3290 }
3291 } else {
3292 wp->flags &= ~BP_WATCHPOINT_HIT;
3293 }
3294 }
3295 }
3296
3297 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3298 so these check for a hit then pass through to the normal out-of-line
3299 phys routines. */
3300 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3301 {
3302 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3303 return ldub_phys(addr);
3304 }
3305
3306 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3307 {
3308 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3309 return lduw_phys(addr);
3310 }
3311
3312 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3313 {
3314 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3315 return ldl_phys(addr);
3316 }
3317
3318 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3319 uint32_t val)
3320 {
3321 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3322 stb_phys(addr, val);
3323 }
3324
3325 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3326 uint32_t val)
3327 {
3328 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3329 stw_phys(addr, val);
3330 }
3331
3332 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3333 uint32_t val)
3334 {
3335 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3336 stl_phys(addr, val);
3337 }
3338
3339 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3340 watch_mem_readb,
3341 watch_mem_readw,
3342 watch_mem_readl,
3343 };
3344
3345 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3346 watch_mem_writeb,
3347 watch_mem_writew,
3348 watch_mem_writel,
3349 };
3350
3351 static inline uint32_t subpage_readlen (subpage_t *mmio,
3352 target_phys_addr_t addr,
3353 unsigned int len)
3354 {
3355 unsigned int idx = SUBPAGE_IDX(addr);
3356 #if defined(DEBUG_SUBPAGE)
3357 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3358 mmio, len, addr, idx);
3359 #endif
3360
3361 addr += mmio->region_offset[idx];
3362 idx = mmio->sub_io_index[idx];
3363 return io_mem_read(idx, addr, 1 <<len);
3364 }
3365
3366 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3367 uint32_t value, unsigned int len)
3368 {
3369 unsigned int idx = SUBPAGE_IDX(addr);
3370 #if defined(DEBUG_SUBPAGE)
3371 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3372 __func__, mmio, len, addr, idx, value);
3373 #endif
3374
3375 addr += mmio->region_offset[idx];
3376 idx = mmio->sub_io_index[idx];
3377 io_mem_write(idx, addr, value, 1 << len);
3378 }
3379
3380 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3381 {
3382 return subpage_readlen(opaque, addr, 0);
3383 }
3384
3385 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3386 uint32_t value)
3387 {
3388 subpage_writelen(opaque, addr, value, 0);
3389 }
3390
3391 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3392 {
3393 return subpage_readlen(opaque, addr, 1);
3394 }
3395
3396 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3397 uint32_t value)
3398 {
3399 subpage_writelen(opaque, addr, value, 1);
3400 }
3401
3402 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3403 {
3404 return subpage_readlen(opaque, addr, 2);
3405 }
3406
3407 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3408 uint32_t value)
3409 {
3410 subpage_writelen(opaque, addr, value, 2);
3411 }
3412
3413 static CPUReadMemoryFunc * const subpage_read[] = {
3414 &subpage_readb,
3415 &subpage_readw,
3416 &subpage_readl,
3417 };
3418
3419 static CPUWriteMemoryFunc * const subpage_write[] = {
3420 &subpage_writeb,
3421 &subpage_writew,
3422 &subpage_writel,
3423 };
3424
3425 static uint32_t subpage_ram_readb(void *opaque, target_phys_addr_t addr)
3426 {
3427 ram_addr_t raddr = addr;
3428 void *ptr = qemu_get_ram_ptr(raddr);
3429 return ldub_p(ptr);
3430 }
3431
3432 static void subpage_ram_writeb(void *opaque, target_phys_addr_t addr,
3433 uint32_t value)
3434 {
3435 ram_addr_t raddr = addr;
3436 void *ptr = qemu_get_ram_ptr(raddr);
3437 stb_p(ptr, value);
3438 }
3439
3440 static uint32_t subpage_ram_readw(void *opaque, target_phys_addr_t addr)
3441 {
3442 ram_addr_t raddr = addr;
3443 void *ptr = qemu_get_ram_ptr(raddr);
3444 return lduw_p(ptr);
3445 }
3446
3447 static void subpage_ram_writew(void *opaque, target_phys_addr_t addr,
3448 uint32_t value)
3449 {
3450 ram_addr_t raddr = addr;
3451 void *ptr = qemu_get_ram_ptr(raddr);
