]> git.proxmox.com Git - qemu.git/blob - exec.c
Redirect cpu_interrupt to callback handler
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
55
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
60
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
64
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
67
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
72
73 #define SMC_BITMAP_USE_THRESHOLD 10
74
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
81
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
97
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
104
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
108
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
111
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
123
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
135
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
147
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
151
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
157
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
164
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
170
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
173
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
176
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
181
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
185
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
192
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
196
197 static void io_mem_init(void);
198
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
206
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
216
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
223
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
226 {
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
230
231 }
232 #else
233 static void map_exec(void *addr, long size)
234 {
235 unsigned long start, end, page_size;
236
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
240
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
244
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
247 }
248 #endif
249
250 static void page_init(void)
251 {
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
255 {
256 SYSTEM_INFO system_info;
257
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
260 }
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
272
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
274 {
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
278
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
284
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
289
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
298 }
299 }
300 }
301 free(freep);
302 mmap_unlock();
303 }
304 #else
305 FILE *f;
306
307 last_brk = (unsigned long)sbrk(0);
308
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
312
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
316
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
318
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
321
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
326 }
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
328 }
329 } while (!feof(f));
330
331 fclose(f);
332 mmap_unlock();
333 }
334 #endif
335 }
336 #endif
337 }
338
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
340 {
341 PageDesc *pd;
342 void **lp;
343 int i;
344
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
356
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
359
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
363
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
367 }
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
370 }
371
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
373 }
374
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
379 }
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
382 }
383
384 #undef ALLOC
385
386 return pd + (index & (L2_SIZE - 1));
387 }
388
389 static inline PageDesc *page_find(tb_page_addr_t index)
390 {
391 return page_find_alloc(index, 0);
392 }
393
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
396 {
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
400
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
403
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
410 }
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
412 }
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
414 }
415
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
419
420 if (!alloc) {
421 return NULL;
422 }
423
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
425
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
429 }
430 }
431
432 return pd + (index & (L2_SIZE - 1));
433 }
434
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
436 {
437 return phys_page_find_alloc(index, 0);
438 }
439
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
446
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
448
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
454
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
459
460 static void code_gen_alloc(unsigned long tb_size)
461 {
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
476 }
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
482 {
483 int flags;
484 void *start = NULL;
485
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
509 }
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
518 }
519 }
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
521 || defined(__DragonFly__) || defined(__OpenBSD__)
522 {
523 int flags;
524 void *addr = NULL;
525 flags = MAP_PRIVATE | MAP_ANONYMOUS;
526 #if defined(__x86_64__)
527 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
528 * 0x40000000 is free */
529 flags |= MAP_FIXED;
530 addr = (void *)0x40000000;
531 /* Cannot map more than that */
532 if (code_gen_buffer_size > (800 * 1024 * 1024))
533 code_gen_buffer_size = (800 * 1024 * 1024);
534 #elif defined(__sparc_v9__)
535 // Map the buffer below 2G, so we can use direct calls and branches
536 flags |= MAP_FIXED;
537 addr = (void *) 0x60000000UL;
538 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
539 code_gen_buffer_size = (512 * 1024 * 1024);
540 }
541 #endif
542 code_gen_buffer = mmap(addr, code_gen_buffer_size,
543 PROT_WRITE | PROT_READ | PROT_EXEC,
544 flags, -1, 0);
545 if (code_gen_buffer == MAP_FAILED) {
546 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
547 exit(1);
548 }
549 }
550 #else
551 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
552 map_exec(code_gen_buffer, code_gen_buffer_size);
553 #endif
554 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
555 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
556 code_gen_buffer_max_size = code_gen_buffer_size -
557 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
558 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
559 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
560 }
561
562 /* Must be called before using the QEMU cpus. 'tb_size' is the size
563 (in bytes) allocated to the translation buffer. Zero means default
564 size. */
565 void cpu_exec_init_all(unsigned long tb_size)
566 {
567 cpu_gen_init();
568 code_gen_alloc(tb_size);
569 code_gen_ptr = code_gen_buffer;
570 page_init();
571 #if !defined(CONFIG_USER_ONLY)
572 io_mem_init();
573 #endif
574 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
575 /* There's no guest base to take into account, so go ahead and
576 initialize the prologue now. */
577 tcg_prologue_init(&tcg_ctx);
578 #endif
579 }
580
581 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
582
583 static int cpu_common_post_load(void *opaque, int version_id)
584 {
585 CPUState *env = opaque;
586
587 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
588 version_id is increased. */
589 env->interrupt_request &= ~0x01;
590 tlb_flush(env, 1);
591
592 return 0;
593 }
594
595 static const VMStateDescription vmstate_cpu_common = {
596 .name = "cpu_common",
597 .version_id = 1,
598 .minimum_version_id = 1,
599 .minimum_version_id_old = 1,
600 .post_load = cpu_common_post_load,
601 .fields = (VMStateField []) {
602 VMSTATE_UINT32(halted, CPUState),
603 VMSTATE_UINT32(interrupt_request, CPUState),
604 VMSTATE_END_OF_LIST()
605 }
606 };
607 #endif
608
609 CPUState *qemu_get_cpu(int cpu)
610 {
611 CPUState *env = first_cpu;
612
613 while (env) {
614 if (env->cpu_index == cpu)
615 break;
616 env = env->next_cpu;
617 }
618
619 return env;
620 }
621
622 void cpu_exec_init(CPUState *env)
623 {
624 CPUState **penv;
625 int cpu_index;
626
627 #if defined(CONFIG_USER_ONLY)
628 cpu_list_lock();
629 #endif
630 env->next_cpu = NULL;
631 penv = &first_cpu;
632 cpu_index = 0;
633 while (*penv != NULL) {
634 penv = &(*penv)->next_cpu;
635 cpu_index++;
636 }
637 env->cpu_index = cpu_index;
638 env->numa_node = 0;
639 QTAILQ_INIT(&env->breakpoints);
640 QTAILQ_INIT(&env->watchpoints);
641 #ifndef CONFIG_USER_ONLY
642 env->thread_id = qemu_get_thread_id();
643 #endif
644 *penv = env;
645 #if defined(CONFIG_USER_ONLY)
646 cpu_list_unlock();
647 #endif
648 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
649 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
650 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
651 cpu_save, cpu_load, env);
652 #endif
653 }
654
655 /* Allocate a new translation block. Flush the translation buffer if
656 too many translation blocks or too much generated code. */
657 static TranslationBlock *tb_alloc(target_ulong pc)
658 {
659 TranslationBlock *tb;
660
661 if (nb_tbs >= code_gen_max_blocks ||
662 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
663 return NULL;
664 tb = &tbs[nb_tbs++];
665 tb->pc = pc;
666 tb->cflags = 0;
667 return tb;
668 }
669
670 void tb_free(TranslationBlock *tb)
671 {
672 /* In practice this is mostly used for single use temporary TB
673 Ignore the hard cases and just back up if this TB happens to
674 be the last one generated. */
675 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
676 code_gen_ptr = tb->tc_ptr;
677 nb_tbs--;
678 }
679 }
680
681 static inline void invalidate_page_bitmap(PageDesc *p)
682 {
683 if (p->code_bitmap) {
684 qemu_free(p->code_bitmap);
685 p->code_bitmap = NULL;
686 }
687 p->code_write_count = 0;
688 }
689
690 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
691
692 static void page_flush_tb_1 (int level, void **lp)
693 {
694 int i;
695
696 if (*lp == NULL) {
697 return;
698 }
699 if (level == 0) {
700 PageDesc *pd = *lp;
701 for (i = 0; i < L2_SIZE; ++i) {
702 pd[i].first_tb = NULL;
703 invalidate_page_bitmap(pd + i);
704 }
705 } else {
706 void **pp = *lp;
707 for (i = 0; i < L2_SIZE; ++i) {
708 page_flush_tb_1 (level - 1, pp + i);
709 }
710 }
711 }
712
713 static void page_flush_tb(void)
714 {
715 int i;
716 for (i = 0; i < V_L1_SIZE; i++) {
717 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
718 }
719 }
720
721 /* flush all the translation blocks */
722 /* XXX: tb_flush is currently not thread safe */
723 void tb_flush(CPUState *env1)
724 {
725 CPUState *env;
726 #if defined(DEBUG_FLUSH)
727 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
728 (unsigned long)(code_gen_ptr - code_gen_buffer),
729 nb_tbs, nb_tbs > 0 ?
730 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
731 #endif
732 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
733 cpu_abort(env1, "Internal error: code buffer overflow\n");
734
735 nb_tbs = 0;
736
737 for(env = first_cpu; env != NULL; env = env->next_cpu) {
738 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
739 }
740
741 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
742 page_flush_tb();
743
744 code_gen_ptr = code_gen_buffer;
745 /* XXX: flush processor icache at this point if cache flush is
746 expensive */
747 tb_flush_count++;
748 }
749
750 #ifdef DEBUG_TB_CHECK
751
752 static void tb_invalidate_check(target_ulong address)
753 {
754 TranslationBlock *tb;
755 int i;
756 address &= TARGET_PAGE_MASK;
757 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
758 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
759 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
760 address >= tb->pc + tb->size)) {
761 printf("ERROR invalidate: address=" TARGET_FMT_lx
762 " PC=%08lx size=%04x\n",
763 address, (long)tb->pc, tb->size);
764 }
765 }
766 }
767 }
768
769 /* verify that all the pages have correct rights for code */
770 static void tb_page_check(void)
771 {
772 TranslationBlock *tb;
773 int i, flags1, flags2;
774
775 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
776 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
777 flags1 = page_get_flags(tb->pc);
778 flags2 = page_get_flags(tb->pc + tb->size - 1);
779 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
780 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
781 (long)tb->pc, tb->size, flags1, flags2);
782 }
783 }
784 }
785 }
786
787 #endif
788
789 /* invalidate one TB */
790 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
791 int next_offset)
792 {
793 TranslationBlock *tb1;
794 for(;;) {
795 tb1 = *ptb;
796 if (tb1 == tb) {
797 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
798 break;
799 }
800 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
801 }
802 }
803
804 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
805 {
806 TranslationBlock *tb1;
807 unsigned int n1;
808
809 for(;;) {
810 tb1 = *ptb;
811 n1 = (long)tb1 & 3;
812 tb1 = (TranslationBlock *)((long)tb1 & ~3);
813 if (tb1 == tb) {
814 *ptb = tb1->page_next[n1];
815 break;
816 }
817 ptb = &tb1->page_next[n1];
818 }
819 }
820
821 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
822 {
823 TranslationBlock *tb1, **ptb;
824 unsigned int n1;
825
826 ptb = &tb->jmp_next[n];
827 tb1 = *ptb;
828 if (tb1) {
829 /* find tb(n) in circular list */
830 for(;;) {
831 tb1 = *ptb;
832 n1 = (long)tb1 & 3;
833 tb1 = (TranslationBlock *)((long)tb1 & ~3);
834 if (n1 == n && tb1 == tb)
835 break;
836 if (n1 == 2) {
837 ptb = &tb1->jmp_first;
838 } else {
839 ptb = &tb1->jmp_next[n1];
