]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat-specialize.h
Merge branch 'master' of git://git.qemu.org/qemu
[qemu.git] / fpu / softfloat-specialize.h
1 /*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7 /*============================================================================
8
9 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
10 Arithmetic Package, Release 2b.
11
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35
36 =============================================================================*/
37
38 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
39 #define SNAN_BIT_IS_ONE 1
40 #else
41 #define SNAN_BIT_IS_ONE 0
42 #endif
43
44 /*----------------------------------------------------------------------------
45 | The pattern for a default generated half-precision NaN.
46 *----------------------------------------------------------------------------*/
47 #if defined(TARGET_ARM)
48 const float16 float16_default_nan = const_float16(0x7E00);
49 #elif SNAN_BIT_IS_ONE
50 const float16 float16_default_nan = const_float16(0x7DFF);
51 #else
52 const float16 float16_default_nan = const_float16(0xFE00);
53 #endif
54
55 /*----------------------------------------------------------------------------
56 | The pattern for a default generated single-precision NaN.
57 *----------------------------------------------------------------------------*/
58 #if defined(TARGET_SPARC)
59 const float32 float32_default_nan = const_float32(0x7FFFFFFF);
60 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
61 const float32 float32_default_nan = const_float32(0x7FC00000);
62 #elif SNAN_BIT_IS_ONE
63 const float32 float32_default_nan = const_float32(0x7FBFFFFF);
64 #else
65 const float32 float32_default_nan = const_float32(0xFFC00000);
66 #endif
67
68 /*----------------------------------------------------------------------------
69 | The pattern for a default generated double-precision NaN.
70 *----------------------------------------------------------------------------*/
71 #if defined(TARGET_SPARC)
72 const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
73 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
74 const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
75 #elif SNAN_BIT_IS_ONE
76 const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
77 #else
78 const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
79 #endif
80
81 /*----------------------------------------------------------------------------
82 | The pattern for a default generated extended double-precision NaN.
83 *----------------------------------------------------------------------------*/
84 #if SNAN_BIT_IS_ONE
85 #define floatx80_default_nan_high 0x7FFF
86 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
87 #else
88 #define floatx80_default_nan_high 0xFFFF
89 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
90 #endif
91
92 const floatx80 floatx80_default_nan = make_floatx80(floatx80_default_nan_high,
93 floatx80_default_nan_low);
94
95 /*----------------------------------------------------------------------------
96 | The pattern for a default generated quadruple-precision NaN. The `high' and
97 | `low' values hold the most- and least-significant bits, respectively.
98 *----------------------------------------------------------------------------*/
99 #if SNAN_BIT_IS_ONE
100 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
101 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
102 #else
103 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
104 #define float128_default_nan_low LIT64( 0x0000000000000000 )
105 #endif
106
107 const float128 float128_default_nan = make_float128(float128_default_nan_high,
108 float128_default_nan_low);
109
110 /*----------------------------------------------------------------------------
111 | Raises the exceptions specified by `flags'. Floating-point traps can be
112 | defined here if desired. It is currently not possible for such a trap
113 | to substitute a result value. If traps are not implemented, this routine
114 | should be simply `float_exception_flags |= flags;'.
115 *----------------------------------------------------------------------------*/
116
117 void float_raise( int8 flags STATUS_PARAM )
118 {
119 STATUS(float_exception_flags) |= flags;
120 }
121
122 /*----------------------------------------------------------------------------
123 | Internal canonical NaN format.
124 *----------------------------------------------------------------------------*/
125 typedef struct {
126 flag sign;
127 uint64_t high, low;
128 } commonNaNT;
129
130 /*----------------------------------------------------------------------------
131 | Returns 1 if the half-precision floating-point value `a' is a quiet
132 | NaN; otherwise returns 0.
133 *----------------------------------------------------------------------------*/
134
135 int float16_is_quiet_nan(float16 a_)
136 {
137 uint16_t a = float16_val(a_);
138 #if SNAN_BIT_IS_ONE
139 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
140 #else
141 return ((a & ~0x8000) >= 0x7c80);
142 #endif
143 }
144
145 /*----------------------------------------------------------------------------
146 | Returns 1 if the half-precision floating-point value `a' is a signaling
147 | NaN; otherwise returns 0.
