]> git.proxmox.com Git - qemu.git/blob - exec.c
exec: Fix Xen RAM allocation with unusual options
[qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
48
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
51
52 #include "exec/memory-internal.h"
53
54 //#define DEBUG_SUBPAGE
55
56 #if !defined(CONFIG_USER_ONLY)
57 static int in_migration;
58
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
60
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
63
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
66
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
69
70 #endif
71
72 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUState *, current_cpu);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
80
81 #if !defined(CONFIG_USER_ONLY)
82
83 typedef struct PhysPageEntry PhysPageEntry;
84
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
89 };
90
91 typedef PhysPageEntry Node[L2_SIZE];
92
93 struct AddressSpaceDispatch {
94 /* This is a multi-level map on the physical address space.
95 * The bottom level has pointers to MemoryRegionSections.
96 */
97 PhysPageEntry phys_map;
98 Node *nodes;
99 MemoryRegionSection *sections;
100 AddressSpace *as;
101 };
102
103 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
104 typedef struct subpage_t {
105 MemoryRegion iomem;
106 AddressSpace *as;
107 hwaddr base;
108 uint16_t sub_section[TARGET_PAGE_SIZE];
109 } subpage_t;
110
111 #define PHYS_SECTION_UNASSIGNED 0
112 #define PHYS_SECTION_NOTDIRTY 1
113 #define PHYS_SECTION_ROM 2
114 #define PHYS_SECTION_WATCH 3
115
116 typedef struct PhysPageMap {
117 unsigned sections_nb;
118 unsigned sections_nb_alloc;
119 unsigned nodes_nb;
120 unsigned nodes_nb_alloc;
121 Node *nodes;
122 MemoryRegionSection *sections;
123 } PhysPageMap;
124
125 static PhysPageMap *prev_map;
126 static PhysPageMap next_map;
127
128 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
129
130 static void io_mem_init(void);
131 static void memory_map_init(void);
132 static void *qemu_safe_ram_ptr(ram_addr_t addr);
133
134 static MemoryRegion io_mem_watch;
135 #endif
136
137 #if !defined(CONFIG_USER_ONLY)
138
139 static void phys_map_node_reserve(unsigned nodes)
140 {
141 if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
142 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
143 16);
144 next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
145 next_map.nodes_nb + nodes);
146 next_map.nodes = g_renew(Node, next_map.nodes,
147 next_map.nodes_nb_alloc);
148 }
149 }
150
151 static uint16_t phys_map_node_alloc(void)
152 {
153 unsigned i;
154 uint16_t ret;
155
156 ret = next_map.nodes_nb++;
157 assert(ret != PHYS_MAP_NODE_NIL);
158 assert(ret != next_map.nodes_nb_alloc);
159 for (i = 0; i < L2_SIZE; ++i) {
160 next_map.nodes[ret][i].is_leaf = 0;
161 next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
162 }
163 return ret;
164 }
165
166 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
167 hwaddr *nb, uint16_t leaf,
168 int level)
169 {
170 PhysPageEntry *p;
171 int i;
172 hwaddr step = (hwaddr)1 << (level * L2_BITS);
173
174 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
175 lp->ptr = phys_map_node_alloc();
176 p = next_map.nodes[lp->ptr];
177 if (level == 0) {
178 for (i = 0; i < L2_SIZE; i++) {
179 p[i].is_leaf = 1;
180 p[i].ptr = PHYS_SECTION_UNASSIGNED;
181 }
182 }
183 } else {
184 p = next_map.nodes[lp->ptr];
185 }
186 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
187
188 while (*nb && lp < &p[L2_SIZE]) {
189 if ((*index & (step - 1)) == 0 && *nb >= step) {
190 lp->is_leaf = true;
191 lp->ptr = leaf;
192 *index += step;
193 *nb -= step;
194 } else {
195 phys_page_set_level(lp, index, nb, leaf, level - 1);
196 }
197 ++lp;
198 }
199 }
200
201 static void phys_page_set(AddressSpaceDispatch *d,
202 hwaddr index, hwaddr nb,
203 uint16_t leaf)
204 {
205 /* Wildly overreserve - it doesn't matter much. */
206 phys_map_node_reserve(3 * P_L2_LEVELS);
207
208 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
209 }
210
211 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
212 Node *nodes, MemoryRegionSection *sections)
213 {
214 PhysPageEntry *p;
215 int i;
216
217 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
218 if (lp.ptr == PHYS_MAP_NODE_NIL) {
219 return &sections[PHYS_SECTION_UNASSIGNED];
220 }
221 p = nodes[lp.ptr];
222 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
223 }
224 return &sections[lp.ptr];
225 }
226
227 bool memory_region_is_unassigned(MemoryRegion *mr)
228 {
229 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
230 && mr != &io_mem_watch;
231 }
232
233 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
234 hwaddr addr,
235 bool resolve_subpage)
236 {
237 MemoryRegionSection *section;
238 subpage_t *subpage;
239
240 section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
241 d->nodes, d->sections);
242 if (resolve_subpage && section->mr->subpage) {
243 subpage = container_of(section->mr, subpage_t, iomem);
244 section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
245 }
246 return section;
247 }
248
249 static MemoryRegionSection *
250 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
251 hwaddr *plen, bool resolve_subpage)
252 {
253 MemoryRegionSection *section;
254 Int128 diff;
255
256 section = address_space_lookup_region(d, addr, resolve_subpage);
257 /* Compute offset within MemoryRegionSection */
258 addr -= section->offset_within_address_space;
259
260 /* Compute offset within MemoryRegion */
261 *xlat = addr + section->offset_within_region;
262
263 diff = int128_sub(section->mr->size, int128_make64(addr));
264 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
265 return section;
266 }
267
268 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
269 hwaddr *xlat, hwaddr *plen,
270 bool is_write)
271 {
272 IOMMUTLBEntry iotlb;
273 MemoryRegionSection *section;
274 MemoryRegion *mr;
275 hwaddr len = *plen;
276
277 for (;;) {
278 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
279 mr = section->mr;
280
281 if (!mr->iommu_ops) {
282 break;
283 }
284
285 iotlb = mr->iommu_ops->translate(mr, addr);
286 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
287 | (addr & iotlb.addr_mask));
288 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
289 if (!(iotlb.perm & (1 << is_write))) {
290 mr = &io_mem_unassigned;
291 break;
292 }
293
294 as = iotlb.target_as;
295 }
296
297 *plen = len;
298 *xlat = addr;
299 return mr;
300 }
301
302 MemoryRegionSection *
303 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
304 hwaddr *plen)
305 {
306 MemoryRegionSection *section;
307 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
308
309 assert(!section->mr->iommu_ops);
310 return section;
311 }
312 #endif
313
314 void cpu_exec_init_all(void)
315 {
316 #if !defined(CONFIG_USER_ONLY)
317 qemu_mutex_init(&ram_list.mutex);
318 memory_map_init();
319 io_mem_init();
320 #endif
321 }
322
323 #if !defined(CONFIG_USER_ONLY)
324
325 static int cpu_common_post_load(void *opaque, int version_id)
326 {
327 CPUState *cpu = opaque;
328
329 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
330 version_id is increased. */
331 cpu->interrupt_request &= ~0x01;
332 tlb_flush(cpu->env_ptr, 1);
333
334 return 0;
335 }
336
337 const VMStateDescription vmstate_cpu_common = {
338 .name = "cpu_common",
339 .version_id = 1,
340 .minimum_version_id = 1,
341 .minimum_version_id_old = 1,
342 .post_load = cpu_common_post_load,
343 .fields = (VMStateField []) {
344 VMSTATE_UINT32(halted, CPUState),
345 VMSTATE_UINT32(interrupt_request, CPUState),
346 VMSTATE_END_OF_LIST()
347 }
348 };
349
350 #endif
351
352 CPUState *qemu_get_cpu(int index)
353 {
354 CPUState *cpu;
355
356 CPU_FOREACH(cpu) {
357 if (cpu->cpu_index == index) {
358 return cpu;
359 }
360 }
361
362 return NULL;
363 }
364
365 void cpu_exec_init(CPUArchState *env)
366 {
367 CPUState *cpu = ENV_GET_CPU(env);
368 CPUClass *cc = CPU_GET_CLASS(cpu);
369 CPUState *some_cpu;
370 int cpu_index;
371
372 #if defined(CONFIG_USER_ONLY)
373 cpu_list_lock();
374 #endif
375 cpu_index = 0;
376 CPU_FOREACH(some_cpu) {
377 cpu_index++;
378 }
379 cpu->cpu_index = cpu_index;
380 cpu->numa_node = 0;
381 QTAILQ_INIT(&env->breakpoints);
382 QTAILQ_INIT(&env->watchpoints);
383 #ifndef CONFIG_USER_ONLY
384 cpu->thread_id = qemu_get_thread_id();
385 #endif
386 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
387 #if defined(CONFIG_USER_ONLY)
388 cpu_list_unlock();
389 #endif
390 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
391 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
392 }
393 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
394 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
395 cpu_save, cpu_load, env);
396 assert(cc->vmsd == NULL);
397 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
398 #endif
399 if (cc->vmsd != NULL) {
400 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
401 }
402 }
403
404 #if defined(TARGET_HAS_ICE)
405 #if defined(CONFIG_USER_ONLY)
406 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
407 {
408 tb_invalidate_phys_page_range(pc, pc + 1, 0);
409 }
410 #else
