]> git.proxmox.com Git - qemu.git/blob - fpu/softfloat.h
softfloat: move float*_eq and float*_eq_quiet
[qemu.git] / fpu / softfloat.h
1 /*
2 * QEMU float support
3 *
4 * Derived from SoftFloat.
5 */
6
7 /*============================================================================
8
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11
12 Written by John R. Hauser. This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704. Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980. The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek. More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35
36 =============================================================================*/
37
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44
45 #include <inttypes.h>
46 #include "config.h"
47
48 /*----------------------------------------------------------------------------
49 | Each of the following `typedef's defines the most convenient type that holds
50 | integers of at least as many bits as specified. For example, `uint8' should
51 | be the most convenient type that can hold unsigned integers of as many as
52 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
53 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54 | to the same as `int'.
55 *----------------------------------------------------------------------------*/
56 typedef uint8_t flag;
57 typedef uint8_t uint8;
58 typedef int8_t int8;
59 #ifndef _AIX
60 typedef int uint16;
61 typedef int int16;
62 #endif
63 typedef unsigned int uint32;
64 typedef signed int int32;
65 typedef uint64_t uint64;
66 typedef int64_t int64;
67
68 #define LIT64( a ) a##LL
69 #define INLINE static inline
70
71 #if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
72 #define SNAN_BIT_IS_ONE 1
73 #else
74 #define SNAN_BIT_IS_ONE 0
75 #endif
76
77 /*----------------------------------------------------------------------------
78 | The macro `FLOATX80' must be defined to enable the extended double-precision
79 | floating-point format `floatx80'. If this macro is not defined, the
80 | `floatx80' type will not be defined, and none of the functions that either
81 | input or output the `floatx80' type will be defined. The same applies to
82 | the `FLOAT128' macro and the quadruple-precision format `float128'.
83 *----------------------------------------------------------------------------*/
84 #ifdef CONFIG_SOFTFLOAT
85 /* bit exact soft float support */
86 #define FLOATX80
87 #define FLOAT128
88 #else
89 /* native float support */
90 #if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
91 #define FLOATX80
92 #endif
93 #endif /* !CONFIG_SOFTFLOAT */
94
95 #define STATUS_PARAM , float_status *status
96 #define STATUS(field) status->field
97 #define STATUS_VAR , status
98
99 /*----------------------------------------------------------------------------
100 | Software IEC/IEEE floating-point ordering relations
101 *----------------------------------------------------------------------------*/
102 enum {
103 float_relation_less = -1,
104 float_relation_equal = 0,
105 float_relation_greater = 1,
106 float_relation_unordered = 2
107 };
108
109 #ifdef CONFIG_SOFTFLOAT
110 /*----------------------------------------------------------------------------
111 | Software IEC/IEEE floating-point types.
112 *----------------------------------------------------------------------------*/
113 /* Use structures for soft-float types. This prevents accidentally mixing
114 them with native int/float types. A sufficiently clever compiler and
115 sane ABI should be able to see though these structs. However
116 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
117 //#define USE_SOFTFLOAT_STRUCT_TYPES
118 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
119 typedef struct {
120 uint16_t v;
121 } float16;
122 #define float16_val(x) (((float16)(x)).v)
123 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
124 #define const_float16(x) { x }
125 typedef struct {
126 uint32_t v;
127 } float32;
128 /* The cast ensures an error if the wrong type is passed. */
129 #define float32_val(x) (((float32)(x)).v)
130 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
131 #define const_float32(x) { x }
132 typedef struct {
133 uint64_t v;
134 } float64;
135 #define float64_val(x) (((float64)(x)).v)
136 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
137 #define const_float64(x) { x }
138 #else
139 typedef uint16_t float16;
140 typedef uint32_t float32;
141 typedef uint64_t float64;
142 #define float16_val(x) (x)
143 #define float32_val(x) (x)
144 #define float64_val(x) (x)
145 #define make_float16(x) (x)
146 #define make_float32(x) (x)
147 #define make_float64(x) (x)
148 #define const_float16(x) (x)
149 #define const_float32(x) (x)
150 #define const_float64(x) (x)
151 #endif
152 #ifdef FLOATX80
153 typedef struct {
154 uint64_t low;
155 uint16_t high;
156 } floatx80;
157 #endif
158 #ifdef FLOAT128
159 typedef struct {
160 #ifdef HOST_WORDS_BIGENDIAN
161 uint64_t high, low;
162 #else
163 uint64_t low, high;
164 #endif
165 } float128;
166 #endif
167
168 /*----------------------------------------------------------------------------
169 | Software IEC/IEEE floating-point underflow tininess-detection mode.