148 *----------------------------------------------------------------------------*/
149
150 int float16_is_signaling_nan(float16 a_)
151 {
152 uint16_t a = float16_val(a_);
153 #if SNAN_BIT_IS_ONE
154 return ((a & ~0x8000) >= 0x7c80);
155 #else
156 return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
157 #endif
158 }
159
160 /*----------------------------------------------------------------------------
161 | Returns a quiet NaN if the half-precision floating point value `a' is a
162 | signaling NaN; otherwise returns `a'.
163 *----------------------------------------------------------------------------*/
164 float16 float16_maybe_silence_nan(float16 a_)
165 {
166 if (float16_is_signaling_nan(a_)) {
167 #if SNAN_BIT_IS_ONE
168 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
169 return float16_default_nan;
170 # else
171 # error Rules for silencing a signaling NaN are target-specific
172 # endif
173 #else
174 uint16_t a = float16_val(a_);
175 a |= (1 << 9);
176 return make_float16(a);
177 #endif
178 }
179 return a_;
180 }
181
182 /*----------------------------------------------------------------------------
183 | Returns the result of converting the half-precision floating-point NaN
184 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
185 | exception is raised.
186 *----------------------------------------------------------------------------*/
187
188 static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
189 {
190 commonNaNT z;
191
192 if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
193 z.sign = float16_val(a) >> 15;
194 z.low = 0;
195 z.high = ((uint64_t) float16_val(a))<<54;
196 return z;
197 }
198
199 /*----------------------------------------------------------------------------
200 | Returns the result of converting the canonical NaN `a' to the half-
201 | precision floating-point format.
202 *----------------------------------------------------------------------------*/
203
204 static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
205 {
206 uint16_t mantissa = a.high>>54;
207
208 if (STATUS(default_nan_mode)) {
209 return float16_default_nan;
210 }
211
212 if (mantissa) {
213 return make_float16(((((uint16_t) a.sign) << 15)
214 | (0x1F << 10) | mantissa));
215 } else {
216 return float16_default_nan;
217 }
218 }
219
220 /*----------------------------------------------------------------------------
221 | Returns 1 if the single-precision floating-point value `a' is a quiet
222 | NaN; otherwise returns 0.
223 *----------------------------------------------------------------------------*/
224
225 int float32_is_quiet_nan( float32 a_ )
226 {
227 uint32_t a = float32_val(a_);
228 #if SNAN_BIT_IS_ONE
229 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
230 #else
231 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
232 #endif
233 }
234
235 /*----------------------------------------------------------------------------
236 | Returns 1 if the single-precision floating-point value `a' is a signaling
237 | NaN; otherwise returns 0.
238 *----------------------------------------------------------------------------*/
239
240 int float32_is_signaling_nan( float32 a_ )
241 {
242 uint32_t a = float32_val(a_);
243 #if SNAN_BIT_IS_ONE
244 return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
245 #else
246 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
247 #endif
248 }
249
250 /*----------------------------------------------------------------------------
251 | Returns a quiet NaN if the single-precision floating point value `a' is a
252 | signaling NaN; otherwise returns `a'.
253 *----------------------------------------------------------------------------*/
254
255 float32 float32_maybe_silence_nan( float32 a_ )
256 {
257 if (float32_is_signaling_nan(a_)) {
258 #if SNAN_BIT_IS_ONE
259 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
260 return float32_default_nan;
261 # else
262 # error Rules for silencing a signaling NaN are target-specific
263 # endif
264 #else
265 uint32_t a = float32_val(a_);
266 a |= (1 << 22);
267 return make_float32(a);
268 #endif
269 }
270 return a_;
271 }
272
273 /*----------------------------------------------------------------------------
274 | Returns the result of converting the single-precision floating-point NaN
275 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
276 | exception is raised.
277 *----------------------------------------------------------------------------*/
278
279 static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
280 {
281 commonNaNT z;
282
283 if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
284 z.sign = float32_val(a)>>31;
285 z.low = 0;
286 z.high = ( (uint64_t) float32_val(a) )<<41;
287 return z;
288 }
289
290 /*----------------------------------------------------------------------------
291 | Returns the result of converting the canonical NaN `a' to the single-
292 | precision floating-point format.
293 *----------------------------------------------------------------------------*/
294
295 static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
296 {
297 uint32_t mantissa = a.high>>41;
298
299 if ( STATUS(default_nan_mode) ) {
300 return float32_default_nan;
301 }
302
303 if ( mantissa )
304 return make_float32(
305 ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
306 else
307 return float32_default_nan;
308 }
309
310 /*----------------------------------------------------------------------------
311 | Select which NaN to propagate for a two-input operation.