411 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
412 {
413 tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
414 (pc & ~TARGET_PAGE_MASK));
415 }
416 #endif
417 #endif /* TARGET_HAS_ICE */
418
419 #if defined(CONFIG_USER_ONLY)
420 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
421
422 {
423 }
424
425 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
426 int flags, CPUWatchpoint **watchpoint)
427 {
428 return -ENOSYS;
429 }
430 #else
431 /* Add a watchpoint. */
432 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
433 int flags, CPUWatchpoint **watchpoint)
434 {
435 target_ulong len_mask = ~(len - 1);
436 CPUWatchpoint *wp;
437
438 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
439 if ((len & (len - 1)) || (addr & ~len_mask) ||
440 len == 0 || len > TARGET_PAGE_SIZE) {
441 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
442 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
443 return -EINVAL;
444 }
445 wp = g_malloc(sizeof(*wp));
446
447 wp->vaddr = addr;
448 wp->len_mask = len_mask;
449 wp->flags = flags;
450
451 /* keep all GDB-injected watchpoints in front */
452 if (flags & BP_GDB)
453 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
454 else
455 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
456
457 tlb_flush_page(env, addr);
458
459 if (watchpoint)
460 *watchpoint = wp;
461 return 0;
462 }
463
464 /* Remove a specific watchpoint. */
465 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
466 int flags)
467 {
468 target_ulong len_mask = ~(len - 1);
469 CPUWatchpoint *wp;
470
471 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
472 if (addr == wp->vaddr && len_mask == wp->len_mask
473 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
474 cpu_watchpoint_remove_by_ref(env, wp);
475 return 0;
476 }
477 }
478 return -ENOENT;
479 }
480
481 /* Remove a specific watchpoint by reference. */
482 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
483 {
484 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
485
486 tlb_flush_page(env, watchpoint->vaddr);
487
488 g_free(watchpoint);
489 }
490
491 /* Remove all matching watchpoints. */
492 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
493 {
494 CPUWatchpoint *wp, *next;
495
496 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
497 if (wp->flags & mask)
498 cpu_watchpoint_remove_by_ref(env, wp);
499 }
500 }
501 #endif
502
503 /* Add a breakpoint. */
504 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
505 CPUBreakpoint **breakpoint)
506 {
507 #if defined(TARGET_HAS_ICE)
508 CPUBreakpoint *bp;
509
510 bp = g_malloc(sizeof(*bp));
511
512 bp->pc = pc;
513 bp->flags = flags;
514
515 /* keep all GDB-injected breakpoints in front */
516 if (flags & BP_GDB) {
517 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
518 } else {
519 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
520 }
521
522 breakpoint_invalidate(ENV_GET_CPU(env), pc);
523
524 if (breakpoint) {
525 *breakpoint = bp;
526 }
527 return 0;
528 #else
529 return -ENOSYS;
530 #endif
531 }
532
533 /* Remove a specific breakpoint. */
534 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
535 {
536 #if defined(TARGET_HAS_ICE)
537 CPUBreakpoint *bp;
538
539 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
540 if (bp->pc == pc && bp->flags == flags) {
541 cpu_breakpoint_remove_by_ref(env, bp);
542 return 0;
543 }
544 }
545 return -ENOENT;
546 #else
547 return -ENOSYS;
548 #endif
549 }
550
551 /* Remove a specific breakpoint by reference. */
552 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
553 {
554 #if defined(TARGET_HAS_ICE)
555 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
556
557 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
558
559 g_free(breakpoint);
560 #endif
561 }
562
563 /* Remove all matching breakpoints. */
564 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
565 {
566 #if defined(TARGET_HAS_ICE)
567 CPUBreakpoint *bp, *next;
568
569 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
570 if (bp->flags & mask)
571 cpu_breakpoint_remove_by_ref(env, bp);
572 }
573 #endif
574 }
575
576 /* enable or disable single step mode. EXCP_DEBUG is returned by the
577 CPU loop after each instruction */
578 void cpu_single_step(CPUState *cpu, int enabled)
579 {
580 #if defined(TARGET_HAS_ICE)
581 if (cpu->singlestep_enabled != enabled) {
582 cpu->singlestep_enabled = enabled;
583 if (kvm_enabled()) {
584 kvm_update_guest_debug(cpu, 0);
585 } else {
586 /* must flush all the translated code to avoid inconsistencies */
587 /* XXX: only flush what is necessary */
588 CPUArchState *env = cpu->env_ptr;
589 tb_flush(env);
590 }
591 }
592 #endif
593 }
594
595 void cpu_abort(CPUArchState *env, const char *fmt, ...)
596 {
597 CPUState *cpu = ENV_GET_CPU(env);
598 va_list ap;
599 va_list ap2;
600
601 va_start(ap, fmt);
602 va_copy(ap2, ap);
603 fprintf(stderr, "qemu: fatal: ");
604 vfprintf(stderr, fmt, ap);
605 fprintf(stderr, "\n");
606 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
607 if (qemu_log_enabled()) {
608 qemu_log("qemu: fatal: ");
609 qemu_log_vprintf(fmt, ap2);
610 qemu_log("\n");
611 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 qemu_log_flush();
613 qemu_log_close();
614 }
615 va_end(ap2);
616 va_end(ap);
617 #if defined(CONFIG_USER_ONLY)
618 {
619 struct sigaction act;
620 sigfillset(&act.sa_mask);
621 act.sa_handler = SIG_DFL;
622 sigaction(SIGABRT, &act, NULL);
623 }
624 #endif
625 abort();
626 }
627
628 CPUArchState *cpu_copy(CPUArchState *env)
629 {
630 CPUArchState *new_env = cpu_init(env->cpu_model_str);
631 #if defined(TARGET_HAS_ICE)
632 CPUBreakpoint *bp;
633 CPUWatchpoint *wp;
634 #endif
635
636 /* Reset non arch specific state */
637 cpu_reset(ENV_GET_CPU(new_env));
638
639 /* Copy arch specific state into the new CPU */
640 memcpy(new_env, env, sizeof(CPUArchState));
641
642 /* Clone all break/watchpoints.
643 Note: Once we support ptrace with hw-debug register access, make sure
644 BP_CPU break/watchpoints are handled correctly on clone. */
645 QTAILQ_INIT(&env->breakpoints);
646 QTAILQ_INIT(&env->watchpoints);
647 #if defined(TARGET_HAS_ICE)
648 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
649 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
650 }
651 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
652 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
653 wp->flags, NULL);
654 }
655 #endif
656
657 return new_env;
658 }
659
660 #if !defined(CONFIG_USER_ONLY)
661 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
662 uintptr_t length)
663 {
664 uintptr_t start1;
665
666 /* we modify the TLB cache so that the dirty bit will be set again
667 when accessing the range */
668 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
669 /* Check that we don't span multiple blocks - this breaks the
670 address comparisons below. */
671 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
672 != (end - 1) - start) {
673 abort();
674 }
675 cpu_tlb_reset_dirty_all(start1, length);
676
677 }
678
679 /* Note: start and end must be within the same ram block. */
680 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
681 int dirty_flags)
682 {
683 uintptr_t length;
684
685 start &= TARGET_PAGE_MASK;
686 end = TARGET_PAGE_ALIGN(end);
687
688 length = end - start;
689 if (length == 0)
690 return;
691 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
692
693 if (tcg_enabled()) {
694 tlb_reset_dirty_range_all(start, end, length);
695 }
696 }
697
698 static int cpu_physical_memory_set_dirty_tracking(int enable)
699 {
700 int ret = 0;
701 in_migration = enable;
702 return ret;
703 }
704
705 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
706 MemoryRegionSection *section,
707 target_ulong vaddr,
708 hwaddr paddr, hwaddr xlat,
709 int prot,
710 target_ulong *address)
711 {
712 hwaddr iotlb;
713 CPUWatchpoint *wp;
714
715 if (memory_region_is_ram(section->mr)) {
716 /* Normal RAM. */
717 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
718 + xlat;
719 if (!section->readonly) {
720 iotlb |= PHYS_SECTION_NOTDIRTY;
721 } else {
722 iotlb |= PHYS_SECTION_ROM;
723 }
724 } else {
725 iotlb = section - address_space_memory.dispatch->sections;
726 iotlb += xlat;
727 }
728
729 /* Make accesses to pages with watchpoints go via the
730 watchpoint trap routines. */
731 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
732 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
733 /* Avoid trapping reads of pages with a write breakpoint. */
734 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
735 iotlb = PHYS_SECTION_WATCH + paddr;
736 *address |= TLB_MMIO;
737 break;
738 }
739 }
740 }
741
742 return iotlb;
743 }
744 #endif /* defined(CONFIG_USER_ONLY) */
745
746 #if !defined(CONFIG_USER_ONLY)
747
748 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
749 uint16_t section);
750 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
751
752 static uint16_t phys_section_add(MemoryRegionSection *section)
753 {
754 /* The physical section number is ORed with a page-aligned
755 * pointer to produce the iotlb entries. Thus it should
756 * never overflow into the page-aligned value.