170 *----------------------------------------------------------------------------*/
171 enum {
172 float_tininess_after_rounding = 0,
173 float_tininess_before_rounding = 1
174 };
175
176 /*----------------------------------------------------------------------------
177 | Software IEC/IEEE floating-point rounding mode.
178 *----------------------------------------------------------------------------*/
179 enum {
180 float_round_nearest_even = 0,
181 float_round_down = 1,
182 float_round_up = 2,
183 float_round_to_zero = 3
184 };
185
186 /*----------------------------------------------------------------------------
187 | Software IEC/IEEE floating-point exception flags.
188 *----------------------------------------------------------------------------*/
189 enum {
190 float_flag_invalid = 1,
191 float_flag_divbyzero = 4,
192 float_flag_overflow = 8,
193 float_flag_underflow = 16,
194 float_flag_inexact = 32,
195 float_flag_input_denormal = 64
196 };
197
198 typedef struct float_status {
199 signed char float_detect_tininess;
200 signed char float_rounding_mode;
201 signed char float_exception_flags;
202 #ifdef FLOATX80
203 signed char floatx80_rounding_precision;
204 #endif
205 /* should denormalised results go to zero and set the inexact flag? */
206 flag flush_to_zero;
207 /* should denormalised inputs go to zero and set the input_denormal flag? */
208 flag flush_inputs_to_zero;
209 flag default_nan_mode;
210 } float_status;
211
212 void set_float_rounding_mode(int val STATUS_PARAM);
213 void set_float_exception_flags(int val STATUS_PARAM);
214 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
215 {
216 STATUS(float_detect_tininess) = val;
217 }
218 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
219 {
220 STATUS(flush_to_zero) = val;
221 }
222 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
223 {
224 STATUS(flush_inputs_to_zero) = val;
225 }
226 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
227 {
228 STATUS(default_nan_mode) = val;
229 }
230 INLINE int get_float_exception_flags(float_status *status)
231 {
232 return STATUS(float_exception_flags);
233 }
234 #ifdef FLOATX80
235 void set_floatx80_rounding_precision(int val STATUS_PARAM);
236 #endif
237
238 /*----------------------------------------------------------------------------
239 | Routine to raise any or all of the software IEC/IEEE floating-point
240 | exception flags.
241 *----------------------------------------------------------------------------*/
242 void float_raise( int8 flags STATUS_PARAM);
243
244 /*----------------------------------------------------------------------------
245 | Software IEC/IEEE integer-to-floating-point conversion routines.
246 *----------------------------------------------------------------------------*/
247 float32 int32_to_float32( int32 STATUS_PARAM );
248 float64 int32_to_float64( int32 STATUS_PARAM );
249 float32 uint32_to_float32( unsigned int STATUS_PARAM );
250 float64 uint32_to_float64( unsigned int STATUS_PARAM );
251 #ifdef FLOATX80
252 floatx80 int32_to_floatx80( int32 STATUS_PARAM );
253 #endif
254 #ifdef FLOAT128
255 float128 int32_to_float128( int32 STATUS_PARAM );
256 #endif
257 float32 int64_to_float32( int64 STATUS_PARAM );
258 float32 uint64_to_float32( uint64 STATUS_PARAM );
259 float64 int64_to_float64( int64 STATUS_PARAM );
260 float64 uint64_to_float64( uint64 STATUS_PARAM );
261 #ifdef FLOATX80
262 floatx80 int64_to_floatx80( int64 STATUS_PARAM );
263 #endif
264 #ifdef FLOAT128
265 float128 int64_to_float128( int64 STATUS_PARAM );
266 #endif
267
268 /*----------------------------------------------------------------------------
269 | Software half-precision conversion routines.