3452 stw_p(ptr, value);
3453 }
3454
3455 static uint32_t subpage_ram_readl(void *opaque, target_phys_addr_t addr)
3456 {
3457 ram_addr_t raddr = addr;
3458 void *ptr = qemu_get_ram_ptr(raddr);
3459 return ldl_p(ptr);
3460 }
3461
3462 static void subpage_ram_writel(void *opaque, target_phys_addr_t addr,
3463 uint32_t value)
3464 {
3465 ram_addr_t raddr = addr;
3466 void *ptr = qemu_get_ram_ptr(raddr);
3467 stl_p(ptr, value);
3468 }
3469
3470 static CPUReadMemoryFunc * const subpage_ram_read[] = {
3471 &subpage_ram_readb,
3472 &subpage_ram_readw,
3473 &subpage_ram_readl,
3474 };
3475
3476 static CPUWriteMemoryFunc * const subpage_ram_write[] = {
3477 &subpage_ram_writeb,
3478 &subpage_ram_writew,
3479 &subpage_ram_writel,
3480 };
3481
3482 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3483 ram_addr_t memory, ram_addr_t region_offset)
3484 {
3485 int idx, eidx;
3486
3487 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3488 return -1;
3489 idx = SUBPAGE_IDX(start);
3490 eidx = SUBPAGE_IDX(end);
3491 #if defined(DEBUG_SUBPAGE)
3492 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3493 mmio, start, end, idx, eidx, memory);
3494 #endif
3495 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
3496 memory = IO_MEM_SUBPAGE_RAM;
3497 }
3498 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3499 for (; idx <= eidx; idx++) {
3500 mmio->sub_io_index[idx] = memory;
3501 mmio->region_offset[idx] = region_offset;
3502 }
3503
3504 return 0;
3505 }
3506
3507 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3508 ram_addr_t orig_memory,
3509 ram_addr_t region_offset)
3510 {
3511 subpage_t *mmio;
3512 int subpage_memory;
3513
3514 mmio = g_malloc0(sizeof(subpage_t));
3515
3516 mmio->base = base;
3517 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
3518 #if defined(DEBUG_SUBPAGE)
3519 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3520 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3521 #endif
3522 *phys = subpage_memory | IO_MEM_SUBPAGE;
3523 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3524
3525 return mmio;
3526 }
3527
3528 static int get_free_io_mem_idx(void)
3529 {
3530 int i;
3531
3532 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3533 if (!io_mem_used[i]) {
3534 io_mem_used[i] = 1;
3535 return i;
3536 }
3537 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3538 return -1;
3539 }
3540
3541 /* mem_read and mem_write are arrays of functions containing the
3542 function to access byte (index 0), word (index 1) and dword (index
3543 2). Functions can be omitted with a NULL function pointer.
3544 If io_index is non zero, the corresponding io zone is
3545 modified. If it is zero, a new io zone is allocated. The return
3546 value can be used with cpu_register_physical_memory(). (-1) is
3547 returned if error. */
3548 static int cpu_register_io_memory_fixed(int io_index,
3549 CPUReadMemoryFunc * const *mem_read,
3550 CPUWriteMemoryFunc * const *mem_write,
3551 void *opaque)
3552 {
3553 int i;
3554
3555 if (io_index <= 0) {
3556 io_index = get_free_io_mem_idx();
3557 if (io_index == -1)
3558 return io_index;
3559 } else {
3560 io_index >>= IO_MEM_SHIFT;
3561 if (io_index >= IO_MEM_NB_ENTRIES)
3562 return -1;
3563 }
3564
3565 for (i = 0; i < 3; ++i) {
3566 _io_mem_read[io_index][i]
3567 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3568 }
3569 for (i = 0; i < 3; ++i) {
3570 _io_mem_write[io_index][i]
3571 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3572 }
3573 io_mem_opaque[io_index] = opaque;
3574
3575 return (io_index << IO_MEM_SHIFT);
3576 }
3577
3578 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3579 CPUWriteMemoryFunc * const *mem_write,
3580 void *opaque)
3581 {
3582 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3583 }
3584
3585 void cpu_unregister_io_memory(int io_table_address)
3586 {
3587 int i;
3588 int io_index = io_table_address >> IO_MEM_SHIFT;
3589
3590 for (i=0;i < 3; i++) {
3591 _io_mem_read[io_index][i] = unassigned_mem_read[i];
3592 _io_mem_write[io_index][i] = unassigned_mem_write[i];
3593 }
3594 io_mem_opaque[io_index] = NULL;
3595 io_mem_used[io_index] = 0;
3596 }
3597
3598 static void io_mem_init(void)
3599 {
3600 int i;
3601