757 */
758 assert(next_map.sections_nb < TARGET_PAGE_SIZE);
759
760 if (next_map.sections_nb == next_map.sections_nb_alloc) {
761 next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
762 16);
763 next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
764 next_map.sections_nb_alloc);
765 }
766 next_map.sections[next_map.sections_nb] = *section;
767 memory_region_ref(section->mr);
768 return next_map.sections_nb++;
769 }
770
771 static void phys_section_destroy(MemoryRegion *mr)
772 {
773 memory_region_unref(mr);
774
775 if (mr->subpage) {
776 subpage_t *subpage = container_of(mr, subpage_t, iomem);
777 memory_region_destroy(&subpage->iomem);
778 g_free(subpage);
779 }
780 }
781
782 static void phys_sections_free(PhysPageMap *map)
783 {
784 while (map->sections_nb > 0) {
785 MemoryRegionSection *section = &map->sections[--map->sections_nb];
786 phys_section_destroy(section->mr);
787 }
788 g_free(map->sections);
789 g_free(map->nodes);
790 g_free(map);
791 }
792
793 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
794 {
795 subpage_t *subpage;
796 hwaddr base = section->offset_within_address_space
797 & TARGET_PAGE_MASK;
798 MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
799 next_map.nodes, next_map.sections);
800 MemoryRegionSection subsection = {
801 .offset_within_address_space = base,
802 .size = int128_make64(TARGET_PAGE_SIZE),
803 };
804 hwaddr start, end;
805
806 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
807
808 if (!(existing->mr->subpage)) {
809 subpage = subpage_init(d->as, base);
810 subsection.mr = &subpage->iomem;
811 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
812 phys_section_add(&subsection));
813 } else {
814 subpage = container_of(existing->mr, subpage_t, iomem);
815 }
816 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
817 end = start + int128_get64(section->size) - 1;
818 subpage_register(subpage, start, end, phys_section_add(section));
819 }
820
821
822 static void register_multipage(AddressSpaceDispatch *d,
823 MemoryRegionSection *section)
824 {
825 hwaddr start_addr = section->offset_within_address_space;
826 uint16_t section_index = phys_section_add(section);
827 uint64_t num_pages = int128_get64(int128_rshift(section->size,
828 TARGET_PAGE_BITS));
829
830 assert(num_pages);
831 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
832 }
833
834 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
835 {
836 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
837 AddressSpaceDispatch *d = as->next_dispatch;
838 MemoryRegionSection now = *section, remain = *section;
839 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
840
841 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
842 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
843 - now.offset_within_address_space;
844
845 now.size = int128_min(int128_make64(left), now.size);
846 register_subpage(d, &now);
847 } else {
848 now.size = int128_zero();
849 }
850 while (int128_ne(remain.size, now.size)) {
851 remain.size = int128_sub(remain.size, now.size);
852 remain.offset_within_address_space += int128_get64(now.size);
853 remain.offset_within_region += int128_get64(now.size);
854 now = remain;
855 if (int128_lt(remain.size, page_size)) {
856 register_subpage(d, &now);
857 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
858 now.size = page_size;
859 register_subpage(d, &now);
860 } else {
861 now.size = int128_and(now.size, int128_neg(page_size));
862 register_multipage(d, &now);
863 }
864 }
865 }
866
867 void qemu_flush_coalesced_mmio_buffer(void)
868 {
869 if (kvm_enabled())
870 kvm_flush_coalesced_mmio_buffer();
871 }
872
873 void qemu_mutex_lock_ramlist(void)
874 {
875 qemu_mutex_lock(&ram_list.mutex);
876 }
877
878 void qemu_mutex_unlock_ramlist(void)
879 {
880 qemu_mutex_unlock(&ram_list.mutex);
881 }
882
883 #if defined(__linux__) && !defined(TARGET_S390X)
884
885 #include <sys/vfs.h>
886
887 #define HUGETLBFS_MAGIC 0x958458f6
888
889 static long gethugepagesize(const char *path)
890 {
891 struct statfs fs;
892 int ret;
893
894 do {
895 ret = statfs(path, &fs);
896 } while (ret != 0 && errno == EINTR);
897
898 if (ret != 0) {
899 perror(path);
900 return 0;
901 }
902
903 if (fs.f_type != HUGETLBFS_MAGIC)
904 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
905
906 return fs.f_bsize;
907 }
908
909 static void *file_ram_alloc(RAMBlock *block,
910 ram_addr_t memory,
911 const char *path)
912 {
913 char *filename;
914 char *sanitized_name;
915 char *c;
916 void *area;
917 int fd;
918 #ifdef MAP_POPULATE
919 int flags;
920 #endif
921 unsigned long hpagesize;
922
923 hpagesize = gethugepagesize(path);
924 if (!hpagesize) {
925 return NULL;
926 }
927
928 if (memory < hpagesize) {
929 return NULL;
930 }
931
932 if (kvm_enabled() && !kvm_has_sync_mmu()) {
933 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
934 return NULL;
935 }
936
937 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
938 sanitized_name = g_strdup(block->mr->name);
939 for (c = sanitized_name; *c != '\0'; c++) {
940 if (*c == '/')
941 *c = '_';
942 }
943
944 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
945 sanitized_name);
946 g_free(sanitized_name);
947
948 fd = mkstemp(filename);
949 if (fd < 0) {
950 perror("unable to create backing store for hugepages");
951 g_free(filename);
952 return NULL;
953 }
954 unlink(filename);
955 g_free(filename);
956
957 memory = (memory+hpagesize-1) & ~(hpagesize-1);
958
959 /*
960 * ftruncate is not supported by hugetlbfs in older
961 * hosts, so don't bother bailing out on errors.
962 * If anything goes wrong with it under other filesystems,
963 * mmap will fail.
964 */
965 if (ftruncate(fd, memory))
966 perror("ftruncate");
967
968 #ifdef MAP_POPULATE
969 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
970 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
971 * to sidestep this quirk.
972 */
973 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
974 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
975 #else
976 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
977 #endif
978 if (area == MAP_FAILED) {
979 perror("file_ram_alloc: can't mmap RAM pages");
980 close(fd);
981 return (NULL);
982 }
983 block->fd = fd;
984 return area;
985 }
986 #endif
987
988 static ram_addr_t find_ram_offset(ram_addr_t size)
989 {
990 RAMBlock *block, *next_block;
991 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
992
993 assert(size != 0); /* it would hand out same offset multiple times */
994
995 if (QTAILQ_EMPTY(&ram_list.blocks))
996 return 0;
997
998 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
999 ram_addr_t end, next = RAM_ADDR_MAX;
1000
1001 end = block->offset + block->length;
1002
1003 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1004 if (next_block->offset >= end) {
1005 next = MIN(next, next_block->offset);
1006 }
1007 }
1008 if (next - end >= size && next - end < mingap) {
1009 offset = end;
1010 mingap = next - end;
1011 }
1012 }
1013
1014 if (offset == RAM_ADDR_MAX) {
1015 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1016 (uint64_t)size);
1017 abort();
1018 }
1019
1020 return offset;
1021 }
1022
1023 ram_addr_t last_ram_offset(void)
1024 {
1025 RAMBlock *block;
1026 ram_addr_t last = 0;
1027
1028 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1029 last = MAX(last, block->offset + block->length);
1030
1031 return last;
1032 }
1033
1034 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1035 {
1036 int ret;
1037
1038 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1039 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1040 "dump-guest-core", true)) {
1041 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1042 if (ret) {
1043 perror("qemu_madvise");
1044 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1045 "but dump_guest_core=off specified\n");
1046 }
1047 }
1048 }
1049
1050 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1051 {
1052 RAMBlock *new_block, *block;
1053
1054 new_block = NULL;
1055 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1056 if (block->offset == addr) {
1057 new_block = block;
1058 break;
1059 }
1060 }
1061 assert(new_block);
1062 assert(!new_block->idstr[0]);
1063
1064 if (dev) {
1065 char *id = qdev_get_dev_path(dev);
1066 if (id) {
1067 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1068 g_free(id);
1069 }
1070 }
1071 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1072
