]> git.proxmox.com Git - qemu.git/blob - exec.c
Merge remote-tracking branch 'kwolf/for-anthony' into staging
[qemu.git] / exec.c
1 /*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
26
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "osdep.h"
33 #include "kvm.h"
34 #include "hw/xen.h"
35 #include "qemu-timer.h"
36 #include "memory.h"
37 #include "exec-memory.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include <qemu.h>
40 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41 #include <sys/param.h>
42 #if __FreeBSD_version >= 700104
43 #define HAVE_KINFO_GETVMMAP
44 #define sigqueue sigqueue_freebsd /* avoid redefinition */
45 #include <sys/time.h>
46 #include <sys/proc.h>
47 #include <machine/profile.h>
48 #define _KERNEL
49 #include <sys/user.h>
50 #undef _KERNEL
51 #undef sigqueue
52 #include <libutil.h>
53 #endif
54 #endif
55 #else /* !CONFIG_USER_ONLY */
56 #include "xen-mapcache.h"
57 #include "trace.h"
58 #endif
59
60 #define WANT_EXEC_OBSOLETE
61 #include "exec-obsolete.h"
62
63 //#define DEBUG_TB_INVALIDATE
64 //#define DEBUG_FLUSH
65 //#define DEBUG_TLB
66 //#define DEBUG_UNASSIGNED
67
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70 //#define DEBUG_TLB_CHECK
71
72 //#define DEBUG_IOPORT
73 //#define DEBUG_SUBPAGE
74
75 #if !defined(CONFIG_USER_ONLY)
76 /* TB consistency checks only implemented for usermode emulation. */
77 #undef DEBUG_TB_CHECK
78 #endif
79
80 #define SMC_BITMAP_USE_THRESHOLD 10
81
82 static TranslationBlock *tbs;
83 static int code_gen_max_blocks;
84 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
85 static int nb_tbs;
86 /* any access to the tbs or the page table must use this lock */
87 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
88
89 #if defined(__arm__) || defined(__sparc_v9__)
90 /* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
92 section close to code segment. */
93 #define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
96 #elif defined(_WIN32)
97 /* Maximum alignment for Win32 is 16. */
98 #define code_gen_section \
99 __attribute__((aligned (16)))
100 #else
101 #define code_gen_section \
102 __attribute__((aligned (32)))
103 #endif
104
105 uint8_t code_gen_prologue[1024] code_gen_section;
106 static uint8_t *code_gen_buffer;
107 static unsigned long code_gen_buffer_size;
108 /* threshold to flush the translated code buffer */
109 static unsigned long code_gen_buffer_max_size;
110 static uint8_t *code_gen_ptr;
111
112 #if !defined(CONFIG_USER_ONLY)
113 int phys_ram_fd;
114 static int in_migration;
115
116 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
117
118 static MemoryRegion *system_memory;
119 static MemoryRegion *system_io;
120
121 MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
122 static MemoryRegion io_mem_subpage_ram;
123
124 #endif
125
126 CPUState *first_cpu;
127 /* current CPU in the current thread. It is only valid inside
128 cpu_exec() */
129 DEFINE_TLS(CPUState *,cpu_single_env);
130 /* 0 = Do not count executed instructions.
131 1 = Precise instruction counting.
132 2 = Adaptive rate instruction counting. */
133 int use_icount = 0;
134
135 typedef struct PageDesc {
136 /* list of TBs intersecting this ram page */
137 TranslationBlock *first_tb;
138 /* in order to optimize self modifying code, we count the number
139 of lookups we do to a given page to use a bitmap */
140 unsigned int code_write_count;
141 uint8_t *code_bitmap;
142 #if defined(CONFIG_USER_ONLY)
143 unsigned long flags;
144 #endif
145 } PageDesc;
146
147 /* In system mode we want L1_MAP to be based on ram offsets,
148 while in user mode we want it to be based on virtual addresses. */
149 #if !defined(CONFIG_USER_ONLY)
150 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
151 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
152 #else
153 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
154 #endif
155 #else
156 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
157 #endif
158
159 /* Size of the L2 (and L3, etc) page tables. */
160 #define L2_BITS 10
161 #define L2_SIZE (1 << L2_BITS)
162
163 #define P_L2_LEVELS \
164 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
165
166 /* The bits remaining after N lower levels of page tables. */
167 #define V_L1_BITS_REM \
168 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
169
170 #if V_L1_BITS_REM < 4
171 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
172 #else
173 #define V_L1_BITS V_L1_BITS_REM
174 #endif
175
176 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
177
178 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
180 unsigned long qemu_real_host_page_size;
181 unsigned long qemu_host_page_size;
182 unsigned long qemu_host_page_mask;
183
184 /* This is a multi-level map on the virtual address space.
185 The bottom level has pointers to PageDesc. */
186 static void *l1_map[V_L1_SIZE];
187
188 #if !defined(CONFIG_USER_ONLY)
189 typedef struct PhysPageEntry PhysPageEntry;
190
191 static MemoryRegionSection *phys_sections;
192 static unsigned phys_sections_nb, phys_sections_nb_alloc;
193 static uint16_t phys_section_unassigned;
194 static uint16_t phys_section_notdirty;
195 static uint16_t phys_section_rom;
196 static uint16_t phys_section_watch;
197
198 struct PhysPageEntry {
199 uint16_t is_leaf : 1;
200 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
201 uint16_t ptr : 15;
202 };
203
204 /* Simple allocator for PhysPageEntry nodes */
205 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
206 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
207
208 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
209
210 /* This is a multi-level map on the physical address space.
211 The bottom level has pointers to MemoryRegionSections. */
212 static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
213
214 static void io_mem_init(void);
215 static void memory_map_init(void);
216
217 static MemoryRegion io_mem_watch;
218 #endif
219
220 /* log support */
221 #ifdef WIN32
222 static const char *logfilename = "qemu.log";
223 #else
224 static const char *logfilename = "/tmp/qemu.log";
225 #endif
226 FILE *logfile;
227 int loglevel;
228 static int log_append = 0;
229
230 /* statistics */
231 #if !defined(CONFIG_USER_ONLY)
232 static int tlb_flush_count;
233 #endif
234 static int tb_flush_count;
235 static int tb_phys_invalidate_count;
236
237 #ifdef _WIN32
238 static void map_exec(void *addr, long size)
239 {
240 DWORD old_protect;
241 VirtualProtect(addr, size,
242 PAGE_EXECUTE_READWRITE, &old_protect);
243
244 }
245 #else
246 static void map_exec(void *addr, long size)
247 {
248 unsigned long start, end, page_size;
249
250 page_size = getpagesize();
251 start = (unsigned long)addr;
252 start &= ~(page_size - 1);
253
254 end = (unsigned long)addr + size;
255 end += page_size - 1;
256 end &= ~(page_size - 1);
257
258 mprotect((void *)start, end - start,
259 PROT_READ | PROT_WRITE | PROT_EXEC);
260 }
261 #endif
262
263 static void page_init(void)
264 {
265 /* NOTE: we can always suppose that qemu_host_page_size >=
266 TARGET_PAGE_SIZE */
267 #ifdef _WIN32
268 {
269 SYSTEM_INFO system_info;
270
271 GetSystemInfo(&system_info);
272 qemu_real_host_page_size = system_info.dwPageSize;
273 }
274 #else
275 qemu_real_host_page_size = getpagesize();
276 #endif
277 if (qemu_host_page_size == 0)
278 qemu_host_page_size = qemu_real_host_page_size;
279 if (qemu_host_page_size < TARGET_PAGE_SIZE)
280 qemu_host_page_size = TARGET_PAGE_SIZE;
281 qemu_host_page_mask = ~(qemu_host_page_size - 1);
282
283 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
284 {
285 #ifdef HAVE_KINFO_GETVMMAP
286 struct kinfo_vmentry *freep;
287 int i, cnt;
288
289 freep = kinfo_getvmmap(getpid(), &cnt);
290 if (freep) {
291 mmap_lock();
292 for (i = 0; i < cnt; i++) {
293 unsigned long startaddr, endaddr;
294
295 startaddr = freep[i].kve_start;
296 endaddr = freep[i].kve_end;
297 if (h2g_valid(startaddr)) {
298 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
299
300 if (h2g_valid(endaddr)) {
301 endaddr = h2g(endaddr);
302 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
303 } else {
304 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
305 endaddr = ~0ul;
306 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
307 #endif
308 }
309 }
310 }
311 free(freep);
312 mmap_unlock();
313 }
314 #else
315 FILE *f;
316
317 last_brk = (unsigned long)sbrk(0);
318
319 f = fopen("/compat/linux/proc/self/maps", "r");
320 if (f) {
321 mmap_lock();
322
323 do {
324 unsigned long startaddr, endaddr;
325 int n;
326
327 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
328
329 if (n == 2 && h2g_valid(startaddr)) {
330 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
331
332 if (h2g_valid(endaddr)) {
333 endaddr = h2g(endaddr);
334 } else {
335 endaddr = ~0ul;
336 }
337 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
338 }
339 } while (!feof(f));
340
341 fclose(f);
342 mmap_unlock();
343 }
344 #endif
345 }
346 #endif
347 }
348
349 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
350 {
351 PageDesc *pd;
352 void **lp;
353 int i;
354
355 #if defined(CONFIG_USER_ONLY)
356 /* We can't use g_malloc because it may recurse into a locked mutex. */
357 # define ALLOC(P, SIZE) \
358 do { \
359 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
360 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
361 } while (0)
362 #else
363 # define ALLOC(P, SIZE) \
364 do { P = g_malloc0(SIZE); } while (0)
365 #endif
366
367 /* Level 1. Always allocated. */
368 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
369
370 /* Level 2..N-1. */
371 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
372 void **p = *lp;
373
374 if (p == NULL) {
375 if (!alloc) {
376 return NULL;
377 }
378 ALLOC(p, sizeof(void *) * L2_SIZE);
379 *lp = p;
380 }
381
382 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
383 }
384
385 pd = *lp;
386 if (pd == NULL) {
387 if (!alloc) {
388 return NULL;
389 }
390 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
391 *lp = pd;
392 }
393
394 #undef ALLOC
395
396 return pd + (index & (L2_SIZE - 1));
397 }
398
399 static inline PageDesc *page_find(tb_page_addr_t index)
400 {
401 return page_find_alloc(index, 0);
402 }
403
404 #if !defined(CONFIG_USER_ONLY)
405
406 static void phys_map_node_reserve(unsigned nodes)
407 {
408 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
409 typedef PhysPageEntry Node[L2_SIZE];
410 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
411 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
412 phys_map_nodes_nb + nodes);
413 phys_map_nodes = g_renew(Node, phys_map_nodes,
414 phys_map_nodes_nb_alloc);
415 }
416 }
417
418 static uint16_t phys_map_node_alloc(void)
419 {
420 unsigned i;
421 uint16_t ret;
422
423 ret = phys_map_nodes_nb++;
424 assert(ret != PHYS_MAP_NODE_NIL);
425 assert(ret != phys_map_nodes_nb_alloc);
426 for (i = 0; i < L2_SIZE; ++i) {
427 phys_map_nodes[ret][i].is_leaf = 0;
428 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
429 }
430 return ret;
431 }
432
433 static void phys_map_nodes_reset(void)
434 {
435 phys_map_nodes_nb = 0;
436 }
437
438
439 static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
440 target_phys_addr_t *nb, uint16_t leaf,
441 int level)
442 {
443 PhysPageEntry *p;
444 int i;
445 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
446
447 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
448 lp->ptr = phys_map_node_alloc();
449 p = phys_map_nodes[lp->ptr];
450 if (level == 0) {
451 for (i = 0; i < L2_SIZE; i++) {
452 p[i].is_leaf = 1;
453 p[i].ptr = phys_section_unassigned;
454 }
455 }
456 } else {
457 p = phys_map_nodes[lp->ptr];
458 }
459 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
460
461 while (*nb && lp < &p[L2_SIZE]) {
462 if ((*index & (step - 1)) == 0 && *nb >= step) {
463 lp->is_leaf = true;
464 lp->ptr = leaf;
465 *index += step;
466 *nb -= step;
467 } else {
468 phys_page_set_level(lp, index, nb, leaf, level - 1);
469 }
470 ++lp;
471 }
472 }
473
474 static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
475 uint16_t leaf)
476 {
477 /* Wildly overreserve - it doesn't matter much. */
478 phys_map_node_reserve(3 * P_L2_LEVELS);
479
480 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
481 }
482
483 static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
484 {
485 PhysPageEntry lp = phys_map;
486 PhysPageEntry *p;
487 int i;
488 uint16_t s_index = phys_section_unassigned;
489
490 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
491 if (lp.ptr == PHYS_MAP_NODE_NIL) {
492 goto not_found;
493 }
494 p = phys_map_nodes[lp.ptr];
495 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
496 }
497
498 s_index = lp.ptr;
499 not_found:
500 return &phys_sections[s_index];
501 }
502
503 static target_phys_addr_t section_addr(MemoryRegionSection *section,
504 target_phys_addr_t addr)
505 {
506 addr -= section->offset_within_address_space;
507 addr += section->offset_within_region;
508 return addr;
509 }
510
511 static void tlb_protect_code(ram_addr_t ram_addr);
512 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
513 target_ulong vaddr);
514 #define mmap_lock() do { } while(0)
515 #define mmap_unlock() do { } while(0)
516 #endif
517
518 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
519
520 #if defined(CONFIG_USER_ONLY)
521 /* Currently it is not recommended to allocate big chunks of data in
522 user mode. It will change when a dedicated libc will be used */
523 #define USE_STATIC_CODE_GEN_BUFFER
524 #endif
525
526 #ifdef USE_STATIC_CODE_GEN_BUFFER
527 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
528 __attribute__((aligned (CODE_GEN_ALIGN)));
529 #endif
530
531 static void code_gen_alloc(unsigned long tb_size)
532 {
533 #ifdef USE_STATIC_CODE_GEN_BUFFER
534 code_gen_buffer = static_code_gen_buffer;
535 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
536 map_exec(code_gen_buffer, code_gen_buffer_size);
537 #else
538 code_gen_buffer_size = tb_size;
539 if (code_gen_buffer_size == 0) {
540 #if defined(CONFIG_USER_ONLY)
541 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
542 #else
543 /* XXX: needs adjustments */
544 code_gen_buffer_size = (unsigned long)(ram_size / 4);
545 #endif
546 }
547 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
548 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
549 /* The code gen buffer location may have constraints depending on
550 the host cpu and OS */
551 #if defined(__linux__)
552 {
553 int flags;
554 void *start = NULL;
555
556 flags = MAP_PRIVATE | MAP_ANONYMOUS;
557 #if defined(__x86_64__)
558 flags |= MAP_32BIT;
559 /* Cannot map more than that */
560 if (code_gen_buffer_size > (800 * 1024 * 1024))
561 code_gen_buffer_size = (800 * 1024 * 1024);
562 #elif defined(__sparc_v9__)
563 // Map the buffer below 2G, so we can use direct calls and branches
564 flags |= MAP_FIXED;
565 start = (void *) 0x60000000UL;
566 if (code_gen_buffer_size > (512 * 1024 * 1024))
567 code_gen_buffer_size = (512 * 1024 * 1024);
568 #elif defined(__arm__)
569 /* Keep the buffer no bigger than 16MB to branch between blocks */
570 if (code_gen_buffer_size > 16 * 1024 * 1024)
571 code_gen_buffer_size = 16 * 1024 * 1024;
572 #elif defined(__s390x__)
573 /* Map the buffer so that we can use direct calls and branches. */
574 /* We have a +- 4GB range on the branches; leave some slop. */
575 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
576 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
577 }
578 start = (void *)0x90000000UL;
579 #endif
580 code_gen_buffer = mmap(start, code_gen_buffer_size,
581 PROT_WRITE | PROT_READ | PROT_EXEC,
582 flags, -1, 0);
583 if (code_gen_buffer == MAP_FAILED) {
584 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
585 exit(1);
586 }
587 }
588 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
589 || defined(__DragonFly__) || defined(__OpenBSD__) \
590 || defined(__NetBSD__)
591 {
592 int flags;
593 void *addr = NULL;
594 flags = MAP_PRIVATE | MAP_ANONYMOUS;
595 #if defined(__x86_64__)
596 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
597 * 0x40000000 is free */
598 flags |= MAP_FIXED;
599 addr = (void *)0x40000000;
600 /* Cannot map more than that */
601 if (code_gen_buffer_size > (800 * 1024 * 1024))
602 code_gen_buffer_size = (800 * 1024 * 1024);
603 #elif defined(__sparc_v9__)
604 // Map the buffer below 2G, so we can use direct calls and branches
605 flags |= MAP_FIXED;
606 addr = (void *) 0x60000000UL;
607 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
608 code_gen_buffer_size = (512 * 1024 * 1024);
609 }
610 #endif
611 code_gen_buffer = mmap(addr, code_gen_buffer_size,
612 PROT_WRITE | PROT_READ | PROT_EXEC,
613 flags, -1, 0);
614 if (code_gen_buffer == MAP_FAILED) {
615 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
616 exit(1);
617 }
618 }
619 #else
620 code_gen_buffer = g_malloc(code_gen_buffer_size);
621 map_exec(code_gen_buffer, code_gen_buffer_size);
622 #endif
623 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
624 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
625 code_gen_buffer_max_size = code_gen_buffer_size -
626 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
627 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
628 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
629 }
630
631 /* Must be called before using the QEMU cpus. 'tb_size' is the size
632 (in bytes) allocated to the translation buffer. Zero means default
633 size. */
634 void tcg_exec_init(unsigned long tb_size)
635 {
636 cpu_gen_init();
637 code_gen_alloc(tb_size);
638 code_gen_ptr = code_gen_buffer;
639 page_init();
640 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
641 /* There's no guest base to take into account, so go ahead and
642 initialize the prologue now. */
643 tcg_prologue_init(&tcg_ctx);
644 #endif
645 }
646
647 bool tcg_enabled(void)
648 {
649 return code_gen_buffer != NULL;
650 }
651
652 void cpu_exec_init_all(void)
653 {
654 #if !defined(CONFIG_USER_ONLY)
655 memory_map_init();
656 io_mem_init();
657 #endif
658 }
659
660 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
661
662 static int cpu_common_post_load(void *opaque, int version_id)
663 {
664 CPUState *env = opaque;
665
666 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
667 version_id is increased. */
668 env->interrupt_request &= ~0x01;
669 tlb_flush(env, 1);
670
671 return 0;
672 }
673
674 static const VMStateDescription vmstate_cpu_common = {
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
678 .minimum_version_id_old = 1,
679 .post_load = cpu_common_post_load,
680 .fields = (VMStateField []) {
681 VMSTATE_UINT32(halted, CPUState),
682 VMSTATE_UINT32(interrupt_request, CPUState),
683 VMSTATE_END_OF_LIST()
684 }
685 };
686 #endif
687
688 CPUState *qemu_get_cpu(int cpu)
689 {
690 CPUState *env = first_cpu;
691
692 while (env) {
693 if (env->cpu_index == cpu)
694 break;
695 env = env->next_cpu;
696 }
697
698 return env;
699 }
700
701 void cpu_exec_init(CPUState *env)
702 {
703 CPUState **penv;
704 int cpu_index;
705
706 #if defined(CONFIG_USER_ONLY)
707 cpu_list_lock();
708 #endif
709 env->next_cpu = NULL;
710 penv = &first_cpu;
711 cpu_index = 0;
712 while (*penv != NULL) {
713 penv = &(*penv)->next_cpu;
714 cpu_index++;
715 }
716 env->cpu_index = cpu_index;
717 env->numa_node = 0;
718 QTAILQ_INIT(&env->breakpoints);
719 QTAILQ_INIT(&env->watchpoints);
720 #ifndef CONFIG_USER_ONLY
721 env->thread_id = qemu_get_thread_id();
722 #endif
723 *penv = env;
724 #if defined(CONFIG_USER_ONLY)
725 cpu_list_unlock();
726 #endif
727 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
728 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
729 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
730 cpu_save, cpu_load, env);
731 #endif
732 }
733
734 /* Allocate a new translation block. Flush the translation buffer if
735 too many translation blocks or too much generated code. */
736 static TranslationBlock *tb_alloc(target_ulong pc)
737 {
738 TranslationBlock *tb;
739
740 if (nb_tbs >= code_gen_max_blocks ||
741 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
742 return NULL;
743 tb = &tbs[nb_tbs++];
744 tb->pc = pc;
745 tb->cflags = 0;
746 return tb;
747 }
748
749 void tb_free(TranslationBlock *tb)
750 {
751 /* In practice this is mostly used for single use temporary TB
752 Ignore the hard cases and just back up if this TB happens to
753 be the last one generated. */
754 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
755 code_gen_ptr = tb->tc_ptr;
756 nb_tbs--;
757 }
758 }
759
760 static inline void invalidate_page_bitmap(PageDesc *p)
761 {
762 if (p->code_bitmap) {
763 g_free(p->code_bitmap);
764 p->code_bitmap = NULL;
765 }
766 p->code_write_count = 0;
767 }
768
769 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
770
771 static void page_flush_tb_1 (int level, void **lp)
772 {
773 int i;
774
775 if (*lp == NULL) {
776 return;
777 }
778 if (level == 0) {
779 PageDesc *pd = *lp;
780 for (i = 0; i < L2_SIZE; ++i) {
781 pd[i].first_tb = NULL;
782 invalidate_page_bitmap(pd + i);
783 }
784 } else {
785 void **pp = *lp;
786 for (i = 0; i < L2_SIZE; ++i) {
787 page_flush_tb_1 (level - 1, pp + i);
788 }
789 }
790 }
791
792 static void page_flush_tb(void)
793 {
794 int i;
795 for (i = 0; i < V_L1_SIZE; i++) {
796 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
797 }
798 }
799
800 /* flush all the translation blocks */
801 /* XXX: tb_flush is currently not thread safe */
802 void tb_flush(CPUState *env1)
803 {
804 CPUState *env;
805 #if defined(DEBUG_FLUSH)
806 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
807 (unsigned long)(code_gen_ptr - code_gen_buffer),
808 nb_tbs, nb_tbs > 0 ?