3602 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3603 unassigned_mem_write, NULL);
3604 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3605 unassigned_mem_write, NULL);
3606 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3607 notdirty_mem_write, NULL);
3608 cpu_register_io_memory_fixed(IO_MEM_SUBPAGE_RAM, subpage_ram_read,
3609 subpage_ram_write, NULL);
3610 for (i=0; i<5; i++)
3611 io_mem_used[i] = 1;
3612
3613 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3614 watch_mem_write, NULL);
3615 }
3616
3617 static void memory_map_init(void)
3618 {
3619 system_memory = g_malloc(sizeof(*system_memory));
3620 memory_region_init(system_memory, "system", INT64_MAX);
3621 set_system_memory_map(system_memory);
3622
3623 system_io = g_malloc(sizeof(*system_io));
3624 memory_region_init(system_io, "io", 65536);
3625 set_system_io_map(system_io);
3626 }
3627
3628 MemoryRegion *get_system_memory(void)
3629 {
3630 return system_memory;
3631 }
3632
3633 MemoryRegion *get_system_io(void)
3634 {
3635 return system_io;
3636 }
3637
3638 #endif /* !defined(CONFIG_USER_ONLY) */
3639
3640 /* physical memory access (slow version, mainly for debug) */
3641 #if defined(CONFIG_USER_ONLY)
3642 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3643 uint8_t *buf, int len, int is_write)
3644 {
3645 int l, flags;
3646 target_ulong page;
3647 void * p;
3648
3649 while (len > 0) {
3650 page = addr & TARGET_PAGE_MASK;
3651 l = (page + TARGET_PAGE_SIZE) - addr;
3652 if (l > len)
3653 l = len;
3654 flags = page_get_flags(page);
3655 if (!(flags & PAGE_VALID))
3656 return -1;
3657 if (is_write) {
3658 if (!(flags & PAGE_WRITE))
3659 return -1;
3660 /* XXX: this code should not depend on lock_user */
3661 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3662 return -1;
3663 memcpy(p, buf, l);
3664 unlock_user(p, addr, l);
3665 } else {
3666 if (!(flags & PAGE_READ))
3667 return -1;
3668 /* XXX: this code should not depend on lock_user */
3669 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3670 return -1;
3671 memcpy(buf, p, l);
3672 unlock_user(p, addr, 0);
3673 }
3674 len -= l;
3675 buf += l;
3676 addr += l;
3677 }
3678 return 0;
3679 }
3680
3681 #else
3682 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3683 int len, int is_write)
3684 {
3685 int l, io_index;
3686 uint8_t *ptr;
3687 uint32_t val;
3688 target_phys_addr_t page;
3689 ram_addr_t pd;
3690 PhysPageDesc p;
3691
3692 while (len > 0) {
3693 page = addr & TARGET_PAGE_MASK;
3694 l = (page + TARGET_PAGE_SIZE) - addr;
3695 if (l > len)
3696 l = len;
3697 p = phys_page_find(page >> TARGET_PAGE_BITS);
3698 pd = p.phys_offset;
3699
3700 if (is_write) {
3701 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3702 target_phys_addr_t addr1;
3703 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3704 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3705 /* XXX: could force cpu_single_env to NULL to avoid
3706 potential bugs */
3707 if (l >= 4 && ((addr1 & 3) == 0)) {
3708 /* 32 bit write access */
3709 val = ldl_p(buf);
3710 io_mem_write(io_index, addr1, val, 4);
3711 l = 4;
3712 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3713 /* 16 bit write access */
3714 val = lduw_p(buf);
3715 io_mem_write(io_index, addr1, val, 2);
3716 l = 2;
3717 } else {
3718 /* 8 bit write access */
3719 val = ldub_p(buf);
3720 io_mem_write(io_index, addr1, val, 1);
3721 l = 1;
3722 }
3723 } else {
3724 ram_addr_t addr1;
3725 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3726 /* RAM case */
3727 ptr = qemu_get_ram_ptr(addr1);
3728 memcpy(ptr, buf, l);
3729 if (!cpu_physical_memory_is_dirty(addr1)) {
3730 /* invalidate code */
3731 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3732 /* set dirty bit */
3733 cpu_physical_memory_set_dirty_flags(
3734 addr1, (0xff & ~CODE_DIRTY_FLAG));
3735 }
3736 qemu_put_ram_ptr(ptr);
3737 }
3738 } else {
3739 if (!is_ram_rom_romd(pd)) {
3740 target_phys_addr_t addr1;
3741 /* I/O case */
3742 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3743 addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3744 if (l >= 4 && ((addr1 & 3) == 0)) {
3745 /* 32 bit read access */
3746 val = io_mem_read(io_index, addr1, 4);
3747 stl_p(buf, val);
3748 l = 4;
3749 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3750 /* 16 bit read access */