270 *----------------------------------------------------------------------------*/
271 float16 float32_to_float16( float32, flag STATUS_PARAM );
272 float32 float16_to_float32( float16, flag STATUS_PARAM );
273
274 /*----------------------------------------------------------------------------
275 | Software half-precision operations.
276 *----------------------------------------------------------------------------*/
277 int float16_is_quiet_nan( float16 );
278 int float16_is_signaling_nan( float16 );
279 float16 float16_maybe_silence_nan( float16 );
280
281 /*----------------------------------------------------------------------------
282 | The pattern for a default generated half-precision NaN.
283 *----------------------------------------------------------------------------*/
284 #if defined(TARGET_ARM)
285 #define float16_default_nan make_float16(0x7E00)
286 #elif SNAN_BIT_IS_ONE
287 #define float16_default_nan make_float16(0x7DFF)
288 #else
289 #define float16_default_nan make_float16(0xFE00)
290 #endif
291
292 /*----------------------------------------------------------------------------
293 | Software IEC/IEEE single-precision conversion routines.
294 *----------------------------------------------------------------------------*/
295 int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
296 unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
297 int32 float32_to_int32( float32 STATUS_PARAM );
298 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
299 uint32 float32_to_uint32( float32 STATUS_PARAM );
300 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
301 int64 float32_to_int64( float32 STATUS_PARAM );
302 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
303 float64 float32_to_float64( float32 STATUS_PARAM );
304 #ifdef FLOATX80
305 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
306 #endif
307 #ifdef FLOAT128
308 float128 float32_to_float128( float32 STATUS_PARAM );
309 #endif
310
311 /*----------------------------------------------------------------------------
312 | Software IEC/IEEE single-precision operations.
313 *----------------------------------------------------------------------------*/
314 float32 float32_round_to_int( float32 STATUS_PARAM );
315 float32 float32_add( float32, float32 STATUS_PARAM );
316 float32 float32_sub( float32, float32 STATUS_PARAM );
317 float32 float32_mul( float32, float32 STATUS_PARAM );
318 float32 float32_div( float32, float32 STATUS_PARAM );
319 float32 float32_rem( float32, float32 STATUS_PARAM );
320 float32 float32_sqrt( float32 STATUS_PARAM );
321 float32 float32_exp2( float32 STATUS_PARAM );
322 float32 float32_log2( float32 STATUS_PARAM );
323 int float32_eq( float32, float32 STATUS_PARAM );
324 int float32_le( float32, float32 STATUS_PARAM );
325 int float32_lt( float32, float32 STATUS_PARAM );
326 int float32_unordered( float32, float32 STATUS_PARAM );
327 int float32_eq_quiet( float32, float32 STATUS_PARAM );
328 int float32_le_quiet( float32, float32 STATUS_PARAM );
329 int float32_lt_quiet( float32, float32 STATUS_PARAM );
330 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
331 int float32_compare( float32, float32 STATUS_PARAM );
332 int float32_compare_quiet( float32, float32 STATUS_PARAM );
333 float32 float32_min(float32, float32 STATUS_PARAM);
334 float32 float32_max(float32, float32 STATUS_PARAM);
335 int float32_is_quiet_nan( float32 );
336 int float32_is_signaling_nan( float32 );
337 float32 float32_maybe_silence_nan( float32 );
338 float32 float32_scalbn( float32, int STATUS_PARAM );
339
340 INLINE float32 float32_abs(float32 a)
341 {
342 /* Note that abs does *not* handle NaN specially, nor does
343 * it flush denormal inputs to zero.