840 }
841 }
842 /* now we can suppress tb(n) from the list */
843 *ptb = tb->jmp_next[n];
844
845 tb->jmp_next[n] = NULL;
846 }
847 }
848
849 /* reset the jump entry 'n' of a TB so that it is not chained to
850 another TB */
851 static inline void tb_reset_jump(TranslationBlock *tb, int n)
852 {
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854 }
855
856 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
857 {
858 CPUState *env;
859 PageDesc *p;
860 unsigned int h, n1;
861 tb_page_addr_t phys_pc;
862 TranslationBlock *tb1, *tb2;
863
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
867 tb_remove(&tb_phys_hash[h], tb,
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
882 tb_invalidated_flag = 1;
883
884 /* remove the TB from the hash list */
885 h = tb_jmp_cache_hash_func(tb->pc);
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
908
909 tb_phys_invalidate_count++;
910 }
911
912 static inline void set_bits(uint8_t *tab, int start, int len)
913 {
914 int end, mask, end1;
915
916 end = start + len;
917 tab += start >> 3;
918 mask = 0xff << (start & 7);
919 if ((start & ~7) == (end & ~7)) {
920 if (start < end) {
921 mask &= ~(0xff << (end & 7));
922 *tab |= mask;
923 }
924 } else {
925 *tab++ |= mask;
926 start = (start + 8) & ~7;
927 end1 = end & ~7;
928 while (start < end1) {
929 *tab++ = 0xff;
930 start += 8;
931 }
932 if (start < end) {
933 mask = ~(0xff << (end & 7));
934 *tab |= mask;
935 }
936 }
937 }
938
939 static void build_page_bitmap(PageDesc *p)
940 {
941 int n, tb_start, tb_end;
942 TranslationBlock *tb;
943
944 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
945
946 tb = p->first_tb;
947 while (tb != NULL) {
948 n = (long)tb & 3;
949 tb = (TranslationBlock *)((long)tb & ~3);
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->pc & ~TARGET_PAGE_MASK;
955 tb_end = tb_start + tb->size;
956 if (tb_end > TARGET_PAGE_SIZE)
957 tb_end = TARGET_PAGE_SIZE;
958 } else {
959 tb_start = 0;
960 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
961 }
962 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
963 tb = tb->page_next[n];
964 }
965 }
966
967 TranslationBlock *tb_gen_code(CPUState *env,
968 target_ulong pc, target_ulong cs_base,
969 int flags, int cflags)
970 {
971 TranslationBlock *tb;
972 uint8_t *tc_ptr;
973 tb_page_addr_t phys_pc, phys_page2;
974 target_ulong virt_page2;
975 int code_gen_size;
976
977 phys_pc = get_page_addr_code(env, pc);
978 tb = tb_alloc(pc);
979 if (!tb) {
980 /* flush must be done */
981 tb_flush(env);
982 /* cannot fail at this point */
983 tb = tb_alloc(pc);
984 /* Don't forget to invalidate previous TB info. */
985 tb_invalidated_flag = 1;
986 }
987 tc_ptr = code_gen_ptr;
988 tb->tc_ptr = tc_ptr;
989 tb->cs_base = cs_base;
990 tb->flags = flags;
991 tb->cflags = cflags;
992 cpu_gen_code(env, tb, &code_gen_size);
993 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
994
995 /* check next page if needed */
996 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
997 phys_page2 = -1;
998 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
999 phys_page2 = get_page_addr_code(env, virt_page2);
1000 }
1001 tb_link_page(tb, phys_pc, phys_page2);
1002 return tb;
1003 }
1004
1005 /* invalidate all TBs which intersect with the target physical page
1006 starting in range [start;end[. NOTE: start and end must refer to
1007 the same physical page. 'is_cpu_write_access' should be true if called
1008 from a real cpu write access: the virtual CPU will exit the current
1009 TB if code is modified inside this TB. */
1010 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1011 int is_cpu_write_access)
1012 {
1013 TranslationBlock *tb, *tb_next, *saved_tb;
1014 CPUState *env = cpu_single_env;
1015 tb_page_addr_t tb_start, tb_end;
1016 PageDesc *p;
1017 int n;
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 int current_tb_not_found = is_cpu_write_access;
1020 TranslationBlock *current_tb = NULL;
1021 int current_tb_modified = 0;
1022 target_ulong current_pc = 0;
1023 target_ulong current_cs_base = 0;
1024 int current_flags = 0;
1025 #endif /* TARGET_HAS_PRECISE_SMC */
1026
1027 p = page_find(start >> TARGET_PAGE_BITS);
1028 if (!p)
1029 return;
1030 if (!p->code_bitmap &&
1031 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1032 is_cpu_write_access) {
1033 /* build code bitmap */
1034 build_page_bitmap(p);
1035 }
1036
1037 /* we remove all the TBs in the range [start, end[ */
1038 /* XXX: see if in some cases it could be faster to invalidate all the code */
1039 tb = p->first_tb;
1040 while (tb != NULL) {
1041 n = (long)tb & 3;
1042 tb = (TranslationBlock *)((long)tb & ~3);
1043 tb_next = tb->page_next[n];
1044 /* NOTE: this is subtle as a TB may span two physical pages */
1045 if (n == 0) {
1046 /* NOTE: tb_end may be after the end of the page, but
1047 it is not a problem */
1048 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1049 tb_end = tb_start + tb->size;
1050 } else {
1051 tb_start = tb->page_addr[1];
1052 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1053 }
1054 if (!(tb_end <= start || tb_start >= end)) {
1055 #ifdef TARGET_HAS_PRECISE_SMC
1056 if (current_tb_not_found) {
1057 current_tb_not_found = 0;
1058 current_tb = NULL;
1059 if (env->mem_io_pc) {
1060 /* now we have a real cpu fault */
1061 current_tb = tb_find_pc(env->mem_io_pc);
1062 }
1063 }
1064 if (current_tb == tb &&
1065 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1066 /* If we are modifying the current TB, we must stop
1067 its execution. We could be more precise by checking
1068 that the modification is after the current PC, but it
1069 would require a specialized function to partially
1070 restore the CPU state */
1071
1072 current_tb_modified = 1;
1073 cpu_restore_state(current_tb, env, env->mem_io_pc);
1074 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1075 &current_flags);
1076 }
1077 #endif /* TARGET_HAS_PRECISE_SMC */
1078 /* we need to do that to handle the case where a signal
1079 occurs while doing tb_phys_invalidate() */
1080 saved_tb = NULL;
1081 if (env) {
1082 saved_tb = env->current_tb;
1083 env->current_tb = NULL;
1084 }
1085 tb_phys_invalidate(tb, -1);
1086 if (env) {
1087 env->current_tb = saved_tb;
1088 if (env->interrupt_request && env->current_tb)
1089 cpu_interrupt(env, env->interrupt_request);
1090 }
1091 }
1092 tb = tb_next;
1093 }
1094 #if !defined(CONFIG_USER_ONLY)
1095 /* if no code remaining, no need to continue to use slow writes */
1096 if (!p->first_tb) {
1097 invalidate_page_bitmap(p);
1098 if (is_cpu_write_access) {
1099 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1100 }
1101 }
1102 #endif
1103 #ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
1108 env->current_tb = NULL;
1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1110 cpu_resume_from_signal(env, NULL);
1111 }
1112 #endif
1113 }
1114
1115 /* len must be <= 8 and start must be a multiple of len */
1116 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1117 {
1118 PageDesc *p;
1119 int offset, b;
1120 #if 0
1121 if (1) {
1122 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1123 cpu_single_env->mem_io_vaddr, len,
1124 cpu_single_env->eip,
1125 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1126 }
1127 #endif
1128 p = page_find(start >> TARGET_PAGE_BITS);
1129 if (!p)
1130 return;
1131 if (p->code_bitmap) {
1132 offset = start & ~TARGET_PAGE_MASK;
1133 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1134 if (b & ((1 << len) - 1))
1135 goto do_invalidate;
1136 } else {
1137 do_invalidate:
1138 tb_invalidate_phys_page_range(start, start + len, 1);
1139 }
1140 }
1141
1142 #if !defined(CONFIG_SOFTMMU)
1143 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1144 unsigned long pc, void *puc)
1145 {
1146 TranslationBlock *tb;
1147 PageDesc *p;
1148 int n;
1149 #ifdef TARGET_HAS_PRECISE_SMC
1150 TranslationBlock *current_tb = NULL;
1151 CPUState *env = cpu_single_env;
1152 int current_tb_modified = 0;
1153 target_ulong current_pc = 0;
1154 target_ulong current_cs_base = 0;
1155 int current_flags = 0;
1156 #endif
1157
1158 addr &= TARGET_PAGE_MASK;
1159 p = page_find(addr >> TARGET_PAGE_BITS);
1160 if (!p)
1161 return;
1162 tb = p->first_tb;
1163 #ifdef TARGET_HAS_PRECISE_SMC
1164 if (tb && pc != 0) {
1165 current_tb = tb_find_pc(pc);
1166 }
1167 #endif
1168 while (tb != NULL) {
1169 n = (long)tb & 3;
1170 tb = (TranslationBlock *)((long)tb & ~3);
1171 #ifdef TARGET_HAS_PRECISE_SMC
1172 if (current_tb == tb &&
1173 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1174 /* If we are modifying the current TB, we must stop
1175 its execution. We could be more precise by checking
1176 that the modification is after the current PC, but it
1177 would require a specialized function to partially
1178 restore the CPU state */
1179
1180 current_tb_modified = 1;
1181 cpu_restore_state(current_tb, env, pc);
1182 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1183 &current_flags);
1184 }
1185 #endif /* TARGET_HAS_PRECISE_SMC */
1186 tb_phys_invalidate(tb, addr);
1187 tb = tb->page_next[n];
1188 }
1189 p->first_tb = NULL;
1190 #ifdef TARGET_HAS_PRECISE_SMC
1191 if (current_tb_modified) {
1192 /* we generate a block containing just the instruction
1193 modifying the memory. It will ensure that it cannot modify
1194 itself */
1195 env->current_tb = NULL;
1196 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1197 cpu_resume_from_signal(env, puc);
1198 }
1199 #endif
1200 }
1201 #endif
1202
1203 /* add the tb in the target page and protect it if necessary */
1204 static inline void tb_alloc_page(TranslationBlock *tb,
1205 unsigned int n, tb_page_addr_t page_addr)
1206 {
1207 PageDesc *p;
1208 TranslationBlock *last_first_tb;
1209
1210 tb->page_addr[n] = page_addr;
1211 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1212 tb->page_next[n] = p->first_tb;
1213 last_first_tb = p->first_tb;
1214 p->first_tb = (TranslationBlock *)((long)tb | n);
1215 invalidate_page_bitmap(p);
1216
1217 #if defined(TARGET_HAS_SMC) || 1
1218
1219 #if defined(CONFIG_USER_ONLY)
1220 if (p->flags & PAGE_WRITE) {
1221 target_ulong addr;
1222 PageDesc *p2;
1223 int prot;
1224
1225 /* force the host page as non writable (writes will have a
1226 page fault + mprotect overhead) */
1227 page_addr &= qemu_host_page_mask;
1228 prot = 0;
1229 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1230 addr += TARGET_PAGE_SIZE) {
1231
1232 p2 = page_find (addr >> TARGET_PAGE_BITS);
1233 if (!p2)
1234 continue;
1235 prot |= p2->flags;
1236 p2->flags &= ~PAGE_WRITE;
1237 }
1238 mprotect(g2h(page_addr), qemu_host_page_size,
1239 (prot & PAGE_BITS) & ~PAGE_WRITE);
1240 #ifdef DEBUG_TB_INVALIDATE
1241 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1242 page_addr);
1243 #endif
1244 }
1245 #else
1246 /* if some code is already present, then the pages are already
1247 protected. So we handle the case where only the first TB is
1248 allocated in a physical page */
1249 if (!last_first_tb) {
1250 tlb_protect_code(page_addr);
1251 }
1252 #endif
1253
1254 #endif /* TARGET_HAS_SMC */
1255 }
1256
1257 /* add a new TB and link it to the physical page tables. phys_page2 is
1258 (-1) to indicate that only one page contains the TB. */
1259 void tb_link_page(TranslationBlock *tb,
1260 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1261 {
1262 unsigned int h;
1263 TranslationBlock **ptb;
1264
1265 /* Grab the mmap lock to stop another thread invalidating this TB
1266 before we are done. */
1267 mmap_lock();
1268 /* add in the physical hash table */
1269 h = tb_phys_hash_func(phys_pc);
1270 ptb = &tb_phys_hash[h];
1271 tb->phys_hash_next = *ptb;
1272 *ptb = tb;
1273
1274 /* add in the page list */
1275 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1276 if (phys_page2 != -1)
1277 tb_alloc_page(tb, 1, phys_page2);
1278 else
1279 tb->page_addr[1] = -1;
1280
1281 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1282 tb->jmp_next[0] = NULL;
1283 tb->jmp_next[1] = NULL;
1284
1285 /* init original jump addresses */
1286 if (tb->tb_next_offset[0] != 0xffff)
1287 tb_reset_jump(tb, 0);
1288 if (tb->tb_next_offset[1] != 0xffff)
1289 tb_reset_jump(tb, 1);
1290
1291 #ifdef DEBUG_TB_CHECK
1292 tb_page_check();
1293 #endif
1294 mmap_unlock();
1295 }
1296
1297 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1298 tb[1].tc_ptr. Return NULL if not found */
1299 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1300 {
1301 int m_min, m_max, m;
1302 unsigned long v;
1303 TranslationBlock *tb;
1304
1305 if (nb_tbs <= 0)
1306 return NULL;
1307 if (tc_ptr < (unsigned long)code_gen_buffer ||
1308 tc_ptr >= (unsigned long)code_gen_ptr)
1309 return NULL;
1310 /* binary search (cf Knuth) */
1311 m_min = 0;
1312 m_max = nb_tbs - 1;
1313 while (m_min <= m_max) {
1314 m = (m_min + m_max) >> 1;
1315 tb = &tbs[m];
1316 v = (unsigned long)tb->tc_ptr;
1317 if (v == tc_ptr)
1318 return tb;
1319 else if (tc_ptr < v) {
1320 m_max = m - 1;
1321 } else {
1322 m_min = m + 1;
1323 }
1324 }
1325 return &tbs[m_max];
1326 }
1327
1328 static void tb_reset_jump_recursive(TranslationBlock *tb);
1329
1330 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1331 {
1332 TranslationBlock *tb1, *tb_next, **ptb;
1333 unsigned int n1;
1334
1335 tb1 = tb->jmp_next[n];
1336 if (tb1 != NULL) {
1337 /* find head of list */
1338 for(;;) {
1339 n1 = (long)tb1 & 3;
1340 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1341 if (n1 == 2)
1342 break;
1343 tb1 = tb1->jmp_next[n1];
1344 }
1345 /* we are now sure now that tb jumps to tb1 */
1346 tb_next = tb1;
1347
1348 /* remove tb from the jmp_first list */
1349 ptb = &tb_next->jmp_first;
1350 for(;;) {
1351 tb1 = *ptb;
1352 n1 = (long)tb1 & 3;
1353 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1354 if (n1 == n && tb1 == tb)
1355 break;
1356 ptb = &tb1->jmp_next[n1];
1357 }
1358 *ptb = tb->jmp_next[n];
1359 tb->jmp_next[n] = NULL;
1360
1361 /* suppress the jump to next tb in generated code */
