]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/btrfs/extent_io.c
btrfs: Remove false alert when fiemap range is smaller than on-disk extent
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 refcount_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
93 }
94 #else
95 #define btrfs_leak_debug_add(new, head) do {} while (0)
96 #define btrfs_leak_debug_del(entry) do {} while (0)
97 #define btrfs_leak_debug_check() do {} while (0)
98 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
99 #endif
100
101 #define BUFFER_LRU_MAX 64
102
103 struct tree_entry {
104 u64 start;
105 u64 end;
106 struct rb_node rb_node;
107 };
108
109 struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
113 unsigned long bio_flags;
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
118 unsigned int extent_locked:1;
119
120 /* tells the submit_bio code to use REQ_SYNC */
121 unsigned int sync_io:1;
122 };
123
124 static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127 {
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
134 if (!set && (state->state & bits) == 0)
135 return;
136 changeset->bytes_changed += state->end - state->start + 1;
137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141 }
142
143 static noinline void flush_write_bio(void *data);
144 static inline struct btrfs_fs_info *
145 tree_fs_info(struct extent_io_tree *tree)
146 {
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
150 }
151
152 int __init extent_io_init(void)
153 {
154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
155 sizeof(struct extent_state), 0,
156 SLAB_MEM_SPREAD, NULL);
157 if (!extent_state_cache)
158 return -ENOMEM;
159
160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
161 sizeof(struct extent_buffer), 0,
162 SLAB_MEM_SPREAD, NULL);
163 if (!extent_buffer_cache)
164 goto free_state_cache;
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio));
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176 free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180 free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184 free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188 }
189
190 void extent_io_exit(void)
191 {
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203 }
204
205 void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207 {
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213 }
214
215 static struct extent_state *alloc_extent_state(gfp_t mask)
216 {
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235 }
236
237 void free_extent_state(struct extent_state *state)
238 {
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247 }
248
249 static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255 {
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279 do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283 }
284
285 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290 {
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335 }
336
337 static inline struct rb_node *
338 tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342 {
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350 }
351
352 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354 {
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356 }
357
358 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360 {
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363 }
364
365 /*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374 static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376 {
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407 }
408
409 static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411 {
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414 }
415
416 static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418 {
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421 }
422
423 static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427 /*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437 static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442 {
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463 }
464
465 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467 {
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470 }
471
472 /*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488 {
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505 }
506
507 static struct extent_state *next_state(struct extent_state *state)
508 {
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514 }
515
516 /*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527 {
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530
531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
536 clear_state_cb(tree, state, bits);
537 add_extent_changeset(state, bits_to_clear, changeset, 0);
538 state->state &= ~bits_to_clear;
539 if (wake)
540 wake_up(&state->wq);
541 if (state->state == 0) {
542 next = next_state(state);
543 if (extent_state_in_tree(state)) {
544 rb_erase(&state->rb_node, &tree->state);
545 RB_CLEAR_NODE(&state->rb_node);
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
552 next = next_state(state);
553 }
554 return next;
555 }
556
557 static struct extent_state *
558 alloc_extent_state_atomic(struct extent_state *prealloc)
559 {
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564 }
565
566 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
567 {
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
570 }
571
572 /*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
582 * This takes the tree lock, and returns 0 on success and < 0 on error.
583 */
584 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
588 {
589 struct extent_state *state;
590 struct extent_state *cached;
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
593 u64 last_end;
594 int err;
595 int clear = 0;
596
597 btrfs_debug_check_extent_io_range(tree, start, end);
598
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
608 again:
609 if (!prealloc && gfpflags_allow_blocking(mask)) {
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
617 prealloc = alloc_extent_state(mask);
618 }
619
620 spin_lock(&tree->lock);
621 if (cached_state) {
622 cached = *cached_state;
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
631 if (clear)
632 refcount_dec(&cached->refs);
633 state = cached;
634 goto hit_next;
635 }
636 if (clear)
637 free_extent_state(cached);
638 }
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
643 node = tree_search(tree, start);
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
647 hit_next:
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
651 last_end = state->end;
652
653 /* the state doesn't have the wanted bits, go ahead */
654 if (!(state->state & bits)) {
655 state = next_state(state);
656 goto next;
657 }
658
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
678 err = split_state(tree, state, prealloc, start);
679 if (err)
680 extent_io_tree_panic(tree, err);
681
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
688 goto next;
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
701 err = split_state(tree, state, prealloc, end + 1);
702 if (err)
703 extent_io_tree_panic(tree, err);
704
705 if (wake)
706 wake_up(&state->wq);
707
708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
709
710 prealloc = NULL;
711 goto out;
712 }
713
714 state = clear_state_bit(tree, state, &bits, wake, changeset);
715 next:
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
719 if (start <= end && state && !need_resched())
720 goto hit_next;
721
722 search_again:
723 if (start > end)
724 goto out;
725 spin_unlock(&tree->lock);
726 if (gfpflags_allow_blocking(mask))
727 cond_resched();
728 goto again;
729
730 out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
737 }
738
739 static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
741 __releases(tree->lock)
742 __acquires(tree->lock)
743 {
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
746 spin_unlock(&tree->lock);
747 schedule();
748 spin_lock(&tree->lock);
749 finish_wait(&state->wq, &wait);
750 }
751
752 /*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
757 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
759 {
760 struct extent_state *state;
761 struct rb_node *node;
762
763 btrfs_debug_check_extent_io_range(tree, start, end);
764
765 spin_lock(&tree->lock);
766 again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
772 node = tree_search(tree, start);
773 process_node:
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
784 refcount_inc(&state->refs);
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
798 }
799 out:
800 spin_unlock(&tree->lock);
801 }
802
803 static void set_state_bits(struct extent_io_tree *tree,
804 struct extent_state *state,
805 unsigned *bits, struct extent_changeset *changeset)
806 {
807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
808
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
814 add_extent_changeset(state, bits_to_set, changeset, 1);
815 state->state |= bits_to_set;
816 }
817
818 static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
820 unsigned flags)
821 {
822 if (cached_ptr && !(*cached_ptr)) {
823 if (!flags || (state->state & flags)) {
824 *cached_ptr = state;
825 refcount_inc(&state->refs);
826 }
827 }
828 }
829
830 static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832 {
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835 }
836
837 /*
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
840 *
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
844 *
845 * [start, end] is inclusive This takes the tree lock.
846 */
847
848 static int __must_check
849 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
850 unsigned bits, unsigned exclusive_bits,
851 u64 *failed_start, struct extent_state **cached_state,
852 gfp_t mask, struct extent_changeset *changeset)
853 {
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
857 struct rb_node **p;
858 struct rb_node *parent;
859 int err = 0;
860 u64 last_start;
861 u64 last_end;
862
863 btrfs_debug_check_extent_io_range(tree, start, end);
864
865 bits |= EXTENT_FIRST_DELALLOC;
866 again:
867 if (!prealloc && gfpflags_allow_blocking(mask)) {
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
875 prealloc = alloc_extent_state(mask);
876 }
877
878 spin_lock(&tree->lock);
879 if (cached_state && *cached_state) {
880 state = *cached_state;
881 if (state->start <= start && state->end > start &&
882 extent_state_in_tree(state)) {
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
891 node = tree_search_for_insert(tree, start, &p, &parent);
892 if (!node) {
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
895 err = insert_state(tree, prealloc, start, end,
896 &p, &parent, &bits, changeset);
897 if (err)
898 extent_io_tree_panic(tree, err);
899
900 cache_state(prealloc, cached_state);
901 prealloc = NULL;
902 goto out;
903 }
904 state = rb_entry(node, struct extent_state, rb_node);
905 hit_next:
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
916 if (state->state & exclusive_bits) {
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
921
922 set_state_bits(tree, state, &bits, changeset);
923 cache_state(state, cached_state);
924 merge_state(tree, state);
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
952 if (state->state & exclusive_bits) {
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
960 err = split_state(tree, state, prealloc, start);
961 if (err)
962 extent_io_tree_panic(tree, err);
963
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
968 set_state_bits(tree, state, &bits, changeset);
969 cache_state(state, cached_state);
970 merge_state(tree, state);
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
993 this_end = last_start - 1;
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
1002 err = insert_state(tree, prealloc, start, this_end,
1003 NULL, NULL, &bits, changeset);
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1019 if (state->state & exclusive_bits) {
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
1027 err = split_state(tree, state, prealloc, end + 1);
1028 if (err)
1029 extent_io_tree_panic(tree, err);
1030
1031 set_state_bits(tree, prealloc, &bits, changeset);
1032 cache_state(prealloc, cached_state);
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
1038 search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
1045
1046 out:
1047 spin_unlock(&tree->lock);
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
1053 }
1054
1055 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1056 unsigned bits, u64 * failed_start,
1057 struct extent_state **cached_state, gfp_t mask)
1058 {
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1060 cached_state, mask, NULL);
1061 }
1062
1063
1064 /**
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
1072 * @cached_state: state that we're going to cache
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
1079 *
1080 * All allocations are done with GFP_NOFS.
1081 */
1082 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1083 unsigned bits, unsigned clear_bits,
1084 struct extent_state **cached_state)
1085 {
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
1089 struct rb_node **p;
1090 struct rb_node *parent;
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
1094 bool first_iteration = true;
1095
1096 btrfs_debug_check_extent_io_range(tree, start, end);
1097
1098 again:
1099 if (!prealloc) {
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
1107 prealloc = alloc_extent_state(GFP_NOFS);
1108 if (!prealloc && !first_iteration)
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
1116 extent_state_in_tree(state)) {
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
1126 node = tree_search_for_insert(tree, start, &p, &parent);
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
1133 err = insert_state(tree, prealloc, start, end,
1134 &p, &parent, &bits, NULL);
1135 if (err)
1136 extent_io_tree_panic(tree, err);
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142 hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
1153 set_state_bits(tree, state, &bits, NULL);
1154 cache_state(state, cached_state);
1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
1187 err = split_state(tree, state, prealloc, start);
1188 if (err)
1189 extent_io_tree_panic(tree, err);
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
1194 set_state_bits(tree, state, &bits, NULL);
1195 cache_state(state, cached_state);
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
1232 NULL, NULL, &bits, NULL);
1233 if (err)
1234 extent_io_tree_panic(tree, err);
1235 cache_state(prealloc, cached_state);
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
1252
1253 err = split_state(tree, state, prealloc, end + 1);
1254 if (err)
1255 extent_io_tree_panic(tree, err);
1256
1257 set_state_bits(tree, prealloc, &bits, NULL);
1258 cache_state(prealloc, cached_state);
1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
1264 search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
1268 cond_resched();
1269 first_iteration = false;
1270 goto again;
1271
1272 out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
1278 }
1279
1280 /* wrappers around set/clear extent bit */
1281 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1282 unsigned bits, struct extent_changeset *changeset)
1283 {
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1293 changeset);
1294 }
1295
1296 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299 {
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302 }
1303
1304 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, struct extent_changeset *changeset)
1306 {
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1314 changeset);
1315 }
1316
1317 /*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1321 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state)
1323 {
1324 int err;
1325 u64 failed_start;
1326
1327 while (1) {
1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1329 EXTENT_LOCKED, &failed_start,
1330 cached_state, GFP_NOFS, NULL);
1331 if (err == -EEXIST) {
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
1334 } else
1335 break;
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339 }
1340
1341 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1342 {
1343 int err;
1344 u64 failed_start;
1345
1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1347 &failed_start, NULL, GFP_NOFS, NULL);
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1352 return 0;
1353 }
1354 return 1;
1355 }
1356
1357 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1358 {
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
1367 put_page(page);
1368 index++;
1369 }
1370 }
1371
1372 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373 {
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 __set_page_dirty_nobuffers(page);
1382 account_page_redirty(page);
1383 put_page(page);
1384 index++;
1385 }
1386 }
1387
1388 /*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
1391 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1392 {
1393 tree->ops->set_range_writeback(tree->private_data, start, end);
1394 }
1395
1396 /* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
1400 static struct extent_state *
1401 find_first_extent_bit_state(struct extent_io_tree *tree,
1402 u64 start, unsigned bits)
1403 {
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
1412 if (!node)
1413 goto out;
1414
1415 while (1) {
1416 state = rb_entry(node, struct extent_state, rb_node);
1417 if (state->end >= start && (state->state & bits))
1418 return state;
1419
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424 out:
1425 return NULL;
1426 }
1427
1428 /*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
1433 * If nothing was found, 1 is returned. If found something, return 0.
