]> git.proxmox.com Git - qemu.git/blob - exec.c
Avoid allocating TCG resources in non-TCG mode
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 //#define DEBUG_TLB
63 //#define DEBUG_UNASSIGNED
64
65 /* make various TB consistency checks */
66 //#define DEBUG_TB_CHECK
67 //#define DEBUG_TLB_CHECK
68
69 //#define DEBUG_IOPORT
70 //#define DEBUG_SUBPAGE
71
72 #if !defined(CONFIG_USER_ONLY)
73 /* TB consistency checks only implemented for usermode emulation. */
74 #undef DEBUG_TB_CHECK
75 #endif
76
77 #define SMC_BITMAP_USE_THRESHOLD 10
78
79 static TranslationBlock *tbs;
80 static int code_gen_max_blocks;
81 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
82 static int nb_tbs;
83 /* any access to the tbs or the page table must use this lock */
84 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
85
86 #if defined(__arm__) || defined(__sparc_v9__)
87 /* The prologue must be reachable with a direct jump. ARM and Sparc64
88 have limited branch ranges (possibly also PPC) so place it in a
89 section close to code segment. */
90 #define code_gen_section \
91 __attribute__((__section__(".gen_code"))) \
92 __attribute__((aligned (32)))
93 #elif defined(_WIN32)
94 /* Maximum alignment for Win32 is 16. */
95 #define code_gen_section \
96 __attribute__((aligned (16)))
97 #else
98 #define code_gen_section \
99 __attribute__((aligned (32)))
100 #endif
101
102 uint8_t code_gen_prologue[1024] code_gen_section;
103 static uint8_t *code_gen_buffer;
104 static unsigned long code_gen_buffer_size;
105 /* threshold to flush the translated code buffer */
106 static unsigned long code_gen_buffer_max_size;
107 static uint8_t *code_gen_ptr;
108
109 #if !defined(CONFIG_USER_ONLY)
110 int phys_ram_fd;
111 static int in_migration;
112
113 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
114
115 static MemoryRegion *system_memory;
116
117 #endif
118
119 CPUState *first_cpu;
120 /* current CPU in the current thread. It is only valid inside
121 cpu_exec() */
122 CPUState *cpu_single_env;
123 /* 0 = Do not count executed instructions.
124 1 = Precise instruction counting.
125 2 = Adaptive rate instruction counting. */
126 int use_icount = 0;
127 /* Current instruction counter. While executing translated code this may
128 include some instructions that have not yet been executed. */
129 int64_t qemu_icount;
130
131 typedef struct PageDesc {
132 /* list of TBs intersecting this ram page */
133 TranslationBlock *first_tb;
134 /* in order to optimize self modifying code, we count the number
135 of lookups we do to a given page to use a bitmap */
136 unsigned int code_write_count;
137 uint8_t *code_bitmap;
138 #if defined(CONFIG_USER_ONLY)
139 unsigned long flags;
140 #endif
141 } PageDesc;
142
143 /* In system mode we want L1_MAP to be based on ram offsets,
144 while in user mode we want it to be based on virtual addresses. */
145 #if !defined(CONFIG_USER_ONLY)
146 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
147 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
148 #else
149 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
150 #endif
151 #else
152 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
153 #endif
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define L2_BITS 10
157 #define L2_SIZE (1 << L2_BITS)
158
159 /* The bits remaining after N lower levels of page tables. */
160 #define P_L1_BITS_REM \
161 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
162 #define V_L1_BITS_REM \
163 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
164
165 /* Size of the L1 page table. Avoid silly small sizes. */
166 #if P_L1_BITS_REM < 4
167 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
168 #else
169 #define P_L1_BITS P_L1_BITS_REM
170 #endif
171
172 #if V_L1_BITS_REM < 4
173 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
174 #else
175 #define V_L1_BITS V_L1_BITS_REM
176 #endif
177
178 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
179 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
180
181 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
182 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
183
184 unsigned long qemu_real_host_page_size;
185 unsigned long qemu_host_page_bits;
186 unsigned long qemu_host_page_size;
187 unsigned long qemu_host_page_mask;
188
189 /* This is a multi-level map on the virtual address space.
190 The bottom level has pointers to PageDesc. */
191 static void *l1_map[V_L1_SIZE];
192
193 #if !defined(CONFIG_USER_ONLY)
194 typedef struct PhysPageDesc {
195 /* offset in host memory of the page + io_index in the low bits */
196 ram_addr_t phys_offset;
197 ram_addr_t region_offset;
198 } PhysPageDesc;
199
200 /* This is a multi-level map on the physical address space.
201 The bottom level has pointers to PhysPageDesc. */
202 static void *l1_phys_map[P_L1_SIZE];
203
204 static void io_mem_init(void);
205 static void memory_map_init(void);
206
207 /* io memory support */
208 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
209 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
210 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
211 static char io_mem_used[IO_MEM_NB_ENTRIES];
212 static int io_mem_watch;
213 #endif
214
215 /* log support */
216 #ifdef WIN32
217 static const char *logfilename = "qemu.log";
218 #else
219 static const char *logfilename = "/tmp/qemu.log";
220 #endif
221 FILE *logfile;
222 int loglevel;
223 static int log_append = 0;
224
225 /* statistics */
226 #if !defined(CONFIG_USER_ONLY)
227 static int tlb_flush_count;
228 #endif
229 static int tb_flush_count;
230 static int tb_phys_invalidate_count;
231
232 #ifdef _WIN32
233 static void map_exec(void *addr, long size)
234 {
235 DWORD old_protect;
236 VirtualProtect(addr, size,
237 PAGE_EXECUTE_READWRITE, &old_protect);
238
239 }
240 #else
241 static void map_exec(void *addr, long size)
242 {
243 unsigned long start, end, page_size;
244
245 page_size = getpagesize();
246 start = (unsigned long)addr;
247 start &= ~(page_size - 1);
248
249 end = (unsigned long)addr + size;
250 end += page_size - 1;
251 end &= ~(page_size - 1);
252
253 mprotect((void *)start, end - start,
254 PROT_READ | PROT_WRITE | PROT_EXEC);
255 }
256 #endif
257
258 static void page_init(void)
259 {
260 /* NOTE: we can always suppose that qemu_host_page_size >=
261 TARGET_PAGE_SIZE */
262 #ifdef _WIN32
263 {
264 SYSTEM_INFO system_info;
265
266 GetSystemInfo(&system_info);
267 qemu_real_host_page_size = system_info.dwPageSize;
268 }
269 #else
270 qemu_real_host_page_size = getpagesize();
271 #endif
272 if (qemu_host_page_size == 0)
273 qemu_host_page_size = qemu_real_host_page_size;
274 if (qemu_host_page_size < TARGET_PAGE_SIZE)
275 qemu_host_page_size = TARGET_PAGE_SIZE;
276 qemu_host_page_bits = 0;
277 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
278 qemu_host_page_bits++;
279 qemu_host_page_mask = ~(qemu_host_page_size - 1);
280
281 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
282 {
283 #ifdef HAVE_KINFO_GETVMMAP
284 struct kinfo_vmentry *freep;
285 int i, cnt;
286
287 freep = kinfo_getvmmap(getpid(), &cnt);
288 if (freep) {
289 mmap_lock();
290 for (i = 0; i < cnt; i++) {
291 unsigned long startaddr, endaddr;
292
293 startaddr = freep[i].kve_start;
294 endaddr = freep[i].kve_end;
295 if (h2g_valid(startaddr)) {
296 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
297
298 if (h2g_valid(endaddr)) {
299 endaddr = h2g(endaddr);
300 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
301 } else {
302 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
303 endaddr = ~0ul;
304 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
305 #endif
306 }
307 }
308 }
309 free(freep);
310 mmap_unlock();
311 }
312 #else
313 FILE *f;
314
315 last_brk = (unsigned long)sbrk(0);
316
317 f = fopen("/compat/linux/proc/self/maps", "r");
318 if (f) {
319 mmap_lock();
320
321 do {
322 unsigned long startaddr, endaddr;
323 int n;
324
325 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
326
327 if (n == 2 && h2g_valid(startaddr)) {
328 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
329
330 if (h2g_valid(endaddr)) {
331 endaddr = h2g(endaddr);
332 } else {
333 endaddr = ~0ul;
334 }
335 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
336 }
337 } while (!feof(f));
338
339 fclose(f);
340 mmap_unlock();
341 }
342 #endif
343 }
344 #endif
345 }
346
347 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
348 {
349 PageDesc *pd;
350 void **lp;
351 int i;
352
353 #if defined(CONFIG_USER_ONLY)
354 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
355 # define ALLOC(P, SIZE) \
356 do { \
357 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
358 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
359 } while (0)
360 #else
361 # define ALLOC(P, SIZE) \
362 do { P = qemu_mallocz(SIZE); } while (0)
363 #endif
364
365 /* Level 1. Always allocated. */
366 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
367
368 /* Level 2..N-1. */
369 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
370 void **p = *lp;
371
372 if (p == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(p, sizeof(void *) * L2_SIZE);
377 *lp = p;
378 }
379
380 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
381 }
382
383 pd = *lp;
384 if (pd == NULL) {
385 if (!alloc) {
386 return NULL;
387 }
388 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
389 *lp = pd;
390 }
391
392 #undef ALLOC
393
394 return pd + (index & (L2_SIZE - 1));
395 }
396
397 static inline PageDesc *page_find(tb_page_addr_t index)
398 {
399 return page_find_alloc(index, 0);
400 }
401
402 #if !defined(CONFIG_USER_ONLY)
403 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
404 {
405 PhysPageDesc *pd;
406 void **lp;
407 int i;
408
409 /* Level 1. Always allocated. */
410 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
411
412 /* Level 2..N-1. */
413 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
414 void **p = *lp;
415 if (p == NULL) {
416 if (!alloc) {
417 return NULL;
418 }
419 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
420 }
421 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
422 }
423
424 pd = *lp;
425 if (pd == NULL) {
426 int i;
427
428 if (!alloc) {
429 return NULL;
430 }
431
432 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
433
434 for (i = 0; i < L2_SIZE; i++) {
435 pd[i].phys_offset = IO_MEM_UNASSIGNED;
436 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
437 }
438 }
439
440 return pd + (index & (L2_SIZE - 1));
441 }
442
443 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
444 {
445 return phys_page_find_alloc(index, 0);
446 }
447
448 static void tlb_protect_code(ram_addr_t ram_addr);
449 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
450 target_ulong vaddr);
451 #define mmap_lock() do { } while(0)
452 #define mmap_unlock() do { } while(0)
453 #endif
454
455 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
456
457 #if defined(CONFIG_USER_ONLY)
458 /* Currently it is not recommended to allocate big chunks of data in
459 user mode. It will change when a dedicated libc will be used */
460 #define USE_STATIC_CODE_GEN_BUFFER
461 #endif
462
463 #ifdef USE_STATIC_CODE_GEN_BUFFER
464 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
465 __attribute__((aligned (CODE_GEN_ALIGN)));
466 #endif
467
468 static void code_gen_alloc(unsigned long tb_size)
469 {
470 #ifdef USE_STATIC_CODE_GEN_BUFFER
471 code_gen_buffer = static_code_gen_buffer;
472 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
473 map_exec(code_gen_buffer, code_gen_buffer_size);
474 #else
475 code_gen_buffer_size = tb_size;
476 if (code_gen_buffer_size == 0) {
477 #if defined(CONFIG_USER_ONLY)
478 /* in user mode, phys_ram_size is not meaningful */
479 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
480 #else
481 /* XXX: needs adjustments */
482 code_gen_buffer_size = (unsigned long)(ram_size / 4);
483 #endif
484 }
485 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
486 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
487 /* The code gen buffer location may have constraints depending on
488 the host cpu and OS */
489 #if defined(__linux__)
490 {
491 int flags;
492 void *start = NULL;
493
494 flags = MAP_PRIVATE | MAP_ANONYMOUS;
495 #if defined(__x86_64__)
496 flags |= MAP_32BIT;
497 /* Cannot map more than that */
498 if (code_gen_buffer_size > (800 * 1024 * 1024))
499 code_gen_buffer_size = (800 * 1024 * 1024);
500 #elif defined(__sparc_v9__)
501 // Map the buffer below 2G, so we can use direct calls and branches
502 flags |= MAP_FIXED;
503 start = (void *) 0x60000000UL;
504 if (code_gen_buffer_size > (512 * 1024 * 1024))
505 code_gen_buffer_size = (512 * 1024 * 1024);
506 #elif defined(__arm__)
507 /* Map the buffer below 32M, so we can use direct calls and branches */
508 flags |= MAP_FIXED;
509 start = (void *) 0x01000000UL;
510 if (code_gen_buffer_size > 16 * 1024 * 1024)
511 code_gen_buffer_size = 16 * 1024 * 1024;
512 #elif defined(__s390x__)
513 /* Map the buffer so that we can use direct calls and branches. */
514 /* We have a +- 4GB range on the branches; leave some slop. */
515 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
516 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
517 }
518 start = (void *)0x90000000UL;
519 #endif
520 code_gen_buffer = mmap(start, code_gen_buffer_size,
521 PROT_WRITE | PROT_READ | PROT_EXEC,
522 flags, -1, 0);
523 if (code_gen_buffer == MAP_FAILED) {
524 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
525 exit(1);
526 }
527 }
528 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
529 || defined(__DragonFly__) || defined(__OpenBSD__)
530 {
531 int flags;
532 void *addr = NULL;
533 flags = MAP_PRIVATE | MAP_ANONYMOUS;
534 #if defined(__x86_64__)
535 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
536 * 0x40000000 is free */
537 flags |= MAP_FIXED;
538 addr = (void *)0x40000000;
539 /* Cannot map more than that */
540 if (code_gen_buffer_size > (800 * 1024 * 1024))
541 code_gen_buffer_size = (800 * 1024 * 1024);
542 #elif defined(__sparc_v9__)
543 // Map the buffer below 2G, so we can use direct calls and branches
544 flags |= MAP_FIXED;
545 addr = (void *) 0x60000000UL;
546 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
547 code_gen_buffer_size = (512 * 1024 * 1024);
548 }
549 #endif
550 code_gen_buffer = mmap(addr, code_gen_buffer_size,
551 PROT_WRITE | PROT_READ | PROT_EXEC,
552 flags, -1, 0);
553 if (code_gen_buffer == MAP_FAILED) {
554 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
555 exit(1);
556 }
557 }
558 #else
559 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
560 map_exec(code_gen_buffer, code_gen_buffer_size);
561 #endif
562 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
563 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
564 code_gen_buffer_max_size = code_gen_buffer_size -
565 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
566 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
567 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
568 }
569
570 /* Must be called before using the QEMU cpus. 'tb_size' is the size
571 (in bytes) allocated to the translation buffer. Zero means default
572 size. */
573 void tcg_exec_init(unsigned long tb_size)
574 {
575 cpu_gen_init();
576 code_gen_alloc(tb_size);
577 code_gen_ptr = code_gen_buffer;
578 page_init();
579 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
580 /* There's no guest base to take into account, so go ahead and
581 initialize the prologue now. */
582 tcg_prologue_init(&tcg_ctx);
583 #endif
584 }
585
586 bool tcg_enabled(void)
587 {
588 return code_gen_buffer != NULL;
589 }
590
591 void cpu_exec_init_all(void)
592 {
593 #if !defined(CONFIG_USER_ONLY)
594 memory_map_init();
595 io_mem_init();
596 #endif
597 }
598
599 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
600
601 static int cpu_common_post_load(void *opaque, int version_id)
602 {
603 CPUState *env = opaque;
604
605 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
606 version_id is increased. */
607 env->interrupt_request &= ~0x01;
608 tlb_flush(env, 1);
609
610 return 0;
611 }
612
613 static const VMStateDescription vmstate_cpu_common = {
614 .name = "cpu_common",
615 .version_id = 1,
616 .minimum_version_id = 1,
617 .minimum_version_id_old = 1,
618 .post_load = cpu_common_post_load,
619 .fields = (VMStateField []) {
620 VMSTATE_UINT32(halted, CPUState),
621 VMSTATE_UINT32(interrupt_request, CPUState),
622 VMSTATE_END_OF_LIST()
623 }
624 };
625 #endif
626
627 CPUState *qemu_get_cpu(int cpu)
628 {
629 CPUState *env = first_cpu;
630
631 while (env) {
632 if (env->cpu_index == cpu)
633 break;
634 env = env->next_cpu;
635 }
636
637 return env;
638 }
639
640 void cpu_exec_init(CPUState *env)
641 {
642 CPUState **penv;
643 int cpu_index;
644
645 #if defined(CONFIG_USER_ONLY)
646 cpu_list_lock();
647 #endif
648 env->next_cpu = NULL;
649 penv = &first_cpu;
650 cpu_index = 0;
651 while (*penv != NULL) {
652 penv = &(*penv)->next_cpu;
653 cpu_index++;
654 }
655 env->cpu_index = cpu_index;
656 env->numa_node = 0;
657 QTAILQ_INIT(&env->breakpoints);
658 QTAILQ_INIT(&env->watchpoints);
659 #ifndef CONFIG_USER_ONLY
660 env->thread_id = qemu_get_thread_id();
661 #endif
662 *penv = env;
663 #if defined(CONFIG_USER_ONLY)
664 cpu_list_unlock();
665 #endif
666 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
667 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
668 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
669 cpu_save, cpu_load, env);
670 #endif
671 }
672
673 /* Allocate a new translation block. Flush the translation buffer if
674 too many translation blocks or too much generated code. */
675 static TranslationBlock *tb_alloc(target_ulong pc)
676 {
677 TranslationBlock *tb;
678
679 if (nb_tbs >= code_gen_max_blocks ||
680 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
681 return NULL;
682 tb = &tbs[nb_tbs++];
683 tb->pc = pc;
684 tb->cflags = 0;
685 return tb;
686 }
687
688 void tb_free(TranslationBlock *tb)
689 {
690 /* In practice this is mostly used for single use temporary TB
691 Ignore the hard cases and just back up if this TB happens to
692 be the last one generated. */
693 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
694 code_gen_ptr = tb->tc_ptr;
695 nb_tbs--;
696 }
697 }
698
699 static inline void invalidate_page_bitmap(PageDesc *p)
700 {
701 if (p->code_bitmap) {
702 qemu_free(p->code_bitmap);
703 p->code_bitmap = NULL;
704 }
705 p->code_write_count = 0;
706 }
707
708 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
709
710 static void page_flush_tb_1 (int level, void **lp)
711 {
712 int i;
713
714 if (*lp == NULL) {
715 return;
716 }
717 if (level == 0) {
718 PageDesc *pd = *lp;
719 for (i = 0; i < L2_SIZE; ++i) {
720 pd[i].first_tb = NULL;
721 invalidate_page_bitmap(pd + i);
722 }
723 } else {
724 void **pp = *lp;
725 for (i = 0; i < L2_SIZE; ++i) {
726 page_flush_tb_1 (level - 1, pp + i);
727 }
728 }
729 }
730
731 static void page_flush_tb(void)
732 {
733 int i;
734 for (i = 0; i < V_L1_SIZE; i++) {
735 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
736 }
737 }
738
739 /* flush all the translation blocks */
740 /* XXX: tb_flush is currently not thread safe */
741 void tb_flush(CPUState *env1)
742 {
743 CPUState *env;
744 #if defined(DEBUG_FLUSH)
745 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
746 (unsigned long)(code_gen_ptr - code_gen_buffer),
747 nb_tbs, nb_tbs > 0 ?