1362 tb_reset_jump(tb, n);
1363
1364 /* suppress jumps in the tb on which we could have jumped */
1365 tb_reset_jump_recursive(tb_next);
1366 }
1367 }
1368
1369 static void tb_reset_jump_recursive(TranslationBlock *tb)
1370 {
1371 tb_reset_jump_recursive2(tb, 0);
1372 tb_reset_jump_recursive2(tb, 1);
1373 }
1374
1375 #if defined(TARGET_HAS_ICE)
1376 #if defined(CONFIG_USER_ONLY)
1377 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1378 {
1379 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1380 }
1381 #else
1382 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1383 {
1384 target_phys_addr_t addr;
1385 target_ulong pd;
1386 ram_addr_t ram_addr;
1387 PhysPageDesc *p;
1388
1389 addr = cpu_get_phys_page_debug(env, pc);
1390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1391 if (!p) {
1392 pd = IO_MEM_UNASSIGNED;
1393 } else {
1394 pd = p->phys_offset;
1395 }
1396 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1397 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1398 }
1399 #endif
1400 #endif /* TARGET_HAS_ICE */
1401
1402 #if defined(CONFIG_USER_ONLY)
1403 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1404
1405 {
1406 }
1407
1408 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1409 int flags, CPUWatchpoint **watchpoint)
1410 {
1411 return -ENOSYS;
1412 }
1413 #else
1414 /* Add a watchpoint. */
1415 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1416 int flags, CPUWatchpoint **watchpoint)
1417 {
1418 target_ulong len_mask = ~(len - 1);
1419 CPUWatchpoint *wp;
1420
1421 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1422 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1423 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1424 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1425 return -EINVAL;
1426 }
1427 wp = qemu_malloc(sizeof(*wp));
1428
1429 wp->vaddr = addr;
1430 wp->len_mask = len_mask;
1431 wp->flags = flags;
1432
1433 /* keep all GDB-injected watchpoints in front */
1434 if (flags & BP_GDB)
1435 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1436 else
1437 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1438
1439 tlb_flush_page(env, addr);
1440
1441 if (watchpoint)
1442 *watchpoint = wp;
1443 return 0;
1444 }
1445
1446 /* Remove a specific watchpoint. */
1447 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1448 int flags)
1449 {
1450 target_ulong len_mask = ~(len - 1);
1451 CPUWatchpoint *wp;
1452
1453 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1454 if (addr == wp->vaddr && len_mask == wp->len_mask
1455 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1456 cpu_watchpoint_remove_by_ref(env, wp);
1457 return 0;
1458 }
1459 }
1460 return -ENOENT;
1461 }
1462
1463 /* Remove a specific watchpoint by reference. */
1464 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1465 {
1466 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1467
1468 tlb_flush_page(env, watchpoint->vaddr);
1469
1470 qemu_free(watchpoint);
1471 }
1472
1473 /* Remove all matching watchpoints. */
1474 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1475 {
1476 CPUWatchpoint *wp, *next;
1477
1478 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1479 if (wp->flags & mask)
1480 cpu_watchpoint_remove_by_ref(env, wp);
1481 }
1482 }
1483 #endif
1484
1485 /* Add a breakpoint. */
1486 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1487 CPUBreakpoint **breakpoint)
1488 {
1489 #if defined(TARGET_HAS_ICE)
1490 CPUBreakpoint *bp;
1491
1492 bp = qemu_malloc(sizeof(*bp));
1493
1494 bp->pc = pc;
1495 bp->flags = flags;
1496
1497 /* keep all GDB-injected breakpoints in front */
1498 if (flags & BP_GDB)
1499 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1500 else
1501 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1502
1503 breakpoint_invalidate(env, pc);
1504
1505 if (breakpoint)
1506 *breakpoint = bp;
1507 return 0;
1508 #else
1509 return -ENOSYS;
1510 #endif
1511 }
1512
1513 /* Remove a specific breakpoint. */
1514 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1515 {
1516 #if defined(TARGET_HAS_ICE)
1517 CPUBreakpoint *bp;
1518
1519 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1520 if (bp->pc == pc && bp->flags == flags) {
1521 cpu_breakpoint_remove_by_ref(env, bp);
1522 return 0;
1523 }
1524 }
1525 return -ENOENT;
1526 #else
1527 return -ENOSYS;
1528 #endif
1529 }
1530
1531 /* Remove a specific breakpoint by reference. */
1532 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1533 {
1534 #if defined(TARGET_HAS_ICE)
1535 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1536
1537 breakpoint_invalidate(env, breakpoint->pc);
1538
1539 qemu_free(breakpoint);
1540 #endif
1541 }
1542
1543 /* Remove all matching breakpoints. */
1544 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1545 {
1546 #if defined(TARGET_HAS_ICE)
1547 CPUBreakpoint *bp, *next;
1548
1549 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1550 if (bp->flags & mask)
1551 cpu_breakpoint_remove_by_ref(env, bp);
1552 }
1553 #endif
1554 }
1555
1556 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1557 CPU loop after each instruction */
1558 void cpu_single_step(CPUState *env, int enabled)
1559 {
1560 #if defined(TARGET_HAS_ICE)
1561 if (env->singlestep_enabled != enabled) {
1562 env->singlestep_enabled = enabled;
1563 if (kvm_enabled())
1564 kvm_update_guest_debug(env, 0);
1565 else {
1566 /* must flush all the translated code to avoid inconsistencies */
1567 /* XXX: only flush what is necessary */
1568 tb_flush(env);
1569 }
1570 }
1571 #endif
1572 }
1573
1574 /* enable or disable low levels log */
1575 void cpu_set_log(int log_flags)
1576 {
1577 loglevel = log_flags;
1578 if (loglevel && !logfile) {
1579 logfile = fopen(logfilename, log_append ? "a" : "w");
1580 if (!logfile) {
1581 perror(logfilename);
1582 _exit(1);
1583 }
1584 #if !defined(CONFIG_SOFTMMU)
1585 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1586 {
1587 static char logfile_buf[4096];
1588 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1589 }
1590 #elif !defined(_WIN32)
1591 /* Win32 doesn't support line-buffering and requires size >= 2 */
1592 setvbuf(logfile, NULL, _IOLBF, 0);
1593 #endif
1594 log_append = 1;
1595 }
1596 if (!loglevel && logfile) {
1597 fclose(logfile);
1598 logfile = NULL;
1599 }
1600 }
1601
1602 void cpu_set_log_filename(const char *filename)
1603 {
1604 logfilename = strdup(filename);
1605 if (logfile) {
1606 fclose(logfile);
1607 logfile = NULL;
1608 }
1609 cpu_set_log(loglevel);
1610 }
1611
1612 static void cpu_unlink_tb(CPUState *env)
1613 {
1614 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1615 problem and hope the cpu will stop of its own accord. For userspace
1616 emulation this often isn't actually as bad as it sounds. Often
1617 signals are used primarily to interrupt blocking syscalls. */
1618 TranslationBlock *tb;
1619 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1620
1621 spin_lock(&interrupt_lock);
1622 tb = env->current_tb;
1623 /* if the cpu is currently executing code, we must unlink it and
1624 all the potentially executing TB */
1625 if (tb) {
1626 env->current_tb = NULL;
1627 tb_reset_jump_recursive(tb);
1628 }
1629 spin_unlock(&interrupt_lock);
1630 }
1631
1632 #ifndef CONFIG_USER_ONLY
1633 /* mask must never be zero, except for A20 change call */
1634 static void tcg_handle_interrupt(CPUState *env, int mask)
1635 {
1636 int old_mask;
1637
1638 old_mask = env->interrupt_request;
1639 env->interrupt_request |= mask;
1640
1641 /*
1642 * If called from iothread context, wake the target cpu in
1643 * case its halted.
1644 */
1645 if (!qemu_cpu_is_self(env)) {
1646 qemu_cpu_kick(env);
1647 return;
1648 }
1649
1650 if (use_icount) {
1651 env->icount_decr.u16.high = 0xffff;
1652 if (!can_do_io(env)
1653 && (mask & ~old_mask) != 0) {
1654 cpu_abort(env, "Raised interrupt while not in I/O function");
1655 }
1656 } else {
1657 cpu_unlink_tb(env);
1658 }
1659 }
1660
1661 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1662
1663 #else /* CONFIG_USER_ONLY */
1664
1665 void cpu_interrupt(CPUState *env, int mask)
1666 {
1667 env->interrupt_request |= mask;
1668 cpu_unlink_tb(env);
1669 }
1670 #endif /* CONFIG_USER_ONLY */
1671
1672 void cpu_reset_interrupt(CPUState *env, int mask)
1673 {
1674 env->interrupt_request &= ~mask;
1675 }
1676
1677 void cpu_exit(CPUState *env)
1678 {
1679 env->exit_request = 1;
1680 cpu_unlink_tb(env);
1681 }
1682
1683 const CPULogItem cpu_log_items[] = {
1684 { CPU_LOG_TB_OUT_ASM, "out_asm",
1685 "show generated host assembly code for each compiled TB" },
1686 { CPU_LOG_TB_IN_ASM, "in_asm",
1687 "show target assembly code for each compiled TB" },
1688 { CPU_LOG_TB_OP, "op",
1689 "show micro ops for each compiled TB" },
1690 { CPU_LOG_TB_OP_OPT, "op_opt",
1691 "show micro ops "
1692 #ifdef TARGET_I386
1693 "before eflags optimization and "
1694 #endif
1695 "after liveness analysis" },
1696 { CPU_LOG_INT, "int",
1697 "show interrupts/exceptions in short format" },
1698 { CPU_LOG_EXEC, "exec",
1699 "show trace before each executed TB (lots of logs)" },
1700 { CPU_LOG_TB_CPU, "cpu",
1701 "show CPU state before block translation" },
1702 #ifdef TARGET_I386
1703 { CPU_LOG_PCALL, "pcall",
1704 "show protected mode far calls/returns/exceptions" },
1705 { CPU_LOG_RESET, "cpu_reset",
1706 "show CPU state before CPU resets" },
1707 #endif
1708 #ifdef DEBUG_IOPORT
1709 { CPU_LOG_IOPORT, "ioport",
1710 "show all i/o ports accesses" },
1711 #endif
1712 { 0, NULL, NULL },
1713 };
1714
1715 #ifndef CONFIG_USER_ONLY
1716 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1717 = QLIST_HEAD_INITIALIZER(memory_client_list);
1718
1719 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1720 ram_addr_t size,
1721 ram_addr_t phys_offset)
1722 {
1723 CPUPhysMemoryClient *client;
1724 QLIST_FOREACH(client, &memory_client_list, list) {
1725 client->set_memory(client, start_addr, size, phys_offset);
1726 }
1727 }
1728
1729 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1730 target_phys_addr_t end)
1731 {
1732 CPUPhysMemoryClient *client;
1733 QLIST_FOREACH(client, &memory_client_list, list) {
1734 int r = client->sync_dirty_bitmap(client, start, end);
1735 if (r < 0)
1736 return r;
1737 }
1738 return 0;
1739 }
1740
1741 static int cpu_notify_migration_log(int enable)
1742 {
1743 CPUPhysMemoryClient *client;
1744 QLIST_FOREACH(client, &memory_client_list, list) {
1745 int r = client->migration_log(client, enable);
1746 if (r < 0)
1747 return r;
1748 }
1749 return 0;
1750 }
1751
1752 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1753 int level, void **lp)
1754 {
1755 int i;
1756
1757 if (*lp == NULL) {
1758 return;
1759 }
1760 if (level == 0) {
1761 PhysPageDesc *pd = *lp;
1762 for (i = 0; i < L2_SIZE; ++i) {
1763 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1764 client->set_memory(client, pd[i].region_offset,
1765 TARGET_PAGE_SIZE, pd[i].phys_offset);
1766 }
1767 }
1768 } else {
1769 void **pp = *lp;
1770 for (i = 0; i < L2_SIZE; ++i) {
1771 phys_page_for_each_1(client, level - 1, pp + i);
1772 }
1773 }
1774 }
1775
1776 static void phys_page_for_each(CPUPhysMemoryClient *client)
1777 {
1778 int i;
1779 for (i = 0; i < P_L1_SIZE; ++i) {
1780 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1781 l1_phys_map + 1);
1782 }
1783 }
1784
1785 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1786 {
1787 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1788 phys_page_for_each(client);
1789 }
1790
1791 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1792 {
1793 QLIST_REMOVE(client, list);
1794 }
1795 #endif
1796
1797 static int cmp1(const char *s1, int n, const char *s2)
1798 {
1799 if (strlen(s2) != n)
1800 return 0;
1801 return memcmp(s1, s2, n) == 0;
1802 }
1803
1804 /* takes a comma separated list of log masks. Return 0 if error. */
1805 int cpu_str_to_log_mask(const char *str)
1806 {
1807 const CPULogItem *item;
1808 int mask;
1809 const char *p, *p1;
1810
1811 p = str;
1812 mask = 0;
1813 for(;;) {
1814 p1 = strchr(p, ',');
1815 if (!p1)
1816 p1 = p + strlen(p);
1817 if(cmp1(p,p1-p,"all")) {
1818 for(item = cpu_log_items; item->mask != 0; item++) {
1819 mask |= item->mask;
1820 }
1821 } else {
1822 for(item = cpu_log_items; item->mask != 0; item++) {
1823 if (cmp1(p, p1 - p, item->name))
1824 goto found;
1825 }
1826 return 0;
1827 }
1828 found:
1829 mask |= item->mask;
1830 if (*p1 != ',')
1831 break;
1832 p = p1 + 1;
1833 }
1834 return mask;
1835 }
1836
1837 void cpu_abort(CPUState *env, const char *fmt, ...)
1838 {
1839 va_list ap;
1840 va_list ap2;
1841
1842 va_start(ap, fmt);
1843 va_copy(ap2, ap);
1844 fprintf(stderr, "qemu: fatal: ");
1845 vfprintf(stderr, fmt, ap);
1846 fprintf(stderr, "\n");
1847 #ifdef TARGET_I386
1848 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1849 #else
1850 cpu_dump_state(env, stderr, fprintf, 0);
1851 #endif
1852 if (qemu_log_enabled()) {
1853 qemu_log("qemu: fatal: ");
1854 qemu_log_vprintf(fmt, ap2);
1855 qemu_log("\n");
1856 #ifdef TARGET_I386
1857 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1858 #else
1859 log_cpu_state(env, 0);
1860 #endif
1861 qemu_log_flush();
1862 qemu_log_close();
1863 }
1864 va_end(ap2);
1865 va_end(ap);
1866 #if defined(CONFIG_USER_ONLY)
1867 {
1868 struct sigaction act;
1869 sigfillset(&act.sa_mask);
1870 act.sa_handler = SIG_DFL;
1871 sigaction(SIGABRT, &act, NULL);
1872 }
1873 #endif
1874 abort();
1875 }
1876
1877 CPUState *cpu_copy(CPUState *env)
1878 {
1879 CPUState *new_env = cpu_init(env->cpu_model_str);
1880 CPUState *next_cpu = new_env->next_cpu;
1881 int cpu_index = new_env->cpu_index;
1882 #if defined(TARGET_HAS_ICE)
1883 CPUBreakpoint *bp;
1884 CPUWatchpoint *wp;
1885 #endif
1886
1887 memcpy(new_env, env, sizeof(CPUState));
1888
1889 /* Preserve chaining and index. */
1890 new_env->next_cpu = next_cpu;
1891 new_env->cpu_index = cpu_index;
1892
1893 /* Clone all break/watchpoints.