1073 /* This assumes the iothread lock is taken here too. */
1074 qemu_mutex_lock_ramlist();
1075 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1076 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1077 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1078 new_block->idstr);
1079 abort();
1080 }
1081 }
1082 qemu_mutex_unlock_ramlist();
1083 }
1084
1085 static int memory_try_enable_merging(void *addr, size_t len)
1086 {
1087 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1088 /* disabled by the user */
1089 return 0;
1090 }
1091
1092 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1093 }
1094
1095 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1096 MemoryRegion *mr)
1097 {
1098 RAMBlock *block, *new_block;
1099
1100 size = TARGET_PAGE_ALIGN(size);
1101 new_block = g_malloc0(sizeof(*new_block));
1102
1103 /* This assumes the iothread lock is taken here too. */
1104 qemu_mutex_lock_ramlist();
1105 new_block->mr = mr;
1106 new_block->offset = find_ram_offset(size);
1107 if (host) {
1108 new_block->host = host;
1109 new_block->flags |= RAM_PREALLOC_MASK;
1110 } else if (xen_enabled()) {
1111 if (mem_path) {
1112 fprintf(stderr, "-mem-path not supported with Xen\n");
1113 exit(1);
1114 }
1115 xen_ram_alloc(new_block->offset, size, mr);
1116 } else {
1117 if (mem_path) {
1118 #if defined (__linux__) && !defined(TARGET_S390X)
1119 new_block->host = file_ram_alloc(new_block, size, mem_path);
1120 if (!new_block->host) {
1121 new_block->host = qemu_anon_ram_alloc(size);
1122 memory_try_enable_merging(new_block->host, size);
1123 }
1124 #else
1125 fprintf(stderr, "-mem-path option unsupported\n");
1126 exit(1);
1127 #endif
1128 } else {
1129 if (kvm_enabled()) {
1130 /* some s390/kvm configurations have special constraints */
1131 new_block->host = kvm_ram_alloc(size);
1132 } else {
1133 new_block->host = qemu_anon_ram_alloc(size);
1134 }
1135 memory_try_enable_merging(new_block->host, size);
1136 }
1137 }
1138 new_block->length = size;
1139
1140 /* Keep the list sorted from biggest to smallest block. */
1141 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1142 if (block->length < new_block->length) {
1143 break;
1144 }
1145 }
1146 if (block) {
1147 QTAILQ_INSERT_BEFORE(block, new_block, next);
1148 } else {
1149 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1150 }
1151 ram_list.mru_block = NULL;
1152
1153 ram_list.version++;
1154 qemu_mutex_unlock_ramlist();
1155
1156 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1157 last_ram_offset() >> TARGET_PAGE_BITS);
1158 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1159 0, size >> TARGET_PAGE_BITS);
1160 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1161
1162 qemu_ram_setup_dump(new_block->host, size);
1163 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1164
1165 if (kvm_enabled())
1166 kvm_setup_guest_memory(new_block->host, size);
1167
1168 return new_block->offset;
1169 }
1170
1171 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1172 {
1173 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1174 }
1175
1176 void qemu_ram_free_from_ptr(ram_addr_t addr)
1177 {
1178 RAMBlock *block;
1179
1180 /* This assumes the iothread lock is taken here too. */
1181 qemu_mutex_lock_ramlist();
1182 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1183 if (addr == block->offset) {
1184 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1185 ram_list.mru_block = NULL;
1186 ram_list.version++;
1187 g_free(block);
1188 break;
1189 }
1190 }
1191 qemu_mutex_unlock_ramlist();
1192 }
1193
1194 void qemu_ram_free(ram_addr_t addr)
1195 {
1196 RAMBlock *block;
1197
1198 /* This assumes the iothread lock is taken here too. */
1199 qemu_mutex_lock_ramlist();
1200 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1201 if (addr == block->offset) {
1202 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1203 ram_list.mru_block = NULL;
1204 ram_list.version++;
1205 if (block->flags & RAM_PREALLOC_MASK) {
1206 ;
1207 } else if (xen_enabled()) {
1208 xen_invalidate_map_cache_entry(block->host);
1209 } else if (mem_path) {
1210 #if defined (__linux__) && !defined(TARGET_S390X)
1211 if (block->fd) {
1212 munmap(block->host, block->length);
1213 close(block->fd);
1214 } else {
1215 qemu_anon_ram_free(block->host, block->length);
1216 }
1217 #else
1218 abort();
1219 #endif
1220 } else {
1221 qemu_anon_ram_free(block->host, block->length);
1222 }
1223 g_free(block);
1224 break;
1225 }
1226 }
1227 qemu_mutex_unlock_ramlist();
1228
1229 }
1230
1231 #ifndef _WIN32
1232 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1233 {
1234 RAMBlock *block;
1235 ram_addr_t offset;
1236 int flags;
1237 void *area, *vaddr;
1238
1239 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1240 offset = addr - block->offset;
1241 if (offset < block->length) {
1242 vaddr = block->host + offset;
1243 if (block->flags & RAM_PREALLOC_MASK) {
1244 ;
1245 } else if (xen_enabled()) {
1246 abort();
1247 } else {
1248 flags = MAP_FIXED;
1249 munmap(vaddr, length);
1250 if (mem_path) {
1251 #if defined(__linux__) && !defined(TARGET_S390X)
1252 if (block->fd) {
1253 #ifdef MAP_POPULATE
1254 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1255 MAP_PRIVATE;
1256 #else
1257 flags |= MAP_PRIVATE;
1258 #endif
1259 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1260 flags, block->fd, offset);
1261 } else {
1262 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1263 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1264 flags, -1, 0);
1265 }
1266 #else
1267 abort();
1268 #endif
1269 } else {
1270 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1271 flags |= MAP_SHARED | MAP_ANONYMOUS;
1272 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1273 flags, -1, 0);
1274 #else
1275 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1276 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1277 flags, -1, 0);
1278 #endif
1279 }
1280 if (area != vaddr) {
1281 fprintf(stderr, "Could not remap addr: "
1282 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1283 length, addr);
1284 exit(1);
1285 }
1286 memory_try_enable_merging(vaddr, length);
1287 qemu_ram_setup_dump(vaddr, length);
1288 }
1289 return;
1290 }
1291 }
1292 }
1293 #endif /* !_WIN32 */
1294
1295 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1296 {
1297 RAMBlock *block;
1298
1299 /* The list is protected by the iothread lock here. */
1300 block = ram_list.mru_block;
1301 if (block && addr - block->offset < block->length) {
1302 goto found;
1303 }
1304 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1305 if (addr - block->offset < block->length) {
1306 goto found;
1307 }
1308 }
1309
1310 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1311 abort();
1312
1313 found:
1314 ram_list.mru_block = block;
1315 return block;
1316 }
1317
1318 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1319 With the exception of the softmmu code in this file, this should
1320 only be used for local memory (e.g. video ram) that the device owns,
1321 and knows it isn't going to access beyond the end of the block.
1322
1323 It should not be used for general purpose DMA.
1324 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1325 */
1326 void *qemu_get_ram_ptr(ram_addr_t addr)
1327 {
1328 RAMBlock *block = qemu_get_ram_block(addr);
1329
1330 if (xen_enabled()) {
1331 /* We need to check if the requested address is in the RAM
1332 * because we don't want to map the entire memory in QEMU.
1333 * In that case just map until the end of the page.
1334 */
1335 if (block->offset == 0) {
1336 return xen_map_cache(addr, 0, 0);
1337 } else if (block->host == NULL) {
1338 block->host =
1339 xen_map_cache(block->offset, block->length, 1);
1340 }
1341 }
1342 return block->host + (addr - block->offset);
1343 }
1344
1345 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1346 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1347 *
1348 * ??? Is this still necessary?
1349 */
1350 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1351 {
1352 RAMBlock *block;
1353
1354 /* The list is protected by the iothread lock here. */
1355 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1356 if (addr - block->offset < block->length) {
1357 if (xen_enabled()) {
1358 /* We need to check if the requested address is in the RAM
1359 * because we don't want to map the entire memory in QEMU.
1360 * In that case just map until the end of the page.