3751 val = io_mem_read(io_index, addr1, 2);
3752 stw_p(buf, val);
3753 l = 2;
3754 } else {
3755 /* 8 bit read access */
3756 val = io_mem_read(io_index, addr1, 1);
3757 stb_p(buf, val);
3758 l = 1;
3759 }
3760 } else {
3761 /* RAM case */
3762 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3763 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3764 qemu_put_ram_ptr(ptr);
3765 }
3766 }
3767 len -= l;
3768 buf += l;
3769 addr += l;
3770 }
3771 }
3772
3773 /* used for ROM loading : can write in RAM and ROM */
3774 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3775 const uint8_t *buf, int len)
3776 {
3777 int l;
3778 uint8_t *ptr;
3779 target_phys_addr_t page;
3780 unsigned long pd;
3781 PhysPageDesc p;
3782
3783 while (len > 0) {
3784 page = addr & TARGET_PAGE_MASK;
3785 l = (page + TARGET_PAGE_SIZE) - addr;
3786 if (l > len)
3787 l = len;
3788 p = phys_page_find(page >> TARGET_PAGE_BITS);
3789 pd = p.phys_offset;
3790
3791 if (!is_ram_rom_romd(pd)) {
3792 /* do nothing */
3793 } else {
3794 unsigned long addr1;
3795 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3796 /* ROM/RAM case */
3797 ptr = qemu_get_ram_ptr(addr1);
3798 memcpy(ptr, buf, l);
3799 qemu_put_ram_ptr(ptr);
3800 }
3801 len -= l;
3802 buf += l;
3803 addr += l;
3804 }
3805 }
3806
3807 typedef struct {
3808 void *buffer;
3809 target_phys_addr_t addr;
3810 target_phys_addr_t len;
3811 } BounceBuffer;
3812
3813 static BounceBuffer bounce;
3814
3815 typedef struct MapClient {
3816 void *opaque;
3817 void (*callback)(void *opaque);
3818 QLIST_ENTRY(MapClient) link;
3819 } MapClient;
3820
3821 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3822 = QLIST_HEAD_INITIALIZER(map_client_list);
3823
3824 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3825 {
3826 MapClient *client = g_malloc(sizeof(*client));
3827
3828 client->opaque = opaque;
3829 client->callback = callback;
3830 QLIST_INSERT_HEAD(&map_client_list, client, link);
3831 return client;
3832 }
3833
3834 void cpu_unregister_map_client(void *_client)
3835 {
3836 MapClient *client = (MapClient *)_client;
3837
3838 QLIST_REMOVE(client, link);
3839 g_free(client);
3840 }
3841
3842 static void cpu_notify_map_clients(void)
3843 {
3844 MapClient *client;
3845
3846 while (!QLIST_EMPTY(&map_client_list)) {
3847 client = QLIST_FIRST(&map_client_list);
3848 client->callback(client->opaque);
3849 cpu_unregister_map_client(client);
3850 }
3851 }
3852
3853 /* Map a physical memory region into a host virtual address.
3854 * May map a subset of the requested range, given by and returned in *plen.
3855 * May return NULL if resources needed to perform the mapping are exhausted.
3856 * Use only for reads OR writes - not for read-modify-write operations.
3857 * Use cpu_register_map_client() to know when retrying the map operation is
3858 * likely to succeed.
3859 */
3860 void *cpu_physical_memory_map(target_phys_addr_t addr,
3861 target_phys_addr_t *plen,
3862 int is_write)
3863 {
3864 target_phys_addr_t len = *plen;
3865 target_phys_addr_t todo = 0;
3866 int l;
3867 target_phys_addr_t page;
3868 unsigned long pd;
3869 PhysPageDesc p;
3870 ram_addr_t raddr = RAM_ADDR_MAX;
3871 ram_addr_t rlen;
3872 void *ret;
3873
3874 while (len > 0) {
3875 page = addr & TARGET_PAGE_MASK;
3876 l = (page + TARGET_PAGE_SIZE) - addr;
3877 if (l > len)
3878 l = len;
3879 p = phys_page_find(page >> TARGET_PAGE_BITS);
3880 pd = p.phys_offset;
3881
3882 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3883 if (todo || bounce.buffer) {
3884 break;
3885 }
3886 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3887 bounce.addr = addr;
3888 bounce.len = l;
3889 if (!is_write) {
3890 cpu_physical_memory_read(addr, bounce.buffer, l);
3891 }
3892
3893 *plen = l;
3894 return bounce.buffer;
3895 }
3896 if (!todo) {
3897 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3898 }
3899
3900 len -= l;
3901 addr += l;
3902 todo += l;
3903 }
3904 rlen = todo;
3905 ret = qemu_ram_ptr_length(raddr, &rlen);
3906 *plen = rlen;
3907 return ret;
3908 }
3909
3910 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3911 * Will also mark the memory as dirty if is_write == 1. access_len gives
3912 * the amount of memory that was actually read or written by the caller.