1894 Note: Once we support ptrace with hw-debug register access, make sure
1895 BP_CPU break/watchpoints are handled correctly on clone. */
1896 QTAILQ_INIT(&env->breakpoints);
1897 QTAILQ_INIT(&env->watchpoints);
1898 #if defined(TARGET_HAS_ICE)
1899 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1900 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1901 }
1902 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1903 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1904 wp->flags, NULL);
1905 }
1906 #endif
1907
1908 return new_env;
1909 }
1910
1911 #if !defined(CONFIG_USER_ONLY)
1912
1913 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1914 {
1915 unsigned int i;
1916
1917 /* Discard jump cache entries for any tb which might potentially
1918 overlap the flushed page. */
1919 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1920 memset (&env->tb_jmp_cache[i], 0,
1921 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1922
1923 i = tb_jmp_cache_hash_page(addr);
1924 memset (&env->tb_jmp_cache[i], 0,
1925 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1926 }
1927
1928 static CPUTLBEntry s_cputlb_empty_entry = {
1929 .addr_read = -1,
1930 .addr_write = -1,
1931 .addr_code = -1,
1932 .addend = -1,
1933 };
1934
1935 /* NOTE: if flush_global is true, also flush global entries (not
1936 implemented yet) */
1937 void tlb_flush(CPUState *env, int flush_global)
1938 {
1939 int i;
1940
1941 #if defined(DEBUG_TLB)
1942 printf("tlb_flush:\n");
1943 #endif
1944 /* must reset current TB so that interrupts cannot modify the
1945 links while we are modifying them */
1946 env->current_tb = NULL;
1947
1948 for(i = 0; i < CPU_TLB_SIZE; i++) {
1949 int mmu_idx;
1950 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1951 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1952 }
1953 }
1954
1955 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1956
1957 env->tlb_flush_addr = -1;
1958 env->tlb_flush_mask = 0;
1959 tlb_flush_count++;
1960 }
1961
1962 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1963 {
1964 if (addr == (tlb_entry->addr_read &
1965 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1966 addr == (tlb_entry->addr_write &
1967 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1968 addr == (tlb_entry->addr_code &
1969 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1970 *tlb_entry = s_cputlb_empty_entry;
1971 }
1972 }
1973
1974 void tlb_flush_page(CPUState *env, target_ulong addr)
1975 {
1976 int i;
1977 int mmu_idx;
1978
1979 #if defined(DEBUG_TLB)
1980 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1981 #endif
1982 /* Check if we need to flush due to large pages. */
1983 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1984 #if defined(DEBUG_TLB)
1985 printf("tlb_flush_page: forced full flush ("
1986 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1987 env->tlb_flush_addr, env->tlb_flush_mask);
1988 #endif
1989 tlb_flush(env, 1);
1990 return;
1991 }
1992 /* must reset current TB so that interrupts cannot modify the
1993 links while we are modifying them */
1994 env->current_tb = NULL;
1995
1996 addr &= TARGET_PAGE_MASK;
1997 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1998 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1999 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2000
2001 tlb_flush_jmp_cache(env, addr);
2002 }
2003
2004 /* update the TLBs so that writes to code in the virtual page 'addr'
2005 can be detected */
2006 static void tlb_protect_code(ram_addr_t ram_addr)
2007 {
2008 cpu_physical_memory_reset_dirty(ram_addr,
2009 ram_addr + TARGET_PAGE_SIZE,
2010 CODE_DIRTY_FLAG);
2011 }
2012
2013 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2014 tested for self modifying code */
2015 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2016 target_ulong vaddr)
2017 {
2018 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2019 }
2020
2021 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2022 unsigned long start, unsigned long length)
2023 {
2024 unsigned long addr;
2025 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2026 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2027 if ((addr - start) < length) {
2028 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2029 }
2030 }
2031 }
2032
2033 /* Note: start and end must be within the same ram block. */
2034 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2035 int dirty_flags)
2036 {
2037 CPUState *env;
2038 unsigned long length, start1;
2039 int i;
2040
2041 start &= TARGET_PAGE_MASK;
2042 end = TARGET_PAGE_ALIGN(end);
2043
2044 length = end - start;
2045 if (length == 0)
2046 return;
2047 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2048
2049 /* we modify the TLB cache so that the dirty bit will be set again
2050 when accessing the range */
2051 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2052 /* Chek that we don't span multiple blocks - this breaks the
2053 address comparisons below. */
2054 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2055 != (end - 1) - start) {
2056 abort();
2057 }
2058
2059 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2060 int mmu_idx;
2061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2062 for(i = 0; i < CPU_TLB_SIZE; i++)
2063 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2064 start1, length);
2065 }
2066 }
2067 }
2068
2069 int cpu_physical_memory_set_dirty_tracking(int enable)
2070 {
2071 int ret = 0;
2072 in_migration = enable;
2073 ret = cpu_notify_migration_log(!!enable);
2074 return ret;
2075 }
2076
2077 int cpu_physical_memory_get_dirty_tracking(void)
2078 {
2079 return in_migration;
2080 }
2081
2082 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2083 target_phys_addr_t end_addr)
2084 {
2085 int ret;
2086
2087 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2088 return ret;
2089 }
2090
2091 int cpu_physical_log_start(target_phys_addr_t start_addr,
2092 ram_addr_t size)
2093 {
2094 CPUPhysMemoryClient *client;
2095 QLIST_FOREACH(client, &memory_client_list, list) {
2096 if (client->log_start) {
2097 int r = client->log_start(client, start_addr, size);
2098 if (r < 0) {
2099 return r;
2100 }
2101 }
2102 }
2103 return 0;
2104 }
2105
2106 int cpu_physical_log_stop(target_phys_addr_t start_addr,
2107 ram_addr_t size)
2108 {
2109 CPUPhysMemoryClient *client;
2110 QLIST_FOREACH(client, &memory_client_list, list) {
2111 if (client->log_stop) {
2112 int r = client->log_stop(client, start_addr, size);
2113 if (r < 0) {
2114 return r;
2115 }
2116 }
2117 }
2118 return 0;
2119 }
2120
2121 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2122 {
2123 ram_addr_t ram_addr;
2124 void *p;
2125
2126 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2127 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2128 + tlb_entry->addend);
2129 ram_addr = qemu_ram_addr_from_host_nofail(p);
2130 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2131 tlb_entry->addr_write |= TLB_NOTDIRTY;
2132 }
2133 }
2134 }
2135
2136 /* update the TLB according to the current state of the dirty bits */
2137 void cpu_tlb_update_dirty(CPUState *env)
2138 {
2139 int i;
2140 int mmu_idx;
2141 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2142 for(i = 0; i < CPU_TLB_SIZE; i++)
2143 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2144 }
2145 }
2146
2147 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2148 {
2149 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2150 tlb_entry->addr_write = vaddr;
2151 }
2152
2153 /* update the TLB corresponding to virtual page vaddr
2154 so that it is no longer dirty */
2155 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2156 {
2157 int i;
2158 int mmu_idx;
2159
2160 vaddr &= TARGET_PAGE_MASK;
2161 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2162 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2163 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2164 }
2165
2166 /* Our TLB does not support large pages, so remember the area covered by
2167 large pages and trigger a full TLB flush if these are invalidated. */
2168 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2169 target_ulong size)
2170 {
2171 target_ulong mask = ~(size - 1);
2172
2173 if (env->tlb_flush_addr == (target_ulong)-1) {
2174 env->tlb_flush_addr = vaddr & mask;
2175 env->tlb_flush_mask = mask;
2176 return;
2177 }
2178 /* Extend the existing region to include the new page.
2179 This is a compromise between unnecessary flushes and the cost
2180 of maintaining a full variable size TLB. */
2181 mask &= env->tlb_flush_mask;
2182 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2183 mask <<= 1;
2184 }
2185 env->tlb_flush_addr &= mask;
2186 env->tlb_flush_mask = mask;
2187 }
2188
2189 /* Add a new TLB entry. At most one entry for a given virtual address
2190 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2191 supplied size is only used by tlb_flush_page. */
2192 void tlb_set_page(CPUState *env, target_ulong vaddr,
2193 target_phys_addr_t paddr, int prot,
2194 int mmu_idx, target_ulong size)
2195 {
2196 PhysPageDesc *p;
2197 unsigned long pd;
2198 unsigned int index;
2199 target_ulong address;
2200 target_ulong code_address;
2201 unsigned long addend;
2202 CPUTLBEntry *te;
2203 CPUWatchpoint *wp;
2204 target_phys_addr_t iotlb;
2205
2206 assert(size >= TARGET_PAGE_SIZE);
2207 if (size != TARGET_PAGE_SIZE) {
2208 tlb_add_large_page(env, vaddr, size);
2209 }
2210 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2211 if (!p) {
2212 pd = IO_MEM_UNASSIGNED;
2213 } else {
2214 pd = p->phys_offset;
2215 }
2216 #if defined(DEBUG_TLB)
2217 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2218 " prot=%x idx=%d pd=0x%08lx\n",
2219 vaddr, paddr, prot, mmu_idx, pd);
2220 #endif
2221
2222 address = vaddr;
2223 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2224 /* IO memory case (romd handled later) */
2225 address |= TLB_MMIO;
2226 }
2227 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2228 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2229 /* Normal RAM. */
2230 iotlb = pd & TARGET_PAGE_MASK;
2231 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2232 iotlb |= IO_MEM_NOTDIRTY;
2233 else
2234 iotlb |= IO_MEM_ROM;
2235 } else {
2236 /* IO handlers are currently passed a physical address.
2237 It would be nice to pass an offset from the base address
2238 of that region. This would avoid having to special case RAM,
2239 and avoid full address decoding in every device.
2240 We can't use the high bits of pd for this because
2241 IO_MEM_ROMD uses these as a ram address. */
2242 iotlb = (pd & ~TARGET_PAGE_MASK);
2243 if (p) {
2244 iotlb += p->region_offset;
2245 } else {
2246 iotlb += paddr;
2247 }
2248 }
2249
2250 code_address = address;
2251 /* Make accesses to pages with watchpoints go via the
2252 watchpoint trap routines. */
2253 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2254 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2255 /* Avoid trapping reads of pages with a write breakpoint. */
2256 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2257 iotlb = io_mem_watch + paddr;
2258 address |= TLB_MMIO;
2259 break;
2260 }
2261 }
2262 }
2263
2264 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2265 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2266 te = &env->tlb_table[mmu_idx][index];
2267 te->addend = addend - vaddr;
2268 if (prot & PAGE_READ) {
2269 te->addr_read = address;
2270 } else {
2271 te->addr_read = -1;
2272 }
2273
2274 if (prot & PAGE_EXEC) {
2275 te->addr_code = code_address;
2276 } else {
2277 te->addr_code = -1;
2278 }
2279 if (prot & PAGE_WRITE) {
2280 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2281 (pd & IO_MEM_ROMD)) {
2282 /* Write access calls the I/O callback. */
2283 te->addr_write = address | TLB_MMIO;
2284 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2285 !cpu_physical_memory_is_dirty(pd)) {
2286 te->addr_write = address | TLB_NOTDIRTY;
2287 } else {
2288 te->addr_write = address;
2289 }
2290 } else {
2291 te->addr_write = -1;
2292 }
2293 }
2294
2295 #else
2296
2297 void tlb_flush(CPUState *env, int flush_global)
2298 {
2299 }
2300
2301 void tlb_flush_page(CPUState *env, target_ulong addr)
2302 {
2303 }
2304
2305 /*
2306 * Walks guest process memory "regions" one by one
2307 * and calls callback function 'fn' for each region.
2308 */
2309
2310 struct walk_memory_regions_data
2311 {
2312 walk_memory_regions_fn fn;
2313 void *priv;
2314 unsigned long start;
2315 int prot;
2316 };
2317
2318 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2319 abi_ulong end, int new_prot)
2320 {
2321 if (data->start != -1ul) {
2322 int rc = data->fn(data->priv, data->start, end, data->prot);
2323 if (rc != 0) {
2324 return rc;
2325 }
2326 }
2327
2328 data->start = (new_prot ? end : -1ul);
2329 data->prot = new_prot;
2330
2331 return 0;
2332 }
2333
2334 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2335 abi_ulong base, int level, void **lp)
2336 {
2337 abi_ulong pa;
2338 int i, rc;
2339
2340 if (*lp == NULL) {
2341 return walk_memory_regions_end(data, base, 0);
2342 }
2343
2344 if (level == 0) {
2345 PageDesc *pd = *lp;
2346 for (i = 0; i < L2_SIZE; ++i) {
2347 int prot = pd[i].flags;
2348
2349 pa = base | (i << TARGET_PAGE_BITS);
2350 if (prot != data->prot) {
2351 rc = walk_memory_regions_end(data, pa, prot);
2352 if (rc != 0) {
2353 return rc;
2354 }
2355 }
2356 }
2357 } else {
2358 void **pp = *lp;
2359 for (i = 0; i < L2_SIZE; ++i) {
2360 pa = base | ((abi_ulong)i <<
2361 (TARGET_PAGE_BITS + L2_BITS * level));
2362 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2363 if (rc != 0) {
2364 return rc;
2365 }
2366 }
2367 }
2368
2369 return 0;
2370 }
2371
2372 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2373 {
2374 struct walk_memory_regions_data data;
2375 unsigned long i;
2376
2377 data.fn = fn;
2378 data.priv = priv;
2379 data.start = -1ul;
2380 data.prot = 0;
2381
2382 for (i = 0; i < V_L1_SIZE; i++) {
2383 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2384 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2385 if (rc != 0) {
2386 return rc;
2387 }
2388 }
2389
2390 return walk_memory_regions_end(&data, 0, 0);
2391 }
2392
2393 static int dump_region(void *priv, abi_ulong start,
2394 abi_ulong end, unsigned long prot)
2395 {
2396 FILE *f = (FILE *)priv;
2397
2398 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2399 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2400 start, end, end - start,
2401 ((prot & PAGE_READ) ? 'r' : '-'),
2402 ((prot & PAGE_WRITE) ? 'w' : '-'),
2403 ((prot & PAGE_EXEC) ? 'x' : '-'));
2404
2405 return (0);
2406 }
2407
2408 /* dump memory mappings */
2409 void page_dump(FILE *f)
2410 {
2411 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2412 "start", "end", "size", "prot");
2413 walk_memory_regions(f, dump_region);
2414 }
2415
2416 int page_get_flags(target_ulong address)
2417 {
2418 PageDesc *p;
2419
2420 p = page_find(address >> TARGET_PAGE_BITS);
2421 if (!p)
2422 return 0;
2423 return p->flags;
2424 }
2425
2426 /* Modify the flags of a page and invalidate the code if necessary.