809 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
810 #endif
811 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
812 cpu_abort(env1, "Internal error: code buffer overflow\n");
813
814 nb_tbs = 0;
815
816 for(env = first_cpu; env != NULL; env = env->next_cpu) {
817 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
818 }
819
820 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
821 page_flush_tb();
822
823 code_gen_ptr = code_gen_buffer;
824 /* XXX: flush processor icache at this point if cache flush is
825 expensive */
826 tb_flush_count++;
827 }
828
829 #ifdef DEBUG_TB_CHECK
830
831 static void tb_invalidate_check(target_ulong address)
832 {
833 TranslationBlock *tb;
834 int i;
835 address &= TARGET_PAGE_MASK;
836 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
837 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
838 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
839 address >= tb->pc + tb->size)) {
840 printf("ERROR invalidate: address=" TARGET_FMT_lx
841 " PC=%08lx size=%04x\n",
842 address, (long)tb->pc, tb->size);
843 }
844 }
845 }
846 }
847
848 /* verify that all the pages have correct rights for code */
849 static void tb_page_check(void)
850 {
851 TranslationBlock *tb;
852 int i, flags1, flags2;
853
854 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
855 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
856 flags1 = page_get_flags(tb->pc);
857 flags2 = page_get_flags(tb->pc + tb->size - 1);
858 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
859 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
860 (long)tb->pc, tb->size, flags1, flags2);
861 }
862 }
863 }
864 }
865
866 #endif
867
868 /* invalidate one TB */
869 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
870 int next_offset)
871 {
872 TranslationBlock *tb1;
873 for(;;) {
874 tb1 = *ptb;
875 if (tb1 == tb) {
876 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
877 break;
878 }
879 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
880 }
881 }
882
883 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
884 {
885 TranslationBlock *tb1;
886 unsigned int n1;
887
888 for(;;) {
889 tb1 = *ptb;
890 n1 = (long)tb1 & 3;
891 tb1 = (TranslationBlock *)((long)tb1 & ~3);
892 if (tb1 == tb) {
893 *ptb = tb1->page_next[n1];
894 break;
895 }
896 ptb = &tb1->page_next[n1];
897 }
898 }
899
900 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
901 {
902 TranslationBlock *tb1, **ptb;
903 unsigned int n1;
904
905 ptb = &tb->jmp_next[n];
906 tb1 = *ptb;
907 if (tb1) {
908 /* find tb(n) in circular list */
909 for(;;) {
910 tb1 = *ptb;
911 n1 = (long)tb1 & 3;
912 tb1 = (TranslationBlock *)((long)tb1 & ~3);
913 if (n1 == n && tb1 == tb)
914 break;
915 if (n1 == 2) {
916 ptb = &tb1->jmp_first;
917 } else {
918 ptb = &tb1->jmp_next[n1];
919 }
920 }
921 /* now we can suppress tb(n) from the list */
922 *ptb = tb->jmp_next[n];
923
924 tb->jmp_next[n] = NULL;
925 }
926 }
927
928 /* reset the jump entry 'n' of a TB so that it is not chained to
929 another TB */
930 static inline void tb_reset_jump(TranslationBlock *tb, int n)
931 {
932 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
933 }
934
935 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
936 {
937 CPUState *env;
938 PageDesc *p;
939 unsigned int h, n1;
940 tb_page_addr_t phys_pc;
941 TranslationBlock *tb1, *tb2;
942
943 /* remove the TB from the hash list */
944 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 h = tb_phys_hash_func(phys_pc);
946 tb_remove(&tb_phys_hash[h], tb,
947 offsetof(TranslationBlock, phys_hash_next));
948
949 /* remove the TB from the page list */
950 if (tb->page_addr[0] != page_addr) {
951 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
952 tb_page_remove(&p->first_tb, tb);
953 invalidate_page_bitmap(p);
954 }
955 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
956 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
957 tb_page_remove(&p->first_tb, tb);
958 invalidate_page_bitmap(p);
959 }
960
961 tb_invalidated_flag = 1;
962
963 /* remove the TB from the hash list */
964 h = tb_jmp_cache_hash_func(tb->pc);
965 for(env = first_cpu; env != NULL; env = env->next_cpu) {
966 if (env->tb_jmp_cache[h] == tb)
967 env->tb_jmp_cache[h] = NULL;
968 }
969
970 /* suppress this TB from the two jump lists */
971 tb_jmp_remove(tb, 0);
972 tb_jmp_remove(tb, 1);
973
974 /* suppress any remaining jumps to this TB */
975 tb1 = tb->jmp_first;
976 for(;;) {
977 n1 = (long)tb1 & 3;
978 if (n1 == 2)
979 break;
980 tb1 = (TranslationBlock *)((long)tb1 & ~3);
981 tb2 = tb1->jmp_next[n1];
982 tb_reset_jump(tb1, n1);
983 tb1->jmp_next[n1] = NULL;
984 tb1 = tb2;
985 }
986 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
987
988 tb_phys_invalidate_count++;
989 }
990
991 static inline void set_bits(uint8_t *tab, int start, int len)
992 {
993 int end, mask, end1;
994
995 end = start + len;
996 tab += start >> 3;
997 mask = 0xff << (start & 7);
998 if ((start & ~7) == (end & ~7)) {
999 if (start < end) {
1000 mask &= ~(0xff << (end & 7));
1001 *tab |= mask;
1002 }
1003 } else {
1004 *tab++ |= mask;
1005 start = (start + 8) & ~7;
1006 end1 = end & ~7;
1007 while (start < end1) {
1008 *tab++ = 0xff;
1009 start += 8;
1010 }
1011 if (start < end) {
1012 mask = ~(0xff << (end & 7));
1013 *tab |= mask;
1014 }
1015 }
1016 }
1017
1018 static void build_page_bitmap(PageDesc *p)
1019 {
1020 int n, tb_start, tb_end;
1021 TranslationBlock *tb;
1022
1023 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
1024
1025 tb = p->first_tb;
1026 while (tb != NULL) {
1027 n = (long)tb & 3;
1028 tb = (TranslationBlock *)((long)tb & ~3);
1029 /* NOTE: this is subtle as a TB may span two physical pages */
1030 if (n == 0) {
1031 /* NOTE: tb_end may be after the end of the page, but
1032 it is not a problem */
1033 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1034 tb_end = tb_start + tb->size;
1035 if (tb_end > TARGET_PAGE_SIZE)
1036 tb_end = TARGET_PAGE_SIZE;
1037 } else {
1038 tb_start = 0;
1039 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1040 }
1041 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1042 tb = tb->page_next[n];
1043 }
1044 }
1045
1046 TranslationBlock *tb_gen_code(CPUState *env,
1047 target_ulong pc, target_ulong cs_base,
1048 int flags, int cflags)
1049 {
1050 TranslationBlock *tb;
1051 uint8_t *tc_ptr;
1052 tb_page_addr_t phys_pc, phys_page2;
1053 target_ulong virt_page2;
1054 int code_gen_size;
1055
1056 phys_pc = get_page_addr_code(env, pc);
1057 tb = tb_alloc(pc);
1058 if (!tb) {
1059 /* flush must be done */
1060 tb_flush(env);
1061 /* cannot fail at this point */
1062 tb = tb_alloc(pc);
1063 /* Don't forget to invalidate previous TB info. */
1064 tb_invalidated_flag = 1;
1065 }
1066 tc_ptr = code_gen_ptr;
1067 tb->tc_ptr = tc_ptr;
1068 tb->cs_base = cs_base;
1069 tb->flags = flags;
1070 tb->cflags = cflags;
1071 cpu_gen_code(env, tb, &code_gen_size);
1072 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1073
1074 /* check next page if needed */
1075 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1076 phys_page2 = -1;
1077 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1078 phys_page2 = get_page_addr_code(env, virt_page2);
1079 }
1080 tb_link_page(tb, phys_pc, phys_page2);
1081 return tb;
1082 }
1083
1084 /* invalidate all TBs which intersect with the target physical page
1085 starting in range [start;end[. NOTE: start and end must refer to
1086 the same physical page. 'is_cpu_write_access' should be true if called
1087 from a real cpu write access: the virtual CPU will exit the current
1088 TB if code is modified inside this TB. */
1089 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1090 int is_cpu_write_access)
1091 {
1092 TranslationBlock *tb, *tb_next, *saved_tb;
1093 CPUState *env = cpu_single_env;
1094 tb_page_addr_t tb_start, tb_end;
1095 PageDesc *p;
1096 int n;
1097 #ifdef TARGET_HAS_PRECISE_SMC
1098 int current_tb_not_found = is_cpu_write_access;
1099 TranslationBlock *current_tb = NULL;
1100 int current_tb_modified = 0;
1101 target_ulong current_pc = 0;
1102 target_ulong current_cs_base = 0;
1103 int current_flags = 0;
1104 #endif /* TARGET_HAS_PRECISE_SMC */
1105
1106 p = page_find(start >> TARGET_PAGE_BITS);
1107 if (!p)
1108 return;
1109 if (!p->code_bitmap &&
1110 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1111 is_cpu_write_access) {
1112 /* build code bitmap */
1113 build_page_bitmap(p);
1114 }
1115
1116 /* we remove all the TBs in the range [start, end[ */
1117 /* XXX: see if in some cases it could be faster to invalidate all the code */
1118 tb = p->first_tb;
1119 while (tb != NULL) {
1120 n = (long)tb & 3;
1121 tb = (TranslationBlock *)((long)tb & ~3);
1122 tb_next = tb->page_next[n];
1123 /* NOTE: this is subtle as a TB may span two physical pages */
1124 if (n == 0) {
1125 /* NOTE: tb_end may be after the end of the page, but
1126 it is not a problem */
1127 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1128 tb_end = tb_start + tb->size;
1129 } else {
1130 tb_start = tb->page_addr[1];
1131 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1132 }
1133 if (!(tb_end <= start || tb_start >= end)) {
1134 #ifdef TARGET_HAS_PRECISE_SMC
1135 if (current_tb_not_found) {
1136 current_tb_not_found = 0;
1137 current_tb = NULL;
1138 if (env->mem_io_pc) {
1139 /* now we have a real cpu fault */
1140 current_tb = tb_find_pc(env->mem_io_pc);
1141 }
1142 }
1143 if (current_tb == tb &&
1144 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1145 /* If we are modifying the current TB, we must stop
1146 its execution. We could be more precise by checking
1147 that the modification is after the current PC, but it
1148 would require a specialized function to partially
1149 restore the CPU state */
1150
1151 current_tb_modified = 1;
1152 cpu_restore_state(current_tb, env, env->mem_io_pc);
1153 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1154 &current_flags);
1155 }
1156 #endif /* TARGET_HAS_PRECISE_SMC */
1157 /* we need to do that to handle the case where a signal
1158 occurs while doing tb_phys_invalidate() */
1159 saved_tb = NULL;
1160 if (env) {
1161 saved_tb = env->current_tb;
1162 env->current_tb = NULL;
1163 }
1164 tb_phys_invalidate(tb, -1);
1165 if (env) {
1166 env->current_tb = saved_tb;
1167 if (env->interrupt_request && env->current_tb)
1168 cpu_interrupt(env, env->interrupt_request);
1169 }
1170 }
1171 tb = tb_next;
1172 }
1173 #if !defined(CONFIG_USER_ONLY)
1174 /* if no code remaining, no need to continue to use slow writes */
1175 if (!p->first_tb) {
1176 invalidate_page_bitmap(p);
1177 if (is_cpu_write_access) {
1178 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1179 }
1180 }
1181 #endif
1182 #ifdef TARGET_HAS_PRECISE_SMC
1183 if (current_tb_modified) {
1184 /* we generate a block containing just the instruction
1185 modifying the memory. It will ensure that it cannot modify
1186 itself */
1187 env->current_tb = NULL;
1188 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1189 cpu_resume_from_signal(env, NULL);
1190 }
1191 #endif
1192 }
1193
1194 /* len must be <= 8 and start must be a multiple of len */
1195 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1196 {
1197 PageDesc *p;
1198 int offset, b;
1199 #if 0
1200 if (1) {
1201 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1202 cpu_single_env->mem_io_vaddr, len,
1203 cpu_single_env->eip,
1204 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1205 }
1206 #endif
1207 p = page_find(start >> TARGET_PAGE_BITS);
1208 if (!p)
1209 return;
1210 if (p->code_bitmap) {
1211 offset = start & ~TARGET_PAGE_MASK;
1212 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1213 if (b & ((1 << len) - 1))
1214 goto do_invalidate;
1215 } else {
1216 do_invalidate:
1217 tb_invalidate_phys_page_range(start, start + len, 1);
1218 }
1219 }
1220
1221 #if !defined(CONFIG_SOFTMMU)
1222 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1223 unsigned long pc, void *puc)
1224 {
1225 TranslationBlock *tb;
1226 PageDesc *p;
1227 int n;
1228 #ifdef TARGET_HAS_PRECISE_SMC
1229 TranslationBlock *current_tb = NULL;
1230 CPUState *env = cpu_single_env;
1231 int current_tb_modified = 0;
1232 target_ulong current_pc = 0;
1233 target_ulong current_cs_base = 0;
1234 int current_flags = 0;
1235 #endif
1236
1237 addr &= TARGET_PAGE_MASK;
1238 p = page_find(addr >> TARGET_PAGE_BITS);
1239 if (!p)
1240 return;
1241 tb = p->first_tb;
1242 #ifdef TARGET_HAS_PRECISE_SMC
1243 if (tb && pc != 0) {
1244 current_tb = tb_find_pc(pc);
1245 }
1246 #endif
1247 while (tb != NULL) {
1248 n = (long)tb & 3;
1249 tb = (TranslationBlock *)((long)tb & ~3);
1250 #ifdef TARGET_HAS_PRECISE_SMC
1251 if (current_tb == tb &&
1252 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1258
1259 current_tb_modified = 1;
1260 cpu_restore_state(current_tb, env, pc);