748 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
749 #endif
750 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
751 cpu_abort(env1, "Internal error: code buffer overflow\n");
752
753 nb_tbs = 0;
754
755 for(env = first_cpu; env != NULL; env = env->next_cpu) {
756 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
757 }
758
759 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
760 page_flush_tb();
761
762 code_gen_ptr = code_gen_buffer;
763 /* XXX: flush processor icache at this point if cache flush is
764 expensive */
765 tb_flush_count++;
766 }
767
768 #ifdef DEBUG_TB_CHECK
769
770 static void tb_invalidate_check(target_ulong address)
771 {
772 TranslationBlock *tb;
773 int i;
774 address &= TARGET_PAGE_MASK;
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
777 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
778 address >= tb->pc + tb->size)) {
779 printf("ERROR invalidate: address=" TARGET_FMT_lx
780 " PC=%08lx size=%04x\n",
781 address, (long)tb->pc, tb->size);
782 }
783 }
784 }
785 }
786
787 /* verify that all the pages have correct rights for code */
788 static void tb_page_check(void)
789 {
790 TranslationBlock *tb;
791 int i, flags1, flags2;
792
793 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
794 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
795 flags1 = page_get_flags(tb->pc);
796 flags2 = page_get_flags(tb->pc + tb->size - 1);
797 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
798 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
799 (long)tb->pc, tb->size, flags1, flags2);
800 }
801 }
802 }
803 }
804
805 #endif
806
807 /* invalidate one TB */
808 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
809 int next_offset)
810 {
811 TranslationBlock *tb1;
812 for(;;) {
813 tb1 = *ptb;
814 if (tb1 == tb) {
815 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
816 break;
817 }
818 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
819 }
820 }
821
822 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
823 {
824 TranslationBlock *tb1;
825 unsigned int n1;
826
827 for(;;) {
828 tb1 = *ptb;
829 n1 = (long)tb1 & 3;
830 tb1 = (TranslationBlock *)((long)tb1 & ~3);
831 if (tb1 == tb) {
832 *ptb = tb1->page_next[n1];
833 break;
834 }
835 ptb = &tb1->page_next[n1];
836 }
837 }
838
839 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
840 {
841 TranslationBlock *tb1, **ptb;
842 unsigned int n1;
843
844 ptb = &tb->jmp_next[n];
845 tb1 = *ptb;
846 if (tb1) {
847 /* find tb(n) in circular list */
848 for(;;) {
849 tb1 = *ptb;
850 n1 = (long)tb1 & 3;
851 tb1 = (TranslationBlock *)((long)tb1 & ~3);
852 if (n1 == n && tb1 == tb)
853 break;
854 if (n1 == 2) {
855 ptb = &tb1->jmp_first;
856 } else {
857 ptb = &tb1->jmp_next[n1];
858 }
859 }
860 /* now we can suppress tb(n) from the list */
861 *ptb = tb->jmp_next[n];
862
863 tb->jmp_next[n] = NULL;
864 }
865 }
866
867 /* reset the jump entry 'n' of a TB so that it is not chained to
868 another TB */
869 static inline void tb_reset_jump(TranslationBlock *tb, int n)
870 {
871 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
872 }
873
874 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
875 {
876 CPUState *env;
877 PageDesc *p;
878 unsigned int h, n1;
879 tb_page_addr_t phys_pc;
880 TranslationBlock *tb1, *tb2;
881
882 /* remove the TB from the hash list */
883 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
884 h = tb_phys_hash_func(phys_pc);
885 tb_remove(&tb_phys_hash[h], tb,
886 offsetof(TranslationBlock, phys_hash_next));
887
888 /* remove the TB from the page list */
889 if (tb->page_addr[0] != page_addr) {
890 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
891 tb_page_remove(&p->first_tb, tb);
892 invalidate_page_bitmap(p);
893 }
894 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
895 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
896 tb_page_remove(&p->first_tb, tb);
897 invalidate_page_bitmap(p);
898 }
899
900 tb_invalidated_flag = 1;
901
902 /* remove the TB from the hash list */
903 h = tb_jmp_cache_hash_func(tb->pc);
904 for(env = first_cpu; env != NULL; env = env->next_cpu) {
905 if (env->tb_jmp_cache[h] == tb)
906 env->tb_jmp_cache[h] = NULL;
907 }
908
909 /* suppress this TB from the two jump lists */
910 tb_jmp_remove(tb, 0);
911 tb_jmp_remove(tb, 1);
912
913 /* suppress any remaining jumps to this TB */
914 tb1 = tb->jmp_first;
915 for(;;) {
916 n1 = (long)tb1 & 3;
917 if (n1 == 2)
918 break;
919 tb1 = (TranslationBlock *)((long)tb1 & ~3);
920 tb2 = tb1->jmp_next[n1];
921 tb_reset_jump(tb1, n1);
922 tb1->jmp_next[n1] = NULL;
923 tb1 = tb2;
924 }
925 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
926
927 tb_phys_invalidate_count++;
928 }
929
930 static inline void set_bits(uint8_t *tab, int start, int len)
931 {
932 int end, mask, end1;
933
934 end = start + len;
935 tab += start >> 3;
936 mask = 0xff << (start & 7);
937 if ((start & ~7) == (end & ~7)) {
938 if (start < end) {
939 mask &= ~(0xff << (end & 7));
940 *tab |= mask;
941 }
942 } else {
943 *tab++ |= mask;
944 start = (start + 8) & ~7;
945 end1 = end & ~7;
946 while (start < end1) {
947 *tab++ = 0xff;
948 start += 8;
949 }
950 if (start < end) {
951 mask = ~(0xff << (end & 7));
952 *tab |= mask;
953 }
954 }
955 }
956
957 static void build_page_bitmap(PageDesc *p)
958 {
959 int n, tb_start, tb_end;
960 TranslationBlock *tb;
961
962 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
963
964 tb = p->first_tb;
965 while (tb != NULL) {
966 n = (long)tb & 3;
967 tb = (TranslationBlock *)((long)tb & ~3);
968 /* NOTE: this is subtle as a TB may span two physical pages */
969 if (n == 0) {
970 /* NOTE: tb_end may be after the end of the page, but
971 it is not a problem */
972 tb_start = tb->pc & ~TARGET_PAGE_MASK;
973 tb_end = tb_start + tb->size;
974 if (tb_end > TARGET_PAGE_SIZE)
975 tb_end = TARGET_PAGE_SIZE;
976 } else {
977 tb_start = 0;
978 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
979 }
980 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
981 tb = tb->page_next[n];
982 }
983 }
984
985 TranslationBlock *tb_gen_code(CPUState *env,
986 target_ulong pc, target_ulong cs_base,
987 int flags, int cflags)
988 {
989 TranslationBlock *tb;
990 uint8_t *tc_ptr;
991 tb_page_addr_t phys_pc, phys_page2;
992 target_ulong virt_page2;
993 int code_gen_size;
994
995 phys_pc = get_page_addr_code(env, pc);
996 tb = tb_alloc(pc);
997 if (!tb) {
998 /* flush must be done */
999 tb_flush(env);
1000 /* cannot fail at this point */
1001 tb = tb_alloc(pc);
1002 /* Don't forget to invalidate previous TB info. */
1003 tb_invalidated_flag = 1;
1004 }
1005 tc_ptr = code_gen_ptr;
1006 tb->tc_ptr = tc_ptr;
1007 tb->cs_base = cs_base;
1008 tb->flags = flags;
1009 tb->cflags = cflags;
1010 cpu_gen_code(env, tb, &code_gen_size);
1011 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1012
1013 /* check next page if needed */
1014 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1015 phys_page2 = -1;
1016 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1017 phys_page2 = get_page_addr_code(env, virt_page2);
1018 }
1019 tb_link_page(tb, phys_pc, phys_page2);
1020 return tb;
1021 }
1022
1023 /* invalidate all TBs which intersect with the target physical page
1024 starting in range [start;end[. NOTE: start and end must refer to
1025 the same physical page. 'is_cpu_write_access' should be true if called
1026 from a real cpu write access: the virtual CPU will exit the current
1027 TB if code is modified inside this TB. */
1028 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1029 int is_cpu_write_access)
1030 {
1031 TranslationBlock *tb, *tb_next, *saved_tb;
1032 CPUState *env = cpu_single_env;
1033 tb_page_addr_t tb_start, tb_end;
1034 PageDesc *p;
1035 int n;
1036 #ifdef TARGET_HAS_PRECISE_SMC
1037 int current_tb_not_found = is_cpu_write_access;
1038 TranslationBlock *current_tb = NULL;
1039 int current_tb_modified = 0;
1040 target_ulong current_pc = 0;
1041 target_ulong current_cs_base = 0;
1042 int current_flags = 0;
1043 #endif /* TARGET_HAS_PRECISE_SMC */
1044
1045 p = page_find(start >> TARGET_PAGE_BITS);
1046 if (!p)
1047 return;
1048 if (!p->code_bitmap &&
1049 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1050 is_cpu_write_access) {
1051 /* build code bitmap */
1052 build_page_bitmap(p);
1053 }
1054
1055 /* we remove all the TBs in the range [start, end[ */
1056 /* XXX: see if in some cases it could be faster to invalidate all the code */
1057 tb = p->first_tb;
1058 while (tb != NULL) {
1059 n = (long)tb & 3;
1060 tb = (TranslationBlock *)((long)tb & ~3);
1061 tb_next = tb->page_next[n];
1062 /* NOTE: this is subtle as a TB may span two physical pages */
1063 if (n == 0) {
1064 /* NOTE: tb_end may be after the end of the page, but
1065 it is not a problem */
1066 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1067 tb_end = tb_start + tb->size;
1068 } else {
1069 tb_start = tb->page_addr[1];
1070 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1071 }
1072 if (!(tb_end <= start || tb_start >= end)) {
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 if (current_tb_not_found) {
1075 current_tb_not_found = 0;
1076 current_tb = NULL;
1077 if (env->mem_io_pc) {
1078 /* now we have a real cpu fault */
1079 current_tb = tb_find_pc(env->mem_io_pc);
1080 }
1081 }
1082 if (current_tb == tb &&
1083 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1084 /* If we are modifying the current TB, we must stop
1085 its execution. We could be more precise by checking
1086 that the modification is after the current PC, but it
1087 would require a specialized function to partially
1088 restore the CPU state */
1089
1090 current_tb_modified = 1;
1091 cpu_restore_state(current_tb, env, env->mem_io_pc);
1092 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1093 &current_flags);
1094 }
1095 #endif /* TARGET_HAS_PRECISE_SMC */
1096 /* we need to do that to handle the case where a signal
1097 occurs while doing tb_phys_invalidate() */
1098 saved_tb = NULL;
1099 if (env) {
1100 saved_tb = env->current_tb;
1101 env->current_tb = NULL;
1102 }
1103 tb_phys_invalidate(tb, -1);
1104 if (env) {
1105 env->current_tb = saved_tb;
1106 if (env->interrupt_request && env->current_tb)
1107 cpu_interrupt(env, env->interrupt_request);
1108 }
1109 }
1110 tb = tb_next;
1111 }
1112 #if !defined(CONFIG_USER_ONLY)
1113 /* if no code remaining, no need to continue to use slow writes */
1114 if (!p->first_tb) {
1115 invalidate_page_bitmap(p);
1116 if (is_cpu_write_access) {
1117 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1118 }
1119 }
1120 #endif
1121 #ifdef TARGET_HAS_PRECISE_SMC
1122 if (current_tb_modified) {
1123 /* we generate a block containing just the instruction
1124 modifying the memory. It will ensure that it cannot modify
1125 itself */
1126 env->current_tb = NULL;
1127 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1128 cpu_resume_from_signal(env, NULL);
1129 }
1130 #endif
1131 }
1132
1133 /* len must be <= 8 and start must be a multiple of len */
1134 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1135 {
1136 PageDesc *p;
1137 int offset, b;
1138 #if 0
1139 if (1) {
1140 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1141 cpu_single_env->mem_io_vaddr, len,
1142 cpu_single_env->eip,
1143 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1144 }
1145 #endif
1146 p = page_find(start >> TARGET_PAGE_BITS);
1147 if (!p)
1148 return;
1149 if (p->code_bitmap) {
1150 offset = start & ~TARGET_PAGE_MASK;
1151 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1152 if (b & ((1 << len) - 1))
1153 goto do_invalidate;
1154 } else {
1155 do_invalidate:
1156 tb_invalidate_phys_page_range(start, start + len, 1);
1157 }
1158 }
1159
1160 #if !defined(CONFIG_SOFTMMU)
1161 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1162 unsigned long pc, void *puc)
1163 {
1164 TranslationBlock *tb;
1165 PageDesc *p;
1166 int n;
1167 #ifdef TARGET_HAS_PRECISE_SMC
1168 TranslationBlock *current_tb = NULL;
1169 CPUState *env = cpu_single_env;
1170 int current_tb_modified = 0;
1171 target_ulong current_pc = 0;
1172 target_ulong current_cs_base = 0;
1173 int current_flags = 0;
1174 #endif
1175
1176 addr &= TARGET_PAGE_MASK;
1177 p = page_find(addr >> TARGET_PAGE_BITS);
1178 if (!p)
1179 return;
1180 tb = p->first_tb;
1181 #ifdef TARGET_HAS_PRECISE_SMC
1182 if (tb && pc != 0) {
1183 current_tb = tb_find_pc(pc);
1184 }
1185 #endif
1186 while (tb != NULL) {
1187 n = (long)tb & 3;
1188 tb = (TranslationBlock *)((long)tb & ~3);
1189 #ifdef TARGET_HAS_PRECISE_SMC
1190 if (current_tb == tb &&
1191 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1192 /* If we are modifying the current TB, we must stop
1193 its execution. We could be more precise by checking
1194 that the modification is after the current PC, but it
1195 would require a specialized function to partially
