]> git.proxmox.com Git - qemu.git/blob - exec.c
vmstate: port cpu_comon
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <stdarg.h>
29 #include <string.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <inttypes.h>
33
34 #include "cpu.h"
35 #include "exec-all.h"
36 #include "qemu-common.h"
37 #include "tcg.h"
38 #include "hw/hw.h"
39 #include "osdep.h"
40 #include "kvm.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #endif
44
45 //#define DEBUG_TB_INVALIDATE
46 //#define DEBUG_FLUSH
47 //#define DEBUG_TLB
48 //#define DEBUG_UNASSIGNED
49
50 /* make various TB consistency checks */
51 //#define DEBUG_TB_CHECK
52 //#define DEBUG_TLB_CHECK
53
54 //#define DEBUG_IOPORT
55 //#define DEBUG_SUBPAGE
56
57 #if !defined(CONFIG_USER_ONLY)
58 /* TB consistency checks only implemented for usermode emulation. */
59 #undef DEBUG_TB_CHECK
60 #endif
61
62 #define SMC_BITMAP_USE_THRESHOLD 10
63
64 #if defined(TARGET_SPARC64)
65 #define TARGET_PHYS_ADDR_SPACE_BITS 41
66 #elif defined(TARGET_SPARC)
67 #define TARGET_PHYS_ADDR_SPACE_BITS 36
68 #elif defined(TARGET_ALPHA)
69 #define TARGET_PHYS_ADDR_SPACE_BITS 42
70 #define TARGET_VIRT_ADDR_SPACE_BITS 42
71 #elif defined(TARGET_PPC64)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 42
73 #elif defined(TARGET_X86_64)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #elif defined(TARGET_I386)
76 #define TARGET_PHYS_ADDR_SPACE_BITS 36
77 #else
78 #define TARGET_PHYS_ADDR_SPACE_BITS 32
79 #endif
80
81 static TranslationBlock *tbs;
82 int code_gen_max_blocks;
83 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
84 static int nb_tbs;
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
87
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
95 #elif defined(_WIN32)
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
99 #else
100 #define code_gen_section \
101 __attribute__((aligned (32)))
102 #endif
103
104 uint8_t code_gen_prologue[1024] code_gen_section;
105 static uint8_t *code_gen_buffer;
106 static unsigned long code_gen_buffer_size;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size;
109 uint8_t *code_gen_ptr;
110
111 #if !defined(CONFIG_USER_ONLY)
112 int phys_ram_fd;
113 uint8_t *phys_ram_dirty;
114 static int in_migration;
115
116 typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121 } RAMBlock;
122
123 static RAMBlock *ram_blocks;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset;
128 #endif
129
130 CPUState *first_cpu;
131 /* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
133 CPUState *cpu_single_env;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
137 int use_icount = 0;
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140 int64_t qemu_icount;
141
142 typedef struct PageDesc {
143 /* list of TBs intersecting this ram page */
144 TranslationBlock *first_tb;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149 #if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151 #endif
152 } PageDesc;
153
154 typedef struct PhysPageDesc {
155 /* offset in host memory of the page + io_index in the low bits */
156 ram_addr_t phys_offset;
157 ram_addr_t region_offset;
158 } PhysPageDesc;
159
160 #define L2_BITS 10
161 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162 /* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167 #else
168 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
169 #endif
170
171 #define L1_SIZE (1 << L1_BITS)
172 #define L2_SIZE (1 << L2_BITS)
173
174 unsigned long qemu_real_host_page_size;
175 unsigned long qemu_host_page_bits;
176 unsigned long qemu_host_page_size;
177 unsigned long qemu_host_page_mask;
178
179 /* XXX: for system emulation, it could just be an array */
180 static PageDesc *l1_map[L1_SIZE];
181 static PhysPageDesc **l1_phys_map;
182
183 #if !defined(CONFIG_USER_ONLY)
184 static void io_mem_init(void);
185
186 /* io memory support */
187 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
189 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
190 static char io_mem_used[IO_MEM_NB_ENTRIES];
191 static int io_mem_watch;
192 #endif
193
194 /* log support */
195 static const char *logfilename = "/tmp/qemu.log";
196 FILE *logfile;
197 int loglevel;
198 static int log_append = 0;
199
200 /* statistics */
201 static int tlb_flush_count;
202 static int tb_flush_count;
203 static int tb_phys_invalidate_count;
204
205 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
206 typedef struct subpage_t {
207 target_phys_addr_t base;
208 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
209 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
210 void *opaque[TARGET_PAGE_SIZE][2][4];
211 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
212 } subpage_t;
213
214 #ifdef _WIN32
215 static void map_exec(void *addr, long size)
216 {
217 DWORD old_protect;
218 VirtualProtect(addr, size,
219 PAGE_EXECUTE_READWRITE, &old_protect);
220
221 }
222 #else
223 static void map_exec(void *addr, long size)
224 {
225 unsigned long start, end, page_size;
226
227 page_size = getpagesize();
228 start = (unsigned long)addr;
229 start &= ~(page_size - 1);
230
231 end = (unsigned long)addr + size;
232 end += page_size - 1;
233 end &= ~(page_size - 1);
234
235 mprotect((void *)start, end - start,
236 PROT_READ | PROT_WRITE | PROT_EXEC);
237 }
238 #endif
239
240 static void page_init(void)
241 {
242 /* NOTE: we can always suppose that qemu_host_page_size >=
243 TARGET_PAGE_SIZE */
244 #ifdef _WIN32
245 {
246 SYSTEM_INFO system_info;
247
248 GetSystemInfo(&system_info);
249 qemu_real_host_page_size = system_info.dwPageSize;
250 }
251 #else
252 qemu_real_host_page_size = getpagesize();
253 #endif
254 if (qemu_host_page_size == 0)
255 qemu_host_page_size = qemu_real_host_page_size;
256 if (qemu_host_page_size < TARGET_PAGE_SIZE)
257 qemu_host_page_size = TARGET_PAGE_SIZE;
258 qemu_host_page_bits = 0;
259 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
260 qemu_host_page_bits++;
261 qemu_host_page_mask = ~(qemu_host_page_size - 1);
262 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
263 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
264
265 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
266 {
267 long long startaddr, endaddr;
268 FILE *f;
269 int n;
270
271 mmap_lock();
272 last_brk = (unsigned long)sbrk(0);
273 f = fopen("/proc/self/maps", "r");
274 if (f) {
275 do {
276 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
277 if (n == 2) {
278 startaddr = MIN(startaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 endaddr = MIN(endaddr,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
282 page_set_flags(startaddr & TARGET_PAGE_MASK,
283 TARGET_PAGE_ALIGN(endaddr),
284 PAGE_RESERVED);
285 }
286 } while (!feof(f));
287 fclose(f);
288 }
289 mmap_unlock();
290 }
291 #endif
292 }
293
294 static inline PageDesc **page_l1_map(target_ulong index)
295 {
296 #if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
299 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
300 return NULL;
301 #endif
302 return &l1_map[index >> L2_BITS];
303 }
304
305 static inline PageDesc *page_find_alloc(target_ulong index)
306 {
307 PageDesc **lp, *p;
308 lp = page_l1_map(index);
309 if (!lp)
310 return NULL;
311
312 p = *lp;
313 if (!p) {
314 /* allocate if not found */
315 #if defined(CONFIG_USER_ONLY)
316 size_t len = sizeof(PageDesc) * L2_SIZE;
317 /* Don't use qemu_malloc because it may recurse. */
318 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
320 *lp = p;
321 if (h2g_valid(p)) {
322 unsigned long addr = h2g(p);
323 page_set_flags(addr & TARGET_PAGE_MASK,
324 TARGET_PAGE_ALIGN(addr + len),
325 PAGE_RESERVED);
326 }
327 #else
328 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
329 *lp = p;
330 #endif
331 }
332 return p + (index & (L2_SIZE - 1));
333 }
334
335 static inline PageDesc *page_find(target_ulong index)
336 {
337 PageDesc **lp, *p;
338 lp = page_l1_map(index);
339 if (!lp)
340 return NULL;
341
342 p = *lp;
343 if (!p) {
344 return NULL;
345 }
346 return p + (index & (L2_SIZE - 1));
347 }
348
349 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
350 {
351 void **lp, **p;
352 PhysPageDesc *pd;
353
354 p = (void **)l1_phys_map;
355 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359 #endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370 #endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
372 pd = *lp;
373 if (!pd) {
374 int i;
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
380 for (i = 0; i < L2_SIZE; i++) {
381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
384 }
385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
386 }
387
388 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
389 {
390 return phys_page_find_alloc(index, 0);
391 }
392
393 #if !defined(CONFIG_USER_ONLY)
394 static void tlb_protect_code(ram_addr_t ram_addr);
395 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
396 target_ulong vaddr);
397 #define mmap_lock() do { } while(0)
398 #define mmap_unlock() do { } while(0)
399 #endif
400
401 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403 #if defined(CONFIG_USER_ONLY)
404 /* Currently it is not recommended to allocate big chunks of data in
405 user mode. It will change when a dedicated libc will be used */
406 #define USE_STATIC_CODE_GEN_BUFFER
407 #endif
408
409 #ifdef USE_STATIC_CODE_GEN_BUFFER
410 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411 #endif
412
413 static void code_gen_alloc(unsigned long tb_size)
414 {
415 #ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419 #else
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
422 #if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425 #else
426 /* XXX: needs adjustments */
427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
428 #endif
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434 #if defined(__linux__)
435 {
436 int flags;
437 void *start = NULL;
438
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440 #if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
445 #elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
451 #elif defined(__arm__)
452 /* Map the buffer below 32M, so we can use direct calls and branches */
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
457 #endif
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
466 #elif defined(__FreeBSD__) || defined(__DragonFly__)
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471 #if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479 #endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
488 #else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491 #endif
492 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498 }
499
500 /* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503 void cpu_exec_init_all(unsigned long tb_size)
504 {
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
508 page_init();
509 #if !defined(CONFIG_USER_ONLY)
510 io_mem_init();
511 #endif
512 }
513
514 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
516 static void cpu_common_pre_save(const void *opaque)
517 {
518 CPUState *env = (void *)opaque;
519
520 cpu_synchronize_state(env);
521 }
522
523 static int cpu_common_pre_load(void *opaque)
524 {
525 CPUState *env = opaque;
526
527 cpu_synchronize_state(env);
528 return 0;
529 }
530
531 static int cpu_common_post_load(void *opaque)
532 {
533 CPUState *env = opaque;
534
535 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
536 version_id is increased. */
537 env->interrupt_request &= ~0x01;
538 tlb_flush(env, 1);
539
540 return 0;
541 }
542
543 static const VMStateDescription vmstate_cpu_common = {
544 .name = "cpu_common",
545 .version_id = 1,
546 .minimum_version_id = 1,
547 .minimum_version_id_old = 1,
548 .pre_save = cpu_common_pre_save,
549 .pre_load = cpu_common_pre_load,
550 .post_load = cpu_common_post_load,
551 .fields = (VMStateField []) {
552 VMSTATE_UINT32(halted, CPUState),
553 VMSTATE_UINT32(interrupt_request, CPUState),
554 VMSTATE_END_OF_LIST()
555 }
556 };
557 #endif
558
559 CPUState *qemu_get_cpu(int cpu)
560 {
561 CPUState *env = first_cpu;
562
563 while (env) {
564 if (env->cpu_index == cpu)
565 break;
566 env = env->next_cpu;
567 }
568
569 return env;
570 }
571
572 void cpu_exec_init(CPUState *env)
573 {
574 CPUState **penv;
575 int cpu_index;
576
577 #if defined(CONFIG_USER_ONLY)
578 cpu_list_lock();
579 #endif
580 env->next_cpu = NULL;
581 penv = &first_cpu;
582 cpu_index = 0;
583 while (*penv != NULL) {
584 penv = &(*penv)->next_cpu;
585 cpu_index++;
586 }
587 env->cpu_index = cpu_index;
588 env->numa_node = 0;
589 TAILQ_INIT(&env->breakpoints);
590 TAILQ_INIT(&env->watchpoints);
591 *penv = env;
592 #if defined(CONFIG_USER_ONLY)
593 cpu_list_unlock();
594 #endif
595 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
596 vmstate_register(cpu_index, &vmstate_cpu_common, env);
597 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
598 cpu_save, cpu_load, env);
599 #endif
600 }
601
602 static inline void invalidate_page_bitmap(PageDesc *p)
603 {
604 if (p->code_bitmap) {
605 qemu_free(p->code_bitmap);
606 p->code_bitmap = NULL;
607 }
608 p->code_write_count = 0;
609 }
610
611 /* set to NULL all the 'first_tb' fields in all PageDescs */
612 static void page_flush_tb(void)
613 {
614 int i, j;
615 PageDesc *p;
616
617 for(i = 0; i < L1_SIZE; i++) {
618 p = l1_map[i];
619 if (p) {
620 for(j = 0; j < L2_SIZE; j++) {
621 p->first_tb = NULL;
622 invalidate_page_bitmap(p);
623 p++;
624 }
625 }
626 }
627 }
628
629 /* flush all the translation blocks */
630 /* XXX: tb_flush is currently not thread safe */
631 void tb_flush(CPUState *env1)
632 {
633 CPUState *env;
634 #if defined(DEBUG_FLUSH)
635 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
636 (unsigned long)(code_gen_ptr - code_gen_buffer),
637 nb_tbs, nb_tbs > 0 ?
