]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat.h
softfloat: Add float/double to 16 bit integer conversion functions
[qemu.git] / fpu / softfloat.h
1 /*============================================================================
2
3 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4 Package, Release 2b.
5
6 Written by John R. Hauser. This work was made possible in part by the
7 International Computer Science Institute, located at Suite 600, 1947 Center
8 Street, Berkeley, California 94704. Funding was partially provided by the
9 National Science Foundation under grant MIP-9311980. The original version
10 of this code was written as part of a project to build a fixed-point vector
11 processor in collaboration with the University of California at Berkeley,
12 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
13 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14 arithmetic/SoftFloat.html'.
15
16 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
17 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24
25 Derivative works are acceptable, even for commercial purposes, so long as
26 (1) the source code for the derivative work includes prominent notice that
27 the work is derivative, and (2) the source code includes prominent notice with
28 these four paragraphs for those parts of this code that are retained.
29
30 =============================================================================*/
31
32 #ifndef SOFTFLOAT_H
33 #define SOFTFLOAT_H
34
35 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
36 #include <sunmath.h>
37 #endif
38
39 #include <inttypes.h>
40 #include "config.h"
41
42 /*----------------------------------------------------------------------------
43 | Each of the following `typedef's defines the most convenient type that holds
44 | integers of at least as many bits as specified. For example, `uint8' should
45 | be the most convenient type that can hold unsigned integers of as many as
46 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
47 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48 | to the same as `int'.
49 *----------------------------------------------------------------------------*/
50 typedef uint8_t flag;
51 typedef uint8_t uint8;
52 typedef int8_t int8;
53 #ifndef _AIX
54 typedef int uint16;
55 typedef int int16;
56 #endif
57 typedef unsigned int uint32;
58 typedef signed int int32;
59 typedef uint64_t uint64;
60 typedef int64_t int64;
61
62 /*----------------------------------------------------------------------------
63 | Each of the following `typedef's defines a type that holds integers
64 | of _exactly_ the number of bits specified. For instance, for most
65 | implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66 | `unsigned short int' and `signed short int' (or `short int'), respectively.
67 *----------------------------------------------------------------------------*/
68 typedef uint8_t bits8;
69 typedef int8_t sbits8;
70 typedef uint16_t bits16;
71 typedef int16_t sbits16;
72 typedef uint32_t bits32;
73 typedef int32_t sbits32;
74 typedef uint64_t bits64;
75 typedef int64_t sbits64;
76
77 #define LIT64( a ) a##LL
78 #define INLINE static inline
79
80 /*----------------------------------------------------------------------------
81 | The macro `FLOATX80' must be defined to enable the extended double-precision
82 | floating-point format `floatx80'. If this macro is not defined, the
83 | `floatx80' type will not be defined, and none of the functions that either
84 | input or output the `floatx80' type will be defined. The same applies to
85 | the `FLOAT128' macro and the quadruple-precision format `float128'.
86 *----------------------------------------------------------------------------*/
87 #ifdef CONFIG_SOFTFLOAT
88 /* bit exact soft float support */
89 #define FLOATX80
90 #define FLOAT128
91 #else
92 /* native float support */
93 #if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
94 #define FLOATX80
95 #endif
96 #endif /* !CONFIG_SOFTFLOAT */
97
98 #define STATUS_PARAM , float_status *status
99 #define STATUS(field) status->field
100 #define STATUS_VAR , status
101
102 /*----------------------------------------------------------------------------
103 | Software IEC/IEEE floating-point ordering relations
104 *----------------------------------------------------------------------------*/
105 enum {
106 float_relation_less = -1,
107 float_relation_equal = 0,
108 float_relation_greater = 1,
109 float_relation_unordered = 2
110 };
111
112 #ifdef CONFIG_SOFTFLOAT
113 /*----------------------------------------------------------------------------
114 | Software IEC/IEEE floating-point types.
115 *----------------------------------------------------------------------------*/
116 /* Use structures for soft-float types. This prevents accidentally mixing
117 them with native int/float types. A sufficiently clever compiler and
118 sane ABI should be able to see though these structs. However
119 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
120 //#define USE_SOFTFLOAT_STRUCT_TYPES
121 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
122 typedef struct {
123 uint32_t v;
124 } float32;
125 /* The cast ensures an error if the wrong type is passed. */
126 #define float32_val(x) (((float32)(x)).v)
127 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128 typedef struct {
129 uint64_t v;
130 } float64;
131 #define float64_val(x) (((float64)(x)).v)
132 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133 #else
134 typedef uint32_t float32;
135 typedef uint64_t float64;
136 #define float32_val(x) (x)
137 #define float64_val(x) (x)
138 #define make_float32(x) (x)
139 #define make_float64(x) (x)
140 #endif
141 #ifdef FLOATX80
142 typedef struct {
143 uint64_t low;
144 uint16_t high;
145 } floatx80;
146 #endif
147 #ifdef FLOAT128
148 typedef struct {
149 #ifdef HOST_WORDS_BIGENDIAN
150 uint64_t high, low;
151 #else
152 uint64_t low, high;
153 #endif
154 } float128;
155 #endif
156
157 /*----------------------------------------------------------------------------
158 | Software IEC/IEEE floating-point underflow tininess-detection mode.