2427 The flag PAGE_WRITE_ORG is positioned automatically depending
2428 on PAGE_WRITE. The mmap_lock should already be held. */
2429 void page_set_flags(target_ulong start, target_ulong end, int flags)
2430 {
2431 target_ulong addr, len;
2432
2433 /* This function should never be called with addresses outside the
2434 guest address space. If this assert fires, it probably indicates
2435 a missing call to h2g_valid. */
2436 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2437 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2438 #endif
2439 assert(start < end);
2440
2441 start = start & TARGET_PAGE_MASK;
2442 end = TARGET_PAGE_ALIGN(end);
2443
2444 if (flags & PAGE_WRITE) {
2445 flags |= PAGE_WRITE_ORG;
2446 }
2447
2448 for (addr = start, len = end - start;
2449 len != 0;
2450 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2451 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2452
2453 /* If the write protection bit is set, then we invalidate
2454 the code inside. */
2455 if (!(p->flags & PAGE_WRITE) &&
2456 (flags & PAGE_WRITE) &&
2457 p->first_tb) {
2458 tb_invalidate_phys_page(addr, 0, NULL);
2459 }
2460 p->flags = flags;
2461 }
2462 }
2463
2464 int page_check_range(target_ulong start, target_ulong len, int flags)
2465 {
2466 PageDesc *p;
2467 target_ulong end;
2468 target_ulong addr;
2469
2470 /* This function should never be called with addresses outside the
2471 guest address space. If this assert fires, it probably indicates
2472 a missing call to h2g_valid. */
2473 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2474 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2475 #endif
2476
2477 if (len == 0) {
2478 return 0;
2479 }
2480 if (start + len - 1 < start) {
2481 /* We've wrapped around. */
2482 return -1;
2483 }
2484
2485 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2486 start = start & TARGET_PAGE_MASK;
2487
2488 for (addr = start, len = end - start;
2489 len != 0;
2490 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2491 p = page_find(addr >> TARGET_PAGE_BITS);
2492 if( !p )
2493 return -1;
2494 if( !(p->flags & PAGE_VALID) )
2495 return -1;
2496
2497 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2498 return -1;
2499 if (flags & PAGE_WRITE) {
2500 if (!(p->flags & PAGE_WRITE_ORG))
2501 return -1;
2502 /* unprotect the page if it was put read-only because it
2503 contains translated code */
2504 if (!(p->flags & PAGE_WRITE)) {
2505 if (!page_unprotect(addr, 0, NULL))
2506 return -1;
2507 }
2508 return 0;
2509 }
2510 }
2511 return 0;
2512 }
2513
2514 /* called from signal handler: invalidate the code and unprotect the
2515 page. Return TRUE if the fault was successfully handled. */
2516 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2517 {
2518 unsigned int prot;
2519 PageDesc *p;
2520 target_ulong host_start, host_end, addr;
2521
2522 /* Technically this isn't safe inside a signal handler. However we
2523 know this only ever happens in a synchronous SEGV handler, so in
2524 practice it seems to be ok. */
2525 mmap_lock();
2526
2527 p = page_find(address >> TARGET_PAGE_BITS);
2528 if (!p) {
2529 mmap_unlock();
2530 return 0;
2531 }
2532
2533 /* if the page was really writable, then we change its
2534 protection back to writable */
2535 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2536 host_start = address & qemu_host_page_mask;
2537 host_end = host_start + qemu_host_page_size;
2538
2539 prot = 0;
2540 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2541 p = page_find(addr >> TARGET_PAGE_BITS);
2542 p->flags |= PAGE_WRITE;
2543 prot |= p->flags;
2544
2545 /* and since the content will be modified, we must invalidate
2546 the corresponding translated code. */
2547 tb_invalidate_phys_page(addr, pc, puc);
2548 #ifdef DEBUG_TB_CHECK
2549 tb_invalidate_check(addr);
2550 #endif
2551 }
2552 mprotect((void *)g2h(host_start), qemu_host_page_size,
2553 prot & PAGE_BITS);
2554
2555 mmap_unlock();
2556 return 1;
2557 }
2558 mmap_unlock();
2559 return 0;
2560 }
2561
2562 static inline void tlb_set_dirty(CPUState *env,
2563 unsigned long addr, target_ulong vaddr)
2564 {
2565 }
2566 #endif /* defined(CONFIG_USER_ONLY) */
2567
2568 #if !defined(CONFIG_USER_ONLY)
2569
2570 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2571 typedef struct subpage_t {
2572 target_phys_addr_t base;
2573 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2574 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2575 } subpage_t;
2576
2577 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2578 ram_addr_t memory, ram_addr_t region_offset);
2579 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2580 ram_addr_t orig_memory,
2581 ram_addr_t region_offset);
2582 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2583 need_subpage) \
2584 do { \
2585 if (addr > start_addr) \
2586 start_addr2 = 0; \
2587 else { \
2588 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2589 if (start_addr2 > 0) \
2590 need_subpage = 1; \
2591 } \
2592 \
2593 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2594 end_addr2 = TARGET_PAGE_SIZE - 1; \
2595 else { \
2596 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2597 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2598 need_subpage = 1; \
2599 } \
2600 } while (0)
2601
2602 /* register physical memory.
2603 For RAM, 'size' must be a multiple of the target page size.
2604 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2605 io memory page. The address used when calling the IO function is
2606 the offset from the start of the region, plus region_offset. Both
2607 start_addr and region_offset are rounded down to a page boundary
2608 before calculating this offset. This should not be a problem unless
2609 the low bits of start_addr and region_offset differ. */
2610 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2611 ram_addr_t size,
2612 ram_addr_t phys_offset,
2613 ram_addr_t region_offset)
2614 {
2615 target_phys_addr_t addr, end_addr;
2616 PhysPageDesc *p;
2617 CPUState *env;
2618 ram_addr_t orig_size = size;
2619 subpage_t *subpage;
2620
2621 assert(size);
2622 cpu_notify_set_memory(start_addr, size, phys_offset);
2623
2624 if (phys_offset == IO_MEM_UNASSIGNED) {
2625 region_offset = start_addr;
2626 }
2627 region_offset &= TARGET_PAGE_MASK;
2628 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2629 end_addr = start_addr + (target_phys_addr_t)size;
2630
2631 addr = start_addr;
2632 do {
2633 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2634 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2635 ram_addr_t orig_memory = p->phys_offset;
2636 target_phys_addr_t start_addr2, end_addr2;
2637 int need_subpage = 0;
2638
2639 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2640 need_subpage);
2641 if (need_subpage) {
2642 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2643 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2644 &p->phys_offset, orig_memory,
2645 p->region_offset);
2646 } else {
2647 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2648 >> IO_MEM_SHIFT];
2649 }
2650 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2651 region_offset);
2652 p->region_offset = 0;
2653 } else {
2654 p->phys_offset = phys_offset;
2655 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2656 (phys_offset & IO_MEM_ROMD))
2657 phys_offset += TARGET_PAGE_SIZE;
2658 }
2659 } else {
2660 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2661 p->phys_offset = phys_offset;
2662 p->region_offset = region_offset;
2663 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2664 (phys_offset & IO_MEM_ROMD)) {
2665 phys_offset += TARGET_PAGE_SIZE;
2666 } else {
2667 target_phys_addr_t start_addr2, end_addr2;
2668 int need_subpage = 0;
2669
2670 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2671 end_addr2, need_subpage);
2672
2673 if (need_subpage) {
2674 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2675 &p->phys_offset, IO_MEM_UNASSIGNED,
2676 addr & TARGET_PAGE_MASK);
2677 subpage_register(subpage, start_addr2, end_addr2,
2678 phys_offset, region_offset);
2679 p->region_offset = 0;
2680 }
2681 }
2682 }
2683 region_offset += TARGET_PAGE_SIZE;
2684 addr += TARGET_PAGE_SIZE;
2685 } while (addr != end_addr);
2686
2687 /* since each CPU stores ram addresses in its TLB cache, we must
2688 reset the modified entries */
2689 /* XXX: slow ! */
2690 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2691 tlb_flush(env, 1);
2692 }
2693 }
2694
2695 /* XXX: temporary until new memory mapping API */
2696 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2697 {
2698 PhysPageDesc *p;
2699
2700 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2701 if (!p)
2702 return IO_MEM_UNASSIGNED;
2703 return p->phys_offset;
2704 }
2705
2706 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2707 {
2708 if (kvm_enabled())
2709 kvm_coalesce_mmio_region(addr, size);
2710 }
2711
2712 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2713 {
2714 if (kvm_enabled())
2715 kvm_uncoalesce_mmio_region(addr, size);
2716 }
2717
2718 void qemu_flush_coalesced_mmio_buffer(void)
2719 {
2720 if (kvm_enabled())
2721 kvm_flush_coalesced_mmio_buffer();
2722 }
2723
2724 #if defined(__linux__) && !defined(TARGET_S390X)
2725
2726 #include <sys/vfs.h>
2727
2728 #define HUGETLBFS_MAGIC 0x958458f6
2729
2730 static long gethugepagesize(const char *path)
2731 {
2732 struct statfs fs;
2733 int ret;
2734
2735 do {
2736 ret = statfs(path, &fs);
2737 } while (ret != 0 && errno == EINTR);
2738
2739 if (ret != 0) {
2740 perror(path);
2741 return 0;
2742 }
2743
2744 if (fs.f_type != HUGETLBFS_MAGIC)
2745 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2746
2747 return fs.f_bsize;
2748 }
2749
2750 static void *file_ram_alloc(RAMBlock *block,
2751 ram_addr_t memory,
2752 const char *path)
2753 {
2754 char *filename;
2755 void *area;
2756 int fd;
2757 #ifdef MAP_POPULATE
2758 int flags;
2759 #endif
2760 unsigned long hpagesize;
2761
2762 hpagesize = gethugepagesize(path);
2763 if (!hpagesize) {
2764 return NULL;
2765 }
2766
2767 if (memory < hpagesize) {
2768 return NULL;
2769 }
2770
2771 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2772 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2773 return NULL;
2774 }
2775
2776 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2777 return NULL;
2778 }
2779
2780 fd = mkstemp(filename);
2781 if (fd < 0) {
2782 perror("unable to create backing store for hugepages");
2783 free(filename);
2784 return NULL;
2785 }
2786 unlink(filename);
2787 free(filename);
2788
2789 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2790
2791 /*
2792 * ftruncate is not supported by hugetlbfs in older
2793 * hosts, so don't bother bailing out on errors.
2794 * If anything goes wrong with it under other filesystems,
2795 * mmap will fail.
2796 */
2797 if (ftruncate(fd, memory))
2798 perror("ftruncate");
2799
2800 #ifdef MAP_POPULATE
2801 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2802 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2803 * to sidestep this quirk.