638 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
639 #endif
640 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
641 cpu_abort(env1, "Internal error: code buffer overflow\n");
642
643 nb_tbs = 0;
644
645 for(env = first_cpu; env != NULL; env = env->next_cpu) {
646 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
647 }
648
649 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
650 page_flush_tb();
651
652 code_gen_ptr = code_gen_buffer;
653 /* XXX: flush processor icache at this point if cache flush is
654 expensive */
655 tb_flush_count++;
656 }
657
658 #ifdef DEBUG_TB_CHECK
659
660 static void tb_invalidate_check(target_ulong address)
661 {
662 TranslationBlock *tb;
663 int i;
664 address &= TARGET_PAGE_MASK;
665 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
666 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
667 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
668 address >= tb->pc + tb->size)) {
669 printf("ERROR invalidate: address=" TARGET_FMT_lx
670 " PC=%08lx size=%04x\n",
671 address, (long)tb->pc, tb->size);
672 }
673 }
674 }
675 }
676
677 /* verify that all the pages have correct rights for code */
678 static void tb_page_check(void)
679 {
680 TranslationBlock *tb;
681 int i, flags1, flags2;
682
683 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
684 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
685 flags1 = page_get_flags(tb->pc);
686 flags2 = page_get_flags(tb->pc + tb->size - 1);
687 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
688 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
689 (long)tb->pc, tb->size, flags1, flags2);
690 }
691 }
692 }
693 }
694
695 #endif
696
697 /* invalidate one TB */
698 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
699 int next_offset)
700 {
701 TranslationBlock *tb1;
702 for(;;) {
703 tb1 = *ptb;
704 if (tb1 == tb) {
705 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
706 break;
707 }
708 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
709 }
710 }
711
712 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
713 {
714 TranslationBlock *tb1;
715 unsigned int n1;
716
717 for(;;) {
718 tb1 = *ptb;
719 n1 = (long)tb1 & 3;
720 tb1 = (TranslationBlock *)((long)tb1 & ~3);
721 if (tb1 == tb) {
722 *ptb = tb1->page_next[n1];
723 break;
724 }
725 ptb = &tb1->page_next[n1];
726 }
727 }
728
729 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
730 {
731 TranslationBlock *tb1, **ptb;
732 unsigned int n1;
733
734 ptb = &tb->jmp_next[n];
735 tb1 = *ptb;
736 if (tb1) {
737 /* find tb(n) in circular list */
738 for(;;) {
739 tb1 = *ptb;
740 n1 = (long)tb1 & 3;
741 tb1 = (TranslationBlock *)((long)tb1 & ~3);
742 if (n1 == n && tb1 == tb)
743 break;
744 if (n1 == 2) {
745 ptb = &tb1->jmp_first;
746 } else {
747 ptb = &tb1->jmp_next[n1];
748 }
749 }
750 /* now we can suppress tb(n) from the list */
751 *ptb = tb->jmp_next[n];
752
753 tb->jmp_next[n] = NULL;
754 }
755 }
756
757 /* reset the jump entry 'n' of a TB so that it is not chained to
758 another TB */
759 static inline void tb_reset_jump(TranslationBlock *tb, int n)
760 {
761 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
762 }
763
764 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
765 {
766 CPUState *env;
767 PageDesc *p;
768 unsigned int h, n1;
769 target_phys_addr_t phys_pc;
770 TranslationBlock *tb1, *tb2;
771
772 /* remove the TB from the hash list */
773 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
774 h = tb_phys_hash_func(phys_pc);
775 tb_remove(&tb_phys_hash[h], tb,
776 offsetof(TranslationBlock, phys_hash_next));
777
778 /* remove the TB from the page list */
779 if (tb->page_addr[0] != page_addr) {
780 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
781 tb_page_remove(&p->first_tb, tb);
782 invalidate_page_bitmap(p);
783 }
784 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
785 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789
790 tb_invalidated_flag = 1;
791
792 /* remove the TB from the hash list */
793 h = tb_jmp_cache_hash_func(tb->pc);
794 for(env = first_cpu; env != NULL; env = env->next_cpu) {
795 if (env->tb_jmp_cache[h] == tb)
796 env->tb_jmp_cache[h] = NULL;
797 }
798
799 /* suppress this TB from the two jump lists */
800 tb_jmp_remove(tb, 0);
801 tb_jmp_remove(tb, 1);
802
803 /* suppress any remaining jumps to this TB */
804 tb1 = tb->jmp_first;
805 for(;;) {
806 n1 = (long)tb1 & 3;
807 if (n1 == 2)
808 break;
809 tb1 = (TranslationBlock *)((long)tb1 & ~3);
810 tb2 = tb1->jmp_next[n1];
811 tb_reset_jump(tb1, n1);
812 tb1->jmp_next[n1] = NULL;
813 tb1 = tb2;
814 }
815 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
816
817 tb_phys_invalidate_count++;
818 }
819
820 static inline void set_bits(uint8_t *tab, int start, int len)
821 {
822 int end, mask, end1;
823
824 end = start + len;
825 tab += start >> 3;
826 mask = 0xff << (start & 7);
827 if ((start & ~7) == (end & ~7)) {
828 if (start < end) {
829 mask &= ~(0xff << (end & 7));
830 *tab |= mask;
831 }
832 } else {
833 *tab++ |= mask;
834 start = (start + 8) & ~7;
835 end1 = end & ~7;
836 while (start < end1) {
837 *tab++ = 0xff;
838 start += 8;
839 }
840 if (start < end) {
841 mask = ~(0xff << (end & 7));
842 *tab |= mask;
843 }
844 }
845 }
846
847 static void build_page_bitmap(PageDesc *p)
848 {
849 int n, tb_start, tb_end;
850 TranslationBlock *tb;
851
852 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
853
854 tb = p->first_tb;
855 while (tb != NULL) {
856 n = (long)tb & 3;
857 tb = (TranslationBlock *)((long)tb & ~3);
858 /* NOTE: this is subtle as a TB may span two physical pages */
859 if (n == 0) {
860 /* NOTE: tb_end may be after the end of the page, but
861 it is not a problem */
862 tb_start = tb->pc & ~TARGET_PAGE_MASK;
863 tb_end = tb_start + tb->size;
864 if (tb_end > TARGET_PAGE_SIZE)
865 tb_end = TARGET_PAGE_SIZE;
866 } else {
867 tb_start = 0;
868 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
869 }
870 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
871 tb = tb->page_next[n];
872 }
873 }
874
875 TranslationBlock *tb_gen_code(CPUState *env,
876 target_ulong pc, target_ulong cs_base,
877 int flags, int cflags)
878 {
879 TranslationBlock *tb;
880 uint8_t *tc_ptr;
881 target_ulong phys_pc, phys_page2, virt_page2;
882 int code_gen_size;
883
884 phys_pc = get_phys_addr_code(env, pc);
885 tb = tb_alloc(pc);
886 if (!tb) {
887 /* flush must be done */
888 tb_flush(env);
889 /* cannot fail at this point */
890 tb = tb_alloc(pc);
891 /* Don't forget to invalidate previous TB info. */
892 tb_invalidated_flag = 1;
893 }
894 tc_ptr = code_gen_ptr;
895 tb->tc_ptr = tc_ptr;
896 tb->cs_base = cs_base;
897 tb->flags = flags;
898 tb->cflags = cflags;
899 cpu_gen_code(env, tb, &code_gen_size);
900 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
901
902 /* check next page if needed */
903 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
904 phys_page2 = -1;
905 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
906 phys_page2 = get_phys_addr_code(env, virt_page2);
907 }
908 tb_link_phys(tb, phys_pc, phys_page2);
909 return tb;
910 }
911
912 /* invalidate all TBs which intersect with the target physical page
913 starting in range [start;end[. NOTE: start and end must refer to
914 the same physical page. 'is_cpu_write_access' should be true if called
915 from a real cpu write access: the virtual CPU will exit the current
916 TB if code is modified inside this TB. */
917 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
918 int is_cpu_write_access)
919 {
920 TranslationBlock *tb, *tb_next, *saved_tb;
921 CPUState *env = cpu_single_env;
922 target_ulong tb_start, tb_end;
923 PageDesc *p;
924 int n;
925 #ifdef TARGET_HAS_PRECISE_SMC
926 int current_tb_not_found = is_cpu_write_access;
927 TranslationBlock *current_tb = NULL;
928 int current_tb_modified = 0;
929 target_ulong current_pc = 0;
930 target_ulong current_cs_base = 0;
931 int current_flags = 0;
932 #endif /* TARGET_HAS_PRECISE_SMC */
933
934 p = page_find(start >> TARGET_PAGE_BITS);
935 if (!p)
936 return;
937 if (!p->code_bitmap &&
938 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
939 is_cpu_write_access) {
940 /* build code bitmap */
941 build_page_bitmap(p);
942 }
943
944 /* we remove all the TBs in the range [start, end[ */
945 /* XXX: see if in some cases it could be faster to invalidate all the code */
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 tb_next = tb->page_next[n];
951 /* NOTE: this is subtle as a TB may span two physical pages */
952 if (n == 0) {
953 /* NOTE: tb_end may be after the end of the page, but
954 it is not a problem */
955 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
956 tb_end = tb_start + tb->size;
957 } else {
958 tb_start = tb->page_addr[1];
959 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
960 }
961 if (!(tb_end <= start || tb_start >= end)) {
962 #ifdef TARGET_HAS_PRECISE_SMC
963 if (current_tb_not_found) {
964 current_tb_not_found = 0;
965 current_tb = NULL;
966 if (env->mem_io_pc) {
967 /* now we have a real cpu fault */
968 current_tb = tb_find_pc(env->mem_io_pc);
969 }
970 }
971 if (current_tb == tb &&
972 (current_tb->cflags & CF_COUNT_MASK) != 1) {
973 /* If we are modifying the current TB, we must stop
974 its execution. We could be more precise by checking
975 that the modification is after the current PC, but it
976 would require a specialized function to partially
977 restore the CPU state */
978
979 current_tb_modified = 1;
980 cpu_restore_state(current_tb, env,
981 env->mem_io_pc, NULL);
982 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
983 &current_flags);
984 }
985 #endif /* TARGET_HAS_PRECISE_SMC */
986 /* we need to do that to handle the case where a signal
987 occurs while doing tb_phys_invalidate() */
988 saved_tb = NULL;
989 if (env) {
990 saved_tb = env->current_tb;
991 env->current_tb = NULL;
992 }
993 tb_phys_invalidate(tb, -1);
994 if (env) {
995 env->current_tb = saved_tb;
996 if (env->interrupt_request && env->current_tb)
997 cpu_interrupt(env, env->interrupt_request);
998 }
999 }
1000 tb = tb_next;
1001 }
1002 #if !defined(CONFIG_USER_ONLY)
1003 /* if no code remaining, no need to continue to use slow writes */
1004 if (!p->first_tb) {
1005 invalidate_page_bitmap(p);
1006 if (is_cpu_write_access) {
1007 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1008 }
1009 }
1010 #endif
1011 #ifdef TARGET_HAS_PRECISE_SMC
1012 if (current_tb_modified) {
1013 /* we generate a block containing just the instruction
1014 modifying the memory. It will ensure that it cannot modify
1015 itself */
1016 env->current_tb = NULL;
1017 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1018 cpu_resume_from_signal(env, NULL);
1019 }
1020 #endif
1021 }
1022
1023 /* len must be <= 8 and start must be a multiple of len */
1024 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1025 {
1026 PageDesc *p;
1027 int offset, b;
1028 #if 0
1029 if (1) {
1030 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1031 cpu_single_env->mem_io_vaddr, len,
1032 cpu_single_env->eip,
1033 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1034 }
1035 #endif
1036 p = page_find(start >> TARGET_PAGE_BITS);
1037 if (!p)
1038 return;
1039 if (p->code_bitmap) {
1040 offset = start & ~TARGET_PAGE_MASK;
1041 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1042 if (b & ((1 << len) - 1))
1043 goto do_invalidate;
1044 } else {
1045 do_invalidate:
1046 tb_invalidate_phys_page_range(start, start + len, 1);
1047 }
1048 }
1049
1050 #if !defined(CONFIG_SOFTMMU)
1051 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1052 unsigned long pc, void *puc)
1053 {
1054 TranslationBlock *tb;
1055 PageDesc *p;
1056 int n;
1057 #ifdef TARGET_HAS_PRECISE_SMC
1058 TranslationBlock *current_tb = NULL;
1059 CPUState *env = cpu_single_env;
1060 int current_tb_modified = 0;
1061 target_ulong current_pc = 0;
1062 target_ulong current_cs_base = 0;
1063 int current_flags = 0;
1064 #endif
1065
1066 addr &= TARGET_PAGE_MASK;
1067 p = page_find(addr >> TARGET_PAGE_BITS);
1068 if (!p)
1069 return;
1070 tb = p->first_tb;
1071 #ifdef TARGET_HAS_PRECISE_SMC
1072 if (tb && pc != 0) {
1073 current_tb = tb_find_pc(pc);
1074 }
1075 #endif
1076 while (tb != NULL) {
1077 n = (long)tb & 3;
1078 tb = (TranslationBlock *)((long)tb & ~3);
1079 #ifdef TARGET_HAS_PRECISE_SMC
1080 if (current_tb == tb &&
1081 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1082 /* If we are modifying the current TB, we must stop
1083 its execution. We could be more precise by checking
1084 that the modification is after the current PC, but it
1085 would require a specialized function to partially
1086 restore the CPU state */
1087
1088 current_tb_modified = 1;
1089 cpu_restore_state(current_tb, env, pc, puc);
1090 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1091 &current_flags);
1092 }
1093 #endif /* TARGET_HAS_PRECISE_SMC */
