]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat.h
target-s390x: avoid AREG0 for FPU helpers
[qemu.git] / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7 /*============================================================================
8
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35
36 =============================================================================*/
37
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44
45 #include <inttypes.h>
46 #include "config-host.h"
47 #include "osdep.h"
48
49 /*----------------------------------------------------------------------------
50 | Each of the following `typedef's defines the most convenient type that holds
51 | integers of at least as many bits as specified. For example, `uint8' should
52 | be the most convenient type that can hold unsigned integers of as many as
53 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
54 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55 | to the same as `int'.
56 *----------------------------------------------------------------------------*/
57 typedef uint8_t flag;
58 typedef uint8_t uint8;
59 typedef int8_t int8;
60 typedef unsigned int uint32;
61 typedef signed int int32;
62 typedef uint64_t uint64;
63 typedef int64_t int64;
64
65 #define LIT64( a ) a##LL
66 #define INLINE static inline
67
68 #define STATUS_PARAM , float_status *status
69 #define STATUS(field) status->field
70 #define STATUS_VAR , status
71
72 /*----------------------------------------------------------------------------
73 | Software IEC/IEEE floating-point ordering relations
74 *----------------------------------------------------------------------------*/
75 enum {
76 float_relation_less = -1,
77 float_relation_equal = 0,
78 float_relation_greater = 1,
79 float_relation_unordered = 2
80 };
81
82 /*----------------------------------------------------------------------------
83 | Software IEC/IEEE floating-point types.
84 *----------------------------------------------------------------------------*/
85 /* Use structures for soft-float types. This prevents accidentally mixing
86 them with native int/float types. A sufficiently clever compiler and
87 sane ABI should be able to see though these structs. However
88 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
89 //#define USE_SOFTFLOAT_STRUCT_TYPES
90 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
91 typedef struct {
92 uint16_t v;
93 } float16;
94 #define float16_val(x) (((float16)(x)).v)
95 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
96 #define const_float16(x) { x }
97 typedef struct {
98 uint32_t v;
99 } float32;
100 /* The cast ensures an error if the wrong type is passed. */
101 #define float32_val(x) (((float32)(x)).v)
102 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
103 #define const_float32(x) { x }
104 typedef struct {
105 uint64_t v;
106 } float64;
107 #define float64_val(x) (((float64)(x)).v)
108 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
109 #define const_float64(x) { x }
110 #else
111 typedef uint16_t float16;
112 typedef uint32_t float32;
113 typedef uint64_t float64;
114 #define float16_val(x) (x)
115 #define float32_val(x) (x)
116 #define float64_val(x) (x)
117 #define make_float16(x) (x)
118 #define make_float32(x) (x)
119 #define make_float64(x) (x)
120 #define const_float16(x) (x)
121 #define const_float32(x) (x)
122 #define const_float64(x) (x)
123 #endif
124 typedef struct {
125 uint64_t low;
126 uint16_t high;
127 } floatx80;
128 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
129 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
130 typedef struct {
131 #ifdef HOST_WORDS_BIGENDIAN
132 uint64_t high, low;
133 #else
134 uint64_t low, high;
135 #endif
136 } float128;
137 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
138 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
139
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE floating-point underflow tininess-detection mode.
142 *----------------------------------------------------------------------------*/
143 enum {
144 float_tininess_after_rounding = 0,
145 float_tininess_before_rounding = 1
146 };
147
148 /*----------------------------------------------------------------------------
149 | Software IEC/IEEE floating-point rounding mode.
150 *----------------------------------------------------------------------------*/
151 enum {
152 float_round_nearest_even = 0,
153 float_round_down = 1,
154 float_round_up = 2,
155 float_round_to_zero = 3
156 };
157
158 /*----------------------------------------------------------------------------
159 | Software IEC/IEEE floating-point exception flags.