2804 */
2805 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2806 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2807 #else
2808 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2809 #endif
2810 if (area == MAP_FAILED) {
2811 perror("file_ram_alloc: can't mmap RAM pages");
2812 close(fd);
2813 return (NULL);
2814 }
2815 block->fd = fd;
2816 return area;
2817 }
2818 #endif
2819
2820 static ram_addr_t find_ram_offset(ram_addr_t size)
2821 {
2822 RAMBlock *block, *next_block;
2823 ram_addr_t offset = 0, mingap = ULONG_MAX;
2824
2825 if (QLIST_EMPTY(&ram_list.blocks))
2826 return 0;
2827
2828 QLIST_FOREACH(block, &ram_list.blocks, next) {
2829 ram_addr_t end, next = ULONG_MAX;
2830
2831 end = block->offset + block->length;
2832
2833 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2834 if (next_block->offset >= end) {
2835 next = MIN(next, next_block->offset);
2836 }
2837 }
2838 if (next - end >= size && next - end < mingap) {
2839 offset = end;
2840 mingap = next - end;
2841 }
2842 }
2843 return offset;
2844 }
2845
2846 static ram_addr_t last_ram_offset(void)
2847 {
2848 RAMBlock *block;
2849 ram_addr_t last = 0;
2850
2851 QLIST_FOREACH(block, &ram_list.blocks, next)
2852 last = MAX(last, block->offset + block->length);
2853
2854 return last;
2855 }
2856
2857 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2858 ram_addr_t size, void *host)
2859 {
2860 RAMBlock *new_block, *block;
2861
2862 size = TARGET_PAGE_ALIGN(size);
2863 new_block = qemu_mallocz(sizeof(*new_block));
2864
2865 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2866 char *id = dev->parent_bus->info->get_dev_path(dev);
2867 if (id) {
2868 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2869 qemu_free(id);
2870 }
2871 }
2872 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2873
2874 QLIST_FOREACH(block, &ram_list.blocks, next) {
2875 if (!strcmp(block->idstr, new_block->idstr)) {
2876 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2877 new_block->idstr);
2878 abort();
2879 }
2880 }
2881
2882 if (host) {
2883 new_block->host = host;
2884 new_block->flags |= RAM_PREALLOC_MASK;
2885 } else {
2886 if (mem_path) {
2887 #if defined (__linux__) && !defined(TARGET_S390X)
2888 new_block->host = file_ram_alloc(new_block, size, mem_path);
2889 if (!new_block->host) {
2890 new_block->host = qemu_vmalloc(size);
2891 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2892 }
2893 #else
2894 fprintf(stderr, "-mem-path option unsupported\n");
2895 exit(1);
2896 #endif
2897 } else {
2898 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2899 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2900 new_block->host = mmap((void*)0x1000000, size,
2901 PROT_EXEC|PROT_READ|PROT_WRITE,
2902 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2903 #else
2904 new_block->host = qemu_vmalloc(size);
2905 #endif
2906 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2907 }
2908 }
2909
2910 new_block->offset = find_ram_offset(size);
2911 new_block->length = size;
2912
2913 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2914
2915 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2916 last_ram_offset() >> TARGET_PAGE_BITS);
2917 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2918 0xff, size >> TARGET_PAGE_BITS);
2919
2920 if (kvm_enabled())
2921 kvm_setup_guest_memory(new_block->host, size);
2922
2923 return new_block->offset;
2924 }
2925
2926 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2927 {
2928 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2929 }
2930
2931 void qemu_ram_free(ram_addr_t addr)
2932 {
2933 RAMBlock *block;
2934
2935 QLIST_FOREACH(block, &ram_list.blocks, next) {
2936 if (addr == block->offset) {
2937 QLIST_REMOVE(block, next);
2938 if (block->flags & RAM_PREALLOC_MASK) {
2939 ;
2940 } else if (mem_path) {
2941 #if defined (__linux__) && !defined(TARGET_S390X)
2942 if (block->fd) {
2943 munmap(block->host, block->length);
2944 close(block->fd);
2945 } else {
2946 qemu_vfree(block->host);
2947 }
2948 #else
2949 abort();
2950 #endif
2951 } else {
2952 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2953 munmap(block->host, block->length);
2954 #else
2955 qemu_vfree(block->host);
2956 #endif
2957 }
2958 qemu_free(block);
2959 return;
2960 }
2961 }
2962
2963 }
2964
2965 #ifndef _WIN32
2966 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2967 {
2968 RAMBlock *block;
2969 ram_addr_t offset;
2970 int flags;
2971 void *area, *vaddr;
2972
2973 QLIST_FOREACH(block, &ram_list.blocks, next) {
2974 offset = addr - block->offset;
2975 if (offset < block->length) {
2976 vaddr = block->host + offset;
2977 if (block->flags & RAM_PREALLOC_MASK) {
2978 ;
2979 } else {
2980 flags = MAP_FIXED;
2981 munmap(vaddr, length);
2982 if (mem_path) {
2983 #if defined(__linux__) && !defined(TARGET_S390X)
2984 if (block->fd) {
2985 #ifdef MAP_POPULATE
2986 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2987 MAP_PRIVATE;
2988 #else
2989 flags |= MAP_PRIVATE;
2990 #endif
2991 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2992 flags, block->fd, offset);
2993 } else {
2994 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2995 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2996 flags, -1, 0);
2997 }
2998 #else
2999 abort();
3000 #endif
3001 } else {
3002 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3003 flags |= MAP_SHARED | MAP_ANONYMOUS;
3004 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3005 flags, -1, 0);
3006 #else
3007 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3008 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3009 flags, -1, 0);
3010 #endif
3011 }
3012 if (area != vaddr) {
3013 fprintf(stderr, "Could not remap addr: %lx@%lx\n",
3014 length, addr);
3015 exit(1);
3016 }
3017 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3018 }
3019 return;
3020 }
3021 }
3022 }
3023 #endif /* !_WIN32 */
3024
3025 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3026 With the exception of the softmmu code in this file, this should
3027 only be used for local memory (e.g. video ram) that the device owns,
3028 and knows it isn't going to access beyond the end of the block.
3029
3030 It should not be used for general purpose DMA.
3031 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3032 */
3033 void *qemu_get_ram_ptr(ram_addr_t addr)
3034 {
3035 RAMBlock *block;
3036
3037 QLIST_FOREACH(block, &ram_list.blocks, next) {
3038 if (addr - block->offset < block->length) {
3039 /* Move this entry to to start of the list. */
3040 if (block != QLIST_FIRST(&ram_list.blocks)) {
3041 QLIST_REMOVE(block, next);
3042 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3043 }
3044 return block->host + (addr - block->offset);
3045 }
3046 }
3047
3048 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3049 abort();
3050
3051 return NULL;
3052 }
3053
3054 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3055 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3056 */
3057 void *qemu_safe_ram_ptr(ram_addr_t addr)
3058 {
3059 RAMBlock *block;
3060
3061 QLIST_FOREACH(block, &ram_list.blocks, next) {
3062 if (addr - block->offset < block->length) {
3063 return block->host + (addr - block->offset);
3064 }
3065 }
3066
3067 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3068 abort();
3069
3070 return NULL;
3071 }
3072
3073 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3074 {
3075 RAMBlock *block;
3076 uint8_t *host = ptr;
3077
3078 QLIST_FOREACH(block, &ram_list.blocks, next) {
3079 if (host - block->host < block->length) {
3080 *ram_addr = block->offset + (host - block->host);
3081 return 0;
3082 }
3083 }
3084 return -1;
3085 }
3086
3087 /* Some of the softmmu routines need to translate from a host pointer
3088 (typically a TLB entry) back to a ram offset. */
3089 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3090 {
3091 ram_addr_t ram_addr;
3092
3093 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3094 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3095 abort();
3096 }
3097 return ram_addr;
3098 }
3099
3100 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
3101 {
3102 #ifdef DEBUG_UNASSIGNED
3103 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3104 #endif
3105 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3106 do_unassigned_access(addr, 0, 0, 0, 1);
3107 #endif
3108 return 0;
3109 }
3110
3111 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
3112 {
3113 #ifdef DEBUG_UNASSIGNED
3114 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3115 #endif
3116 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3117 do_unassigned_access(addr, 0, 0, 0, 2);
3118 #endif
3119 return 0;
3120 }
3121
3122 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3123 {
3124 #ifdef DEBUG_UNASSIGNED
3125 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3126 #endif
3127 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3128 do_unassigned_access(addr, 0, 0, 0, 4);
3129 #endif
3130 return 0;
3131 }
3132
3133 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3134 {
3135 #ifdef DEBUG_UNASSIGNED
3136 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3137 #endif
3138 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3139 do_unassigned_access(addr, 1, 0, 0, 1);
3140 #endif
3141 }
3142
3143 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3144 {
3145 #ifdef DEBUG_UNASSIGNED
3146 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3147 #endif
3148 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3149 do_unassigned_access(addr, 1, 0, 0, 2);
3150 #endif
3151 }
3152
3153 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3154 {
3155 #ifdef DEBUG_UNASSIGNED
3156 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3157 #endif
3158 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3159 do_unassigned_access(addr, 1, 0, 0, 4);
3160 #endif
3161 }
3162
3163 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3164 unassigned_mem_readb,
3165 unassigned_mem_readw,
3166 unassigned_mem_readl,
3167 };
3168
3169 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3170 unassigned_mem_writeb,
3171 unassigned_mem_writew,
3172 unassigned_mem_writel,
3173 };
3174
3175 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3176 uint32_t val)
3177 {
3178 int dirty_flags;
3179 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3180 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3181 #if !defined(CONFIG_USER_ONLY)
3182 tb_invalidate_phys_page_fast(ram_addr, 1);
3183 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3184 #endif
3185 }
3186 stb_p(qemu_get_ram_ptr(ram_addr), val);
3187 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3188 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3189 /* we remove the notdirty callback only if the code has been
3190 flushed */
3191 if (dirty_flags == 0xff)
3192 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3193 }
3194
3195 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3196 uint32_t val)
3197 {
3198 int dirty_flags;
3199 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3200 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3201 #if !defined(CONFIG_USER_ONLY)
3202 tb_invalidate_phys_page_fast(ram_addr, 2);
3203 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3204 #endif
3205 }
3206 stw_p(qemu_get_ram_ptr(ram_addr), val);
3207 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3208 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3209 /* we remove the notdirty callback only if the code has been
3210 flushed */
3211 if (dirty_flags == 0xff)
3212 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3213 }
3214
3215 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3216 uint32_t val)
3217 {
3218 int dirty_flags;
3219 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3220 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3221 #if !defined(CONFIG_USER_ONLY)
3222 tb_invalidate_phys_page_fast(ram_addr, 4);
3223 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3224 #endif
3225 }
3226 stl_p(qemu_get_ram_ptr(ram_addr), val);
3227 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3228 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3229 /* we remove the notdirty callback only if the code has been
3230 flushed */
3231 if (dirty_flags == 0xff)
3232 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3233 }
3234
3235 static CPUReadMemoryFunc * const error_mem_read[3] = {
3236 NULL, /* never used */
3237 NULL, /* never used */
3238 NULL, /* never used */
3239 };
3240
3241 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3242 notdirty_mem_writeb,
3243 notdirty_mem_writew,
3244 notdirty_mem_writel,
3245 };
3246
3247 /* Generate a debug exception if a watchpoint has been hit. */
3248 static void check_watchpoint(int offset, int len_mask, int flags)
3249 {
3250 CPUState *env = cpu_single_env;
3251 target_ulong pc, cs_base;
3252 TranslationBlock *tb;
3253 target_ulong vaddr;
3254 CPUWatchpoint *wp;
3255 int cpu_flags;
3256
3257 if (env->watchpoint_hit) {
3258 /* We re-entered the check after replacing the TB. Now raise
3259 * the debug interrupt so that is will trigger after the
3260 * current instruction. */
3261 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3262 return;
3263 }
3264 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3265 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3266 if ((vaddr == (wp->vaddr & len_mask) ||
3267 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3268 wp->flags |= BP_WATCHPOINT_HIT;
3269 if (!env->watchpoint_hit) {
3270 env->watchpoint_hit = wp;
3271 tb = tb_find_pc(env->mem_io_pc);
3272 if (!tb) {
3273 cpu_abort(env, "check_watchpoint: could not find TB for "
3274 "pc=%p", (void *)env->mem_io_pc);
3275 }
3276 cpu_restore_state(tb, env, env->mem_io_pc);
3277 tb_phys_invalidate(tb, -1);
3278 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3279 env->exception_index = EXCP_DEBUG;
3280 } else {
3281 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3282 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3283 }
3284 cpu_resume_from_signal(env, NULL);
3285 }
3286 } else {
3287 wp->flags &= ~BP_WATCHPOINT_HIT;
3288 }
3289 }
3290 }
3291
3292 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3293 so these check for a hit then pass through to the normal out-of-line
3294 phys routines. */
3295 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3296 {
3297 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3298 return ldub_phys(addr);
3299 }
3300
3301 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3302 {
3303 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3304 return lduw_phys(addr);
3305 }
3306
3307 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3308 {
3309 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3310 return ldl_phys(addr);
3311 }
3312
3313 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3314 uint32_t val)
3315 {
3316 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3317 stb_phys(addr, val);
3318 }
3319
3320 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3321 uint32_t val)
3322 {
3323 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3324 stw_phys(addr, val);
3325 }
3326
3327 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3328 uint32_t val)
3329 {
3330 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3331 stl_phys(addr, val);
3332 }
3333
3334 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3335 watch_mem_readb,
3336 watch_mem_readw,
3337 watch_mem_readl,
3338 };
3339
3340 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3341 watch_mem_writeb,
3342 watch_mem_writew,
3343 watch_mem_writel,
3344 };
3345
3346 static inline uint32_t subpage_readlen (subpage_t *mmio,
3347 target_phys_addr_t addr,
3348 unsigned int len)
3349 {
3350 unsigned int idx = SUBPAGE_IDX(addr);
3351 #if defined(DEBUG_SUBPAGE)
3352 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3353 mmio, len, addr, idx);
3354 #endif
3355
3356 addr += mmio->region_offset[idx];
3357 idx = mmio->sub_io_index[idx];
3358 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3359 }
3360
3361 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3362 uint32_t value, unsigned int len)
3363 {
3364 unsigned int idx = SUBPAGE_IDX(addr);
3365 #if defined(DEBUG_SUBPAGE)
3366 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3367 __func__, mmio, len, addr, idx, value);
3368 #endif
3369
3370 addr += mmio->region_offset[idx];
3371 idx = mmio->sub_io_index[idx];
3372 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3373 }
3374
3375 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3376 {
3377 return subpage_readlen(opaque, addr, 0);
3378 }
3379
3380 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3381 uint32_t value)
3382 {
3383 subpage_writelen(opaque, addr, value, 0);
3384 }
3385
3386 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3387 {
3388 return subpage_readlen(opaque, addr, 1);
3389 }
3390
3391 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3392 uint32_t value)
3393 {
3394 subpage_writelen(opaque, addr, value, 1);
3395 }
3396
3397 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3398 {
3399 return subpage_readlen(opaque, addr, 2);
3400 }
3401
3402 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3403 uint32_t value)
3404 {
3405 subpage_writelen(opaque, addr, value, 2);
3406 }
3407
3408 static CPUReadMemoryFunc * const subpage_read[] = {
3409 &subpage_readb,
3410 &subpage_readw,
3411 &subpage_readl,
3412 };
3413
3414 static CPUWriteMemoryFunc * const subpage_write[] = {
3415 &subpage_writeb,
3416 &subpage_writew,
3417 &subpage_writel,
3418 };
3419
3420 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3421 ram_addr_t memory, ram_addr_t region_offset)
3422 {
3423 int idx, eidx;
3424
3425 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3426 return -1;
3427 idx = SUBPAGE_IDX(start);
3428 eidx = SUBPAGE_IDX(end);
3429 #if defined(DEBUG_SUBPAGE)
3430 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3431 mmio, start, end, idx, eidx, memory);
3432 #endif
3433 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3434 memory = IO_MEM_UNASSIGNED;
3435 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3436 for (; idx <= eidx; idx++) {
3437 mmio->sub_io_index[idx] = memory;
3438 mmio->region_offset[idx] = region_offset;
3439 }
3440
3441 return 0;
3442 }
3443
3444 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3445 ram_addr_t orig_memory,
3446 ram_addr_t region_offset)
3447 {
3448 subpage_t *mmio;
3449 int subpage_memory;
3450
3451 mmio = qemu_mallocz(sizeof(subpage_t));
3452
3453 mmio->base = base;
3454 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3455 DEVICE_NATIVE_ENDIAN);
3456 #if defined(DEBUG_SUBPAGE)
3457 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3458 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3459 #endif
3460 *phys = subpage_memory | IO_MEM_SUBPAGE;
3461 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3462
3463 return mmio;
3464 }
3465
3466 static int get_free_io_mem_idx(void)
3467 {
3468 int i;
3469
3470 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3471 if (!io_mem_used[i]) {
3472 io_mem_used[i] = 1;
3473 return i;
3474 }
3475 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3476 return -1;
3477 }
3478
3479 /*
3480 * Usually, devices operate in little endian mode. There are devices out
3481 * there that operate in big endian too. Each device gets byte swapped
3482 * mmio if plugged onto a CPU that does the other endianness.