1094 tb_phys_invalidate(tb, addr);
1095 tb = tb->page_next[n];
1096 }
1097 p->first_tb = NULL;
1098 #ifdef TARGET_HAS_PRECISE_SMC
1099 if (current_tb_modified) {
1100 /* we generate a block containing just the instruction
1101 modifying the memory. It will ensure that it cannot modify
1102 itself */
1103 env->current_tb = NULL;
1104 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1105 cpu_resume_from_signal(env, puc);
1106 }
1107 #endif
1108 }
1109 #endif
1110
1111 /* add the tb in the target page and protect it if necessary */
1112 static inline void tb_alloc_page(TranslationBlock *tb,
1113 unsigned int n, target_ulong page_addr)
1114 {
1115 PageDesc *p;
1116 TranslationBlock *last_first_tb;
1117
1118 tb->page_addr[n] = page_addr;
1119 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1120 tb->page_next[n] = p->first_tb;
1121 last_first_tb = p->first_tb;
1122 p->first_tb = (TranslationBlock *)((long)tb | n);
1123 invalidate_page_bitmap(p);
1124
1125 #if defined(TARGET_HAS_SMC) || 1
1126
1127 #if defined(CONFIG_USER_ONLY)
1128 if (p->flags & PAGE_WRITE) {
1129 target_ulong addr;
1130 PageDesc *p2;
1131 int prot;
1132
1133 /* force the host page as non writable (writes will have a
1134 page fault + mprotect overhead) */
1135 page_addr &= qemu_host_page_mask;
1136 prot = 0;
1137 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1138 addr += TARGET_PAGE_SIZE) {
1139
1140 p2 = page_find (addr >> TARGET_PAGE_BITS);
1141 if (!p2)
1142 continue;
1143 prot |= p2->flags;
1144 p2->flags &= ~PAGE_WRITE;
1145 page_get_flags(addr);
1146 }
1147 mprotect(g2h(page_addr), qemu_host_page_size,
1148 (prot & PAGE_BITS) & ~PAGE_WRITE);
1149 #ifdef DEBUG_TB_INVALIDATE
1150 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1151 page_addr);
1152 #endif
1153 }
1154 #else
1155 /* if some code is already present, then the pages are already
1156 protected. So we handle the case where only the first TB is
1157 allocated in a physical page */
1158 if (!last_first_tb) {
1159 tlb_protect_code(page_addr);
1160 }
1161 #endif
1162
1163 #endif /* TARGET_HAS_SMC */
1164 }
1165
1166 /* Allocate a new translation block. Flush the translation buffer if
1167 too many translation blocks or too much generated code. */
1168 TranslationBlock *tb_alloc(target_ulong pc)
1169 {
1170 TranslationBlock *tb;
1171
1172 if (nb_tbs >= code_gen_max_blocks ||
1173 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1174 return NULL;
1175 tb = &tbs[nb_tbs++];
1176 tb->pc = pc;
1177 tb->cflags = 0;
1178 return tb;
1179 }
1180
1181 void tb_free(TranslationBlock *tb)
1182 {
1183 /* In practice this is mostly used for single use temporary TB
1184 Ignore the hard cases and just back up if this TB happens to
1185 be the last one generated. */
1186 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1187 code_gen_ptr = tb->tc_ptr;
1188 nb_tbs--;
1189 }
1190 }
1191
1192 /* add a new TB and link it to the physical page tables. phys_page2 is
1193 (-1) to indicate that only one page contains the TB. */
1194 void tb_link_phys(TranslationBlock *tb,
1195 target_ulong phys_pc, target_ulong phys_page2)
1196 {
1197 unsigned int h;
1198 TranslationBlock **ptb;
1199
1200 /* Grab the mmap lock to stop another thread invalidating this TB
1201 before we are done. */
1202 mmap_lock();
1203 /* add in the physical hash table */
1204 h = tb_phys_hash_func(phys_pc);
1205 ptb = &tb_phys_hash[h];
1206 tb->phys_hash_next = *ptb;
1207 *ptb = tb;
1208
1209 /* add in the page list */
1210 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1211 if (phys_page2 != -1)
1212 tb_alloc_page(tb, 1, phys_page2);
1213 else
1214 tb->page_addr[1] = -1;
1215
1216 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1217 tb->jmp_next[0] = NULL;
1218 tb->jmp_next[1] = NULL;
1219
1220 /* init original jump addresses */
1221 if (tb->tb_next_offset[0] != 0xffff)
1222 tb_reset_jump(tb, 0);
1223 if (tb->tb_next_offset[1] != 0xffff)
1224 tb_reset_jump(tb, 1);
1225
1226 #ifdef DEBUG_TB_CHECK
1227 tb_page_check();
1228 #endif
1229 mmap_unlock();
1230 }
1231
1232 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1233 tb[1].tc_ptr. Return NULL if not found */
1234 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1235 {
1236 int m_min, m_max, m;
1237 unsigned long v;
1238 TranslationBlock *tb;
1239
1240 if (nb_tbs <= 0)
1241 return NULL;
1242 if (tc_ptr < (unsigned long)code_gen_buffer ||
1243 tc_ptr >= (unsigned long)code_gen_ptr)
1244 return NULL;
1245 /* binary search (cf Knuth) */
1246 m_min = 0;
1247 m_max = nb_tbs - 1;
1248 while (m_min <= m_max) {
1249 m = (m_min + m_max) >> 1;
1250 tb = &tbs[m];
1251 v = (unsigned long)tb->tc_ptr;
1252 if (v == tc_ptr)
1253 return tb;
1254 else if (tc_ptr < v) {
1255 m_max = m - 1;
1256 } else {
1257 m_min = m + 1;
1258 }
1259 }
1260 return &tbs[m_max];
1261 }
1262
1263 static void tb_reset_jump_recursive(TranslationBlock *tb);
1264
1265 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1266 {
1267 TranslationBlock *tb1, *tb_next, **ptb;
1268 unsigned int n1;
1269
1270 tb1 = tb->jmp_next[n];
1271 if (tb1 != NULL) {
1272 /* find head of list */
1273 for(;;) {
1274 n1 = (long)tb1 & 3;
1275 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1276 if (n1 == 2)
1277 break;
1278 tb1 = tb1->jmp_next[n1];
1279 }
1280 /* we are now sure now that tb jumps to tb1 */
1281 tb_next = tb1;
1282
1283 /* remove tb from the jmp_first list */
1284 ptb = &tb_next->jmp_first;
1285 for(;;) {
1286 tb1 = *ptb;
1287 n1 = (long)tb1 & 3;
1288 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1289 if (n1 == n && tb1 == tb)
1290 break;
1291 ptb = &tb1->jmp_next[n1];
1292 }
1293 *ptb = tb->jmp_next[n];
1294 tb->jmp_next[n] = NULL;
1295
1296 /* suppress the jump to next tb in generated code */
1297 tb_reset_jump(tb, n);
1298
1299 /* suppress jumps in the tb on which we could have jumped */
1300 tb_reset_jump_recursive(tb_next);
1301 }
1302 }
1303
1304 static void tb_reset_jump_recursive(TranslationBlock *tb)
1305 {
1306 tb_reset_jump_recursive2(tb, 0);
1307 tb_reset_jump_recursive2(tb, 1);
1308 }
1309
1310 #if defined(TARGET_HAS_ICE)
1311 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1312 {
1313 target_phys_addr_t addr;
1314 target_ulong pd;
1315 ram_addr_t ram_addr;
1316 PhysPageDesc *p;
1317
1318 addr = cpu_get_phys_page_debug(env, pc);
1319 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1320 if (!p) {
1321 pd = IO_MEM_UNASSIGNED;
1322 } else {
1323 pd = p->phys_offset;
1324 }
1325 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1326 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1327 }
1328 #endif
1329
1330 /* Add a watchpoint. */
1331 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1332 int flags, CPUWatchpoint **watchpoint)
1333 {
1334 target_ulong len_mask = ~(len - 1);
1335 CPUWatchpoint *wp;
1336
1337 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1338 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1339 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1340 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1341 return -EINVAL;
1342 }
1343 wp = qemu_malloc(sizeof(*wp));
1344
1345 wp->vaddr = addr;
1346 wp->len_mask = len_mask;
1347 wp->flags = flags;
1348
1349 /* keep all GDB-injected watchpoints in front */
1350 if (flags & BP_GDB)
1351 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1352 else
1353 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1354
1355 tlb_flush_page(env, addr);
1356
1357 if (watchpoint)
1358 *watchpoint = wp;
1359 return 0;
1360 }
1361
1362 /* Remove a specific watchpoint. */
1363 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1364 int flags)
1365 {
1366 target_ulong len_mask = ~(len - 1);
1367 CPUWatchpoint *wp;
1368
1369 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1370 if (addr == wp->vaddr && len_mask == wp->len_mask
1371 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1372 cpu_watchpoint_remove_by_ref(env, wp);
1373 return 0;
1374 }
1375 }
1376 return -ENOENT;
1377 }
1378
1379 /* Remove a specific watchpoint by reference. */
1380 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1381 {
1382 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1383
1384 tlb_flush_page(env, watchpoint->vaddr);
1385
1386 qemu_free(watchpoint);
1387 }
1388
1389 /* Remove all matching watchpoints. */
1390 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1391 {
1392 CPUWatchpoint *wp, *next;
1393
1394 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1395 if (wp->flags & mask)
1396 cpu_watchpoint_remove_by_ref(env, wp);
1397 }
1398 }
1399
1400 /* Add a breakpoint. */
1401 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1402 CPUBreakpoint **breakpoint)
1403 {
1404 #if defined(TARGET_HAS_ICE)
1405 CPUBreakpoint *bp;
1406
1407 bp = qemu_malloc(sizeof(*bp));
1408
1409 bp->pc = pc;
1410 bp->flags = flags;
1411
1412 /* keep all GDB-injected breakpoints in front */
1413 if (flags & BP_GDB)
1414 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1415 else
1416 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1417
1418 breakpoint_invalidate(env, pc);
1419
1420 if (breakpoint)
1421 *breakpoint = bp;
1422 return 0;
1423 #else
1424 return -ENOSYS;
1425 #endif
1426 }
1427
1428 /* Remove a specific breakpoint. */
1429 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1430 {
1431 #if defined(TARGET_HAS_ICE)
1432 CPUBreakpoint *bp;
1433
1434 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1435 if (bp->pc == pc && bp->flags == flags) {
1436 cpu_breakpoint_remove_by_ref(env, bp);
1437 return 0;
1438 }
1439 }
1440 return -ENOENT;
1441 #else
1442 return -ENOSYS;
1443 #endif
1444 }
1445
1446 /* Remove a specific breakpoint by reference. */
1447 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1448 {
1449 #if defined(TARGET_HAS_ICE)
1450 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1451
1452 breakpoint_invalidate(env, breakpoint->pc);
1453
1454 qemu_free(breakpoint);
1455 #endif
1456 }
1457
1458 /* Remove all matching breakpoints. */
1459 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1460 {
1461 #if defined(TARGET_HAS_ICE)
1462 CPUBreakpoint *bp, *next;
1463
1464 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1465 if (bp->flags & mask)
1466 cpu_breakpoint_remove_by_ref(env, bp);
1467 }
1468 #endif
1469 }
1470
1471 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1472 CPU loop after each instruction */
1473 void cpu_single_step(CPUState *env, int enabled)
1474 {
1475 #if defined(TARGET_HAS_ICE)
1476 if (env->singlestep_enabled != enabled) {
1477 env->singlestep_enabled = enabled;
1478 if (kvm_enabled())
1479 kvm_update_guest_debug(env, 0);
1480 else {
1481 /* must flush all the translated code to avoid inconsistencies */
1482 /* XXX: only flush what is necessary */
1483 tb_flush(env);
1484 }
1485 }
1486 #endif
1487 }
1488
1489 /* enable or disable low levels log */
1490 void cpu_set_log(int log_flags)
1491 {
1492 loglevel = log_flags;
1493 if (loglevel && !logfile) {
1494 logfile = fopen(logfilename, log_append ? "a" : "w");
1495 if (!logfile) {
1496 perror(logfilename);
1497 _exit(1);
1498 }
1499 #if !defined(CONFIG_SOFTMMU)
1500 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1501 {
1502 static char logfile_buf[4096];
1503 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1504 }
1505 #elif !defined(_WIN32)
1506 /* Win32 doesn't support line-buffering and requires size >= 2 */
1507 setvbuf(logfile, NULL, _IOLBF, 0);
1508 #endif
1509 log_append = 1;
1510 }
1511 if (!loglevel && logfile) {
1512 fclose(logfile);
1513 logfile = NULL;
1514 }
1515 }
1516
1517 void cpu_set_log_filename(const char *filename)
1518 {
1519 logfilename = strdup(filename);
1520 if (logfile) {
1521 fclose(logfile);
1522 logfile = NULL;
1523 }
1524 cpu_set_log(loglevel);
1525 }
1526
1527 static void cpu_unlink_tb(CPUState *env)
1528 {
1529 #if defined(CONFIG_USE_NPTL)
1530 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1531 problem and hope the cpu will stop of its own accord. For userspace
1532 emulation this often isn't actually as bad as it sounds. Often
1533 signals are used primarily to interrupt blocking syscalls. */
1534 #else
1535 TranslationBlock *tb;
1536 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1537
1538 tb = env->current_tb;
1539 /* if the cpu is currently executing code, we must unlink it and
1540 all the potentially executing TB */
1541 if (tb && !testandset(&interrupt_lock)) {
1542 env->current_tb = NULL;
1543 tb_reset_jump_recursive(tb);
1544 resetlock(&interrupt_lock);
1545 }
1546 #endif
1547 }
1548
1549 /* mask must never be zero, except for A20 change call */
1550 void cpu_interrupt(CPUState *env, int mask)
1551 {
1552 int old_mask;
1553
1554 old_mask = env->interrupt_request;
1555 env->interrupt_request |= mask;
1556
1557 #ifndef CONFIG_USER_ONLY
1558 /*
1559 * If called from iothread context, wake the target cpu in
1560 * case its halted.