160 *----------------------------------------------------------------------------*/
161 enum {
162 float_flag_invalid = 1,
163 float_flag_divbyzero = 4,
164 float_flag_overflow = 8,
165 float_flag_underflow = 16,
166 float_flag_inexact = 32,
167 float_flag_input_denormal = 64,
168 float_flag_output_denormal = 128
169 };
170
171 typedef struct float_status {
172 signed char float_detect_tininess;
173 signed char float_rounding_mode;
174 signed char float_exception_flags;
175 signed char floatx80_rounding_precision;
176 /* should denormalised results go to zero and set the inexact flag? */
177 flag flush_to_zero;
178 /* should denormalised inputs go to zero and set the input_denormal flag? */
179 flag flush_inputs_to_zero;
180 flag default_nan_mode;
181 } float_status;
182
183 void set_float_rounding_mode(int val STATUS_PARAM);
184 void set_float_exception_flags(int val STATUS_PARAM);
185 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
186 {
187 STATUS(float_detect_tininess) = val;
188 }
189 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
190 {
191 STATUS(flush_to_zero) = val;
192 }
193 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
194 {
195 STATUS(flush_inputs_to_zero) = val;
196 }
197 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
198 {
199 STATUS(default_nan_mode) = val;
200 }
201 INLINE int get_float_exception_flags(float_status *status)
202 {
203 return STATUS(float_exception_flags);
204 }
205 void set_floatx80_rounding_precision(int val STATUS_PARAM);
206
207 /*----------------------------------------------------------------------------
208 | Routine to raise any or all of the software IEC/IEEE floating-point
209 | exception flags.
210 *----------------------------------------------------------------------------*/
211 void float_raise( int8 flags STATUS_PARAM);
212
213 /*----------------------------------------------------------------------------
214 | Options to indicate which negations to perform in float*_muladd()
215 | Using these differs from negating an input or output before calling
216 | the muladd function in that this means that a NaN doesn't have its
217 | sign bit inverted before it is propagated.
218 *----------------------------------------------------------------------------*/
219 enum {
220 float_muladd_negate_c = 1,
221 float_muladd_negate_product = 2,
222 float_muladd_negate_result = 3,
223 };
224
225 /*----------------------------------------------------------------------------
226 | Software IEC/IEEE integer-to-floating-point conversion routines.
227 *----------------------------------------------------------------------------*/
228 float32 int32_to_float32( int32 STATUS_PARAM );
229 float64 int32_to_float64( int32 STATUS_PARAM );
230 float32 uint32_to_float32( uint32 STATUS_PARAM );
231 float64 uint32_to_float64( uint32 STATUS_PARAM );
232 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
233 float128 int32_to_float128( int32 STATUS_PARAM );
234 float32 int64_to_float32( int64 STATUS_PARAM );
235 float32 uint64_to_float32( uint64 STATUS_PARAM );
236 float64 int64_to_float64( int64 STATUS_PARAM );
237 float64 uint64_to_float64( uint64 STATUS_PARAM );
238 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
239 float128 int64_to_float128( int64 STATUS_PARAM );
240
241 /*----------------------------------------------------------------------------
242 | Software half-precision conversion routines.
243 *----------------------------------------------------------------------------*/
244 float16 float32_to_float16( float32, flag STATUS_PARAM );
245 float32 float16_to_float32( float16, flag STATUS_PARAM );
246
247 /*----------------------------------------------------------------------------
248 | Software half-precision operations.
249 *----------------------------------------------------------------------------*/
250 int float16_is_quiet_nan( float16 );
251 int float16_is_signaling_nan( float16 );
252 float16 float16_maybe_silence_nan( float16 );
253
254 /*----------------------------------------------------------------------------
255 | The pattern for a default generated half-precision NaN.
256 *----------------------------------------------------------------------------*/
257 extern const float16 float16_default_nan;
258
259 /*----------------------------------------------------------------------------
260 | Software IEC/IEEE single-precision conversion routines.
261 *----------------------------------------------------------------------------*/
262 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
263 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
264 int32 float32_to_int32( float32 STATUS_PARAM );
265 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
266 uint32 float32_to_uint32( float32 STATUS_PARAM );
267 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
268 int64 float32_to_int64( float32 STATUS_PARAM );
269 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
270 float64 float32_to_float64( float32 STATUS_PARAM );
271 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
272 float128 float32_to_float128( float32 STATUS_PARAM );
273
274 /*----------------------------------------------------------------------------
275 | Software IEC/IEEE single-precision operations.
