]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat.h
Merge remote-tracking branch 'spice/spice.v45' into staging
[qemu.git] / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7 /*============================================================================
8
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35
36 =============================================================================*/
37
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44
45 #include <inttypes.h>
46 #include "config-host.h"
47
48 /*----------------------------------------------------------------------------
49 | Each of the following `typedef's defines the most convenient type that holds
50 | integers of at least as many bits as specified. For example, `uint8' should
51 | be the most convenient type that can hold unsigned integers of as many as
52 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54 | to the same as `int'.
55 *----------------------------------------------------------------------------*/
56 typedef uint8_t flag;
57 typedef uint8_t uint8;
58 typedef int8_t int8;
59 #ifndef _AIX
60 typedef int uint16;
61 typedef int int16;
62 #endif
63 typedef unsigned int uint32;
64 typedef signed int int32;
65 typedef uint64_t uint64;
66 typedef int64_t int64;
67
68 #define LIT64( a ) a##LL
69 #define INLINE static inline
70
71 #define STATUS_PARAM , float_status *status
72 #define STATUS(field) status->field
73 #define STATUS_VAR , status
74
75 /*----------------------------------------------------------------------------
76 | Software IEC/IEEE floating-point ordering relations
77 *----------------------------------------------------------------------------*/
78 enum {
79 float_relation_less = -1,
80 float_relation_equal = 0,
81 float_relation_greater = 1,
82 float_relation_unordered = 2
83 };
84
85 /*----------------------------------------------------------------------------
86 | Software IEC/IEEE floating-point types.
87 *----------------------------------------------------------------------------*/
88 /* Use structures for soft-float types. This prevents accidentally mixing
89 them with native int/float types. A sufficiently clever compiler and
90 sane ABI should be able to see though these structs. However
91 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
92 //#define USE_SOFTFLOAT_STRUCT_TYPES
93 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
94 typedef struct {
95 uint16_t v;
96 } float16;
97 #define float16_val(x) (((float16)(x)).v)
98 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
99 #define const_float16(x) { x }
100 typedef struct {
101 uint32_t v;
102 } float32;
103 /* The cast ensures an error if the wrong type is passed. */
104 #define float32_val(x) (((float32)(x)).v)
105 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
106 #define const_float32(x) { x }
107 typedef struct {
108 uint64_t v;
109 } float64;
110 #define float64_val(x) (((float64)(x)).v)
111 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
112 #define const_float64(x) { x }
113 #else
114 typedef uint16_t float16;
115 typedef uint32_t float32;
116 typedef uint64_t float64;
117 #define float16_val(x) (x)
118 #define float32_val(x) (x)
119 #define float64_val(x) (x)
120 #define make_float16(x) (x)
121 #define make_float32(x) (x)
122 #define make_float64(x) (x)
123 #define const_float16(x) (x)
124 #define const_float32(x) (x)
125 #define const_float64(x) (x)
126 #endif
127 typedef struct {
128 uint64_t low;
129 uint16_t high;
130 } floatx80;
131 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
132 typedef struct {
133 #ifdef HOST_WORDS_BIGENDIAN
134 uint64_t high, low;
135 #else
136 uint64_t low, high;
137 #endif
138 } float128;
139 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
140
141 /*----------------------------------------------------------------------------
142 | Software IEC/IEEE floating-point underflow tininess-detection mode.
143 *----------------------------------------------------------------------------*/
144 enum {
145 float_tininess_after_rounding = 0,
146 float_tininess_before_rounding = 1
147 };
148
149 /*----------------------------------------------------------------------------
150 | Software IEC/IEEE floating-point rounding mode.
151 *----------------------------------------------------------------------------*/
152 enum {
153 float_round_nearest_even = 0,
154 float_round_down = 1,
155 float_round_up = 2,
156 float_round_to_zero = 3
157 };
158
159 /*----------------------------------------------------------------------------
160 | Software IEC/IEEE floating-point exception flags.