312 | IEEE754 doesn't specify all the details of this, so the
313 | algorithm is target-specific.
314 | The routine is passed various bits of information about the
315 | two NaNs and should return 0 to select NaN a and 1 for NaN b.
316 | Note that signalling NaNs are always squashed to quiet NaNs
317 | by the caller, by calling floatXX_maybe_silence_nan() before
318 | returning them.
319 |
320 | aIsLargerSignificand is only valid if both a and b are NaNs
321 | of some kind, and is true if a has the larger significand,
322 | or if both a and b have the same significand but a is
323 | positive but b is negative. It is only needed for the x87
324 | tie-break rule.
325 *----------------------------------------------------------------------------*/
326
327 #if defined(TARGET_ARM)
328 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
329 flag aIsLargerSignificand)
330 {
331 /* ARM mandated NaN propagation rules: take the first of:
332 * 1. A if it is signaling
333 * 2. B if it is signaling
334 * 3. A (quiet)
335 * 4. B (quiet)
336 * A signaling NaN is always quietened before returning it.
337 */
338 if (aIsSNaN) {
339 return 0;
340 } else if (bIsSNaN) {
341 return 1;
342 } else if (aIsQNaN) {
343 return 0;
344 } else {
345 return 1;
346 }
347 }
348 #elif defined(TARGET_MIPS)
349 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
350 flag aIsLargerSignificand)
351 {
352 /* According to MIPS specifications, if one of the two operands is
353 * a sNaN, a new qNaN has to be generated. This is done in
354 * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
355 * says: "When possible, this QNaN result is one of the operand QNaN
356 * values." In practice it seems that most implementations choose
357 * the first operand if both operands are qNaN. In short this gives
358 * the following rules:
359 * 1. A if it is signaling
360 * 2. B if it is signaling
361 * 3. A (quiet)
362 * 4. B (quiet)
363 * A signaling NaN is always silenced before returning it.
364 */
365 if (aIsSNaN) {
366 return 0;
367 } else if (bIsSNaN) {
368 return 1;
369 } else if (aIsQNaN) {
370 return 0;
371 } else {
372 return 1;
373 }
374 }
375 #elif defined(TARGET_PPC)
376 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
377 flag aIsLargerSignificand)
378 {
379 /* PowerPC propagation rules:
380 * 1. A if it sNaN or qNaN
381 * 2. B if it sNaN or qNaN
382 * A signaling NaN is always silenced before returning it.
383 */
384 if (aIsSNaN || aIsQNaN) {
385 return 0;
386 } else {
387 return 1;
388 }
389 }
390 #else
391 static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
392 flag aIsLargerSignificand)
393 {
394 /* This implements x87 NaN propagation rules:
395 * SNaN + QNaN => return the QNaN
396 * two SNaNs => return the one with the larger significand, silenced
397 * two QNaNs => return the one with the larger significand
398 * SNaN and a non-NaN => return the SNaN, silenced
399 * QNaN and a non-NaN => return the QNaN
400 *
401 * If we get down to comparing significands and they are the same,
402 * return the NaN with the positive sign bit (if any).
403 */
404 if (aIsSNaN) {
405 if (bIsSNaN) {
406 return aIsLargerSignificand ? 0 : 1;
407 }
408 return bIsQNaN ? 1 : 0;
409 }
410 else if (aIsQNaN) {
411 if (bIsSNaN || !bIsQNaN)
412 return 0;
413 else {
414 return aIsLargerSignificand ? 0 : 1;
415 }
416 } else {
417 return 1;
418 }
419 }
420 #endif
421
422 /*----------------------------------------------------------------------------
423 | Takes two single-precision floating-point values `a' and `b', one of which
424 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
425 | signaling NaN, the invalid exception is raised.