1196 restore the CPU state */
1197
1198 current_tb_modified = 1;
1199 cpu_restore_state(current_tb, env, pc);
1200 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1201 &current_flags);
1202 }
1203 #endif /* TARGET_HAS_PRECISE_SMC */
1204 tb_phys_invalidate(tb, addr);
1205 tb = tb->page_next[n];
1206 }
1207 p->first_tb = NULL;
1208 #ifdef TARGET_HAS_PRECISE_SMC
1209 if (current_tb_modified) {
1210 /* we generate a block containing just the instruction
1211 modifying the memory. It will ensure that it cannot modify
1212 itself */
1213 env->current_tb = NULL;
1214 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1215 cpu_resume_from_signal(env, puc);
1216 }
1217 #endif
1218 }
1219 #endif
1220
1221 /* add the tb in the target page and protect it if necessary */
1222 static inline void tb_alloc_page(TranslationBlock *tb,
1223 unsigned int n, tb_page_addr_t page_addr)
1224 {
1225 PageDesc *p;
1226 #ifndef CONFIG_USER_ONLY
1227 bool page_already_protected;
1228 #endif
1229
1230 tb->page_addr[n] = page_addr;
1231 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1232 tb->page_next[n] = p->first_tb;
1233 #ifndef CONFIG_USER_ONLY
1234 page_already_protected = p->first_tb != NULL;
1235 #endif
1236 p->first_tb = (TranslationBlock *)((long)tb | n);
1237 invalidate_page_bitmap(p);
1238
1239 #if defined(TARGET_HAS_SMC) || 1
1240
1241 #if defined(CONFIG_USER_ONLY)
1242 if (p->flags & PAGE_WRITE) {
1243 target_ulong addr;
1244 PageDesc *p2;
1245 int prot;
1246
1247 /* force the host page as non writable (writes will have a
1248 page fault + mprotect overhead) */
1249 page_addr &= qemu_host_page_mask;
1250 prot = 0;
1251 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1252 addr += TARGET_PAGE_SIZE) {
1253
1254 p2 = page_find (addr >> TARGET_PAGE_BITS);
1255 if (!p2)
1256 continue;
1257 prot |= p2->flags;
1258 p2->flags &= ~PAGE_WRITE;
1259 }
1260 mprotect(g2h(page_addr), qemu_host_page_size,
1261 (prot & PAGE_BITS) & ~PAGE_WRITE);
1262 #ifdef DEBUG_TB_INVALIDATE
1263 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1264 page_addr);
1265 #endif
1266 }
1267 #else
1268 /* if some code is already present, then the pages are already
1269 protected. So we handle the case where only the first TB is
1270 allocated in a physical page */
1271 if (!page_already_protected) {
1272 tlb_protect_code(page_addr);
1273 }
1274 #endif
1275
1276 #endif /* TARGET_HAS_SMC */
1277 }
1278
1279 /* add a new TB and link it to the physical page tables. phys_page2 is
1280 (-1) to indicate that only one page contains the TB. */
1281 void tb_link_page(TranslationBlock *tb,
1282 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1283 {
1284 unsigned int h;
1285 TranslationBlock **ptb;
1286
1287 /* Grab the mmap lock to stop another thread invalidating this TB
1288 before we are done. */
1289 mmap_lock();
1290 /* add in the physical hash table */
1291 h = tb_phys_hash_func(phys_pc);
1292 ptb = &tb_phys_hash[h];
1293 tb->phys_hash_next = *ptb;
1294 *ptb = tb;
1295
1296 /* add in the page list */
1297 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1298 if (phys_page2 != -1)
1299 tb_alloc_page(tb, 1, phys_page2);
1300 else
1301 tb->page_addr[1] = -1;
1302
1303 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1304 tb->jmp_next[0] = NULL;
1305 tb->jmp_next[1] = NULL;
1306
1307 /* init original jump addresses */
1308 if (tb->tb_next_offset[0] != 0xffff)
1309 tb_reset_jump(tb, 0);
1310 if (tb->tb_next_offset[1] != 0xffff)
1311 tb_reset_jump(tb, 1);
1312
1313 #ifdef DEBUG_TB_CHECK
1314 tb_page_check();
1315 #endif
1316 mmap_unlock();
1317 }
1318
1319 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1320 tb[1].tc_ptr. Return NULL if not found */
1321 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1322 {
1323 int m_min, m_max, m;
1324 unsigned long v;
1325 TranslationBlock *tb;
1326
1327 if (nb_tbs <= 0)
1328 return NULL;
1329 if (tc_ptr < (unsigned long)code_gen_buffer ||
1330 tc_ptr >= (unsigned long)code_gen_ptr)
1331 return NULL;
1332 /* binary search (cf Knuth) */
1333 m_min = 0;
1334 m_max = nb_tbs - 1;
1335 while (m_min <= m_max) {
1336 m = (m_min + m_max) >> 1;
1337 tb = &tbs[m];
1338 v = (unsigned long)tb->tc_ptr;
1339 if (v == tc_ptr)
1340 return tb;
1341 else if (tc_ptr < v) {
1342 m_max = m - 1;
1343 } else {
1344 m_min = m + 1;
1345 }
1346 }
1347 return &tbs[m_max];
1348 }
1349
1350 static void tb_reset_jump_recursive(TranslationBlock *tb);
1351
1352 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1353 {
1354 TranslationBlock *tb1, *tb_next, **ptb;
1355 unsigned int n1;
1356
1357 tb1 = tb->jmp_next[n];
1358 if (tb1 != NULL) {
1359 /* find head of list */
1360 for(;;) {
1361 n1 = (long)tb1 & 3;
1362 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1363 if (n1 == 2)
1364 break;
1365 tb1 = tb1->jmp_next[n1];
1366 }
1367 /* we are now sure now that tb jumps to tb1 */
1368 tb_next = tb1;
1369
1370 /* remove tb from the jmp_first list */
1371 ptb = &tb_next->jmp_first;
1372 for(;;) {
1373 tb1 = *ptb;
1374 n1 = (long)tb1 & 3;
1375 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1376 if (n1 == n && tb1 == tb)
1377 break;
1378 ptb = &tb1->jmp_next[n1];
1379 }
1380 *ptb = tb->jmp_next[n];
1381 tb->jmp_next[n] = NULL;
1382
1383 /* suppress the jump to next tb in generated code */
1384 tb_reset_jump(tb, n);
1385
1386 /* suppress jumps in the tb on which we could have jumped */
1387 tb_reset_jump_recursive(tb_next);
1388 }
1389 }
1390
1391 static void tb_reset_jump_recursive(TranslationBlock *tb)
1392 {
1393 tb_reset_jump_recursive2(tb, 0);
1394 tb_reset_jump_recursive2(tb, 1);
1395 }
1396
1397 #if defined(TARGET_HAS_ICE)
1398 #if defined(CONFIG_USER_ONLY)
1399 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1400 {
1401 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1402 }
1403 #else
1404 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1405 {
1406 target_phys_addr_t addr;
1407 target_ulong pd;
1408 ram_addr_t ram_addr;
1409 PhysPageDesc *p;
1410
1411 addr = cpu_get_phys_page_debug(env, pc);
1412 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1413 if (!p) {
1414 pd = IO_MEM_UNASSIGNED;
1415 } else {
1416 pd = p->phys_offset;
1417 }
1418 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1419 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1420 }
1421 #endif
1422 #endif /* TARGET_HAS_ICE */
1423
1424 #if defined(CONFIG_USER_ONLY)
1425 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1426
1427 {
1428 }
1429
1430 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1431 int flags, CPUWatchpoint **watchpoint)
1432 {
1433 return -ENOSYS;
1434 }
1435 #else
1436 /* Add a watchpoint. */
1437 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags, CPUWatchpoint **watchpoint)
1439 {
1440 target_ulong len_mask = ~(len - 1);
1441 CPUWatchpoint *wp;
1442
1443 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1444 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1445 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1446 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1447 return -EINVAL;
1448 }
1449 wp = qemu_malloc(sizeof(*wp));
1450
1451 wp->vaddr = addr;
1452 wp->len_mask = len_mask;
1453 wp->flags = flags;
1454
1455 /* keep all GDB-injected watchpoints in front */
1456 if (flags & BP_GDB)
1457 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1458 else
1459 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1460
1461 tlb_flush_page(env, addr);
1462
1463 if (watchpoint)
1464 *watchpoint = wp;
1465 return 0;
1466 }
1467
1468 /* Remove a specific watchpoint. */
1469 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1470 int flags)
1471 {
1472 target_ulong len_mask = ~(len - 1);
1473 CPUWatchpoint *wp;
1474
1475 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1476 if (addr == wp->vaddr && len_mask == wp->len_mask
1477 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1478 cpu_watchpoint_remove_by_ref(env, wp);
1479 return 0;
1480 }
1481 }
1482 return -ENOENT;
1483 }
1484
1485 /* Remove a specific watchpoint by reference. */
1486 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1487 {
1488 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1489
1490 tlb_flush_page(env, watchpoint->vaddr);
1491
1492 qemu_free(watchpoint);
1493 }
1494
1495 /* Remove all matching watchpoints. */
1496 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1497 {
1498 CPUWatchpoint *wp, *next;
1499
1500 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1501 if (wp->flags & mask)
1502 cpu_watchpoint_remove_by_ref(env, wp);
1503 }
1504 }
1505 #endif
1506
1507 /* Add a breakpoint. */
1508 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1509 CPUBreakpoint **breakpoint)
1510 {
1511 #if defined(TARGET_HAS_ICE)
1512 CPUBreakpoint *bp;
1513
1514 bp = qemu_malloc(sizeof(*bp));
1515
1516 bp->pc = pc;
1517 bp->flags = flags;
1518
1519 /* keep all GDB-injected breakpoints in front */
1520 if (flags & BP_GDB)
1521 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1522 else
1523 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1524
1525 breakpoint_invalidate(env, pc);
1526
1527 if (breakpoint)
1528 *breakpoint = bp;
1529 return 0;
1530 #else
1531 return -ENOSYS;
1532 #endif
1533 }
1534
1535 /* Remove a specific breakpoint. */
1536 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1537 {
1538 #if defined(TARGET_HAS_ICE)
1539 CPUBreakpoint *bp;
1540
1541 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1542 if (bp->pc == pc && bp->flags == flags) {
1543 cpu_breakpoint_remove_by_ref(env, bp);
1544 return 0;
1545 }
1546 }
1547 return -ENOENT;
1548 #else
1549 return -ENOSYS;
1550 #endif
1551 }
1552
1553 /* Remove a specific breakpoint by reference. */
1554 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1555 {
1556 #if defined(TARGET_HAS_ICE)
1557 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1558
1559 breakpoint_invalidate(env, breakpoint->pc);
1560
1561 qemu_free(breakpoint);
1562 #endif
1563 }
1564
1565 /* Remove all matching breakpoints. */
1566 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1567 {
1568 #if defined(TARGET_HAS_ICE)
1569 CPUBreakpoint *bp, *next;
1570
1571 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1572 if (bp->flags & mask)
1573 cpu_breakpoint_remove_by_ref(env, bp);
1574 }
1575 #endif
1576 }
1577
1578 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1579 CPU loop after each instruction */
1580 void cpu_single_step(CPUState *env, int enabled)
1581 {
1582 #if defined(TARGET_HAS_ICE)
1583 if (env->singlestep_enabled != enabled) {
1584 env->singlestep_enabled = enabled;
1585 if (kvm_enabled())
1586 kvm_update_guest_debug(env, 0);
1587 else {
1588 /* must flush all the translated code to avoid inconsistencies */
1589 /* XXX: only flush what is necessary */
1590 tb_flush(env);
1591 }
1592 }
1593 #endif
1594 }
1595
1596 /* enable or disable low levels log */
1597 void cpu_set_log(int log_flags)
1598 {
1599 loglevel = log_flags;
1600 if (loglevel && !logfile) {
1601 logfile = fopen(logfilename, log_append ? "a" : "w");
1602 if (!logfile) {
1603 perror(logfilename);
1604 _exit(1);
1605 }
1606 #if !defined(CONFIG_SOFTMMU)
1607 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1608 {
1609 static char logfile_buf[4096];
1610 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1611 }
1612 #elif !defined(_WIN32)
1613 /* Win32 doesn't support line-buffering and requires size >= 2 */
1614 setvbuf(logfile, NULL, _IOLBF, 0);
1615 #endif
1616 log_append = 1;
1617 }
1618 if (!loglevel && logfile) {
1619 fclose(logfile);
1620 logfile = NULL;
1621 }
1622 }
1623
1624 void cpu_set_log_filename(const char *filename)
1625 {
1626 logfilename = strdup(filename);
1627 if (logfile) {
1628 fclose(logfile);
1629 logfile = NULL;
1630 }
1631 cpu_set_log(loglevel);
1632 }
1633
1634 static void cpu_unlink_tb(CPUState *env)
1635 {
1636 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1637 problem and hope the cpu will stop of its own accord. For userspace
1638 emulation this often isn't actually as bad as it sounds. Often
1639 signals are used primarily to interrupt blocking syscalls. */
1640 TranslationBlock *tb;
1641 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1642
1643 spin_lock(&interrupt_lock);
1644 tb = env->current_tb;
1645 /* if the cpu is currently executing code, we must unlink it and
1646 all the potentially executing TB */
1647 if (tb) {
1648 env->current_tb = NULL;
1649 tb_reset_jump_recursive(tb);
1650 }
1651 spin_unlock(&interrupt_lock);
1652 }
1653
1654 #ifndef CONFIG_USER_ONLY
1655 /* mask must never be zero, except for A20 change call */
1656 static void tcg_handle_interrupt(CPUState *env, int mask)
1657 {
1658 int old_mask;
1659
1660 old_mask = env->interrupt_request;
1661 env->interrupt_request |= mask;
1662
1663 /*
1664 * If called from iothread context, wake the target cpu in
1665 * case its halted.