1261 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1262 &current_flags);
1263 }
1264 #endif /* TARGET_HAS_PRECISE_SMC */
1265 tb_phys_invalidate(tb, addr);
1266 tb = tb->page_next[n];
1267 }
1268 p->first_tb = NULL;
1269 #ifdef TARGET_HAS_PRECISE_SMC
1270 if (current_tb_modified) {
1271 /* we generate a block containing just the instruction
1272 modifying the memory. It will ensure that it cannot modify
1273 itself */
1274 env->current_tb = NULL;
1275 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1276 cpu_resume_from_signal(env, puc);
1277 }
1278 #endif
1279 }
1280 #endif
1281
1282 /* add the tb in the target page and protect it if necessary */
1283 static inline void tb_alloc_page(TranslationBlock *tb,
1284 unsigned int n, tb_page_addr_t page_addr)
1285 {
1286 PageDesc *p;
1287 #ifndef CONFIG_USER_ONLY
1288 bool page_already_protected;
1289 #endif
1290
1291 tb->page_addr[n] = page_addr;
1292 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1293 tb->page_next[n] = p->first_tb;
1294 #ifndef CONFIG_USER_ONLY
1295 page_already_protected = p->first_tb != NULL;
1296 #endif
1297 p->first_tb = (TranslationBlock *)((long)tb | n);
1298 invalidate_page_bitmap(p);
1299
1300 #if defined(TARGET_HAS_SMC) || 1
1301
1302 #if defined(CONFIG_USER_ONLY)
1303 if (p->flags & PAGE_WRITE) {
1304 target_ulong addr;
1305 PageDesc *p2;
1306 int prot;
1307
1308 /* force the host page as non writable (writes will have a
1309 page fault + mprotect overhead) */
1310 page_addr &= qemu_host_page_mask;
1311 prot = 0;
1312 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1313 addr += TARGET_PAGE_SIZE) {
1314
1315 p2 = page_find (addr >> TARGET_PAGE_BITS);
1316 if (!p2)
1317 continue;
1318 prot |= p2->flags;
1319 p2->flags &= ~PAGE_WRITE;
1320 }
1321 mprotect(g2h(page_addr), qemu_host_page_size,
1322 (prot & PAGE_BITS) & ~PAGE_WRITE);
1323 #ifdef DEBUG_TB_INVALIDATE
1324 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1325 page_addr);
1326 #endif
1327 }
1328 #else
1329 /* if some code is already present, then the pages are already
1330 protected. So we handle the case where only the first TB is
1331 allocated in a physical page */
1332 if (!page_already_protected) {
1333 tlb_protect_code(page_addr);
1334 }
1335 #endif
1336
1337 #endif /* TARGET_HAS_SMC */
1338 }
1339
1340 /* add a new TB and link it to the physical page tables. phys_page2 is
1341 (-1) to indicate that only one page contains the TB. */
1342 void tb_link_page(TranslationBlock *tb,
1343 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1344 {
1345 unsigned int h;
1346 TranslationBlock **ptb;
1347
1348 /* Grab the mmap lock to stop another thread invalidating this TB
1349 before we are done. */
1350 mmap_lock();
1351 /* add in the physical hash table */
1352 h = tb_phys_hash_func(phys_pc);
1353 ptb = &tb_phys_hash[h];
1354 tb->phys_hash_next = *ptb;
1355 *ptb = tb;
1356
1357 /* add in the page list */
1358 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1359 if (phys_page2 != -1)
1360 tb_alloc_page(tb, 1, phys_page2);
1361 else
1362 tb->page_addr[1] = -1;
1363
1364 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1365 tb->jmp_next[0] = NULL;
1366 tb->jmp_next[1] = NULL;
1367
1368 /* init original jump addresses */
1369 if (tb->tb_next_offset[0] != 0xffff)
1370 tb_reset_jump(tb, 0);
1371 if (tb->tb_next_offset[1] != 0xffff)
1372 tb_reset_jump(tb, 1);
1373
1374 #ifdef DEBUG_TB_CHECK
1375 tb_page_check();
1376 #endif
1377 mmap_unlock();
1378 }
1379
1380 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1381 tb[1].tc_ptr. Return NULL if not found */
1382 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1383 {
1384 int m_min, m_max, m;
1385 unsigned long v;
1386 TranslationBlock *tb;
1387
1388 if (nb_tbs <= 0)
1389 return NULL;
1390 if (tc_ptr < (unsigned long)code_gen_buffer ||
1391 tc_ptr >= (unsigned long)code_gen_ptr)
1392 return NULL;
1393 /* binary search (cf Knuth) */
1394 m_min = 0;
1395 m_max = nb_tbs - 1;
1396 while (m_min <= m_max) {
1397 m = (m_min + m_max) >> 1;
1398 tb = &tbs[m];
1399 v = (unsigned long)tb->tc_ptr;
1400 if (v == tc_ptr)
1401 return tb;
1402 else if (tc_ptr < v) {
1403 m_max = m - 1;
1404 } else {
1405 m_min = m + 1;
1406 }
1407 }
1408 return &tbs[m_max];
1409 }
1410
1411 static void tb_reset_jump_recursive(TranslationBlock *tb);
1412
1413 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1414 {
1415 TranslationBlock *tb1, *tb_next, **ptb;
1416 unsigned int n1;
1417
1418 tb1 = tb->jmp_next[n];
1419 if (tb1 != NULL) {
1420 /* find head of list */
1421 for(;;) {
1422 n1 = (long)tb1 & 3;
1423 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1424 if (n1 == 2)
1425 break;
1426 tb1 = tb1->jmp_next[n1];
1427 }
1428 /* we are now sure now that tb jumps to tb1 */
1429 tb_next = tb1;
1430
1431 /* remove tb from the jmp_first list */
1432 ptb = &tb_next->jmp_first;
1433 for(;;) {
1434 tb1 = *ptb;
1435 n1 = (long)tb1 & 3;
1436 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1437 if (n1 == n && tb1 == tb)
1438 break;
1439 ptb = &tb1->jmp_next[n1];
1440 }
1441 *ptb = tb->jmp_next[n];
1442 tb->jmp_next[n] = NULL;
1443
1444 /* suppress the jump to next tb in generated code */
1445 tb_reset_jump(tb, n);
1446
1447 /* suppress jumps in the tb on which we could have jumped */
1448 tb_reset_jump_recursive(tb_next);
1449 }
1450 }
1451
1452 static void tb_reset_jump_recursive(TranslationBlock *tb)
1453 {
1454 tb_reset_jump_recursive2(tb, 0);
1455 tb_reset_jump_recursive2(tb, 1);
1456 }
1457
1458 #if defined(TARGET_HAS_ICE)
1459 #if defined(CONFIG_USER_ONLY)
1460 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1461 {
1462 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1463 }
1464 #else
1465 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1466 {
1467 target_phys_addr_t addr;
1468 ram_addr_t ram_addr;
1469 MemoryRegionSection *section;
1470
1471 addr = cpu_get_phys_page_debug(env, pc);
1472 section = phys_page_find(addr >> TARGET_PAGE_BITS);
1473 if (!(memory_region_is_ram(section->mr)
1474 || (section->mr->rom_device && section->mr->readable))) {
1475 return;
1476 }
1477 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
1478 + section_addr(section, addr);
1479 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1480 }
1481 #endif
1482 #endif /* TARGET_HAS_ICE */
1483
1484 #if defined(CONFIG_USER_ONLY)
1485 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1486
1487 {
1488 }
1489
1490 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1491 int flags, CPUWatchpoint **watchpoint)
1492 {
1493 return -ENOSYS;
1494 }
1495 #else
1496 /* Add a watchpoint. */
1497 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1498 int flags, CPUWatchpoint **watchpoint)
1499 {
1500 target_ulong len_mask = ~(len - 1);
1501 CPUWatchpoint *wp;
1502
1503 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1504 if ((len & (len - 1)) || (addr & ~len_mask) ||
1505 len == 0 || len > TARGET_PAGE_SIZE) {
1506 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1507 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1508 return -EINVAL;
1509 }
1510 wp = g_malloc(sizeof(*wp));
1511
1512 wp->vaddr = addr;
1513 wp->len_mask = len_mask;
1514 wp->flags = flags;
1515
1516 /* keep all GDB-injected watchpoints in front */
1517 if (flags & BP_GDB)
1518 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1519 else
1520 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1521
1522 tlb_flush_page(env, addr);
1523
1524 if (watchpoint)
1525 *watchpoint = wp;
1526 return 0;
1527 }
1528
1529 /* Remove a specific watchpoint. */
1530 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1531 int flags)
1532 {
1533 target_ulong len_mask = ~(len - 1);
1534 CPUWatchpoint *wp;
1535
1536 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1537 if (addr == wp->vaddr && len_mask == wp->len_mask
1538 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1539 cpu_watchpoint_remove_by_ref(env, wp);
1540 return 0;
1541 }
1542 }
1543 return -ENOENT;
1544 }
1545
1546 /* Remove a specific watchpoint by reference. */
1547 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1548 {
1549 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1550
1551 tlb_flush_page(env, watchpoint->vaddr);
1552
1553 g_free(watchpoint);
1554 }
1555
1556 /* Remove all matching watchpoints. */
1557 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1558 {
1559 CPUWatchpoint *wp, *next;
1560
1561 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1562 if (wp->flags & mask)
1563 cpu_watchpoint_remove_by_ref(env, wp);
1564 }
1565 }
1566 #endif
1567
1568 /* Add a breakpoint. */
1569 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1570 CPUBreakpoint **breakpoint)
1571 {
1572 #if defined(TARGET_HAS_ICE)
1573 CPUBreakpoint *bp;
1574
1575 bp = g_malloc(sizeof(*bp));
1576
1577 bp->pc = pc;
1578 bp->flags = flags;
1579
1580 /* keep all GDB-injected breakpoints in front */
1581 if (flags & BP_GDB)
1582 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1583 else
1584 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1585
1586 breakpoint_invalidate(env, pc);
1587
1588 if (breakpoint)
1589 *breakpoint = bp;
1590 return 0;
1591 #else
1592 return -ENOSYS;
1593 #endif
1594 }
1595
1596 /* Remove a specific breakpoint. */
1597 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1598 {
1599 #if defined(TARGET_HAS_ICE)
1600 CPUBreakpoint *bp;
1601
1602 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1603 if (bp->pc == pc && bp->flags == flags) {
1604 cpu_breakpoint_remove_by_ref(env, bp);
1605 return 0;
1606 }
1607 }
1608 return -ENOENT;
1609 #else
1610 return -ENOSYS;
1611 #endif
1612 }
1613
1614 /* Remove a specific breakpoint by reference. */
1615 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1616 {
1617 #if defined(TARGET_HAS_ICE)
1618 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1619
1620 breakpoint_invalidate(env, breakpoint->pc);
1621
1622 g_free(breakpoint);
1623 #endif
1624 }
1625
1626 /* Remove all matching breakpoints. */
1627 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1628 {
1629 #if defined(TARGET_HAS_ICE)
1630 CPUBreakpoint *bp, *next;
1631
1632 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1633 if (bp->flags & mask)
1634 cpu_breakpoint_remove_by_ref(env, bp);
1635 }
1636 #endif
1637 }
1638
1639 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1640 CPU loop after each instruction */
1641 void cpu_single_step(CPUState *env, int enabled)
1642 {
1643 #if defined(TARGET_HAS_ICE)
1644 if (env->singlestep_enabled != enabled) {
1645 env->singlestep_enabled = enabled;
1646 if (kvm_enabled())
1647 kvm_update_guest_debug(env, 0);
1648 else {
1649 /* must flush all the translated code to avoid inconsistencies */
1650 /* XXX: only flush what is necessary */
1651 tb_flush(env);
1652 }
1653 }
1654 #endif
1655 }
1656
1657 /* enable or disable low levels log */
1658 void cpu_set_log(int log_flags)
1659 {
1660 loglevel = log_flags;
1661 if (loglevel && !logfile) {
1662 logfile = fopen(logfilename, log_append ? "a" : "w");
1663 if (!logfile) {
1664 perror(logfilename);
1665 _exit(1);
1666 }
1667 #if !defined(CONFIG_SOFTMMU)
1668 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1669 {
1670 static char logfile_buf[4096];
1671 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1672 }
1673 #elif defined(_WIN32)
1674 /* Win32 doesn't support line-buffering, so use unbuffered output. */
1675 setvbuf(logfile, NULL, _IONBF, 0);
1676 #else
1677 setvbuf(logfile, NULL, _IOLBF, 0);
1678 #endif
1679 log_append = 1;
1680 }
1681 if (!loglevel && logfile) {
1682 fclose(logfile);
1683 logfile = NULL;
1684 }
1685 }
1686
1687 void cpu_set_log_filename(const char *filename)
1688 {
1689 logfilename = strdup(filename);
1690 if (logfile) {
1691 fclose(logfile);
1692 logfile = NULL;
1693 }
1694 cpu_set_log(loglevel);
1695 }
1696
1697 static void cpu_unlink_tb(CPUState *env)
1698 {
1699 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1700 problem and hope the cpu will stop of its own accord. For userspace
1701 emulation this often isn't actually as bad as it sounds. Often
1702 signals are used primarily to interrupt blocking syscalls. */
1703 TranslationBlock *tb;
1704 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1705
1706 spin_lock(&interrupt_lock);
1707 tb = env->current_tb;
1708 /* if the cpu is currently executing code, we must unlink it and
1709 all the potentially executing TB */
1710 if (tb) {
1711 env->current_tb = NULL;
1712 tb_reset_jump_recursive(tb);
1713 }
1714 spin_unlock(&interrupt_lock);
1715 }
1716
1717 #ifndef CONFIG_USER_ONLY
1718 /* mask must never be zero, except for A20 change call */
1719 static void tcg_handle_interrupt(CPUState *env, int mask)
1720 {
1721 int old_mask;
1722
1723 old_mask = env->interrupt_request;
1724 env->interrupt_request |= mask;
1725
1726 /*
1727 * If called from iothread context, wake the target cpu in
1728 * case its halted.