344 */
345 return make_float32(float32_val(a) & 0x7fffffff);
346 }
347
348 INLINE float32 float32_chs(float32 a)
349 {
350 /* Note that chs does *not* handle NaN specially, nor does
351 * it flush denormal inputs to zero.
352 */
353 return make_float32(float32_val(a) ^ 0x80000000);
354 }
355
356 INLINE int float32_is_infinity(float32 a)
357 {
358 return (float32_val(a) & 0x7fffffff) == 0x7f800000;
359 }
360
361 INLINE int float32_is_neg(float32 a)
362 {
363 return float32_val(a) >> 31;
364 }
365
366 INLINE int float32_is_zero(float32 a)
367 {
368 return (float32_val(a) & 0x7fffffff) == 0;
369 }
370
371 INLINE int float32_is_any_nan(float32 a)
372 {
373 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
374 }
375
376 INLINE int float32_is_zero_or_denormal(float32 a)
377 {
378 return (float32_val(a) & 0x7f800000) == 0;
379 }
380
381 INLINE float32 float32_set_sign(float32 a, int sign)
382 {
383 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
384 }
385
386 #define float32_zero make_float32(0)
387 #define float32_one make_float32(0x3f800000)
388 #define float32_ln2 make_float32(0x3f317218)
389 #define float32_half make_float32(0x3f000000)
390 #define float32_infinity make_float32(0x7f800000)
391
392
393 /*----------------------------------------------------------------------------
394 | The pattern for a default generated single-precision NaN.
395 *----------------------------------------------------------------------------*/
396 #if defined(TARGET_SPARC)
397 #define float32_default_nan make_float32(0x7FFFFFFF)
398 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
399 #define float32_default_nan make_float32(0x7FC00000)
400 #elif SNAN_BIT_IS_ONE
401 #define float32_default_nan make_float32(0x7FBFFFFF)
402 #else
403 #define float32_default_nan make_float32(0xFFC00000)
404 #endif
405
406 /*----------------------------------------------------------------------------
407 | Software IEC/IEEE double-precision conversion routines.
408 *----------------------------------------------------------------------------*/
409 int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
410 unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
411 int32 float64_to_int32( float64 STATUS_PARAM );
412 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
413 uint32 float64_to_uint32( float64 STATUS_PARAM );
414 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
415 int64 float64_to_int64( float64 STATUS_PARAM );
416 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
417 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
418 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
419 float32 float64_to_float32( float64 STATUS_PARAM );
420 #ifdef FLOATX80
421 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
422 #endif
423 #ifdef FLOAT128
424 float128 float64_to_float128( float64 STATUS_PARAM );
425 #endif
426
427 /*----------------------------------------------------------------------------
428 | Software IEC/IEEE double-precision operations.
429 *----------------------------------------------------------------------------*/
430 float64 float64_round_to_int( float64 STATUS_PARAM );
431 float64 float64_trunc_to_int( float64 STATUS_PARAM );
432 float64 float64_add( float64, float64 STATUS_PARAM );
433 float64 float64_sub( float64, float64 STATUS_PARAM );
434 float64 float64_mul( float64, float64 STATUS_PARAM );
435 float64 float64_div( float64, float64 STATUS_PARAM );
436 float64 float64_rem( float64, float64 STATUS_PARAM );
437 float64 float64_sqrt( float64 STATUS_PARAM );
438 float64 float64_log2( float64 STATUS_PARAM );
439 int float64_eq( float64, float64 STATUS_PARAM );
440 int float64_le( float64, float64 STATUS_PARAM );
441 int float64_lt( float64, float64 STATUS_PARAM );
442 int float64_unordered( float64, float64 STATUS_PARAM );
443 int float64_eq_quiet( float64, float64 STATUS_PARAM );
444 int float64_le_quiet( float64, float64 STATUS_PARAM );
445 int float64_lt_quiet( float64, float64 STATUS_PARAM );
446 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
447 int float64_compare( float64, float64 STATUS_PARAM );
448 int float64_compare_quiet( float64, float64 STATUS_PARAM );
449 float64 float64_min(float64, float64 STATUS_PARAM);
450 float64 float64_max(float64, float64 STATUS_PARAM);
451 int float64_is_quiet_nan( float64 a );
452 int float64_is_signaling_nan( float64 );
453 float64 float64_maybe_silence_nan( float64 );
454 float64 float64_scalbn( float64, int STATUS_PARAM );
455
456 INLINE float64 float64_abs(float64 a)
457 {
458 /* Note that abs does *not* handle NaN specially, nor does
459 * it flush denormal inputs to zero.