1434 */
1435 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1436 u64 *start_ret, u64 *end_ret, unsigned bits,
1437 struct extent_state **cached_state)
1438 {
1439 struct extent_state *state;
1440 struct rb_node *n;
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
1463 state = find_first_extent_bit_state(tree, start, bits);
1464 got_it:
1465 if (state) {
1466 cache_state_if_flags(state, cached_state, 0);
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
1471 out:
1472 spin_unlock(&tree->lock);
1473 return ret;
1474 }
1475
1476 /*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
1482 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
1485 {
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
1492 spin_lock(&tree->lock);
1493
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
1498 node = tree_search(tree, cur_start);
1499 if (!node) {
1500 if (!found)
1501 *end = (u64)-1;
1502 goto out;
1503 }
1504
1505 while (1) {
1506 state = rb_entry(node, struct extent_state, rb_node);
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
1516 if (!found) {
1517 *start = state->start;
1518 *cached_state = state;
1519 refcount_inc(&state->refs);
1520 }
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
1525 total_bytes += state->end - state->start + 1;
1526 if (total_bytes >= max_bytes)
1527 break;
1528 if (!node)
1529 break;
1530 }
1531 out:
1532 spin_unlock(&tree->lock);
1533 return found;
1534 }
1535
1536 static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
1541 static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
1544 {
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
1547
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && end_index == index)
1550 return;
1551
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
1554 }
1555
1556 static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560 {
1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
1562 unsigned long index_ret = index;
1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1564 int ret;
1565
1566 ASSERT(locked_page);
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
1575 return ret;
1576 }
1577
1578 /*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
1584 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
1588 {
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
1592 struct extent_state *cached_state = NULL;
1593 int ret;
1594 int loops = 0;
1595
1596 again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1601 max_bytes, &cached_state);
1602 if (!found || delalloc_end <= *start) {
1603 *start = delalloc_start;
1604 *end = delalloc_end;
1605 free_extent_state(cached_state);
1606 return 0;
1607 }
1608
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
1614 if (delalloc_start < *start)
1615 delalloc_start = *start;
1616
1617 /*
1618 * make sure to limit the number of pages we try to lock down
1619 */
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
1622
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
1630 free_extent_state(cached_state);
1631 cached_state = NULL;
1632 if (!loops) {
1633 max_bytes = PAGE_SIZE;
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1642
1643 /* step three, lock the state bits for the whole range */
1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1648 EXTENT_DELALLOC, 1, cached_state);
1649 if (!ret) {
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
1657 free_extent_state(cached_state);
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660 out_failed:
1661 return found;
1662 }
1663
1664 static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
1668 {
1669 unsigned long nr_pages = end_index - start_index + 1;
1670 unsigned long pages_locked = 0;
1671 pgoff_t index = start_index;
1672 struct page *pages[16];
1673 unsigned ret;
1674 int err = 0;
1675 int i;
1676
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1683 mapping_set_error(mapping, -EIO);
1684
1685 while (nr_pages > 0) {
1686 ret = find_get_pages_contig(mapping, index,
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
1695 err = -EAGAIN;
1696 goto out;
1697 }
1698
1699 for (i = 0; i < ret; i++) {
1700 if (page_ops & PAGE_SET_PRIVATE2)
1701 SetPagePrivate2(pages[i]);
1702
1703 if (pages[i] == locked_page) {
1704 put_page(pages[i]);
1705 pages_locked++;
1706 continue;
1707 }
1708 if (page_ops & PAGE_CLEAR_DIRTY)
1709 clear_page_dirty_for_io(pages[i]);
1710 if (page_ops & PAGE_SET_WRITEBACK)
1711 set_page_writeback(pages[i]);
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
1714 if (page_ops & PAGE_END_WRITEBACK)
1715 end_page_writeback(pages[i]);
1716 if (page_ops & PAGE_UNLOCK)
1717 unlock_page(pages[i]);
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
1728 put_page(pages[i]);
1729 pages_locked++;
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
1735 out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
1739 }
1740
1741 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745 {
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1751 page_ops, NULL);
1752 }
1753
1754 /*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
1759 u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
1761 unsigned bits, int contig)
1762 {
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
1767 u64 last = 0;
1768 int found = 0;
1769
1770 if (WARN_ON(search_end <= cur_start))
1771 return 0;
1772
1773 spin_lock(&tree->lock);
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
1782 node = tree_search(tree, cur_start);
1783 if (!node)
1784 goto out;
1785
1786 while (1) {
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
1798 *start = max(cur_start, state->start);
1799 found = 1;
1800 }
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809 out:
1810 spin_unlock(&tree->lock);
1811 return total_bytes;
1812 }
1813
1814 /*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
1818 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1819 struct io_failure_record *failrec)
1820 {
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
1825 spin_lock(&tree->lock);
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
1830 node = tree_search(tree, start);
1831 if (!node) {
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state->failrec = failrec;
1841 out:
1842 spin_unlock(&tree->lock);
1843 return ret;
1844 }
1845
1846 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1847 struct io_failure_record **failrec)
1848 {
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
1853 spin_lock(&tree->lock);
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
1858 node = tree_search(tree, start);
1859 if (!node) {
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 *failrec = state->failrec;
1869 out:
1870 spin_unlock(&tree->lock);
1871 return ret;
1872 }
1873
1874 /*
1875 * searches a range in the state tree for a given mask.
1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1881 unsigned bits, int filled, struct extent_state *cached)
1882 {
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
1886
1887 spin_lock(&tree->lock);
1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1889 cached->end > start)
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
1926 spin_unlock(&tree->lock);
1927 return bitset;
1928 }
1929
1930 /*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
1934 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1935 {
1936 u64 start = page_offset(page);
1937 u64 end = start + PAGE_SIZE - 1;
1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1939 SetPageUptodate(page);
1940 }
1941
1942 int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
1945 {
1946 int ret;
1947 int err = 0;
1948
1949 set_state_failrec(failure_tree, rec->start, NULL);
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
1952 EXTENT_LOCKED | EXTENT_DIRTY);
1953 if (ret)
1954 err = ret;
1955
1956 ret = clear_extent_bits(io_tree, rec->start,
1957 rec->start + rec->len - 1,
1958 EXTENT_DAMAGED);
1959 if (ret && !err)
1960 err = ret;
1961
1962 kfree(rec);
1963 return err;
1964 }
1965
1966 /*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
1971 * to avoid any synchronization issues, wait for the data after writing, which
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
1976 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
1979 {
1980 struct bio *bio;
1981 struct btrfs_device *dev;
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
1988 BUG_ON(!mirror_num);
1989
1990 bio = btrfs_io_bio_alloc(1);
1991 bio->bi_iter.bi_size = 0;
1992 map_length = length;
1993
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
2000 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
2024 }
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2027 bio->bi_iter.bi_sector = sector;
2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2029 btrfs_put_bbio(bbio);
2030 if (!dev || !dev->bdev || !dev->writeable) {
2031 btrfs_bio_counter_dec(fs_info);
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 bio->bi_bdev = dev->bdev;
2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2037 bio_add_page(bio, page, length, pg_offset);
2038
2039 if (btrfsic_submit_bio_wait(bio)) {
2040 /* try to remap that extent elsewhere? */
2041 btrfs_bio_counter_dec(fs_info);
2042 bio_put(bio);
2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2044 return -EIO;
2045 }
2046
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2049 ino, start,
2050 rcu_str_deref(dev->name), sector);
2051 btrfs_bio_counter_dec(fs_info);
2052 bio_put(bio);
2053 return 0;
2054 }
2055
2056 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
2058 {
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2061 int ret = 0;
2062
2063 if (fs_info->sb->s_flags & MS_RDONLY)
2064 return -EROFS;
2065
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = eb->pages[i];
2068
2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2070 start - page_offset(p), mirror_num);
2071 if (ret)
2072 break;
2073 start += PAGE_SIZE;
2074 }
2075
2076 return ret;
2077 }
2078
2079 /*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
2083 int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
2087 {
2088 u64 private;
2089 struct io_failure_record *failrec;
2090 struct extent_state *state;
2091 int num_copies;
2092 int ret;
2093
2094 private = 0;
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
2097 if (!ret)
2098 return 0;
2099
2100 ret = get_state_failrec(failure_tree, start, &failrec);
2101 if (ret)
2102 return 0;
2103
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
2111 goto out;
2112 }
2113 if (fs_info->sb->s_flags & MS_RDONLY)
2114 goto out;
2115
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
2118 failrec->start,
2119 EXTENT_LOCKED);
2120 spin_unlock(&io_tree->lock);
2121
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
2126 if (num_copies > 1) {
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
2130 }
2131 }
2132
2133 out:
2134 free_io_failure(failure_tree, io_tree, failrec);
2135
2136 return 0;
2137 }
2138
2139 /*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
2145 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2146 {
2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
2164 failrec = state->failrec;
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171 }
2172
2173 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2174 struct io_failure_record **failrec_ret)
2175 {
2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2177 struct io_failure_record *failrec;
2178 struct extent_map *em;
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2182 int ret;
2183 u64 logical;
2184
2185 ret = get_state_failrec(failure_tree, start, &failrec);
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2190
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
2205 if (em->start > start || em->start + em->len <= start) {
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
2210 if (!em) {
2211 kfree(failrec);
2212 return -EIO;
2213 }
2214
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2223
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2227
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
2233 EXTENT_LOCKED | EXTENT_DIRTY);
2234 if (ret >= 0)
2235 ret = set_state_failrec(failure_tree, start, failrec);
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258 }
2259
2260 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2262 {
2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2264 int num_copies;
2265
2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
2276 return 0;
2277 }
2278
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
2311 }
2312
2313 if (failrec->this_mirror > num_copies) {
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
2317 return 0;
2318 }
2319
2320 return 1;
2321 }
2322
2323
2324 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
2327 bio_end_io_t *endio_func, void *data)
2328 {
2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
2334 bio = btrfs_io_bio_alloc(1);
2335 bio->bi_end_io = endio_func;
2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
2337 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
2338 bio->bi_iter.bi_size = 0;
2339 bio->bi_private = data;
2340
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2349 csum_size);
2350 }
2351
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355 }
2356
2357 /*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368 {
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2373 struct bio *bio;
2374 int read_mode = 0;
2375 int ret;
2376
2377 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2378
2379 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2380 if (ret)
2381 return ret;
2382
2383 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2384 if (!ret) {
2385 free_io_failure(failure_tree, tree, failrec);
2386 return -EIO;
2387 }
2388
2389 if (failed_bio->bi_vcnt > 1)
2390 read_mode |= REQ_FAILFAST_DEV;
2391
2392 phy_offset >>= inode->i_sb->s_blocksize_bits;
2393 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2394 start - page_offset(page),
2395 (int)phy_offset, failed_bio->bi_end_io,
2396 NULL);
2397 if (!bio) {
2398 free_io_failure(failure_tree, tree, failrec);
2399 return -EIO;
2400 }
2401 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2402
2403 btrfs_debug(btrfs_sb(inode->i_sb),
2404 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2405 read_mode, failrec->this_mirror, failrec->in_validation);
2406
2407 ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2408 failrec->bio_flags, 0);
2409 if (ret) {
2410 free_io_failure(failure_tree, tree, failrec);
2411 bio_put(bio);
2412 }
2413
2414 return ret;
2415 }
2416
2417 /* lots and lots of room for performance fixes in the end_bio funcs */
2418
2419 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2420 {
2421 int uptodate = (err == 0);
2422 struct extent_io_tree *tree;
2423 int ret = 0;
2424
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427 if (tree->ops && tree->ops->writepage_end_io_hook)
2428 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2429 uptodate);
2430
2431 if (!uptodate) {
2432 ClearPageUptodate(page);
2433 SetPageError(page);
2434 ret = err < 0 ? err : -EIO;
2435 mapping_set_error(page->mapping, ret);
2436 }
2437 }
2438
2439 /*
2440 * after a writepage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * clear the writeback bits in the extent tree for this IO
2443 * end_page_writeback if the page has no more pending IO
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
2448 static void end_bio_extent_writepage(struct bio *bio)
2449 {
2450 struct bio_vec *bvec;
2451 u64 start;
2452 u64 end;
2453 int i;
2454
2455 bio_for_each_segment_all(bvec, bio, i) {
2456 struct page *page = bvec->bv_page;
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2459
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2467 btrfs_err(fs_info,
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
2471 btrfs_info(fs_info,
2472 "incomplete page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 }
2475
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
2478
2479 end_extent_writepage(page, bio->bi_error, start, end);
2480 end_page_writeback(page);
2481 }
2482
2483 bio_put(bio);
2484 }
2485
2486 static void
2487 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2488 int uptodate)
2489 {
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2492
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2496 }
2497
2498 /*
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2505 *
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2508 */
2509 static void end_bio_extent_readpage(struct bio *bio)
2510 {
2511 struct bio_vec *bvec;
2512 int uptodate = !bio->bi_error;
2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2514 struct extent_io_tree *tree, *failure_tree;
2515 u64 offset = 0;
2516 u64 start;
2517 u64 end;
2518 u64 len;
2519 u64 extent_start = 0;
2520 u64 extent_len = 0;
2521 int mirror;
2522 int ret;
2523 int i;
2524
2525 bio_for_each_segment_all(bvec, bio, i) {
2526 struct page *page = bvec->bv_page;
2527 struct inode *inode = page->mapping->host;
2528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2529
2530 btrfs_debug(fs_info,
2531 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2532 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2533 io_bio->mirror_num);
2534 tree = &BTRFS_I(inode)->io_tree;
2535 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2536
2537 /* We always issue full-page reads, but if some block
2538 * in a page fails to read, blk_update_request() will
2539 * advance bv_offset and adjust bv_len to compensate.