1729 */
1730 if (!qemu_cpu_is_self(env)) {
1731 qemu_cpu_kick(env);
1732 return;
1733 }
1734
1735 if (use_icount) {
1736 env->icount_decr.u16.high = 0xffff;
1737 if (!can_do_io(env)
1738 && (mask & ~old_mask) != 0) {
1739 cpu_abort(env, "Raised interrupt while not in I/O function");
1740 }
1741 } else {
1742 cpu_unlink_tb(env);
1743 }
1744 }
1745
1746 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1747
1748 #else /* CONFIG_USER_ONLY */
1749
1750 void cpu_interrupt(CPUState *env, int mask)
1751 {
1752 env->interrupt_request |= mask;
1753 cpu_unlink_tb(env);
1754 }
1755 #endif /* CONFIG_USER_ONLY */
1756
1757 void cpu_reset_interrupt(CPUState *env, int mask)
1758 {
1759 env->interrupt_request &= ~mask;
1760 }
1761
1762 void cpu_exit(CPUState *env)
1763 {
1764 env->exit_request = 1;
1765 cpu_unlink_tb(env);
1766 }
1767
1768 const CPULogItem cpu_log_items[] = {
1769 { CPU_LOG_TB_OUT_ASM, "out_asm",
1770 "show generated host assembly code for each compiled TB" },
1771 { CPU_LOG_TB_IN_ASM, "in_asm",
1772 "show target assembly code for each compiled TB" },
1773 { CPU_LOG_TB_OP, "op",
1774 "show micro ops for each compiled TB" },
1775 { CPU_LOG_TB_OP_OPT, "op_opt",
1776 "show micro ops "
1777 #ifdef TARGET_I386
1778 "before eflags optimization and "
1779 #endif
1780 "after liveness analysis" },
1781 { CPU_LOG_INT, "int",
1782 "show interrupts/exceptions in short format" },
1783 { CPU_LOG_EXEC, "exec",
1784 "show trace before each executed TB (lots of logs)" },
1785 { CPU_LOG_TB_CPU, "cpu",
1786 "show CPU state before block translation" },
1787 #ifdef TARGET_I386
1788 { CPU_LOG_PCALL, "pcall",
1789 "show protected mode far calls/returns/exceptions" },
1790 { CPU_LOG_RESET, "cpu_reset",
1791 "show CPU state before CPU resets" },
1792 #endif
1793 #ifdef DEBUG_IOPORT
1794 { CPU_LOG_IOPORT, "ioport",
1795 "show all i/o ports accesses" },
1796 #endif
1797 { 0, NULL, NULL },
1798 };
1799
1800 static int cmp1(const char *s1, int n, const char *s2)
1801 {
1802 if (strlen(s2) != n)
1803 return 0;
1804 return memcmp(s1, s2, n) == 0;
1805 }
1806
1807 /* takes a comma separated list of log masks. Return 0 if error. */
1808 int cpu_str_to_log_mask(const char *str)
1809 {
1810 const CPULogItem *item;
1811 int mask;
1812 const char *p, *p1;
1813
1814 p = str;
1815 mask = 0;
1816 for(;;) {
1817 p1 = strchr(p, ',');
1818 if (!p1)
1819 p1 = p + strlen(p);
1820 if(cmp1(p,p1-p,"all")) {
1821 for(item = cpu_log_items; item->mask != 0; item++) {
1822 mask |= item->mask;
1823 }
1824 } else {
1825 for(item = cpu_log_items; item->mask != 0; item++) {
1826 if (cmp1(p, p1 - p, item->name))
1827 goto found;
1828 }
1829 return 0;
1830 }
1831 found:
1832 mask |= item->mask;
1833 if (*p1 != ',')
1834 break;
1835 p = p1 + 1;
1836 }
1837 return mask;
1838 }
1839
1840 void cpu_abort(CPUState *env, const char *fmt, ...)
1841 {
1842 va_list ap;
1843 va_list ap2;
1844
1845 va_start(ap, fmt);
1846 va_copy(ap2, ap);
1847 fprintf(stderr, "qemu: fatal: ");
1848 vfprintf(stderr, fmt, ap);
1849 fprintf(stderr, "\n");
1850 #ifdef TARGET_I386
1851 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1852 #else
1853 cpu_dump_state(env, stderr, fprintf, 0);
1854 #endif
1855 if (qemu_log_enabled()) {
1856 qemu_log("qemu: fatal: ");
1857 qemu_log_vprintf(fmt, ap2);
1858 qemu_log("\n");
1859 #ifdef TARGET_I386
1860 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1861 #else
1862 log_cpu_state(env, 0);
1863 #endif
1864 qemu_log_flush();
1865 qemu_log_close();
1866 }
1867 va_end(ap2);
1868 va_end(ap);
1869 #if defined(CONFIG_USER_ONLY)
1870 {
1871 struct sigaction act;
1872 sigfillset(&act.sa_mask);
1873 act.sa_handler = SIG_DFL;
1874 sigaction(SIGABRT, &act, NULL);
1875 }
1876 #endif
1877 abort();
1878 }
1879
1880 CPUState *cpu_copy(CPUState *env)
1881 {
1882 CPUState *new_env = cpu_init(env->cpu_model_str);
1883 CPUState *next_cpu = new_env->next_cpu;
1884 int cpu_index = new_env->cpu_index;
1885 #if defined(TARGET_HAS_ICE)
1886 CPUBreakpoint *bp;
1887 CPUWatchpoint *wp;
1888 #endif
1889
1890 memcpy(new_env, env, sizeof(CPUState));
1891
1892 /* Preserve chaining and index. */
1893 new_env->next_cpu = next_cpu;
1894 new_env->cpu_index = cpu_index;
1895
1896 /* Clone all break/watchpoints.
1897 Note: Once we support ptrace with hw-debug register access, make sure
1898 BP_CPU break/watchpoints are handled correctly on clone. */
1899 QTAILQ_INIT(&env->breakpoints);
1900 QTAILQ_INIT(&env->watchpoints);
1901 #if defined(TARGET_HAS_ICE)
1902 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1903 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1904 }
1905 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1906 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1907 wp->flags, NULL);
1908 }
1909 #endif
1910
1911 return new_env;
1912 }
1913
1914 #if !defined(CONFIG_USER_ONLY)
1915
1916 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1917 {
1918 unsigned int i;
1919
1920 /* Discard jump cache entries for any tb which might potentially
1921 overlap the flushed page. */
1922 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1923 memset (&env->tb_jmp_cache[i], 0,
1924 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1925
1926 i = tb_jmp_cache_hash_page(addr);
1927 memset (&env->tb_jmp_cache[i], 0,
1928 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1929 }
1930
1931 static CPUTLBEntry s_cputlb_empty_entry = {
1932 .addr_read = -1,
1933 .addr_write = -1,
1934 .addr_code = -1,
1935 .addend = -1,
1936 };
1937
1938 /* NOTE:
1939 * If flush_global is true (the usual case), flush all tlb entries.
1940 * If flush_global is false, flush (at least) all tlb entries not
1941 * marked global.
1942 *
1943 * Since QEMU doesn't currently implement a global/not-global flag
1944 * for tlb entries, at the moment tlb_flush() will also flush all
1945 * tlb entries in the flush_global == false case. This is OK because
1946 * CPU architectures generally permit an implementation to drop
1947 * entries from the TLB at any time, so flushing more entries than
1948 * required is only an efficiency issue, not a correctness issue.
1949 */
1950 void tlb_flush(CPUState *env, int flush_global)
1951 {
1952 int i;
1953
1954 #if defined(DEBUG_TLB)
1955 printf("tlb_flush:\n");
1956 #endif
1957 /* must reset current TB so that interrupts cannot modify the
1958 links while we are modifying them */
1959 env->current_tb = NULL;
1960
1961 for(i = 0; i < CPU_TLB_SIZE; i++) {
1962 int mmu_idx;
1963 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1964 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1965 }
1966 }
1967
1968 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1969
1970 env->tlb_flush_addr = -1;
1971 env->tlb_flush_mask = 0;
1972 tlb_flush_count++;
1973 }
1974
1975 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1976 {
1977 if (addr == (tlb_entry->addr_read &
1978 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1979 addr == (tlb_entry->addr_write &
1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1981 addr == (tlb_entry->addr_code &
1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1983 *tlb_entry = s_cputlb_empty_entry;
1984 }
1985 }
1986
1987 void tlb_flush_page(CPUState *env, target_ulong addr)
1988 {
1989 int i;
1990 int mmu_idx;
1991
1992 #if defined(DEBUG_TLB)
1993 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1994 #endif
1995 /* Check if we need to flush due to large pages. */
1996 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1997 #if defined(DEBUG_TLB)
1998 printf("tlb_flush_page: forced full flush ("
1999 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2000 env->tlb_flush_addr, env->tlb_flush_mask);
2001 #endif
2002 tlb_flush(env, 1);
2003 return;
2004 }
2005 /* must reset current TB so that interrupts cannot modify the
2006 links while we are modifying them */
2007 env->current_tb = NULL;
2008
2009 addr &= TARGET_PAGE_MASK;
2010 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2011 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2012 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
2013
2014 tlb_flush_jmp_cache(env, addr);
2015 }
2016
2017 /* update the TLBs so that writes to code in the virtual page 'addr'
2018 can be detected */
2019 static void tlb_protect_code(ram_addr_t ram_addr)
2020 {
2021 cpu_physical_memory_reset_dirty(ram_addr,
2022 ram_addr + TARGET_PAGE_SIZE,
2023 CODE_DIRTY_FLAG);
2024 }
2025
2026 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2027 tested for self modifying code */
2028 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
2029 target_ulong vaddr)
2030 {
2031 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2032 }
2033
2034 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2035 unsigned long start, unsigned long length)
2036 {
2037 unsigned long addr;
2038 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
2039 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2040 if ((addr - start) < length) {
2041 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2042 }
2043 }
2044 }
2045
2046 /* Note: start and end must be within the same ram block. */
2047 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2048 int dirty_flags)
2049 {
2050 CPUState *env;
2051 unsigned long length, start1;
2052 int i;
2053
2054 start &= TARGET_PAGE_MASK;
2055 end = TARGET_PAGE_ALIGN(end);
2056
2057 length = end - start;
2058 if (length == 0)
2059 return;
2060 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2061
2062 /* we modify the TLB cache so that the dirty bit will be set again
2063 when accessing the range */
2064 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2065 /* Check that we don't span multiple blocks - this breaks the
2066 address comparisons below. */
2067 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2068 != (end - 1) - start) {
2069 abort();
2070 }
2071
2072 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2073 int mmu_idx;
2074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2075 for(i = 0; i < CPU_TLB_SIZE; i++)
2076 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2077 start1, length);
2078 }
2079 }
2080 }
2081
2082 int cpu_physical_memory_set_dirty_tracking(int enable)
2083 {
2084 int ret = 0;
2085 in_migration = enable;
2086 return ret;
2087 }
2088
2089 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2090 {
2091 ram_addr_t ram_addr;
2092 void *p;
2093
2094 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
2095 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2096 + tlb_entry->addend);
2097 ram_addr = qemu_ram_addr_from_host_nofail(p);
2098 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2099 tlb_entry->addr_write |= TLB_NOTDIRTY;
2100 }
2101 }
2102 }
2103
2104 /* update the TLB according to the current state of the dirty bits */
2105 void cpu_tlb_update_dirty(CPUState *env)
2106 {
2107 int i;
2108 int mmu_idx;
2109 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2110 for(i = 0; i < CPU_TLB_SIZE; i++)
2111 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2112 }
2113 }
2114
2115 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2116 {
2117 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2118 tlb_entry->addr_write = vaddr;
2119 }
2120
2121 /* update the TLB corresponding to virtual page vaddr
2122 so that it is no longer dirty */
2123 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2124 {
2125 int i;
2126 int mmu_idx;
2127
2128 vaddr &= TARGET_PAGE_MASK;
2129 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2130 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2131 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2132 }
2133
2134 /* Our TLB does not support large pages, so remember the area covered by
2135 large pages and trigger a full TLB flush if these are invalidated. */
2136 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2137 target_ulong size)
2138 {
2139 target_ulong mask = ~(size - 1);
2140
2141 if (env->tlb_flush_addr == (target_ulong)-1) {
2142 env->tlb_flush_addr = vaddr & mask;
2143 env->tlb_flush_mask = mask;
2144 return;
2145 }
2146 /* Extend the existing region to include the new page.
2147 This is a compromise between unnecessary flushes and the cost
2148 of maintaining a full variable size TLB. */
2149 mask &= env->tlb_flush_mask;
2150 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2151 mask <<= 1;
2152 }
2153 env->tlb_flush_addr &= mask;
2154 env->tlb_flush_mask = mask;
2155 }
2156
2157 static bool is_ram_rom(MemoryRegionSection *s)
2158 {
2159 return memory_region_is_ram(s->mr);
2160 }
2161
2162 static bool is_romd(MemoryRegionSection *s)
2163 {
2164 MemoryRegion *mr = s->mr;
2165
2166 return mr->rom_device && mr->readable;
2167 }
2168
2169 static bool is_ram_rom_romd(MemoryRegionSection *s)
2170 {
2171 return is_ram_rom(s) || is_romd(s);
2172 }
2173
2174 /* Add a new TLB entry. At most one entry for a given virtual address
2175 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2176 supplied size is only used by tlb_flush_page. */
2177 void tlb_set_page(CPUState *env, target_ulong vaddr,
2178 target_phys_addr_t paddr, int prot,
2179 int mmu_idx, target_ulong size)
2180 {
2181 MemoryRegionSection *section;
2182 unsigned int index;
2183 target_ulong address;
2184 target_ulong code_address;
2185 unsigned long addend;
2186 CPUTLBEntry *te;
2187 CPUWatchpoint *wp;
2188 target_phys_addr_t iotlb;
2189
2190 assert(size >= TARGET_PAGE_SIZE);
2191 if (size != TARGET_PAGE_SIZE) {
2192 tlb_add_large_page(env, vaddr, size);
2193 }
2194 section = phys_page_find(paddr >> TARGET_PAGE_BITS);
2195 #if defined(DEBUG_TLB)
2196 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2197 " prot=%x idx=%d pd=0x%08lx\n",
2198 vaddr, paddr, prot, mmu_idx, pd);
2199 #endif
2200
2201 address = vaddr;
2202 if (!is_ram_rom_romd(section)) {
2203 /* IO memory case (romd handled later) */
2204 address |= TLB_MMIO;
2205 }
2206 if (is_ram_rom_romd(section)) {
2207 addend = (unsigned long)memory_region_get_ram_ptr(section->mr)
2208 + section_addr(section, paddr);
2209 } else {
2210 addend = 0;
2211 }
2212 if (is_ram_rom(section)) {
2213 /* Normal RAM. */
2214 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
2215 + section_addr(section, paddr);
2216 if (!section->readonly)
2217 iotlb |= phys_section_notdirty;
2218 else
2219 iotlb |= phys_section_rom;
2220 } else {
2221 /* IO handlers are currently passed a physical address.
2222 It would be nice to pass an offset from the base address
2223 of that region. This would avoid having to special case RAM,
2224 and avoid full address decoding in every device.
2225 We can't use the high bits of pd for this because
2226 IO_MEM_ROMD uses these as a ram address. */
2227 iotlb = section - phys_sections;
2228 iotlb += section_addr(section, paddr);
2229 }
2230
2231 code_address = address;
2232 /* Make accesses to pages with watchpoints go via the
2233 watchpoint trap routines. */
2234 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2235 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2236 /* Avoid trapping reads of pages with a write breakpoint. */
2237 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2238 iotlb = phys_section_watch + paddr;
2239 address |= TLB_MMIO;
2240 break;
2241 }
2242 }
2243 }
2244
2245 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2246 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2247 te = &env->tlb_table[mmu_idx][index];
2248 te->addend = addend - vaddr;
2249 if (prot & PAGE_READ) {
2250 te->addr_read = address;
2251 } else {
2252 te->addr_read = -1;
2253 }
2254
2255 if (prot & PAGE_EXEC) {
2256 te->addr_code = code_address;
2257 } else {
2258 te->addr_code = -1;
2259 }
2260 if (prot & PAGE_WRITE) {
2261 if ((memory_region_is_ram(section->mr) && section->readonly)
2262 || is_romd(section)) {
2263 /* Write access calls the I/O callback. */
2264 te->addr_write = address | TLB_MMIO;
2265 } else if (memory_region_is_ram(section->mr)
2266 && !cpu_physical_memory_is_dirty(
2267 section->mr->ram_addr
2268 + section_addr(section, paddr))) {
2269 te->addr_write = address | TLB_NOTDIRTY;
2270 } else {
2271 te->addr_write = address;
2272 }
2273 } else {
2274 te->addr_write = -1;
2275 }
2276 }
2277
2278 #else
2279
2280 void tlb_flush(CPUState *env, int flush_global)
2281 {
2282 }
2283
2284 void tlb_flush_page(CPUState *env, target_ulong addr)
2285 {
2286 }
2287
2288 /*
2289 * Walks guest process memory "regions" one by one
2290 * and calls callback function 'fn' for each region.