159 *----------------------------------------------------------------------------*/
160 enum {
161 float_tininess_after_rounding = 0,
162 float_tininess_before_rounding = 1
163 };
164
165 /*----------------------------------------------------------------------------
166 | Software IEC/IEEE floating-point rounding mode.
167 *----------------------------------------------------------------------------*/
168 enum {
169 float_round_nearest_even = 0,
170 float_round_down = 1,
171 float_round_up = 2,
172 float_round_to_zero = 3
173 };
174
175 /*----------------------------------------------------------------------------
176 | Software IEC/IEEE floating-point exception flags.
177 *----------------------------------------------------------------------------*/
178 enum {
179 float_flag_invalid = 1,
180 float_flag_divbyzero = 4,
181 float_flag_overflow = 8,
182 float_flag_underflow = 16,
183 float_flag_inexact = 32
184 };
185
186 typedef struct float_status {
187 signed char float_detect_tininess;
188 signed char float_rounding_mode;
189 signed char float_exception_flags;
190 #ifdef FLOATX80
191 signed char floatx80_rounding_precision;
192 #endif
193 flag flush_to_zero;
194 flag default_nan_mode;
195 } float_status;
196
197 void set_float_rounding_mode(int val STATUS_PARAM);
198 void set_float_exception_flags(int val STATUS_PARAM);
199 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
200 {
201 STATUS(flush_to_zero) = val;
202 }
203 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204 {
205 STATUS(default_nan_mode) = val;
206 }
207 INLINE int get_float_exception_flags(float_status *status)
208 {
209 return STATUS(float_exception_flags);
210 }
211 #ifdef FLOATX80
212 void set_floatx80_rounding_precision(int val STATUS_PARAM);
213 #endif
214
215 /*----------------------------------------------------------------------------
216 | Routine to raise any or all of the software IEC/IEEE floating-point
217 | exception flags.
218 *----------------------------------------------------------------------------*/
219 void float_raise( int8 flags STATUS_PARAM);
220
221 /*----------------------------------------------------------------------------
222 | Software IEC/IEEE integer-to-floating-point conversion routines.
223 *----------------------------------------------------------------------------*/
224 float32 int32_to_float32( int STATUS_PARAM );
225 float64 int32_to_float64( int STATUS_PARAM );
226 float32 uint32_to_float32( unsigned int STATUS_PARAM );
227 float64 uint32_to_float64( unsigned int STATUS_PARAM );
228 #ifdef FLOATX80
229 floatx80 int32_to_floatx80( int STATUS_PARAM );
230 #endif
231 #ifdef FLOAT128
232 float128 int32_to_float128( int STATUS_PARAM );
233 #endif
234 float32 int64_to_float32( int64_t STATUS_PARAM );
235 float32 uint64_to_float32( uint64_t STATUS_PARAM );
236 float64 int64_to_float64( int64_t STATUS_PARAM );
237 float64 uint64_to_float64( uint64_t STATUS_PARAM );
238 #ifdef FLOATX80
239 floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
240 #endif
241 #ifdef FLOAT128
242 float128 int64_to_float128( int64_t STATUS_PARAM );
243 #endif
244
245 /*----------------------------------------------------------------------------
246 | Software half-precision conversion routines.
247 *----------------------------------------------------------------------------*/
248 bits16 float32_to_float16( float32, flag STATUS_PARAM );
249 float32 float16_to_float32( bits16, flag STATUS_PARAM );
250
251 /*----------------------------------------------------------------------------
252 | Software IEC/IEEE single-precision conversion routines.
253 *----------------------------------------------------------------------------*/
254 int float32_to_int16_round_to_zero( float32 STATUS_PARAM );
255 unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
256 int float32_to_int32( float32 STATUS_PARAM );
257 int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
258 unsigned int float32_to_uint32( float32 STATUS_PARAM );
259 unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
260 int64_t float32_to_int64( float32 STATUS_PARAM );
261 int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
262 float64 float32_to_float64( float32 STATUS_PARAM );
263 #ifdef FLOATX80
264 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
265 #endif
266 #ifdef FLOAT128
267 float128 float32_to_float128( float32 STATUS_PARAM );
268 #endif
269
270 /*----------------------------------------------------------------------------
271 | Software IEC/IEEE single-precision operations.