2540 * Print a warning for nonzero offsets, and an error
2541 * if they don't add up to a full page. */
2542 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2543 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2544 btrfs_err(fs_info,
2545 "partial page read in btrfs with offset %u and length %u",
2546 bvec->bv_offset, bvec->bv_len);
2547 else
2548 btrfs_info(fs_info,
2549 "incomplete page read in btrfs with offset %u and length %u",
2550 bvec->bv_offset, bvec->bv_len);
2551 }
2552
2553 start = page_offset(page);
2554 end = start + bvec->bv_offset + bvec->bv_len - 1;
2555 len = bvec->bv_len;
2556
2557 mirror = io_bio->mirror_num;
2558 if (likely(uptodate && tree->ops)) {
2559 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2560 page, start, end,
2561 mirror);
2562 if (ret)
2563 uptodate = 0;
2564 else
2565 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2566 failure_tree, tree, start,
2567 page,
2568 btrfs_ino(BTRFS_I(inode)), 0);
2569 }
2570
2571 if (likely(uptodate))
2572 goto readpage_ok;
2573
2574 if (tree->ops) {
2575 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2576 if (ret == -EAGAIN) {
2577 /*
2578 * Data inode's readpage_io_failed_hook() always
2579 * returns -EAGAIN.
2580 *
2581 * The generic bio_readpage_error handles errors
2582 * the following way: If possible, new read
2583 * requests are created and submitted and will
2584 * end up in end_bio_extent_readpage as well (if
2585 * we're lucky, not in the !uptodate case). In
2586 * that case it returns 0 and we just go on with
2587 * the next page in our bio. If it can't handle
2588 * the error it will return -EIO and we remain
2589 * responsible for that page.
2590 */
2591 ret = bio_readpage_error(bio, offset, page,
2592 start, end, mirror);
2593 if (ret == 0) {
2594 uptodate = !bio->bi_error;
2595 offset += len;
2596 continue;
2597 }
2598 }
2599
2600 /*
2601 * metadata's readpage_io_failed_hook() always returns
2602 * -EIO and fixes nothing. -EIO is also returned if
2603 * data inode error could not be fixed.
2604 */
2605 ASSERT(ret == -EIO);
2606 }
2607 readpage_ok:
2608 if (likely(uptodate)) {
2609 loff_t i_size = i_size_read(inode);
2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
2611 unsigned off;
2612
2613 /* Zero out the end if this page straddles i_size */
2614 off = i_size & (PAGE_SIZE-1);
2615 if (page->index == end_index && off)
2616 zero_user_segment(page, off, PAGE_SIZE);
2617 SetPageUptodate(page);
2618 } else {
2619 ClearPageUptodate(page);
2620 SetPageError(page);
2621 }
2622 unlock_page(page);
2623 offset += len;
2624
2625 if (unlikely(!uptodate)) {
2626 if (extent_len) {
2627 endio_readpage_release_extent(tree,
2628 extent_start,
2629 extent_len, 1);
2630 extent_start = 0;
2631 extent_len = 0;
2632 }
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2640 } else {
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 }
2646 }
2647
2648 if (extent_len)
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2650 uptodate);
2651 if (io_bio->end_io)
2652 io_bio->end_io(io_bio, bio->bi_error);
2653 bio_put(bio);
2654 }
2655
2656 /*
2657 * Initialize the members up to but not including 'bio'. Use after allocating a
2658 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2659 * 'bio' because use of __GFP_ZERO is not supported.
2660 */
2661 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2662 {
2663 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2664 }
2665
2666 /*
2667 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2668 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2669 * for the appropriate container_of magic
2670 */
2671 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2672 {
2673 struct bio *bio;
2674
2675 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2676 bio->bi_bdev = bdev;
2677 bio->bi_iter.bi_sector = first_byte >> 9;
2678 btrfs_io_bio_init(btrfs_io_bio(bio));
2679 return bio;
2680 }
2681
2682 struct bio *btrfs_bio_clone(struct bio *bio)
2683 {
2684 struct btrfs_io_bio *btrfs_bio;
2685 struct bio *new;
2686
2687 /* Bio allocation backed by a bioset does not fail */
2688 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2689 btrfs_bio = btrfs_io_bio(new);
2690 btrfs_io_bio_init(btrfs_bio);
2691 btrfs_bio->iter = bio->bi_iter;
2692 return new;
2693 }
2694
2695 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2696 {
2697 struct bio *bio;
2698
2699 /* Bio allocation backed by a bioset does not fail */
2700 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2701 btrfs_io_bio_init(btrfs_io_bio(bio));
2702 return bio;
2703 }
2704
2705 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2706 {
2707 struct bio *bio;
2708 struct btrfs_io_bio *btrfs_bio;
2709
2710 /* this will never fail when it's backed by a bioset */
2711 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2712 ASSERT(bio);
2713
2714 btrfs_bio = btrfs_io_bio(bio);
2715 btrfs_io_bio_init(btrfs_bio);
2716
2717 bio_trim(bio, offset >> 9, size >> 9);
2718 btrfs_bio->iter = bio->bi_iter;
2719 return bio;
2720 }
2721
2722 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2723 unsigned long bio_flags)
2724 {
2725 int ret = 0;
2726 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2727 struct page *page = bvec->bv_page;
2728 struct extent_io_tree *tree = bio->bi_private;
2729 u64 start;
2730
2731 start = page_offset(page) + bvec->bv_offset;
2732
2733 bio->bi_private = NULL;
2734 bio_get(bio);
2735
2736 if (tree->ops)
2737 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2738 mirror_num, bio_flags, start);
2739 else
2740 btrfsic_submit_bio(bio);
2741
2742 bio_put(bio);
2743 return ret;
2744 }
2745
2746 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2747 unsigned long offset, size_t size, struct bio *bio,
2748 unsigned long bio_flags)
2749 {
2750 int ret = 0;
2751 if (tree->ops)
2752 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2753 bio_flags);
2754 return ret;
2755
2756 }
2757
2758 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2759 struct writeback_control *wbc,
2760 struct page *page, sector_t sector,
2761 size_t size, unsigned long offset,
2762 struct block_device *bdev,
2763 struct bio **bio_ret,
2764 bio_end_io_t end_io_func,
2765 int mirror_num,
2766 unsigned long prev_bio_flags,
2767 unsigned long bio_flags,
2768 bool force_bio_submit)
2769 {
2770 int ret = 0;
2771 struct bio *bio;
2772 int contig = 0;
2773 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2774 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2775
2776 if (bio_ret && *bio_ret) {
2777 bio = *bio_ret;
2778 if (old_compressed)
2779 contig = bio->bi_iter.bi_sector == sector;
2780 else
2781 contig = bio_end_sector(bio) == sector;
2782
2783 if (prev_bio_flags != bio_flags || !contig ||
2784 force_bio_submit ||
2785 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2786 bio_add_page(bio, page, page_size, offset) < page_size) {
2787 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2788 if (ret < 0) {
2789 *bio_ret = NULL;
2790 return ret;
2791 }
2792 bio = NULL;
2793 } else {
2794 if (wbc)
2795 wbc_account_io(wbc, page, page_size);
2796 return 0;
2797 }
2798 }
2799
2800 bio = btrfs_bio_alloc(bdev, sector << 9);
2801 bio_add_page(bio, page, page_size, offset);
2802 bio->bi_end_io = end_io_func;
2803 bio->bi_private = tree;
2804 bio_set_op_attrs(bio, op, op_flags);
2805 if (wbc) {
2806 wbc_init_bio(wbc, bio);
2807 wbc_account_io(wbc, page, page_size);
2808 }
2809
2810 if (bio_ret)
2811 *bio_ret = bio;
2812 else
2813 ret = submit_one_bio(bio, mirror_num, bio_flags);
2814
2815 return ret;
2816 }
2817
2818 static void attach_extent_buffer_page(struct extent_buffer *eb,
2819 struct page *page)
2820 {
2821 if (!PagePrivate(page)) {
2822 SetPagePrivate(page);
2823 get_page(page);
2824 set_page_private(page, (unsigned long)eb);
2825 } else {
2826 WARN_ON(page->private != (unsigned long)eb);
2827 }
2828 }
2829
2830 void set_page_extent_mapped(struct page *page)
2831 {
2832 if (!PagePrivate(page)) {
2833 SetPagePrivate(page);
2834 get_page(page);
2835 set_page_private(page, EXTENT_PAGE_PRIVATE);
2836 }
2837 }
2838
2839 static struct extent_map *
2840 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2841 u64 start, u64 len, get_extent_t *get_extent,
2842 struct extent_map **em_cached)
2843 {
2844 struct extent_map *em;
2845
2846 if (em_cached && *em_cached) {
2847 em = *em_cached;
2848 if (extent_map_in_tree(em) && start >= em->start &&
2849 start < extent_map_end(em)) {
2850 refcount_inc(&em->refs);
2851 return em;
2852 }
2853
2854 free_extent_map(em);
2855 *em_cached = NULL;
2856 }
2857
2858 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2859 if (em_cached && !IS_ERR_OR_NULL(em)) {
2860 BUG_ON(*em_cached);
2861 refcount_inc(&em->refs);
2862 *em_cached = em;
2863 }
2864 return em;
2865 }
2866 /*
2867 * basic readpage implementation. Locked extent state structs are inserted
2868 * into the tree that are removed when the IO is done (by the end_io
2869 * handlers)
2870 * XXX JDM: This needs looking at to ensure proper page locking
2871 * return 0 on success, otherwise return error
2872 */
2873 static int __do_readpage(struct extent_io_tree *tree,
2874 struct page *page,
2875 get_extent_t *get_extent,
2876 struct extent_map **em_cached,
2877 struct bio **bio, int mirror_num,
2878 unsigned long *bio_flags, int read_flags,
2879 u64 *prev_em_start)
2880 {
2881 struct inode *inode = page->mapping->host;
2882 u64 start = page_offset(page);
2883 u64 page_end = start + PAGE_SIZE - 1;
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret = 0;
2894 int nr = 0;
2895 size_t pg_offset = 0;
2896 size_t iosize;
2897 size_t disk_io_size;
2898 size_t blocksize = inode->i_sb->s_blocksize;
2899 unsigned long this_bio_flag = 0;
2900
2901 set_page_extent_mapped(page);
2902
2903 end = page_end;
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
2907 unlock_extent(tree, start, end);
2908 goto out;
2909 }
2910 }
2911
2912 if (page->index == last_byte >> PAGE_SHIFT) {
2913 char *userpage;
2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2915
2916 if (zero_offset) {
2917 iosize = PAGE_SIZE - zero_offset;
2918 userpage = kmap_atomic(page);
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
2921 kunmap_atomic(userpage);
2922 }
2923 }
2924 while (cur <= end) {
2925 bool force_bio_submit = false;
2926
2927 if (cur >= last_byte) {
2928 char *userpage;
2929 struct extent_state *cached = NULL;
2930
2931 iosize = PAGE_SIZE - pg_offset;
2932 userpage = kmap_atomic(page);
2933 memset(userpage + pg_offset, 0, iosize);
2934 flush_dcache_page(page);
2935 kunmap_atomic(userpage);
2936 set_extent_uptodate(tree, cur, cur + iosize - 1,
2937 &cached, GFP_NOFS);
2938 unlock_extent_cached(tree, cur,
2939 cur + iosize - 1,
2940 &cached, GFP_NOFS);
2941 break;
2942 }
2943 em = __get_extent_map(inode, page, pg_offset, cur,
2944 end - cur + 1, get_extent, em_cached);
2945 if (IS_ERR_OR_NULL(em)) {
2946 SetPageError(page);
2947 unlock_extent(tree, cur, end);
2948 break;
2949 }
2950 extent_offset = cur - em->start;
2951 BUG_ON(extent_map_end(em) <= cur);
2952 BUG_ON(end < cur);
2953
2954 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2955 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2956 extent_set_compress_type(&this_bio_flag,
2957 em->compress_type);
2958 }
2959
2960 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2961 cur_end = min(extent_map_end(em) - 1, end);
2962 iosize = ALIGN(iosize, blocksize);
2963 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2964 disk_io_size = em->block_len;
2965 sector = em->block_start >> 9;
2966 } else {
2967 sector = (em->block_start + extent_offset) >> 9;
2968 disk_io_size = iosize;
2969 }
2970 bdev = em->bdev;
2971 block_start = em->block_start;
2972 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2973 block_start = EXTENT_MAP_HOLE;
2974
2975 /*
2976 * If we have a file range that points to a compressed extent
2977 * and it's followed by a consecutive file range that points to
2978 * to the same compressed extent (possibly with a different
2979 * offset and/or length, so it either points to the whole extent
2980 * or only part of it), we must make sure we do not submit a
2981 * single bio to populate the pages for the 2 ranges because
2982 * this makes the compressed extent read zero out the pages
2983 * belonging to the 2nd range. Imagine the following scenario:
2984 *
2985 * File layout
2986 * [0 - 8K] [8K - 24K]
2987 * | |
2988 * | |
2989 * points to extent X, points to extent X,
2990 * offset 4K, length of 8K offset 0, length 16K
2991 *
2992 * [extent X, compressed length = 4K uncompressed length = 16K]
2993 *
2994 * If the bio to read the compressed extent covers both ranges,
2995 * it will decompress extent X into the pages belonging to the
2996 * first range and then it will stop, zeroing out the remaining
2997 * pages that belong to the other range that points to extent X.