276 *----------------------------------------------------------------------------*/
277 float32 float32_round_to_int( float32 STATUS_PARAM );
278 float32 float32_add( float32, float32 STATUS_PARAM );
279 float32 float32_sub( float32, float32 STATUS_PARAM );
280 float32 float32_mul( float32, float32 STATUS_PARAM );
281 float32 float32_div( float32, float32 STATUS_PARAM );
282 float32 float32_rem( float32, float32 STATUS_PARAM );
283 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
284 float32 float32_sqrt( float32 STATUS_PARAM );
285 float32 float32_exp2( float32 STATUS_PARAM );
286 float32 float32_log2( float32 STATUS_PARAM );
287 int float32_eq( float32, float32 STATUS_PARAM );
288 int float32_le( float32, float32 STATUS_PARAM );
289 int float32_lt( float32, float32 STATUS_PARAM );
290 int float32_unordered( float32, float32 STATUS_PARAM );
291 int float32_eq_quiet( float32, float32 STATUS_PARAM );
292 int float32_le_quiet( float32, float32 STATUS_PARAM );
293 int float32_lt_quiet( float32, float32 STATUS_PARAM );
294 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
295 int float32_compare( float32, float32 STATUS_PARAM );
296 int float32_compare_quiet( float32, float32 STATUS_PARAM );
297 float32 float32_min(float32, float32 STATUS_PARAM);
298 float32 float32_max(float32, float32 STATUS_PARAM);
299 int float32_is_quiet_nan( float32 );
300 int float32_is_signaling_nan( float32 );
301 float32 float32_maybe_silence_nan( float32 );
302 float32 float32_scalbn( float32, int STATUS_PARAM );
303
304 INLINE float32 float32_abs(float32 a)
305 {
306 /* Note that abs does *not* handle NaN specially, nor does
307 * it flush denormal inputs to zero.
308 */
309 return make_float32(float32_val(a) & 0x7fffffff);
310 }
311
312 INLINE float32 float32_chs(float32 a)
313 {
314 /* Note that chs does *not* handle NaN specially, nor does
315 * it flush denormal inputs to zero.
316 */
317 return make_float32(float32_val(a) ^ 0x80000000);
318 }
319
320 INLINE int float32_is_infinity(float32 a)
321 {
322 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
323 }
324
325 INLINE int float32_is_neg(float32 a)
326 {
327 return float32_val(a) >> 31;
328 }
329
330 INLINE int float32_is_zero(float32 a)
331 {
332 return (float32_val(a) & 0x7fffffff) == 0;
333 }
334
335 INLINE int float32_is_any_nan(float32 a)
336 {
337 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
338 }
339
340 INLINE int float32_is_zero_or_denormal(float32 a)
341 {
342 return (float32_val(a) & 0x7f800000) == 0;
343 }
344
345 INLINE float32 float32_set_sign(float32 a, int sign)
346 {
347 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
348 }
349
350 #define float32_zero make_float32(0)
351 #define float32_one make_float32(0x3f800000)
352 #define float32_ln2 make_float32(0x3f317218)
353 #define float32_pi make_float32(0x40490fdb)
354 #define float32_half make_float32(0x3f000000)
355 #define float32_infinity make_float32(0x7f800000)
356
357
358 /*----------------------------------------------------------------------------
359 | The pattern for a default generated single-precision NaN.
360 *----------------------------------------------------------------------------*/
361 extern const float32 float32_default_nan;
362
363 /*----------------------------------------------------------------------------
364 | Software IEC/IEEE double-precision conversion routines.
365 *----------------------------------------------------------------------------*/
366 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
367 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
368 int32 float64_to_int32( float64 STATUS_PARAM );
369 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
370 uint32 float64_to_uint32( float64 STATUS_PARAM );
371 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
372 int64 float64_to_int64( float64 STATUS_PARAM );
373 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
374 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
375 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
376 float32 float64_to_float32( float64 STATUS_PARAM );
377 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
378 float128 float64_to_float128( float64 STATUS_PARAM );
379
380 /*----------------------------------------------------------------------------
381 | Software IEC/IEEE double-precision operations.