1361 */
1362 if (block->offset == 0) {
1363 return xen_map_cache(addr, 0, 0);
1364 } else if (block->host == NULL) {
1365 block->host =
1366 xen_map_cache(block->offset, block->length, 1);
1367 }
1368 }
1369 return block->host + (addr - block->offset);
1370 }
1371 }
1372
1373 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1374 abort();
1375
1376 return NULL;
1377 }
1378
1379 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1380 * but takes a size argument */
1381 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1382 {
1383 if (*size == 0) {
1384 return NULL;
1385 }
1386 if (xen_enabled()) {
1387 return xen_map_cache(addr, *size, 1);
1388 } else {
1389 RAMBlock *block;
1390
1391 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1392 if (addr - block->offset < block->length) {
1393 if (addr - block->offset + *size > block->length)
1394 *size = block->length - addr + block->offset;
1395 return block->host + (addr - block->offset);
1396 }
1397 }
1398
1399 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1400 abort();
1401 }
1402 }
1403
1404 /* Some of the softmmu routines need to translate from a host pointer
1405 (typically a TLB entry) back to a ram offset. */
1406 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1407 {
1408 RAMBlock *block;
1409 uint8_t *host = ptr;
1410
1411 if (xen_enabled()) {
1412 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1413 return qemu_get_ram_block(*ram_addr)->mr;
1414 }
1415
1416 block = ram_list.mru_block;
1417 if (block && block->host && host - block->host < block->length) {
1418 goto found;
1419 }
1420
1421 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1422 /* This case append when the block is not mapped. */
1423 if (block->host == NULL) {
1424 continue;
1425 }
1426 if (host - block->host < block->length) {
1427 goto found;
1428 }
1429 }
1430
1431 return NULL;
1432
1433 found:
1434 *ram_addr = block->offset + (host - block->host);
1435 return block->mr;
1436 }
1437
1438 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1439 uint64_t val, unsigned size)
1440 {
1441 int dirty_flags;
1442 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1443 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1444 tb_invalidate_phys_page_fast(ram_addr, size);
1445 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1446 }
1447 switch (size) {
1448 case 1:
1449 stb_p(qemu_get_ram_ptr(ram_addr), val);
1450 break;
1451 case 2:
1452 stw_p(qemu_get_ram_ptr(ram_addr), val);
1453 break;
1454 case 4:
1455 stl_p(qemu_get_ram_ptr(ram_addr), val);
1456 break;
1457 default:
1458 abort();
1459 }
1460 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1461 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1462 /* we remove the notdirty callback only if the code has been
1463 flushed */
1464 if (dirty_flags == 0xff) {
1465 CPUArchState *env = current_cpu->env_ptr;
1466 tlb_set_dirty(env, env->mem_io_vaddr);
1467 }
1468 }
1469
1470 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1471 unsigned size, bool is_write)
1472 {
1473 return is_write;
1474 }
1475
1476 static const MemoryRegionOps notdirty_mem_ops = {
1477 .write = notdirty_mem_write,
1478 .valid.accepts = notdirty_mem_accepts,
1479 .endianness = DEVICE_NATIVE_ENDIAN,
1480 };
1481
1482 /* Generate a debug exception if a watchpoint has been hit. */
1483 static void check_watchpoint(int offset, int len_mask, int flags)
1484 {
1485 CPUArchState *env = current_cpu->env_ptr;
1486 target_ulong pc, cs_base;
1487 target_ulong vaddr;
1488 CPUWatchpoint *wp;
1489 int cpu_flags;
1490
1491 if (env->watchpoint_hit) {
1492 /* We re-entered the check after replacing the TB. Now raise
1493 * the debug interrupt so that is will trigger after the
1494 * current instruction. */
1495 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1496 return;
1497 }
1498 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1499 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1500 if ((vaddr == (wp->vaddr & len_mask) ||
1501 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1502 wp->flags |= BP_WATCHPOINT_HIT;
1503 if (!env->watchpoint_hit) {
1504 env->watchpoint_hit = wp;
1505 tb_check_watchpoint(env);
1506 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1507 env->exception_index = EXCP_DEBUG;
1508 cpu_loop_exit(env);
1509 } else {
1510 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1511 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1512 cpu_resume_from_signal(env, NULL);
1513 }
1514 }
1515 } else {
1516 wp->flags &= ~BP_WATCHPOINT_HIT;
1517 }
1518 }
1519 }
1520
1521 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1522 so these check for a hit then pass through to the normal out-of-line
1523 phys routines. */
1524 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1525 unsigned size)
1526 {
1527 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1528 switch (size) {
1529 case 1: return ldub_phys(addr);
1530 case 2: return lduw_phys(addr);
1531 case 4: return ldl_phys(addr);
1532 default: abort();
1533 }
1534 }
1535
1536 static void watch_mem_write(void *opaque, hwaddr addr,
1537 uint64_t val, unsigned size)
1538 {
1539 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1540 switch (size) {
1541 case 1:
1542 stb_phys(addr, val);
1543 break;
1544 case 2:
1545 stw_phys(addr, val);
1546 break;
1547 case 4:
1548 stl_phys(addr, val);
1549 break;
1550 default: abort();
1551 }
1552 }
1553
1554 static const MemoryRegionOps watch_mem_ops = {
1555 .read = watch_mem_read,
1556 .write = watch_mem_write,
1557 .endianness = DEVICE_NATIVE_ENDIAN,
1558 };
1559
1560 static uint64_t subpage_read(void *opaque, hwaddr addr,
1561 unsigned len)
1562 {
1563 subpage_t *subpage = opaque;
1564 uint8_t buf[4];
1565
1566 #if defined(DEBUG_SUBPAGE)
1567 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1568 subpage, len, addr);
1569 #endif
1570 address_space_read(subpage->as, addr + subpage->base, buf, len);
1571 switch (len) {
1572 case 1:
1573 return ldub_p(buf);
1574 case 2:
1575 return lduw_p(buf);
1576 case 4:
1577 return ldl_p(buf);
1578 default:
1579 abort();
1580 }
1581 }
1582
1583 static void subpage_write(void *opaque, hwaddr addr,
1584 uint64_t value, unsigned len)
1585 {
1586 subpage_t *subpage = opaque;
1587 uint8_t buf[4];
1588
1589 #if defined(DEBUG_SUBPAGE)
1590 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1591 " value %"PRIx64"\n",
1592 __func__, subpage, len, addr, value);
1593 #endif
1594 switch (len) {
1595 case 1:
1596 stb_p(buf, value);
1597 break;
1598 case 2:
1599 stw_p(buf, value);
1600 break;
1601 case 4:
1602 stl_p(buf, value);
1603 break;
1604 default:
1605 abort();
1606 }
1607 address_space_write(subpage->as, addr + subpage->base, buf, len);
1608 }
1609
1610 static bool subpage_accepts(void *opaque, hwaddr addr,
1611 unsigned size, bool is_write)
1612 {
1613 subpage_t *subpage = opaque;
1614 #if defined(DEBUG_SUBPAGE)
1615 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1616 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1617 #endif
1618
1619 return address_space_access_valid(subpage->as, addr + subpage->base,
1620 size, is_write);
1621 }
1622
1623 static const MemoryRegionOps subpage_ops = {
1624 .read = subpage_read,
1625 .write = subpage_write,
1626 .valid.accepts = subpage_accepts,
1627 .endianness = DEVICE_NATIVE_ENDIAN,
1628 };
1629
1630 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1631 uint16_t section)
1632 {
1633 int idx, eidx;
1634
1635 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1636 return -1;
1637 idx = SUBPAGE_IDX(start);
1638 eidx = SUBPAGE_IDX(end);
1639 #if defined(DEBUG_SUBPAGE)
1640 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1641 mmio, start, end, idx, eidx, memory);
1642 #endif
1643 for (; idx <= eidx; idx++) {
1644 mmio->sub_section[idx] = section;
1645 }
1646
1647 return 0;
1648 }
1649
1650 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1651 {
1652 subpage_t *mmio;
1653
1654 mmio = g_malloc0(sizeof(subpage_t));
1655
1656 mmio->as = as;
1657 mmio->base = base;
1658 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1659 "subpage", TARGET_PAGE_SIZE);
1660 mmio->iomem.subpage = true;
1661 #if defined(DEBUG_SUBPAGE)
1662 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1663 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1664 #endif
1665 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1666
1667 return mmio;
1668 }
1669
1670 static uint16_t dummy_section(MemoryRegion *mr)
1671 {
1672 MemoryRegionSection section = {
1673 .mr = mr,
1674 .offset_within_address_space = 0,
1675 .offset_within_region = 0,
1676 .size = int128_2_64(),
1677 };
1678
1679 return phys_section_add(&section);
1680 }
1681
1682 MemoryRegion *iotlb_to_region(hwaddr index)
1683 {
1684 return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
1685 }
1686
1687 static void io_mem_init(void)
1688 {
1689 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1690 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1691 "unassigned", UINT64_MAX);
1692 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1693 "notdirty", UINT64_MAX);
1694 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1695 "watch", UINT64_MAX);
1696 }
1697
1698 static void mem_begin(MemoryListener *listener)
1699 {
1700 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1701 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1702
1703 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1704 d->as = as;
1705 as->next_dispatch = d;
1706 }
1707
1708 static void mem_commit(MemoryListener *listener)
1709 {
1710 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1711 AddressSpaceDispatch *cur = as->dispatch;
1712 AddressSpaceDispatch *next = as->next_dispatch;
1713
1714 next->nodes = next_map.nodes;
1715 next->sections = next_map.sections;
1716
1717 as->dispatch = next;
1718 g_free(cur);
1719 }
1720
1721 static void core_begin(MemoryListener *listener)
1722 {
1723 uint16_t n;
1724
1725 prev_map = g_new(PhysPageMap, 1);
1726 *prev_map = next_map;
1727
1728 memset(&next_map, 0, sizeof(next_map));
1729 n = dummy_section(&io_mem_unassigned);
1730 assert(n == PHYS_SECTION_UNASSIGNED);
1731 n = dummy_section(&io_mem_notdirty);
1732 assert(n == PHYS_SECTION_NOTDIRTY);
1733 n = dummy_section(&io_mem_rom);
1734 assert(n == PHYS_SECTION_ROM);
1735 n = dummy_section(&io_mem_watch);
1736 assert(n == PHYS_SECTION_WATCH);
1737 }
1738
1739 /* This listener's commit run after the other AddressSpaceDispatch listeners'.
1740 * All AddressSpaceDispatch instances have switched to the next map.