2998 * So here we make sure we submit 2 bios, one for the first
2999 * range and another one for the third range. Both will target
3000 * the same physical extent from disk, but we can't currently
3001 * make the compressed bio endio callback populate the pages
3002 * for both ranges because each compressed bio is tightly
3003 * coupled with a single extent map, and each range can have
3004 * an extent map with a different offset value relative to the
3005 * uncompressed data of our extent and different lengths. This
3006 * is a corner case so we prioritize correctness over
3007 * non-optimal behavior (submitting 2 bios for the same extent).
3008 */
3009 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3010 prev_em_start && *prev_em_start != (u64)-1 &&
3011 *prev_em_start != em->orig_start)
3012 force_bio_submit = true;
3013
3014 if (prev_em_start)
3015 *prev_em_start = em->orig_start;
3016
3017 free_extent_map(em);
3018 em = NULL;
3019
3020 /* we've found a hole, just zero and go on */
3021 if (block_start == EXTENT_MAP_HOLE) {
3022 char *userpage;
3023 struct extent_state *cached = NULL;
3024
3025 userpage = kmap_atomic(page);
3026 memset(userpage + pg_offset, 0, iosize);
3027 flush_dcache_page(page);
3028 kunmap_atomic(userpage);
3029
3030 set_extent_uptodate(tree, cur, cur + iosize - 1,
3031 &cached, GFP_NOFS);
3032 unlock_extent_cached(tree, cur,
3033 cur + iosize - 1,
3034 &cached, GFP_NOFS);
3035 cur = cur + iosize;
3036 pg_offset += iosize;
3037 continue;
3038 }
3039 /* the get_extent function already copied into the page */
3040 if (test_range_bit(tree, cur, cur_end,
3041 EXTENT_UPTODATE, 1, NULL)) {
3042 check_page_uptodate(tree, page);
3043 unlock_extent(tree, cur, cur + iosize - 1);
3044 cur = cur + iosize;
3045 pg_offset += iosize;
3046 continue;
3047 }
3048 /* we have an inline extent but it didn't get marked up
3049 * to date. Error out
3050 */
3051 if (block_start == EXTENT_MAP_INLINE) {
3052 SetPageError(page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058
3059 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3060 page, sector, disk_io_size, pg_offset,
3061 bdev, bio,
3062 end_bio_extent_readpage, mirror_num,
3063 *bio_flags,
3064 this_bio_flag,
3065 force_bio_submit);
3066 if (!ret) {
3067 nr++;
3068 *bio_flags = this_bio_flag;
3069 } else {
3070 SetPageError(page);
3071 unlock_extent(tree, cur, cur + iosize - 1);
3072 goto out;
3073 }
3074 cur = cur + iosize;
3075 pg_offset += iosize;
3076 }
3077 out:
3078 if (!nr) {
3079 if (!PageError(page))
3080 SetPageUptodate(page);
3081 unlock_page(page);
3082 }
3083 return ret;
3084 }
3085
3086 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3087 struct page *pages[], int nr_pages,
3088 u64 start, u64 end,
3089 get_extent_t *get_extent,
3090 struct extent_map **em_cached,
3091 struct bio **bio, int mirror_num,
3092 unsigned long *bio_flags,
3093 u64 *prev_em_start)
3094 {
3095 struct inode *inode;
3096 struct btrfs_ordered_extent *ordered;
3097 int index;
3098
3099 inode = pages[0]->mapping->host;
3100 while (1) {
3101 lock_extent(tree, start, end);
3102 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3103 end - start + 1);
3104 if (!ordered)
3105 break;
3106 unlock_extent(tree, start, end);
3107 btrfs_start_ordered_extent(inode, ordered, 1);
3108 btrfs_put_ordered_extent(ordered);
3109 }
3110
3111 for (index = 0; index < nr_pages; index++) {
3112 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3113 mirror_num, bio_flags, 0, prev_em_start);
3114 put_page(pages[index]);
3115 }
3116 }
3117
3118 static void __extent_readpages(struct extent_io_tree *tree,
3119 struct page *pages[],
3120 int nr_pages, get_extent_t *get_extent,
3121 struct extent_map **em_cached,
3122 struct bio **bio, int mirror_num,
3123 unsigned long *bio_flags,
3124 u64 *prev_em_start)
3125 {
3126 u64 start = 0;
3127 u64 end = 0;
3128 u64 page_start;
3129 int index;
3130 int first_index = 0;
3131
3132 for (index = 0; index < nr_pages; index++) {
3133 page_start = page_offset(pages[index]);
3134 if (!end) {
3135 start = page_start;
3136 end = start + PAGE_SIZE - 1;
3137 first_index = index;
3138 } else if (end + 1 == page_start) {
3139 end += PAGE_SIZE;
3140 } else {
3141 __do_contiguous_readpages(tree, &pages[first_index],
3142 index - first_index, start,
3143 end, get_extent, em_cached,
3144 bio, mirror_num, bio_flags,
3145 prev_em_start);
3146 start = page_start;
3147 end = start + PAGE_SIZE - 1;
3148 first_index = index;
3149 }
3150 }
3151
3152 if (end)
3153 __do_contiguous_readpages(tree, &pages[first_index],
3154 index - first_index, start,
3155 end, get_extent, em_cached, bio,
3156 mirror_num, bio_flags,
3157 prev_em_start);
3158 }
3159
3160 static int __extent_read_full_page(struct extent_io_tree *tree,
3161 struct page *page,
3162 get_extent_t *get_extent,
3163 struct bio **bio, int mirror_num,
3164 unsigned long *bio_flags, int read_flags)
3165 {
3166 struct inode *inode = page->mapping->host;
3167 struct btrfs_ordered_extent *ordered;
3168 u64 start = page_offset(page);
3169 u64 end = start + PAGE_SIZE - 1;
3170 int ret;
3171
3172 while (1) {
3173 lock_extent(tree, start, end);
3174 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3175 PAGE_SIZE);
3176 if (!ordered)
3177 break;
3178 unlock_extent(tree, start, end);
3179 btrfs_start_ordered_extent(inode, ordered, 1);
3180 btrfs_put_ordered_extent(ordered);
3181 }
3182
3183 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3184 bio_flags, read_flags, NULL);
3185 return ret;
3186 }
3187
3188 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3189 get_extent_t *get_extent, int mirror_num)
3190 {
3191 struct bio *bio = NULL;
3192 unsigned long bio_flags = 0;
3193 int ret;
3194
3195 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3196 &bio_flags, 0);
3197 if (bio)
3198 ret = submit_one_bio(bio, mirror_num, bio_flags);
3199 return ret;
3200 }
3201
3202 static void update_nr_written(struct writeback_control *wbc,
3203 unsigned long nr_written)
3204 {
3205 wbc->nr_to_write -= nr_written;
3206 }
3207
3208 /*
3209 * helper for __extent_writepage, doing all of the delayed allocation setup.
3210 *
3211 * This returns 1 if our fill_delalloc function did all the work required
3212 * to write the page (copy into inline extent). In this case the IO has
3213 * been started and the page is already unlocked.
3214 *
3215 * This returns 0 if all went well (page still locked)
3216 * This returns < 0 if there were errors (page still locked)
3217 */
3218 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3219 struct page *page, struct writeback_control *wbc,
3220 struct extent_page_data *epd,
3221 u64 delalloc_start,
3222 unsigned long *nr_written)
3223 {
3224 struct extent_io_tree *tree = epd->tree;
3225 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3226 u64 nr_delalloc;
3227 u64 delalloc_to_write = 0;
3228 u64 delalloc_end = 0;
3229 int ret;
3230 int page_started = 0;
3231
3232 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3233 return 0;
3234
3235 while (delalloc_end < page_end) {
3236 nr_delalloc = find_lock_delalloc_range(inode, tree,
3237 page,
3238 &delalloc_start,
3239 &delalloc_end,
3240 BTRFS_MAX_EXTENT_SIZE);
3241 if (nr_delalloc == 0) {
3242 delalloc_start = delalloc_end + 1;
3243 continue;
3244 }
3245 ret = tree->ops->fill_delalloc(inode, page,
3246 delalloc_start,
3247 delalloc_end,
3248 &page_started,
3249 nr_written);
3250 /* File system has been set read-only */
3251 if (ret) {
3252 SetPageError(page);
3253 /* fill_delalloc should be return < 0 for error
3254 * but just in case, we use > 0 here meaning the
3255 * IO is started, so we don't want to return > 0
3256 * unless things are going well.
3257 */
3258 ret = ret < 0 ? ret : -EIO;
3259 goto done;
3260 }
3261 /*
3262 * delalloc_end is already one less than the total length, so
3263 * we don't subtract one from PAGE_SIZE
3264 */
3265 delalloc_to_write += (delalloc_end - delalloc_start +
3266 PAGE_SIZE) >> PAGE_SHIFT;
3267 delalloc_start = delalloc_end + 1;
3268 }
3269 if (wbc->nr_to_write < delalloc_to_write) {
3270 int thresh = 8192;
3271
3272 if (delalloc_to_write < thresh * 2)
3273 thresh = delalloc_to_write;
3274 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3275 thresh);
3276 }
3277
3278 /* did the fill delalloc function already unlock and start
3279 * the IO?
3280 */
3281 if (page_started) {
3282 /*
3283 * we've unlocked the page, so we can't update
3284 * the mapping's writeback index, just update
3285 * nr_to_write.
3286 */
3287 wbc->nr_to_write -= *nr_written;
3288 return 1;
3289 }
3290
3291 ret = 0;
3292
3293 done:
3294 return ret;
3295 }
3296
3297 /*
3298 * helper for __extent_writepage. This calls the writepage start hooks,
3299 * and does the loop to map the page into extents and bios.