3913 */
3914 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3915 int is_write, target_phys_addr_t access_len)
3916 {
3917 if (buffer != bounce.buffer) {
3918 if (is_write) {
3919 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3920 while (access_len) {
3921 unsigned l;
3922 l = TARGET_PAGE_SIZE;
3923 if (l > access_len)
3924 l = access_len;
3925 if (!cpu_physical_memory_is_dirty(addr1)) {
3926 /* invalidate code */
3927 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3928 /* set dirty bit */
3929 cpu_physical_memory_set_dirty_flags(
3930 addr1, (0xff & ~CODE_DIRTY_FLAG));
3931 }
3932 addr1 += l;
3933 access_len -= l;
3934 }
3935 }
3936 if (xen_enabled()) {
3937 xen_invalidate_map_cache_entry(buffer);
3938 }
3939 return;
3940 }
3941 if (is_write) {
3942 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3943 }
3944 qemu_vfree(bounce.buffer);
3945 bounce.buffer = NULL;
3946 cpu_notify_map_clients();
3947 }
3948
3949 /* warning: addr must be aligned */
3950 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3951 enum device_endian endian)
3952 {
3953 int io_index;
3954 uint8_t *ptr;
3955 uint32_t val;
3956 unsigned long pd;
3957 PhysPageDesc p;
3958
3959 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3960 pd = p.phys_offset;
3961
3962 if (!is_ram_rom_romd(pd)) {
3963 /* I/O case */
3964 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3965 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
3966 val = io_mem_read(io_index, addr, 4);
3967 #if defined(TARGET_WORDS_BIGENDIAN)
3968 if (endian == DEVICE_LITTLE_ENDIAN) {
3969 val = bswap32(val);
3970 }
3971 #else
3972 if (endian == DEVICE_BIG_ENDIAN) {
3973 val = bswap32(val);
3974 }
3975 #endif
3976 } else {
3977 /* RAM case */
3978 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3979 (addr & ~TARGET_PAGE_MASK);
3980 switch (endian) {
3981 case DEVICE_LITTLE_ENDIAN:
3982 val = ldl_le_p(ptr);
3983 break;
3984 case DEVICE_BIG_ENDIAN:
3985 val = ldl_be_p(ptr);
3986 break;
3987 default:
3988 val = ldl_p(ptr);
3989 break;
3990 }
3991 }
3992 return val;
3993 }
3994
3995 uint32_t ldl_phys(target_phys_addr_t addr)
3996 {
3997 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3998 }
3999
4000 uint32_t ldl_le_phys(target_phys_addr_t addr)
4001 {
4002 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4003 }
4004
4005 uint32_t ldl_be_phys(target_phys_addr_t addr)
4006 {
4007 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4008 }
4009
4010 /* warning: addr must be aligned */
4011 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4012 enum device_endian endian)
4013 {
4014 int io_index;
4015 uint8_t *ptr;
4016 uint64_t val;
4017 unsigned long pd;
4018 PhysPageDesc p;
4019
4020 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4021 pd = p.phys_offset;
4022
4023 if (!is_ram_rom_romd(pd)) {
4024 /* I/O case */
4025 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4026 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4027
4028 /* XXX This is broken when device endian != cpu endian.
4029 Fix and add "endian" variable check */
4030 #ifdef TARGET_WORDS_BIGENDIAN
4031 val = io_mem_read(io_index, addr, 4) << 32;
4032 val |= io_mem_read(io_index, addr + 4, 4);
4033 #else
4034 val = io_mem_read(io_index, addr, 4);
4035 val |= io_mem_read(io_index, addr + 4, 4) << 32;
4036 #endif
4037 } else {
4038 /* RAM case */
4039 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4040 (addr & ~TARGET_PAGE_MASK);
4041 switch (endian) {
4042 case DEVICE_LITTLE_ENDIAN:
4043 val = ldq_le_p(ptr);
4044 break;
4045 case DEVICE_BIG_ENDIAN:
4046 val = ldq_be_p(ptr);
4047 break;
4048 default:
4049 val = ldq_p(ptr);
4050 break;
4051 }
4052 }
4053 return val;
4054 }
4055
4056 uint64_t ldq_phys(target_phys_addr_t addr)
4057 {
4058 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4059 }
4060
4061 uint64_t ldq_le_phys(target_phys_addr_t addr)
4062 {
4063 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4064 }
4065
4066 uint64_t ldq_be_phys(target_phys_addr_t addr)
4067 {
4068 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4069 }
4070
4071 /* XXX: optimize */
4072 uint32_t ldub_phys(target_phys_addr_t addr)
4073 {
4074 uint8_t val;
4075 cpu_physical_memory_read(addr, &val, 1);
4076 return val;
4077 }
4078
4079 /* warning: addr must be aligned */
4080 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4081 enum device_endian endian)
4082 {
4083 int io_index;
4084 uint8_t *ptr;
4085 uint64_t val;
4086 unsigned long pd;
4087 PhysPageDesc p;
4088
4089 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4090 pd = p.phys_offset;