161 *----------------------------------------------------------------------------*/
162 enum {
163 float_flag_invalid = 1,
164 float_flag_divbyzero = 4,
165 float_flag_overflow = 8,
166 float_flag_underflow = 16,
167 float_flag_inexact = 32,
168 float_flag_input_denormal = 64,
169 float_flag_output_denormal = 128
170 };
171
172 typedef struct float_status {
173 signed char float_detect_tininess;
174 signed char float_rounding_mode;
175 signed char float_exception_flags;
176 signed char floatx80_rounding_precision;
177 /* should denormalised results go to zero and set the inexact flag? */
178 flag flush_to_zero;
179 /* should denormalised inputs go to zero and set the input_denormal flag? */
180 flag flush_inputs_to_zero;
181 flag default_nan_mode;
182 } float_status;
183
184 void set_float_rounding_mode(int val STATUS_PARAM);
185 void set_float_exception_flags(int val STATUS_PARAM);
186 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
187 {
188 STATUS(float_detect_tininess) = val;
189 }
190 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
191 {
192 STATUS(flush_to_zero) = val;
193 }
194 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
195 {
196 STATUS(flush_inputs_to_zero) = val;
197 }
198 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
199 {
200 STATUS(default_nan_mode) = val;
201 }
202 INLINE int get_float_exception_flags(float_status *status)
203 {
204 return STATUS(float_exception_flags);
205 }
206 void set_floatx80_rounding_precision(int val STATUS_PARAM);
207
208 /*----------------------------------------------------------------------------
209 | Routine to raise any or all of the software IEC/IEEE floating-point
210 | exception flags.
211 *----------------------------------------------------------------------------*/
212 void float_raise( int8 flags STATUS_PARAM);
213
214 /*----------------------------------------------------------------------------
215 | Options to indicate which negations to perform in float*_muladd()
216 | Using these differs from negating an input or output before calling
217 | the muladd function in that this means that a NaN doesn't have its
218 | sign bit inverted before it is propagated.
219 *----------------------------------------------------------------------------*/
220 enum {
221 float_muladd_negate_c = 1,
222 float_muladd_negate_product = 2,
223 float_muladd_negate_result = 3,
224 };
225
226 /*----------------------------------------------------------------------------
227 | Software IEC/IEEE integer-to-floating-point conversion routines.
228 *----------------------------------------------------------------------------*/
229 float32 int32_to_float32( int32 STATUS_PARAM );
230 float64 int32_to_float64( int32 STATUS_PARAM );
231 float32 uint32_to_float32( uint32 STATUS_PARAM );
232 float64 uint32_to_float64( uint32 STATUS_PARAM );
233 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
234 float128 int32_to_float128( int32 STATUS_PARAM );
235 float32 int64_to_float32( int64 STATUS_PARAM );
236 float32 uint64_to_float32( uint64 STATUS_PARAM );
237 float64 int64_to_float64( int64 STATUS_PARAM );
238 float64 uint64_to_float64( uint64 STATUS_PARAM );
239 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
240 float128 int64_to_float128( int64 STATUS_PARAM );
241
242 /*----------------------------------------------------------------------------
243 | Software half-precision conversion routines.
244 *----------------------------------------------------------------------------*/
245 float16 float32_to_float16( float32, flag STATUS_PARAM );
246 float32 float16_to_float32( float16, flag STATUS_PARAM );
247
248 /*----------------------------------------------------------------------------
249 | Software half-precision operations.
250 *----------------------------------------------------------------------------*/
251 int float16_is_quiet_nan( float16 );
252 int float16_is_signaling_nan( float16 );
253 float16 float16_maybe_silence_nan( float16 );
254
255 /*----------------------------------------------------------------------------
256 | The pattern for a default generated half-precision NaN.
257 *----------------------------------------------------------------------------*/
258 extern const float16 float16_default_nan;
259
260 /*----------------------------------------------------------------------------
261 | Software IEC/IEEE single-precision conversion routines.
262 *----------------------------------------------------------------------------*/
263 int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
264 uint16 float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
265 int32 float32_to_int32( float32 STATUS_PARAM );
266 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
267 uint32 float32_to_uint32( float32 STATUS_PARAM );
268 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
269 int64 float32_to_int64( float32 STATUS_PARAM );
270 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
271 float64 float32_to_float64( float32 STATUS_PARAM );
272 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
273 float128 float32_to_float128( float32 STATUS_PARAM );
274
275 /*----------------------------------------------------------------------------
276 | Software IEC/IEEE single-precision operations.