1561 */
1562 if (!qemu_cpu_self(env)) {
1563 qemu_cpu_kick(env);
1564 return;
1565 }
1566 #endif
1567
1568 if (use_icount) {
1569 env->icount_decr.u16.high = 0xffff;
1570 #ifndef CONFIG_USER_ONLY
1571 if (!can_do_io(env)
1572 && (mask & ~old_mask) != 0) {
1573 cpu_abort(env, "Raised interrupt while not in I/O function");
1574 }
1575 #endif
1576 } else {
1577 cpu_unlink_tb(env);
1578 }
1579 }
1580
1581 void cpu_reset_interrupt(CPUState *env, int mask)
1582 {
1583 env->interrupt_request &= ~mask;
1584 }
1585
1586 void cpu_exit(CPUState *env)
1587 {
1588 env->exit_request = 1;
1589 cpu_unlink_tb(env);
1590 }
1591
1592 const CPULogItem cpu_log_items[] = {
1593 { CPU_LOG_TB_OUT_ASM, "out_asm",
1594 "show generated host assembly code for each compiled TB" },
1595 { CPU_LOG_TB_IN_ASM, "in_asm",
1596 "show target assembly code for each compiled TB" },
1597 { CPU_LOG_TB_OP, "op",
1598 "show micro ops for each compiled TB" },
1599 { CPU_LOG_TB_OP_OPT, "op_opt",
1600 "show micro ops "
1601 #ifdef TARGET_I386
1602 "before eflags optimization and "
1603 #endif
1604 "after liveness analysis" },
1605 { CPU_LOG_INT, "int",
1606 "show interrupts/exceptions in short format" },
1607 { CPU_LOG_EXEC, "exec",
1608 "show trace before each executed TB (lots of logs)" },
1609 { CPU_LOG_TB_CPU, "cpu",
1610 "show CPU state before block translation" },
1611 #ifdef TARGET_I386
1612 { CPU_LOG_PCALL, "pcall",
1613 "show protected mode far calls/returns/exceptions" },
1614 { CPU_LOG_RESET, "cpu_reset",
1615 "show CPU state before CPU resets" },
1616 #endif
1617 #ifdef DEBUG_IOPORT
1618 { CPU_LOG_IOPORT, "ioport",
1619 "show all i/o ports accesses" },
1620 #endif
1621 { 0, NULL, NULL },
1622 };
1623
1624 static int cmp1(const char *s1, int n, const char *s2)
1625 {
1626 if (strlen(s2) != n)
1627 return 0;
1628 return memcmp(s1, s2, n) == 0;
1629 }
1630
1631 /* takes a comma separated list of log masks. Return 0 if error. */
1632 int cpu_str_to_log_mask(const char *str)
1633 {
1634 const CPULogItem *item;
1635 int mask;
1636 const char *p, *p1;
1637
1638 p = str;
1639 mask = 0;
1640 for(;;) {
1641 p1 = strchr(p, ',');
1642 if (!p1)
1643 p1 = p + strlen(p);
1644 if(cmp1(p,p1-p,"all")) {
1645 for(item = cpu_log_items; item->mask != 0; item++) {
1646 mask |= item->mask;
1647 }
1648 } else {
1649 for(item = cpu_log_items; item->mask != 0; item++) {
1650 if (cmp1(p, p1 - p, item->name))
1651 goto found;
1652 }
1653 return 0;
1654 }
1655 found:
1656 mask |= item->mask;
1657 if (*p1 != ',')
1658 break;
1659 p = p1 + 1;
1660 }
1661 return mask;
1662 }
1663
1664 void cpu_abort(CPUState *env, const char *fmt, ...)
1665 {
1666 va_list ap;
1667 va_list ap2;
1668
1669 va_start(ap, fmt);
1670 va_copy(ap2, ap);
1671 fprintf(stderr, "qemu: fatal: ");
1672 vfprintf(stderr, fmt, ap);
1673 fprintf(stderr, "\n");
1674 #ifdef TARGET_I386
1675 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1676 #else
1677 cpu_dump_state(env, stderr, fprintf, 0);
1678 #endif
1679 if (qemu_log_enabled()) {
1680 qemu_log("qemu: fatal: ");
1681 qemu_log_vprintf(fmt, ap2);
1682 qemu_log("\n");
1683 #ifdef TARGET_I386
1684 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1685 #else
1686 log_cpu_state(env, 0);
1687 #endif
1688 qemu_log_flush();
1689 qemu_log_close();
1690 }
1691 va_end(ap2);
1692 va_end(ap);
1693 abort();
1694 }
1695
1696 CPUState *cpu_copy(CPUState *env)
1697 {
1698 CPUState *new_env = cpu_init(env->cpu_model_str);
1699 CPUState *next_cpu = new_env->next_cpu;
1700 int cpu_index = new_env->cpu_index;
1701 #if defined(TARGET_HAS_ICE)
1702 CPUBreakpoint *bp;
1703 CPUWatchpoint *wp;
1704 #endif
1705
1706 memcpy(new_env, env, sizeof(CPUState));
1707
1708 /* Preserve chaining and index. */
1709 new_env->next_cpu = next_cpu;
1710 new_env->cpu_index = cpu_index;
1711
1712 /* Clone all break/watchpoints.
1713 Note: Once we support ptrace with hw-debug register access, make sure
1714 BP_CPU break/watchpoints are handled correctly on clone. */
1715 TAILQ_INIT(&env->breakpoints);
1716 TAILQ_INIT(&env->watchpoints);
1717 #if defined(TARGET_HAS_ICE)
1718 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1719 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1720 }
1721 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1722 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1723 wp->flags, NULL);
1724 }
1725 #endif
1726
1727 return new_env;
1728 }
1729
1730 #if !defined(CONFIG_USER_ONLY)
1731
1732 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1733 {
1734 unsigned int i;
1735
1736 /* Discard jump cache entries for any tb which might potentially
1737 overlap the flushed page. */
1738 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1739 memset (&env->tb_jmp_cache[i], 0,
1740 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1741
1742 i = tb_jmp_cache_hash_page(addr);
1743 memset (&env->tb_jmp_cache[i], 0,
1744 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1745 }
1746
1747 static CPUTLBEntry s_cputlb_empty_entry = {
1748 .addr_read = -1,
1749 .addr_write = -1,
1750 .addr_code = -1,
1751 .addend = -1,
1752 };
1753
1754 /* NOTE: if flush_global is true, also flush global entries (not
1755 implemented yet) */
1756 void tlb_flush(CPUState *env, int flush_global)
1757 {
1758 int i;
1759
1760 #if defined(DEBUG_TLB)
1761 printf("tlb_flush:\n");
1762 #endif
1763 /* must reset current TB so that interrupts cannot modify the
1764 links while we are modifying them */
1765 env->current_tb = NULL;
1766
1767 for(i = 0; i < CPU_TLB_SIZE; i++) {
1768 int mmu_idx;
1769 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1770 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1771 }
1772 }
1773
1774 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1775
1776 tlb_flush_count++;
1777 }
1778
1779 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1780 {
1781 if (addr == (tlb_entry->addr_read &
1782 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1783 addr == (tlb_entry->addr_write &
1784 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1785 addr == (tlb_entry->addr_code &
1786 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1787 *tlb_entry = s_cputlb_empty_entry;
1788 }
1789 }
1790
1791 void tlb_flush_page(CPUState *env, target_ulong addr)
1792 {
1793 int i;
1794 int mmu_idx;
1795
1796 #if defined(DEBUG_TLB)
1797 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1798 #endif
1799 /* must reset current TB so that interrupts cannot modify the
1800 links while we are modifying them */
1801 env->current_tb = NULL;
1802
1803 addr &= TARGET_PAGE_MASK;
1804 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1805 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1806 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1807
1808 tlb_flush_jmp_cache(env, addr);
1809 }
1810
1811 /* update the TLBs so that writes to code in the virtual page 'addr'
1812 can be detected */
1813 static void tlb_protect_code(ram_addr_t ram_addr)
1814 {
1815 cpu_physical_memory_reset_dirty(ram_addr,
1816 ram_addr + TARGET_PAGE_SIZE,
1817 CODE_DIRTY_FLAG);
1818 }
1819
1820 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1821 tested for self modifying code */
1822 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1823 target_ulong vaddr)
1824 {
1825 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1826 }
1827
1828 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1829 unsigned long start, unsigned long length)
1830 {
1831 unsigned long addr;
1832 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1833 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1834 if ((addr - start) < length) {
1835 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1836 }
1837 }
1838 }
1839
1840 /* Note: start and end must be within the same ram block. */
1841 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1842 int dirty_flags)
1843 {
1844 CPUState *env;
1845 unsigned long length, start1;
1846 int i, mask, len;
1847 uint8_t *p;
1848
1849 start &= TARGET_PAGE_MASK;
1850 end = TARGET_PAGE_ALIGN(end);
1851
1852 length = end - start;
1853 if (length == 0)
1854 return;
1855 len = length >> TARGET_PAGE_BITS;
1856 mask = ~dirty_flags;
1857 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1858 for(i = 0; i < len; i++)
1859 p[i] &= mask;
1860
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
1863 start1 = (unsigned long)qemu_get_ram_ptr(start);
1864 /* Chek that we don't span multiple blocks - this breaks the
1865 address comparisons below. */
1866 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1867 != (end - 1) - start) {
1868 abort();
1869 }
1870
1871 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1872 int mmu_idx;
1873 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1874 for(i = 0; i < CPU_TLB_SIZE; i++)
1875 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1876 start1, length);
1877 }
1878 }
1879 }
1880
1881 int cpu_physical_memory_set_dirty_tracking(int enable)
1882 {
1883 in_migration = enable;
1884 if (kvm_enabled()) {
1885 return kvm_set_migration_log(enable);
1886 }
1887 return 0;
1888 }
1889
1890 int cpu_physical_memory_get_dirty_tracking(void)
1891 {
1892 return in_migration;
1893 }
1894
1895 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1896 target_phys_addr_t end_addr)
1897 {
1898 int ret = 0;
1899
1900 if (kvm_enabled())
1901 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1902 return ret;
1903 }
1904
1905 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1906 {
1907 ram_addr_t ram_addr;
1908 void *p;
1909
1910 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1911 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1912 + tlb_entry->addend);
1913 ram_addr = qemu_ram_addr_from_host(p);
1914 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1915 tlb_entry->addr_write |= TLB_NOTDIRTY;
1916 }
1917 }
1918 }
1919
1920 /* update the TLB according to the current state of the dirty bits */
1921 void cpu_tlb_update_dirty(CPUState *env)
1922 {
1923 int i;
1924 int mmu_idx;
1925 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1926 for(i = 0; i < CPU_TLB_SIZE; i++)
1927 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1928 }
1929 }
1930
1931 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1932 {
1933 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1934 tlb_entry->addr_write = vaddr;
1935 }
1936
1937 /* update the TLB corresponding to virtual page vaddr
1938 so that it is no longer dirty */
1939 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1940 {
1941 int i;
1942 int mmu_idx;
1943
1944 vaddr &= TARGET_PAGE_MASK;
1945 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1946 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1947 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
1948 }
1949
1950 /* add a new TLB entry. At most one entry for a given virtual address
1951 is permitted. Return 0 if OK or 2 if the page could not be mapped
1952 (can only happen in non SOFTMMU mode for I/O pages or pages
1953 conflicting with the host address space). */
1954 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1955 target_phys_addr_t paddr, int prot,
1956 int mmu_idx, int is_softmmu)
1957 {
1958 PhysPageDesc *p;
1959 unsigned long pd;
1960 unsigned int index;
1961 target_ulong address;
1962 target_ulong code_address;
1963 target_phys_addr_t addend;
1964 int ret;
1965 CPUTLBEntry *te;
1966 CPUWatchpoint *wp;
1967 target_phys_addr_t iotlb;
1968
1969 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1970 if (!p) {
1971 pd = IO_MEM_UNASSIGNED;
1972 } else {
1973 pd = p->phys_offset;
1974 }
1975 #if defined(DEBUG_TLB)
1976 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1977 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1978 #endif
1979
1980 ret = 0;
1981 address = vaddr;
1982 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1983 /* IO memory case (romd handled later) */
1984 address |= TLB_MMIO;
1985 }
1986 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
1987 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1988 /* Normal RAM. */
1989 iotlb = pd & TARGET_PAGE_MASK;
1990 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1991 iotlb |= IO_MEM_NOTDIRTY;
1992 else
1993 iotlb |= IO_MEM_ROM;
1994 } else {
1995 /* IO handlers are currently passed a physical address.