3300 *
3301 * We return 1 if the IO is started and the page is unlocked,
3302 * 0 if all went well (page still locked)
3303 * < 0 if there were errors (page still locked)
3304 */
3305 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3306 struct page *page,
3307 struct writeback_control *wbc,
3308 struct extent_page_data *epd,
3309 loff_t i_size,
3310 unsigned long nr_written,
3311 int write_flags, int *nr_ret)
3312 {
3313 struct extent_io_tree *tree = epd->tree;
3314 u64 start = page_offset(page);
3315 u64 page_end = start + PAGE_SIZE - 1;
3316 u64 end;
3317 u64 cur = start;
3318 u64 extent_offset;
3319 u64 block_start;
3320 u64 iosize;
3321 sector_t sector;
3322 struct extent_map *em;
3323 struct block_device *bdev;
3324 size_t pg_offset = 0;
3325 size_t blocksize;
3326 int ret = 0;
3327 int nr = 0;
3328 bool compressed;
3329
3330 if (tree->ops && tree->ops->writepage_start_hook) {
3331 ret = tree->ops->writepage_start_hook(page, start,
3332 page_end);
3333 if (ret) {
3334 /* Fixup worker will requeue */
3335 if (ret == -EBUSY)
3336 wbc->pages_skipped++;
3337 else
3338 redirty_page_for_writepage(wbc, page);
3339
3340 update_nr_written(wbc, nr_written);
3341 unlock_page(page);
3342 return 1;
3343 }
3344 }
3345
3346 /*
3347 * we don't want to touch the inode after unlocking the page,
3348 * so we update the mapping writeback index now
3349 */
3350 update_nr_written(wbc, nr_written + 1);
3351
3352 end = page_end;
3353 if (i_size <= start) {
3354 if (tree->ops && tree->ops->writepage_end_io_hook)
3355 tree->ops->writepage_end_io_hook(page, start,
3356 page_end, NULL, 1);
3357 goto done;
3358 }
3359
3360 blocksize = inode->i_sb->s_blocksize;
3361
3362 while (cur <= end) {
3363 u64 em_end;
3364
3365 if (cur >= i_size) {
3366 if (tree->ops && tree->ops->writepage_end_io_hook)
3367 tree->ops->writepage_end_io_hook(page, cur,
3368 page_end, NULL, 1);
3369 break;
3370 }
3371 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
3372 end - cur + 1, 1);
3373 if (IS_ERR_OR_NULL(em)) {
3374 SetPageError(page);
3375 ret = PTR_ERR_OR_ZERO(em);
3376 break;
3377 }
3378
3379 extent_offset = cur - em->start;
3380 em_end = extent_map_end(em);
3381 BUG_ON(em_end <= cur);
3382 BUG_ON(end < cur);
3383 iosize = min(em_end - cur, end - cur + 1);
3384 iosize = ALIGN(iosize, blocksize);
3385 sector = (em->block_start + extent_offset) >> 9;
3386 bdev = em->bdev;
3387 block_start = em->block_start;
3388 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3389 free_extent_map(em);
3390 em = NULL;
3391
3392 /*
3393 * compressed and inline extents are written through other
3394 * paths in the FS
3395 */
3396 if (compressed || block_start == EXTENT_MAP_HOLE ||
3397 block_start == EXTENT_MAP_INLINE) {
3398 /*
3399 * end_io notification does not happen here for
3400 * compressed extents
3401 */
3402 if (!compressed && tree->ops &&
3403 tree->ops->writepage_end_io_hook)
3404 tree->ops->writepage_end_io_hook(page, cur,
3405 cur + iosize - 1,
3406 NULL, 1);
3407 else if (compressed) {
3408 /* we don't want to end_page_writeback on
3409 * a compressed extent. this happens
3410 * elsewhere
3411 */
3412 nr++;
3413 }
3414
3415 cur += iosize;
3416 pg_offset += iosize;
3417 continue;
3418 }
3419
3420 set_range_writeback(tree, cur, cur + iosize - 1);
3421 if (!PageWriteback(page)) {
3422 btrfs_err(BTRFS_I(inode)->root->fs_info,
3423 "page %lu not writeback, cur %llu end %llu",
3424 page->index, cur, end);
3425 }
3426
3427 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3428 page, sector, iosize, pg_offset,
3429 bdev, &epd->bio,
3430 end_bio_extent_writepage,
3431 0, 0, 0, false);
3432 if (ret) {
3433 SetPageError(page);
3434 if (PageWriteback(page))
3435 end_page_writeback(page);
3436 }
3437
3438 cur = cur + iosize;
3439 pg_offset += iosize;
3440 nr++;
3441 }
3442 done:
3443 *nr_ret = nr;
3444 return ret;
3445 }
3446
3447 /*
3448 * the writepage semantics are similar to regular writepage. extent
3449 * records are inserted to lock ranges in the tree, and as dirty areas
3450 * are found, they are marked writeback. Then the lock bits are removed
3451 * and the end_io handler clears the writeback ranges
3452 */
3453 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3454 void *data)
3455 {
3456 struct inode *inode = page->mapping->host;
3457 struct extent_page_data *epd = data;
3458 u64 start = page_offset(page);
3459 u64 page_end = start + PAGE_SIZE - 1;
3460 int ret;
3461 int nr = 0;
3462 size_t pg_offset = 0;
3463 loff_t i_size = i_size_read(inode);
3464 unsigned long end_index = i_size >> PAGE_SHIFT;
3465 int write_flags = 0;
3466 unsigned long nr_written = 0;
3467
3468 if (wbc->sync_mode == WB_SYNC_ALL)
3469 write_flags = REQ_SYNC;
3470
3471 trace___extent_writepage(page, inode, wbc);
3472
3473 WARN_ON(!PageLocked(page));
3474
3475 ClearPageError(page);
3476
3477 pg_offset = i_size & (PAGE_SIZE - 1);
3478 if (page->index > end_index ||
3479 (page->index == end_index && !pg_offset)) {
3480 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3481 unlock_page(page);
3482 return 0;
3483 }
3484
3485 if (page->index == end_index) {
3486 char *userpage;
3487
3488 userpage = kmap_atomic(page);
3489 memset(userpage + pg_offset, 0,
3490 PAGE_SIZE - pg_offset);
3491 kunmap_atomic(userpage);
3492 flush_dcache_page(page);
3493 }
3494
3495 pg_offset = 0;
3496
3497 set_page_extent_mapped(page);
3498
3499 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3500 if (ret == 1)
3501 goto done_unlocked;
3502 if (ret)
3503 goto done;
3504
3505 ret = __extent_writepage_io(inode, page, wbc, epd,
3506 i_size, nr_written, write_flags, &nr);
3507 if (ret == 1)
3508 goto done_unlocked;
3509
3510 done:
3511 if (nr == 0) {
3512 /* make sure the mapping tag for page dirty gets cleared */
3513 set_page_writeback(page);
3514 end_page_writeback(page);
3515 }
3516 if (PageError(page)) {
3517 ret = ret < 0 ? ret : -EIO;
3518 end_extent_writepage(page, ret, start, page_end);
3519 }
3520 unlock_page(page);
3521 return ret;
3522
3523 done_unlocked:
3524 return 0;
3525 }
3526
3527 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3528 {
3529 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3530 TASK_UNINTERRUPTIBLE);
3531 }
3532
3533 static noinline_for_stack int
3534 lock_extent_buffer_for_io(struct extent_buffer *eb,
3535 struct btrfs_fs_info *fs_info,
3536 struct extent_page_data *epd)
3537 {
3538 unsigned long i, num_pages;
3539 int flush = 0;
3540 int ret = 0;
3541
3542 if (!btrfs_try_tree_write_lock(eb)) {
3543 flush = 1;
3544 flush_write_bio(epd);
3545 btrfs_tree_lock(eb);
3546 }
3547
3548 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3549 btrfs_tree_unlock(eb);
3550 if (!epd->sync_io)
3551 return 0;
3552 if (!flush) {
3553 flush_write_bio(epd);
3554 flush = 1;
3555 }
3556 while (1) {
3557 wait_on_extent_buffer_writeback(eb);
3558 btrfs_tree_lock(eb);
3559 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3560 break;
3561 btrfs_tree_unlock(eb);
3562 }
3563 }
3564
3565 /*
3566 * We need to do this to prevent races in people who check if the eb is
3567 * under IO since we can end up having no IO bits set for a short period
3568 * of time.
3569 */
3570 spin_lock(&eb->refs_lock);
3571 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3572 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3573 spin_unlock(&eb->refs_lock);
3574 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3575 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3576 -eb->len,
3577 fs_info->dirty_metadata_batch);
3578 ret = 1;
3579 } else {
3580 spin_unlock(&eb->refs_lock);
3581 }
3582
3583 btrfs_tree_unlock(eb);
3584
3585 if (!ret)
3586 return ret;
3587
3588 num_pages = num_extent_pages(eb->start, eb->len);
3589 for (i = 0; i < num_pages; i++) {
3590 struct page *p = eb->pages[i];
3591
3592 if (!trylock_page(p)) {
3593 if (!flush) {
3594 flush_write_bio(epd);
3595 flush = 1;
3596 }
3597 lock_page(p);
3598 }
3599 }
3600
3601 return ret;
3602 }
3603
3604 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3605 {
3606 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3607 smp_mb__after_atomic();
3608 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3609 }
3610
3611 static void set_btree_ioerr(struct page *page)
3612 {
3613 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3614
3615 SetPageError(page);
3616 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3617 return;
3618
3619 /*
3620 * If writeback for a btree extent that doesn't belong to a log tree
3621 * failed, increment the counter transaction->eb_write_errors.
3622 * We do this because while the transaction is running and before it's
3623 * committing (when we call filemap_fdata[write|wait]_range against
3624 * the btree inode), we might have
3625 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3626 * returns an error or an error happens during writeback, when we're
3627 * committing the transaction we wouldn't know about it, since the pages
3628 * can be no longer dirty nor marked anymore for writeback (if a
3629 * subsequent modification to the extent buffer didn't happen before the
3630 * transaction commit), which makes filemap_fdata[write|wait]_range not
3631 * able to find the pages tagged with SetPageError at transaction
3632 * commit time. So if this happens we must abort the transaction,
3633 * otherwise we commit a super block with btree roots that point to
3634 * btree nodes/leafs whose content on disk is invalid - either garbage
3635 * or the content of some node/leaf from a past generation that got
3636 * cowed or deleted and is no longer valid.
3637 *
3638 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3639 * not be enough - we need to distinguish between log tree extents vs
3640 * non-log tree extents, and the next filemap_fdatawait_range() call
3641 * will catch and clear such errors in the mapping - and that call might
3642 * be from a log sync and not from a transaction commit. Also, checking
3643 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3644 * not done and would not be reliable - the eb might have been released
3645 * from memory and reading it back again means that flag would not be
3646 * set (since it's a runtime flag, not persisted on disk).
3647 *
3648 * Using the flags below in the btree inode also makes us achieve the
3649 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3650 * writeback for all dirty pages and before filemap_fdatawait_range()
3651 * is called, the writeback for all dirty pages had already finished
3652 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3653 * filemap_fdatawait_range() would return success, as it could not know
3654 * that writeback errors happened (the pages were no longer tagged for
3655 * writeback).
3656 */
3657 switch (eb->log_index) {
3658 case -1:
3659 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3660 break;
3661 case 0:
3662 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3663 break;
3664 case 1:
3665 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3666 break;
3667 default:
3668 BUG(); /* unexpected, logic error */
3669 }
3670 }
3671
3672 static void end_bio_extent_buffer_writepage(struct bio *bio)
3673 {
3674 struct bio_vec *bvec;
3675 struct extent_buffer *eb;
3676 int i, done;
3677
3678 bio_for_each_segment_all(bvec, bio, i) {
3679 struct page *page = bvec->bv_page;
3680
3681 eb = (struct extent_buffer *)page->private;
3682 BUG_ON(!eb);
3683 done = atomic_dec_and_test(&eb->io_pages);
3684
3685 if (bio->bi_error ||
3686 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3687 ClearPageUptodate(page);
3688 set_btree_ioerr(page);
3689 }
3690
3691 end_page_writeback(page);
3692
3693 if (!done)
3694 continue;
3695
3696 end_extent_buffer_writeback(eb);
3697 }
3698
3699 bio_put(bio);
3700 }
3701
3702 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3703 struct btrfs_fs_info *fs_info,
3704 struct writeback_control *wbc,
3705 struct extent_page_data *epd)
3706 {
3707 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3708 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3709 u64 offset = eb->start;
3710 u32 nritems;
3711 unsigned long i, num_pages;
3712 unsigned long bio_flags = 0;
3713 unsigned long start, end;
3714 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
3715 int ret = 0;
3716
3717 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3718 num_pages = num_extent_pages(eb->start, eb->len);
3719 atomic_set(&eb->io_pages, num_pages);
3720 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3721 bio_flags = EXTENT_BIO_TREE_LOG;
3722
3723 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3724 nritems = btrfs_header_nritems(eb);
3725 if (btrfs_header_level(eb) > 0) {
3726 end = btrfs_node_key_ptr_offset(nritems);
3727
3728 memzero_extent_buffer(eb, end, eb->len - end);
3729 } else {
3730 /*
3731 * leaf:
3732 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3733 */
3734 start = btrfs_item_nr_offset(nritems);
3735 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3736 memzero_extent_buffer(eb, start, end - start);
3737 }
3738
3739 for (i = 0; i < num_pages; i++) {
3740 struct page *p = eb->pages[i];
3741
3742 clear_page_dirty_for_io(p);
3743 set_page_writeback(p);
3744 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3745 p, offset >> 9, PAGE_SIZE, 0, bdev,
3746 &epd->bio,
3747 end_bio_extent_buffer_writepage,
3748 0, epd->bio_flags, bio_flags, false);
3749 epd->bio_flags = bio_flags;
3750 if (ret) {
3751 set_btree_ioerr(p);
3752 if (PageWriteback(p))
3753 end_page_writeback(p);
3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 end_extent_buffer_writeback(eb);
3756 ret = -EIO;
3757 break;
3758 }
3759 offset += PAGE_SIZE;
3760 update_nr_written(wbc, 1);
3761 unlock_page(p);
3762 }
3763
3764 if (unlikely(ret)) {
3765 for (; i < num_pages; i++) {
3766 struct page *p = eb->pages[i];
3767 clear_page_dirty_for_io(p);
3768 unlock_page(p);
3769 }
3770 }
3771
3772 return ret;
3773 }
3774
3775 int btree_write_cache_pages(struct address_space *mapping,
3776 struct writeback_control *wbc)
3777 {
3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 struct extent_buffer *eb, *prev_eb = NULL;
3781 struct extent_page_data epd = {
3782 .bio = NULL,
3783 .tree = tree,
3784 .extent_locked = 0,
3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786 .bio_flags = 0,
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec, 0);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
3803 index = wbc->range_start >> PAGE_SHIFT;
3804 end = wbc->range_end >> PAGE_SHIFT;
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811 retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 if (!wbc->range_cyclic && page->index > end) {
3827 done = 1;
3828 break;
3829 }
3830
3831 spin_lock(&mapping->private_lock);
3832 if (!PagePrivate(page)) {
3833 spin_unlock(&mapping->private_lock);
3834 continue;
3835 }
3836
3837 eb = (struct extent_buffer *)page->private;
3838
3839 /*
3840 * Shouldn't happen and normally this would be a BUG_ON
3841 * but no sense in crashing the users box for something
3842 * we can survive anyway.
3843 */
3844 if (WARN_ON(!eb)) {
3845 spin_unlock(&mapping->private_lock);
3846 continue;
3847 }
3848
3849 if (eb == prev_eb) {
3850 spin_unlock(&mapping->private_lock);
3851 continue;
3852 }
3853
3854 ret = atomic_inc_not_zero(&eb->refs);
3855 spin_unlock(&mapping->private_lock);
3856 if (!ret)
3857 continue;
3858
3859 prev_eb = eb;
3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 if (!ret) {
3862 free_extent_buffer(eb);
3863 continue;
3864 }
3865
3866 ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 if (ret) {
3868 done = 1;
3869 free_extent_buffer(eb);
3870 break;
3871 }
3872 free_extent_buffer(eb);
3873
3874 /*
3875 * the filesystem may choose to bump up nr_to_write.
3876 * We have to make sure to honor the new nr_to_write
3877 * at any time
3878 */
3879 nr_to_write_done = wbc->nr_to_write <= 0;
3880 }
3881 pagevec_release(&pvec);
3882 cond_resched();
3883 }
3884 if (!scanned && !done) {
3885 /*
3886 * We hit the last page and there is more work to be done: wrap
3887 * back to the start of the file
3888 */
3889 scanned = 1;
3890 index = 0;
3891 goto retry;
3892 }
3893 flush_write_bio(&epd);
3894 return ret;
3895 }
3896
3897 /**
3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3899 * @mapping: address space structure to write
3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901 * @writepage: function called for each page
3902 * @data: data passed to writepage function
3903 *
3904 * If a page is already under I/O, write_cache_pages() skips it, even
3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3907 * and msync() need to guarantee that all the data which was dirty at the time
3908 * the call was made get new I/O started against them. If wbc->sync_mode is
3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910 * existing IO to complete.