272 *----------------------------------------------------------------------------*/
273 float32 float32_round_to_int( float32 STATUS_PARAM );
274 float32 float32_add( float32, float32 STATUS_PARAM );
275 float32 float32_sub( float32, float32 STATUS_PARAM );
276 float32 float32_mul( float32, float32 STATUS_PARAM );
277 float32 float32_div( float32, float32 STATUS_PARAM );
278 float32 float32_rem( float32, float32 STATUS_PARAM );
279 float32 float32_sqrt( float32 STATUS_PARAM );
280 float32 float32_exp2( float32 STATUS_PARAM );
281 float32 float32_log2( float32 STATUS_PARAM );
282 int float32_eq( float32, float32 STATUS_PARAM );
283 int float32_le( float32, float32 STATUS_PARAM );
284 int float32_lt( float32, float32 STATUS_PARAM );
285 int float32_eq_signaling( float32, float32 STATUS_PARAM );
286 int float32_le_quiet( float32, float32 STATUS_PARAM );
287 int float32_lt_quiet( float32, float32 STATUS_PARAM );
288 int float32_compare( float32, float32 STATUS_PARAM );
289 int float32_compare_quiet( float32, float32 STATUS_PARAM );
290 int float32_is_nan( float32 );
291 int float32_is_signaling_nan( float32 );
292 float32 float32_maybe_silence_nan( float32 );
293 float32 float32_scalbn( float32, int STATUS_PARAM );
294
295 INLINE float32 float32_abs(float32 a)
296 {
297 return make_float32(float32_val(a) & 0x7fffffff);
298 }
299
300 INLINE float32 float32_chs(float32 a)
301 {
302 return make_float32(float32_val(a) ^ 0x80000000);
303 }
304
305 INLINE int float32_is_infinity(float32 a)
306 {
307 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
308 }
309
310 INLINE int float32_is_neg(float32 a)
311 {
312 return float32_val(a) >> 31;
313 }
314
315 INLINE int float32_is_zero(float32 a)
316 {
317 return (float32_val(a) & 0x7fffffff) == 0;
318 }
319
320 INLINE int float32_is_any_nan(float32 a)
321 {
322 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
323 }
324
325 #define float32_zero make_float32(0)
326 #define float32_one make_float32(0x3f800000)
327 #define float32_ln2 make_float32(0x3f317218)
328
329 /*----------------------------------------------------------------------------
330 | Software IEC/IEEE double-precision conversion routines.
331 *----------------------------------------------------------------------------*/
332 int float64_to_int16_round_to_zero( float64 STATUS_PARAM );
333 unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
334 int float64_to_int32( float64 STATUS_PARAM );
335 int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
336 unsigned int float64_to_uint32( float64 STATUS_PARAM );
337 unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
338 int64_t float64_to_int64( float64 STATUS_PARAM );
339 int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
340 uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
341 uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
342 float32 float64_to_float32( float64 STATUS_PARAM );
343 #ifdef FLOATX80
344 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
345 #endif
346 #ifdef FLOAT128
347 float128 float64_to_float128( float64 STATUS_PARAM );
348 #endif
349
350 /*----------------------------------------------------------------------------
351 | Software IEC/IEEE double-precision operations.
352 *----------------------------------------------------------------------------*/
353 float64 float64_round_to_int( float64 STATUS_PARAM );
354 float64 float64_trunc_to_int( float64 STATUS_PARAM );
355 float64 float64_add( float64, float64 STATUS_PARAM );
356 float64 float64_sub( float64, float64 STATUS_PARAM );
357 float64 float64_mul( float64, float64 STATUS_PARAM );
358 float64 float64_div( float64, float64 STATUS_PARAM );
359 float64 float64_rem( float64, float64 STATUS_PARAM );
360 float64 float64_sqrt( float64 STATUS_PARAM );
361 float64 float64_log2( float64 STATUS_PARAM );
362 int float64_eq( float64, float64 STATUS_PARAM );
363 int float64_le( float64, float64 STATUS_PARAM );
364 int float64_lt( float64, float64 STATUS_PARAM );
365 int float64_eq_signaling( float64, float64 STATUS_PARAM );
366 int float64_le_quiet( float64, float64 STATUS_PARAM );
367 int float64_lt_quiet( float64, float64 STATUS_PARAM );
368 int float64_compare( float64, float64 STATUS_PARAM );
369 int float64_compare_quiet( float64, float64 STATUS_PARAM );
370 int float64_is_nan( float64 a );
371 int float64_is_signaling_nan( float64 );
372 float64 float64_maybe_silence_nan( float64 );
373 float64 float64_scalbn( float64, int STATUS_PARAM );
374
375 INLINE float64 float64_abs(float64 a)
376 {
377 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
378 }
379
380 INLINE float64 float64_chs(float64 a)
381 {
382 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
383 }
384
385 INLINE int float64_is_infinity(float64 a)
386 {
387 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
388 }
389
390 INLINE int float64_is_neg(float64 a)
391 {
392 return float64_val(a) >> 63;
393 }
394
395 INLINE int float64_is_zero(float64 a)
396 {
397 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
398 }
399
400 INLINE int float64_is_any_nan(float64 a)
401 {
402 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
403 }
404
405 #define float64_zero make_float64(0)
406 #define float64_one make_float64(0x3ff0000000000000LL)
407 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
408
409 #ifdef FLOATX80
410
411 /*----------------------------------------------------------------------------
412 | Software IEC/IEEE extended double-precision conversion routines.