1996 It would be nice to pass an offset from the base address
1997 of that region. This would avoid having to special case RAM,
1998 and avoid full address decoding in every device.
1999 We can't use the high bits of pd for this because
2000 IO_MEM_ROMD uses these as a ram address. */
2001 iotlb = (pd & ~TARGET_PAGE_MASK);
2002 if (p) {
2003 iotlb += p->region_offset;
2004 } else {
2005 iotlb += paddr;
2006 }
2007 }
2008
2009 code_address = address;
2010 /* Make accesses to pages with watchpoints go via the
2011 watchpoint trap routines. */
2012 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2013 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2014 iotlb = io_mem_watch + paddr;
2015 /* TODO: The memory case can be optimized by not trapping
2016 reads of pages with a write breakpoint. */
2017 address |= TLB_MMIO;
2018 }
2019 }
2020
2021 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2022 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2023 te = &env->tlb_table[mmu_idx][index];
2024 te->addend = addend - vaddr;
2025 if (prot & PAGE_READ) {
2026 te->addr_read = address;
2027 } else {
2028 te->addr_read = -1;
2029 }
2030
2031 if (prot & PAGE_EXEC) {
2032 te->addr_code = code_address;
2033 } else {
2034 te->addr_code = -1;
2035 }
2036 if (prot & PAGE_WRITE) {
2037 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2038 (pd & IO_MEM_ROMD)) {
2039 /* Write access calls the I/O callback. */
2040 te->addr_write = address | TLB_MMIO;
2041 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2042 !cpu_physical_memory_is_dirty(pd)) {
2043 te->addr_write = address | TLB_NOTDIRTY;
2044 } else {
2045 te->addr_write = address;
2046 }
2047 } else {
2048 te->addr_write = -1;
2049 }
2050 return ret;
2051 }
2052
2053 #else
2054
2055 void tlb_flush(CPUState *env, int flush_global)
2056 {
2057 }
2058
2059 void tlb_flush_page(CPUState *env, target_ulong addr)
2060 {
2061 }
2062
2063 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2064 target_phys_addr_t paddr, int prot,
2065 int mmu_idx, int is_softmmu)
2066 {
2067 return 0;
2068 }
2069
2070 /*
2071 * Walks guest process memory "regions" one by one
2072 * and calls callback function 'fn' for each region.
2073 */
2074 int walk_memory_regions(void *priv,
2075 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
2076 {
2077 unsigned long start, end;
2078 PageDesc *p = NULL;
2079 int i, j, prot, prot1;
2080 int rc = 0;
2081
2082 start = end = -1;
2083 prot = 0;
2084
2085 for (i = 0; i <= L1_SIZE; i++) {
2086 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2087 for (j = 0; j < L2_SIZE; j++) {
2088 prot1 = (p == NULL) ? 0 : p[j].flags;
2089 /*
2090 * "region" is one continuous chunk of memory
2091 * that has same protection flags set.
2092 */
2093 if (prot1 != prot) {
2094 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2095 if (start != -1) {
2096 rc = (*fn)(priv, start, end, prot);
2097 /* callback can stop iteration by returning != 0 */
2098 if (rc != 0)
2099 return (rc);
2100 }
2101 if (prot1 != 0)
2102 start = end;
2103 else
2104 start = -1;
2105 prot = prot1;
2106 }
2107 if (p == NULL)
2108 break;
2109 }
2110 }
2111 return (rc);
2112 }
2113
2114 static int dump_region(void *priv, unsigned long start,
2115 unsigned long end, unsigned long prot)
2116 {
2117 FILE *f = (FILE *)priv;
2118
2119 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2120 start, end, end - start,
2121 ((prot & PAGE_READ) ? 'r' : '-'),
2122 ((prot & PAGE_WRITE) ? 'w' : '-'),
2123 ((prot & PAGE_EXEC) ? 'x' : '-'));
2124
2125 return (0);
2126 }
2127
2128 /* dump memory mappings */
2129 void page_dump(FILE *f)
2130 {
2131 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2132 "start", "end", "size", "prot");
2133 walk_memory_regions(f, dump_region);
2134 }
2135
2136 int page_get_flags(target_ulong address)
2137 {
2138 PageDesc *p;
2139
2140 p = page_find(address >> TARGET_PAGE_BITS);
2141 if (!p)
2142 return 0;
2143 return p->flags;
2144 }
2145
2146 /* modify the flags of a page and invalidate the code if
2147 necessary. The flag PAGE_WRITE_ORG is positioned automatically
2148 depending on PAGE_WRITE */
2149 void page_set_flags(target_ulong start, target_ulong end, int flags)
2150 {
2151 PageDesc *p;
2152 target_ulong addr;
2153
2154 /* mmap_lock should already be held. */
2155 start = start & TARGET_PAGE_MASK;
2156 end = TARGET_PAGE_ALIGN(end);
2157 if (flags & PAGE_WRITE)
2158 flags |= PAGE_WRITE_ORG;
2159 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2160 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2161 /* We may be called for host regions that are outside guest
2162 address space. */
2163 if (!p)
2164 return;
2165 /* if the write protection is set, then we invalidate the code
2166 inside */
2167 if (!(p->flags & PAGE_WRITE) &&
2168 (flags & PAGE_WRITE) &&
2169 p->first_tb) {
2170 tb_invalidate_phys_page(addr, 0, NULL);
2171 }
2172 p->flags = flags;
2173 }
2174 }
2175
2176 int page_check_range(target_ulong start, target_ulong len, int flags)
2177 {
2178 PageDesc *p;
2179 target_ulong end;
2180 target_ulong addr;
2181
2182 if (start + len < start)
2183 /* we've wrapped around */
2184 return -1;
2185
2186 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2187 start = start & TARGET_PAGE_MASK;
2188
2189 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2190 p = page_find(addr >> TARGET_PAGE_BITS);
2191 if( !p )
2192 return -1;
2193 if( !(p->flags & PAGE_VALID) )
2194 return -1;
2195
2196 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2197 return -1;
2198 if (flags & PAGE_WRITE) {
2199 if (!(p->flags & PAGE_WRITE_ORG))
2200 return -1;
2201 /* unprotect the page if it was put read-only because it
2202 contains translated code */
2203 if (!(p->flags & PAGE_WRITE)) {
2204 if (!page_unprotect(addr, 0, NULL))
2205 return -1;
2206 }
2207 return 0;
2208 }
2209 }
2210 return 0;
2211 }
2212
2213 /* called from signal handler: invalidate the code and unprotect the
2214 page. Return TRUE if the fault was successfully handled. */
2215 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2216 {
2217 unsigned int page_index, prot, pindex;
2218 PageDesc *p, *p1;
2219 target_ulong host_start, host_end, addr;
2220
2221 /* Technically this isn't safe inside a signal handler. However we
2222 know this only ever happens in a synchronous SEGV handler, so in
2223 practice it seems to be ok. */
2224 mmap_lock();
2225
2226 host_start = address & qemu_host_page_mask;
2227 page_index = host_start >> TARGET_PAGE_BITS;
2228 p1 = page_find(page_index);
2229 if (!p1) {
2230 mmap_unlock();
2231 return 0;
2232 }
2233 host_end = host_start + qemu_host_page_size;
2234 p = p1;
2235 prot = 0;
2236 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2237 prot |= p->flags;
2238 p++;
2239 }
2240 /* if the page was really writable, then we change its
2241 protection back to writable */
2242 if (prot & PAGE_WRITE_ORG) {
2243 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2244 if (!(p1[pindex].flags & PAGE_WRITE)) {
2245 mprotect((void *)g2h(host_start), qemu_host_page_size,
2246 (prot & PAGE_BITS) | PAGE_WRITE);
2247 p1[pindex].flags |= PAGE_WRITE;
2248 /* and since the content will be modified, we must invalidate
2249 the corresponding translated code. */
2250 tb_invalidate_phys_page(address, pc, puc);
2251 #ifdef DEBUG_TB_CHECK
2252 tb_invalidate_check(address);
2253 #endif
2254 mmap_unlock();
2255 return 1;
2256 }
2257 }
2258 mmap_unlock();
2259 return 0;
2260 }
2261
2262 static inline void tlb_set_dirty(CPUState *env,
2263 unsigned long addr, target_ulong vaddr)
2264 {
2265 }
2266 #endif /* defined(CONFIG_USER_ONLY) */
2267
2268 #if !defined(CONFIG_USER_ONLY)
2269
2270 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2271 ram_addr_t memory, ram_addr_t region_offset);
2272 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2273 ram_addr_t orig_memory, ram_addr_t region_offset);
2274 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2275 need_subpage) \
2276 do { \
2277 if (addr > start_addr) \
2278 start_addr2 = 0; \
2279 else { \
2280 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2281 if (start_addr2 > 0) \
2282 need_subpage = 1; \
2283 } \
2284 \
2285 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2286 end_addr2 = TARGET_PAGE_SIZE - 1; \
2287 else { \
2288 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2289 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2290 need_subpage = 1; \
2291 } \
2292 } while (0)
2293
2294 /* register physical memory. 'size' must be a multiple of the target
2295 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2296 io memory page. The address used when calling the IO function is
2297 the offset from the start of the region, plus region_offset. Both
2298 start_addr and region_offset are rounded down to a page boundary
2299 before calculating this offset. This should not be a problem unless
2300 the low bits of start_addr and region_offset differ. */
2301 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2302 ram_addr_t size,
2303 ram_addr_t phys_offset,
2304 ram_addr_t region_offset)
2305 {
2306 target_phys_addr_t addr, end_addr;
2307 PhysPageDesc *p;
2308 CPUState *env;
2309 ram_addr_t orig_size = size;
2310 void *subpage;
2311
2312 if (kvm_enabled())
2313 kvm_set_phys_mem(start_addr, size, phys_offset);
2314
2315 if (phys_offset == IO_MEM_UNASSIGNED) {
2316 region_offset = start_addr;
2317 }
2318 region_offset &= TARGET_PAGE_MASK;
2319 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2320 end_addr = start_addr + (target_phys_addr_t)size;
2321 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2322 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2323 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2324 ram_addr_t orig_memory = p->phys_offset;
2325 target_phys_addr_t start_addr2, end_addr2;
2326 int need_subpage = 0;
2327
2328 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2329 need_subpage);
2330 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2331 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2332 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2333 &p->phys_offset, orig_memory,
2334 p->region_offset);
2335 } else {
2336 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2337 >> IO_MEM_SHIFT];
2338 }
2339 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2340 region_offset);
2341 p->region_offset = 0;
2342 } else {
2343 p->phys_offset = phys_offset;
2344 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2345 (phys_offset & IO_MEM_ROMD))
2346 phys_offset += TARGET_PAGE_SIZE;
2347 }
2348 } else {
2349 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2350 p->phys_offset = phys_offset;
2351 p->region_offset = region_offset;
2352 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2353 (phys_offset & IO_MEM_ROMD)) {
2354 phys_offset += TARGET_PAGE_SIZE;
2355 } else {
2356 target_phys_addr_t start_addr2, end_addr2;
2357 int need_subpage = 0;
2358
2359 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2360 end_addr2, need_subpage);
2361
2362 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2363 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2364 &p->phys_offset, IO_MEM_UNASSIGNED,
2365 addr & TARGET_PAGE_MASK);
2366 subpage_register(subpage, start_addr2, end_addr2,
2367 phys_offset, region_offset);
2368 p->region_offset = 0;
2369 }
2370 }
2371 }
2372 region_offset += TARGET_PAGE_SIZE;
2373 }
2374
2375 /* since each CPU stores ram addresses in its TLB cache, we must
2376 reset the modified entries */
2377 /* XXX: slow ! */
2378 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2379 tlb_flush(env, 1);
2380 }
2381 }
2382
2383 /* XXX: temporary until new memory mapping API */
2384 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2385 {
2386 PhysPageDesc *p;
2387
2388 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2389 if (!p)
2390 return IO_MEM_UNASSIGNED;
2391 return p->phys_offset;
2392 }
2393
2394 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2395 {
2396 if (kvm_enabled())
2397 kvm_coalesce_mmio_region(addr, size);
2398 }
2399
2400 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2401 {
2402 if (kvm_enabled())
2403 kvm_uncoalesce_mmio_region(addr, size);
2404 }
2405
2406 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2407 {
2408 RAMBlock *new_block;
2409
2410 size = TARGET_PAGE_ALIGN(size);
2411 new_block = qemu_malloc(sizeof(*new_block));
2412
2413 new_block->host = qemu_vmalloc(size);
2414 new_block->offset = last_ram_offset;
2415 new_block->length = size;
2416
2417 new_block->next = ram_blocks;
2418 ram_blocks = new_block;
2419
2420 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2421 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2422 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2423 0xff, size >> TARGET_PAGE_BITS);
2424
2425 last_ram_offset += size;
2426
2427 if (kvm_enabled())
2428 kvm_setup_guest_memory(new_block->host, size);
2429
2430 return new_block->offset;
2431 }
2432
2433 void qemu_ram_free(ram_addr_t addr)
2434 {
2435 /* TODO: implement this. */
2436 }
2437
2438 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2439 With the exception of the softmmu code in this file, this should
2440 only be used for local memory (e.g. video ram) that the device owns,
2441 and knows it isn't going to access beyond the end of the block.