3911 */
3912 static int extent_write_cache_pages(struct address_space *mapping,
3913 struct writeback_control *wbc,
3914 writepage_t writepage, void *data,
3915 void (*flush_fn)(void *))
3916 {
3917 struct inode *inode = mapping->host;
3918 int ret = 0;
3919 int done = 0;
3920 int nr_to_write_done = 0;
3921 struct pagevec pvec;
3922 int nr_pages;
3923 pgoff_t index;
3924 pgoff_t end; /* Inclusive */
3925 pgoff_t done_index;
3926 int range_whole = 0;
3927 int scanned = 0;
3928 int tag;
3929
3930 /*
3931 * We have to hold onto the inode so that ordered extents can do their
3932 * work when the IO finishes. The alternative to this is failing to add
3933 * an ordered extent if the igrab() fails there and that is a huge pain
3934 * to deal with, so instead just hold onto the inode throughout the
3935 * writepages operation. If it fails here we are freeing up the inode
3936 * anyway and we'd rather not waste our time writing out stuff that is
3937 * going to be truncated anyway.
3938 */
3939 if (!igrab(inode))
3940 return 0;
3941
3942 pagevec_init(&pvec, 0);
3943 if (wbc->range_cyclic) {
3944 index = mapping->writeback_index; /* Start from prev offset */
3945 end = -1;
3946 } else {
3947 index = wbc->range_start >> PAGE_SHIFT;
3948 end = wbc->range_end >> PAGE_SHIFT;
3949 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3950 range_whole = 1;
3951 scanned = 1;
3952 }
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag = PAGECACHE_TAG_TOWRITE;
3955 else
3956 tag = PAGECACHE_TAG_DIRTY;
3957 retry:
3958 if (wbc->sync_mode == WB_SYNC_ALL)
3959 tag_pages_for_writeback(mapping, index, end);
3960 done_index = index;
3961 while (!done && !nr_to_write_done && (index <= end) &&
3962 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3963 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3964 unsigned i;
3965
3966 scanned = 1;
3967 for (i = 0; i < nr_pages; i++) {
3968 struct page *page = pvec.pages[i];
3969
3970 done_index = page->index;
3971 /*
3972 * At this point we hold neither mapping->tree_lock nor
3973 * lock on the page itself: the page may be truncated or
3974 * invalidated (changing page->mapping to NULL), or even
3975 * swizzled back from swapper_space to tmpfs file
3976 * mapping
3977 */
3978 if (!trylock_page(page)) {
3979 flush_fn(data);
3980 lock_page(page);
3981 }
3982
3983 if (unlikely(page->mapping != mapping)) {
3984 unlock_page(page);
3985 continue;
3986 }
3987
3988 if (!wbc->range_cyclic && page->index > end) {
3989 done = 1;
3990 unlock_page(page);
3991 continue;
3992 }
3993
3994 if (wbc->sync_mode != WB_SYNC_NONE) {
3995 if (PageWriteback(page))
3996 flush_fn(data);
3997 wait_on_page_writeback(page);
3998 }
3999
4000 if (PageWriteback(page) ||
4001 !clear_page_dirty_for_io(page)) {
4002 unlock_page(page);
4003 continue;
4004 }
4005
4006 ret = (*writepage)(page, wbc, data);
4007
4008 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4009 unlock_page(page);
4010 ret = 0;
4011 }
4012 if (ret < 0) {
4013 /*
4014 * done_index is set past this page,
4015 * so media errors will not choke
4016 * background writeout for the entire
4017 * file. This has consequences for
4018 * range_cyclic semantics (ie. it may
4019 * not be suitable for data integrity
4020 * writeout).
4021 */
4022 done_index = page->index + 1;
4023 done = 1;
4024 break;
4025 }
4026
4027 /*
4028 * the filesystem may choose to bump up nr_to_write.
4029 * We have to make sure to honor the new nr_to_write
4030 * at any time
4031 */
4032 nr_to_write_done = wbc->nr_to_write <= 0;
4033 }
4034 pagevec_release(&pvec);
4035 cond_resched();
4036 }
4037 if (!scanned && !done) {
4038 /*
4039 * We hit the last page and there is more work to be done: wrap
4040 * back to the start of the file
4041 */
4042 scanned = 1;
4043 index = 0;
4044 goto retry;
4045 }
4046
4047 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4048 mapping->writeback_index = done_index;
4049
4050 btrfs_add_delayed_iput(inode);
4051 return ret;
4052 }
4053
4054 static void flush_epd_write_bio(struct extent_page_data *epd)
4055 {
4056 if (epd->bio) {
4057 int ret;
4058
4059 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4060 epd->sync_io ? REQ_SYNC : 0);
4061
4062 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4063 BUG_ON(ret < 0); /* -ENOMEM */
4064 epd->bio = NULL;
4065 }
4066 }
4067
4068 static noinline void flush_write_bio(void *data)
4069 {
4070 struct extent_page_data *epd = data;
4071 flush_epd_write_bio(epd);
4072 }
4073
4074 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4075 get_extent_t *get_extent,
4076 struct writeback_control *wbc)
4077 {
4078 int ret;
4079 struct extent_page_data epd = {
4080 .bio = NULL,
4081 .tree = tree,
4082 .get_extent = get_extent,
4083 .extent_locked = 0,
4084 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4085 .bio_flags = 0,
4086 };
4087
4088 ret = __extent_writepage(page, wbc, &epd);
4089
4090 flush_epd_write_bio(&epd);
4091 return ret;
4092 }
4093
4094 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4095 u64 start, u64 end, get_extent_t *get_extent,
4096 int mode)
4097 {
4098 int ret = 0;
4099 struct address_space *mapping = inode->i_mapping;
4100 struct page *page;
4101 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4102 PAGE_SHIFT;
4103
4104 struct extent_page_data epd = {
4105 .bio = NULL,
4106 .tree = tree,
4107 .get_extent = get_extent,
4108 .extent_locked = 1,
4109 .sync_io = mode == WB_SYNC_ALL,
4110 .bio_flags = 0,
4111 };
4112 struct writeback_control wbc_writepages = {
4113 .sync_mode = mode,
4114 .nr_to_write = nr_pages * 2,
4115 .range_start = start,
4116 .range_end = end + 1,
4117 };
4118
4119 while (start <= end) {
4120 page = find_get_page(mapping, start >> PAGE_SHIFT);
4121 if (clear_page_dirty_for_io(page))
4122 ret = __extent_writepage(page, &wbc_writepages, &epd);
4123 else {
4124 if (tree->ops && tree->ops->writepage_end_io_hook)
4125 tree->ops->writepage_end_io_hook(page, start,
4126 start + PAGE_SIZE - 1,
4127 NULL, 1);
4128 unlock_page(page);
4129 }
4130 put_page(page);
4131 start += PAGE_SIZE;
4132 }
4133
4134 flush_epd_write_bio(&epd);
4135 return ret;
4136 }
4137
4138 int extent_writepages(struct extent_io_tree *tree,
4139 struct address_space *mapping,
4140 get_extent_t *get_extent,
4141 struct writeback_control *wbc)
4142 {
4143 int ret = 0;
4144 struct extent_page_data epd = {
4145 .bio = NULL,
4146 .tree = tree,
4147 .get_extent = get_extent,
4148 .extent_locked = 0,
4149 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4150 .bio_flags = 0,
4151 };
4152
4153 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
4154 flush_write_bio);
4155 flush_epd_write_bio(&epd);
4156 return ret;
4157 }
4158
4159 int extent_readpages(struct extent_io_tree *tree,
4160 struct address_space *mapping,
4161 struct list_head *pages, unsigned nr_pages,
4162 get_extent_t get_extent)
4163 {
4164 struct bio *bio = NULL;
4165 unsigned page_idx;
4166 unsigned long bio_flags = 0;
4167 struct page *pagepool[16];
4168 struct page *page;
4169 struct extent_map *em_cached = NULL;
4170 int nr = 0;
4171 u64 prev_em_start = (u64)-1;
4172
4173 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4174 page = list_entry(pages->prev, struct page, lru);
4175
4176 prefetchw(&page->flags);
4177 list_del(&page->lru);
4178 if (add_to_page_cache_lru(page, mapping,
4179 page->index,
4180 readahead_gfp_mask(mapping))) {
4181 put_page(page);
4182 continue;
4183 }
4184
4185 pagepool[nr++] = page;
4186 if (nr < ARRAY_SIZE(pagepool))
4187 continue;
4188 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4189 &bio, 0, &bio_flags, &prev_em_start);
4190 nr = 0;
4191 }
4192 if (nr)
4193 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4194 &bio, 0, &bio_flags, &prev_em_start);
4195
4196 if (em_cached)
4197 free_extent_map(em_cached);
4198
4199 BUG_ON(!list_empty(pages));
4200 if (bio)
4201 return submit_one_bio(bio, 0, bio_flags);
4202 return 0;
4203 }
4204
4205 /*
4206 * basic invalidatepage code, this waits on any locked or writeback
4207 * ranges corresponding to the page, and then deletes any extent state
4208 * records from the tree
4209 */
4210 int extent_invalidatepage(struct extent_io_tree *tree,
4211 struct page *page, unsigned long offset)
4212 {
4213 struct extent_state *cached_state = NULL;
4214 u64 start = page_offset(page);
4215 u64 end = start + PAGE_SIZE - 1;
4216 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4217
4218 start += ALIGN(offset, blocksize);
4219 if (start > end)
4220 return 0;
4221
4222 lock_extent_bits(tree, start, end, &cached_state);
4223 wait_on_page_writeback(page);
4224 clear_extent_bit(tree, start, end,
4225 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4226 EXTENT_DO_ACCOUNTING,
4227 1, 1, &cached_state, GFP_NOFS);
4228 return 0;
4229 }
4230
4231 /*
4232 * a helper for releasepage, this tests for areas of the page that
4233 * are locked or under IO and drops the related state bits if it is safe
4234 * to drop the page.
4235 */
4236 static int try_release_extent_state(struct extent_map_tree *map,
4237 struct extent_io_tree *tree,
4238 struct page *page, gfp_t mask)
4239 {
4240 u64 start = page_offset(page);
4241 u64 end = start + PAGE_SIZE - 1;
4242 int ret = 1;
4243
4244 if (test_range_bit(tree, start, end,
4245 EXTENT_IOBITS, 0, NULL))
4246 ret = 0;
4247 else {
4248 /*
4249 * at this point we can safely clear everything except the
4250 * locked bit and the nodatasum bit
4251 */
4252 ret = clear_extent_bit(tree, start, end,
4253 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4254 0, 0, NULL, mask);
4255
4256 /* if clear_extent_bit failed for enomem reasons,
4257 * we can't allow the release to continue.
4258 */
4259 if (ret < 0)
4260 ret = 0;
4261 else
4262 ret = 1;
4263 }
4264 return ret;
4265 }
4266
4267 /*
4268 * a helper for releasepage. As long as there are no locked extents
4269 * in the range corresponding to the page, both state records and extent
4270 * map records are removed
4271 */
4272 int try_release_extent_mapping(struct extent_map_tree *map,
4273 struct extent_io_tree *tree, struct page *page,
4274 gfp_t mask)
4275 {
4276 struct extent_map *em;
4277 u64 start = page_offset(page);
4278 u64 end = start + PAGE_SIZE - 1;
4279
4280 if (gfpflags_allow_blocking(mask) &&
4281 page->mapping->host->i_size > SZ_16M) {
4282 u64 len;
4283 while (start <= end) {
4284 len = end - start + 1;
4285 write_lock(&map->lock);
4286 em = lookup_extent_mapping(map, start, len);
4287 if (!em) {
4288 write_unlock(&map->lock);
4289 break;
4290 }
4291 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4292 em->start != start) {
4293 write_unlock(&map->lock);
4294 free_extent_map(em);
4295 break;
4296 }
4297 if (!test_range_bit(tree, em->start,
4298 extent_map_end(em) - 1,
4299 EXTENT_LOCKED | EXTENT_WRITEBACK,
4300 0, NULL)) {
4301 remove_extent_mapping(map, em);
4302 /* once for the rb tree */
4303 free_extent_map(em);
4304 }
4305 start = extent_map_end(em);
4306 write_unlock(&map->lock);
4307
4308 /* once for us */
4309 free_extent_map(em);
4310 }
4311 }
4312 return try_release_extent_state(map, tree, page, mask);
4313 }
4314
4315 /*
4316 * helper function for fiemap, which doesn't want to see any holes.