3483 *
3484 * CPU Device swap?
3485 *
3486 * little little no
3487 * little big yes
3488 * big little yes
3489 * big big no
3490 */
3491
3492 typedef struct SwapEndianContainer {
3493 CPUReadMemoryFunc *read[3];
3494 CPUWriteMemoryFunc *write[3];
3495 void *opaque;
3496 } SwapEndianContainer;
3497
3498 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3499 {
3500 uint32_t val;
3501 SwapEndianContainer *c = opaque;
3502 val = c->read[0](c->opaque, addr);
3503 return val;
3504 }
3505
3506 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3507 {
3508 uint32_t val;
3509 SwapEndianContainer *c = opaque;
3510 val = bswap16(c->read[1](c->opaque, addr));
3511 return val;
3512 }
3513
3514 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3515 {
3516 uint32_t val;
3517 SwapEndianContainer *c = opaque;
3518 val = bswap32(c->read[2](c->opaque, addr));
3519 return val;
3520 }
3521
3522 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3523 swapendian_mem_readb,
3524 swapendian_mem_readw,
3525 swapendian_mem_readl
3526 };
3527
3528 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3529 uint32_t val)
3530 {
3531 SwapEndianContainer *c = opaque;
3532 c->write[0](c->opaque, addr, val);
3533 }
3534
3535 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3536 uint32_t val)
3537 {
3538 SwapEndianContainer *c = opaque;
3539 c->write[1](c->opaque, addr, bswap16(val));
3540 }
3541
3542 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3543 uint32_t val)
3544 {
3545 SwapEndianContainer *c = opaque;
3546 c->write[2](c->opaque, addr, bswap32(val));
3547 }
3548
3549 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3550 swapendian_mem_writeb,
3551 swapendian_mem_writew,
3552 swapendian_mem_writel
3553 };
3554
3555 static void swapendian_init(int io_index)
3556 {
3557 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3558 int i;
3559
3560 /* Swap mmio for big endian targets */
3561 c->opaque = io_mem_opaque[io_index];
3562 for (i = 0; i < 3; i++) {
3563 c->read[i] = io_mem_read[io_index][i];
3564 c->write[i] = io_mem_write[io_index][i];
3565
3566 io_mem_read[io_index][i] = swapendian_readfn[i];
3567 io_mem_write[io_index][i] = swapendian_writefn[i];
3568 }
3569 io_mem_opaque[io_index] = c;
3570 }
3571
3572 static void swapendian_del(int io_index)
3573 {
3574 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3575 qemu_free(io_mem_opaque[io_index]);
3576 }
3577 }
3578
3579 /* mem_read and mem_write are arrays of functions containing the
3580 function to access byte (index 0), word (index 1) and dword (index
3581 2). Functions can be omitted with a NULL function pointer.
3582 If io_index is non zero, the corresponding io zone is
3583 modified. If it is zero, a new io zone is allocated. The return
3584 value can be used with cpu_register_physical_memory(). (-1) is
3585 returned if error. */
3586 static int cpu_register_io_memory_fixed(int io_index,
3587 CPUReadMemoryFunc * const *mem_read,
3588 CPUWriteMemoryFunc * const *mem_write,
3589 void *opaque, enum device_endian endian)
3590 {
3591 int i;
3592
3593 if (io_index <= 0) {
3594 io_index = get_free_io_mem_idx();
3595 if (io_index == -1)
3596 return io_index;
3597 } else {
3598 io_index >>= IO_MEM_SHIFT;
3599 if (io_index >= IO_MEM_NB_ENTRIES)
3600 return -1;
3601 }
3602
3603 for (i = 0; i < 3; ++i) {
3604 io_mem_read[io_index][i]
3605 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3606 }
3607 for (i = 0; i < 3; ++i) {
3608 io_mem_write[io_index][i]
3609 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3610 }
3611 io_mem_opaque[io_index] = opaque;
3612
3613 switch (endian) {
3614 case DEVICE_BIG_ENDIAN:
3615 #ifndef TARGET_WORDS_BIGENDIAN
3616 swapendian_init(io_index);
3617 #endif
3618 break;
3619 case DEVICE_LITTLE_ENDIAN:
3620 #ifdef TARGET_WORDS_BIGENDIAN
3621 swapendian_init(io_index);
3622 #endif
3623 break;
3624 case DEVICE_NATIVE_ENDIAN:
3625 default:
3626 break;
3627 }
3628
3629 return (io_index << IO_MEM_SHIFT);
3630 }
3631
3632 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3633 CPUWriteMemoryFunc * const *mem_write,
3634 void *opaque, enum device_endian endian)
3635 {
3636 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3637 }
3638
3639 void cpu_unregister_io_memory(int io_table_address)
3640 {
3641 int i;
3642 int io_index = io_table_address >> IO_MEM_SHIFT;
3643
3644 swapendian_del(io_index);
3645
3646 for (i=0;i < 3; i++) {
3647 io_mem_read[io_index][i] = unassigned_mem_read[i];
3648 io_mem_write[io_index][i] = unassigned_mem_write[i];
3649 }
3650 io_mem_opaque[io_index] = NULL;
3651 io_mem_used[io_index] = 0;
3652 }
3653
3654 static void io_mem_init(void)
3655 {
3656 int i;
3657
3658 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3659 unassigned_mem_write, NULL,
3660 DEVICE_NATIVE_ENDIAN);
3661 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3662 unassigned_mem_write, NULL,
3663 DEVICE_NATIVE_ENDIAN);
3664 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3665 notdirty_mem_write, NULL,
3666 DEVICE_NATIVE_ENDIAN);
3667 for (i=0; i<5; i++)
3668 io_mem_used[i] = 1;
3669
3670 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3671 watch_mem_write, NULL,
3672 DEVICE_NATIVE_ENDIAN);
3673 }
3674
3675 #endif /* !defined(CONFIG_USER_ONLY) */
3676
3677 /* physical memory access (slow version, mainly for debug) */
3678 #if defined(CONFIG_USER_ONLY)
3679 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3680 uint8_t *buf, int len, int is_write)
3681 {
3682 int l, flags;
3683 target_ulong page;
3684 void * p;
3685
3686 while (len > 0) {
3687 page = addr & TARGET_PAGE_MASK;
3688 l = (page + TARGET_PAGE_SIZE) - addr;
3689 if (l > len)
3690 l = len;
3691 flags = page_get_flags(page);
3692 if (!(flags & PAGE_VALID))
3693 return -1;
3694 if (is_write) {
3695 if (!(flags & PAGE_WRITE))
3696 return -1;
3697 /* XXX: this code should not depend on lock_user */
3698 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3699 return -1;
3700 memcpy(p, buf, l);
3701 unlock_user(p, addr, l);
3702 } else {
3703 if (!(flags & PAGE_READ))
3704 return -1;
3705 /* XXX: this code should not depend on lock_user */
3706 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3707 return -1;
3708 memcpy(buf, p, l);
3709 unlock_user(p, addr, 0);
3710 }
3711 len -= l;
3712 buf += l;
3713 addr += l;
3714 }
3715 return 0;
3716 }
3717
3718 #else
3719 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3720 int len, int is_write)
3721 {
3722 int l, io_index;
3723 uint8_t *ptr;
3724 uint32_t val;
3725 target_phys_addr_t page;
3726 unsigned long pd;
3727 PhysPageDesc *p;
3728
3729 while (len > 0) {
3730 page = addr & TARGET_PAGE_MASK;
3731 l = (page + TARGET_PAGE_SIZE) - addr;
3732 if (l > len)
3733 l = len;
3734 p = phys_page_find(page >> TARGET_PAGE_BITS);
3735 if (!p) {
3736 pd = IO_MEM_UNASSIGNED;
3737 } else {
3738 pd = p->phys_offset;
3739 }
3740
3741 if (is_write) {
3742 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3743 target_phys_addr_t addr1 = addr;
3744 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3745 if (p)
3746 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3747 /* XXX: could force cpu_single_env to NULL to avoid
3748 potential bugs */
3749 if (l >= 4 && ((addr1 & 3) == 0)) {
3750 /* 32 bit write access */
3751 val = ldl_p(buf);
3752 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3753 l = 4;
3754 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3755 /* 16 bit write access */
3756 val = lduw_p(buf);
3757 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3758 l = 2;
3759 } else {
3760 /* 8 bit write access */
3761 val = ldub_p(buf);
3762 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3763 l = 1;
3764 }
3765 } else {
3766 unsigned long addr1;
3767 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3768 /* RAM case */
3769 ptr = qemu_get_ram_ptr(addr1);
3770 memcpy(ptr, buf, l);
3771 if (!cpu_physical_memory_is_dirty(addr1)) {
3772 /* invalidate code */
3773 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3774 /* set dirty bit */
3775 cpu_physical_memory_set_dirty_flags(
3776 addr1, (0xff & ~CODE_DIRTY_FLAG));
3777 }
3778 }
3779 } else {
3780 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3781 !(pd & IO_MEM_ROMD)) {
3782 target_phys_addr_t addr1 = addr;
3783 /* I/O case */
3784 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3785 if (p)
3786 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3787 if (l >= 4 && ((addr1 & 3) == 0)) {
3788 /* 32 bit read access */
3789 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3790 stl_p(buf, val);
3791 l = 4;
3792 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3793 /* 16 bit read access */
3794 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3795 stw_p(buf, val);
3796 l = 2;
3797 } else {
3798 /* 8 bit read access */
3799 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3800 stb_p(buf, val);
3801 l = 1;
3802 }
3803 } else {
3804 /* RAM case */
3805 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3806 (addr & ~TARGET_PAGE_MASK);
3807 memcpy(buf, ptr, l);
3808 }
3809 }
3810 len -= l;
3811 buf += l;
3812 addr += l;
3813 }
3814 }
3815
3816 /* used for ROM loading : can write in RAM and ROM */
3817 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3818 const uint8_t *buf, int len)
3819 {
3820 int l;
3821 uint8_t *ptr;
3822 target_phys_addr_t page;
3823 unsigned long pd;
3824 PhysPageDesc *p;
3825
3826 while (len > 0) {
3827 page = addr & TARGET_PAGE_MASK;
3828 l = (page + TARGET_PAGE_SIZE) - addr;
3829 if (l > len)
3830 l = len;
3831 p = phys_page_find(page >> TARGET_PAGE_BITS);
3832 if (!p) {
3833 pd = IO_MEM_UNASSIGNED;
3834 } else {
3835 pd = p->phys_offset;
3836 }
3837
3838 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3839 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3840 !(pd & IO_MEM_ROMD)) {
3841 /* do nothing */
3842 } else {
3843 unsigned long addr1;
3844 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3845 /* ROM/RAM case */
3846 ptr = qemu_get_ram_ptr(addr1);
3847 memcpy(ptr, buf, l);
3848 }
3849 len -= l;
3850 buf += l;
3851 addr += l;
3852 }
3853 }
3854
3855 typedef struct {
3856 void *buffer;
3857 target_phys_addr_t addr;
3858 target_phys_addr_t len;
3859 } BounceBuffer;
3860
3861 static BounceBuffer bounce;
3862
3863 typedef struct MapClient {
3864 void *opaque;
3865 void (*callback)(void *opaque);
3866 QLIST_ENTRY(MapClient) link;
3867 } MapClient;
3868
3869 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3870 = QLIST_HEAD_INITIALIZER(map_client_list);
3871
3872 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3873 {
3874 MapClient *client = qemu_malloc(sizeof(*client));
3875
3876 client->opaque = opaque;
3877 client->callback = callback;
3878 QLIST_INSERT_HEAD(&map_client_list, client, link);
3879 return client;
3880 }
3881
3882 void cpu_unregister_map_client(void *_client)
3883 {
3884 MapClient *client = (MapClient *)_client;
3885
3886 QLIST_REMOVE(client, link);
3887 qemu_free(client);
3888 }
3889
3890 static void cpu_notify_map_clients(void)
3891 {
3892 MapClient *client;
3893
3894 while (!QLIST_EMPTY(&map_client_list)) {
3895 client = QLIST_FIRST(&map_client_list);
3896 client->callback(client->opaque);
3897 cpu_unregister_map_client(client);
3898 }
3899 }
3900
3901 /* Map a physical memory region into a host virtual address.
3902 * May map a subset of the requested range, given by and returned in *plen.
3903 * May return NULL if resources needed to perform the mapping are exhausted.
3904 * Use only for reads OR writes - not for read-modify-write operations.
3905 * Use cpu_register_map_client() to know when retrying the map operation is
3906 * likely to succeed.
3907 */
3908 void *cpu_physical_memory_map(target_phys_addr_t addr,
3909 target_phys_addr_t *plen,
3910 int is_write)
3911 {
3912 target_phys_addr_t len = *plen;
3913 target_phys_addr_t done = 0;
3914 int l;
3915 uint8_t *ret = NULL;
3916 uint8_t *ptr;
3917 target_phys_addr_t page;
3918 unsigned long pd;
3919 PhysPageDesc *p;
3920 unsigned long addr1;
3921
3922 while (len > 0) {
3923 page = addr & TARGET_PAGE_MASK;
3924 l = (page + TARGET_PAGE_SIZE) - addr;
3925 if (l > len)
3926 l = len;
3927 p = phys_page_find(page >> TARGET_PAGE_BITS);
3928 if (!p) {
3929 pd = IO_MEM_UNASSIGNED;
3930 } else {
3931 pd = p->phys_offset;
3932 }
3933
3934 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3935 if (done || bounce.buffer) {
3936 break;
3937 }
3938 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3939 bounce.addr = addr;
3940 bounce.len = l;
3941 if (!is_write) {
3942 cpu_physical_memory_read(addr, bounce.buffer, l);
3943 }
3944 ptr = bounce.buffer;
3945 } else {
3946 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3947 ptr = qemu_get_ram_ptr(addr1);
3948 }
3949 if (!done) {
3950 ret = ptr;
3951 } else if (ret + done != ptr) {
3952 break;
3953 }
3954
3955 len -= l;
3956 addr += l;
3957 done += l;
3958 }
3959 *plen = done;
3960 return ret;
3961 }
3962
3963 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3964 * Will also mark the memory as dirty if is_write == 1. access_len gives
3965 * the amount of memory that was actually read or written by the caller.