1741 */
1742 static void core_commit(MemoryListener *listener)
1743 {
1744 phys_sections_free(prev_map);
1745 }
1746
1747 static void tcg_commit(MemoryListener *listener)
1748 {
1749 CPUState *cpu;
1750
1751 /* since each CPU stores ram addresses in its TLB cache, we must
1752 reset the modified entries */
1753 /* XXX: slow ! */
1754 CPU_FOREACH(cpu) {
1755 CPUArchState *env = cpu->env_ptr;
1756
1757 tlb_flush(env, 1);
1758 }
1759 }
1760
1761 static void core_log_global_start(MemoryListener *listener)
1762 {
1763 cpu_physical_memory_set_dirty_tracking(1);
1764 }
1765
1766 static void core_log_global_stop(MemoryListener *listener)
1767 {
1768 cpu_physical_memory_set_dirty_tracking(0);
1769 }
1770
1771 static MemoryListener core_memory_listener = {
1772 .begin = core_begin,
1773 .commit = core_commit,
1774 .log_global_start = core_log_global_start,
1775 .log_global_stop = core_log_global_stop,
1776 .priority = 1,
1777 };
1778
1779 static MemoryListener tcg_memory_listener = {
1780 .commit = tcg_commit,
1781 };
1782
1783 void address_space_init_dispatch(AddressSpace *as)
1784 {
1785 as->dispatch = NULL;
1786 as->dispatch_listener = (MemoryListener) {
1787 .begin = mem_begin,
1788 .commit = mem_commit,
1789 .region_add = mem_add,
1790 .region_nop = mem_add,
1791 .priority = 0,
1792 };
1793 memory_listener_register(&as->dispatch_listener, as);
1794 }
1795
1796 void address_space_destroy_dispatch(AddressSpace *as)
1797 {
1798 AddressSpaceDispatch *d = as->dispatch;
1799
1800 memory_listener_unregister(&as->dispatch_listener);
1801 g_free(d);
1802 as->dispatch = NULL;
1803 }
1804
1805 static void memory_map_init(void)
1806 {
1807 system_memory = g_malloc(sizeof(*system_memory));
1808 memory_region_init(system_memory, NULL, "system", INT64_MAX);
1809 address_space_init(&address_space_memory, system_memory, "memory");
1810
1811 system_io = g_malloc(sizeof(*system_io));
1812 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1813 65536);
1814 address_space_init(&address_space_io, system_io, "I/O");
1815
1816 memory_listener_register(&core_memory_listener, &address_space_memory);
1817 if (tcg_enabled()) {
1818 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1819 }
1820 }
1821
1822 MemoryRegion *get_system_memory(void)
1823 {
1824 return system_memory;
1825 }
1826
1827 MemoryRegion *get_system_io(void)
1828 {
1829 return system_io;
1830 }
1831
1832 #endif /* !defined(CONFIG_USER_ONLY) */
1833
1834 /* physical memory access (slow version, mainly for debug) */
1835 #if defined(CONFIG_USER_ONLY)
1836 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1837 uint8_t *buf, int len, int is_write)
1838 {
1839 int l, flags;
1840 target_ulong page;
1841 void * p;
1842
1843 while (len > 0) {
1844 page = addr & TARGET_PAGE_MASK;
1845 l = (page + TARGET_PAGE_SIZE) - addr;
1846 if (l > len)
1847 l = len;
1848 flags = page_get_flags(page);
1849 if (!(flags & PAGE_VALID))
1850 return -1;
1851 if (is_write) {
1852 if (!(flags & PAGE_WRITE))
1853 return -1;
1854 /* XXX: this code should not depend on lock_user */
1855 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1856 return -1;
1857 memcpy(p, buf, l);
1858 unlock_user(p, addr, l);
1859 } else {
1860 if (!(flags & PAGE_READ))
1861 return -1;
1862 /* XXX: this code should not depend on lock_user */
1863 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1864 return -1;
1865 memcpy(buf, p, l);
1866 unlock_user(p, addr, 0);
1867 }
1868 len -= l;
1869 buf += l;
1870 addr += l;
1871 }
1872 return 0;
1873 }
1874
1875 #else
1876
1877 static void invalidate_and_set_dirty(hwaddr addr,
1878 hwaddr length)
1879 {
1880 if (!cpu_physical_memory_is_dirty(addr)) {
1881 /* invalidate code */
1882 tb_invalidate_phys_page_range(addr, addr + length, 0);
1883 /* set dirty bit */
1884 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1885 }
1886 xen_modified_memory(addr, length);
1887 }
1888
1889 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1890 {
1891 if (memory_region_is_ram(mr)) {
1892 return !(is_write && mr->readonly);
1893 }
1894 if (memory_region_is_romd(mr)) {
1895 return !is_write;
1896 }
1897
1898 return false;
1899 }
1900
1901 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1902 {
1903 unsigned access_size_max = mr->ops->valid.max_access_size;
1904
1905 /* Regions are assumed to support 1-4 byte accesses unless
1906 otherwise specified. */
1907 if (access_size_max == 0) {
1908 access_size_max = 4;
1909 }
1910
1911 /* Bound the maximum access by the alignment of the address. */
1912 if (!mr->ops->impl.unaligned) {
1913 unsigned align_size_max = addr & -addr;
1914 if (align_size_max != 0 && align_size_max < access_size_max) {
1915 access_size_max = align_size_max;
1916 }
1917 }
1918
1919 /* Don't attempt accesses larger than the maximum. */
1920 if (l > access_size_max) {
1921 l = access_size_max;
1922 }
1923 if (l & (l - 1)) {
1924 l = 1 << (qemu_fls(l) - 1);
1925 }
1926
1927 return l;
1928 }
1929
1930 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1931 int len, bool is_write)
1932 {
1933 hwaddr l;
1934 uint8_t *ptr;
1935 uint64_t val;
1936 hwaddr addr1;
1937 MemoryRegion *mr;
1938 bool error = false;
1939
1940 while (len > 0) {
1941 l = len;
1942 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1943
1944 if (is_write) {
1945 if (!memory_access_is_direct(mr, is_write)) {
1946 l = memory_access_size(mr, l, addr1);
1947 /* XXX: could force current_cpu to NULL to avoid
1948 potential bugs */
1949 switch (l) {
1950 case 8:
1951 /* 64 bit write access */
1952 val = ldq_p(buf);
1953 error |= io_mem_write(mr, addr1, val, 8);
1954 break;
1955 case 4:
1956 /* 32 bit write access */
1957 val = ldl_p(buf);
1958 error |= io_mem_write(mr, addr1, val, 4);
1959 break;
1960 case 2:
1961 /* 16 bit write access */
1962 val = lduw_p(buf);
1963 error |= io_mem_write(mr, addr1, val, 2);
1964 break;
1965 case 1:
1966 /* 8 bit write access */
1967 val = ldub_p(buf);
1968 error |= io_mem_write(mr, addr1, val, 1);
1969 break;
1970 default:
1971 abort();
1972 }
1973 } else {
1974 addr1 += memory_region_get_ram_addr(mr);
1975 /* RAM case */
1976 ptr = qemu_get_ram_ptr(addr1);
1977 memcpy(ptr, buf, l);
1978 invalidate_and_set_dirty(addr1, l);
1979 }
1980 } else {
1981 if (!memory_access_is_direct(mr, is_write)) {
1982 /* I/O case */
1983 l = memory_access_size(mr, l, addr1);
1984 switch (l) {
1985 case 8:
1986 /* 64 bit read access */
1987 error |= io_mem_read(mr, addr1, &val, 8);
1988 stq_p(buf, val);
1989 break;
1990 case 4:
1991 /* 32 bit read access */
1992 error |= io_mem_read(mr, addr1, &val, 4);
1993 stl_p(buf, val);
1994 break;
1995 case 2:
1996 /* 16 bit read access */
1997 error |= io_mem_read(mr, addr1, &val, 2);
1998 stw_p(buf, val);
1999 break;
2000 case 1:
2001 /* 8 bit read access */
2002 error |= io_mem_read(mr, addr1, &val, 1);
2003 stb_p(buf, val);
2004 break;
2005 default:
2006 abort();
2007 }
2008 } else {
2009 /* RAM case */
2010 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2011 memcpy(buf, ptr, l);
2012 }
2013 }
2014 len -= l;
2015 buf += l;
2016 addr += l;
2017 }
2018
2019 return error;
2020 }
2021
2022 bool address_space_write(AddressSpace *as, hwaddr addr,
2023 const uint8_t *buf, int len)
2024 {
2025 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2026 }
2027
2028 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2029 {
2030 return address_space_rw(as, addr, buf, len, false);
2031 }
2032
2033
2034 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2035 int len, int is_write)
2036 {
2037 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2038 }
2039
2040 /* used for ROM loading : can write in RAM and ROM */
2041 void cpu_physical_memory_write_rom(hwaddr addr,
2042 const uint8_t *buf, int len)
2043 {
2044 hwaddr l;
2045 uint8_t *ptr;
2046 hwaddr addr1;
2047 MemoryRegion *mr;
2048
2049 while (len > 0) {
2050 l = len;
2051 mr = address_space_translate(&address_space_memory,
2052 addr, &addr1, &l, true);
2053
2054 if (!(memory_region_is_ram(mr) ||
2055 memory_region_is_romd(mr))) {
2056 /* do nothing */
2057 } else {
2058 addr1 += memory_region_get_ram_addr(mr);
2059 /* ROM/RAM case */
2060 ptr = qemu_get_ram_ptr(addr1);
2061 memcpy(ptr, buf, l);
2062 invalidate_and_set_dirty(addr1, l);
2063 }
2064 len -= l;
2065 buf += l;
2066 addr += l;
2067 }
2068 }
2069
2070 typedef struct {
2071 MemoryRegion *mr;
2072 void *buffer;
2073 hwaddr addr;
2074 hwaddr len;
2075 } BounceBuffer;
2076
2077 static BounceBuffer bounce;
2078
2079 typedef struct MapClient {
2080 void *opaque;
2081 void (*callback)(void *opaque);
2082 QLIST_ENTRY(MapClient) link;
2083 } MapClient;
2084
2085 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2086 = QLIST_HEAD_INITIALIZER(map_client_list);
2087
2088 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2089 {
2090 MapClient *client = g_malloc(sizeof(*client));
2091
2092 client->opaque = opaque;
2093 client->callback = callback;
2094 QLIST_INSERT_HEAD(&map_client_list, client, link);
2095 return client;
2096 }
2097
2098 static void cpu_unregister_map_client(void *_client)
2099 {
2100 MapClient *client = (MapClient *)_client;
2101
2102 QLIST_REMOVE(client, link);
2103 g_free(client);
2104 }
2105
2106 static void cpu_notify_map_clients(void)
2107 {
2108 MapClient *client;
2109
2110 while (!QLIST_EMPTY(&map_client_list)) {
2111 client = QLIST_FIRST(&map_client_list);
2112 client->callback(client->opaque);
2113 cpu_unregister_map_client(client);
2114 }
2115 }
2116
2117 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2118 {
2119 MemoryRegion *mr;
2120 hwaddr l, xlat;
2121
2122 while (len > 0) {
2123 l = len;
2124 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2125 if (!memory_access_is_direct(mr, is_write)) {
2126 l = memory_access_size(mr, l, addr);
2127 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2128 return false;
2129 }
2130 }
2131
2132 len -= l;
2133 addr += l;
2134 }
2135 return true;
2136 }
2137
2138 /* Map a physical memory region into a host virtual address.