2291 */
2292
2293 struct walk_memory_regions_data
2294 {
2295 walk_memory_regions_fn fn;
2296 void *priv;
2297 unsigned long start;
2298 int prot;
2299 };
2300
2301 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2302 abi_ulong end, int new_prot)
2303 {
2304 if (data->start != -1ul) {
2305 int rc = data->fn(data->priv, data->start, end, data->prot);
2306 if (rc != 0) {
2307 return rc;
2308 }
2309 }
2310
2311 data->start = (new_prot ? end : -1ul);
2312 data->prot = new_prot;
2313
2314 return 0;
2315 }
2316
2317 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2318 abi_ulong base, int level, void **lp)
2319 {
2320 abi_ulong pa;
2321 int i, rc;
2322
2323 if (*lp == NULL) {
2324 return walk_memory_regions_end(data, base, 0);
2325 }
2326
2327 if (level == 0) {
2328 PageDesc *pd = *lp;
2329 for (i = 0; i < L2_SIZE; ++i) {
2330 int prot = pd[i].flags;
2331
2332 pa = base | (i << TARGET_PAGE_BITS);
2333 if (prot != data->prot) {
2334 rc = walk_memory_regions_end(data, pa, prot);
2335 if (rc != 0) {
2336 return rc;
2337 }
2338 }
2339 }
2340 } else {
2341 void **pp = *lp;
2342 for (i = 0; i < L2_SIZE; ++i) {
2343 pa = base | ((abi_ulong)i <<
2344 (TARGET_PAGE_BITS + L2_BITS * level));
2345 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2346 if (rc != 0) {
2347 return rc;
2348 }
2349 }
2350 }
2351
2352 return 0;
2353 }
2354
2355 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2356 {
2357 struct walk_memory_regions_data data;
2358 unsigned long i;
2359
2360 data.fn = fn;
2361 data.priv = priv;
2362 data.start = -1ul;
2363 data.prot = 0;
2364
2365 for (i = 0; i < V_L1_SIZE; i++) {
2366 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2367 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2368 if (rc != 0) {
2369 return rc;
2370 }
2371 }
2372
2373 return walk_memory_regions_end(&data, 0, 0);
2374 }
2375
2376 static int dump_region(void *priv, abi_ulong start,
2377 abi_ulong end, unsigned long prot)
2378 {
2379 FILE *f = (FILE *)priv;
2380
2381 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2382 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2383 start, end, end - start,
2384 ((prot & PAGE_READ) ? 'r' : '-'),
2385 ((prot & PAGE_WRITE) ? 'w' : '-'),
2386 ((prot & PAGE_EXEC) ? 'x' : '-'));
2387
2388 return (0);
2389 }
2390
2391 /* dump memory mappings */
2392 void page_dump(FILE *f)
2393 {
2394 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2395 "start", "end", "size", "prot");
2396 walk_memory_regions(f, dump_region);
2397 }
2398
2399 int page_get_flags(target_ulong address)
2400 {
2401 PageDesc *p;
2402
2403 p = page_find(address >> TARGET_PAGE_BITS);
2404 if (!p)
2405 return 0;
2406 return p->flags;
2407 }
2408
2409 /* Modify the flags of a page and invalidate the code if necessary.
2410 The flag PAGE_WRITE_ORG is positioned automatically depending
2411 on PAGE_WRITE. The mmap_lock should already be held. */
2412 void page_set_flags(target_ulong start, target_ulong end, int flags)
2413 {
2414 target_ulong addr, len;
2415
2416 /* This function should never be called with addresses outside the
2417 guest address space. If this assert fires, it probably indicates
2418 a missing call to h2g_valid. */
2419 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2420 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2421 #endif
2422 assert(start < end);
2423
2424 start = start & TARGET_PAGE_MASK;
2425 end = TARGET_PAGE_ALIGN(end);
2426
2427 if (flags & PAGE_WRITE) {
2428 flags |= PAGE_WRITE_ORG;
2429 }
2430
2431 for (addr = start, len = end - start;
2432 len != 0;
2433 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2434 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2435
2436 /* If the write protection bit is set, then we invalidate
2437 the code inside. */
2438 if (!(p->flags & PAGE_WRITE) &&
2439 (flags & PAGE_WRITE) &&
2440 p->first_tb) {
2441 tb_invalidate_phys_page(addr, 0, NULL);
2442 }
2443 p->flags = flags;
2444 }
2445 }
2446
2447 int page_check_range(target_ulong start, target_ulong len, int flags)
2448 {
2449 PageDesc *p;
2450 target_ulong end;
2451 target_ulong addr;
2452
2453 /* This function should never be called with addresses outside the
2454 guest address space. If this assert fires, it probably indicates
2455 a missing call to h2g_valid. */
2456 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2457 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2458 #endif
2459
2460 if (len == 0) {
2461 return 0;
2462 }
2463 if (start + len - 1 < start) {
2464 /* We've wrapped around. */
2465 return -1;
2466 }
2467
2468 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2469 start = start & TARGET_PAGE_MASK;
2470
2471 for (addr = start, len = end - start;
2472 len != 0;
2473 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2474 p = page_find(addr >> TARGET_PAGE_BITS);
2475 if( !p )
2476 return -1;
2477 if( !(p->flags & PAGE_VALID) )
2478 return -1;
2479
2480 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2481 return -1;
2482 if (flags & PAGE_WRITE) {
2483 if (!(p->flags & PAGE_WRITE_ORG))
2484 return -1;
2485 /* unprotect the page if it was put read-only because it
2486 contains translated code */
2487 if (!(p->flags & PAGE_WRITE)) {
2488 if (!page_unprotect(addr, 0, NULL))
2489 return -1;
2490 }
2491 return 0;
2492 }
2493 }
2494 return 0;
2495 }
2496
2497 /* called from signal handler: invalidate the code and unprotect the
2498 page. Return TRUE if the fault was successfully handled. */
2499 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2500 {
2501 unsigned int prot;
2502 PageDesc *p;
2503 target_ulong host_start, host_end, addr;
2504
2505 /* Technically this isn't safe inside a signal handler. However we
2506 know this only ever happens in a synchronous SEGV handler, so in
2507 practice it seems to be ok. */
2508 mmap_lock();
2509
2510 p = page_find(address >> TARGET_PAGE_BITS);
2511 if (!p) {
2512 mmap_unlock();
2513 return 0;
2514 }
2515
2516 /* if the page was really writable, then we change its
2517 protection back to writable */
2518 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2519 host_start = address & qemu_host_page_mask;
2520 host_end = host_start + qemu_host_page_size;
2521
2522 prot = 0;
2523 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2524 p = page_find(addr >> TARGET_PAGE_BITS);
2525 p->flags |= PAGE_WRITE;
2526 prot |= p->flags;
2527
2528 /* and since the content will be modified, we must invalidate
2529 the corresponding translated code. */
2530 tb_invalidate_phys_page(addr, pc, puc);
2531 #ifdef DEBUG_TB_CHECK
2532 tb_invalidate_check(addr);
2533 #endif
2534 }
2535 mprotect((void *)g2h(host_start), qemu_host_page_size,
2536 prot & PAGE_BITS);
2537
2538 mmap_unlock();
2539 return 1;
2540 }
2541 mmap_unlock();
2542 return 0;
2543 }
2544
2545 static inline void tlb_set_dirty(CPUState *env,
2546 unsigned long addr, target_ulong vaddr)
2547 {
2548 }
2549 #endif /* defined(CONFIG_USER_ONLY) */
2550
2551 #if !defined(CONFIG_USER_ONLY)
2552
2553 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2554 typedef struct subpage_t {
2555 MemoryRegion iomem;
2556 target_phys_addr_t base;
2557 uint16_t sub_section[TARGET_PAGE_SIZE];
2558 } subpage_t;
2559
2560 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2561 uint16_t section);
2562 static subpage_t *subpage_init(target_phys_addr_t base);
2563 static void destroy_page_desc(uint16_t section_index)
2564 {
2565 MemoryRegionSection *section = &phys_sections[section_index];
2566 MemoryRegion *mr = section->mr;
2567
2568 if (mr->subpage) {
2569 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2570 memory_region_destroy(&subpage->iomem);
2571 g_free(subpage);
2572 }
2573 }
2574
2575 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
2576 {
2577 unsigned i;
2578 PhysPageEntry *p;
2579
2580 if (lp->ptr == PHYS_MAP_NODE_NIL) {
2581 return;
2582 }
2583
2584 p = phys_map_nodes[lp->ptr];
2585 for (i = 0; i < L2_SIZE; ++i) {
2586 if (!p[i].is_leaf) {
2587 destroy_l2_mapping(&p[i], level - 1);
2588 } else {
2589 destroy_page_desc(p[i].ptr);
2590 }
2591 }
2592 lp->is_leaf = 0;
2593 lp->ptr = PHYS_MAP_NODE_NIL;
2594 }
2595
2596 static void destroy_all_mappings(void)
2597 {
2598 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
2599 phys_map_nodes_reset();
2600 }
2601
2602 static uint16_t phys_section_add(MemoryRegionSection *section)
2603 {
2604 if (phys_sections_nb == phys_sections_nb_alloc) {
2605 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2606 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2607 phys_sections_nb_alloc);
2608 }
2609 phys_sections[phys_sections_nb] = *section;
2610 return phys_sections_nb++;
2611 }
2612
2613 static void phys_sections_clear(void)
2614 {
2615 phys_sections_nb = 0;
2616 }
2617
2618 /* register physical memory.
2619 For RAM, 'size' must be a multiple of the target page size.
2620 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2621 io memory page. The address used when calling the IO function is
2622 the offset from the start of the region, plus region_offset. Both
2623 start_addr and region_offset are rounded down to a page boundary
2624 before calculating this offset. This should not be a problem unless
2625 the low bits of start_addr and region_offset differ. */
2626 static void register_subpage(MemoryRegionSection *section)
2627 {
2628 subpage_t *subpage;
2629 target_phys_addr_t base = section->offset_within_address_space
2630 & TARGET_PAGE_MASK;
2631 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
2632 MemoryRegionSection subsection = {
2633 .offset_within_address_space = base,
2634 .size = TARGET_PAGE_SIZE,
2635 };
2636 target_phys_addr_t start, end;
2637
2638 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
2639
2640 if (!(existing->mr->subpage)) {
2641 subpage = subpage_init(base);
2642 subsection.mr = &subpage->iomem;
2643 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2644 phys_section_add(&subsection));
2645 } else {
2646 subpage = container_of(existing->mr, subpage_t, iomem);
2647 }
2648 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
2649 end = start + section->size;
2650 subpage_register(subpage, start, end, phys_section_add(section));
2651 }
2652
2653
2654 static void register_multipage(MemoryRegionSection *section)
2655 {
2656 target_phys_addr_t start_addr = section->offset_within_address_space;
2657 ram_addr_t size = section->size;
2658 target_phys_addr_t addr;
2659 uint16_t section_index = phys_section_add(section);
2660
2661 assert(size);
2662
2663 addr = start_addr;
2664 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2665 section_index);
2666 }
2667
2668 void cpu_register_physical_memory_log(MemoryRegionSection *section,
2669 bool readonly)
2670 {
2671 MemoryRegionSection now = *section, remain = *section;
2672
2673 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2674 || (now.size < TARGET_PAGE_SIZE)) {
2675 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2676 - now.offset_within_address_space,
2677 now.size);
2678 register_subpage(&now);
2679 remain.size -= now.size;
2680 remain.offset_within_address_space += now.size;
2681 remain.offset_within_region += now.size;
2682 }
2683 now = remain;
2684 now.size &= TARGET_PAGE_MASK;
2685 if (now.size) {
2686 register_multipage(&now);
2687 remain.size -= now.size;
2688 remain.offset_within_address_space += now.size;
2689 remain.offset_within_region += now.size;
2690 }
2691 now = remain;
2692 if (now.size) {
2693 register_subpage(&now);
2694 }
2695 }
2696
2697
2698 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2699 {
2700 if (kvm_enabled())
2701 kvm_coalesce_mmio_region(addr, size);
2702 }
2703
2704 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2705 {
2706 if (kvm_enabled())
2707 kvm_uncoalesce_mmio_region(addr, size);
2708 }
2709
2710 void qemu_flush_coalesced_mmio_buffer(void)
2711 {
2712 if (kvm_enabled())
2713 kvm_flush_coalesced_mmio_buffer();
2714 }
2715
2716 #if defined(__linux__) && !defined(TARGET_S390X)
2717
2718 #include <sys/vfs.h>
2719
2720 #define HUGETLBFS_MAGIC 0x958458f6
2721
2722 static long gethugepagesize(const char *path)
2723 {
2724 struct statfs fs;
2725 int ret;
2726
2727 do {
2728 ret = statfs(path, &fs);
2729 } while (ret != 0 && errno == EINTR);
2730
2731 if (ret != 0) {
2732 perror(path);
2733 return 0;
2734 }
2735
2736 if (fs.f_type != HUGETLBFS_MAGIC)
2737 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2738
2739 return fs.f_bsize;
2740 }
2741
2742 static void *file_ram_alloc(RAMBlock *block,
2743 ram_addr_t memory,
2744 const char *path)
2745 {
2746 char *filename;
2747 void *area;
2748 int fd;
2749 #ifdef MAP_POPULATE
2750 int flags;
2751 #endif
2752 unsigned long hpagesize;
2753
2754 hpagesize = gethugepagesize(path);
2755 if (!hpagesize) {
2756 return NULL;
2757 }
2758
2759 if (memory < hpagesize) {
2760 return NULL;
2761 }
2762
2763 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2764 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2765 return NULL;
2766 }
2767
2768 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2769 return NULL;
2770 }
2771
2772 fd = mkstemp(filename);
2773 if (fd < 0) {
2774 perror("unable to create backing store for hugepages");
2775 free(filename);
2776 return NULL;
2777 }
2778 unlink(filename);
2779 free(filename);
2780
2781 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2782
2783 /*
2784 * ftruncate is not supported by hugetlbfs in older
2785 * hosts, so don't bother bailing out on errors.
2786 * If anything goes wrong with it under other filesystems,
2787 * mmap will fail.
2788 */
2789 if (ftruncate(fd, memory))
2790 perror("ftruncate");
2791
2792 #ifdef MAP_POPULATE
2793 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2794 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2795 * to sidestep this quirk.
2796 */
2797 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2798 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2799 #else
2800 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2801 #endif
2802 if (area == MAP_FAILED) {
2803 perror("file_ram_alloc: can't mmap RAM pages");
2804 close(fd);
2805 return (NULL);
2806 }
2807 block->fd = fd;
2808 return area;
2809 }
2810 #endif
2811
2812 static ram_addr_t find_ram_offset(ram_addr_t size)
2813 {
2814 RAMBlock *block, *next_block;
2815 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
2816
2817 if (QLIST_EMPTY(&ram_list.blocks))
2818 return 0;
2819
2820 QLIST_FOREACH(block, &ram_list.blocks, next) {
2821 ram_addr_t end, next = RAM_ADDR_MAX;
2822
2823 end = block->offset + block->length;
2824
2825 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2826 if (next_block->offset >= end) {
2827 next = MIN(next, next_block->offset);
2828 }
2829 }
2830 if (next - end >= size && next - end < mingap) {
2831 offset = end;
2832 mingap = next - end;
2833 }
2834 }
2835
2836 if (offset == RAM_ADDR_MAX) {
2837 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2838 (uint64_t)size);
2839 abort();
2840 }
2841
2842 return offset;
2843 }
2844
2845 static ram_addr_t last_ram_offset(void)
2846 {
2847 RAMBlock *block;
2848 ram_addr_t last = 0;
2849
2850 QLIST_FOREACH(block, &ram_list.blocks, next)
2851 last = MAX(last, block->offset + block->length);
2852
2853 return last;
2854 }
2855
2856 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
2857 {
2858 RAMBlock *new_block, *block;
2859
2860 new_block = NULL;
2861 QLIST_FOREACH(block, &ram_list.blocks, next) {
2862 if (block->offset == addr) {
2863 new_block = block;
2864 break;
2865 }
2866 }
2867 assert(new_block);
2868 assert(!new_block->idstr[0]);
2869
2870 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2871 char *id = dev->parent_bus->info->get_dev_path(dev);
2872 if (id) {
2873 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2874 g_free(id);
2875 }
2876 }
2877 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2878
2879 QLIST_FOREACH(block, &ram_list.blocks, next) {
2880 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
2881 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2882 new_block->idstr);
2883 abort();
2884 }
2885 }
2886 }
2887
2888 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2889 MemoryRegion *mr)
2890 {
2891 RAMBlock *new_block;
2892
2893 size = TARGET_PAGE_ALIGN(size);
2894 new_block = g_malloc0(sizeof(*new_block));
2895
2896 new_block->mr = mr;
2897 new_block->offset = find_ram_offset(size);
2898 if (host) {
2899 new_block->host = host;
2900 new_block->flags |= RAM_PREALLOC_MASK;
2901 } else {
2902 if (mem_path) {
2903 #if defined (__linux__) && !defined(TARGET_S390X)
2904 new_block->host = file_ram_alloc(new_block, size, mem_path);
2905 if (!new_block->host) {
2906 new_block->host = qemu_vmalloc(size);
2907 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2908 }
2909 #else
2910 fprintf(stderr, "-mem-path option unsupported\n");
2911 exit(1);
2912 #endif
2913 } else {
2914 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2915 /* S390 KVM requires the topmost vma of the RAM to be smaller than
2916 an system defined value, which is at least 256GB. Larger systems
2917 have larger values. We put the guest between the end of data
2918 segment (system break) and this value. We use 32GB as a base to
2919 have enough room for the system break to grow. */
2920 new_block->host = mmap((void*)0x800000000, size,
2921 PROT_EXEC|PROT_READ|PROT_WRITE,
2922 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
2923 if (new_block->host == MAP_FAILED) {
2924 fprintf(stderr, "Allocating RAM failed\n");
2925 abort();
2926 }
2927 #else
2928 if (xen_enabled()) {
2929 xen_ram_alloc(new_block->offset, size, mr);
2930 } else {
2931 new_block->host = qemu_vmalloc(size);
2932 }
2933 #endif
2934 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2935 }
2936 }
2937 new_block->length = size;
2938
2939 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2940
2941 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
2942 last_ram_offset() >> TARGET_PAGE_BITS);
2943 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2944 0xff, size >> TARGET_PAGE_BITS);
2945
2946 if (kvm_enabled())
2947 kvm_setup_guest_memory(new_block->host, size);
2948
2949 return new_block->offset;
2950 }
2951
2952 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
2953 {
2954 return qemu_ram_alloc_from_ptr(size, NULL, mr);
2955 }
2956
2957 void qemu_ram_free_from_ptr(ram_addr_t addr)
2958 {
2959 RAMBlock *block;
2960
2961 QLIST_FOREACH(block, &ram_list.blocks, next) {
2962 if (addr == block->offset) {
2963 QLIST_REMOVE(block, next);
2964 g_free(block);
2965 return;
2966 }
2967 }
2968 }
2969
2970 void qemu_ram_free(ram_addr_t addr)
2971 {
2972 RAMBlock *block;
2973
2974 QLIST_FOREACH(block, &ram_list.blocks, next) {
2975 if (addr == block->offset) {
2976 QLIST_REMOVE(block, next);
2977 if (block->flags & RAM_PREALLOC_MASK) {
2978 ;
2979 } else if (mem_path) {
2980 #if defined (__linux__) && !defined(TARGET_S390X)
2981 if (block->fd) {
2982 munmap(block->host, block->length);
2983 close(block->fd);
2984 } else {
2985 qemu_vfree(block->host);
2986 }
2987 #else
2988 abort();
2989 #endif
2990 } else {
2991 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2992 munmap(block->host, block->length);
2993 #else
2994 if (xen_enabled()) {
2995 xen_invalidate_map_cache_entry(block->host);
2996 } else {
2997 qemu_vfree(block->host);
2998 }
2999 #endif
3000 }
3001 g_free(block);
3002 return;
3003 }
3004 }
3005
3006 }
3007
3008 #ifndef _WIN32
3009 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
3010 {
3011 RAMBlock *block;
3012 ram_addr_t offset;
3013 int flags;
3014 void *area, *vaddr;
3015
3016 QLIST_FOREACH(block, &ram_list.blocks, next) {
3017 offset = addr - block->offset;
3018 if (offset < block->length) {
3019 vaddr = block->host + offset;
3020 if (block->flags & RAM_PREALLOC_MASK) {
3021 ;
3022 } else {
3023 flags = MAP_FIXED;
3024 munmap(vaddr, length);
3025 if (mem_path) {
3026 #if defined(__linux__) && !defined(TARGET_S390X)
3027 if (block->fd) {
3028 #ifdef MAP_POPULATE
3029 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
3030 MAP_PRIVATE;
3031 #else
3032 flags |= MAP_PRIVATE;
3033 #endif
3034 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3035 flags, block->fd, offset);
3036 } else {
3037 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3038 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3039 flags, -1, 0);
3040 }
3041 #else
3042 abort();
3043 #endif
3044 } else {
3045 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
3046 flags |= MAP_SHARED | MAP_ANONYMOUS;
3047 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
3048 flags, -1, 0);
3049 #else
3050 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
3051 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
3052 flags, -1, 0);
3053 #endif
3054 }
3055 if (area != vaddr) {
3056 fprintf(stderr, "Could not remap addr: "
3057 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
3058 length, addr);
3059 exit(1);
3060 }
3061 qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
3062 }
3063 return;
3064 }
3065 }
3066 }
3067 #endif /* !_WIN32 */
3068
3069 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3070 With the exception of the softmmu code in this file, this should
3071 only be used for local memory (e.g. video ram) that the device owns,
3072 and knows it isn't going to access beyond the end of the block.