426 *----------------------------------------------------------------------------*/
427
428 static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
429 {
430 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
431 flag aIsLargerSignificand;
432 uint32_t av, bv;
433
434 aIsQuietNaN = float32_is_quiet_nan( a );
435 aIsSignalingNaN = float32_is_signaling_nan( a );
436 bIsQuietNaN = float32_is_quiet_nan( b );
437 bIsSignalingNaN = float32_is_signaling_nan( b );
438 av = float32_val(a);
439 bv = float32_val(b);
440
441 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
442
443 if ( STATUS(default_nan_mode) )
444 return float32_default_nan;
445
446 if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
447 aIsLargerSignificand = 0;
448 } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
449 aIsLargerSignificand = 1;
450 } else {
451 aIsLargerSignificand = (av < bv) ? 1 : 0;
452 }
453
454 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
455 aIsLargerSignificand)) {
456 return float32_maybe_silence_nan(b);
457 } else {
458 return float32_maybe_silence_nan(a);
459 }
460 }
461
462 /*----------------------------------------------------------------------------
463 | Returns 1 if the double-precision floating-point value `a' is a quiet
464 | NaN; otherwise returns 0.
465 *----------------------------------------------------------------------------*/
466
467 int float64_is_quiet_nan( float64 a_ )
468 {
469 uint64_t a = float64_val(a_);
470 #if SNAN_BIT_IS_ONE
471 return
472 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
473 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
474 #else
475 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
476 #endif
477 }
478
479 /*----------------------------------------------------------------------------
480 | Returns 1 if the double-precision floating-point value `a' is a signaling
481 | NaN; otherwise returns 0.
482 *----------------------------------------------------------------------------*/
483
484 int float64_is_signaling_nan( float64 a_ )
485 {
486 uint64_t a = float64_val(a_);
487 #if SNAN_BIT_IS_ONE
488 return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
489 #else
490 return
491 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
492 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
493 #endif
494 }
495
496 /*----------------------------------------------------------------------------
497 | Returns a quiet NaN if the double-precision floating point value `a' is a
498 | signaling NaN; otherwise returns `a'.
499 *----------------------------------------------------------------------------*/
500
501 float64 float64_maybe_silence_nan( float64 a_ )
502 {
503 if (float64_is_signaling_nan(a_)) {
504 #if SNAN_BIT_IS_ONE
505 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
506 return float64_default_nan;
507 # else
508 # error Rules for silencing a signaling NaN are target-specific
509 # endif
510 #else
511 uint64_t a = float64_val(a_);
512 a |= LIT64( 0x0008000000000000 );
513 return make_float64(a);
514 #endif
515 }
516 return a_;
517 }
518
519 /*----------------------------------------------------------------------------
520 | Returns the result of converting the double-precision floating-point NaN
521 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
522 | exception is raised.
523 *----------------------------------------------------------------------------*/
524
525 static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
526 {
527 commonNaNT z;
528
529 if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
530 z.sign = float64_val(a)>>63;
531 z.low = 0;
532 z.high = float64_val(a)<<12;
533 return z;
534 }
535
536 /*----------------------------------------------------------------------------
537 | Returns the result of converting the canonical NaN `a' to the double-
538 | precision floating-point format.
539 *----------------------------------------------------------------------------*/
540
541 static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
542 {
543 uint64_t mantissa = a.high>>12;
544
545 if ( STATUS(default_nan_mode) ) {
546 return float64_default_nan;
547 }
548
549 if ( mantissa )
550 return make_float64(
551 ( ( (uint64_t) a.sign )<<63 )
552 | LIT64( 0x7FF0000000000000 )
553 | ( a.high>>12 ));
554 else
555 return float64_default_nan;
556 }
557
558 /*----------------------------------------------------------------------------
559 | Takes two double-precision floating-point values `a' and `b', one of which
560 | is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
561 | signaling NaN, the invalid exception is raised.
562 *----------------------------------------------------------------------------*/
563
564 static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
565 {
566 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
567 flag aIsLargerSignificand;
568 uint64_t av, bv;
569
570 aIsQuietNaN = float64_is_quiet_nan( a );
571 aIsSignalingNaN = float64_is_signaling_nan( a );
572 bIsQuietNaN = float64_is_quiet_nan( b );
573 bIsSignalingNaN = float64_is_signaling_nan( b );
574 av = float64_val(a);
575 bv = float64_val(b);
576
577 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
578
579 if ( STATUS(default_nan_mode) )
580 return float64_default_nan;
581
582 if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
583 aIsLargerSignificand = 0;
584 } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
585 aIsLargerSignificand = 1;
586 } else {
587 aIsLargerSignificand = (av < bv) ? 1 : 0;
588 }
589
590 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
591 aIsLargerSignificand)) {
592 return float64_maybe_silence_nan(b);
593 } else {
594 return float64_maybe_silence_nan(a);
595 }
596 }
597
598 /*----------------------------------------------------------------------------
599 | Returns 1 if the extended double-precision floating-point value `a' is a
600 | quiet NaN; otherwise returns 0. This slightly differs from the same
601 | function for other types as floatx80 has an explicit bit.
