]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat-native.h
softfloat: use GCC builtins to count the leading zeros
[qemu.git] / fpu / softfloat-native.h
1 /* Native implementation of soft float functions */
2 #include <math.h>
3
4 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
5 || defined(CONFIG_SOLARIS)
6 #include <ieeefp.h>
7 #define fabsf(f) ((float)fabs(f))
8 #else
9 #include <fenv.h>
10 #endif
11
12 #if defined(__OpenBSD__) || defined(__NetBSD__)
13 #include <sys/param.h>
14 #endif
15
16 /*
17 * Define some C99-7.12.3 classification macros and
18 * some C99-.12.4 for Solaris systems OS less than 10,
19 * or Solaris 10 systems running GCC 3.x or less.
20 * Solaris 10 with GCC4 does not need these macros as they
21 * are defined in <iso/math_c99.h> with a compiler directive
22 */
23 #if defined(CONFIG_SOLARIS) && \
24 ((CONFIG_SOLARIS_VERSION <= 9 ) || \
25 ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \
26 || (defined(__OpenBSD__) && (OpenBSD < 200811))
27 /*
28 * C99 7.12.3 classification macros
29 * and
30 * C99 7.12.14 comparison macros
31 *
32 * ... do not work on Solaris 10 using GNU CC 3.4.x.
33 * Try to workaround the missing / broken C99 math macros.
34 */
35 #if defined(__OpenBSD__)
36 #define unordered(x, y) (isnan(x) || isnan(y))
37 #endif
38
39 #ifdef __NetBSD__
40 #ifndef isgreater
41 #define isgreater(x, y) __builtin_isgreater(x, y)
42 #endif
43 #ifndef isgreaterequal
44 #define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
45 #endif
46 #ifndef isless
47 #define isless(x, y) __builtin_isless(x, y)
48 #endif
49 #ifndef islessequal
50 #define islessequal(x, y) __builtin_islessequal(x, y)
51 #endif
52 #ifndef isunordered
53 #define isunordered(x, y) __builtin_isunordered(x, y)
54 #endif
55 #endif
56
57
58 #define isnormal(x) (fpclass(x) >= FP_NZERO)
59 #define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y)))
60 #define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y)))
61 #define isless(x, y) ((!unordered(x, y)) && ((x) < (y)))
62 #define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y)))
63 #define isunordered(x,y) unordered(x, y)
64 #endif
65
66 #if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
67
68 #ifndef isnan
69 # define isnan(x) \
70 (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
71 : sizeof (x) == sizeof (double) ? isnan_d (x) \
72 : isnan_f (x))
73 static inline int isnan_f (float x) { return x != x; }
74 static inline int isnan_d (double x) { return x != x; }
75 static inline int isnan_ld (long double x) { return x != x; }
76 #endif
77
78 #ifndef isinf
79 # define isinf(x) \
80 (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
81 : sizeof (x) == sizeof (double) ? isinf_d (x) \
82 : isinf_f (x))
83 static inline int isinf_f (float x) { return isnan (x - x); }
84 static inline int isinf_d (double x) { return isnan (x - x); }
85 static inline int isinf_ld (long double x) { return isnan (x - x); }
86 #endif
87 #endif
88
89 typedef float float32;
90 typedef double float64;
91 #ifdef FLOATX80
92 typedef long double floatx80;
93 #endif
94
95 typedef union {
96 float32 f;
97 uint32_t i;
98 } float32u;
99 typedef union {
100 float64 f;
101 uint64_t i;
102 } float64u;
103 #ifdef FLOATX80
104 typedef union {
105 floatx80 f;
106 struct {
107 uint64_t low;
108 uint16_t high;
109 } i;
110 } floatx80u;
111 #endif
112
113 /*----------------------------------------------------------------------------
114 | Software IEC/IEEE floating-point rounding mode.
115 *----------------------------------------------------------------------------*/
116 #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \
117 || defined(CONFIG_SOLARIS)
118 #if defined(__OpenBSD__)
119 #define FE_RM FP_RM
120 #define FE_RP FP_RP
121 #define FE_RZ FP_RZ
122 #endif
123 enum {
124 float_round_nearest_even = FP_RN,
125 float_round_down = FP_RM,
126 float_round_up = FP_RP,
127 float_round_to_zero = FP_RZ
128 };
129 #else
130 enum {
131 float_round_nearest_even = FE_TONEAREST,
132 float_round_down = FE_DOWNWARD,
133 float_round_up = FE_UPWARD,
134 float_round_to_zero = FE_TOWARDZERO
135 };
136 #endif
137
138 typedef struct float_status {
139 int float_rounding_mode;
140 #ifdef FLOATX80
141 int floatx80_rounding_precision;
142 #endif
143 } float_status;
144
145 void set_float_rounding_mode(int val STATUS_PARAM);
146 #ifdef FLOATX80
147 void set_floatx80_rounding_precision(int val STATUS_PARAM);
148 #endif
149
150 /*----------------------------------------------------------------------------
151 | Software IEC/IEEE integer-to-floating-point conversion routines.