2139 * May map a subset of the requested range, given by and returned in *plen.
2140 * May return NULL if resources needed to perform the mapping are exhausted.
2141 * Use only for reads OR writes - not for read-modify-write operations.
2142 * Use cpu_register_map_client() to know when retrying the map operation is
2143 * likely to succeed.
2144 */
2145 void *address_space_map(AddressSpace *as,
2146 hwaddr addr,
2147 hwaddr *plen,
2148 bool is_write)
2149 {
2150 hwaddr len = *plen;
2151 hwaddr done = 0;
2152 hwaddr l, xlat, base;
2153 MemoryRegion *mr, *this_mr;
2154 ram_addr_t raddr;
2155
2156 if (len == 0) {
2157 return NULL;
2158 }
2159
2160 l = len;
2161 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2162 if (!memory_access_is_direct(mr, is_write)) {
2163 if (bounce.buffer) {
2164 return NULL;
2165 }
2166 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2167 bounce.addr = addr;
2168 bounce.len = l;
2169
2170 memory_region_ref(mr);
2171 bounce.mr = mr;
2172 if (!is_write) {
2173 address_space_read(as, addr, bounce.buffer, l);
2174 }
2175
2176 *plen = l;
2177 return bounce.buffer;
2178 }
2179
2180 base = xlat;
2181 raddr = memory_region_get_ram_addr(mr);
2182
2183 for (;;) {
2184 len -= l;
2185 addr += l;
2186 done += l;
2187 if (len == 0) {
2188 break;
2189 }
2190
2191 l = len;
2192 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2193 if (this_mr != mr || xlat != base + done) {
2194 break;
2195 }
2196 }
2197
2198 memory_region_ref(mr);
2199 *plen = done;
2200 return qemu_ram_ptr_length(raddr + base, plen);
2201 }
2202
2203 /* Unmaps a memory region previously mapped by address_space_map().
2204 * Will also mark the memory as dirty if is_write == 1. access_len gives
2205 * the amount of memory that was actually read or written by the caller.
2206 */
2207 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2208 int is_write, hwaddr access_len)
2209 {
2210 if (buffer != bounce.buffer) {
2211 MemoryRegion *mr;
2212 ram_addr_t addr1;
2213
2214 mr = qemu_ram_addr_from_host(buffer, &addr1);
2215 assert(mr != NULL);
2216 if (is_write) {
2217 while (access_len) {
2218 unsigned l;
2219 l = TARGET_PAGE_SIZE;
2220 if (l > access_len)
2221 l = access_len;
2222 invalidate_and_set_dirty(addr1, l);
2223 addr1 += l;
2224 access_len -= l;
2225 }
2226 }
2227 if (xen_enabled()) {
2228 xen_invalidate_map_cache_entry(buffer);
2229 }
2230 memory_region_unref(mr);
2231 return;
2232 }
2233 if (is_write) {
2234 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2235 }
2236 qemu_vfree(bounce.buffer);
2237 bounce.buffer = NULL;
2238 memory_region_unref(bounce.mr);
2239 cpu_notify_map_clients();
2240 }
2241
2242 void *cpu_physical_memory_map(hwaddr addr,
2243 hwaddr *plen,
2244 int is_write)
2245 {
2246 return address_space_map(&address_space_memory, addr, plen, is_write);
2247 }
2248
2249 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2250 int is_write, hwaddr access_len)
2251 {
2252 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2253 }
2254
2255 /* warning: addr must be aligned */
2256 static inline uint32_t ldl_phys_internal(hwaddr addr,
2257 enum device_endian endian)
2258 {
2259 uint8_t *ptr;
2260 uint64_t val;
2261 MemoryRegion *mr;
2262 hwaddr l = 4;
2263 hwaddr addr1;
2264
2265 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2266 false);
2267 if (l < 4 || !memory_access_is_direct(mr, false)) {
2268 /* I/O case */
2269 io_mem_read(mr, addr1, &val, 4);
2270 #if defined(TARGET_WORDS_BIGENDIAN)
2271 if (endian == DEVICE_LITTLE_ENDIAN) {
2272 val = bswap32(val);
2273 }
2274 #else
2275 if (endian == DEVICE_BIG_ENDIAN) {
2276 val = bswap32(val);
2277 }
2278 #endif
2279 } else {
2280 /* RAM case */
2281 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2282 & TARGET_PAGE_MASK)
2283 + addr1);
2284 switch (endian) {
2285 case DEVICE_LITTLE_ENDIAN:
2286 val = ldl_le_p(ptr);
2287 break;
2288 case DEVICE_BIG_ENDIAN:
2289 val = ldl_be_p(ptr);
2290 break;
2291 default:
2292 val = ldl_p(ptr);
2293 break;
2294 }
2295 }
2296 return val;
2297 }
2298
2299 uint32_t ldl_phys(hwaddr addr)
2300 {
2301 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2302 }
2303
2304 uint32_t ldl_le_phys(hwaddr addr)
2305 {
2306 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2307 }
2308
2309 uint32_t ldl_be_phys(hwaddr addr)
2310 {
2311 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2312 }
2313
2314 /* warning: addr must be aligned */
2315 static inline uint64_t ldq_phys_internal(hwaddr addr,
2316 enum device_endian endian)
2317 {
2318 uint8_t *ptr;
2319 uint64_t val;
2320 MemoryRegion *mr;
2321 hwaddr l = 8;
2322 hwaddr addr1;
2323
2324 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2325 false);
2326 if (l < 8 || !memory_access_is_direct(mr, false)) {
2327 /* I/O case */
2328 io_mem_read(mr, addr1, &val, 8);
2329 #if defined(TARGET_WORDS_BIGENDIAN)
2330 if (endian == DEVICE_LITTLE_ENDIAN) {
2331 val = bswap64(val);
2332 }
2333 #else
2334 if (endian == DEVICE_BIG_ENDIAN) {
2335 val = bswap64(val);
2336 }
2337 #endif
2338 } else {
2339 /* RAM case */
2340 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2341 & TARGET_PAGE_MASK)
2342 + addr1);
2343 switch (endian) {
2344 case DEVICE_LITTLE_ENDIAN:
2345 val = ldq_le_p(ptr);
2346 break;
2347 case DEVICE_BIG_ENDIAN:
2348 val = ldq_be_p(ptr);
2349 break;
2350 default:
2351 val = ldq_p(ptr);
2352 break;
2353 }
2354 }
2355 return val;
2356 }
2357
2358 uint64_t ldq_phys(hwaddr addr)
2359 {
2360 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2361 }
2362
2363 uint64_t ldq_le_phys(hwaddr addr)
2364 {
2365 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2366 }
2367
2368 uint64_t ldq_be_phys(hwaddr addr)
2369 {
2370 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2371 }
2372
2373 /* XXX: optimize */
2374 uint32_t ldub_phys(hwaddr addr)
2375 {
2376 uint8_t val;
2377 cpu_physical_memory_read(addr, &val, 1);
2378 return val;
2379 }
2380
2381 /* warning: addr must be aligned */
2382 static inline uint32_t lduw_phys_internal(hwaddr addr,
2383 enum device_endian endian)
2384 {
2385 uint8_t *ptr;
2386 uint64_t val;
2387 MemoryRegion *mr;
2388 hwaddr l = 2;
2389 hwaddr addr1;
2390
2391 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2392 false);
2393 if (l < 2 || !memory_access_is_direct(mr, false)) {
2394 /* I/O case */
2395 io_mem_read(mr, addr1, &val, 2);
2396 #if defined(TARGET_WORDS_BIGENDIAN)
2397 if (endian == DEVICE_LITTLE_ENDIAN) {
2398 val = bswap16(val);
2399 }
2400 #else
2401 if (endian == DEVICE_BIG_ENDIAN) {
2402 val = bswap16(val);
2403 }
2404 #endif
2405 } else {
2406 /* RAM case */
2407 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2408 & TARGET_PAGE_MASK)
2409 + addr1);
2410 switch (endian) {