277 *----------------------------------------------------------------------------*/
278 float32 float32_round_to_int( float32 STATUS_PARAM );
279 float32 float32_add( float32, float32 STATUS_PARAM );
280 float32 float32_sub( float32, float32 STATUS_PARAM );
281 float32 float32_mul( float32, float32 STATUS_PARAM );
282 float32 float32_div( float32, float32 STATUS_PARAM );
283 float32 float32_rem( float32, float32 STATUS_PARAM );
284 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
285 float32 float32_sqrt( float32 STATUS_PARAM );
286 float32 float32_exp2( float32 STATUS_PARAM );
287 float32 float32_log2( float32 STATUS_PARAM );
288 int float32_eq( float32, float32 STATUS_PARAM );
289 int float32_le( float32, float32 STATUS_PARAM );
290 int float32_lt( float32, float32 STATUS_PARAM );
291 int float32_unordered( float32, float32 STATUS_PARAM );
292 int float32_eq_quiet( float32, float32 STATUS_PARAM );
293 int float32_le_quiet( float32, float32 STATUS_PARAM );
294 int float32_lt_quiet( float32, float32 STATUS_PARAM );
295 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
296 int float32_compare( float32, float32 STATUS_PARAM );
297 int float32_compare_quiet( float32, float32 STATUS_PARAM );
298 float32 float32_min(float32, float32 STATUS_PARAM);
299 float32 float32_max(float32, float32 STATUS_PARAM);
300 int float32_is_quiet_nan( float32 );
301 int float32_is_signaling_nan( float32 );
302 float32 float32_maybe_silence_nan( float32 );
303 float32 float32_scalbn( float32, int STATUS_PARAM );
304
305 INLINE float32 float32_abs(float32 a)
306 {
307 /* Note that abs does *not* handle NaN specially, nor does
308 * it flush denormal inputs to zero.
309 */
310 return make_float32(float32_val(a) & 0x7fffffff);
311 }
312
313 INLINE float32 float32_chs(float32 a)
314 {
315 /* Note that chs does *not* handle NaN specially, nor does
316 * it flush denormal inputs to zero.
317 */
318 return make_float32(float32_val(a) ^ 0x80000000);
319 }
320
321 INLINE int float32_is_infinity(float32 a)
322 {
323 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
324 }
325
326 INLINE int float32_is_neg(float32 a)
327 {
328 return float32_val(a) >> 31;
329 }
330
331 INLINE int float32_is_zero(float32 a)
332 {
333 return (float32_val(a) & 0x7fffffff) == 0;
334 }
335
336 INLINE int float32_is_any_nan(float32 a)
337 {
338 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
339 }
340
341 INLINE int float32_is_zero_or_denormal(float32 a)
342 {
343 return (float32_val(a) & 0x7f800000) == 0;
344 }
345
346 INLINE float32 float32_set_sign(float32 a, int sign)
347 {
348 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
349 }
350
351 #define float32_zero make_float32(0)
352 #define float32_one make_float32(0x3f800000)
353 #define float32_ln2 make_float32(0x3f317218)
354 #define float32_pi make_float32(0x40490fdb)
355 #define float32_half make_float32(0x3f000000)
356 #define float32_infinity make_float32(0x7f800000)
357
358
359 /*----------------------------------------------------------------------------
360 | The pattern for a default generated single-precision NaN.
361 *----------------------------------------------------------------------------*/
362 extern const float32 float32_default_nan;
363
364 /*----------------------------------------------------------------------------
365 | Software IEC/IEEE double-precision conversion routines.
366 *----------------------------------------------------------------------------*/
367 int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
368 uint16 float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
369 int32 float64_to_int32( float64 STATUS_PARAM );
370 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
371 uint32 float64_to_uint32( float64 STATUS_PARAM );
372 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
373 int64 float64_to_int64( float64 STATUS_PARAM );
374 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
375 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
376 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
377 float32 float64_to_float32( float64 STATUS_PARAM );
378 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
379 float128 float64_to_float128( float64 STATUS_PARAM );
380
381 /*----------------------------------------------------------------------------
382 | Software IEC/IEEE double-precision operations.