152 *----------------------------------------------------------------------------*/
153 float32 int32_to_float32( int STATUS_PARAM);
154 float32 uint32_to_float32( unsigned int STATUS_PARAM);
155 float64 int32_to_float64( int STATUS_PARAM);
156 float64 uint32_to_float64( unsigned int STATUS_PARAM);
157 #ifdef FLOATX80
158 floatx80 int32_to_floatx80( int STATUS_PARAM);
159 #endif
160 #ifdef FLOAT128
161 float128 int32_to_float128( int STATUS_PARAM);
162 #endif
163 float32 int64_to_float32( int64_t STATUS_PARAM);
164 float32 uint64_to_float32( uint64_t STATUS_PARAM);
165 float64 int64_to_float64( int64_t STATUS_PARAM);
166 float64 uint64_to_float64( uint64_t v STATUS_PARAM);
167 #ifdef FLOATX80
168 floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
169 #endif
170 #ifdef FLOAT128
171 float128 int64_to_float128( int64_t STATUS_PARAM);
172 #endif
173
174 /*----------------------------------------------------------------------------
175 | Software IEC/IEEE single-precision conversion routines.
176 *----------------------------------------------------------------------------*/
177 int float32_to_int32( float32 STATUS_PARAM);
178 int float32_to_int32_round_to_zero( float32 STATUS_PARAM);
179 unsigned int float32_to_uint32( float32 a STATUS_PARAM);
180 unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
181 int64_t float32_to_int64( float32 STATUS_PARAM);
182 int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM);
183 float64 float32_to_float64( float32 STATUS_PARAM);
184 #ifdef FLOATX80
185 floatx80 float32_to_floatx80( float32 STATUS_PARAM);
186 #endif
187 #ifdef FLOAT128
188 float128 float32_to_float128( float32 STATUS_PARAM);
189 #endif
190
191 /*----------------------------------------------------------------------------
192 | Software IEC/IEEE single-precision operations.
193 *----------------------------------------------------------------------------*/
194 float32 float32_round_to_int( float32 STATUS_PARAM);
195 INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
196 {
197 return a + b;
198 }
199 INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
200 {
201 return a - b;
202 }
203 INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
204 {
205 return a * b;
206 }
207 INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
208 {
209 return a / b;
210 }
211 float32 float32_rem( float32, float32 STATUS_PARAM);
212 float32 float32_sqrt( float32 STATUS_PARAM);
213 INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
214 {
215 return a == b;
216 }
217 INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
218 {
219 return a <= b;
220 }
221 INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
222 {
223 return a < b;
224 }
225 INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
226 {
227 return a <= b && a >= b;
228 }
229 INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
230 {
231 return islessequal(a, b);
232 }
233 INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
234 {
235 return isless(a, b);
236 }
237 INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
238 {
239 return isunordered(a, b);
240
241 }
242 int float32_compare( float32, float32 STATUS_PARAM );
243 int float32_compare_quiet( float32, float32 STATUS_PARAM );
244 int float32_is_signaling_nan( float32 );
245 int float32_is_quiet_nan( float32 );
246
247 INLINE float32 float32_abs(float32 a)
248 {
249 return fabsf(a);
250 }
251
252 INLINE float32 float32_chs(float32 a)
253 {
254 return -a;
255 }
256
257 INLINE float32 float32_is_infinity(float32 a)
258 {
259 return fpclassify(a) == FP_INFINITE;
260 }
261
262 INLINE float32 float32_is_neg(float32 a)
263 {
264 float32u u;
265 u.f = a;
266 return u.i >> 31;
267 }
268
269 INLINE float32 float32_is_zero(float32 a)
270 {
271 return fpclassify(a) == FP_ZERO;
272 }
273
274 INLINE float32 float32_scalbn(float32 a, int n)
275 {
276 return scalbnf(a, n);
277 }
278
279 /*----------------------------------------------------------------------------
280 | Software IEC/IEEE double-precision conversion routines.