460 */
461 return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
462 }
463
464 INLINE float64 float64_chs(float64 a)
465 {
466 /* Note that chs does *not* handle NaN specially, nor does
467 * it flush denormal inputs to zero.
468 */
469 return make_float64(float64_val(a) ^ 0x8000000000000000LL);
470 }
471
472 INLINE int float64_is_infinity(float64 a)
473 {
474 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
475 }
476
477 INLINE int float64_is_neg(float64 a)
478 {
479 return float64_val(a) >> 63;
480 }
481
482 INLINE int float64_is_zero(float64 a)
483 {
484 return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
485 }
486
487 INLINE int float64_is_any_nan(float64 a)
488 {
489 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
490 }
491
492 INLINE float64 float64_set_sign(float64 a, int sign)
493 {
494 return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
495 | ((int64_t)sign << 63));
496 }
497
498 #define float64_zero make_float64(0)
499 #define float64_one make_float64(0x3ff0000000000000LL)
500 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
501 #define float64_half make_float64(0x3fe0000000000000LL)
502 #define float64_infinity make_float64(0x7ff0000000000000LL)
503
504 /*----------------------------------------------------------------------------
505 | The pattern for a default generated double-precision NaN.
506 *----------------------------------------------------------------------------*/
507 #if defined(TARGET_SPARC)
508 #define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
509 #elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
510 #define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
511 #elif SNAN_BIT_IS_ONE
512 #define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
513 #else
514 #define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
515 #endif
516
517 #ifdef FLOATX80
518
519 /*----------------------------------------------------------------------------
520 | Software IEC/IEEE extended double-precision conversion routines.
521 *----------------------------------------------------------------------------*/
522 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
523 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
524 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
525 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
526 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
527 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
528 #ifdef FLOAT128
529 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
530 #endif
531
532 /*----------------------------------------------------------------------------
533 | Software IEC/IEEE extended double-precision operations.
534 *----------------------------------------------------------------------------*/
535 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
536 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
537 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
538 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
539 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
540 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
541 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
542 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
543 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
544 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
545 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
546 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
547 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
548 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
549 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
550 int floatx80_is_quiet_nan( floatx80 );
551 int floatx80_is_signaling_nan( floatx80 );
552 floatx80 floatx80_maybe_silence_nan( floatx80 );
553 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
554
555 INLINE floatx80 floatx80_abs(floatx80 a)
556 {
557 a.high &= 0x7fff;
558 return a;
559 }
560
561 INLINE floatx80 floatx80_chs(floatx80 a)
562 {
563 a.high ^= 0x8000;
564 return a;
565 }
566
567 INLINE int floatx80_is_infinity(floatx80 a)
568 {
569 return (a.high & 0x7fff) == 0x7fff && a.low == 0;
570 }
571
572 INLINE int floatx80_is_neg(floatx80 a)
573 {
574 return a.high >> 15;
575 }
576
577 INLINE int floatx80_is_zero(floatx80 a)
578 {
579 return (a.high & 0x7fff) == 0 && a.low == 0;
580 }
581
582 INLINE int floatx80_is_any_nan(floatx80 a)
583 {
584 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
585 }
586
587 /*----------------------------------------------------------------------------
588 | The pattern for a default generated extended double-precision NaN. The
589 | `high' and `low' values hold the most- and least-significant bits,
590 | respectively.