1666 */
1667 if (!qemu_cpu_is_self(env)) {
1668 qemu_cpu_kick(env);
1669 return;
1670 }
1671
1672 if (use_icount) {
1673 env->icount_decr.u16.high = 0xffff;
1674 if (!can_do_io(env)
1675 && (mask & ~old_mask) != 0) {
1676 cpu_abort(env, "Raised interrupt while not in I/O function");
1677 }
1678 } else {
1679 cpu_unlink_tb(env);
1680 }
1681 }
1682
1683 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1684
1685 #else /* CONFIG_USER_ONLY */
1686
1687 void cpu_interrupt(CPUState *env, int mask)
1688 {
1689 env->interrupt_request |= mask;
1690 cpu_unlink_tb(env);
1691 }
1692 #endif /* CONFIG_USER_ONLY */
1693
1694 void cpu_reset_interrupt(CPUState *env, int mask)
1695 {
1696 env->interrupt_request &= ~mask;
1697 }
1698
1699 void cpu_exit(CPUState *env)
1700 {
1701 env->exit_request = 1;
1702 cpu_unlink_tb(env);
1703 }
1704
1705 const CPULogItem cpu_log_items[] = {
1706 { CPU_LOG_TB_OUT_ASM, "out_asm",
1707 "show generated host assembly code for each compiled TB" },
1708 { CPU_LOG_TB_IN_ASM, "in_asm",
1709 "show target assembly code for each compiled TB" },
1710 { CPU_LOG_TB_OP, "op",
1711 "show micro ops for each compiled TB" },
1712 { CPU_LOG_TB_OP_OPT, "op_opt",
1713 "show micro ops "
1714 #ifdef TARGET_I386
1715 "before eflags optimization and "
1716 #endif
1717 "after liveness analysis" },
1718 { CPU_LOG_INT, "int",
1719 "show interrupts/exceptions in short format" },
1720 { CPU_LOG_EXEC, "exec",
1721 "show trace before each executed TB (lots of logs)" },
1722 { CPU_LOG_TB_CPU, "cpu",
1723 "show CPU state before block translation" },
1724 #ifdef TARGET_I386
1725 { CPU_LOG_PCALL, "pcall",
1726 "show protected mode far calls/returns/exceptions" },
1727 { CPU_LOG_RESET, "cpu_reset",
1728 "show CPU state before CPU resets" },
1729 #endif
1730 #ifdef DEBUG_IOPORT
1731 { CPU_LOG_IOPORT, "ioport",
1732 "show all i/o ports accesses" },
1733 #endif
1734 { 0, NULL, NULL },
1735 };
1736
1737 #ifndef CONFIG_USER_ONLY
1738 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1739 = QLIST_HEAD_INITIALIZER(memory_client_list);
1740
1741 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1742 ram_addr_t size,
1743 ram_addr_t phys_offset,
1744 bool log_dirty)
1745 {
1746 CPUPhysMemoryClient *client;
1747 QLIST_FOREACH(client, &memory_client_list, list) {
1748 client->set_memory(client, start_addr, size, phys_offset, log_dirty);
1749 }
1750 }
1751
1752 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1753 target_phys_addr_t end)
1754 {
1755 CPUPhysMemoryClient *client;
1756 QLIST_FOREACH(client, &memory_client_list, list) {
1757 int r = client->sync_dirty_bitmap(client, start, end);
1758 if (r < 0)
1759 return r;
1760 }
1761 return 0;
1762 }
1763
1764 static int cpu_notify_migration_log(int enable)
1765 {
1766 CPUPhysMemoryClient *client;
1767 QLIST_FOREACH(client, &memory_client_list, list) {
1768 int r = client->migration_log(client, enable);
1769 if (r < 0)
1770 return r;
1771 }
1772 return 0;
1773 }
1774
1775 struct last_map {
1776 target_phys_addr_t start_addr;
1777 ram_addr_t size;
1778 ram_addr_t phys_offset;
1779 };
1780
1781 /* The l1_phys_map provides the upper P_L1_BITs of the guest physical
1782 * address. Each intermediate table provides the next L2_BITs of guest
1783 * physical address space. The number of levels vary based on host and
1784 * guest configuration, making it efficient to build the final guest
1785 * physical address by seeding the L1 offset and shifting and adding in
1786 * each L2 offset as we recurse through them. */
1787 static void phys_page_for_each_1(CPUPhysMemoryClient *client, int level,
1788 void **lp, target_phys_addr_t addr,
1789 struct last_map *map)
1790 {
1791 int i;
1792
1793 if (*lp == NULL) {
1794 return;
1795 }
1796 if (level == 0) {
1797 PhysPageDesc *pd = *lp;
1798 addr <<= L2_BITS + TARGET_PAGE_BITS;
1799 for (i = 0; i < L2_SIZE; ++i) {
1800 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1801 target_phys_addr_t start_addr = addr | i << TARGET_PAGE_BITS;
1802
1803 if (map->size &&
1804 start_addr == map->start_addr + map->size &&
1805 pd[i].phys_offset == map->phys_offset + map->size) {
1806
1807 map->size += TARGET_PAGE_SIZE;
1808 continue;
1809 } else if (map->size) {
1810 client->set_memory(client, map->start_addr,
1811 map->size, map->phys_offset, false);
1812 }
1813
1814 map->start_addr = start_addr;
1815 map->size = TARGET_PAGE_SIZE;
1816 map->phys_offset = pd[i].phys_offset;
1817 }
1818 }
1819 } else {
1820 void **pp = *lp;
1821 for (i = 0; i < L2_SIZE; ++i) {
1822 phys_page_for_each_1(client, level - 1, pp + i,
1823 (addr << L2_BITS) | i, map);
1824 }
1825 }
1826 }
1827
1828 static void phys_page_for_each(CPUPhysMemoryClient *client)
1829 {
1830 int i;
1831 struct last_map map = { };
1832
1833 for (i = 0; i < P_L1_SIZE; ++i) {
1834 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1835 l1_phys_map + i, i, &map);
1836 }
1837 if (map.size) {
1838 client->set_memory(client, map.start_addr, map.size, map.phys_offset,
1839 false);
1840 }
1841 }
1842
1843 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1844 {
1845 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1846 phys_page_for_each(client);
1847 }
1848
1849 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1850 {
1851 QLIST_REMOVE(client, list);
1852 }
1853 #endif
1854
1855 static int cmp1(const char *s1, int n, const char *s2)
1856 {
1857 if (strlen(s2) != n)
1858 return 0;
1859 return memcmp(s1, s2, n) == 0;
1860 }
1861
1862 /* takes a comma separated list of log masks. Return 0 if error. */
1863 int cpu_str_to_log_mask(const char *str)
1864 {
1865 const CPULogItem *item;
1866 int mask;
1867 const char *p, *p1;
1868
1869 p = str;
1870 mask = 0;
1871 for(;;) {
1872 p1 = strchr(p, ',');
1873 if (!p1)
1874 p1 = p + strlen(p);
1875 if(cmp1(p,p1-p,"all")) {
1876 for(item = cpu_log_items; item->mask != 0; item++) {
1877 mask |= item->mask;
1878 }
1879 } else {
1880 for(item = cpu_log_items; item->mask != 0; item++) {
1881 if (cmp1(p, p1 - p, item->name))
1882 goto found;
1883 }
1884 return 0;
1885 }
1886 found:
1887 mask |= item->mask;
1888 if (*p1 != ',')
1889 break;
1890 p = p1 + 1;
1891 }
1892 return mask;
1893 }
1894
1895 void cpu_abort(CPUState *env, const char *fmt, ...)
1896 {
1897 va_list ap;
1898 va_list ap2;
1899
1900 va_start(ap, fmt);
1901 va_copy(ap2, ap);
1902 fprintf(stderr, "qemu: fatal: ");
1903 vfprintf(stderr, fmt, ap);
1904 fprintf(stderr, "\n");
1905 #ifdef TARGET_I386
1906 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1907 #else
1908 cpu_dump_state(env, stderr, fprintf, 0);
1909 #endif
1910 if (qemu_log_enabled()) {
1911 qemu_log("qemu: fatal: ");
1912 qemu_log_vprintf(fmt, ap2);
1913 qemu_log("\n");
1914 #ifdef TARGET_I386
1915 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1916 #else
1917 log_cpu_state(env, 0);
1918 #endif
1919 qemu_log_flush();
1920 qemu_log_close();
1921 }
1922 va_end(ap2);
1923 va_end(ap);
1924 #if defined(CONFIG_USER_ONLY)
1925 {
1926 struct sigaction act;
1927 sigfillset(&act.sa_mask);
1928 act.sa_handler = SIG_DFL;
1929 sigaction(SIGABRT, &act, NULL);
1930 }
1931 #endif
1932 abort();
1933 }
1934
1935 CPUState *cpu_copy(CPUState *env)
1936 {
1937 CPUState *new_env = cpu_init(env->cpu_model_str);
1938 CPUState *next_cpu = new_env->next_cpu;
1939 int cpu_index = new_env->cpu_index;
1940 #if defined(TARGET_HAS_ICE)
1941 CPUBreakpoint *bp;
1942 CPUWatchpoint *wp;
1943 #endif
1944
1945 memcpy(new_env, env, sizeof(CPUState));
1946
1947 /* Preserve chaining and index. */
1948 new_env->next_cpu = next_cpu;
1949 new_env->cpu_index = cpu_index;
1950
1951 /* Clone all break/watchpoints.
1952 Note: Once we support ptrace with hw-debug register access, make sure
1953 BP_CPU break/watchpoints are handled correctly on clone. */
1954 QTAILQ_INIT(&env->breakpoints);
1955 QTAILQ_INIT(&env->watchpoints);
1956 #if defined(TARGET_HAS_ICE)
1957 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1958 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1959 }
1960 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1961 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1962 wp->flags, NULL);
1963 }
1964 #endif
1965
1966 return new_env;
1967 }
1968
1969 #if !defined(CONFIG_USER_ONLY)
1970
1971 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1972 {
1973 unsigned int i;
1974
1975 /* Discard jump cache entries for any tb which might potentially
1976 overlap the flushed page. */
1977 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1978 memset (&env->tb_jmp_cache[i], 0,
1979 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1980
1981 i = tb_jmp_cache_hash_page(addr);
1982 memset (&env->tb_jmp_cache[i], 0,
1983 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1984 }
1985
1986 static CPUTLBEntry s_cputlb_empty_entry = {
1987 .addr_read = -1,
1988 .addr_write = -1,
1989 .addr_code = -1,
1990 .addend = -1,
1991 };
1992
1993 /* NOTE: if flush_global is true, also flush global entries (not
1994 implemented yet) */
1995 void tlb_flush(CPUState *env, int flush_global)
1996 {
1997 int i;
1998
1999 #if defined(DEBUG_TLB)
2000 printf("tlb_flush:\n");
2001 #endif
2002 /* must reset current TB so that interrupts cannot modify the
2003 links while we are modifying them */
2004 env->current_tb = NULL;
2005
2006 for(i = 0; i < CPU_TLB_SIZE; i++) {
2007 int mmu_idx;
2008 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2009 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
2010 }
2011 }
2012
2013 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
2014
2015 env->tlb_flush_addr = -1;
2016 env->tlb_flush_mask = 0;
2017 tlb_flush_count++;
2018 }
2019
2020 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
2021 {
2022 if (addr == (tlb_entry->addr_read &
2023 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2024 addr == (tlb_entry->addr_write &
2025 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
2026 addr == (tlb_entry->addr_code &
2027 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
2028 *tlb_entry = s_cputlb_empty_entry;
2029 }
2030 }
2031
2032 void tlb_flush_page(CPUState *env, target_ulong addr)
2033 {
2034 int i;
2035 int mmu_idx;
2036
2037 #if defined(DEBUG_TLB)
2038 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
2039 #endif
2040 /* Check if we need to flush due to large pages. */
2041 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2042 #if defined(DEBUG_TLB)
2043 printf("tlb_flush_page: forced full flush ("
2044 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2045 env->tlb_flush_addr, env->tlb_flush_mask);
2046 #endif
2047 tlb_flush(env, 1);
2048 return;
2049 }
2050 /* must reset current TB so that interrupts cannot modify the
2051 links while we are modifying them */
2052 env->current_tb = NULL;
2053
2054 addr &= TARGET_PAGE_MASK;
2055 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2056 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2057 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2058
2059 tlb_flush_jmp_cache(env, addr);
2060 }
2061
2062 /* update the TLBs so that writes to code in the virtual page 'addr'
2063 can be detected */
2064 static void tlb_protect_code(ram_addr_t ram_addr)
2065 {
2066 cpu_physical_memory_reset_dirty(ram_addr,
2067 ram_addr + TARGET_PAGE_SIZE,
2068 CODE_DIRTY_FLAG);
2069 }
2070
2071 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2072 tested for self modifying code */
2073 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2074 target_ulong vaddr)
2075 {
2076 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2077 }
2078
2079 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2080 unsigned long start, unsigned long length)
2081 {
2082 unsigned long addr;
2083 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2084 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2085 if ((addr - start) < length) {
2086 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2087 }
2088 }
2089 }
2090
2091 /* Note: start and end must be within the same ram block. */
2092 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2093 int dirty_flags)
2094 {
2095 CPUState *env;
2096 unsigned long length, start1;
2097 int i;
2098
2099 start &= TARGET_PAGE_MASK;
2100 end = TARGET_PAGE_ALIGN(end);
2101
2102 length = end - start;
2103 if (length == 0)
2104 return;
2105 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2106
2107 /* we modify the TLB cache so that the dirty bit will be set again
2108 when accessing the range */
2109 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2110 /* Check that we don't span multiple blocks - this breaks the
2111 address comparisons below. */
2112 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2113 != (end - 1) - start) {
2114 abort();
2115 }
2116
2117 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2118 int mmu_idx;
2119 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2120 for(i = 0; i < CPU_TLB_SIZE; i++)
2121 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2122 start1, length);
2123 }
2124 }
2125 }
2126
2127 int cpu_physical_memory_set_dirty_tracking(int enable)
2128 {
2129 int ret = 0;
2130 in_migration = enable;
2131 ret = cpu_notify_migration_log(!!enable);
2132 return ret;
2133 }
2134
2135 int cpu_physical_memory_get_dirty_tracking(void)
2136 {
2137 return in_migration;
2138 }
2139
2140 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2141 target_phys_addr_t end_addr)
2142 {
2143 int ret;
2144
2145 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2146 return ret;
2147 }
2148
2149 int cpu_physical_log_start(target_phys_addr_t start_addr,
2150 ram_addr_t size)
2151 {
2152 CPUPhysMemoryClient *client;
2153 QLIST_FOREACH(client, &memory_client_list, list) {
2154 if (client->log_start) {
2155 int r = client->log_start(client, start_addr, size);
2156 if (r < 0) {
2157 return r;
2158 }
2159 }
2160 }
2161 return 0;
2162 }
2163
2164 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2165 ram_addr_t size)
2166 {
2167 CPUPhysMemoryClient *client;
2168 QLIST_FOREACH(client, &memory_client_list, list) {
2169 if (client->log_stop) {
2170 int r = client->log_stop(client, start_addr, size);
2171 if (r < 0) {
2172 return r;
2173 }
2174 }
2175 }
2176 return 0;
2177 }
2178
2179 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2180 {
2181 ram_addr_t ram_addr;
2182 void *p;
2183
2184 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2185 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2186 + tlb_entry->addend);
2187 ram_addr = qemu_ram_addr_from_host_nofail(p);
2188 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2189 tlb_entry->addr_write |= TLB_NOTDIRTY;
2190 }
2191 }
2192 }
2193
2194 /* update the TLB according to the current state of the dirty bits */
2195 void cpu_tlb_update_dirty(CPUState *env)
2196 {
2197 int i;
2198 int mmu_idx;
2199 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2200 for(i = 0; i < CPU_TLB_SIZE; i++)
2201 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2202 }
2203 }
2204
2205 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2206 {
2207 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2208 tlb_entry->addr_write = vaddr;
2209 }
2210
2211 /* update the TLB corresponding to virtual page vaddr
2212 so that it is no longer dirty */
2213 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2214 {
2215 int i;
2216 int mmu_idx;
2217
2218 vaddr &= TARGET_PAGE_MASK;
2219 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2220 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2221 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2222 }
2223
2224 /* Our TLB does not support large pages, so remember the area covered by
2225 large pages and trigger a full TLB flush if these are invalidated. */
2226 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2227 target_ulong size)
2228 {
2229 target_ulong mask = ~(size - 1);
2230
2231 if (env->tlb_flush_addr == (target_ulong)-1) {
2232 env->tlb_flush_addr = vaddr & mask;
2233 env->tlb_flush_mask = mask;
2234 return;
2235 }
2236 /* Extend the existing region to include the new page.
2237 This is a compromise between unnecessary flushes and the cost
2238 of maintaining a full variable size TLB. */
2239 mask &= env->tlb_flush_mask;
2240 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2241 mask <<= 1;
2242 }
2243 env->tlb_flush_addr &= mask;
2244 env->tlb_flush_mask = mask;
2245 }
2246
2247 /* Add a new TLB entry. At most one entry for a given virtual address
2248 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2249 supplied size is only used by tlb_flush_page. */
2250 void tlb_set_page(CPUState *env, target_ulong vaddr,
2251 target_phys_addr_t paddr, int prot,
2252 int mmu_idx, target_ulong size)
2253 {
2254 PhysPageDesc *p;
2255 unsigned long pd;
2256 unsigned int index;
2257 target_ulong address;
2258 target_ulong code_address;
2259 unsigned long addend;
2260 CPUTLBEntry *te;
2261 CPUWatchpoint *wp;
2262 target_phys_addr_t iotlb;
2263
2264 assert(size >= TARGET_PAGE_SIZE);
2265 if (size != TARGET_PAGE_SIZE) {
2266 tlb_add_large_page(env, vaddr, size);
2267 }
2268 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2269 if (!p) {
2270 pd = IO_MEM_UNASSIGNED;
2271 } else {
2272 pd = p->phys_offset;
2273 }
2274 #if defined(DEBUG_TLB)
2275 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2276 " prot=%x idx=%d pd=0x%08lx\n",
2277 vaddr, paddr, prot, mmu_idx, pd);
2278 #endif
2279
2280 address = vaddr;
2281 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2282 /* IO memory case (romd handled later) */
2283 address |= TLB_MMIO;
2284 }
2285 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2286 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2287 /* Normal RAM. */
2288 iotlb = pd & TARGET_PAGE_MASK;
2289 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2290 iotlb |= IO_MEM_NOTDIRTY;
2291 else
2292 iotlb |= IO_MEM_ROM;
2293 } else {
2294 /* IO handlers are currently passed a physical address.
2295 It would be nice to pass an offset from the base address
2296 of that region. This would avoid having to special case RAM,
2297 and avoid full address decoding in every device.
2298 We can't use the high bits of pd for this because
2299 IO_MEM_ROMD uses these as a ram address. */
2300 iotlb = (pd & ~TARGET_PAGE_MASK);
2301 if (p) {
2302 iotlb += p->region_offset;
2303 } else {
2304 iotlb += paddr;
2305 }
2306 }
2307
2308 code_address = address;
2309 /* Make accesses to pages with watchpoints go via the
2310 watchpoint trap routines. */
2311 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2312 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2313 /* Avoid trapping reads of pages with a write breakpoint. */
2314 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2315 iotlb = io_mem_watch + paddr;
2316 address |= TLB_MMIO;
2317 break;
2318 }
2319 }
2320 }
2321
2322 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2323 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2324 te = &env->tlb_table[mmu_idx][index];
2325 te->addend = addend - vaddr;
2326 if (prot & PAGE_READ) {
2327 te->addr_read = address;
2328 } else {
2329 te->addr_read = -1;
2330 }
2331
2332 if (prot & PAGE_EXEC) {
2333 te->addr_code = code_address;
2334 } else {
2335 te->addr_code = -1;
2336 }
2337 if (prot & PAGE_WRITE) {
2338 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2339 (pd & IO_MEM_ROMD)) {
2340 /* Write access calls the I/O callback. */
2341 te->addr_write = address | TLB_MMIO;
2342 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2343 !cpu_physical_memory_is_dirty(pd)) {
2344 te->addr_write = address | TLB_NOTDIRTY;
2345 } else {
2346 te->addr_write = address;
2347 }
2348 } else {
2349 te->addr_write = -1;
2350 }
2351 }
2352
2353 #else
2354
2355 void tlb_flush(CPUState *env, int flush_global)
2356 {
2357 }
2358
2359 void tlb_flush_page(CPUState *env, target_ulong addr)
2360 {
2361 }
2362
2363 /*
2364 * Walks guest process memory "regions" one by one
2365 * and calls callback function 'fn' for each region.