4317 * This maps until we find something past 'last'
4318 */
4319 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4320 u64 offset,
4321 u64 last,
4322 get_extent_t *get_extent)
4323 {
4324 u64 sectorsize = btrfs_inode_sectorsize(inode);
4325 struct extent_map *em;
4326 u64 len;
4327
4328 if (offset >= last)
4329 return NULL;
4330
4331 while (1) {
4332 len = last - offset;
4333 if (len == 0)
4334 break;
4335 len = ALIGN(len, sectorsize);
4336 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
4337 if (IS_ERR_OR_NULL(em))
4338 return em;
4339
4340 /* if this isn't a hole return it */
4341 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4342 em->block_start != EXTENT_MAP_HOLE) {
4343 return em;
4344 }
4345
4346 /* this is a hole, advance to the next extent */
4347 offset = extent_map_end(em);
4348 free_extent_map(em);
4349 if (offset >= last)
4350 break;
4351 }
4352 return NULL;
4353 }
4354
4355 /*
4356 * To cache previous fiemap extent
4357 *
4358 * Will be used for merging fiemap extent
4359 */
4360 struct fiemap_cache {
4361 u64 offset;
4362 u64 phys;
4363 u64 len;
4364 u32 flags;
4365 bool cached;
4366 };
4367
4368 /*
4369 * Helper to submit fiemap extent.
4370 *
4371 * Will try to merge current fiemap extent specified by @offset, @phys,
4372 * @len and @flags with cached one.
4373 * And only when we fails to merge, cached one will be submitted as
4374 * fiemap extent.
4375 *
4376 * Return value is the same as fiemap_fill_next_extent().
4377 */
4378 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4379 struct fiemap_cache *cache,
4380 u64 offset, u64 phys, u64 len, u32 flags)
4381 {
4382 int ret = 0;
4383
4384 if (!cache->cached)
4385 goto assign;
4386
4387 /*
4388 * Sanity check, extent_fiemap() should have ensured that new
4389 * fiemap extent won't overlap with cahced one.
4390 * Not recoverable.
4391 *
4392 * NOTE: Physical address can overlap, due to compression
4393 */
4394 if (cache->offset + cache->len > offset) {
4395 WARN_ON(1);
4396 return -EINVAL;
4397 }
4398
4399 /*
4400 * Only merges fiemap extents if
4401 * 1) Their logical addresses are continuous
4402 *
4403 * 2) Their physical addresses are continuous
4404 * So truly compressed (physical size smaller than logical size)
4405 * extents won't get merged with each other
4406 *
4407 * 3) Share same flags except FIEMAP_EXTENT_LAST
4408 * So regular extent won't get merged with prealloc extent
4409 */
4410 if (cache->offset + cache->len == offset &&
4411 cache->phys + cache->len == phys &&
4412 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4413 (flags & ~FIEMAP_EXTENT_LAST)) {
4414 cache->len += len;
4415 cache->flags |= flags;
4416 goto try_submit_last;
4417 }
4418
4419 /* Not mergeable, need to submit cached one */
4420 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4421 cache->len, cache->flags);
4422 cache->cached = false;
4423 if (ret)
4424 return ret;
4425 assign:
4426 cache->cached = true;
4427 cache->offset = offset;
4428 cache->phys = phys;
4429 cache->len = len;
4430 cache->flags = flags;
4431 try_submit_last:
4432 if (cache->flags & FIEMAP_EXTENT_LAST) {
4433 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4434 cache->phys, cache->len, cache->flags);
4435 cache->cached = false;
4436 }
4437 return ret;
4438 }
4439
4440 /*
4441 * Emit last fiemap cache
4442 *
4443 * The last fiemap cache may still be cached in the following case:
4444 * 0 4k 8k
4445 * |<- Fiemap range ->|
4446 * |<------------ First extent ----------->|
4447 *
4448 * In this case, the first extent range will be cached but not emitted.
4449 * So we must emit it before ending extent_fiemap().
4450 */
4451 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4452 struct fiemap_extent_info *fieinfo,
4453 struct fiemap_cache *cache)
4454 {
4455 int ret;
4456
4457 if (!cache->cached)
4458 return 0;
4459
4460 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4461 cache->len, cache->flags);
4462 cache->cached = false;
4463 if (ret > 0)
4464 ret = 0;
4465 return ret;
4466 }
4467
4468 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4469 __u64 start, __u64 len, get_extent_t *get_extent)
4470 {
4471 int ret = 0;
4472 u64 off = start;
4473 u64 max = start + len;
4474 u32 flags = 0;
4475 u32 found_type;
4476 u64 last;
4477 u64 last_for_get_extent = 0;
4478 u64 disko = 0;
4479 u64 isize = i_size_read(inode);
4480 struct btrfs_key found_key;
4481 struct extent_map *em = NULL;
4482 struct extent_state *cached_state = NULL;
4483 struct btrfs_path *path;
4484 struct btrfs_root *root = BTRFS_I(inode)->root;
4485 struct fiemap_cache cache = { 0 };
4486 int end = 0;
4487 u64 em_start = 0;
4488 u64 em_len = 0;
4489 u64 em_end = 0;
4490
4491 if (len == 0)
4492 return -EINVAL;
4493
4494 path = btrfs_alloc_path();
4495 if (!path)
4496 return -ENOMEM;
4497 path->leave_spinning = 1;
4498
4499 start = round_down(start, btrfs_inode_sectorsize(inode));
4500 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4501
4502 /*
4503 * lookup the last file extent. We're not using i_size here
4504 * because there might be preallocation past i_size
4505 */
4506 ret = btrfs_lookup_file_extent(NULL, root, path,
4507 btrfs_ino(BTRFS_I(inode)), -1, 0);
4508 if (ret < 0) {
4509 btrfs_free_path(path);
4510 return ret;
4511 } else {
4512 WARN_ON(!ret);
4513 if (ret == 1)
4514 ret = 0;
4515 }
4516
4517 path->slots[0]--;
4518 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4519 found_type = found_key.type;
4520
4521 /* No extents, but there might be delalloc bits */
4522 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4523 found_type != BTRFS_EXTENT_DATA_KEY) {
4524 /* have to trust i_size as the end */
4525 last = (u64)-1;
4526 last_for_get_extent = isize;
4527 } else {
4528 /*
4529 * remember the start of the last extent. There are a
4530 * bunch of different factors that go into the length of the
4531 * extent, so its much less complex to remember where it started
4532 */
4533 last = found_key.offset;
4534 last_for_get_extent = last + 1;
4535 }
4536 btrfs_release_path(path);
4537
4538 /*
4539 * we might have some extents allocated but more delalloc past those
4540 * extents. so, we trust isize unless the start of the last extent is
4541 * beyond isize
4542 */
4543 if (last < isize) {
4544 last = (u64)-1;
4545 last_for_get_extent = isize;
4546 }
4547
4548 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4549 &cached_state);
4550
4551 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4552 get_extent);
4553 if (!em)
4554 goto out;
4555 if (IS_ERR(em)) {
4556 ret = PTR_ERR(em);
4557 goto out;
4558 }
4559
4560 while (!end) {
4561 u64 offset_in_extent = 0;
4562
4563 /* break if the extent we found is outside the range */
4564 if (em->start >= max || extent_map_end(em) < off)
4565 break;
4566
4567 /*
4568 * get_extent may return an extent that starts before our
4569 * requested range. We have to make sure the ranges
4570 * we return to fiemap always move forward and don't
4571 * overlap, so adjust the offsets here
4572 */
4573 em_start = max(em->start, off);
4574
4575 /*
4576 * record the offset from the start of the extent
4577 * for adjusting the disk offset below. Only do this if the
4578 * extent isn't compressed since our in ram offset may be past
4579 * what we have actually allocated on disk.
4580 */
4581 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4582 offset_in_extent = em_start - em->start;
4583 em_end = extent_map_end(em);
4584 em_len = em_end - em_start;
4585 disko = 0;
4586 flags = 0;
4587
4588 /*
4589 * bump off for our next call to get_extent
4590 */
4591 off = extent_map_end(em);
4592 if (off >= max)
4593 end = 1;
4594
4595 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4596 end = 1;
4597 flags |= FIEMAP_EXTENT_LAST;
4598 } else if (em->block_start == EXTENT_MAP_INLINE) {
4599 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4600 FIEMAP_EXTENT_NOT_ALIGNED);
4601 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4602 flags |= (FIEMAP_EXTENT_DELALLOC |
4603 FIEMAP_EXTENT_UNKNOWN);
4604 } else if (fieinfo->fi_extents_max) {
4605 struct btrfs_trans_handle *trans;
4606
4607 u64 bytenr = em->block_start -
4608 (em->start - em->orig_start);
4609
4610 disko = em->block_start + offset_in_extent;
4611
4612 /*
4613 * We need a trans handle to get delayed refs
4614 */
4615 trans = btrfs_join_transaction(root);
4616 /*
4617 * It's OK if we can't start a trans we can still check
4618 * from commit_root
4619 */
4620 if (IS_ERR(trans))
4621 trans = NULL;
4622
4623 /*
4624 * As btrfs supports shared space, this information
4625 * can be exported to userspace tools via
4626 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4627 * then we're just getting a count and we can skip the
4628 * lookup stuff.
4629 */
4630 ret = btrfs_check_shared(trans, root->fs_info,
4631 root->objectid,
4632 btrfs_ino(BTRFS_I(inode)), bytenr);
4633 if (trans)
4634 btrfs_end_transaction(trans);
4635 if (ret < 0)
4636 goto out_free;
4637 if (ret)
4638 flags |= FIEMAP_EXTENT_SHARED;
4639 ret = 0;
4640 }
4641 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4642 flags |= FIEMAP_EXTENT_ENCODED;
4643 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4644 flags |= FIEMAP_EXTENT_UNWRITTEN;
4645
4646 free_extent_map(em);
4647 em = NULL;
4648 if ((em_start >= last) || em_len == (u64)-1 ||
4649 (last == (u64)-1 && isize <= em_end)) {
4650 flags |= FIEMAP_EXTENT_LAST;
4651 end = 1;
4652 }
4653
4654 /* now scan forward to see if this is really the last extent. */
4655 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4656 get_extent);
4657 if (IS_ERR(em)) {
4658 ret = PTR_ERR(em);
4659 goto out;
4660 }
4661 if (!em) {
4662 flags |= FIEMAP_EXTENT_LAST;
4663 end = 1;
4664 }
4665 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4666 em_len, flags);
4667 if (ret) {
4668 if (ret == 1)
4669 ret = 0;
4670 goto out_free;
4671 }
4672 }
4673 out_free:
4674 if (!ret)
4675 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4676 free_extent_map(em);
4677 out:
4678 btrfs_free_path(path);
4679 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4680 &cached_state, GFP_NOFS);
4681 return ret;
4682 }
4683
4684 static void __free_extent_buffer(struct extent_buffer *eb)
4685 {
4686 btrfs_leak_debug_del(&eb->leak_list);
4687 kmem_cache_free(extent_buffer_cache, eb);
4688 }
4689
4690 int extent_buffer_under_io(struct extent_buffer *eb)
4691 {
4692 return (atomic_read(&eb->io_pages) ||
4693 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4694 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4695 }
4696
4697 /*
4698 * Helper for releasing extent buffer page.
4699 */
4700 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4701 {
4702 unsigned long index;
4703 struct page *page;
4704 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4705
4706 BUG_ON(extent_buffer_under_io(eb));
4707
4708 index = num_extent_pages(eb->start, eb->len);
4709 if (index == 0)
4710 return;
4711
4712 do {
4713 index--;
4714 page = eb->pages[index];
4715 if (!page)
4716 continue;
4717 if (mapped)
4718 spin_lock(&page->mapping->private_lock);
4719 /*
4720 * We do this since we'll remove the pages after we've
4721 * removed the eb from the radix tree, so we could race
4722 * and have this page now attached to the new eb. So
4723 * only clear page_private if it's still connected to
4724 * this eb.
4725 */
4726 if (PagePrivate(page) &&
4727 page->private == (unsigned long)eb) {
4728 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4729 BUG_ON(PageDirty(page));
4730 BUG_ON(PageWriteback(page));
4731 /*
4732 * We need to make sure we haven't be attached
4733 * to a new eb.
4734 */
4735 ClearPagePrivate(page);
4736 set_page_private(page, 0);
4737 /* One for the page private */
4738 put_page(page);
4739 }
4740
4741 if (mapped)
4742 spin_unlock(&page->mapping->private_lock);
4743
4744 /* One for when we allocated the page */
4745 put_page(page);
4746 } while (index != 0);
4747 }
4748
4749 /*
4750 * Helper for releasing the extent buffer.