382 *----------------------------------------------------------------------------*/
383 float64 float64_round_to_int( float64 STATUS_PARAM );
384 float64 float64_trunc_to_int( float64 STATUS_PARAM );
385 float64 float64_add( float64, float64 STATUS_PARAM );
386 float64 float64_sub( float64, float64 STATUS_PARAM );
387 float64 float64_mul( float64, float64 STATUS_PARAM );
388 float64 float64_div( float64, float64 STATUS_PARAM );
389 float64 float64_rem( float64, float64 STATUS_PARAM );
390 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
391 float64 float64_sqrt( float64 STATUS_PARAM );
392 float64 float64_log2( float64 STATUS_PARAM );
393 int float64_eq( float64, float64 STATUS_PARAM );
394 int float64_le( float64, float64 STATUS_PARAM );
395 int float64_lt( float64, float64 STATUS_PARAM );
396 int float64_unordered( float64, float64 STATUS_PARAM );
397 int float64_eq_quiet( float64, float64 STATUS_PARAM );
398 int float64_le_quiet( float64, float64 STATUS_PARAM );
399 int float64_lt_quiet( float64, float64 STATUS_PARAM );
400 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
401 int float64_compare( float64, float64 STATUS_PARAM );
402 int float64_compare_quiet( float64, float64 STATUS_PARAM );
403 float64 float64_min(float64, float64 STATUS_PARAM);
404 float64 float64_max(float64, float64 STATUS_PARAM);
405 int float64_is_quiet_nan( float64 a );
406 int float64_is_signaling_nan( float64 );
407 float64 float64_maybe_silence_nan( float64 );
408 float64 float64_scalbn( float64, int STATUS_PARAM );
409
410 INLINE float64 float64_abs(float64 a)
411 {
412 /* Note that abs does *not* handle NaN specially, nor does
413 * it flush denormal inputs to zero.
414 */
415 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
416 }
417
418 INLINE float64 float64_chs(float64 a)
419 {
420 /* Note that chs does *not* handle NaN specially, nor does
421 * it flush denormal inputs to zero.
422 */
423 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
424 }
425
426 INLINE int float64_is_infinity(float64 a)
427 {
428 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
429 }
430
431 INLINE int float64_is_neg(float64 a)
432 {
433 return float64_val(a) >> 63;
434 }
435
436 INLINE int float64_is_zero(float64 a)
437 {
438 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
439 }
440
441 INLINE int float64_is_any_nan(float64 a)
442 {
443 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
444 }
445
446 INLINE int float64_is_zero_or_denormal(float64 a)
447 {
448 return (float64_val(a) & 0x7ff0000000000000LL) == 0;
449 }
450
451 INLINE float64 float64_set_sign(float64 a, int sign)
452 {
453 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
454 | ((int64_t)sign << 63));
455 }
456
457 #define float64_zero make_float64(0)
458 #define float64_one make_float64(0x3ff0000000000000LL)
459 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
460 #define float64_pi make_float64(0x400921fb54442d18LL)
461 #define float64_half make_float64(0x3fe0000000000000LL)
462 #define float64_infinity make_float64(0x7ff0000000000000LL)
463
464 /*----------------------------------------------------------------------------
465 | The pattern for a default generated double-precision NaN.
466 *----------------------------------------------------------------------------*/
467 extern const float64 float64_default_nan;
468
469 /*----------------------------------------------------------------------------
470 | Software IEC/IEEE extended double-precision conversion routines.
471 *----------------------------------------------------------------------------*/
472 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
473 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
474 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
475 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
476 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
477 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
478 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
479
480 /*----------------------------------------------------------------------------
481 | Software IEC/IEEE extended double-precision operations.