2366 */
2367
2368 struct walk_memory_regions_data
2369 {
2370 walk_memory_regions_fn fn;
2371 void *priv;
2372 unsigned long start;
2373 int prot;
2374 };
2375
2376 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2377 abi_ulong end, int new_prot)
2378 {
2379 if (data->start != -1ul) {
2380 int rc = data->fn(data->priv, data->start, end, data->prot);
2381 if (rc != 0) {
2382 return rc;
2383 }
2384 }
2385
2386 data->start = (new_prot ? end : -1ul);
2387 data->prot = new_prot;
2388
2389 return 0;
2390 }
2391
2392 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2393 abi_ulong base, int level, void **lp)
2394 {
2395 abi_ulong pa;
2396 int i, rc;
2397
2398 if (*lp == NULL) {
2399 return walk_memory_regions_end(data, base, 0);
2400 }
2401
2402 if (level == 0) {
2403 PageDesc *pd = *lp;
2404 for (i = 0; i < L2_SIZE; ++i) {
2405 int prot = pd[i].flags;
2406
2407 pa = base | (i << TARGET_PAGE_BITS);
2408 if (prot != data->prot) {
2409 rc = walk_memory_regions_end(data, pa, prot);
2410 if (rc != 0) {
2411 return rc;
2412 }
2413 }
2414 }
2415 } else {
2416 void **pp = *lp;
2417 for (i = 0; i < L2_SIZE; ++i) {
2418 pa = base | ((abi_ulong)i <<
2419 (TARGET_PAGE_BITS + L2_BITS * level));
2420 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2421 if (rc != 0) {
2422 return rc;
2423 }
2424 }
2425 }
2426
2427 return 0;
2428 }
2429
2430 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2431 {
2432 struct walk_memory_regions_data data;
2433 unsigned long i;
2434
2435 data.fn = fn;
2436 data.priv = priv;
2437 data.start = -1ul;
2438 data.prot = 0;
2439
2440 for (i = 0; i < V_L1_SIZE; i++) {
2441 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2442 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2443 if (rc != 0) {
2444 return rc;
2445 }
2446 }
2447
2448 return walk_memory_regions_end(&data, 0, 0);
2449 }
2450
2451 static int dump_region(void *priv, abi_ulong start,
2452 abi_ulong end, unsigned long prot)
2453 {
2454 FILE *f = (FILE *)priv;
2455
2456 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2457 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2458 start, end, end - start,
2459 ((prot & PAGE_READ) ? 'r' : '-'),
2460 ((prot & PAGE_WRITE) ? 'w' : '-'),
2461 ((prot & PAGE_EXEC) ? 'x' : '-'));
2462
2463 return (0);
2464 }
2465
2466 /* dump memory mappings */
2467 void page_dump(FILE *f)
2468 {
2469 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2470 "start", "end", "size", "prot");
2471 walk_memory_regions(f, dump_region);
2472 }
2473
2474 int page_get_flags(target_ulong address)
2475 {
2476 PageDesc *p;
2477
2478 p = page_find(address >> TARGET_PAGE_BITS);
2479 if (!p)
2480 return 0;
2481 return p->flags;
2482 }
2483
2484 /* Modify the flags of a page and invalidate the code if necessary.
2485 The flag PAGE_WRITE_ORG is positioned automatically depending
2486 on PAGE_WRITE. The mmap_lock should already be held. */
2487 void page_set_flags(target_ulong start, target_ulong end, int flags)
2488 {
2489 target_ulong addr, len;
2490
2491 /* This function should never be called with addresses outside the
2492 guest address space. If this assert fires, it probably indicates
2493 a missing call to h2g_valid. */
2494 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2495 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2496 #endif
2497 assert(start < end);
2498
2499 start = start & TARGET_PAGE_MASK;
2500 end = TARGET_PAGE_ALIGN(end);
2501
2502 if (flags & PAGE_WRITE) {
2503 flags |= PAGE_WRITE_ORG;
2504 }
2505
2506 for (addr = start, len = end - start;
2507 len != 0;
2508 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2509 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2510
2511 /* If the write protection bit is set, then we invalidate
2512 the code inside. */
2513 if (!(p->flags & PAGE_WRITE) &&
2514 (flags & PAGE_WRITE) &&
2515 p->first_tb) {
2516 tb_invalidate_phys_page(addr, 0, NULL);
2517 }
2518 p->flags = flags;
2519 }
2520 }
2521
2522 int page_check_range(target_ulong start, target_ulong len, int flags)
2523 {
2524 PageDesc *p;
2525 target_ulong end;
2526 target_ulong addr;
2527
2528 /* This function should never be called with addresses outside the
2529 guest address space. If this assert fires, it probably indicates
2530 a missing call to h2g_valid. */
2531 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2532 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2533 #endif
2534
2535 if (len == 0) {
2536 return 0;
2537 }
2538 if (start + len - 1 < start) {
2539 /* We've wrapped around. */
2540 return -1;
2541 }
2542
2543 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2544 start = start & TARGET_PAGE_MASK;
2545
2546 for (addr = start, len = end - start;
2547 len != 0;
2548 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2549 p = page_find(addr >> TARGET_PAGE_BITS);
2550 if( !p )
2551 return -1;
2552 if( !(p->flags & PAGE_VALID) )
2553 return -1;
2554
2555 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2556 return -1;
2557 if (flags & PAGE_WRITE) {
2558 if (!(p->flags & PAGE_WRITE_ORG))
2559 return -1;
2560 /* unprotect the page if it was put read-only because it
2561 contains translated code */
2562 if (!(p->flags & PAGE_WRITE)) {
2563 if (!page_unprotect(addr, 0, NULL))
2564 return -1;
2565 }
2566 return 0;
2567 }
2568 }
2569 return 0;
2570 }
2571
2572 /* called from signal handler: invalidate the code and unprotect the
2573 page. Return TRUE if the fault was successfully handled. */
2574 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2575 {
2576 unsigned int prot;
2577 PageDesc *p;
2578 target_ulong host_start, host_end, addr;
2579
2580 /* Technically this isn't safe inside a signal handler. However we
2581 know this only ever happens in a synchronous SEGV handler, so in
2582 practice it seems to be ok. */
2583 mmap_lock();
2584
2585 p = page_find(address >> TARGET_PAGE_BITS);
2586 if (!p) {
2587 mmap_unlock();
2588 return 0;
2589 }
2590
2591 /* if the page was really writable, then we change its
2592 protection back to writable */
2593 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2594 host_start = address & qemu_host_page_mask;
2595 host_end = host_start + qemu_host_page_size;
2596
2597 prot = 0;
2598 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2599 p = page_find(addr >> TARGET_PAGE_BITS);
2600 p->flags |= PAGE_WRITE;
2601 prot |= p->flags;
2602
2603 /* and since the content will be modified, we must invalidate
2604 the corresponding translated code. */
2605 tb_invalidate_phys_page(addr, pc, puc);
2606 #ifdef DEBUG_TB_CHECK
2607 tb_invalidate_check(addr);
2608 #endif
2609 }
2610 mprotect((void *)g2h(host_start), qemu_host_page_size,
2611 prot & PAGE_BITS);
2612
2613 mmap_unlock();
2614 return 1;
2615 }
2616 mmap_unlock();
2617 return 0;
2618 }
2619
2620 static inline void tlb_set_dirty(CPUState *env,
2621 unsigned long addr, target_ulong vaddr)
2622 {
2623 }
2624 #endif /* defined(CONFIG_USER_ONLY) */
2625
2626 #if !defined(CONFIG_USER_ONLY)
2627
2628 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2629 typedef struct subpage_t {
2630 target_phys_addr_t base;
2631 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2632 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2633 } subpage_t;
2634
2635 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2636 ram_addr_t memory, ram_addr_t region_offset);
2637 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2638 ram_addr_t orig_memory,
2639 ram_addr_t region_offset);
2640 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2641 need_subpage) \
2642 do { \
2643 if (addr > start_addr) \
2644 start_addr2 = 0; \
2645 else { \
2646 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2647 if (start_addr2 > 0) \
2648 need_subpage = 1; \
2649 } \
2650 \
2651 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2652 end_addr2 = TARGET_PAGE_SIZE - 1; \
2653 else { \
2654 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2655 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2656 need_subpage = 1; \
2657 } \
2658 } while (0)
2659
2660 /* register physical memory.
2661 For RAM, 'size' must be a multiple of the target page size.
2662 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2663 io memory page. The address used when calling the IO function is
2664 the offset from the start of the region, plus region_offset. Both
2665 start_addr and region_offset are rounded down to a page boundary
2666 before calculating this offset. This should not be a problem unless
2667 the low bits of start_addr and region_offset differ. */
2668 void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
2669 ram_addr_t size,
2670 ram_addr_t phys_offset,
2671 ram_addr_t region_offset,
2672 bool log_dirty)
2673 {
2674 target_phys_addr_t addr, end_addr;
2675 PhysPageDesc *p;
2676 CPUState *env;
2677 ram_addr_t orig_size = size;
2678 subpage_t *subpage;
2679
2680 assert(size);
2681 cpu_notify_set_memory(start_addr, size, phys_offset, log_dirty);
2682
2683 if (phys_offset == IO_MEM_UNASSIGNED) {
2684 region_offset = start_addr;
2685 }
2686 region_offset &= TARGET_PAGE_MASK;
2687 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2688 end_addr = start_addr + (target_phys_addr_t)size;
2689
2690 addr = start_addr;
2691 do {
2692 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2693 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2694 ram_addr_t orig_memory = p->phys_offset;
2695 target_phys_addr_t start_addr2, end_addr2;
2696 int need_subpage = 0;
2697
2698 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2699 need_subpage);
2700 if (need_subpage) {
2701 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2702 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2703 &p->phys_offset, orig_memory,
2704 p->region_offset);
2705 } else {
2706 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2707 >> IO_MEM_SHIFT];
2708 }
2709 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2710 region_offset);
2711 p->region_offset = 0;
2712 } else {
2713 p->phys_offset = phys_offset;
2714 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2715 (phys_offset & IO_MEM_ROMD))
2716 phys_offset += TARGET_PAGE_SIZE;
2717 }
2718 } else {
2719 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2720 p->phys_offset = phys_offset;
2721 p->region_offset = region_offset;
2722 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2723 (phys_offset & IO_MEM_ROMD)) {
2724 phys_offset += TARGET_PAGE_SIZE;
2725 } else {
2726 target_phys_addr_t start_addr2, end_addr2;
2727 int need_subpage = 0;
2728
2729 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2730 end_addr2, need_subpage);
2731
2732 if (need_subpage) {
2733 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2734 &p->phys_offset, IO_MEM_UNASSIGNED,
2735 addr & TARGET_PAGE_MASK);
2736 subpage_register(subpage, start_addr2, end_addr2,
2737 phys_offset, region_offset);
2738 p->region_offset = 0;
2739 }
2740 }
2741 }
2742 region_offset += TARGET_PAGE_SIZE;
2743 addr += TARGET_PAGE_SIZE;
2744 } while (addr != end_addr);
2745
2746 /* since each CPU stores ram addresses in its TLB cache, we must
2747 reset the modified entries */
2748 /* XXX: slow ! */
2749 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2750 tlb_flush(env, 1);
2751 }
2752 }
2753
2754 /* XXX: temporary until new memory mapping API */
2755 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2756 {
2757 PhysPageDesc *p;
2758
2759 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2760 if (!p)
2761 return IO_MEM_UNASSIGNED;
2762 return p->phys_offset;
2763 }
2764
2765 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2766 {
2767 if (kvm_enabled())
2768 kvm_coalesce_mmio_region(addr, size);
2769 }
2770
2771 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2772 {
2773 if (kvm_enabled())
2774 kvm_uncoalesce_mmio_region(addr, size);
2775 }
2776
2777 void qemu_flush_coalesced_mmio_buffer(void)
2778 {
2779 if (kvm_enabled())
2780 kvm_flush_coalesced_mmio_buffer();
2781 }
2782
2783 #if defined(__linux__) && !defined(TARGET_S390X)
2784
2785 #include <sys/vfs.h>
2786
2787 #define HUGETLBFS_MAGIC 0x958458f6
2788
2789 static long gethugepagesize(const char *path)
2790 {
2791 struct statfs fs;
2792 int ret;
2793
2794 do {
2795 ret = statfs(path, &fs);
2796 } while (ret != 0 && errno == EINTR);
2797
2798 if (ret != 0) {
2799 perror(path);
2800 return 0;
2801 }
2802
2803 if (fs.f_type != HUGETLBFS_MAGIC)
2804 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2805
2806 return fs.f_bsize;
2807 }
2808
2809 static void *file_ram_alloc(RAMBlock *block,
2810 ram_addr_t memory,
2811 const char *path)
2812 {
2813 char *filename;
2814 void *area;
2815 int fd;
2816 #ifdef MAP_POPULATE
2817 int flags;
2818 #endif
2819 unsigned long hpagesize;
2820
2821 hpagesize = gethugepagesize(path);
2822 if (!hpagesize) {
2823 return NULL;
2824 }
2825
2826 if (memory < hpagesize) {
2827 return NULL;
2828 }
2829
2830 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2831 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2832 return NULL;
2833 }
2834
2835 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2836 return NULL;
2837 }
2838
2839 fd = mkstemp(filename);
2840 if (fd < 0) {
2841 perror("unable to create backing store for hugepages");
2842 free(filename);
2843 return NULL;
2844 }
2845 unlink(filename);
2846 free(filename);
2847
2848 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2849
2850 /*
2851 * ftruncate is not supported by hugetlbfs in older
2852 * hosts, so don't bother bailing out on errors.
2853 * If anything goes wrong with it under other filesystems,
2854 * mmap will fail.
2855 */
2856 if (ftruncate(fd, memory))
2857 perror("ftruncate");
2858
2859 #ifdef MAP_POPULATE
2860 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2861 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2862 * to sidestep this quirk.