2442
2443 It should not be used for general purpose DMA.
2444 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2445 */
2446 void *qemu_get_ram_ptr(ram_addr_t addr)
2447 {
2448 RAMBlock *prev;
2449 RAMBlock **prevp;
2450 RAMBlock *block;
2451
2452 prev = NULL;
2453 prevp = &ram_blocks;
2454 block = ram_blocks;
2455 while (block && (block->offset > addr
2456 || block->offset + block->length <= addr)) {
2457 if (prev)
2458 prevp = &prev->next;
2459 prev = block;
2460 block = block->next;
2461 }
2462 if (!block) {
2463 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2464 abort();
2465 }
2466 /* Move this entry to to start of the list. */
2467 if (prev) {
2468 prev->next = block->next;
2469 block->next = *prevp;
2470 *prevp = block;
2471 }
2472 return block->host + (addr - block->offset);
2473 }
2474
2475 /* Some of the softmmu routines need to translate from a host pointer
2476 (typically a TLB entry) back to a ram offset. */
2477 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2478 {
2479 RAMBlock *prev;
2480 RAMBlock **prevp;
2481 RAMBlock *block;
2482 uint8_t *host = ptr;
2483
2484 prev = NULL;
2485 prevp = &ram_blocks;
2486 block = ram_blocks;
2487 while (block && (block->host > host
2488 || block->host + block->length <= host)) {
2489 if (prev)
2490 prevp = &prev->next;
2491 prev = block;
2492 block = block->next;
2493 }
2494 if (!block) {
2495 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2496 abort();
2497 }
2498 return block->offset + (host - block->host);
2499 }
2500
2501 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2502 {
2503 #ifdef DEBUG_UNASSIGNED
2504 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2505 #endif
2506 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2507 do_unassigned_access(addr, 0, 0, 0, 1);
2508 #endif
2509 return 0;
2510 }
2511
2512 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2513 {
2514 #ifdef DEBUG_UNASSIGNED
2515 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2516 #endif
2517 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2518 do_unassigned_access(addr, 0, 0, 0, 2);
2519 #endif
2520 return 0;
2521 }
2522
2523 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2524 {
2525 #ifdef DEBUG_UNASSIGNED
2526 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2527 #endif
2528 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2529 do_unassigned_access(addr, 0, 0, 0, 4);
2530 #endif
2531 return 0;
2532 }
2533
2534 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2535 {
2536 #ifdef DEBUG_UNASSIGNED
2537 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2538 #endif
2539 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2540 do_unassigned_access(addr, 1, 0, 0, 1);
2541 #endif
2542 }
2543
2544 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2545 {
2546 #ifdef DEBUG_UNASSIGNED
2547 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2548 #endif
2549 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2550 do_unassigned_access(addr, 1, 0, 0, 2);
2551 #endif
2552 }
2553
2554 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2555 {
2556 #ifdef DEBUG_UNASSIGNED
2557 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2558 #endif
2559 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2560 do_unassigned_access(addr, 1, 0, 0, 4);
2561 #endif
2562 }
2563
2564 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
2565 unassigned_mem_readb,
2566 unassigned_mem_readw,
2567 unassigned_mem_readl,
2568 };
2569
2570 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
2571 unassigned_mem_writeb,
2572 unassigned_mem_writew,
2573 unassigned_mem_writel,
2574 };
2575
2576 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2577 uint32_t val)
2578 {
2579 int dirty_flags;
2580 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2581 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2582 #if !defined(CONFIG_USER_ONLY)
2583 tb_invalidate_phys_page_fast(ram_addr, 1);
2584 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2585 #endif
2586 }
2587 stb_p(qemu_get_ram_ptr(ram_addr), val);
2588 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2589 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2590 /* we remove the notdirty callback only if the code has been
2591 flushed */
2592 if (dirty_flags == 0xff)
2593 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2594 }
2595
2596 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2597 uint32_t val)
2598 {
2599 int dirty_flags;
2600 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2601 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2602 #if !defined(CONFIG_USER_ONLY)
2603 tb_invalidate_phys_page_fast(ram_addr, 2);
2604 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2605 #endif
2606 }
2607 stw_p(qemu_get_ram_ptr(ram_addr), val);
2608 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2609 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2610 /* we remove the notdirty callback only if the code has been
2611 flushed */
2612 if (dirty_flags == 0xff)
2613 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2614 }
2615
2616 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2617 uint32_t val)
2618 {
2619 int dirty_flags;
2620 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2621 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2622 #if !defined(CONFIG_USER_ONLY)
2623 tb_invalidate_phys_page_fast(ram_addr, 4);
2624 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2625 #endif
2626 }
2627 stl_p(qemu_get_ram_ptr(ram_addr), val);
2628 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2629 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2630 /* we remove the notdirty callback only if the code has been
2631 flushed */
2632 if (dirty_flags == 0xff)
2633 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2634 }
2635
2636 static CPUReadMemoryFunc * const error_mem_read[3] = {
2637 NULL, /* never used */
2638 NULL, /* never used */
2639 NULL, /* never used */
2640 };
2641
2642 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
2643 notdirty_mem_writeb,
2644 notdirty_mem_writew,
2645 notdirty_mem_writel,
2646 };
2647
2648 /* Generate a debug exception if a watchpoint has been hit. */
2649 static void check_watchpoint(int offset, int len_mask, int flags)
2650 {
2651 CPUState *env = cpu_single_env;
2652 target_ulong pc, cs_base;
2653 TranslationBlock *tb;
2654 target_ulong vaddr;
2655 CPUWatchpoint *wp;
2656 int cpu_flags;
2657
2658 if (env->watchpoint_hit) {
2659 /* We re-entered the check after replacing the TB. Now raise
2660 * the debug interrupt so that is will trigger after the
2661 * current instruction. */
2662 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2663 return;
2664 }
2665 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2666 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2667 if ((vaddr == (wp->vaddr & len_mask) ||
2668 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2669 wp->flags |= BP_WATCHPOINT_HIT;
2670 if (!env->watchpoint_hit) {
2671 env->watchpoint_hit = wp;
2672 tb = tb_find_pc(env->mem_io_pc);
2673 if (!tb) {
2674 cpu_abort(env, "check_watchpoint: could not find TB for "
2675 "pc=%p", (void *)env->mem_io_pc);
2676 }
2677 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2678 tb_phys_invalidate(tb, -1);
2679 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2680 env->exception_index = EXCP_DEBUG;
2681 } else {
2682 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2683 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2684 }
2685 cpu_resume_from_signal(env, NULL);
2686 }
2687 } else {
2688 wp->flags &= ~BP_WATCHPOINT_HIT;
2689 }
2690 }
2691 }
2692
2693 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2694 so these check for a hit then pass through to the normal out-of-line
2695 phys routines. */
2696 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2697 {
2698 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2699 return ldub_phys(addr);
2700 }
2701
2702 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2703 {
2704 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2705 return lduw_phys(addr);
2706 }
2707
2708 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2709 {
2710 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2711 return ldl_phys(addr);
2712 }
2713
2714 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2715 uint32_t val)
2716 {
2717 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2718 stb_phys(addr, val);
2719 }
2720
2721 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2722 uint32_t val)
2723 {
2724 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2725 stw_phys(addr, val);
2726 }
2727
2728 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2729 uint32_t val)
2730 {
2731 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2732 stl_phys(addr, val);
2733 }
2734
2735 static CPUReadMemoryFunc * const watch_mem_read[3] = {
2736 watch_mem_readb,
2737 watch_mem_readw,
2738 watch_mem_readl,
2739 };
2740
2741 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
2742 watch_mem_writeb,
2743 watch_mem_writew,
2744 watch_mem_writel,
2745 };
2746
2747 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2748 unsigned int len)
2749 {
2750 uint32_t ret;
2751 unsigned int idx;
2752
2753 idx = SUBPAGE_IDX(addr);
2754 #if defined(DEBUG_SUBPAGE)
2755 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2756 mmio, len, addr, idx);
2757 #endif
2758 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2759 addr + mmio->region_offset[idx][0][len]);
2760
2761 return ret;
2762 }
2763
2764 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2765 uint32_t value, unsigned int len)
2766 {
2767 unsigned int idx;
2768
2769 idx = SUBPAGE_IDX(addr);
2770 #if defined(DEBUG_SUBPAGE)
2771 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2772 mmio, len, addr, idx, value);
2773 #endif
2774 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2775 addr + mmio->region_offset[idx][1][len],
2776 value);
2777 }
2778
2779 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2780 {
2781 #if defined(DEBUG_SUBPAGE)
2782 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2783 #endif
2784
2785 return subpage_readlen(opaque, addr, 0);
2786 }
2787
2788 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2789 uint32_t value)
2790 {
2791 #if defined(DEBUG_SUBPAGE)
2792 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2793 #endif
2794 subpage_writelen(opaque, addr, value, 0);
2795 }
2796
2797 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2798 {
2799 #if defined(DEBUG_SUBPAGE)
2800 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2801 #endif
2802
2803 return subpage_readlen(opaque, addr, 1);
2804 }
2805
2806 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2807 uint32_t value)
2808 {
2809 #if defined(DEBUG_SUBPAGE)
2810 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2811 #endif
2812 subpage_writelen(opaque, addr, value, 1);
2813 }
2814
2815 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2816 {
2817 #if defined(DEBUG_SUBPAGE)
2818 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2819 #endif
2820
2821 return subpage_readlen(opaque, addr, 2);
2822 }
2823
2824 static void subpage_writel (void *opaque,
2825 target_phys_addr_t addr, uint32_t value)
2826 {
2827 #if defined(DEBUG_SUBPAGE)
2828 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2829 #endif
2830 subpage_writelen(opaque, addr, value, 2);
2831 }
2832
2833 static CPUReadMemoryFunc * const subpage_read[] = {
2834 &subpage_readb,
2835 &subpage_readw,
2836 &subpage_readl,
2837 };
2838
2839 static CPUWriteMemoryFunc * const subpage_write[] = {
2840 &subpage_writeb,
2841 &subpage_writew,
2842 &subpage_writel,
2843 };
2844
2845 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2846 ram_addr_t memory, ram_addr_t region_offset)
2847 {
2848 int idx, eidx;
2849 unsigned int i;
2850
2851 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2852 return -1;
2853 idx = SUBPAGE_IDX(start);
2854 eidx = SUBPAGE_IDX(end);
2855 #if defined(DEBUG_SUBPAGE)
2856 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
2857 mmio, start, end, idx, eidx, memory);
2858 #endif
2859 memory >>= IO_MEM_SHIFT;
2860 for (; idx <= eidx; idx++) {
2861 for (i = 0; i < 4; i++) {
2862 if (io_mem_read[memory][i]) {
2863 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2864 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2865 mmio->region_offset[idx][0][i] = region_offset;
2866 }
2867 if (io_mem_write[memory][i]) {
2868 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2869 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2870 mmio->region_offset[idx][1][i] = region_offset;
2871 }
2872 }
2873 }
2874
2875 return 0;
2876 }
2877
2878 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2879 ram_addr_t orig_memory, ram_addr_t region_offset)
2880 {
2881 subpage_t *mmio;
2882 int subpage_memory;
2883
2884 mmio = qemu_mallocz(sizeof(subpage_t));
2885
2886 mmio->base = base;
2887 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
2888 #if defined(DEBUG_SUBPAGE)
2889 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2890 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2891 #endif
2892 *phys = subpage_memory | IO_MEM_SUBPAGE;
2893 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2894 region_offset);
2895
2896 return mmio;
2897 }
2898
2899 static int get_free_io_mem_idx(void)
2900 {
2901 int i;
2902
2903 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2904 if (!io_mem_used[i]) {
2905 io_mem_used[i] = 1;
2906 return i;
2907 }
2908
2909 return -1;
2910 }
2911
2912 /* mem_read and mem_write are arrays of functions containing the
2913 function to access byte (index 0), word (index 1) and dword (index
2914 2). Functions can be omitted with a NULL function pointer.