591 *----------------------------------------------------------------------------*/
592 #if SNAN_BIT_IS_ONE
593 #define floatx80_default_nan_high 0x7FFF
594 #define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
595 #else
596 #define floatx80_default_nan_high 0xFFFF
597 #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
598 #endif
599
600 #endif
601
602 #ifdef FLOAT128
603
604 /*----------------------------------------------------------------------------
605 | Software IEC/IEEE quadruple-precision conversion routines.
606 *----------------------------------------------------------------------------*/
607 int32 float128_to_int32( float128 STATUS_PARAM );
608 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
609 int64 float128_to_int64( float128 STATUS_PARAM );
610 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
611 float32 float128_to_float32( float128 STATUS_PARAM );
612 float64 float128_to_float64( float128 STATUS_PARAM );
613 #ifdef FLOATX80
614 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
615 #endif
616
617 /*----------------------------------------------------------------------------
618 | Software IEC/IEEE quadruple-precision operations.
619 *----------------------------------------------------------------------------*/
620 float128 float128_round_to_int( float128 STATUS_PARAM );
621 float128 float128_add( float128, float128 STATUS_PARAM );
622 float128 float128_sub( float128, float128 STATUS_PARAM );
623 float128 float128_mul( float128, float128 STATUS_PARAM );
624 float128 float128_div( float128, float128 STATUS_PARAM );
625 float128 float128_rem( float128, float128 STATUS_PARAM );
626 float128 float128_sqrt( float128 STATUS_PARAM );
627 int float128_eq( float128, float128 STATUS_PARAM );
628 int float128_le( float128, float128 STATUS_PARAM );
629 int float128_lt( float128, float128 STATUS_PARAM );
630 int float128_unordered( float128, float128 STATUS_PARAM );
631 int float128_eq_quiet( float128, float128 STATUS_PARAM );
632 int float128_le_quiet( float128, float128 STATUS_PARAM );
633 int float128_lt_quiet( float128, float128 STATUS_PARAM );
634 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
635 int float128_compare( float128, float128 STATUS_PARAM );
636 int float128_compare_quiet( float128, float128 STATUS_PARAM );
637 int float128_is_quiet_nan( float128 );
638 int float128_is_signaling_nan( float128 );
639 float128 float128_maybe_silence_nan( float128 );
640 float128 float128_scalbn( float128, int STATUS_PARAM );
641
642 INLINE float128 float128_abs(float128 a)
643 {
644 a.high &= 0x7fffffffffffffffLL;
645 return a;
646 }
647
648 INLINE float128 float128_chs(float128 a)
649 {
650 a.high ^= 0x8000000000000000LL;
651 return a;
652 }
653
654 INLINE int float128_is_infinity(float128 a)
655 {
656 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
657 }
658
659 INLINE int float128_is_neg(float128 a)
660 {
661 return a.high >> 63;
662 }
663
664 INLINE int float128_is_zero(float128 a)
665 {
666 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
667 }
668
669 INLINE int float128_is_any_nan(float128 a)
670 {
671 return ((a.high >> 48) & 0x7fff) == 0x7fff &&
672 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
673 }
674
675 /*----------------------------------------------------------------------------
676 | The pattern for a default generated quadruple-precision NaN. The `high' and
677 | `low' values hold the most- and least-significant bits, respectively.
678 *----------------------------------------------------------------------------*/
679 #if SNAN_BIT_IS_ONE
680 #define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
681 #define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
682 #else
683 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
684 #define float128_default_nan_low LIT64( 0x0000000000000000 )
685 #endif
686
687 #endif
688
689 #else /* CONFIG_SOFTFLOAT */
690
691 #include "softfloat-native.h"
692
693 #endif /* !CONFIG_SOFTFLOAT */
694
695 #endif /* !SOFTFLOAT_H */