602 *----------------------------------------------------------------------------*/
603
604 int floatx80_is_quiet_nan( floatx80 a )
605 {
606 #if SNAN_BIT_IS_ONE
607 uint64_t aLow;
608
609 aLow = a.low & ~ LIT64( 0x4000000000000000 );
610 return
611 ( ( a.high & 0x7FFF ) == 0x7FFF )
612 && (uint64_t) ( aLow<<1 )
613 && ( a.low == aLow );
614 #else
615 return ( ( a.high & 0x7FFF ) == 0x7FFF )
616 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
617 #endif
618 }
619
620 /*----------------------------------------------------------------------------
621 | Returns 1 if the extended double-precision floating-point value `a' is a
622 | signaling NaN; otherwise returns 0. This slightly differs from the same
623 | function for other types as floatx80 has an explicit bit.
624 *----------------------------------------------------------------------------*/
625
626 int floatx80_is_signaling_nan( floatx80 a )
627 {
628 #if SNAN_BIT_IS_ONE
629 return ( ( a.high & 0x7FFF ) == 0x7FFF )
630 && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
631 #else
632 uint64_t aLow;
633
634 aLow = a.low & ~ LIT64( 0x4000000000000000 );
635 return
636 ( ( a.high & 0x7FFF ) == 0x7FFF )
637 && (uint64_t) ( aLow<<1 )
638 && ( a.low == aLow );
639 #endif
640 }
641
642 /*----------------------------------------------------------------------------
643 | Returns a quiet NaN if the extended double-precision floating point value
644 | `a' is a signaling NaN; otherwise returns `a'.
645 *----------------------------------------------------------------------------*/
646
647 floatx80 floatx80_maybe_silence_nan( floatx80 a )
648 {
649 if (floatx80_is_signaling_nan(a)) {
650 #if SNAN_BIT_IS_ONE
651 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
652 a.low = floatx80_default_nan_low;
653 a.high = floatx80_default_nan_high;
654 # else
655 # error Rules for silencing a signaling NaN are target-specific
656 # endif
657 #else
658 a.low |= LIT64( 0xC000000000000000 );
659 return a;
660 #endif
661 }
662 return a;
663 }
664
665 /*----------------------------------------------------------------------------
666 | Returns the result of converting the extended double-precision floating-
667 | point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
668 | invalid exception is raised.
669 *----------------------------------------------------------------------------*/
670
671 static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
672 {
673 commonNaNT z;
674
675 if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
676 if ( a.low >> 63 ) {
677 z.sign = a.high >> 15;
678 z.low = 0;
679 z.high = a.low << 1;
680 } else {
681 z.sign = floatx80_default_nan_high >> 15;
682 z.low = 0;
683 z.high = floatx80_default_nan_low << 1;
684 }
685 return z;
686 }
687
688 /*----------------------------------------------------------------------------
689 | Returns the result of converting the canonical NaN `a' to the extended
690 | double-precision floating-point format.
691 *----------------------------------------------------------------------------*/
692
693 static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
694 {
695 floatx80 z;
696
697 if ( STATUS(default_nan_mode) ) {
698 z.low = floatx80_default_nan_low;
699 z.high = floatx80_default_nan_high;
700 return z;
701 }
702
703 if (a.high >> 1) {
704 z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
705 z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
706 } else {
707 z.low = floatx80_default_nan_low;
708 z.high = floatx80_default_nan_high;
709 }
710
711 return z;
712 }
713
714 /*----------------------------------------------------------------------------
715 | Takes two extended double-precision floating-point values `a' and `b', one
716 | of which is a NaN, and returns the appropriate NaN result. If either `a' or
717 | `b' is a signaling NaN, the invalid exception is raised.