2915 If io_index is non zero, the corresponding io zone is
2916 modified. If it is zero, a new io zone is allocated. The return
2917 value can be used with cpu_register_physical_memory(). (-1) is
2918 returned if error. */
2919 static int cpu_register_io_memory_fixed(int io_index,
2920 CPUReadMemoryFunc * const *mem_read,
2921 CPUWriteMemoryFunc * const *mem_write,
2922 void *opaque)
2923 {
2924 int i, subwidth = 0;
2925
2926 if (io_index <= 0) {
2927 io_index = get_free_io_mem_idx();
2928 if (io_index == -1)
2929 return io_index;
2930 } else {
2931 io_index >>= IO_MEM_SHIFT;
2932 if (io_index >= IO_MEM_NB_ENTRIES)
2933 return -1;
2934 }
2935
2936 for(i = 0;i < 3; i++) {
2937 if (!mem_read[i] || !mem_write[i])
2938 subwidth = IO_MEM_SUBWIDTH;
2939 io_mem_read[io_index][i] = mem_read[i];
2940 io_mem_write[io_index][i] = mem_write[i];
2941 }
2942 io_mem_opaque[io_index] = opaque;
2943 return (io_index << IO_MEM_SHIFT) | subwidth;
2944 }
2945
2946 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2947 CPUWriteMemoryFunc * const *mem_write,
2948 void *opaque)
2949 {
2950 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2951 }
2952
2953 void cpu_unregister_io_memory(int io_table_address)
2954 {
2955 int i;
2956 int io_index = io_table_address >> IO_MEM_SHIFT;
2957
2958 for (i=0;i < 3; i++) {
2959 io_mem_read[io_index][i] = unassigned_mem_read[i];
2960 io_mem_write[io_index][i] = unassigned_mem_write[i];
2961 }
2962 io_mem_opaque[io_index] = NULL;
2963 io_mem_used[io_index] = 0;
2964 }
2965
2966 static void io_mem_init(void)
2967 {
2968 int i;
2969
2970 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2971 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2972 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2973 for (i=0; i<5; i++)
2974 io_mem_used[i] = 1;
2975
2976 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2977 watch_mem_write, NULL);
2978 }
2979
2980 #endif /* !defined(CONFIG_USER_ONLY) */
2981
2982 /* physical memory access (slow version, mainly for debug) */
2983 #if defined(CONFIG_USER_ONLY)
2984 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2985 int len, int is_write)
2986 {
2987 int l, flags;
2988 target_ulong page;
2989 void * p;
2990
2991 while (len > 0) {
2992 page = addr & TARGET_PAGE_MASK;
2993 l = (page + TARGET_PAGE_SIZE) - addr;
2994 if (l > len)
2995 l = len;
2996 flags = page_get_flags(page);
2997 if (!(flags & PAGE_VALID))
2998 return;
2999 if (is_write) {
3000 if (!(flags & PAGE_WRITE))
3001 return;
3002 /* XXX: this code should not depend on lock_user */
3003 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3004 /* FIXME - should this return an error rather than just fail? */
3005 return;
3006 memcpy(p, buf, l);
3007 unlock_user(p, addr, l);
3008 } else {
3009 if (!(flags & PAGE_READ))
3010 return;
3011 /* XXX: this code should not depend on lock_user */
3012 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3013 /* FIXME - should this return an error rather than just fail? */
3014 return;
3015 memcpy(buf, p, l);
3016 unlock_user(p, addr, 0);
3017 }
3018 len -= l;
3019 buf += l;
3020 addr += l;
3021 }
3022 }
3023
3024 #else
3025 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3026 int len, int is_write)
3027 {
3028 int l, io_index;
3029 uint8_t *ptr;
3030 uint32_t val;
3031 target_phys_addr_t page;
3032 unsigned long pd;
3033 PhysPageDesc *p;
3034
3035 while (len > 0) {
3036 page = addr & TARGET_PAGE_MASK;
3037 l = (page + TARGET_PAGE_SIZE) - addr;
3038 if (l > len)
3039 l = len;
3040 p = phys_page_find(page >> TARGET_PAGE_BITS);
3041 if (!p) {
3042 pd = IO_MEM_UNASSIGNED;
3043 } else {
3044 pd = p->phys_offset;
3045 }
3046
3047 if (is_write) {
3048 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3049 target_phys_addr_t addr1 = addr;
3050 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3051 if (p)
3052 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3053 /* XXX: could force cpu_single_env to NULL to avoid
3054 potential bugs */
3055 if (l >= 4 && ((addr1 & 3) == 0)) {
3056 /* 32 bit write access */
3057 val = ldl_p(buf);
3058 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3059 l = 4;
3060 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3061 /* 16 bit write access */
3062 val = lduw_p(buf);
3063 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3064 l = 2;
3065 } else {
3066 /* 8 bit write access */
3067 val = ldub_p(buf);
3068 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3069 l = 1;
3070 }
3071 } else {
3072 unsigned long addr1;
3073 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3074 /* RAM case */
3075 ptr = qemu_get_ram_ptr(addr1);
3076 memcpy(ptr, buf, l);
3077 if (!cpu_physical_memory_is_dirty(addr1)) {
3078 /* invalidate code */
3079 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3080 /* set dirty bit */
3081 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3082 (0xff & ~CODE_DIRTY_FLAG);
3083 }
3084 }
3085 } else {
3086 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3087 !(pd & IO_MEM_ROMD)) {
3088 target_phys_addr_t addr1 = addr;
3089 /* I/O case */
3090 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3091 if (p)
3092 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3093 if (l >= 4 && ((addr1 & 3) == 0)) {
3094 /* 32 bit read access */
3095 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3096 stl_p(buf, val);
3097 l = 4;
3098 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3099 /* 16 bit read access */
3100 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3101 stw_p(buf, val);
3102 l = 2;
3103 } else {
3104 /* 8 bit read access */
3105 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3106 stb_p(buf, val);
3107 l = 1;
3108 }
3109 } else {
3110 /* RAM case */
3111 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3112 (addr & ~TARGET_PAGE_MASK);
3113 memcpy(buf, ptr, l);
3114 }
3115 }
3116 len -= l;
3117 buf += l;
3118 addr += l;
3119 }
3120 }
3121
3122 /* used for ROM loading : can write in RAM and ROM */
3123 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3124 const uint8_t *buf, int len)
3125 {
3126 int l;
3127 uint8_t *ptr;
3128 target_phys_addr_t page;
3129 unsigned long pd;
3130 PhysPageDesc *p;
3131
3132 while (len > 0) {
3133 page = addr & TARGET_PAGE_MASK;
3134 l = (page + TARGET_PAGE_SIZE) - addr;
3135 if (l > len)
3136 l = len;
3137 p = phys_page_find(page >> TARGET_PAGE_BITS);
3138 if (!p) {
3139 pd = IO_MEM_UNASSIGNED;
3140 } else {
3141 pd = p->phys_offset;
3142 }
3143
3144 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3145 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3146 !(pd & IO_MEM_ROMD)) {
3147 /* do nothing */
3148 } else {
3149 unsigned long addr1;
3150 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3151 /* ROM/RAM case */
3152 ptr = qemu_get_ram_ptr(addr1);
3153 memcpy(ptr, buf, l);
3154 }
3155 len -= l;
3156 buf += l;
3157 addr += l;
3158 }
3159 }
3160
3161 typedef struct {
3162 void *buffer;
3163 target_phys_addr_t addr;
3164 target_phys_addr_t len;
3165 } BounceBuffer;
3166
3167 static BounceBuffer bounce;
3168
3169 typedef struct MapClient {
3170 void *opaque;
3171 void (*callback)(void *opaque);
3172 LIST_ENTRY(MapClient) link;
3173 } MapClient;
3174
3175 static LIST_HEAD(map_client_list, MapClient) map_client_list
3176 = LIST_HEAD_INITIALIZER(map_client_list);
3177
3178 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3179 {
3180 MapClient *client = qemu_malloc(sizeof(*client));
3181
3182 client->opaque = opaque;
3183 client->callback = callback;
3184 LIST_INSERT_HEAD(&map_client_list, client, link);
3185 return client;
3186 }
3187
3188 void cpu_unregister_map_client(void *_client)
3189 {
3190 MapClient *client = (MapClient *)_client;
3191
3192 LIST_REMOVE(client, link);
3193 qemu_free(client);
3194 }
3195
3196 static void cpu_notify_map_clients(void)
3197 {
3198 MapClient *client;
3199
3200 while (!LIST_EMPTY(&map_client_list)) {
3201 client = LIST_FIRST(&map_client_list);
3202 client->callback(client->opaque);
3203 cpu_unregister_map_client(client);
3204 }
3205 }
3206
3207 /* Map a physical memory region into a host virtual address.
3208 * May map a subset of the requested range, given by and returned in *plen.
3209 * May return NULL if resources needed to perform the mapping are exhausted.
3210 * Use only for reads OR writes - not for read-modify-write operations.
3211 * Use cpu_register_map_client() to know when retrying the map operation is
3212 * likely to succeed.