3966 */
3967 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3968 int is_write, target_phys_addr_t access_len)
3969 {
3970 if (buffer != bounce.buffer) {
3971 if (is_write) {
3972 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3973 while (access_len) {
3974 unsigned l;
3975 l = TARGET_PAGE_SIZE;
3976 if (l > access_len)
3977 l = access_len;
3978 if (!cpu_physical_memory_is_dirty(addr1)) {
3979 /* invalidate code */
3980 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3981 /* set dirty bit */
3982 cpu_physical_memory_set_dirty_flags(
3983 addr1, (0xff & ~CODE_DIRTY_FLAG));
3984 }
3985 addr1 += l;
3986 access_len -= l;
3987 }
3988 }
3989 return;
3990 }
3991 if (is_write) {
3992 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3993 }
3994 qemu_vfree(bounce.buffer);
3995 bounce.buffer = NULL;
3996 cpu_notify_map_clients();
3997 }
3998
3999 /* warning: addr must be aligned */
4000 uint32_t ldl_phys(target_phys_addr_t addr)
4001 {
4002 int io_index;
4003 uint8_t *ptr;
4004 uint32_t val;
4005 unsigned long pd;
4006 PhysPageDesc *p;
4007
4008 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4009 if (!p) {
4010 pd = IO_MEM_UNASSIGNED;
4011 } else {
4012 pd = p->phys_offset;
4013 }
4014
4015 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4016 !(pd & IO_MEM_ROMD)) {
4017 /* I/O case */
4018 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4019 if (p)
4020 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4021 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4022 } else {
4023 /* RAM case */
4024 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4025 (addr & ~TARGET_PAGE_MASK);
4026 val = ldl_p(ptr);
4027 }
4028 return val;
4029 }
4030
4031 /* warning: addr must be aligned */
4032 uint64_t ldq_phys(target_phys_addr_t addr)
4033 {
4034 int io_index;
4035 uint8_t *ptr;
4036 uint64_t val;
4037 unsigned long pd;
4038 PhysPageDesc *p;
4039
4040 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4041 if (!p) {
4042 pd = IO_MEM_UNASSIGNED;
4043 } else {
4044 pd = p->phys_offset;
4045 }
4046
4047 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4048 !(pd & IO_MEM_ROMD)) {
4049 /* I/O case */
4050 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4051 if (p)
4052 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4053 #ifdef TARGET_WORDS_BIGENDIAN
4054 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
4055 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
4056 #else
4057 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
4058 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
4059 #endif
4060 } else {
4061 /* RAM case */
4062 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4063 (addr & ~TARGET_PAGE_MASK);
4064 val = ldq_p(ptr);
4065 }
4066 return val;
4067 }
4068
4069 /* XXX: optimize */
4070 uint32_t ldub_phys(target_phys_addr_t addr)
4071 {
4072 uint8_t val;
4073 cpu_physical_memory_read(addr, &val, 1);
4074 return val;
4075 }
4076
4077 /* warning: addr must be aligned */
4078 uint32_t lduw_phys(target_phys_addr_t addr)
4079 {
4080 int io_index;
4081 uint8_t *ptr;
4082 uint64_t val;
4083 unsigned long pd;
4084 PhysPageDesc *p;
4085
4086 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4087 if (!p) {
4088 pd = IO_MEM_UNASSIGNED;
4089 } else {
4090 pd = p->phys_offset;
4091 }
4092
4093 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
4094 !(pd & IO_MEM_ROMD)) {
4095 /* I/O case */
4096 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4097 if (p)
4098 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4099 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
4100 } else {
4101 /* RAM case */
4102 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4103 (addr & ~TARGET_PAGE_MASK);
4104 val = lduw_p(ptr);
4105 }
4106 return val;
4107 }
4108
4109 /* warning: addr must be aligned. The ram page is not masked as dirty
4110 and the code inside is not invalidated. It is useful if the dirty
4111 bits are used to track modified PTEs */
4112 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4113 {
4114 int io_index;
4115 uint8_t *ptr;
4116 unsigned long pd;
4117 PhysPageDesc *p;
4118
4119 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4120 if (!p) {
4121 pd = IO_MEM_UNASSIGNED;
4122 } else {
4123 pd = p->phys_offset;
4124 }
4125
4126 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4127 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4128 if (p)
4129 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4130 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4131 } else {
4132 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4133 ptr = qemu_get_ram_ptr(addr1);
4134 stl_p(ptr, val);
4135
4136 if (unlikely(in_migration)) {
4137 if (!cpu_physical_memory_is_dirty(addr1)) {
4138 /* invalidate code */
4139 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4140 /* set dirty bit */
4141 cpu_physical_memory_set_dirty_flags(
4142 addr1, (0xff & ~CODE_DIRTY_FLAG));
4143 }
4144 }
4145 }
4146 }
4147
4148 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4149 {
4150 int io_index;
4151 uint8_t *ptr;
4152 unsigned long pd;
4153 PhysPageDesc *p;
4154
4155 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4156 if (!p) {
4157 pd = IO_MEM_UNASSIGNED;
4158 } else {
4159 pd = p->phys_offset;
4160 }
4161
4162 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4163 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4164 if (p)
4165 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4166 #ifdef TARGET_WORDS_BIGENDIAN
4167 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4168 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4169 #else
4170 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4171 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4172 #endif
4173 } else {
4174 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4175 (addr & ~TARGET_PAGE_MASK);
4176 stq_p(ptr, val);
4177 }
4178 }
4179
4180 /* warning: addr must be aligned */
4181 void stl_phys(target_phys_addr_t addr, uint32_t val)
4182 {
4183 int io_index;
4184 uint8_t *ptr;
4185 unsigned long pd;
4186 PhysPageDesc *p;
4187
4188 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4189 if (!p) {
4190 pd = IO_MEM_UNASSIGNED;
4191 } else {
4192 pd = p->phys_offset;
4193 }
4194
4195 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4196 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4197 if (p)
4198 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4199 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4200 } else {
4201 unsigned long addr1;
4202 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4203 /* RAM case */
4204 ptr = qemu_get_ram_ptr(addr1);
4205 stl_p(ptr, val);
4206 if (!cpu_physical_memory_is_dirty(addr1)) {
4207 /* invalidate code */
4208 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4209 /* set dirty bit */
4210 cpu_physical_memory_set_dirty_flags(addr1,
4211 (0xff & ~CODE_DIRTY_FLAG));
4212 }
4213 }
4214 }
4215
4216 /* XXX: optimize */
4217 void stb_phys(target_phys_addr_t addr, uint32_t val)
4218 {
4219 uint8_t v = val;
4220 cpu_physical_memory_write(addr, &v, 1);
4221 }
4222
4223 /* warning: addr must be aligned */
4224 void stw_phys(target_phys_addr_t addr, uint32_t val)
4225 {
4226 int io_index;
4227 uint8_t *ptr;
4228 unsigned long pd;
4229 PhysPageDesc *p;
4230
4231 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4232 if (!p) {
4233 pd = IO_MEM_UNASSIGNED;
4234 } else {
4235 pd = p->phys_offset;
4236 }
4237
4238 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4239 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4240 if (p)
4241 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4242 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4243 } else {
4244 unsigned long addr1;
4245 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4246 /* RAM case */
4247 ptr = qemu_get_ram_ptr(addr1);
4248 stw_p(ptr, val);
4249 if (!cpu_physical_memory_is_dirty(addr1)) {
4250 /* invalidate code */
4251 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4252 /* set dirty bit */
4253 cpu_physical_memory_set_dirty_flags(addr1,
4254 (0xff & ~CODE_DIRTY_FLAG));
4255 }
4256 }
4257 }
4258
4259 /* XXX: optimize */
4260 void stq_phys(target_phys_addr_t addr, uint64_t val)
4261 {
4262 val = tswap64(val);
4263 cpu_physical_memory_write(addr, &val, 8);
4264 }
4265
4266 /* virtual memory access for debug (includes writing to ROM) */
4267 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4268 uint8_t *buf, int len, int is_write)
4269 {
4270 int l;
4271 target_phys_addr_t phys_addr;
4272 target_ulong page;
4273
4274 while (len > 0) {
4275 page = addr & TARGET_PAGE_MASK;
4276 phys_addr = cpu_get_phys_page_debug(env, page);
4277 /* if no physical page mapped, return an error */
4278 if (phys_addr == -1)
4279 return -1;
4280 l = (page + TARGET_PAGE_SIZE) - addr;
4281 if (l > len)
4282 l = len;
4283 phys_addr += (addr & ~TARGET_PAGE_MASK);
4284 if (is_write)
4285 cpu_physical_memory_write_rom(phys_addr, buf, l);
4286 else
4287 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4288 len -= l;
4289 buf += l;
4290 addr += l;
4291 }
4292 return 0;
4293 }
4294 #endif
4295
4296 /* in deterministic execution mode, instructions doing device I/Os
4297 must be at the end of the TB */
4298 void cpu_io_recompile(CPUState *env, void *retaddr)
4299 {
4300 TranslationBlock *tb;
4301 uint32_t n, cflags;
4302 target_ulong pc, cs_base;
4303 uint64_t flags;
4304
4305 tb = tb_find_pc((unsigned long)retaddr);
4306 if (!tb) {
4307 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4308 retaddr);
4309 }
4310 n = env->icount_decr.u16.low + tb->icount;
4311 cpu_restore_state(tb, env, (unsigned long)retaddr);
4312 /* Calculate how many instructions had been executed before the fault
4313 occurred. */
4314 n = n - env->icount_decr.u16.low;
4315 /* Generate a new TB ending on the I/O insn. */
4316 n++;
4317 /* On MIPS and SH, delay slot instructions can only be restarted if
4318 they were already the first instruction in the TB. If this is not
4319 the first instruction in a TB then re-execute the preceding
4320 branch. */
4321 #if defined(TARGET_MIPS)
4322 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4323 env->active_tc.PC -= 4;
4324 env->icount_decr.u16.low++;
4325 env->hflags &= ~MIPS_HFLAG_BMASK;
4326 }
4327 #elif defined(TARGET_SH4)
4328 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4329 && n > 1) {
4330 env->pc -= 2;
4331 env->icount_decr.u16.low++;
4332 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4333 }
4334 #endif
4335 /* This should never happen. */
4336 if (n > CF_COUNT_MASK)
4337 cpu_abort(env, "TB too big during recompile");
4338
4339 cflags = n | CF_LAST_IO;
4340 pc = tb->pc;
4341 cs_base = tb->cs_base;
4342 flags = tb->flags;
4343 tb_phys_invalidate(tb, -1);
4344 /* FIXME: In theory this could raise an exception. In practice
4345 we have already translated the block once so it's probably ok. */
4346 tb_gen_code(env, pc, cs_base, flags, cflags);
4347 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4348 the first in the TB) then we end up generating a whole new TB and
4349 repeating the fault, which is horribly inefficient.
4350 Better would be to execute just this insn uncached, or generate a
4351 second new TB. */
4352 cpu_resume_from_signal(env, NULL);
4353 }
4354
4355 #if !defined(CONFIG_USER_ONLY)
4356
4357 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4358 {
4359 int i, target_code_size, max_target_code_size;
4360 int direct_jmp_count, direct_jmp2_count, cross_page;
4361 TranslationBlock *tb;
4362
4363 target_code_size = 0;
4364 max_target_code_size = 0;
4365 cross_page = 0;
4366 direct_jmp_count = 0;
4367 direct_jmp2_count = 0;
4368 for(i = 0; i < nb_tbs; i++) {
4369 tb = &tbs[i];
4370 target_code_size += tb->size;
4371 if (tb->size > max_target_code_size)
4372 max_target_code_size = tb->size;
4373 if (tb->page_addr[1] != -1)
4374 cross_page++;
4375 if (tb->tb_next_offset[0] != 0xffff) {
4376 direct_jmp_count++;
4377 if (tb->tb_next_offset[1] != 0xffff) {
4378 direct_jmp2_count++;
4379 }
4380 }
4381 }
4382 /* XXX: avoid using doubles ? */
4383 cpu_fprintf(f, "Translation buffer state:\n");
4384 cpu_fprintf(f, "gen code size %td/%ld\n",
4385 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4386 cpu_fprintf(f, "TB count %d/%d\n",
4387 nb_tbs, code_gen_max_blocks);
4388 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4389 nb_tbs ? target_code_size / nb_tbs : 0,
4390 max_target_code_size);
4391 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4392 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4393 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4394 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4395 cross_page,
4396 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4397 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4398 direct_jmp_count,
4399 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4400 direct_jmp2_count,
4401 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4402 cpu_fprintf(f, "\nStatistics:\n");
4403 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4404 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4405 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4406 tcg_dump_info(f, cpu_fprintf);
4407 }
4408
4409 #define MMUSUFFIX _cmmu
4410 #define GETPC() NULL
4411 #define env cpu_single_env
4412 #define SOFTMMU_CODE_ACCESS
4413
4414 #define SHIFT 0
4415 #include "softmmu_template.h"
4416
4417 #define SHIFT 1
4418 #include "softmmu_template.h"
4419
4420 #define SHIFT 2
4421 #include "softmmu_template.h"
4422
4423 #define SHIFT 3
4424 #include "softmmu_template.h"
4425
4426 #undef env
4427
4428 #endif