2863 */
2864 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2865 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2866 #else
2867 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2868 #endif
2869 if (area == MAP_FAILED) {
2870 perror("file_ram_alloc: can't mmap RAM pages");
2871 close(fd);
2872 return (NULL);
2873 }
2874 block->fd = fd;
2875 return area;
2876 }
2877 #endif
2878
2879 static ram_addr_t find_ram_offset(ram_addr_t size)
2880 {
2881 RAMBlock *block, *next_block;
2882 ram_addr_t offset = 0, mingap = RAM_ADDR_MAX;
2883
2884 if (QLIST_EMPTY(&ram_list.blocks))
2885 return 0;
2886
2887 QLIST_FOREACH(block, &ram_list.blocks, next) {
2888 ram_addr_t end, next = RAM_ADDR_MAX;
2889
2890 end = block->offset + block->length;
2891
2892 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2893 if (next_block->offset >= end) {
2894 next = MIN(next, next_block->offset);
2895 }
2896 }
2897 if (next - end >= size && next - end < mingap) {
2898 offset = end;
2899 mingap = next - end;
2900 }
2901 }
2902 return offset;
2903 }
2904
2905 static ram_addr_t last_ram_offset(void)
2906 {
2907 RAMBlock *block;
2908 ram_addr_t last = 0;
2909
2910 QLIST_FOREACH(block, &ram_list.blocks, next)
2911 last = MAX(last, block->offset + block->length);
2912
2913 return last;
2914 }
2915
2916 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2917 ram_addr_t size, void *host)
2918 {
2919 RAMBlock *new_block, *block;
2920
2921 size = TARGET_PAGE_ALIGN(size);
2922 new_block = qemu_mallocz(sizeof(*new_block));
2923
2924 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2925 char *id = dev->parent_bus->info->get_dev_path(dev);
2926 if (id) {
2927 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2928 qemu_free(id);
2929 }
2930 }
2931 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2932
2933 QLIST_FOREACH(block, &ram_list.blocks, next) {
2934 if (!strcmp(block->idstr, new_block->idstr)) {
2935 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2936 new_block->idstr);
2937 abort();
2938 }
2939 }
2940
2941 new_block->offset = find_ram_offset(size);
2942 if (host) {
2943 new_block->host = host;
2944 new_block->flags |= RAM_PREALLOC_MASK;
2945 } else {
2946 if (mem_path) {
2947 #if defined (__linux__) && !defined(TARGET_S390X)
2948 new_block->host = file_ram_alloc(new_block, size, mem_path);
2949 if (!new_block->host) {
2950 new_block->host = qemu_vmalloc(size);
2951 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2952 }
2953 #else
2954 fprintf(stderr, "-mem-path option unsupported\n");
2955 exit(1);
2956 #endif
2957 } else {
2958 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2959 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2960 an system defined value, which is at least 256GB. Larger systems
2961 have larger values. We put the guest between the end of data
2962 segment (system break) and this value. We use 32GB as a base to
2963 have enough room for the system break to grow. */
2964 new_block->host = mmap((void*)0x800000000, size,
2965 PROT_EXEC|PROT_READ|PROT_WRITE,
2966 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2967 if (new_block->host == MAP_FAILED) {
2968 fprintf(stderr, "Allocating RAM failed\n");
2969 abort();
2970 }
2971 #else
2972 if (xen_enabled()) {
2973 xen_ram_alloc(new_block->offset, size);
2974 } else {
2975 new_block->host = qemu_vmalloc(size);
2976 }
2977 #endif
2978 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2979 }
2980 }
2981 new_block->length = size;
2982
2983 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2984
2985 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2986 last_ram_offset() >> TARGET_PAGE_BITS);
2987 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2988 0xff, size >> TARGET_PAGE_BITS);
2989
2990 if (kvm_enabled())
2991 kvm_setup_guest_memory(new_block->host, size);
2992
2993 return new_block->offset;
2994 }
2995
2996 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2997 {
2998 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2999 }
3000
3001 void qemu_ram_free_from_ptr(ram_addr_t addr)
3002 {
3003 RAMBlock *block;
3004
3005 QLIST_FOREACH(block, &ram_list.blocks, next) {
3006 if (addr == block->offset) {
3007 QLIST_REMOVE(block, next);
3008 qemu_free(block);
3009 return;
3010 }
3011 }
3012 }
3013
3014 void qemu_ram_free(ram_addr_t addr)
3015 {
3016 RAMBlock *block;
3017
3018 QLIST_FOREACH(block, &ram_list.blocks, next) {
3019 if (addr == block->offset) {
3020 QLIST_REMOVE(block, next);
3021 if (block->flags & RAM_PREALLOC_MASK) {
3022 ;
3023 } else if (mem_path) {
3024 #if defined (__linux__) && !defined(TARGET_S390X)
3025 if (block->fd) {
3026 munmap(block->host, block->length);
3027 close(block->fd);
3028 } else {
3029 qemu_vfree(block->host);
3030 }
3031 #else
3032 abort();
3033 #endif
3034 } else {
3035 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3036 munmap(block->host, block->length);
3037 #else
3038 if (xen_enabled()) {
3039 xen_invalidate_map_cache_entry(block->host);
3040 } else {
3041 qemu_vfree(block->host);
3042 }
3043 #endif
3044 }
3045 qemu_free(block);
3046 return;
3047 }
3048 }
3049
3050 }
3051
3052 #ifndef _WIN32
3053 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3054 {
3055 RAMBlock *block;
3056 ram_addr_t offset;
3057 int flags;
3058 void *area, *vaddr;
3059
3060 QLIST_FOREACH(block, &ram_list.blocks, next) {
3061 offset = addr - block->offset;
3062 if (offset < block->length) {
3063 vaddr = block->host + offset;
3064 if (block->flags & RAM_PREALLOC_MASK) {
3065 ;
3066 } else {
3067 flags = MAP_FIXED;
3068 munmap(vaddr, length);
3069 if (mem_path) {
3070 #if defined(__linux__) && !defined(TARGET_S390X)
3071 if (block->fd) {
3072 #ifdef MAP_POPULATE
3073 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3074 MAP_PRIVATE;
3075 #else
3076 flags |= MAP_PRIVATE;
3077 #endif
3078 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3079 flags, block->fd, offset);
3080 } else {
3081 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3082 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3083 flags, -1, 0);
3084 }
3085 #else
3086 abort();
3087 #endif
3088 } else {
3089 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3090 flags |= MAP_SHARED | MAP_ANONYMOUS;
3091 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3092 flags, -1, 0);
3093 #else
3094 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3095 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3096 flags, -1, 0);
3097 #endif
3098 }
3099 if (area != vaddr) {
3100 fprintf(stderr, "Could not remap addr: "
3101 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3102 length, addr);
3103 exit(1);
3104 }
3105 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3106 }
3107 return;
3108 }
3109 }
3110 }
3111 #endif /* !_WIN32 */
3112
3113 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3114 With the exception of the softmmu code in this file, this should
3115 only be used for local memory (e.g. video ram) that the device owns,
3116 and knows it isn't going to access beyond the end of the block.
3117
3118 It should not be used for general purpose DMA.
3119 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3120 */
3121 void *qemu_get_ram_ptr(ram_addr_t addr)
3122 {
3123 RAMBlock *block;
3124
3125 QLIST_FOREACH(block, &ram_list.blocks, next) {
3126 if (addr - block->offset < block->length) {
3127 /* Move this entry to to start of the list. */
3128 if (block != QLIST_FIRST(&ram_list.blocks)) {
3129 QLIST_REMOVE(block, next);
3130 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3131 }
3132 if (xen_enabled()) {
3133 /* We need to check if the requested address is in the RAM
3134 * because we don't want to map the entire memory in QEMU.
3135 * In that case just map until the end of the page.
3136 */
3137 if (block->offset == 0) {
3138 return xen_map_cache(addr, 0, 0);
3139 } else if (block->host == NULL) {
3140 block->host =
3141 xen_map_cache(block->offset, block->length, 1);
3142 }
3143 }
3144 return block->host + (addr - block->offset);
3145 }
3146 }
3147
3148 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3149 abort();
3150
3151 return NULL;
3152 }
3153
3154 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3155 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3156 */
3157 void *qemu_safe_ram_ptr(ram_addr_t addr)
3158 {
3159 RAMBlock *block;
3160
3161 QLIST_FOREACH(block, &ram_list.blocks, next) {
3162 if (addr - block->offset < block->length) {
3163 if (xen_enabled()) {
3164 /* We need to check if the requested address is in the RAM
3165 * because we don't want to map the entire memory in QEMU.
3166 * In that case just map until the end of the page.
3167 */
3168 if (block->offset == 0) {
3169 return xen_map_cache(addr, 0, 0);
3170 } else if (block->host == NULL) {
3171 block->host =
3172 xen_map_cache(block->offset, block->length, 1);
3173 }
3174 }
3175 return block->host + (addr - block->offset);
3176 }
3177 }
3178
3179 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3180 abort();
3181
3182 return NULL;
3183 }
3184
3185 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3186 * but takes a size argument */
3187 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3188 {
3189 if (*size == 0) {
3190 return NULL;
3191 }
3192 if (xen_enabled()) {
3193 return xen_map_cache(addr, *size, 1);
3194 } else {
3195 RAMBlock *block;
3196
3197 QLIST_FOREACH(block, &ram_list.blocks, next) {
3198 if (addr - block->offset < block->length) {
3199 if (addr - block->offset + *size > block->length)
3200 *size = block->length - addr + block->offset;
3201 return block->host + (addr - block->offset);
3202 }
3203 }
3204
3205 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3206 abort();
3207 }
3208 }
3209
3210 void qemu_put_ram_ptr(void *addr)
3211 {
3212 trace_qemu_put_ram_ptr(addr);
3213 }
3214
3215 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3216 {
3217 RAMBlock *block;
3218 uint8_t *host = ptr;
3219
3220 if (xen_enabled()) {
3221 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3222 return 0;
3223 }
3224
3225 QLIST_FOREACH(block, &ram_list.blocks, next) {
3226 /* This case append when the block is not mapped. */
3227 if (block->host == NULL) {
3228 continue;
3229 }
3230 if (host - block->host < block->length) {
3231 *ram_addr = block->offset + (host - block->host);
3232 return 0;
3233 }
3234 }
3235
3236 return -1;
3237 }
3238
3239 /* Some of the softmmu routines need to translate from a host pointer
3240 (typically a TLB entry) back to a ram offset. */
3241 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3242 {
3243 ram_addr_t ram_addr;
3244
3245 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3246 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3247 abort();
3248 }
3249 return ram_addr;
3250 }
3251
3252 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3253 {
3254 #ifdef DEBUG_UNASSIGNED
3255 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3256 #endif
3257 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3258 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 1);
3259 #endif
3260 return 0;
3261 }
3262
3263 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3264 {
3265 #ifdef DEBUG_UNASSIGNED
3266 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3267 #endif
3268 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3269 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 2);
3270 #endif
3271 return 0;
3272 }
3273
3274 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3275 {
3276 #ifdef DEBUG_UNASSIGNED
3277 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3278 #endif
3279 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3280 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, 4);
3281 #endif
3282 return 0;
3283 }
3284
3285 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3286 {
3287 #ifdef DEBUG_UNASSIGNED
3288 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3289 #endif
3290 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3291 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 1);
3292 #endif
3293 }
3294
3295 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3296 {
3297 #ifdef DEBUG_UNASSIGNED
3298 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3299 #endif
3300 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3301 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 2);
3302 #endif
3303 }
3304
3305 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3306 {
3307 #ifdef DEBUG_UNASSIGNED
3308 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3309 #endif
3310 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3311 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, 4);
3312 #endif
3313 }
3314
3315 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3316 unassigned_mem_readb,
3317 unassigned_mem_readw,
3318 unassigned_mem_readl,
3319 };
3320
3321 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3322 unassigned_mem_writeb,
3323 unassigned_mem_writew,
3324 unassigned_mem_writel,
3325 };
3326
3327 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3328 uint32_t val)
3329 {
3330 int dirty_flags;
3331 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3332 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3333 #if !defined(CONFIG_USER_ONLY)
3334 tb_invalidate_phys_page_fast(ram_addr, 1);
3335 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3336 #endif
3337 }
3338 stb_p(qemu_get_ram_ptr(ram_addr), val);
3339 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3340 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3341 /* we remove the notdirty callback only if the code has been
3342 flushed */
3343 if (dirty_flags == 0xff)
3344 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3345 }
3346
3347 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3348 uint32_t val)
3349 {
3350 int dirty_flags;
3351 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3352 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3353 #if !defined(CONFIG_USER_ONLY)
3354 tb_invalidate_phys_page_fast(ram_addr, 2);
3355 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3356 #endif
3357 }
3358 stw_p(qemu_get_ram_ptr(ram_addr), val);
3359 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3360 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3361 /* we remove the notdirty callback only if the code has been
3362 flushed */
3363 if (dirty_flags == 0xff)
3364 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3365 }
3366
3367 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3368 uint32_t val)
3369 {
3370 int dirty_flags;
3371 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3372 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3373 #if !defined(CONFIG_USER_ONLY)
3374 tb_invalidate_phys_page_fast(ram_addr, 4);
3375 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3376 #endif
3377 }
3378 stl_p(qemu_get_ram_ptr(ram_addr), val);
3379 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3380 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3381 /* we remove the notdirty callback only if the code has been
3382 flushed */
3383 if (dirty_flags == 0xff)
3384 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3385 }
3386
3387 static CPUReadMemoryFunc * const error_mem_read[3] = {
3388 NULL, /* never used */
3389 NULL, /* never used */
3390 NULL, /* never used */
3391 };
3392
3393 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3394 notdirty_mem_writeb,
3395 notdirty_mem_writew,
3396 notdirty_mem_writel,
3397 };
3398
3399 /* Generate a debug exception if a watchpoint has been hit. */
3400 static void check_watchpoint(int offset, int len_mask, int flags)
3401 {
3402 CPUState *env = cpu_single_env;
3403 target_ulong pc, cs_base;
3404 TranslationBlock *tb;
3405 target_ulong vaddr;
3406 CPUWatchpoint *wp;
3407 int cpu_flags;
3408
3409 if (env->watchpoint_hit) {
3410 /* We re-entered the check after replacing the TB. Now raise
3411 * the debug interrupt so that is will trigger after the
3412 * current instruction. */
3413 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3414 return;
3415 }
3416 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3417 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3418 if ((vaddr == (wp->vaddr & len_mask) ||
3419 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3420 wp->flags |= BP_WATCHPOINT_HIT;
3421 if (!env->watchpoint_hit) {
3422 env->watchpoint_hit = wp;
3423 tb = tb_find_pc(env->mem_io_pc);
3424 if (!tb) {
3425 cpu_abort(env, "check_watchpoint: could not find TB for "
3426 "pc=%p", (void *)env->mem_io_pc);
3427 }
3428 cpu_restore_state(tb, env, env->mem_io_pc);
3429 tb_phys_invalidate(tb, -1);
3430 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3431 env->exception_index = EXCP_DEBUG;
3432 } else {
3433 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3434 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3435 }
3436 cpu_resume_from_signal(env, NULL);
3437 }
3438 } else {
3439 wp->flags &= ~BP_WATCHPOINT_HIT;
3440 }
3441 }
3442 }
3443
3444 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3445 so these check for a hit then pass through to the normal out-of-line
3446 phys routines. */
3447 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3448 {
3449 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3450 return ldub_phys(addr);
3451 }
3452
3453 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3454 {
3455 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3456 return lduw_phys(addr);
3457 }
3458
3459 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3460 {
3461 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3462 return ldl_phys(addr);
3463 }
3464
3465 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3466 uint32_t val)
3467 {
3468 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3469 stb_phys(addr, val);
3470 }
3471
3472 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3473 uint32_t val)
3474 {
3475 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3476 stw_phys(addr, val);
3477 }
3478
3479 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3480 uint32_t val)
3481 {
3482 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3483 stl_phys(addr, val);
3484 }
3485
3486 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3487 watch_mem_readb,
3488 watch_mem_readw,
3489 watch_mem_readl,
3490 };
3491
3492 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3493 watch_mem_writeb,
3494 watch_mem_writew,
3495 watch_mem_writel,
3496 };
3497
3498 static inline uint32_t subpage_readlen (subpage_t *mmio,
3499 target_phys_addr_t addr,
3500 unsigned int len)
3501 {
3502 unsigned int idx = SUBPAGE_IDX(addr);
3503 #if defined(DEBUG_SUBPAGE)
3504 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3505 mmio, len, addr, idx);
3506 #endif
3507
3508 addr += mmio->region_offset[idx];
3509 idx = mmio->sub_io_index[idx];
3510 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3511 }
3512
3513 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3514 uint32_t value, unsigned int len)
3515 {
3516 unsigned int idx = SUBPAGE_IDX(addr);
3517 #if defined(DEBUG_SUBPAGE)
3518 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3519 __func__, mmio, len, addr, idx, value);
3520 #endif
3521
3522 addr += mmio->region_offset[idx];
3523 idx = mmio->sub_io_index[idx];
3524 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3525 }
3526
3527 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3528 {
3529 return subpage_readlen(opaque, addr, 0);
3530 }
3531
3532 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3533 uint32_t value)
3534 {
3535 subpage_writelen(opaque, addr, value, 0);
3536 }
3537
3538 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3539 {
3540 return subpage_readlen(opaque, addr, 1);
3541 }
3542
3543 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3544 uint32_t value)
3545 {
3546 subpage_writelen(opaque, addr, value, 1);
3547 }
3548
3549 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3550 {
3551 return subpage_readlen(opaque, addr, 2);
3552 }
3553
3554 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3555 uint32_t value)
3556 {
3557 subpage_writelen(opaque, addr, value, 2);
3558 }
3559
3560 static CPUReadMemoryFunc * const subpage_read[] = {
3561 &subpage_readb,
3562 &subpage_readw,
3563 &subpage_readl,
3564 };
3565
3566 static CPUWriteMemoryFunc * const subpage_write[] = {
3567 &subpage_writeb,
3568 &subpage_writew,
3569 &subpage_writel,
3570 };
3571
3572 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3573 ram_addr_t memory, ram_addr_t region_offset)
3574 {
3575 int idx, eidx;
3576
3577 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3578 return -1;
3579 idx = SUBPAGE_IDX(start);
3580 eidx = SUBPAGE_IDX(end);
3581 #if defined(DEBUG_SUBPAGE)
3582 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3583 mmio, start, end, idx, eidx, memory);
3584 #endif
3585 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3586 memory = IO_MEM_UNASSIGNED;
3587 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3588 for (; idx <= eidx; idx++) {
3589 mmio->sub_io_index[idx] = memory;
3590 mmio->region_offset[idx] = region_offset;
3591 }
3592
3593 return 0;
3594 }
3595
3596 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3597 ram_addr_t orig_memory,
3598 ram_addr_t region_offset)
3599 {
3600 subpage_t *mmio;
3601 int subpage_memory;
3602
3603 mmio = qemu_mallocz(sizeof(subpage_t));
3604
3605 mmio->base = base;
3606 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3607 DEVICE_NATIVE_ENDIAN);
3608 #if defined(DEBUG_SUBPAGE)
3609 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3610 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3611 #endif
3612 *phys = subpage_memory | IO_MEM_SUBPAGE;
3613 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3614
3615 return mmio;
3616 }
3617
3618 static int get_free_io_mem_idx(void)
3619 {
3620 int i;
3621
3622 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3623 if (!io_mem_used[i]) {
3624 io_mem_used[i] = 1;
3625 return i;
3626 }
3627 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3628 return -1;
3629 }
3630
3631 /*
3632 * Usually, devices operate in little endian mode. There are devices out
3633 * there that operate in big endian too. Each device gets byte swapped
3634 * mmio if plugged onto a CPU that does the other endianness.