3073
3074 It should not be used for general purpose DMA.
3075 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
3076 */
3077 void *qemu_get_ram_ptr(ram_addr_t addr)
3078 {
3079 RAMBlock *block;
3080
3081 QLIST_FOREACH(block, &ram_list.blocks, next) {
3082 if (addr - block->offset < block->length) {
3083 /* Move this entry to to start of the list. */
3084 if (block != QLIST_FIRST(&ram_list.blocks)) {
3085 QLIST_REMOVE(block, next);
3086 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
3087 }
3088 if (xen_enabled()) {
3089 /* We need to check if the requested address is in the RAM
3090 * because we don't want to map the entire memory in QEMU.
3091 * In that case just map until the end of the page.
3092 */
3093 if (block->offset == 0) {
3094 return xen_map_cache(addr, 0, 0);
3095 } else if (block->host == NULL) {
3096 block->host =
3097 xen_map_cache(block->offset, block->length, 1);
3098 }
3099 }
3100 return block->host + (addr - block->offset);
3101 }
3102 }
3103
3104 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3105 abort();
3106
3107 return NULL;
3108 }
3109
3110 /* Return a host pointer to ram allocated with qemu_ram_alloc.
3111 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
3112 */
3113 void *qemu_safe_ram_ptr(ram_addr_t addr)
3114 {
3115 RAMBlock *block;
3116
3117 QLIST_FOREACH(block, &ram_list.blocks, next) {
3118 if (addr - block->offset < block->length) {
3119 if (xen_enabled()) {
3120 /* We need to check if the requested address is in the RAM
3121 * because we don't want to map the entire memory in QEMU.
3122 * In that case just map until the end of the page.
3123 */
3124 if (block->offset == 0) {
3125 return xen_map_cache(addr, 0, 0);
3126 } else if (block->host == NULL) {
3127 block->host =
3128 xen_map_cache(block->offset, block->length, 1);
3129 }
3130 }
3131 return block->host + (addr - block->offset);
3132 }
3133 }
3134
3135 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3136 abort();
3137
3138 return NULL;
3139 }
3140
3141 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
3142 * but takes a size argument */
3143 void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
3144 {
3145 if (*size == 0) {
3146 return NULL;
3147 }
3148 if (xen_enabled()) {
3149 return xen_map_cache(addr, *size, 1);
3150 } else {
3151 RAMBlock *block;
3152
3153 QLIST_FOREACH(block, &ram_list.blocks, next) {
3154 if (addr - block->offset < block->length) {
3155 if (addr - block->offset + *size > block->length)
3156 *size = block->length - addr + block->offset;
3157 return block->host + (addr - block->offset);
3158 }
3159 }
3160
3161 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
3162 abort();
3163 }
3164 }
3165
3166 void qemu_put_ram_ptr(void *addr)
3167 {
3168 trace_qemu_put_ram_ptr(addr);
3169 }
3170
3171 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
3172 {
3173 RAMBlock *block;
3174 uint8_t *host = ptr;
3175
3176 if (xen_enabled()) {
3177 *ram_addr = xen_ram_addr_from_mapcache(ptr);
3178 return 0;
3179 }
3180
3181 QLIST_FOREACH(block, &ram_list.blocks, next) {
3182 /* This case append when the block is not mapped. */
3183 if (block->host == NULL) {
3184 continue;
3185 }
3186 if (host - block->host < block->length) {
3187 *ram_addr = block->offset + (host - block->host);
3188 return 0;
3189 }
3190 }
3191
3192 return -1;
3193 }
3194
3195 /* Some of the softmmu routines need to translate from a host pointer
3196 (typically a TLB entry) back to a ram offset. */
3197 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
3198 {
3199 ram_addr_t ram_addr;
3200
3201 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
3202 fprintf(stderr, "Bad ram pointer %p\n", ptr);
3203 abort();
3204 }
3205 return ram_addr;
3206 }
3207
3208 static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
3209 unsigned size)
3210 {
3211 #ifdef DEBUG_UNASSIGNED
3212 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3213 #endif
3214 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3215 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
3216 #endif
3217 return 0;
3218 }
3219
3220 static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
3221 uint64_t val, unsigned size)
3222 {
3223 #ifdef DEBUG_UNASSIGNED
3224 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
3225 #endif
3226 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3227 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
3228 #endif
3229 }
3230
3231 static const MemoryRegionOps unassigned_mem_ops = {
3232 .read = unassigned_mem_read,
3233 .write = unassigned_mem_write,
3234 .endianness = DEVICE_NATIVE_ENDIAN,
3235 };
3236
3237 static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
3238 unsigned size)
3239 {
3240 abort();
3241 }
3242
3243 static void error_mem_write(void *opaque, target_phys_addr_t addr,
3244 uint64_t value, unsigned size)
3245 {
3246 abort();
3247 }
3248
3249 static const MemoryRegionOps error_mem_ops = {
3250 .read = error_mem_read,
3251 .write = error_mem_write,
3252 .endianness = DEVICE_NATIVE_ENDIAN,
3253 };
3254
3255 static const MemoryRegionOps rom_mem_ops = {
3256 .read = error_mem_read,
3257 .write = unassigned_mem_write,
3258 .endianness = DEVICE_NATIVE_ENDIAN,
3259 };
3260
3261 static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
3262 uint64_t val, unsigned size)
3263 {
3264 int dirty_flags;
3265 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3266 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3267 #if !defined(CONFIG_USER_ONLY)
3268 tb_invalidate_phys_page_fast(ram_addr, size);
3269 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3270 #endif
3271 }
3272 switch (size) {
3273 case 1:
3274 stb_p(qemu_get_ram_ptr(ram_addr), val);
3275 break;
3276 case 2:
3277 stw_p(qemu_get_ram_ptr(ram_addr), val);
3278 break;
3279 case 4:
3280 stl_p(qemu_get_ram_ptr(ram_addr), val);
3281 break;
3282 default:
3283 abort();
3284 }
3285 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3286 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3287 /* we remove the notdirty callback only if the code has been
3288 flushed */
3289 if (dirty_flags == 0xff)
3290 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3291 }
3292
3293 static const MemoryRegionOps notdirty_mem_ops = {
3294 .read = error_mem_read,
3295 .write = notdirty_mem_write,
3296 .endianness = DEVICE_NATIVE_ENDIAN,
3297 };
3298
3299 /* Generate a debug exception if a watchpoint has been hit. */
3300 static void check_watchpoint(int offset, int len_mask, int flags)
3301 {
3302 CPUState *env = cpu_single_env;
3303 target_ulong pc, cs_base;
3304 TranslationBlock *tb;
3305 target_ulong vaddr;
3306 CPUWatchpoint *wp;
3307 int cpu_flags;
3308
3309 if (env->watchpoint_hit) {
3310 /* We re-entered the check after replacing the TB. Now raise
3311 * the debug interrupt so that is will trigger after the
3312 * current instruction. */
3313 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3314 return;
3315 }
3316 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3317 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3318 if ((vaddr == (wp->vaddr & len_mask) ||
3319 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3320 wp->flags |= BP_WATCHPOINT_HIT;
3321 if (!env->watchpoint_hit) {
3322 env->watchpoint_hit = wp;
3323 tb = tb_find_pc(env->mem_io_pc);
3324 if (!tb) {
3325 cpu_abort(env, "check_watchpoint: could not find TB for "
3326 "pc=%p", (void *)env->mem_io_pc);
3327 }
3328 cpu_restore_state(tb, env, env->mem_io_pc);
3329 tb_phys_invalidate(tb, -1);
3330 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3331 env->exception_index = EXCP_DEBUG;
3332 cpu_loop_exit(env);
3333 } else {
3334 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3335 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3336 cpu_resume_from_signal(env, NULL);
3337 }
3338 }
3339 } else {
3340 wp->flags &= ~BP_WATCHPOINT_HIT;
3341 }
3342 }
3343 }
3344
3345 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3346 so these check for a hit then pass through to the normal out-of-line
3347 phys routines. */
3348 static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
3349 unsigned size)
3350 {
3351 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
3352 switch (size) {
3353 case 1: return ldub_phys(addr);
3354 case 2: return lduw_phys(addr);
3355 case 4: return ldl_phys(addr);
3356 default: abort();
3357 }
3358 }
3359
3360 static void watch_mem_write(void *opaque, target_phys_addr_t addr,
3361 uint64_t val, unsigned size)
3362 {
3363 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
3364 switch (size) {
3365 case 1:
3366 stb_phys(addr, val);
3367 break;
3368 case 2:
3369 stw_phys(addr, val);
3370 break;
3371 case 4:
3372 stl_phys(addr, val);
3373 break;
3374 default: abort();
3375 }
3376 }
3377
3378 static const MemoryRegionOps watch_mem_ops = {
3379 .read = watch_mem_read,
3380 .write = watch_mem_write,
3381 .endianness = DEVICE_NATIVE_ENDIAN,
3382 };
3383
3384 static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3385 unsigned len)
3386 {
3387 subpage_t *mmio = opaque;
3388 unsigned int idx = SUBPAGE_IDX(addr);
3389 MemoryRegionSection *section;
3390 #if defined(DEBUG_SUBPAGE)
3391 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3392 mmio, len, addr, idx);
3393 #endif
3394
3395 section = &phys_sections[mmio->sub_section[idx]];
3396 addr += mmio->base;
3397 addr -= section->offset_within_address_space;
3398 addr += section->offset_within_region;
3399 return io_mem_read(section->mr, addr, len);
3400 }
3401
3402 static void subpage_write(void *opaque, target_phys_addr_t addr,
3403 uint64_t value, unsigned len)
3404 {
3405 subpage_t *mmio = opaque;
3406 unsigned int idx = SUBPAGE_IDX(addr);
3407 MemoryRegionSection *section;
3408 #if defined(DEBUG_SUBPAGE)
3409 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3410 " idx %d value %"PRIx64"\n",
3411 __func__, mmio, len, addr, idx, value);
3412 #endif
3413
3414 section = &phys_sections[mmio->sub_section[idx]];
3415 addr += mmio->base;
3416 addr -= section->offset_within_address_space;
3417 addr += section->offset_within_region;
3418 io_mem_write(section->mr, addr, value, len);
3419 }
3420
3421 static const MemoryRegionOps subpage_ops = {
3422 .read = subpage_read,
3423 .write = subpage_write,
3424 .endianness = DEVICE_NATIVE_ENDIAN,
3425 };
3426
3427 static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3428 unsigned size)
3429 {
3430 ram_addr_t raddr = addr;
3431 void *ptr = qemu_get_ram_ptr(raddr);
3432 switch (size) {
3433 case 1: return ldub_p(ptr);
3434 case 2: return lduw_p(ptr);
3435 case 4: return ldl_p(ptr);
3436 default: abort();
3437 }
3438 }
3439
3440 static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3441 uint64_t value, unsigned size)
3442 {
3443 ram_addr_t raddr = addr;
3444 void *ptr = qemu_get_ram_ptr(raddr);
3445 switch (size) {
3446 case 1: return stb_p(ptr, value);
3447 case 2: return stw_p(ptr, value);
3448 case 4: return stl_p(ptr, value);
3449 default: abort();
3450 }
3451 }
3452
3453 static const MemoryRegionOps subpage_ram_ops = {
3454 .read = subpage_ram_read,
3455 .write = subpage_ram_write,
3456 .endianness = DEVICE_NATIVE_ENDIAN,
3457 };
3458
3459 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3460 uint16_t section)
3461 {
3462 int idx, eidx;
3463
3464 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3465 return -1;
3466 idx = SUBPAGE_IDX(start);
3467 eidx = SUBPAGE_IDX(end);
3468 #if defined(DEBUG_SUBPAGE)
3469 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3470 mmio, start, end, idx, eidx, memory);
3471 #endif
3472 if (memory_region_is_ram(phys_sections[section].mr)) {
3473 MemoryRegionSection new_section = phys_sections[section];
3474 new_section.mr = &io_mem_subpage_ram;
3475 section = phys_section_add(&new_section);
3476 }
3477 for (; idx <= eidx; idx++) {
3478 mmio->sub_section[idx] = section;
3479 }
3480
3481 return 0;
3482 }
3483
3484 static subpage_t *subpage_init(target_phys_addr_t base)
3485 {
3486 subpage_t *mmio;
3487
3488 mmio = g_malloc0(sizeof(subpage_t));
3489
3490 mmio->base = base;
3491 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3492 "subpage", TARGET_PAGE_SIZE);
3493 mmio->iomem.subpage = true;
3494 #if defined(DEBUG_SUBPAGE)
3495 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3496 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3497 #endif
3498 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
3499
3500 return mmio;
3501 }
3502
3503 static uint16_t dummy_section(MemoryRegion *mr)
3504 {
3505 MemoryRegionSection section = {
3506 .mr = mr,
3507 .offset_within_address_space = 0,
3508 .offset_within_region = 0,
3509 .size = UINT64_MAX,
3510 };
3511
3512 return phys_section_add(&section);
3513 }
3514
3515 MemoryRegion *iotlb_to_region(target_phys_addr_t index)
3516 {
3517 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
3518 }
3519
3520 static void io_mem_init(void)
3521 {
3522 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
3523 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3524 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3525 "unassigned", UINT64_MAX);
3526 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3527 "notdirty", UINT64_MAX);
3528 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3529 "subpage-ram", UINT64_MAX);
3530 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3531 "watch", UINT64_MAX);
3532 }
3533
3534 static void core_begin(MemoryListener *listener)
3535 {
3536 destroy_all_mappings();
3537 phys_sections_clear();
3538 phys_map.ptr = PHYS_MAP_NODE_NIL;
3539 phys_section_unassigned = dummy_section(&io_mem_unassigned);
3540 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3541 phys_section_rom = dummy_section(&io_mem_rom);
3542 phys_section_watch = dummy_section(&io_mem_watch);
3543 }
3544
3545 static void core_commit(MemoryListener *listener)
3546 {
3547 CPUState *env;
3548
3549 /* since each CPU stores ram addresses in its TLB cache, we must
3550 reset the modified entries */
3551 /* XXX: slow ! */
3552 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3553 tlb_flush(env, 1);
3554 }
3555 }
3556
3557 static void core_region_add(MemoryListener *listener,
3558 MemoryRegionSection *section)
3559 {
3560 cpu_register_physical_memory_log(section, section->readonly);
3561 }
3562
3563 static void core_region_del(MemoryListener *listener,
3564 MemoryRegionSection *section)
3565 {
3566 }
3567
3568 static void core_region_nop(MemoryListener *listener,
3569 MemoryRegionSection *section)
3570 {
3571 cpu_register_physical_memory_log(section, section->readonly);