3213 */
3214 void *cpu_physical_memory_map(target_phys_addr_t addr,
3215 target_phys_addr_t *plen,
3216 int is_write)
3217 {
3218 target_phys_addr_t len = *plen;
3219 target_phys_addr_t done = 0;
3220 int l;
3221 uint8_t *ret = NULL;
3222 uint8_t *ptr;
3223 target_phys_addr_t page;
3224 unsigned long pd;
3225 PhysPageDesc *p;
3226 unsigned long addr1;
3227
3228 while (len > 0) {
3229 page = addr & TARGET_PAGE_MASK;
3230 l = (page + TARGET_PAGE_SIZE) - addr;
3231 if (l > len)
3232 l = len;
3233 p = phys_page_find(page >> TARGET_PAGE_BITS);
3234 if (!p) {
3235 pd = IO_MEM_UNASSIGNED;
3236 } else {
3237 pd = p->phys_offset;
3238 }
3239
3240 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3241 if (done || bounce.buffer) {
3242 break;
3243 }
3244 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3245 bounce.addr = addr;
3246 bounce.len = l;
3247 if (!is_write) {
3248 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3249 }
3250 ptr = bounce.buffer;
3251 } else {
3252 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3253 ptr = qemu_get_ram_ptr(addr1);
3254 }
3255 if (!done) {
3256 ret = ptr;
3257 } else if (ret + done != ptr) {
3258 break;
3259 }
3260
3261 len -= l;
3262 addr += l;
3263 done += l;
3264 }
3265 *plen = done;
3266 return ret;
3267 }
3268
3269 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3270 * Will also mark the memory as dirty if is_write == 1. access_len gives
3271 * the amount of memory that was actually read or written by the caller.
3272 */
3273 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3274 int is_write, target_phys_addr_t access_len)
3275 {
3276 if (buffer != bounce.buffer) {
3277 if (is_write) {
3278 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
3279 while (access_len) {
3280 unsigned l;
3281 l = TARGET_PAGE_SIZE;
3282 if (l > access_len)
3283 l = access_len;
3284 if (!cpu_physical_memory_is_dirty(addr1)) {
3285 /* invalidate code */
3286 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3287 /* set dirty bit */
3288 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3289 (0xff & ~CODE_DIRTY_FLAG);
3290 }
3291 addr1 += l;
3292 access_len -= l;
3293 }
3294 }
3295 return;
3296 }
3297 if (is_write) {
3298 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3299 }
3300 qemu_free(bounce.buffer);
3301 bounce.buffer = NULL;
3302 cpu_notify_map_clients();
3303 }
3304
3305 /* warning: addr must be aligned */
3306 uint32_t ldl_phys(target_phys_addr_t addr)
3307 {
3308 int io_index;
3309 uint8_t *ptr;
3310 uint32_t val;
3311 unsigned long pd;
3312 PhysPageDesc *p;
3313
3314 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3315 if (!p) {
3316 pd = IO_MEM_UNASSIGNED;
3317 } else {
3318 pd = p->phys_offset;
3319 }
3320
3321 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3322 !(pd & IO_MEM_ROMD)) {
3323 /* I/O case */
3324 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3325 if (p)
3326 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3327 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3328 } else {
3329 /* RAM case */
3330 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3331 (addr & ~TARGET_PAGE_MASK);
3332 val = ldl_p(ptr);
3333 }
3334 return val;
3335 }
3336
3337 /* warning: addr must be aligned */
3338 uint64_t ldq_phys(target_phys_addr_t addr)
3339 {
3340 int io_index;
3341 uint8_t *ptr;
3342 uint64_t val;
3343 unsigned long pd;
3344 PhysPageDesc *p;
3345
3346 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3347 if (!p) {
3348 pd = IO_MEM_UNASSIGNED;
3349 } else {
3350 pd = p->phys_offset;
3351 }
3352
3353 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3354 !(pd & IO_MEM_ROMD)) {
3355 /* I/O case */
3356 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3357 if (p)
3358 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3359 #ifdef TARGET_WORDS_BIGENDIAN
3360 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3361 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3362 #else
3363 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3364 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3365 #endif
3366 } else {
3367 /* RAM case */
3368 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3369 (addr & ~TARGET_PAGE_MASK);
3370 val = ldq_p(ptr);
3371 }
3372 return val;
3373 }
3374
3375 /* XXX: optimize */
3376 uint32_t ldub_phys(target_phys_addr_t addr)
3377 {
3378 uint8_t val;
3379 cpu_physical_memory_read(addr, &val, 1);
3380 return val;
3381 }
3382
3383 /* XXX: optimize */
3384 uint32_t lduw_phys(target_phys_addr_t addr)
3385 {
3386 uint16_t val;
3387 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3388 return tswap16(val);
3389 }
3390
3391 /* warning: addr must be aligned. The ram page is not masked as dirty
3392 and the code inside is not invalidated. It is useful if the dirty
3393 bits are used to track modified PTEs */
3394 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3395 {
3396 int io_index;
3397 uint8_t *ptr;
3398 unsigned long pd;
3399 PhysPageDesc *p;
3400
3401 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3402 if (!p) {
3403 pd = IO_MEM_UNASSIGNED;
3404 } else {
3405 pd = p->phys_offset;
3406 }
3407
3408 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3409 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3410 if (p)
3411 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3412 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3413 } else {
3414 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3415 ptr = qemu_get_ram_ptr(addr1);
3416 stl_p(ptr, val);
3417
3418 if (unlikely(in_migration)) {
3419 if (!cpu_physical_memory_is_dirty(addr1)) {
3420 /* invalidate code */
3421 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3422 /* set dirty bit */
3423 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3424 (0xff & ~CODE_DIRTY_FLAG);
3425 }
3426 }
3427 }
3428 }
3429
3430 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3431 {
3432 int io_index;
3433 uint8_t *ptr;
3434 unsigned long pd;
3435 PhysPageDesc *p;
3436
3437 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3438 if (!p) {
3439 pd = IO_MEM_UNASSIGNED;
3440 } else {
3441 pd = p->phys_offset;
3442 }
3443
3444 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3445 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3446 if (p)
3447 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3448 #ifdef TARGET_WORDS_BIGENDIAN
3449 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3450 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3451 #else
3452 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3453 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3454 #endif
3455 } else {
3456 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3457 (addr & ~TARGET_PAGE_MASK);
3458 stq_p(ptr, val);
3459 }
3460 }
3461
3462 /* warning: addr must be aligned */
3463 void stl_phys(target_phys_addr_t addr, uint32_t val)
3464 {
3465 int io_index;
3466 uint8_t *ptr;
3467 unsigned long pd;
3468 PhysPageDesc *p;
3469
3470 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3471 if (!p) {
3472 pd = IO_MEM_UNASSIGNED;
3473 } else {
3474 pd = p->phys_offset;
3475 }
3476
3477 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3478 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3479 if (p)
3480 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3481 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3482 } else {
3483 unsigned long addr1;
3484 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3485 /* RAM case */
3486 ptr = qemu_get_ram_ptr(addr1);
3487 stl_p(ptr, val);
3488 if (!cpu_physical_memory_is_dirty(addr1)) {
3489 /* invalidate code */
3490 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3491 /* set dirty bit */
3492 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3493 (0xff & ~CODE_DIRTY_FLAG);
3494 }
3495 }
3496 }
3497
3498 /* XXX: optimize */
3499 void stb_phys(target_phys_addr_t addr, uint32_t val)
3500 {
3501 uint8_t v = val;
3502 cpu_physical_memory_write(addr, &v, 1);
3503 }
3504
3505 /* XXX: optimize */
3506 void stw_phys(target_phys_addr_t addr, uint32_t val)
3507 {
3508 uint16_t v = tswap16(val);
3509 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3510 }
3511
3512 /* XXX: optimize */
3513 void stq_phys(target_phys_addr_t addr, uint64_t val)
3514 {
3515 val = tswap64(val);
3516 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3517 }
3518
3519 #endif
3520
3521 /* virtual memory access for debug (includes writing to ROM) */
3522 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3523 uint8_t *buf, int len, int is_write)
3524 {
3525 int l;
3526 target_phys_addr_t phys_addr;
3527 target_ulong page;
3528
3529 while (len > 0) {
3530 page = addr & TARGET_PAGE_MASK;
3531 phys_addr = cpu_get_phys_page_debug(env, page);
3532 /* if no physical page mapped, return an error */
3533 if (phys_addr == -1)
3534 return -1;
3535 l = (page + TARGET_PAGE_SIZE) - addr;
3536 if (l > len)
3537 l = len;
3538 phys_addr += (addr & ~TARGET_PAGE_MASK);
3539 #if !defined(CONFIG_USER_ONLY)
3540 if (is_write)
3541 cpu_physical_memory_write_rom(phys_addr, buf, l);
3542 else
3543 #endif
3544 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
3545 len -= l;
3546 buf += l;
3547 addr += l;
3548 }
3549 return 0;
3550 }
3551
3552 /* in deterministic execution mode, instructions doing device I/Os
3553 must be at the end of the TB */
3554 void cpu_io_recompile(CPUState *env, void *retaddr)
3555 {
3556 TranslationBlock *tb;
3557 uint32_t n, cflags;
3558 target_ulong pc, cs_base;
3559 uint64_t flags;
3560
3561 tb = tb_find_pc((unsigned long)retaddr);
3562 if (!tb) {
3563 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3564 retaddr);
3565 }
3566 n = env->icount_decr.u16.low + tb->icount;
3567 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3568 /* Calculate how many instructions had been executed before the fault
3569 occurred. */
3570 n = n - env->icount_decr.u16.low;
3571 /* Generate a new TB ending on the I/O insn. */
3572 n++;
3573 /* On MIPS and SH, delay slot instructions can only be restarted if
3574 they were already the first instruction in the TB. If this is not
3575 the first instruction in a TB then re-execute the preceding
3576 branch. */
3577 #if defined(TARGET_MIPS)
3578 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3579 env->active_tc.PC -= 4;
3580 env->icount_decr.u16.low++;
3581 env->hflags &= ~MIPS_HFLAG_BMASK;
3582 }
3583 #elif defined(TARGET_SH4)
3584 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3585 && n > 1) {
3586 env->pc -= 2;
3587 env->icount_decr.u16.low++;
3588 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3589 }
3590 #endif
3591 /* This should never happen. */
3592 if (n > CF_COUNT_MASK)
3593 cpu_abort(env, "TB too big during recompile");
3594
3595 cflags = n | CF_LAST_IO;
3596 pc = tb->pc;
3597 cs_base = tb->cs_base;
3598 flags = tb->flags;
3599 tb_phys_invalidate(tb, -1);
3600 /* FIXME: In theory this could raise an exception. In practice
3601 we have already translated the block once so it's probably ok. */
3602 tb_gen_code(env, pc, cs_base, flags, cflags);
3603 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3604 the first in the TB) then we end up generating a whole new TB and
3605 repeating the fault, which is horribly inefficient.
3606 Better would be to execute just this insn uncached, or generate a
3607 second new TB. */
3608 cpu_resume_from_signal(env, NULL);
3609 }
3610
3611 void dump_exec_info(FILE *f,
3612 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3613 {
3614 int i, target_code_size, max_target_code_size;
3615 int direct_jmp_count, direct_jmp2_count, cross_page;
3616 TranslationBlock *tb;
3617
3618 target_code_size = 0;
3619 max_target_code_size = 0;
3620 cross_page = 0;
3621 direct_jmp_count = 0;
3622 direct_jmp2_count = 0;
3623 for(i = 0; i < nb_tbs; i++) {
3624 tb = &tbs[i];
3625 target_code_size += tb->size;
3626 if (tb->size > max_target_code_size)
3627 max_target_code_size = tb->size;
3628 if (tb->page_addr[1] != -1)
3629 cross_page++;
3630 if (tb->tb_next_offset[0] != 0xffff) {
3631 direct_jmp_count++;
3632 if (tb->tb_next_offset[1] != 0xffff) {
3633 direct_jmp2_count++;
3634 }
3635 }
3636 }
3637 /* XXX: avoid using doubles ? */
3638 cpu_fprintf(f, "Translation buffer state:\n");
3639 cpu_fprintf(f, "gen code size %ld/%ld\n",
3640 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3641 cpu_fprintf(f, "TB count %d/%d\n",
3642 nb_tbs, code_gen_max_blocks);
3643 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3644 nb_tbs ? target_code_size / nb_tbs : 0,
3645 max_target_code_size);
3646 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3647 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3648 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3649 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3650 cross_page,
3651 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3652 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3653 direct_jmp_count,
3654 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3655 direct_jmp2_count,
3656 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3657 cpu_fprintf(f, "\nStatistics:\n");
3658 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3659 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3660 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3661 tcg_dump_info(f, cpu_fprintf);
3662 }
3663
3664 #if !defined(CONFIG_USER_ONLY)
3665
3666 #define MMUSUFFIX _cmmu
3667 #define GETPC() NULL
3668 #define env cpu_single_env
3669 #define SOFTMMU_CODE_ACCESS
3670
3671 #define SHIFT 0
3672 #include "softmmu_template.h"
3673
3674 #define SHIFT 1
3675 #include "softmmu_template.h"
3676
3677 #define SHIFT 2
3678 #include "softmmu_template.h"
3679
3680 #define SHIFT 3
3681 #include "softmmu_template.h"
3682
3683 #undef env
3684
3685 #endif