3635 *
3636 * CPU Device swap?
3637 *
3638 * little little no
3639 * little big yes
3640 * big little yes
3641 * big big no
3642 */
3643
3644 typedef struct SwapEndianContainer {
3645 CPUReadMemoryFunc *read[3];
3646 CPUWriteMemoryFunc *write[3];
3647 void *opaque;
3648 } SwapEndianContainer;
3649
3650 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3651 {
3652 uint32_t val;
3653 SwapEndianContainer *c = opaque;
3654 val = c->read[0](c->opaque, addr);
3655 return val;
3656 }
3657
3658 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3659 {
3660 uint32_t val;
3661 SwapEndianContainer *c = opaque;
3662 val = bswap16(c->read[1](c->opaque, addr));
3663 return val;
3664 }
3665
3666 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3667 {
3668 uint32_t val;
3669 SwapEndianContainer *c = opaque;
3670 val = bswap32(c->read[2](c->opaque, addr));
3671 return val;
3672 }
3673
3674 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3675 swapendian_mem_readb,
3676 swapendian_mem_readw,
3677 swapendian_mem_readl
3678 };
3679
3680 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3681 uint32_t val)
3682 {
3683 SwapEndianContainer *c = opaque;
3684 c->write[0](c->opaque, addr, val);
3685 }
3686
3687 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3688 uint32_t val)
3689 {
3690 SwapEndianContainer *c = opaque;
3691 c->write[1](c->opaque, addr, bswap16(val));
3692 }
3693
3694 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3695 uint32_t val)
3696 {
3697 SwapEndianContainer *c = opaque;
3698 c->write[2](c->opaque, addr, bswap32(val));
3699 }
3700
3701 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3702 swapendian_mem_writeb,
3703 swapendian_mem_writew,
3704 swapendian_mem_writel
3705 };
3706
3707 static void swapendian_init(int io_index)
3708 {
3709 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3710 int i;
3711
3712 /* Swap mmio for big endian targets */
3713 c->opaque = io_mem_opaque[io_index];
3714 for (i = 0; i < 3; i++) {
3715 c->read[i] = io_mem_read[io_index][i];
3716 c->write[i] = io_mem_write[io_index][i];
3717
3718 io_mem_read[io_index][i] = swapendian_readfn[i];
3719 io_mem_write[io_index][i] = swapendian_writefn[i];
3720 }
3721 io_mem_opaque[io_index] = c;
3722 }
3723
3724 static void swapendian_del(int io_index)
3725 {
3726 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3727 qemu_free(io_mem_opaque[io_index]);
3728 }
3729 }
3730
3731 /* mem_read and mem_write are arrays of functions containing the
3732 function to access byte (index 0), word (index 1) and dword (index
3733 2). Functions can be omitted with a NULL function pointer.
3734 If io_index is non zero, the corresponding io zone is
3735 modified. If it is zero, a new io zone is allocated. The return
3736 value can be used with cpu_register_physical_memory(). (-1) is
3737 returned if error. */
3738 static int cpu_register_io_memory_fixed(int io_index,
3739 CPUReadMemoryFunc * const *mem_read,
3740 CPUWriteMemoryFunc * const *mem_write,
3741 void *opaque, enum device_endian endian)
3742 {
3743 int i;
3744
3745 if (io_index <= 0) {
3746 io_index = get_free_io_mem_idx();
3747 if (io_index == -1)
3748 return io_index;
3749 } else {
3750 io_index >>= IO_MEM_SHIFT;
3751 if (io_index >= IO_MEM_NB_ENTRIES)
3752 return -1;
3753 }
3754
3755 for (i = 0; i < 3; ++i) {
3756 io_mem_read[io_index][i]
3757 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3758 }
3759 for (i = 0; i < 3; ++i) {
3760 io_mem_write[io_index][i]
3761 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3762 }
3763 io_mem_opaque[io_index] = opaque;
3764
3765 switch (endian) {
3766 case DEVICE_BIG_ENDIAN:
3767 #ifndef TARGET_WORDS_BIGENDIAN
3768 swapendian_init(io_index);
3769 #endif
3770 break;
3771 case DEVICE_LITTLE_ENDIAN:
3772 #ifdef TARGET_WORDS_BIGENDIAN
3773 swapendian_init(io_index);
3774 #endif
3775 break;
3776 case DEVICE_NATIVE_ENDIAN:
3777 default:
3778 break;
3779 }
3780
3781 return (io_index << IO_MEM_SHIFT);
3782 }
3783
3784 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3785 CPUWriteMemoryFunc * const *mem_write,
3786 void *opaque, enum device_endian endian)
3787 {
3788 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3789 }
3790
3791 void cpu_unregister_io_memory(int io_table_address)
3792 {
3793 int i;
3794 int io_index = io_table_address >> IO_MEM_SHIFT;
3795
3796 swapendian_del(io_index);
3797
3798 for (i=0;i < 3; i++) {
3799 io_mem_read[io_index][i] = unassigned_mem_read[i];
3800 io_mem_write[io_index][i] = unassigned_mem_write[i];
3801 }
3802 io_mem_opaque[io_index] = NULL;
3803 io_mem_used[io_index] = 0;
3804 }
3805
3806 static void io_mem_init(void)
3807 {
3808 int i;
3809
3810 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3811 unassigned_mem_write, NULL,
3812 DEVICE_NATIVE_ENDIAN);
3813 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3814 unassigned_mem_write, NULL,
3815 DEVICE_NATIVE_ENDIAN);
3816 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3817 notdirty_mem_write, NULL,
3818 DEVICE_NATIVE_ENDIAN);
3819 for (i=0; i<5; i++)
3820 io_mem_used[i] = 1;
3821
3822 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3823 watch_mem_write, NULL,
3824 DEVICE_NATIVE_ENDIAN);
3825 }
3826
3827 static void memory_map_init(void)
3828 {
3829 system_memory = qemu_malloc(sizeof(*system_memory));
3830 memory_region_init(system_memory, "system", INT64_MAX);
3831 set_system_memory_map(system_memory);
3832 }
3833
3834 MemoryRegion *get_system_memory(void)
3835 {
3836 return system_memory;
3837 }
3838
3839 #endif /* !defined(CONFIG_USER_ONLY) */
3840
3841 /* physical memory access (slow version, mainly for debug) */
3842 #if defined(CONFIG_USER_ONLY)
3843 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3844 uint8_t *buf, int len, int is_write)
3845 {
3846 int l, flags;
3847 target_ulong page;
3848 void * p;
3849
3850 while (len > 0) {
3851 page = addr & TARGET_PAGE_MASK;
3852 l = (page + TARGET_PAGE_SIZE) - addr;
3853 if (l > len)
3854 l = len;
3855 flags = page_get_flags(page);
3856 if (!(flags & PAGE_VALID))
3857 return -1;
3858 if (is_write) {
3859 if (!(flags & PAGE_WRITE))
3860 return -1;
3861 /* XXX: this code should not depend on lock_user */
3862 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3863 return -1;
3864 memcpy(p, buf, l);
3865 unlock_user(p, addr, l);
3866 } else {
3867 if (!(flags & PAGE_READ))
3868 return -1;
3869 /* XXX: this code should not depend on lock_user */
3870 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3871 return -1;
3872 memcpy(buf, p, l);
3873 unlock_user(p, addr, 0);
3874 }
3875 len -= l;
3876 buf += l;
3877 addr += l;
3878 }
3879 return 0;
3880 }
3881
3882 #else
3883 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3884 int len, int is_write)
3885 {
3886 int l, io_index;
3887 uint8_t *ptr;
3888 uint32_t val;
3889 target_phys_addr_t page;
3890 ram_addr_t pd;
3891 PhysPageDesc *p;
3892
3893 while (len > 0) {
3894 page = addr & TARGET_PAGE_MASK;
3895 l = (page + TARGET_PAGE_SIZE) - addr;
3896 if (l > len)
3897 l = len;
3898 p = phys_page_find(page >> TARGET_PAGE_BITS);
3899 if (!p) {
3900 pd = IO_MEM_UNASSIGNED;
3901 } else {
3902 pd = p->phys_offset;
3903 }
3904
3905 if (is_write) {
3906 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3907 target_phys_addr_t addr1 = addr;
3908 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3909 if (p)
3910 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3911 /* XXX: could force cpu_single_env to NULL to avoid
3912 potential bugs */
3913 if (l >= 4 && ((addr1 & 3) == 0)) {
3914 /* 32 bit write access */
3915 val = ldl_p(buf);
3916 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3917 l = 4;
3918 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3919 /* 16 bit write access */
3920 val = lduw_p(buf);
3921 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3922 l = 2;
3923 } else {
3924 /* 8 bit write access */
3925 val = ldub_p(buf);
3926 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3927 l = 1;
3928 }
3929 } else {
3930 ram_addr_t addr1;
3931 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3932 /* RAM case */
3933 ptr = qemu_get_ram_ptr(addr1);
3934 memcpy(ptr, buf, l);
3935 if (!cpu_physical_memory_is_dirty(addr1)) {
3936 /* invalidate code */
3937 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3938 /* set dirty bit */
3939 cpu_physical_memory_set_dirty_flags(
3940 addr1, (0xff & ~CODE_DIRTY_FLAG));
3941 }
3942 qemu_put_ram_ptr(ptr);
3943 }
3944 } else {
3945 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3946 !(pd & IO_MEM_ROMD)) {
3947 target_phys_addr_t addr1 = addr;
3948 /* I/O case */
3949 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3950 if (p)
3951 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3952 if (l >= 4 && ((addr1 & 3) == 0)) {
3953 /* 32 bit read access */
3954 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3955 stl_p(buf, val);
3956 l = 4;
3957 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3958 /* 16 bit read access */
3959 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3960 stw_p(buf, val);
3961 l = 2;
3962 } else {
3963 /* 8 bit read access */
3964 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3965 stb_p(buf, val);
3966 l = 1;
3967 }
3968 } else {
3969 /* RAM case */
3970 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
3971 memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
3972 qemu_put_ram_ptr(ptr);
3973 }
3974 }
3975 len -= l;
3976 buf += l;
3977 addr += l;
3978 }
3979 }
3980
3981 /* used for ROM loading : can write in RAM and ROM */
3982 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3983 const uint8_t *buf, int len)
3984 {
3985 int l;
3986 uint8_t *ptr;
3987 target_phys_addr_t page;
3988 unsigned long pd;
3989 PhysPageDesc *p;
3990
3991 while (len > 0) {
3992 page = addr & TARGET_PAGE_MASK;
3993 l = (page + TARGET_PAGE_SIZE) - addr;
3994 if (l > len)
3995 l = len;
3996 p = phys_page_find(page >> TARGET_PAGE_BITS);
3997 if (!p) {
3998 pd = IO_MEM_UNASSIGNED;
3999 } else {
4000 pd = p->phys_offset;
4001 }
4002
4003 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
4004 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
4005 !(pd & IO_MEM_ROMD)) {
4006 /* do nothing */
4007 } else {
4008 unsigned long addr1;
4009 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4010 /* ROM/RAM case */
4011 ptr = qemu_get_ram_ptr(addr1);
4012 memcpy(ptr, buf, l);
4013 qemu_put_ram_ptr(ptr);
4014 }
4015 len -= l;
4016 buf += l;
4017 addr += l;
4018 }
4019 }
4020
4021 typedef struct {
4022 void *buffer;
4023 target_phys_addr_t addr;
4024 target_phys_addr_t len;
4025 } BounceBuffer;
4026
4027 static BounceBuffer bounce;
4028
4029 typedef struct MapClient {
4030 void *opaque;
4031 void (*callback)(void *opaque);
4032 QLIST_ENTRY(MapClient) link;
4033 } MapClient;
4034
4035 static QLIST_HEAD(map_client_list, MapClient) map_client_list
4036 = QLIST_HEAD_INITIALIZER(map_client_list);
4037
4038 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
4039 {
4040 MapClient *client = qemu_malloc(sizeof(*client));
4041
4042 client->opaque = opaque;
4043 client->callback = callback;
4044 QLIST_INSERT_HEAD(&map_client_list, client, link);
4045 return client;
4046 }
4047
4048 void cpu_unregister_map_client(void *_client)
4049 {
4050 MapClient *client = (MapClient *)_client;
4051
4052 QLIST_REMOVE(client, link);
4053 qemu_free(client);
4054 }
4055
4056 static void cpu_notify_map_clients(void)
4057 {
4058 MapClient *client;
4059
4060 while (!QLIST_EMPTY(&map_client_list)) {
4061 client = QLIST_FIRST(&map_client_list);
4062 client->callback(client->opaque);
4063 cpu_unregister_map_client(client);
4064 }
4065 }
4066
4067 /* Map a physical memory region into a host virtual address.
4068 * May map a subset of the requested range, given by and returned in *plen.
4069 * May return NULL if resources needed to perform the mapping are exhausted.
4070 * Use only for reads OR writes - not for read-modify-write operations.
4071 * Use cpu_register_map_client() to know when retrying the map operation is
4072 * likely to succeed.
4073 */
4074 void *cpu_physical_memory_map(target_phys_addr_t addr,
4075 target_phys_addr_t *plen,
4076 int is_write)
4077 {
4078 target_phys_addr_t len = *plen;
4079 target_phys_addr_t todo = 0;
4080 int l;
4081 target_phys_addr_t page;
4082 unsigned long pd;
4083 PhysPageDesc *p;
4084 ram_addr_t raddr = RAM_ADDR_MAX;
4085 ram_addr_t rlen;
4086 void *ret;
4087
4088 while (len > 0) {
4089 page = addr & TARGET_PAGE_MASK;
4090 l = (page + TARGET_PAGE_SIZE) - addr;
4091 if (l > len)
4092 l = len;
4093 p = phys_page_find(page >> TARGET_PAGE_BITS);
4094 if (!p) {
4095 pd = IO_MEM_UNASSIGNED;
4096 } else {
4097 pd = p->phys_offset;
4098 }
4099
4100 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4101 if (todo || bounce.buffer) {
4102 break;
4103 }
4104 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
4105 bounce.addr = addr;
4106 bounce.len = l;
4107 if (!is_write) {
4108 cpu_physical_memory_read(addr, bounce.buffer, l);
4109 }
4110
4111 *plen = l;
4112 return bounce.buffer;
4113 }
4114 if (!todo) {
4115 raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4116 }
4117
4118 len -= l;
4119 addr += l;
4120 todo += l;
4121 }
4122 rlen = todo;
4123 ret = qemu_ram_ptr_length(raddr, &rlen);
4124 *plen = rlen;
4125 return ret;
4126 }
4127
4128 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4129 * Will also mark the memory as dirty if is_write == 1. access_len gives
4130 * the amount of memory that was actually read or written by the caller.