383 *----------------------------------------------------------------------------*/
384 float64 float64_round_to_int( float64 STATUS_PARAM );
385 float64 float64_trunc_to_int( float64 STATUS_PARAM );
386 float64 float64_add( float64, float64 STATUS_PARAM );
387 float64 float64_sub( float64, float64 STATUS_PARAM );
388 float64 float64_mul( float64, float64 STATUS_PARAM );
389 float64 float64_div( float64, float64 STATUS_PARAM );
390 float64 float64_rem( float64, float64 STATUS_PARAM );
391 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
392 float64 float64_sqrt( float64 STATUS_PARAM );
393 float64 float64_log2( float64 STATUS_PARAM );
394 int float64_eq( float64, float64 STATUS_PARAM );
395 int float64_le( float64, float64 STATUS_PARAM );
396 int float64_lt( float64, float64 STATUS_PARAM );
397 int float64_unordered( float64, float64 STATUS_PARAM );
398 int float64_eq_quiet( float64, float64 STATUS_PARAM );
399 int float64_le_quiet( float64, float64 STATUS_PARAM );
400 int float64_lt_quiet( float64, float64 STATUS_PARAM );
401 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
402 int float64_compare( float64, float64 STATUS_PARAM );
403 int float64_compare_quiet( float64, float64 STATUS_PARAM );
404 float64 float64_min(float64, float64 STATUS_PARAM);
405 float64 float64_max(float64, float64 STATUS_PARAM);
406 int float64_is_quiet_nan( float64 a );
407 int float64_is_signaling_nan( float64 );
408 float64 float64_maybe_silence_nan( float64 );
409 float64 float64_scalbn( float64, int STATUS_PARAM );
410
411 INLINE float64 float64_abs(float64 a)
412 {
413 /* Note that abs does *not* handle NaN specially, nor does
414 * it flush denormal inputs to zero.
415 */
416 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
417 }
418
419 INLINE float64 float64_chs(float64 a)
420 {
421 /* Note that chs does *not* handle NaN specially, nor does
422 * it flush denormal inputs to zero.
423 */
424 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
425 }
426
427 INLINE int float64_is_infinity(float64 a)
428 {
429 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
430 }
431
432 INLINE int float64_is_neg(float64 a)
433 {
434 return float64_val(a) >> 63;
435 }
436
437 INLINE int float64_is_zero(float64 a)
438 {
439 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
440 }
441
442 INLINE int float64_is_any_nan(float64 a)
443 {
444 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
445 }
446
447 INLINE int float64_is_zero_or_denormal(float64 a)
448 {
449 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
450 }
451
452 INLINE float64 float64_set_sign(float64 a, int sign)
453 {
454 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
455 | ((int64_t)sign << 63));
456 }
457
458 #define float64_zero make_float64(0)
459 #define float64_one make_float64(0x3ff0000000000000LL)
460 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
461 #define float64_pi make_float64(0x400921fb54442d18LL)
462 #define float64_half make_float64(0x3fe0000000000000LL)
463 #define float64_infinity make_float64(0x7ff0000000000000LL)
464
465 /*----------------------------------------------------------------------------
466 | The pattern for a default generated double-precision NaN.
467 *----------------------------------------------------------------------------*/
468 extern const float64 float64_default_nan;
469
470 /*----------------------------------------------------------------------------
471 | Software IEC/IEEE extended double-precision conversion routines.
472 *----------------------------------------------------------------------------*/
473 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
474 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
475 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
476 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
477 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
478 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
479 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
480
481 /*----------------------------------------------------------------------------
482 | Software IEC/IEEE extended double-precision operations.