4091
4092 if (!is_ram_rom_romd(pd)) {
4093 /* I/O case */
4094 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4095 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4096 val = io_mem_read(io_index, addr, 2);
4097 #if defined(TARGET_WORDS_BIGENDIAN)
4098 if (endian == DEVICE_LITTLE_ENDIAN) {
4099 val = bswap16(val);
4100 }
4101 #else
4102 if (endian == DEVICE_BIG_ENDIAN) {
4103 val = bswap16(val);
4104 }
4105 #endif
4106 } else {
4107 /* RAM case */
4108 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4109 (addr & ~TARGET_PAGE_MASK);
4110 switch (endian) {
4111 case DEVICE_LITTLE_ENDIAN:
4112 val = lduw_le_p(ptr);
4113 break;
4114 case DEVICE_BIG_ENDIAN:
4115 val = lduw_be_p(ptr);
4116 break;
4117 default:
4118 val = lduw_p(ptr);
4119 break;
4120 }
4121 }
4122 return val;
4123 }
4124
4125 uint32_t lduw_phys(target_phys_addr_t addr)
4126 {
4127 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4128 }
4129
4130 uint32_t lduw_le_phys(target_phys_addr_t addr)
4131 {
4132 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4133 }
4134
4135 uint32_t lduw_be_phys(target_phys_addr_t addr)
4136 {
4137 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4138 }
4139
4140 /* warning: addr must be aligned. The ram page is not masked as dirty
4141 and the code inside is not invalidated. It is useful if the dirty
4142 bits are used to track modified PTEs */
4143 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4144 {
4145 int io_index;
4146 uint8_t *ptr;
4147 unsigned long pd;
4148 PhysPageDesc p;
4149
4150 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4151 pd = p.phys_offset;
4152
4153 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4154 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4155 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4156 io_mem_write(io_index, addr, val, 4);
4157 } else {
4158 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4159 ptr = qemu_get_ram_ptr(addr1);
4160 stl_p(ptr, val);
4161
4162 if (unlikely(in_migration)) {
4163 if (!cpu_physical_memory_is_dirty(addr1)) {
4164 /* invalidate code */
4165 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4166 /* set dirty bit */
4167 cpu_physical_memory_set_dirty_flags(
4168 addr1, (0xff & ~CODE_DIRTY_FLAG));
4169 }
4170 }
4171 }
4172 }
4173
4174 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4175 {
4176 int io_index;
4177 uint8_t *ptr;
4178 unsigned long pd;
4179 PhysPageDesc p;
4180
4181 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4182 pd = p.phys_offset;
4183
4184 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4185 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4186 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4187 #ifdef TARGET_WORDS_BIGENDIAN
4188 io_mem_write(io_index, addr, val >> 32, 4);
4189 io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
4190 #else
4191 io_mem_write(io_index, addr, (uint32_t)val, 4);
4192 io_mem_write(io_index, addr + 4, val >> 32, 4);
4193 #endif
4194 } else {
4195 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4196 (addr & ~TARGET_PAGE_MASK);
4197 stq_p(ptr, val);
4198 }
4199 }
4200
4201 /* warning: addr must be aligned */
4202 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4203 enum device_endian endian)
4204 {
4205 int io_index;
4206 uint8_t *ptr;
4207 unsigned long pd;
4208 PhysPageDesc p;
4209
4210 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4211 pd = p.phys_offset;
4212
4213 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4214 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4215 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4216 #if defined(TARGET_WORDS_BIGENDIAN)
4217 if (endian == DEVICE_LITTLE_ENDIAN) {
4218 val = bswap32(val);
4219 }
4220 #else
4221 if (endian == DEVICE_BIG_ENDIAN) {
4222 val = bswap32(val);
4223 }
4224 #endif
4225 io_mem_write(io_index, addr, val, 4);
4226 } else {
4227 unsigned long addr1;
4228 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4229 /* RAM case */
4230 ptr = qemu_get_ram_ptr(addr1);
4231 switch (endian) {
4232 case DEVICE_LITTLE_ENDIAN:
4233 stl_le_p(ptr, val);
4234 break;
4235 case DEVICE_BIG_ENDIAN:
4236 stl_be_p(ptr, val);
4237 break;
4238 default:
4239 stl_p(ptr, val);
4240 break;
4241 }
4242 if (!cpu_physical_memory_is_dirty(addr1)) {
4243 /* invalidate code */
4244 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4245 /* set dirty bit */
4246 cpu_physical_memory_set_dirty_flags(addr1,
4247 (0xff & ~CODE_DIRTY_FLAG));
4248 }
4249 }
4250 }
4251
4252 void stl_phys(target_phys_addr_t addr, uint32_t val)