2411 case DEVICE_LITTLE_ENDIAN:
2412 val = lduw_le_p(ptr);
2413 break;
2414 case DEVICE_BIG_ENDIAN:
2415 val = lduw_be_p(ptr);
2416 break;
2417 default:
2418 val = lduw_p(ptr);
2419 break;
2420 }
2421 }
2422 return val;
2423 }
2424
2425 uint32_t lduw_phys(hwaddr addr)
2426 {
2427 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2428 }
2429
2430 uint32_t lduw_le_phys(hwaddr addr)
2431 {
2432 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2433 }
2434
2435 uint32_t lduw_be_phys(hwaddr addr)
2436 {
2437 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2438 }
2439
2440 /* warning: addr must be aligned. The ram page is not masked as dirty
2441 and the code inside is not invalidated. It is useful if the dirty
2442 bits are used to track modified PTEs */
2443 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2444 {
2445 uint8_t *ptr;
2446 MemoryRegion *mr;
2447 hwaddr l = 4;
2448 hwaddr addr1;
2449
2450 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2451 true);
2452 if (l < 4 || !memory_access_is_direct(mr, true)) {
2453 io_mem_write(mr, addr1, val, 4);
2454 } else {
2455 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2456 ptr = qemu_get_ram_ptr(addr1);
2457 stl_p(ptr, val);
2458
2459 if (unlikely(in_migration)) {
2460 if (!cpu_physical_memory_is_dirty(addr1)) {
2461 /* invalidate code */
2462 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2463 /* set dirty bit */
2464 cpu_physical_memory_set_dirty_flags(
2465 addr1, (0xff & ~CODE_DIRTY_FLAG));
2466 }
2467 }
2468 }
2469 }
2470
2471 /* warning: addr must be aligned */
2472 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2473 enum device_endian endian)
2474 {
2475 uint8_t *ptr;
2476 MemoryRegion *mr;
2477 hwaddr l = 4;
2478 hwaddr addr1;
2479
2480 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2481 true);
2482 if (l < 4 || !memory_access_is_direct(mr, true)) {
2483 #if defined(TARGET_WORDS_BIGENDIAN)
2484 if (endian == DEVICE_LITTLE_ENDIAN) {
2485 val = bswap32(val);
2486 }
2487 #else
2488 if (endian == DEVICE_BIG_ENDIAN) {
2489 val = bswap32(val);
2490 }
2491 #endif
2492 io_mem_write(mr, addr1, val, 4);
2493 } else {
2494 /* RAM case */
2495 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2496 ptr = qemu_get_ram_ptr(addr1);
2497 switch (endian) {
2498 case DEVICE_LITTLE_ENDIAN:
2499 stl_le_p(ptr, val);
2500 break;
2501 case DEVICE_BIG_ENDIAN:
2502 stl_be_p(ptr, val);
2503 break;
2504 default:
2505 stl_p(ptr, val);
2506 break;
2507 }
2508 invalidate_and_set_dirty(addr1, 4);
2509 }
2510 }
2511
2512 void stl_phys(hwaddr addr, uint32_t val)
2513 {
2514 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2515 }
2516
2517 void stl_le_phys(hwaddr addr, uint32_t val)
2518 {
2519 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2520 }
2521
2522 void stl_be_phys(hwaddr addr, uint32_t val)
2523 {
2524 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2525 }
2526
2527 /* XXX: optimize */
2528 void stb_phys(hwaddr addr, uint32_t val)
2529 {
2530 uint8_t v = val;
2531 cpu_physical_memory_write(addr, &v, 1);
2532 }
2533
2534 /* warning: addr must be aligned */
2535 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2536 enum device_endian endian)
2537 {
2538 uint8_t *ptr;
2539 MemoryRegion *mr;
2540 hwaddr l = 2;
2541 hwaddr addr1;
2542
2543 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2544 true);
2545 if (l < 2 || !memory_access_is_direct(mr, true)) {
2546 #if defined(TARGET_WORDS_BIGENDIAN)
2547 if (endian == DEVICE_LITTLE_ENDIAN) {
2548 val = bswap16(val);
2549 }
2550 #else
2551 if (endian == DEVICE_BIG_ENDIAN) {
2552 val = bswap16(val);
2553 }
2554 #endif
2555 io_mem_write(mr, addr1, val, 2);
2556 } else {
2557 /* RAM case */
2558 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2559 ptr = qemu_get_ram_ptr(addr1);
2560 switch (endian) {
2561 case DEVICE_LITTLE_ENDIAN:
2562 stw_le_p(ptr, val);
2563 break;
2564 case DEVICE_BIG_ENDIAN:
2565 stw_be_p(ptr, val);
2566 break;
2567 default:
2568 stw_p(ptr, val);
2569 break;
2570 }
2571 invalidate_and_set_dirty(addr1, 2);
2572 }
2573 }
2574
2575 void stw_phys(hwaddr addr, uint32_t val)
2576 {
2577 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2578 }
2579
2580 void stw_le_phys(hwaddr addr, uint32_t val)
2581 {
2582 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2583 }
2584
2585 void stw_be_phys(hwaddr addr, uint32_t val)
2586 {
2587 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2588 }
2589
2590 /* XXX: optimize */
2591 void stq_phys(hwaddr addr, uint64_t val)
2592 {
2593 val = tswap64(val);
2594 cpu_physical_memory_write(addr, &val, 8);
2595 }
2596
2597 void stq_le_phys(hwaddr addr, uint64_t val)
2598 {
2599 val = cpu_to_le64(val);
2600 cpu_physical_memory_write(addr, &val, 8);
2601 }
2602
2603 void stq_be_phys(hwaddr addr, uint64_t val)
2604 {
2605 val = cpu_to_be64(val);
2606 cpu_physical_memory_write(addr, &val, 8);
2607 }
2608
2609 /* virtual memory access for debug (includes writing to ROM) */
2610 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2611 uint8_t *buf, int len, int is_write)
2612 {
2613 int l;
2614 hwaddr phys_addr;
2615 target_ulong page;
2616
2617 while (len > 0) {
2618 page = addr & TARGET_PAGE_MASK;
2619 phys_addr = cpu_get_phys_page_debug(cpu, page);
2620 /* if no physical page mapped, return an error */
2621 if (phys_addr == -1)
2622 return -1;
2623 l = (page + TARGET_PAGE_SIZE) - addr;
2624 if (l > len)
2625 l = len;
2626 phys_addr += (addr & ~TARGET_PAGE_MASK);
2627 if (is_write)
2628 cpu_physical_memory_write_rom(phys_addr, buf, l);
2629 else
2630 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2631 len -= l;
2632 buf += l;
2633 addr += l;
2634 }
2635 return 0;
2636 }
2637 #endif
2638
2639 #if !defined(CONFIG_USER_ONLY)
2640
2641 /*
2642 * A helper function for the _utterly broken_ virtio device model to find out if
2643 * it's running on a big endian machine. Don't do this at home kids!
2644 */
2645 bool virtio_is_big_endian(void);
2646 bool virtio_is_big_endian(void)
2647 {
2648 #if defined(TARGET_WORDS_BIGENDIAN)
2649 return true;
2650 #else
2651 return false;
2652 #endif
2653 }
2654
2655 #endif
2656
2657 #ifndef CONFIG_USER_ONLY
2658 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2659 {
2660 MemoryRegion*mr;
2661 hwaddr l = 1;
2662
2663 mr = address_space_translate(&address_space_memory,
2664 phys_addr, &phys_addr, &l, false);
2665
2666 return !(memory_region_is_ram(mr) ||
2667 memory_region_is_romd(mr));
2668 }
2669
2670 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2671 {
2672 RAMBlock *block;
2673
2674 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2675 func(block->host, block->offset, block->length, opaque);
2676 }
2677 }
2678 #endif