281 *----------------------------------------------------------------------------*/
282 int float64_to_int32( float64 STATUS_PARAM );
283 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
284 unsigned int float64_to_uint32( float64 STATUS_PARAM );
285 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
286 int64_t float64_to_int64( float64 STATUS_PARAM );
287 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
288 uint64_t float64_to_uint64( float64 STATUS_PARAM );
289 uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
290 float32 float64_to_float32( float64 STATUS_PARAM );
291 #ifdef FLOATX80
292 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
293 #endif
294 #ifdef FLOAT128
295 float128 float64_to_float128( float64 STATUS_PARAM );
296 #endif
297
298 /*----------------------------------------------------------------------------
299 | Software IEC/IEEE double-precision operations.
300 *----------------------------------------------------------------------------*/
301 float64 float64_round_to_int( float64 STATUS_PARAM );
302 float64 float64_trunc_to_int( float64 STATUS_PARAM );
303 INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
304 {
305 return a + b;
306 }
307 INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
308 {
309 return a - b;
310 }
311 INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
312 {
313 return a * b;
314 }
315 INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
316 {
317 return a / b;
318 }
319 float64 float64_rem( float64, float64 STATUS_PARAM );
320 float64 float64_sqrt( float64 STATUS_PARAM );
321 INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
322 {
323 return a == b;
324 }
325 INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
326 {
327 return a <= b;
328 }
329 INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
330 {
331 return a < b;
332 }
333 INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
334 {
335 return a <= b && a >= b;
336 }
337 INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
338 {
339 return islessequal(a, b);
340 }
341 INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
342 {
343 return isless(a, b);
344
345 }
346 INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
347 {
348 return isunordered(a, b);
349
350 }
351 int float64_compare( float64, float64 STATUS_PARAM );
352 int float64_compare_quiet( float64, float64 STATUS_PARAM );
353 int float64_is_signaling_nan( float64 );
354 int float64_is_quiet_nan( float64 );
355
356 INLINE float64 float64_abs(float64 a)
357 {
358 return fabs(a);
359 }
360
361 INLINE float64 float64_chs(float64 a)
362 {
363 return -a;
364 }
365
366 INLINE float64 float64_is_infinity(float64 a)
367 {
368 return fpclassify(a) == FP_INFINITE;
369 }
370
371 INLINE float64 float64_is_neg(float64 a)
372 {
373 float64u u;
374 u.f = a;
375 return u.i >> 63;
376 }
377
378 INLINE float64 float64_is_zero(float64 a)
379 {
380 return fpclassify(a) == FP_ZERO;
381 }
382
383 INLINE float64 float64_scalbn(float64 a, int n)
384 {
385 return scalbn(a, n);
386 }
387
388 #ifdef FLOATX80
389
390 /*----------------------------------------------------------------------------
391 | Software IEC/IEEE extended double-precision conversion routines.
392 *----------------------------------------------------------------------------*/
393 int floatx80_to_int32( floatx80 STATUS_PARAM );
394 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
395 int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
396 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
397 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
398 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
399 #ifdef FLOAT128
400 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
401 #endif
402
403 /*----------------------------------------------------------------------------
404 | Software IEC/IEEE extended double-precision operations.
405 *----------------------------------------------------------------------------*/
406 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
407 INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
408 {
409 return a + b;
410 }
411 INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
412 {
413 return a - b;
414 }
415 INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
416 {
417 return a * b;
418 }
419 INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
420 {
421 return a / b;
422 }
423 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
424 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
425 INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
426 {
427 return a == b;
428 }
429 INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
430 {
431 return a <= b;
432 }
433 INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
434 {
435 return a < b;
436 }
437 INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
438 {
439 return a <= b && a >= b;
440 }
441 INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
442 {
443 return islessequal(a, b);
444 }
445 INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
446 {
447 return isless(a, b);
448
449 }
450 INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
451 {
452 return isunordered(a, b);
453
454 }
455 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
456 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
457 int floatx80_is_signaling_nan( floatx80 );
458 int floatx80_is_quiet_nan( floatx80 );
459
460 INLINE floatx80 floatx80_abs(floatx80 a)
461 {
462 return fabsl(a);
463 }
464
465 INLINE floatx80 floatx80_chs(floatx80 a)
466 {
467 return -a;
468 }
469
470 INLINE floatx80 floatx80_is_infinity(floatx80 a)
471 {
472 return fpclassify(a) == FP_INFINITE;
473 }
474
475 INLINE floatx80 floatx80_is_neg(floatx80 a)
476 {
477 floatx80u u;
478 u.f = a;
479 return u.i.high >> 15;
480 }
481
482 INLINE floatx80 floatx80_is_zero(floatx80 a)
483 {
484 return fpclassify(a) == FP_ZERO;
485 }
486
487 INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
488 {
489 return scalbnl(a, n);
490 }
491
492 #endif