483 *----------------------------------------------------------------------------*/
484 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
485 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
486 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
487 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
488 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
489 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
490 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
491 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
492 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
493 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
494 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
495 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
496 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
497 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
498 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
499 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
500 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
501 int floatx80_is_quiet_nan( floatx80 );
502 int floatx80_is_signaling_nan( floatx80 );
503 floatx80 floatx80_maybe_silence_nan( floatx80 );
504 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
505
506 INLINE floatx80 floatx80_abs(floatx80 a)
507 {
508 a.high &= 0x7fff;
509 return a;
510 }
511
512 INLINE floatx80 floatx80_chs(floatx80 a)
513 {
514 a.high ^= 0x8000;
515 return a;
516 }
517
518 INLINE int floatx80_is_infinity(floatx80 a)
519 {
520 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
521 }
522
523 INLINE int floatx80_is_neg(floatx80 a)
524 {
525 return a.high >> 15;
526 }
527
528 INLINE int floatx80_is_zero(floatx80 a)
529 {
530 return (a.high & 0x7fff) == 0 && a.low == 0;
531 }
532
533 INLINE int floatx80_is_zero_or_denormal(floatx80 a)
534 {
535 return (a.high & 0x7fff) == 0;
536 }
537
538 INLINE int floatx80_is_any_nan(floatx80 a)
539 {
540 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
541 }
542
543 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
544 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
545 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
546 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
547 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
548 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
549
550 /*----------------------------------------------------------------------------
551 | The pattern for a default generated extended double-precision NaN.
552 *----------------------------------------------------------------------------*/
553 extern const floatx80 floatx80_default_nan;
554
555 /*----------------------------------------------------------------------------
556 | Software IEC/IEEE quadruple-precision conversion routines.
557 *----------------------------------------------------------------------------*/
558 int32 float128_to_int32( float128 STATUS_PARAM );
559 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
560 int64 float128_to_int64( float128 STATUS_PARAM );
561 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
562 float32 float128_to_float32( float128 STATUS_PARAM );
563 float64 float128_to_float64( float128 STATUS_PARAM );
564 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
565
566 /*----------------------------------------------------------------------------
567 | Software IEC/IEEE quadruple-precision operations.
568 *----------------------------------------------------------------------------*/
569 float128 float128_round_to_int( float128 STATUS_PARAM );
570 float128 float128_add( float128, float128 STATUS_PARAM );
571 float128 float128_sub( float128, float128 STATUS_PARAM );
572 float128 float128_mul( float128, float128 STATUS_PARAM );
573 float128 float128_div( float128, float128 STATUS_PARAM );
574 float128 float128_rem( float128, float128 STATUS_PARAM );
575 float128 float128_sqrt( float128 STATUS_PARAM );
576 int float128_eq( float128, float128 STATUS_PARAM );
577 int float128_le( float128, float128 STATUS_PARAM );
578 int float128_lt( float128, float128 STATUS_PARAM );
579 int float128_unordered( float128, float128 STATUS_PARAM );
580 int float128_eq_quiet( float128, float128 STATUS_PARAM );
581 int float128_le_quiet( float128, float128 STATUS_PARAM );
582 int float128_lt_quiet( float128, float128 STATUS_PARAM );
583 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
584 int float128_compare( float128, float128 STATUS_PARAM );
585 int float128_compare_quiet( float128, float128 STATUS_PARAM );
586 int float128_is_quiet_nan( float128 );
587 int float128_is_signaling_nan( float128 );
588 float128 float128_maybe_silence_nan( float128 );
589 float128 float128_scalbn( float128, int STATUS_PARAM );
590
591 INLINE float128 float128_abs(float128 a)
592 {
593 a.high &= 0x7fffffffffffffffLL;
594 return a;
595 }
596
597 INLINE float128 float128_chs(float128 a)
598 {
599 a.high ^= 0x8000000000000000LL;
600 return a;
601 }
602
603 INLINE int float128_is_infinity(float128 a)
604 {
605 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
606 }
607
608 INLINE int float128_is_neg(float128 a)
609 {
610 return a.high >> 63;
611 }
612
613 INLINE int float128_is_zero(float128 a)
614 {
615 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
616 }
617
618 INLINE int float128_is_zero_or_denormal(float128 a)
619 {
620 return (a.high & 0x7fff000000000000LL) == 0;
621 }
622
623 INLINE int float128_is_any_nan(float128 a)
624 {
625 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
626 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
627 }
628
629 /*----------------------------------------------------------------------------
630 | The pattern for a default generated quadruple-precision NaN.
631 *----------------------------------------------------------------------------*/
632 extern const float128 float128_default_nan;
633
634 #endif /* !SOFTFLOAT_H */