4253 {
4254 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4255 }
4256
4257 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4258 {
4259 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4260 }
4261
4262 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4263 {
4264 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4265 }
4266
4267 /* XXX: optimize */
4268 void stb_phys(target_phys_addr_t addr, uint32_t val)
4269 {
4270 uint8_t v = val;
4271 cpu_physical_memory_write(addr, &v, 1);
4272 }
4273
4274 /* warning: addr must be aligned */
4275 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4276 enum device_endian endian)
4277 {
4278 int io_index;
4279 uint8_t *ptr;
4280 unsigned long pd;
4281 PhysPageDesc p;
4282
4283 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4284 pd = p.phys_offset;
4285
4286 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4287 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4288 addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
4289 #if defined(TARGET_WORDS_BIGENDIAN)
4290 if (endian == DEVICE_LITTLE_ENDIAN) {
4291 val = bswap16(val);
4292 }
4293 #else
4294 if (endian == DEVICE_BIG_ENDIAN) {
4295 val = bswap16(val);
4296 }
4297 #endif
4298 io_mem_write(io_index, addr, val, 2);
4299 } else {
4300 unsigned long addr1;
4301 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4302 /* RAM case */
4303 ptr = qemu_get_ram_ptr(addr1);
4304 switch (endian) {
4305 case DEVICE_LITTLE_ENDIAN:
4306 stw_le_p(ptr, val);
4307 break;
4308 case DEVICE_BIG_ENDIAN:
4309 stw_be_p(ptr, val);
4310 break;
4311 default:
4312 stw_p(ptr, val);
4313 break;
4314 }
4315 if (!cpu_physical_memory_is_dirty(addr1)) {
4316 /* invalidate code */
4317 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4318 /* set dirty bit */
4319 cpu_physical_memory_set_dirty_flags(addr1,
4320 (0xff & ~CODE_DIRTY_FLAG));
4321 }
4322 }
4323 }
4324
4325 void stw_phys(target_phys_addr_t addr, uint32_t val)
4326 {
4327 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4328 }
4329
4330 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4331 {
4332 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4333 }
4334
4335 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4336 {
4337 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4338 }
4339
4340 /* XXX: optimize */
4341 void stq_phys(target_phys_addr_t addr, uint64_t val)
4342 {
4343 val = tswap64(val);
4344 cpu_physical_memory_write(addr, &val, 8);
4345 }
4346
4347 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4348 {
4349 val = cpu_to_le64(val);
4350 cpu_physical_memory_write(addr, &val, 8);
4351 }
4352
4353 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4354 {
4355 val = cpu_to_be64(val);
4356 cpu_physical_memory_write(addr, &val, 8);
4357 }
4358
4359 /* virtual memory access for debug (includes writing to ROM) */
4360 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4361 uint8_t *buf, int len, int is_write)
4362 {
4363 int l;
4364 target_phys_addr_t phys_addr;
4365 target_ulong page;
4366
4367 while (len > 0) {
4368 page = addr & TARGET_PAGE_MASK;
4369 phys_addr = cpu_get_phys_page_debug(env, page);
4370 /* if no physical page mapped, return an error */
4371 if (phys_addr == -1)
4372 return -1;
4373 l = (page + TARGET_PAGE_SIZE) - addr;
4374 if (l > len)
4375 l = len;
4376 phys_addr += (addr & ~TARGET_PAGE_MASK);
4377 if (is_write)
4378 cpu_physical_memory_write_rom(phys_addr, buf, l);
4379 else
4380 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4381 len -= l;
4382 buf += l;
4383 addr += l;
4384 }
4385 return 0;
4386 }
4387 #endif
4388
4389 /* in deterministic execution mode, instructions doing device I/Os
4390 must be at the end of the TB */
4391 void cpu_io_recompile(CPUState *env, void *retaddr)
4392 {
4393 TranslationBlock *tb;
4394 uint32_t n, cflags;
4395 target_ulong pc, cs_base;
4396 uint64_t flags;
4397
4398 tb = tb_find_pc((unsigned long)retaddr);
4399 if (!tb) {
4400 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4401 retaddr);
4402 }
4403 n = env->icount_decr.u16.low + tb->icount;
4404 cpu_restore_state(tb, env, (unsigned long)retaddr);
4405 /* Calculate how many instructions had been executed before the fault
4406 occurred. */
4407 n = n - env->icount_decr.u16.low;
4408 /* Generate a new TB ending on the I/O insn. */
4409 n++;
4410 /* On MIPS and SH, delay slot instructions can only be restarted if
4411 they were already the first instruction in the TB. If this is not
4412 the first instruction in a TB then re-execute the preceding
4413 branch. */