482 *----------------------------------------------------------------------------*/
483 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
484 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
485 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
486 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
487 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
488 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
489 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
490 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
491 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
492 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
493 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
494 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
495 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
496 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
497 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
498 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
499 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
500 int floatx80_is_quiet_nan( floatx80 );
501 int floatx80_is_signaling_nan( floatx80 );
502 floatx80 floatx80_maybe_silence_nan( floatx80 );
503 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
504
505 INLINE floatx80 floatx80_abs(floatx80 a)
506 {
507 a.high &= 0x7fff;
508 return a;
509 }
510
511 INLINE floatx80 floatx80_chs(floatx80 a)
512 {
513 a.high ^= 0x8000;
514 return a;
515 }
516
517 INLINE int floatx80_is_infinity(floatx80 a)
518 {
519 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
520 }
521
522 INLINE int floatx80_is_neg(floatx80 a)
523 {
524 return a.high >> 15;
525 }
526
527 INLINE int floatx80_is_zero(floatx80 a)
528 {
529 return (a.high & 0x7fff) == 0 && a.low == 0;
530 }
531
532 INLINE int floatx80_is_zero_or_denormal(floatx80 a)
533 {
534 return (a.high & 0x7fff) == 0;
535 }
536
537 INLINE int floatx80_is_any_nan(floatx80 a)
538 {
539 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
540 }
541
542 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
543 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
544 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
545 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
546 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
547 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
548
549 /*----------------------------------------------------------------------------
550 | The pattern for a default generated extended double-precision NaN.
551 *----------------------------------------------------------------------------*/
552 extern const floatx80 floatx80_default_nan;
553
554 /*----------------------------------------------------------------------------
555 | Software IEC/IEEE quadruple-precision conversion routines.
556 *----------------------------------------------------------------------------*/
557 int32 float128_to_int32( float128 STATUS_PARAM );
558 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
559 int64 float128_to_int64( float128 STATUS_PARAM );
560 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
561 float32 float128_to_float32( float128 STATUS_PARAM );
562 float64 float128_to_float64( float128 STATUS_PARAM );
563 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
564
565 /*----------------------------------------------------------------------------
566 | Software IEC/IEEE quadruple-precision operations.
567 *----------------------------------------------------------------------------*/
568 float128 float128_round_to_int( float128 STATUS_PARAM );
569 float128 float128_add( float128, float128 STATUS_PARAM );
570 float128 float128_sub( float128, float128 STATUS_PARAM );
571 float128 float128_mul( float128, float128 STATUS_PARAM );
572 float128 float128_div( float128, float128 STATUS_PARAM );
573 float128 float128_rem( float128, float128 STATUS_PARAM );
574 float128 float128_sqrt( float128 STATUS_PARAM );
575 int float128_eq( float128, float128 STATUS_PARAM );
576 int float128_le( float128, float128 STATUS_PARAM );
577 int float128_lt( float128, float128 STATUS_PARAM );
578 int float128_unordered( float128, float128 STATUS_PARAM );
579 int float128_eq_quiet( float128, float128 STATUS_PARAM );
580 int float128_le_quiet( float128, float128 STATUS_PARAM );
581 int float128_lt_quiet( float128, float128 STATUS_PARAM );
582 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
583 int float128_compare( float128, float128 STATUS_PARAM );
584 int float128_compare_quiet( float128, float128 STATUS_PARAM );
585 int float128_is_quiet_nan( float128 );
586 int float128_is_signaling_nan( float128 );
587 float128 float128_maybe_silence_nan( float128 );
588 float128 float128_scalbn( float128, int STATUS_PARAM );
589
590 INLINE float128 float128_abs(float128 a)
591 {
592 a.high &= 0x7fffffffffffffffLL;
593 return a;
594 }
595
596 INLINE float128 float128_chs(float128 a)
597 {
598 a.high ^= 0x8000000000000000LL;
599 return a;
600 }
601
602 INLINE int float128_is_infinity(float128 a)
603 {
604 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
605 }
606
607 INLINE int float128_is_neg(float128 a)
608 {
609 return a.high >> 63;
610 }
611
612 INLINE int float128_is_zero(float128 a)
613 {
614 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
615 }
616
617 INLINE int float128_is_zero_or_denormal(float128 a)
618 {
619 return (a.high & 0x7fff000000000000LL) == 0;
620 }
621
622 INLINE int float128_is_any_nan(float128 a)
623 {
624 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
625 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
626 }
627
628 /*----------------------------------------------------------------------------
629 | The pattern for a default generated quadruple-precision NaN.
630 *----------------------------------------------------------------------------*/
631 extern const float128 float128_default_nan;
632
633 #endif /* !SOFTFLOAT_H */