4131 */
4132 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4133 int is_write, target_phys_addr_t access_len)
4134 {
4135 if (buffer != bounce.buffer) {
4136 if (is_write) {
4137 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4138 while (access_len) {
4139 unsigned l;
4140 l = TARGET_PAGE_SIZE;
4141 if (l > access_len)
4142 l = access_len;
4143 if (!cpu_physical_memory_is_dirty(addr1)) {
4144 /* invalidate code */
4145 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4146 /* set dirty bit */
4147 cpu_physical_memory_set_dirty_flags(
4148 addr1, (0xff & ~CODE_DIRTY_FLAG));
4149 }
4150 addr1 += l;
4151 access_len -= l;
4152 }
4153 }
4154 if (xen_enabled()) {
4155 xen_invalidate_map_cache_entry(buffer);
4156 }
4157 return;
4158 }
4159 if (is_write) {
4160 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4161 }
4162 qemu_vfree(bounce.buffer);
4163 bounce.buffer = NULL;
4164 cpu_notify_map_clients();
4165 }
4166
4167 /* warning: addr must be aligned */
4168 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4169 enum device_endian endian)
4170 {
4171 int io_index;
4172 uint8_t *ptr;
4173 uint32_t val;
4174 unsigned long pd;
4175 PhysPageDesc *p;
4176
4177 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4178 if (!p) {
4179 pd = IO_MEM_UNASSIGNED;
4180 } else {
4181 pd = p->phys_offset;
4182 }
4183
4184 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4185 !(pd & IO_MEM_ROMD)) {
4186 /* I/O case */
4187 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4188 if (p)
4189 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4190 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4191 #if defined(TARGET_WORDS_BIGENDIAN)
4192 if (endian == DEVICE_LITTLE_ENDIAN) {
4193 val = bswap32(val);
4194 }
4195 #else
4196 if (endian == DEVICE_BIG_ENDIAN) {
4197 val = bswap32(val);
4198 }
4199 #endif
4200 } else {
4201 /* RAM case */
4202 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4203 (addr & ~TARGET_PAGE_MASK);
4204 switch (endian) {
4205 case DEVICE_LITTLE_ENDIAN:
4206 val = ldl_le_p(ptr);
4207 break;
4208 case DEVICE_BIG_ENDIAN:
4209 val = ldl_be_p(ptr);
4210 break;
4211 default:
4212 val = ldl_p(ptr);
4213 break;
4214 }
4215 }
4216 return val;
4217 }
4218
4219 uint32_t ldl_phys(target_phys_addr_t addr)
4220 {
4221 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4222 }
4223
4224 uint32_t ldl_le_phys(target_phys_addr_t addr)
4225 {
4226 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4227 }
4228
4229 uint32_t ldl_be_phys(target_phys_addr_t addr)
4230 {
4231 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4232 }
4233
4234 /* warning: addr must be aligned */
4235 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4236 enum device_endian endian)
4237 {
4238 int io_index;
4239 uint8_t *ptr;
4240 uint64_t val;
4241 unsigned long pd;
4242 PhysPageDesc *p;
4243
4244 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4245 if (!p) {
4246 pd = IO_MEM_UNASSIGNED;
4247 } else {
4248 pd = p->phys_offset;
4249 }
4250
4251 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4252 !(pd & IO_MEM_ROMD)) {
4253 /* I/O case */
4254 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4255 if (p)
4256 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4257
4258 /* XXX This is broken when device endian != cpu endian.
4259 Fix and add "endian" variable check */
4260 #ifdef TARGET_WORDS_BIGENDIAN
4261 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4262 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4263 #else
4264 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4265 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4266 #endif
4267 } else {
4268 /* RAM case */
4269 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4270 (addr & ~TARGET_PAGE_MASK);
4271 switch (endian) {
4272 case DEVICE_LITTLE_ENDIAN:
4273 val = ldq_le_p(ptr);
4274 break;
4275 case DEVICE_BIG_ENDIAN:
4276 val = ldq_be_p(ptr);
4277 break;
4278 default:
4279 val = ldq_p(ptr);
4280 break;
4281 }
4282 }
4283 return val;
4284 }
4285
4286 uint64_t ldq_phys(target_phys_addr_t addr)
4287 {
4288 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4289 }
4290
4291 uint64_t ldq_le_phys(target_phys_addr_t addr)
4292 {
4293 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4294 }
4295
4296 uint64_t ldq_be_phys(target_phys_addr_t addr)
4297 {
4298 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4299 }
4300
4301 /* XXX: optimize */
4302 uint32_t ldub_phys(target_phys_addr_t addr)
4303 {
4304 uint8_t val;
4305 cpu_physical_memory_read(addr, &val, 1);
4306 return val;
4307 }
4308
4309 /* warning: addr must be aligned */
4310 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4311 enum device_endian endian)
4312 {
4313 int io_index;
4314 uint8_t *ptr;
4315 uint64_t val;
4316 unsigned long pd;
4317 PhysPageDesc *p;
4318
4319 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4320 if (!p) {
4321 pd = IO_MEM_UNASSIGNED;
4322 } else {
4323 pd = p->phys_offset;
4324 }
4325
4326 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4327 !(pd & IO_MEM_ROMD)) {
4328 /* I/O case */
4329 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4330 if (p)
4331 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4332 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4333 #if defined(TARGET_WORDS_BIGENDIAN)
4334 if (endian == DEVICE_LITTLE_ENDIAN) {
4335 val = bswap16(val);
4336 }
4337 #else
4338 if (endian == DEVICE_BIG_ENDIAN) {
4339 val = bswap16(val);
4340 }
4341 #endif
4342 } else {
4343 /* RAM case */
4344 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4345 (addr & ~TARGET_PAGE_MASK);
4346 switch (endian) {
4347 case DEVICE_LITTLE_ENDIAN:
4348 val = lduw_le_p(ptr);
4349 break;
4350 case DEVICE_BIG_ENDIAN:
4351 val = lduw_be_p(ptr);
4352 break;
4353 default:
4354 val = lduw_p(ptr);
4355 break;
4356 }
4357 }
4358 return val;
4359 }
4360
4361 uint32_t lduw_phys(target_phys_addr_t addr)
4362 {
4363 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4364 }
4365
4366 uint32_t lduw_le_phys(target_phys_addr_t addr)
4367 {
4368 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4369 }
4370
4371 uint32_t lduw_be_phys(target_phys_addr_t addr)
4372 {
4373 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4374 }
4375
4376 /* warning: addr must be aligned. The ram page is not masked as dirty
4377 and the code inside is not invalidated. It is useful if the dirty
4378 bits are used to track modified PTEs */
4379 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4380 {
4381 int io_index;
4382 uint8_t *ptr;
4383 unsigned long pd;
4384 PhysPageDesc *p;
4385
4386 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4387 if (!p) {
4388 pd = IO_MEM_UNASSIGNED;
4389 } else {
4390 pd = p->phys_offset;
4391 }
4392
4393 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4394 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4395 if (p)
4396 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4397 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4398 } else {
4399 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4400 ptr = qemu_get_ram_ptr(addr1);
4401 stl_p(ptr, val);
4402
4403 if (unlikely(in_migration)) {
4404 if (!cpu_physical_memory_is_dirty(addr1)) {
4405 /* invalidate code */
4406 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4407 /* set dirty bit */
4408 cpu_physical_memory_set_dirty_flags(
4409 addr1, (0xff & ~CODE_DIRTY_FLAG));
4410 }
4411 }
4412 }
4413 }
4414
4415 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4416 {
4417 int io_index;
4418 uint8_t *ptr;
4419 unsigned long pd;
4420 PhysPageDesc *p;
4421
4422 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4423 if (!p) {
4424 pd = IO_MEM_UNASSIGNED;
4425 } else {
4426 pd = p->phys_offset;
4427 }
4428
4429 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4430 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4431 if (p)
4432 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4433 #ifdef TARGET_WORDS_BIGENDIAN
4434 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4435 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4436 #else
4437 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4438 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4439 #endif
4440 } else {
4441 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4442 (addr & ~TARGET_PAGE_MASK);
4443 stq_p(ptr, val);
4444 }
4445 }
4446
4447 /* warning: addr must be aligned */
4448 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4449 enum device_endian endian)
4450 {
4451 int io_index;
4452 uint8_t *ptr;
4453 unsigned long pd;
4454 PhysPageDesc *p;
4455
4456 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4457 if (!p) {
4458 pd = IO_MEM_UNASSIGNED;
4459 } else {
4460 pd = p->phys_offset;
4461 }
4462
4463 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4464 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4465 if (p)
4466 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4467 #if defined(TARGET_WORDS_BIGENDIAN)
4468 if (endian == DEVICE_LITTLE_ENDIAN) {
4469 val = bswap32(val);
4470 }
4471 #else
4472 if (endian == DEVICE_BIG_ENDIAN) {
4473 val = bswap32(val);
4474 }
4475 #endif
4476 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4477 } else {
4478 unsigned long addr1;
4479 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4480 /* RAM case */
4481 ptr = qemu_get_ram_ptr(addr1);
4482 switch (endian) {
4483 case DEVICE_LITTLE_ENDIAN:
4484 stl_le_p(ptr, val);
4485 break;
4486 case DEVICE_BIG_ENDIAN:
4487 stl_be_p(ptr, val);
4488 break;
4489 default:
4490 stl_p(ptr, val);
4491 break;
4492 }
4493 if (!cpu_physical_memory_is_dirty(addr1)) {
4494 /* invalidate code */
4495 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4496 /* set dirty bit */
4497 cpu_physical_memory_set_dirty_flags(addr1,
4498 (0xff & ~CODE_DIRTY_FLAG));
4499 }
4500 }
4501 }
4502
4503 void stl_phys(target_phys_addr_t addr, uint32_t val)
4504 {
4505 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4506 }
4507
4508 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4509 {
4510 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4511 }
4512
4513 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4514 {
4515 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4516 }
4517
4518 /* XXX: optimize */
4519 void stb_phys(target_phys_addr_t addr, uint32_t val)
4520 {
4521 uint8_t v = val;
4522 cpu_physical_memory_write(addr, &v, 1);
4523 }
4524
4525 /* warning: addr must be aligned */
4526 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4527 enum device_endian endian)
4528 {
4529 int io_index;
4530 uint8_t *ptr;
4531 unsigned long pd;
4532 PhysPageDesc *p;
4533
4534 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4535 if (!p) {
4536 pd = IO_MEM_UNASSIGNED;
4537 } else {
4538 pd = p->phys_offset;
4539 }
4540
4541 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4542 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4543 if (p)
4544 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4545 #if defined(TARGET_WORDS_BIGENDIAN)
4546 if (endian == DEVICE_LITTLE_ENDIAN) {
4547 val = bswap16(val);
4548 }
4549 #else
4550 if (endian == DEVICE_BIG_ENDIAN) {
4551 val = bswap16(val);
4552 }
4553 #endif
4554 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4555 } else {
4556 unsigned long addr1;
4557 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4558 /* RAM case */
4559 ptr = qemu_get_ram_ptr(addr1);
4560 switch (endian) {
4561 case DEVICE_LITTLE_ENDIAN:
4562 stw_le_p(ptr, val);
4563 break;
4564 case DEVICE_BIG_ENDIAN:
4565 stw_be_p(ptr, val);
4566 break;
4567 default:
4568 stw_p(ptr, val);
4569 break;
4570 }
4571 if (!cpu_physical_memory_is_dirty(addr1)) {
4572 /* invalidate code */
4573 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4574 /* set dirty bit */
4575 cpu_physical_memory_set_dirty_flags(addr1,
4576 (0xff & ~CODE_DIRTY_FLAG));
4577 }
4578 }
4579 }
4580
4581 void stw_phys(target_phys_addr_t addr, uint32_t val)
4582 {
4583 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4584 }
4585
4586 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4587 {
4588 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4589 }
4590
4591 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4592 {
4593 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4594 }
4595
4596 /* XXX: optimize */
4597 void stq_phys(target_phys_addr_t addr, uint64_t val)
4598 {
4599 val = tswap64(val);
4600 cpu_physical_memory_write(addr, &val, 8);
4601 }
4602
4603 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4604 {
4605 val = cpu_to_le64(val);
4606 cpu_physical_memory_write(addr, &val, 8);
4607 }
4608
4609 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4610 {
4611 val = cpu_to_be64(val);
4612 cpu_physical_memory_write(addr, &val, 8);
4613 }
4614
4615 /* virtual memory access for debug (includes writing to ROM) */
4616 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4617 uint8_t *buf, int len, int is_write)
4618 {
4619 int l;
4620 target_phys_addr_t phys_addr;
4621 target_ulong page;
4622
4623 while (len > 0) {
4624 page = addr & TARGET_PAGE_MASK;
4625 phys_addr = cpu_get_phys_page_debug(env, page);
4626 /* if no physical page mapped, return an error */
4627 if (phys_addr == -1)
4628 return -1;
4629 l = (page + TARGET_PAGE_SIZE) - addr;
4630 if (l > len)
4631 l = len;
4632 phys_addr += (addr & ~TARGET_PAGE_MASK);
4633 if (is_write)
4634 cpu_physical_memory_write_rom(phys_addr, buf, l);
4635 else
4636 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4637 len -= l;
4638 buf += l;
4639 addr += l;
4640 }
4641 return 0;
4642 }
4643 #endif
4644
4645 /* in deterministic execution mode, instructions doing device I/Os
4646 must be at the end of the TB */
4647 void cpu_io_recompile(CPUState *env, void *retaddr)
4648 {
4649 TranslationBlock *tb;
4650 uint32_t n, cflags;
4651 target_ulong pc, cs_base;
4652 uint64_t flags;
4653
4654 tb = tb_find_pc((unsigned long)retaddr);
4655 if (!tb) {
4656 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4657 retaddr);
4658 }
4659 n = env->icount_decr.u16.low + tb->icount;
4660 cpu_restore_state(tb, env, (unsigned long)retaddr);
4661 /* Calculate how many instructions had been executed before the fault
4662 occurred. */
4663 n = n - env->icount_decr.u16.low;
4664 /* Generate a new TB ending on the I/O insn. */
4665 n++;
4666 /* On MIPS and SH, delay slot instructions can only be restarted if
4667 they were already the first instruction in the TB. If this is not
4668 the first instruction in a TB then re-execute the preceding
4669 branch. */
4670 #if defined(TARGET_MIPS)
4671 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4672 env->active_tc.PC -= 4;
4673 env->icount_decr.u16.low++;
4674 env->hflags &= ~MIPS_HFLAG_BMASK;
4675 }
4676 #elif defined(TARGET_SH4)
4677 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4678 && n > 1) {
4679 env->pc -= 2;
4680 env->icount_decr.u16.low++;
4681 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4682 }
4683 #endif
4684 /* This should never happen. */
4685 if (n > CF_COUNT_MASK)
4686 cpu_abort(env, "TB too big during recompile");
4687
4688 cflags = n | CF_LAST_IO;
4689 pc = tb->pc;
4690 cs_base = tb->cs_base;
4691 flags = tb->flags;
4692 tb_phys_invalidate(tb, -1);
4693 /* FIXME: In theory this could raise an exception. In practice
4694 we have already translated the block once so it's probably ok. */
4695 tb_gen_code(env, pc, cs_base, flags, cflags);
4696 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4697 the first in the TB) then we end up generating a whole new TB and
4698 repeating the fault, which is horribly inefficient.
4699 Better would be to execute just this insn uncached, or generate a
4700 second new TB. */
4701 cpu_resume_from_signal(env, NULL);
4702 }
4703
4704 #if !defined(CONFIG_USER_ONLY)
4705
4706 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4707 {
4708 int i, target_code_size, max_target_code_size;
4709 int direct_jmp_count, direct_jmp2_count, cross_page;
4710 TranslationBlock *tb;
4711
4712 target_code_size = 0;
4713 max_target_code_size = 0;
4714 cross_page = 0;
4715 direct_jmp_count = 0;
4716 direct_jmp2_count = 0;
4717 for(i = 0; i < nb_tbs; i++) {
4718 tb = &tbs[i];
4719 target_code_size += tb->size;
4720 if (tb->size > max_target_code_size)
4721 max_target_code_size = tb->size;
4722 if (tb->page_addr[1] != -1)
4723 cross_page++;
4724 if (tb->tb_next_offset[0] != 0xffff) {
4725 direct_jmp_count++;
4726 if (tb->tb_next_offset[1] != 0xffff) {
4727 direct_jmp2_count++;
4728 }
4729 }
4730 }
4731 /* XXX: avoid using doubles ? */
4732 cpu_fprintf(f, "Translation buffer state:\n");
4733 cpu_fprintf(f, "gen code size %td/%ld\n",
4734 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4735 cpu_fprintf(f, "TB count %d/%d\n",
4736 nb_tbs, code_gen_max_blocks);
4737 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4738 nb_tbs ? target_code_size / nb_tbs : 0,
4739 max_target_code_size);
4740 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4741 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4742 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4743 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4744 cross_page,
4745 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4746 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4747 direct_jmp_count,
4748 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4749 direct_jmp2_count,
4750 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4751 cpu_fprintf(f, "\nStatistics:\n");
4752 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4753 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4754 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4755 tcg_dump_info(f, cpu_fprintf);
4756 }
4757
4758 #define MMUSUFFIX _cmmu
4759 #define GETPC() NULL
4760 #define env cpu_single_env
4761 #define SOFTMMU_CODE_ACCESS
4762
4763 #define SHIFT 0
4764 #include "softmmu_template.h"
4765
4766 #define SHIFT 1
4767 #include "softmmu_template.h"
4768
4769 #define SHIFT 2
4770 #include "softmmu_template.h"
4771
4772 #define SHIFT 3
4773 #include "softmmu_template.h"
4774
4775 #undef env
4776
4777 #endif