4414 #if defined(TARGET_MIPS)
4415 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4416 env->active_tc.PC -= 4;
4417 env->icount_decr.u16.low++;
4418 env->hflags &= ~MIPS_HFLAG_BMASK;
4419 }
4420 #elif defined(TARGET_SH4)
4421 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4422 && n > 1) {
4423 env->pc -= 2;
4424 env->icount_decr.u16.low++;
4425 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4426 }
4427 #endif
4428 /* This should never happen. */
4429 if (n > CF_COUNT_MASK)
4430 cpu_abort(env, "TB too big during recompile");
4431
4432 cflags = n | CF_LAST_IO;
4433 pc = tb->pc;
4434 cs_base = tb->cs_base;
4435 flags = tb->flags;
4436 tb_phys_invalidate(tb, -1);
4437 /* FIXME: In theory this could raise an exception. In practice
4438 we have already translated the block once so it's probably ok. */
4439 tb_gen_code(env, pc, cs_base, flags, cflags);
4440 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4441 the first in the TB) then we end up generating a whole new TB and
4442 repeating the fault, which is horribly inefficient.
4443 Better would be to execute just this insn uncached, or generate a
4444 second new TB. */
4445 cpu_resume_from_signal(env, NULL);
4446 }
4447
4448 #if !defined(CONFIG_USER_ONLY)
4449
4450 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4451 {
4452 int i, target_code_size, max_target_code_size;
4453 int direct_jmp_count, direct_jmp2_count, cross_page;
4454 TranslationBlock *tb;
4455
4456 target_code_size = 0;
4457 max_target_code_size = 0;
4458 cross_page = 0;
4459 direct_jmp_count = 0;
4460 direct_jmp2_count = 0;
4461 for(i = 0; i < nb_tbs; i++) {
4462 tb = &tbs[i];
4463 target_code_size += tb->size;
4464 if (tb->size > max_target_code_size)
4465 max_target_code_size = tb->size;
4466 if (tb->page_addr[1] != -1)
4467 cross_page++;
4468 if (tb->tb_next_offset[0] != 0xffff) {
4469 direct_jmp_count++;
4470 if (tb->tb_next_offset[1] != 0xffff) {
4471 direct_jmp2_count++;
4472 }
4473 }
4474 }
4475 /* XXX: avoid using doubles ? */
4476 cpu_fprintf(f, "Translation buffer state:\n");
4477 cpu_fprintf(f, "gen code size %td/%ld\n",
4478 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4479 cpu_fprintf(f, "TB count %d/%d\n",
4480 nb_tbs, code_gen_max_blocks);
4481 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4482 nb_tbs ? target_code_size / nb_tbs : 0,
4483 max_target_code_size);
4484 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4485 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4486 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4487 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4488 cross_page,
4489 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4490 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4491 direct_jmp_count,
4492 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4493 direct_jmp2_count,
4494 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4495 cpu_fprintf(f, "\nStatistics:\n");
4496 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4497 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4498 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4499 tcg_dump_info(f, cpu_fprintf);
4500 }
4501
4502 /* NOTE: this function can trigger an exception */
4503 /* NOTE2: the returned address is not exactly the physical address: it
4504 is the offset relative to phys_ram_base */
4505 tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4506 {
4507 int mmu_idx, page_index, pd;
4508 void *p;
4509
4510 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4511 mmu_idx = cpu_mmu_index(env1);
4512 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4513 (addr & TARGET_PAGE_MASK))) {
4514 ldub_code(addr);
4515 }
4516 pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
4517 if (pd != IO_MEM_RAM && pd != IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
4518 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4519 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4520 #else
4521 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4522 #endif
4523 }
4524 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4525 return qemu_ram_addr_from_host_nofail(p);
4526 }
4527
4528 #define MMUSUFFIX _cmmu
4529 #undef GETPC
4530 #define GETPC() NULL
4531 #define env cpu_single_env
4532 #define SOFTMMU_CODE_ACCESS
4533
4534 #define SHIFT 0
4535 #include "softmmu_template.h"
4536
4537 #define SHIFT 1
4538 #include "softmmu_template.h"
4539
4540 #define SHIFT 2
4541 #include "softmmu_template.h"
4542
4543 #define SHIFT 3
4544 #include "softmmu_template.h"
4545
4546 #undef env
4547
4548 #endif