3572 }
3573
3574 static void core_log_start(MemoryListener *listener,
3575 MemoryRegionSection *section)
3576 {
3577 }
3578
3579 static void core_log_stop(MemoryListener *listener,
3580 MemoryRegionSection *section)
3581 {
3582 }
3583
3584 static void core_log_sync(MemoryListener *listener,
3585 MemoryRegionSection *section)
3586 {
3587 }
3588
3589 static void core_log_global_start(MemoryListener *listener)
3590 {
3591 cpu_physical_memory_set_dirty_tracking(1);
3592 }
3593
3594 static void core_log_global_stop(MemoryListener *listener)
3595 {
3596 cpu_physical_memory_set_dirty_tracking(0);
3597 }
3598
3599 static void core_eventfd_add(MemoryListener *listener,
3600 MemoryRegionSection *section,
3601 bool match_data, uint64_t data, int fd)
3602 {
3603 }
3604
3605 static void core_eventfd_del(MemoryListener *listener,
3606 MemoryRegionSection *section,
3607 bool match_data, uint64_t data, int fd)
3608 {
3609 }
3610
3611 static void io_begin(MemoryListener *listener)
3612 {
3613 }
3614
3615 static void io_commit(MemoryListener *listener)
3616 {
3617 }
3618
3619 static void io_region_add(MemoryListener *listener,
3620 MemoryRegionSection *section)
3621 {
3622 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3623
3624 mrio->mr = section->mr;
3625 mrio->offset = section->offset_within_region;
3626 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
3627 section->offset_within_address_space, section->size);
3628 ioport_register(&mrio->iorange);
3629 }
3630
3631 static void io_region_del(MemoryListener *listener,
3632 MemoryRegionSection *section)
3633 {
3634 isa_unassign_ioport(section->offset_within_address_space, section->size);
3635 }
3636
3637 static void io_region_nop(MemoryListener *listener,
3638 MemoryRegionSection *section)
3639 {
3640 }
3641
3642 static void io_log_start(MemoryListener *listener,
3643 MemoryRegionSection *section)
3644 {
3645 }
3646
3647 static void io_log_stop(MemoryListener *listener,
3648 MemoryRegionSection *section)
3649 {
3650 }
3651
3652 static void io_log_sync(MemoryListener *listener,
3653 MemoryRegionSection *section)
3654 {
3655 }
3656
3657 static void io_log_global_start(MemoryListener *listener)
3658 {
3659 }
3660
3661 static void io_log_global_stop(MemoryListener *listener)
3662 {
3663 }
3664
3665 static void io_eventfd_add(MemoryListener *listener,
3666 MemoryRegionSection *section,
3667 bool match_data, uint64_t data, int fd)
3668 {
3669 }
3670
3671 static void io_eventfd_del(MemoryListener *listener,
3672 MemoryRegionSection *section,
3673 bool match_data, uint64_t data, int fd)
3674 {
3675 }
3676
3677 static MemoryListener core_memory_listener = {
3678 .begin = core_begin,
3679 .commit = core_commit,
3680 .region_add = core_region_add,
3681 .region_del = core_region_del,
3682 .region_nop = core_region_nop,
3683 .log_start = core_log_start,
3684 .log_stop = core_log_stop,
3685 .log_sync = core_log_sync,
3686 .log_global_start = core_log_global_start,
3687 .log_global_stop = core_log_global_stop,
3688 .eventfd_add = core_eventfd_add,
3689 .eventfd_del = core_eventfd_del,
3690 .priority = 0,
3691 };
3692
3693 static MemoryListener io_memory_listener = {
3694 .begin = io_begin,
3695 .commit = io_commit,
3696 .region_add = io_region_add,
3697 .region_del = io_region_del,
3698 .region_nop = io_region_nop,
3699 .log_start = io_log_start,
3700 .log_stop = io_log_stop,
3701 .log_sync = io_log_sync,
3702 .log_global_start = io_log_global_start,
3703 .log_global_stop = io_log_global_stop,
3704 .eventfd_add = io_eventfd_add,
3705 .eventfd_del = io_eventfd_del,
3706 .priority = 0,
3707 };
3708
3709 static void memory_map_init(void)
3710 {
3711 system_memory = g_malloc(sizeof(*system_memory));
3712 memory_region_init(system_memory, "system", INT64_MAX);
3713 set_system_memory_map(system_memory);
3714
3715 system_io = g_malloc(sizeof(*system_io));
3716 memory_region_init(system_io, "io", 65536);
3717 set_system_io_map(system_io);
3718
3719 memory_listener_register(&core_memory_listener, system_memory);
3720 memory_listener_register(&io_memory_listener, system_io);
3721 }
3722
3723 MemoryRegion *get_system_memory(void)
3724 {
3725 return system_memory;
3726 }
3727
3728 MemoryRegion *get_system_io(void)
3729 {
3730 return system_io;
3731 }
3732
3733 #endif /* !defined(CONFIG_USER_ONLY) */
3734
3735 /* physical memory access (slow version, mainly for debug) */
3736 #if defined(CONFIG_USER_ONLY)
3737 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3738 uint8_t *buf, int len, int is_write)
3739 {
3740 int l, flags;
3741 target_ulong page;
3742 void * p;
3743
3744 while (len > 0) {
3745 page = addr & TARGET_PAGE_MASK;
3746 l = (page + TARGET_PAGE_SIZE) - addr;
3747 if (l > len)
3748 l = len;
3749 flags = page_get_flags(page);
3750 if (!(flags & PAGE_VALID))
3751 return -1;
3752 if (is_write) {
3753 if (!(flags & PAGE_WRITE))
3754 return -1;
3755 /* XXX: this code should not depend on lock_user */
3756 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3757 return -1;
3758 memcpy(p, buf, l);
3759 unlock_user(p, addr, l);
3760 } else {
3761 if (!(flags & PAGE_READ))
3762 return -1;
3763 /* XXX: this code should not depend on lock_user */
3764 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3765 return -1;
3766 memcpy(buf, p, l);
3767 unlock_user(p, addr, 0);
3768 }
3769 len -= l;
3770 buf += l;
3771 addr += l;
3772 }
3773 return 0;
3774 }
3775
3776 #else
3777 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3778 int len, int is_write)
3779 {
3780 int l;
3781 uint8_t *ptr;
3782 uint32_t val;
3783 target_phys_addr_t page;
3784 MemoryRegionSection *section;
3785
3786 while (len > 0) {
3787 page = addr & TARGET_PAGE_MASK;
3788 l = (page + TARGET_PAGE_SIZE) - addr;
3789 if (l > len)
3790 l = len;
3791 section = phys_page_find(page >> TARGET_PAGE_BITS);
3792
3793 if (is_write) {
3794 if (!memory_region_is_ram(section->mr)) {
3795 target_phys_addr_t addr1;
3796 addr1 = section_addr(section, addr);
3797 /* XXX: could force cpu_single_env to NULL to avoid
3798 potential bugs */
3799 if (l >= 4 && ((addr1 & 3) == 0)) {
3800 /* 32 bit write access */
3801 val = ldl_p(buf);
3802 io_mem_write(section->mr, addr1, val, 4);
3803 l = 4;
3804 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3805 /* 16 bit write access */
3806 val = lduw_p(buf);
3807 io_mem_write(section->mr, addr1, val, 2);
3808 l = 2;
3809 } else {
3810 /* 8 bit write access */
3811 val = ldub_p(buf);
3812 io_mem_write(section->mr, addr1, val, 1);
3813 l = 1;
3814 }
3815 } else if (!section->readonly) {
3816 ram_addr_t addr1;
3817 addr1 = memory_region_get_ram_addr(section->mr)
3818 + section_addr(section, addr);
3819 /* RAM case */
3820 ptr = qemu_get_ram_ptr(addr1);
3821 memcpy(ptr, buf, l);
3822 if (!cpu_physical_memory_is_dirty(addr1)) {
3823 /* invalidate code */
3824 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3825 /* set dirty bit */
3826 cpu_physical_memory_set_dirty_flags(
3827 addr1, (0xff & ~CODE_DIRTY_FLAG));
3828 }
3829 qemu_put_ram_ptr(ptr);
3830 }
3831 } else {
3832 if (!is_ram_rom_romd(section)) {
3833 target_phys_addr_t addr1;
3834 /* I/O case */
3835 addr1 = section_addr(section, addr);
3836 if (l >= 4 && ((addr1 & 3) == 0)) {
3837 /* 32 bit read access */
3838 val = io_mem_read(section->mr, addr1, 4);
3839 stl_p(buf, val);
3840 l = 4;
3841 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3842 /* 16 bit read access */
3843 val = io_mem_read(section->mr, addr1, 2);
3844 stw_p(buf, val);
3845 l = 2;
3846 } else {
3847 /* 8 bit read access */
3848 val = io_mem_read(section->mr, addr1, 1);
3849 stb_p(buf, val);
3850 l = 1;
3851 }
3852 } else {
3853 /* RAM case */
3854 ptr = qemu_get_ram_ptr(section->mr->ram_addr)
3855 + section_addr(section, addr);
3856 memcpy(buf, ptr, l);
3857 qemu_put_ram_ptr(ptr);
3858 }
3859 }
3860 len -= l;
3861 buf += l;
3862 addr += l;
3863 }
3864 }
3865
3866 /* used for ROM loading : can write in RAM and ROM */
3867 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3868 const uint8_t *buf, int len)
3869 {
3870 int l;
3871 uint8_t *ptr;
3872 target_phys_addr_t page;
3873 MemoryRegionSection *section;
3874
3875 while (len > 0) {
3876 page = addr & TARGET_PAGE_MASK;
3877 l = (page + TARGET_PAGE_SIZE) - addr;
3878 if (l > len)
3879 l = len;
3880 section = phys_page_find(page >> TARGET_PAGE_BITS);
3881
3882 if (!is_ram_rom_romd(section)) {
3883 /* do nothing */
3884 } else {
3885 unsigned long addr1;
3886 addr1 = memory_region_get_ram_addr(section->mr)
3887 + section_addr(section, addr);
3888 /* ROM/RAM case */
3889 ptr = qemu_get_ram_ptr(addr1);
3890 memcpy(ptr, buf, l);
3891 qemu_put_ram_ptr(ptr);
3892 }
3893 len -= l;
3894 buf += l;
3895 addr += l;
3896 }
3897 }
3898
3899 typedef struct {
3900 void *buffer;
3901 target_phys_addr_t addr;
3902 target_phys_addr_t len;
3903 } BounceBuffer;
3904
3905 static BounceBuffer bounce;
3906
3907 typedef struct MapClient {
3908 void *opaque;
3909 void (*callback)(void *opaque);
3910 QLIST_ENTRY(MapClient) link;
3911 } MapClient;
3912
3913 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3914 = QLIST_HEAD_INITIALIZER(map_client_list);
3915
3916 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3917 {
3918 MapClient *client = g_malloc(sizeof(*client));
3919
3920 client->opaque = opaque;
3921 client->callback = callback;
3922 QLIST_INSERT_HEAD(&map_client_list, client, link);
3923 return client;
3924 }
3925
3926 void cpu_unregister_map_client(void *_client)
3927 {
3928 MapClient *client = (MapClient *)_client;
3929
3930 QLIST_REMOVE(client, link);
3931 g_free(client);
3932 }
3933
3934 static void cpu_notify_map_clients(void)
3935 {
3936 MapClient *client;
3937
3938 while (!QLIST_EMPTY(&map_client_list)) {
3939 client = QLIST_FIRST(&map_client_list);
3940 client->callback(client->opaque);
3941 cpu_unregister_map_client(client);
3942 }
3943 }
3944
3945 /* Map a physical memory region into a host virtual address.
3946 * May map a subset of the requested range, given by and returned in *plen.
3947 * May return NULL if resources needed to perform the mapping are exhausted.
3948 * Use only for reads OR writes - not for read-modify-write operations.
3949 * Use cpu_register_map_client() to know when retrying the map operation is
3950 * likely to succeed.
3951 */
3952 void *cpu_physical_memory_map(target_phys_addr_t addr,
3953 target_phys_addr_t *plen,
3954 int is_write)
3955 {
3956 target_phys_addr_t len = *plen;
3957 target_phys_addr_t todo = 0;
3958 int l;
3959 target_phys_addr_t page;
3960 MemoryRegionSection *section;
3961 ram_addr_t raddr = RAM_ADDR_MAX;
3962 ram_addr_t rlen;
3963 void *ret;
3964
3965 while (len > 0) {
3966 page = addr & TARGET_PAGE_MASK;
3967 l = (page + TARGET_PAGE_SIZE) - addr;
3968 if (l > len)
3969 l = len;
3970 section = phys_page_find(page >> TARGET_PAGE_BITS);
3971
3972 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
3973 if (todo || bounce.buffer) {
3974 break;
3975 }
3976 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3977 bounce.addr = addr;
3978 bounce.len = l;
3979 if (!is_write) {
3980 cpu_physical_memory_read(addr, bounce.buffer, l);
3981 }
3982
3983 *plen = l;
3984 return bounce.buffer;
3985 }
3986 if (!todo) {
3987 raddr = memory_region_get_ram_addr(section->mr)
3988 + section_addr(section, addr);
3989 }
3990
3991 len -= l;
3992 addr += l;
3993 todo += l;
3994 }
3995 rlen = todo;
3996 ret = qemu_ram_ptr_length(raddr, &rlen);
3997 *plen = rlen;
3998 return ret;
3999 }
4000
4001 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
4002 * Will also mark the memory as dirty if is_write == 1. access_len gives
4003 * the amount of memory that was actually read or written by the caller.
4004 */
4005 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
4006 int is_write, target_phys_addr_t access_len)
4007 {
4008 if (buffer != bounce.buffer) {
4009 if (is_write) {
4010 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
4011 while (access_len) {
4012 unsigned l;
4013 l = TARGET_PAGE_SIZE;
4014 if (l > access_len)
4015 l = access_len;
4016 if (!cpu_physical_memory_is_dirty(addr1)) {
4017 /* invalidate code */
4018 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
4019 /* set dirty bit */
4020 cpu_physical_memory_set_dirty_flags(
4021 addr1, (0xff & ~CODE_DIRTY_FLAG));
4022 }
4023 addr1 += l;
4024 access_len -= l;
4025 }
4026 }
4027 if (xen_enabled()) {
4028 xen_invalidate_map_cache_entry(buffer);
4029 }
4030 return;
4031 }
4032 if (is_write) {
4033 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
4034 }
4035 qemu_vfree(bounce.buffer);
4036 bounce.buffer = NULL;
4037 cpu_notify_map_clients();
4038 }
4039
4040 /* warning: addr must be aligned */
4041 static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
4042 enum device_endian endian)
4043 {
4044 uint8_t *ptr;
4045 uint32_t val;
4046 MemoryRegionSection *section;
4047
4048 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4049
4050 if (!is_ram_rom_romd(section)) {
4051 /* I/O case */
4052 addr = section_addr(section, addr);
4053 val = io_mem_read(section->mr, addr, 4);
4054 #if defined(TARGET_WORDS_BIGENDIAN)
4055 if (endian == DEVICE_LITTLE_ENDIAN) {
4056 val = bswap32(val);
4057 }
4058 #else
4059 if (endian == DEVICE_BIG_ENDIAN) {
4060 val = bswap32(val);
4061 }
4062 #endif
4063 } else {
4064 /* RAM case */
4065 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4066 & TARGET_PAGE_MASK)
4067 + section_addr(section, addr));
4068 switch (endian) {
4069 case DEVICE_LITTLE_ENDIAN:
4070 val = ldl_le_p(ptr);
4071 break;
4072 case DEVICE_BIG_ENDIAN:
4073 val = ldl_be_p(ptr);
4074 break;
4075 default:
4076 val = ldl_p(ptr);
4077 break;
4078 }
4079 }
4080 return val;
4081 }
4082
4083 uint32_t ldl_phys(target_phys_addr_t addr)
4084 {
4085 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4086 }
4087
4088 uint32_t ldl_le_phys(target_phys_addr_t addr)
4089 {
4090 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4091 }
4092
4093 uint32_t ldl_be_phys(target_phys_addr_t addr)
4094 {
4095 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
4096 }
4097
4098 /* warning: addr must be aligned */
4099 static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
4100 enum device_endian endian)
4101 {
4102 uint8_t *ptr;
4103 uint64_t val;
4104 MemoryRegionSection *section;
4105
4106 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4107
4108 if (!is_ram_rom_romd(section)) {
4109 /* I/O case */
4110 addr = section_addr(section, addr);
4111
4112 /* XXX This is broken when device endian != cpu endian.