718 *----------------------------------------------------------------------------*/
719
720 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
721 {
722 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
723 flag aIsLargerSignificand;
724
725 aIsQuietNaN = floatx80_is_quiet_nan( a );
726 aIsSignalingNaN = floatx80_is_signaling_nan( a );
727 bIsQuietNaN = floatx80_is_quiet_nan( b );
728 bIsSignalingNaN = floatx80_is_signaling_nan( b );
729
730 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
731
732 if ( STATUS(default_nan_mode) ) {
733 a.low = floatx80_default_nan_low;
734 a.high = floatx80_default_nan_high;
735 return a;
736 }
737
738 if (a.low < b.low) {
739 aIsLargerSignificand = 0;
740 } else if (b.low < a.low) {
741 aIsLargerSignificand = 1;
742 } else {
743 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
744 }
745
746 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
747 aIsLargerSignificand)) {
748 return floatx80_maybe_silence_nan(b);
749 } else {
750 return floatx80_maybe_silence_nan(a);
751 }
752 }
753
754 /*----------------------------------------------------------------------------
755 | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
756 | NaN; otherwise returns 0.
757 *----------------------------------------------------------------------------*/
758
759 int float128_is_quiet_nan( float128 a )
760 {
761 #if SNAN_BIT_IS_ONE
762 return
763 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
764 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
765 #else
766 return
767 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
768 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
769 #endif
770 }
771
772 /*----------------------------------------------------------------------------
773 | Returns 1 if the quadruple-precision floating-point value `a' is a
774 | signaling NaN; otherwise returns 0.
775 *----------------------------------------------------------------------------*/
776
777 int float128_is_signaling_nan( float128 a )
778 {
779 #if SNAN_BIT_IS_ONE
780 return
781 ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
782 && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
783 #else
784 return
785 ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
786 && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
787 #endif
788 }
789
790 /*----------------------------------------------------------------------------
791 | Returns a quiet NaN if the quadruple-precision floating point value `a' is
792 | a signaling NaN; otherwise returns `a'.
793 *----------------------------------------------------------------------------*/
794
795 float128 float128_maybe_silence_nan( float128 a )
796 {
797 if (float128_is_signaling_nan(a)) {
798 #if SNAN_BIT_IS_ONE
799 # if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
800 a.low = float128_default_nan_low;
801 a.high = float128_default_nan_high;
802 # else
803 # error Rules for silencing a signaling NaN are target-specific
804 # endif
805 #else
806 a.high |= LIT64( 0x0000800000000000 );
807 return a;
808 #endif
809 }
810 return a;
811 }
812
813 /*----------------------------------------------------------------------------
814 | Returns the result of converting the quadruple-precision floating-point NaN
815 | `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
816 | exception is raised.
817 *----------------------------------------------------------------------------*/
818
819 static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
820 {
821 commonNaNT z;
822
823 if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
824 z.sign = a.high>>63;
825 shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
826 return z;
827 }
828
829 /*----------------------------------------------------------------------------
830 | Returns the result of converting the canonical NaN `a' to the quadruple-
831 | precision floating-point format.
832 *----------------------------------------------------------------------------*/
833
834 static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
835 {
836 float128 z;
837
838 if ( STATUS(default_nan_mode) ) {
839 z.low = float128_default_nan_low;
840 z.high = float128_default_nan_high;
841 return z;
842 }
843
844 shift128Right( a.high, a.low, 16, &z.high, &z.low );
845 z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
846 return z;
847 }
848
849 /*----------------------------------------------------------------------------
850 | Takes two quadruple-precision floating-point values `a' and `b', one of
851 | which is a NaN, and returns the appropriate NaN result. If either `a' or
852 | `b' is a signaling NaN, the invalid exception is raised.
853 *----------------------------------------------------------------------------*/
854
855 static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
856 {
857 flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
858 flag aIsLargerSignificand;
859
860 aIsQuietNaN = float128_is_quiet_nan( a );
861 aIsSignalingNaN = float128_is_signaling_nan( a );
862 bIsQuietNaN = float128_is_quiet_nan( b );
863 bIsSignalingNaN = float128_is_signaling_nan( b );
864
865 if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
866
867 if ( STATUS(default_nan_mode) ) {
868 a.low = float128_default_nan_low;
869 a.high = float128_default_nan_high;
870 return a;
871 }
872
873 if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
874 aIsLargerSignificand = 0;
875 } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
876 aIsLargerSignificand = 1;
877 } else {
878 aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
879 }
880
881 if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
882 aIsLargerSignificand)) {
883 return float128_maybe_silence_nan(b);
884 } else {
885 return float128_maybe_silence_nan(a);
886 }
887 }
888