413 *----------------------------------------------------------------------------*/
414 int floatx80_to_int32( floatx80 STATUS_PARAM );
415 int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
416 int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
417 int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
418 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
419 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
420 #ifdef FLOAT128
421 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
422 #endif
423
424 /*----------------------------------------------------------------------------
425 | Software IEC/IEEE extended double-precision operations.
426 *----------------------------------------------------------------------------*/
427 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
428 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
429 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
430 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
431 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
432 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
433 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
434 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
435 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
436 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
437 int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
438 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
439 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
440 int floatx80_is_nan( floatx80 );
441 int floatx80_is_signaling_nan( floatx80 );
442 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
443
444 INLINE floatx80 floatx80_abs(floatx80 a)
445 {
446 a.high &= 0x7fff;
447 return a;
448 }
449
450 INLINE floatx80 floatx80_chs(floatx80 a)
451 {
452 a.high ^= 0x8000;
453 return a;
454 }
455
456 INLINE int floatx80_is_infinity(floatx80 a)
457 {
458 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
459 }
460
461 INLINE int floatx80_is_neg(floatx80 a)
462 {
463 return a.high >> 15;
464 }
465
466 INLINE int floatx80_is_zero(floatx80 a)
467 {
468 return (a.high & 0x7fff) == 0 && a.low == 0;
469 }
470
471 #endif
472
473 #ifdef FLOAT128
474
475 /*----------------------------------------------------------------------------
476 | Software IEC/IEEE quadruple-precision conversion routines.
477 *----------------------------------------------------------------------------*/
478 int float128_to_int32( float128 STATUS_PARAM );
479 int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
480 int64_t float128_to_int64( float128 STATUS_PARAM );
481 int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
482 float32 float128_to_float32( float128 STATUS_PARAM );
483 float64 float128_to_float64( float128 STATUS_PARAM );
484 #ifdef FLOATX80
485 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
486 #endif
487
488 /*----------------------------------------------------------------------------
489 | Software IEC/IEEE quadruple-precision operations.
490 *----------------------------------------------------------------------------*/
491 float128 float128_round_to_int( float128 STATUS_PARAM );
492 float128 float128_add( float128, float128 STATUS_PARAM );
493 float128 float128_sub( float128, float128 STATUS_PARAM );
494 float128 float128_mul( float128, float128 STATUS_PARAM );
495 float128 float128_div( float128, float128 STATUS_PARAM );
496 float128 float128_rem( float128, float128 STATUS_PARAM );
497 float128 float128_sqrt( float128 STATUS_PARAM );
498 int float128_eq( float128, float128 STATUS_PARAM );
499 int float128_le( float128, float128 STATUS_PARAM );
500 int float128_lt( float128, float128 STATUS_PARAM );
501 int float128_eq_signaling( float128, float128 STATUS_PARAM );
502 int float128_le_quiet( float128, float128 STATUS_PARAM );
503 int float128_lt_quiet( float128, float128 STATUS_PARAM );
504 int float128_compare( float128, float128 STATUS_PARAM );
505 int float128_compare_quiet( float128, float128 STATUS_PARAM );
506 int float128_is_nan( float128 );
507 int float128_is_signaling_nan( float128 );
508 float128 float128_scalbn( float128, int STATUS_PARAM );
509
510 INLINE float128 float128_abs(float128 a)
511 {
512 a.high &= 0x7fffffffffffffffLL;
513 return a;
514 }
515
516 INLINE float128 float128_chs(float128 a)
517 {
518 a.high ^= 0x8000000000000000LL;
519 return a;
520 }
521
522 INLINE int float128_is_infinity(float128 a)
523 {
524 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
525 }
526
527 INLINE int float128_is_neg(float128 a)
528 {
529 return a.high >> 63;
530 }
531
532 INLINE int float128_is_zero(float128 a)
533 {
534 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
535 }
536
537 #endif
538
539 #else /* CONFIG_SOFTFLOAT */
540
541 #include "softfloat-native.h"
542
543 #endif /* !CONFIG_SOFTFLOAT */
544
545 #endif /* !SOFTFLOAT_H */