4113 Fix and add "endian" variable check */
4114 #ifdef TARGET_WORDS_BIGENDIAN
4115 val = io_mem_read(section->mr, addr, 4) << 32;
4116 val |= io_mem_read(section->mr, addr + 4, 4);
4117 #else
4118 val = io_mem_read(section->mr, addr, 4);
4119 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
4120 #endif
4121 } else {
4122 /* RAM case */
4123 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4124 & TARGET_PAGE_MASK)
4125 + section_addr(section, addr));
4126 switch (endian) {
4127 case DEVICE_LITTLE_ENDIAN:
4128 val = ldq_le_p(ptr);
4129 break;
4130 case DEVICE_BIG_ENDIAN:
4131 val = ldq_be_p(ptr);
4132 break;
4133 default:
4134 val = ldq_p(ptr);
4135 break;
4136 }
4137 }
4138 return val;
4139 }
4140
4141 uint64_t ldq_phys(target_phys_addr_t addr)
4142 {
4143 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4144 }
4145
4146 uint64_t ldq_le_phys(target_phys_addr_t addr)
4147 {
4148 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4149 }
4150
4151 uint64_t ldq_be_phys(target_phys_addr_t addr)
4152 {
4153 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
4154 }
4155
4156 /* XXX: optimize */
4157 uint32_t ldub_phys(target_phys_addr_t addr)
4158 {
4159 uint8_t val;
4160 cpu_physical_memory_read(addr, &val, 1);
4161 return val;
4162 }
4163
4164 /* warning: addr must be aligned */
4165 static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
4166 enum device_endian endian)
4167 {
4168 uint8_t *ptr;
4169 uint64_t val;
4170 MemoryRegionSection *section;
4171
4172 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4173
4174 if (!is_ram_rom_romd(section)) {
4175 /* I/O case */
4176 addr = section_addr(section, addr);
4177 val = io_mem_read(section->mr, addr, 2);
4178 #if defined(TARGET_WORDS_BIGENDIAN)
4179 if (endian == DEVICE_LITTLE_ENDIAN) {
4180 val = bswap16(val);
4181 }
4182 #else
4183 if (endian == DEVICE_BIG_ENDIAN) {
4184 val = bswap16(val);
4185 }
4186 #endif
4187 } else {
4188 /* RAM case */
4189 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4190 & TARGET_PAGE_MASK)
4191 + section_addr(section, addr));
4192 switch (endian) {
4193 case DEVICE_LITTLE_ENDIAN:
4194 val = lduw_le_p(ptr);
4195 break;
4196 case DEVICE_BIG_ENDIAN:
4197 val = lduw_be_p(ptr);
4198 break;
4199 default:
4200 val = lduw_p(ptr);
4201 break;
4202 }
4203 }
4204 return val;
4205 }
4206
4207 uint32_t lduw_phys(target_phys_addr_t addr)
4208 {
4209 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
4210 }
4211
4212 uint32_t lduw_le_phys(target_phys_addr_t addr)
4213 {
4214 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
4215 }
4216
4217 uint32_t lduw_be_phys(target_phys_addr_t addr)
4218 {
4219 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
4220 }
4221
4222 /* warning: addr must be aligned. The ram page is not masked as dirty
4223 and the code inside is not invalidated. It is useful if the dirty
4224 bits are used to track modified PTEs */
4225 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
4226 {
4227 uint8_t *ptr;
4228 MemoryRegionSection *section;
4229
4230 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4231
4232 if (!memory_region_is_ram(section->mr) || section->readonly) {
4233 addr = section_addr(section, addr);
4234 if (memory_region_is_ram(section->mr)) {
4235 section = &phys_sections[phys_section_rom];
4236 }
4237 io_mem_write(section->mr, addr, val, 4);
4238 } else {
4239 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
4240 & TARGET_PAGE_MASK)
4241 + section_addr(section, addr);
4242 ptr = qemu_get_ram_ptr(addr1);
4243 stl_p(ptr, val);
4244
4245 if (unlikely(in_migration)) {
4246 if (!cpu_physical_memory_is_dirty(addr1)) {
4247 /* invalidate code */
4248 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4249 /* set dirty bit */
4250 cpu_physical_memory_set_dirty_flags(
4251 addr1, (0xff & ~CODE_DIRTY_FLAG));
4252 }
4253 }
4254 }
4255 }
4256
4257 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4258 {
4259 uint8_t *ptr;
4260 MemoryRegionSection *section;
4261
4262 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4263
4264 if (!memory_region_is_ram(section->mr) || section->readonly) {
4265 addr = section_addr(section, addr);
4266 if (memory_region_is_ram(section->mr)) {
4267 section = &phys_sections[phys_section_rom];
4268 }
4269 #ifdef TARGET_WORDS_BIGENDIAN
4270 io_mem_write(section->mr, addr, val >> 32, 4);
4271 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
4272 #else
4273 io_mem_write(section->mr, addr, (uint32_t)val, 4);
4274 io_mem_write(section->mr, addr + 4, val >> 32, 4);
4275 #endif
4276 } else {
4277 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
4278 & TARGET_PAGE_MASK)
4279 + section_addr(section, addr));
4280 stq_p(ptr, val);
4281 }
4282 }
4283
4284 /* warning: addr must be aligned */
4285 static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
4286 enum device_endian endian)
4287 {
4288 uint8_t *ptr;
4289 MemoryRegionSection *section;
4290
4291 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4292
4293 if (!memory_region_is_ram(section->mr) || section->readonly) {
4294 addr = section_addr(section, addr);
4295 if (memory_region_is_ram(section->mr)) {
4296 section = &phys_sections[phys_section_rom];
4297 }
4298 #if defined(TARGET_WORDS_BIGENDIAN)
4299 if (endian == DEVICE_LITTLE_ENDIAN) {
4300 val = bswap32(val);
4301 }
4302 #else
4303 if (endian == DEVICE_BIG_ENDIAN) {
4304 val = bswap32(val);
4305 }
4306 #endif
4307 io_mem_write(section->mr, addr, val, 4);
4308 } else {
4309 unsigned long addr1;
4310 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4311 + section_addr(section, addr);
4312 /* RAM case */
4313 ptr = qemu_get_ram_ptr(addr1);
4314 switch (endian) {
4315 case DEVICE_LITTLE_ENDIAN:
4316 stl_le_p(ptr, val);
4317 break;
4318 case DEVICE_BIG_ENDIAN:
4319 stl_be_p(ptr, val);
4320 break;
4321 default:
4322 stl_p(ptr, val);
4323 break;
4324 }
4325 if (!cpu_physical_memory_is_dirty(addr1)) {
4326 /* invalidate code */
4327 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4328 /* set dirty bit */
4329 cpu_physical_memory_set_dirty_flags(addr1,
4330 (0xff & ~CODE_DIRTY_FLAG));
4331 }
4332 }
4333 }
4334
4335 void stl_phys(target_phys_addr_t addr, uint32_t val)
4336 {
4337 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4338 }
4339
4340 void stl_le_phys(target_phys_addr_t addr, uint32_t val)
4341 {
4342 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4343 }
4344
4345 void stl_be_phys(target_phys_addr_t addr, uint32_t val)
4346 {
4347 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4348 }
4349
4350 /* XXX: optimize */
4351 void stb_phys(target_phys_addr_t addr, uint32_t val)
4352 {
4353 uint8_t v = val;
4354 cpu_physical_memory_write(addr, &v, 1);
4355 }
4356
4357 /* warning: addr must be aligned */
4358 static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
4359 enum device_endian endian)
4360 {
4361 uint8_t *ptr;
4362 MemoryRegionSection *section;
4363
4364 section = phys_page_find(addr >> TARGET_PAGE_BITS);
4365
4366 if (!memory_region_is_ram(section->mr) || section->readonly) {
4367 addr = section_addr(section, addr);
4368 if (memory_region_is_ram(section->mr)) {
4369 section = &phys_sections[phys_section_rom];
4370 }
4371 #if defined(TARGET_WORDS_BIGENDIAN)
4372 if (endian == DEVICE_LITTLE_ENDIAN) {
4373 val = bswap16(val);
4374 }
4375 #else
4376 if (endian == DEVICE_BIG_ENDIAN) {
4377 val = bswap16(val);
4378 }
4379 #endif
4380 io_mem_write(section->mr, addr, val, 2);
4381 } else {
4382 unsigned long addr1;
4383 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
4384 + section_addr(section, addr);
4385 /* RAM case */
4386 ptr = qemu_get_ram_ptr(addr1);
4387 switch (endian) {
4388 case DEVICE_LITTLE_ENDIAN:
4389 stw_le_p(ptr, val);
4390 break;
4391 case DEVICE_BIG_ENDIAN:
4392 stw_be_p(ptr, val);
4393 break;
4394 default:
4395 stw_p(ptr, val);
4396 break;
4397 }
4398 if (!cpu_physical_memory_is_dirty(addr1)) {
4399 /* invalidate code */
4400 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4401 /* set dirty bit */
4402 cpu_physical_memory_set_dirty_flags(addr1,
4403 (0xff & ~CODE_DIRTY_FLAG));
4404 }
4405 }
4406 }
4407
4408 void stw_phys(target_phys_addr_t addr, uint32_t val)
4409 {
4410 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4411 }
4412
4413 void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4414 {
4415 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4416 }
4417
4418 void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4419 {
4420 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4421 }
4422
4423 /* XXX: optimize */
4424 void stq_phys(target_phys_addr_t addr, uint64_t val)
4425 {
4426 val = tswap64(val);
4427 cpu_physical_memory_write(addr, &val, 8);
4428 }
4429
4430 void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4431 {
4432 val = cpu_to_le64(val);
4433 cpu_physical_memory_write(addr, &val, 8);
4434 }
4435
4436 void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4437 {
4438 val = cpu_to_be64(val);
4439 cpu_physical_memory_write(addr, &val, 8);
4440 }
4441
4442 /* virtual memory access for debug (includes writing to ROM) */
4443 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4444 uint8_t *buf, int len, int is_write)
4445 {
4446 int l;
4447 target_phys_addr_t phys_addr;
4448 target_ulong page;
4449
4450 while (len > 0) {
4451 page = addr & TARGET_PAGE_MASK;
4452 phys_addr = cpu_get_phys_page_debug(env, page);
4453 /* if no physical page mapped, return an error */
4454 if (phys_addr == -1)
4455 return -1;
4456 l = (page + TARGET_PAGE_SIZE) - addr;
4457 if (l > len)
4458 l = len;
4459 phys_addr += (addr & ~TARGET_PAGE_MASK);
4460 if (is_write)
4461 cpu_physical_memory_write_rom(phys_addr, buf, l);
4462 else
4463 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4464 len -= l;
4465 buf += l;
4466 addr += l;
4467 }
4468 return 0;
4469 }
4470 #endif
4471
4472 /* in deterministic execution mode, instructions doing device I/Os
4473 must be at the end of the TB */
4474 void cpu_io_recompile(CPUState *env, void *retaddr)
4475 {
4476 TranslationBlock *tb;
4477 uint32_t n, cflags;
4478 target_ulong pc, cs_base;
4479 uint64_t flags;
4480
4481 tb = tb_find_pc((unsigned long)retaddr);
4482 if (!tb) {
4483 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4484 retaddr);
4485 }
4486 n = env->icount_decr.u16.low + tb->icount;
4487 cpu_restore_state(tb, env, (unsigned long)retaddr);
4488 /* Calculate how many instructions had been executed before the fault
4489 occurred. */
4490 n = n - env->icount_decr.u16.low;
4491 /* Generate a new TB ending on the I/O insn. */
4492 n++;
4493 /* On MIPS and SH, delay slot instructions can only be restarted if
4494 they were already the first instruction in the TB. If this is not
4495 the first instruction in a TB then re-execute the preceding
4496 branch. */
4497 #if defined(TARGET_MIPS)
4498 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4499 env->active_tc.PC -= 4;
4500 env->icount_decr.u16.low++;
4501 env->hflags &= ~MIPS_HFLAG_BMASK;
4502 }
4503 #elif defined(TARGET_SH4)
4504 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4505 && n > 1) {
4506 env->pc -= 2;
4507 env->icount_decr.u16.low++;
4508 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4509 }
4510 #endif
4511 /* This should never happen. */
4512 if (n > CF_COUNT_MASK)
4513 cpu_abort(env, "TB too big during recompile");
4514
4515 cflags = n | CF_LAST_IO;
4516 pc = tb->pc;
4517 cs_base = tb->cs_base;
4518 flags = tb->flags;
4519 tb_phys_invalidate(tb, -1);
4520 /* FIXME: In theory this could raise an exception. In practice
4521 we have already translated the block once so it's probably ok. */
4522 tb_gen_code(env, pc, cs_base, flags, cflags);
4523 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4524 the first in the TB) then we end up generating a whole new TB and
4525 repeating the fault, which is horribly inefficient.
4526 Better would be to execute just this insn uncached, or generate a
4527 second new TB. */
4528 cpu_resume_from_signal(env, NULL);
4529 }
4530
4531 #if !defined(CONFIG_USER_ONLY)
4532
4533 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4534 {
4535 int i, target_code_size, max_target_code_size;
4536 int direct_jmp_count, direct_jmp2_count, cross_page;
4537 TranslationBlock *tb;
4538
4539 target_code_size = 0;
4540 max_target_code_size = 0;
4541 cross_page = 0;
4542 direct_jmp_count = 0;
4543 direct_jmp2_count = 0;
4544 for(i = 0; i < nb_tbs; i++) {
4545 tb = &tbs[i];
4546 target_code_size += tb->size;
4547 if (tb->size > max_target_code_size)
4548 max_target_code_size = tb->size;
4549 if (tb->page_addr[1] != -1)
4550 cross_page++;
4551 if (tb->tb_next_offset[0] != 0xffff) {
4552 direct_jmp_count++;
4553 if (tb->tb_next_offset[1] != 0xffff) {
4554 direct_jmp2_count++;
4555 }
4556 }
4557 }
4558 /* XXX: avoid using doubles ? */
4559 cpu_fprintf(f, "Translation buffer state:\n");
4560 cpu_fprintf(f, "gen code size %td/%ld\n",
4561 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4562 cpu_fprintf(f, "TB count %d/%d\n",
4563 nb_tbs, code_gen_max_blocks);
4564 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4565 nb_tbs ? target_code_size / nb_tbs : 0,
4566 max_target_code_size);
4567 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4568 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4569 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4570 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4571 cross_page,
4572 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4573 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4574 direct_jmp_count,
4575 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4576 direct_jmp2_count,
4577 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4578 cpu_fprintf(f, "\nStatistics:\n");
4579 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4580 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4581 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4582 tcg_dump_info(f, cpu_fprintf);
4583 }
4584
4585 /* NOTE: this function can trigger an exception */
4586 /* NOTE2: the returned address is not exactly the physical address: it
4587 is the offset relative to phys_ram_base */
4588 tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
4589 {
4590 int mmu_idx, page_index, pd;
4591 void *p;
4592 MemoryRegion *mr;
4593
4594 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
4595 mmu_idx = cpu_mmu_index(env1);
4596 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
4597 (addr & TARGET_PAGE_MASK))) {
4598 ldub_code(addr);
4599 }
4600 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
4601 mr = iotlb_to_region(pd);
4602 if (mr != &io_mem_ram && mr != &io_mem_rom
4603 && mr != &io_mem_notdirty && !mr->rom_device) {
4604 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
4605 cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
4606 #else
4607 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
4608 #endif
4609 }
4610 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
4611 return qemu_ram_addr_from_host_nofail(p);
4612 }
4613
4614 /*
4615 * A helper function for the _utterly broken_ virtio device model to find out if
4616 * it's running on a big endian machine. Don't do this at home kids!
4617 */
4618 bool virtio_is_big_endian(void);
4619 bool virtio_is_big_endian(void)
4620 {
4621 #if defined(TARGET_WORDS_BIGENDIAN)
4622 return true;
4623 #else
4624 return false;
4625 #endif
4626 }
4627
4628 #define MMUSUFFIX _cmmu
4629 #undef GETPC
4630 #define GETPC() NULL
4631 #define env cpu_single_env
4632 #define SOFTMMU_CODE_ACCESS
4633
4634 #define SHIFT 0
4635 #include "softmmu_template.h"
4636
4637 #define SHIFT 1
4638 #include "softmmu_template.h"
4639
4640 #define SHIFT 2
4641 #include "softmmu_template.h"
4642
4643 #define SHIFT 3
4644 #include "softmmu_template.h"
4645
4646 #undef env
4647
4648 #endif