4751 */
4752 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4753 {
4754 btrfs_release_extent_buffer_page(eb);
4755 __free_extent_buffer(eb);
4756 }
4757
4758 static struct extent_buffer *
4759 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4760 unsigned long len)
4761 {
4762 struct extent_buffer *eb = NULL;
4763
4764 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4765 eb->start = start;
4766 eb->len = len;
4767 eb->fs_info = fs_info;
4768 eb->bflags = 0;
4769 rwlock_init(&eb->lock);
4770 atomic_set(&eb->write_locks, 0);
4771 atomic_set(&eb->read_locks, 0);
4772 atomic_set(&eb->blocking_readers, 0);
4773 atomic_set(&eb->blocking_writers, 0);
4774 atomic_set(&eb->spinning_readers, 0);
4775 atomic_set(&eb->spinning_writers, 0);
4776 eb->lock_nested = 0;
4777 init_waitqueue_head(&eb->write_lock_wq);
4778 init_waitqueue_head(&eb->read_lock_wq);
4779
4780 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4781
4782 spin_lock_init(&eb->refs_lock);
4783 atomic_set(&eb->refs, 1);
4784 atomic_set(&eb->io_pages, 0);
4785
4786 /*
4787 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4788 */
4789 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4790 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4791 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4792
4793 return eb;
4794 }
4795
4796 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4797 {
4798 unsigned long i;
4799 struct page *p;
4800 struct extent_buffer *new;
4801 unsigned long num_pages = num_extent_pages(src->start, src->len);
4802
4803 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4804 if (new == NULL)
4805 return NULL;
4806
4807 for (i = 0; i < num_pages; i++) {
4808 p = alloc_page(GFP_NOFS);
4809 if (!p) {
4810 btrfs_release_extent_buffer(new);
4811 return NULL;
4812 }
4813 attach_extent_buffer_page(new, p);
4814 WARN_ON(PageDirty(p));
4815 SetPageUptodate(p);
4816 new->pages[i] = p;
4817 copy_page(page_address(p), page_address(src->pages[i]));
4818 }
4819
4820 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4821 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4822
4823 return new;
4824 }
4825
4826 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4827 u64 start, unsigned long len)
4828 {
4829 struct extent_buffer *eb;
4830 unsigned long num_pages;
4831 unsigned long i;
4832
4833 num_pages = num_extent_pages(start, len);
4834
4835 eb = __alloc_extent_buffer(fs_info, start, len);
4836 if (!eb)
4837 return NULL;
4838
4839 for (i = 0; i < num_pages; i++) {
4840 eb->pages[i] = alloc_page(GFP_NOFS);
4841 if (!eb->pages[i])
4842 goto err;
4843 }
4844 set_extent_buffer_uptodate(eb);
4845 btrfs_set_header_nritems(eb, 0);
4846 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4847
4848 return eb;
4849 err:
4850 for (; i > 0; i--)
4851 __free_page(eb->pages[i - 1]);
4852 __free_extent_buffer(eb);
4853 return NULL;
4854 }
4855
4856 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4857 u64 start)
4858 {
4859 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4860 }
4861
4862 static void check_buffer_tree_ref(struct extent_buffer *eb)
4863 {
4864 int refs;
4865 /* the ref bit is tricky. We have to make sure it is set
4866 * if we have the buffer dirty. Otherwise the
4867 * code to free a buffer can end up dropping a dirty
4868 * page
4869 *
4870 * Once the ref bit is set, it won't go away while the
4871 * buffer is dirty or in writeback, and it also won't
4872 * go away while we have the reference count on the
4873 * eb bumped.
4874 *
4875 * We can't just set the ref bit without bumping the
4876 * ref on the eb because free_extent_buffer might
4877 * see the ref bit and try to clear it. If this happens
4878 * free_extent_buffer might end up dropping our original
4879 * ref by mistake and freeing the page before we are able
4880 * to add one more ref.
4881 *
4882 * So bump the ref count first, then set the bit. If someone
4883 * beat us to it, drop the ref we added.
4884 */
4885 refs = atomic_read(&eb->refs);
4886 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4887 return;
4888
4889 spin_lock(&eb->refs_lock);
4890 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4891 atomic_inc(&eb->refs);
4892 spin_unlock(&eb->refs_lock);
4893 }
4894
4895 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4896 struct page *accessed)
4897 {
4898 unsigned long num_pages, i;
4899
4900 check_buffer_tree_ref(eb);
4901
4902 num_pages = num_extent_pages(eb->start, eb->len);
4903 for (i = 0; i < num_pages; i++) {
4904 struct page *p = eb->pages[i];
4905
4906 if (p != accessed)
4907 mark_page_accessed(p);
4908 }
4909 }
4910
4911 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4912 u64 start)
4913 {
4914 struct extent_buffer *eb;
4915
4916 rcu_read_lock();
4917 eb = radix_tree_lookup(&fs_info->buffer_radix,
4918 start >> PAGE_SHIFT);
4919 if (eb && atomic_inc_not_zero(&eb->refs)) {
4920 rcu_read_unlock();
4921 /*
4922 * Lock our eb's refs_lock to avoid races with
4923 * free_extent_buffer. When we get our eb it might be flagged
4924 * with EXTENT_BUFFER_STALE and another task running
4925 * free_extent_buffer might have seen that flag set,
4926 * eb->refs == 2, that the buffer isn't under IO (dirty and
4927 * writeback flags not set) and it's still in the tree (flag
4928 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4929 * of decrementing the extent buffer's reference count twice.
4930 * So here we could race and increment the eb's reference count,
4931 * clear its stale flag, mark it as dirty and drop our reference
4932 * before the other task finishes executing free_extent_buffer,
4933 * which would later result in an attempt to free an extent
4934 * buffer that is dirty.
4935 */
4936 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4937 spin_lock(&eb->refs_lock);
4938 spin_unlock(&eb->refs_lock);
4939 }
4940 mark_extent_buffer_accessed(eb, NULL);
4941 return eb;
4942 }
4943 rcu_read_unlock();
4944
4945 return NULL;
4946 }
4947
4948 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4949 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4950 u64 start)
4951 {
4952 struct extent_buffer *eb, *exists = NULL;
4953 int ret;
4954
4955 eb = find_extent_buffer(fs_info, start);
4956 if (eb)
4957 return eb;
4958 eb = alloc_dummy_extent_buffer(fs_info, start);
4959 if (!eb)
4960 return NULL;
4961 eb->fs_info = fs_info;
4962 again:
4963 ret = radix_tree_preload(GFP_NOFS);
4964 if (ret)
4965 goto free_eb;
4966 spin_lock(&fs_info->buffer_lock);
4967 ret = radix_tree_insert(&fs_info->buffer_radix,
4968 start >> PAGE_SHIFT, eb);
4969 spin_unlock(&fs_info->buffer_lock);
4970 radix_tree_preload_end();
4971 if (ret == -EEXIST) {
4972 exists = find_extent_buffer(fs_info, start);
4973 if (exists)
4974 goto free_eb;
4975 else
4976 goto again;
4977 }
4978 check_buffer_tree_ref(eb);
4979 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4980
4981 /*
4982 * We will free dummy extent buffer's if they come into
4983 * free_extent_buffer with a ref count of 2, but if we are using this we
4984 * want the buffers to stay in memory until we're done with them, so
4985 * bump the ref count again.
4986 */
4987 atomic_inc(&eb->refs);
4988 return eb;
4989 free_eb:
4990 btrfs_release_extent_buffer(eb);
4991 return exists;
4992 }
4993 #endif
4994
4995 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4996 u64 start)
4997 {
4998 unsigned long len = fs_info->nodesize;
4999 unsigned long num_pages = num_extent_pages(start, len);
5000 unsigned long i;
5001 unsigned long index = start >> PAGE_SHIFT;
5002 struct extent_buffer *eb;
5003 struct extent_buffer *exists = NULL;
5004 struct page *p;
5005 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5006 int uptodate = 1;
5007 int ret;
5008
5009 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5010 btrfs_err(fs_info, "bad tree block start %llu", start);
5011 return ERR_PTR(-EINVAL);
5012 }
5013
5014 eb = find_extent_buffer(fs_info, start);
5015 if (eb)
5016 return eb;
5017
5018 eb = __alloc_extent_buffer(fs_info, start, len);
5019 if (!eb)
5020 return ERR_PTR(-ENOMEM);
5021
5022 for (i = 0; i < num_pages; i++, index++) {
5023 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5024 if (!p) {
5025 exists = ERR_PTR(-ENOMEM);
5026 goto free_eb;
5027 }
5028
5029 spin_lock(&mapping->private_lock);
5030 if (PagePrivate(p)) {
5031 /*
5032 * We could have already allocated an eb for this page
5033 * and attached one so lets see if we can get a ref on
5034 * the existing eb, and if we can we know it's good and
5035 * we can just return that one, else we know we can just
5036 * overwrite page->private.
5037 */
5038 exists = (struct extent_buffer *)p->private;
5039 if (atomic_inc_not_zero(&exists->refs)) {
5040 spin_unlock(&mapping->private_lock);
5041 unlock_page(p);
5042 put_page(p);
5043 mark_extent_buffer_accessed(exists, p);
5044 goto free_eb;
5045 }
5046 exists = NULL;
5047
5048 /*
5049 * Do this so attach doesn't complain and we need to
5050 * drop the ref the old guy had.
5051 */
5052 ClearPagePrivate(p);
5053 WARN_ON(PageDirty(p));
5054 put_page(p);
5055 }
5056 attach_extent_buffer_page(eb, p);
5057 spin_unlock(&mapping->private_lock);
5058 WARN_ON(PageDirty(p));
5059 eb->pages[i] = p;
5060 if (!PageUptodate(p))
5061 uptodate = 0;
5062
5063 /*
5064 * see below about how we avoid a nasty race with release page
5065 * and why we unlock later
5066 */
5067 }
5068 if (uptodate)
5069 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5070 again:
5071 ret = radix_tree_preload(GFP_NOFS);
5072 if (ret) {
5073 exists = ERR_PTR(ret);
5074 goto free_eb;
5075 }
5076
5077 spin_lock(&fs_info->buffer_lock);
5078 ret = radix_tree_insert(&fs_info->buffer_radix,
5079 start >> PAGE_SHIFT, eb);
5080 spin_unlock(&fs_info->buffer_lock);
5081 radix_tree_preload_end();
5082 if (ret == -EEXIST) {
5083 exists = find_extent_buffer(fs_info, start);
5084 if (exists)
5085 goto free_eb;
5086 else
5087 goto again;
5088 }
5089 /* add one reference for the tree */
5090 check_buffer_tree_ref(eb);
5091 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5092
5093 /*
5094 * there is a race where release page may have
5095 * tried to find this extent buffer in the radix
5096 * but failed. It will tell the VM it is safe to
5097 * reclaim the, and it will clear the page private bit.
5098 * We must make sure to set the page private bit properly
5099 * after the extent buffer is in the radix tree so
5100 * it doesn't get lost
5101 */
5102 SetPageChecked(eb->pages[0]);
5103 for (i = 1; i < num_pages; i++) {
5104 p = eb->pages[i];
5105 ClearPageChecked(p);
5106 unlock_page(p);
5107 }
5108 unlock_page(eb->pages[0]);
5109 return eb;
5110
5111 free_eb:
5112 WARN_ON(!atomic_dec_and_test(&eb->refs));
5113 for (i = 0; i < num_pages; i++) {
5114 if (eb->pages[i])
5115 unlock_page(eb->pages[i]);
5116 }
5117
5118 btrfs_release_extent_buffer(eb);
5119 return exists;
5120 }
5121
5122 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5123 {
5124 struct extent_buffer *eb =
5125 container_of(head, struct extent_buffer, rcu_head);
5126
5127 __free_extent_buffer(eb);
5128 }
5129
5130 /* Expects to have eb->eb_lock already held */
5131 static int release_extent_buffer(struct extent_buffer *eb)
5132 {
5133 WARN_ON(atomic_read(&eb->refs) == 0);
5134 if (atomic_dec_and_test(&eb->refs)) {
5135 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5136 struct btrfs_fs_info *fs_info = eb->fs_info;
5137
5138 spin_unlock(&eb->refs_lock);
5139
5140 spin_lock(&fs_info->buffer_lock);
5141 radix_tree_delete(&fs_info->buffer_radix,
5142 eb->start >> PAGE_SHIFT);
5143 spin_unlock(&fs_info->buffer_lock);
5144 } else {
5145 spin_unlock(&eb->refs_lock);
5146 }
5147
5148 /* Should be safe to release our pages at this point */
5149 btrfs_release_extent_buffer_page(eb);
5150 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5151 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5152 __free_extent_buffer(eb);
5153 return 1;
5154 }
5155 #endif
5156 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5157 return 1;
5158 }
5159 spin_unlock(&eb->refs_lock);
5160
5161 return 0;
5162 }
5163
5164 void free_extent_buffer(struct extent_buffer *eb)
5165 {
5166 int refs;
5167 int old;
5168 if (!eb)
5169 return;
5170
5171 while (1) {
5172 refs = atomic_read(&eb->refs);
5173 if (refs <= 3)
5174 break;
5175 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5176 if (old == refs)
5177 return;
5178 }
5179
5180 spin_lock(&eb->refs_lock);
5181 if (atomic_read(&eb->refs) == 2 &&
5182 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5183 atomic_dec(&eb->refs);
5184
5185 if (atomic_read(&eb->refs) == 2 &&
5186 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5187 !extent_buffer_under_io(eb) &&
5188 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5189 atomic_dec(&eb->refs);
5190
5191 /*
5192 * I know this is terrible, but it's temporary until we stop tracking
5193 * the uptodate bits and such for the extent buffers.
5194 */
5195 release_extent_buffer(eb);
5196 }
5197
5198 void free_extent_buffer_stale(struct extent_buffer *eb)
5199 {
5200 if (!eb)
5201 return;
5202
5203 spin_lock(&eb->refs_lock);
5204 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5205
5206 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5207 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5208 atomic_dec(&eb->refs);
5209 release_extent_buffer(eb);
5210 }
5211
5212 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5213 {
5214 unsigned long i;
5215 unsigned long num_pages;
5216 struct page *page;
5217
5218 num_pages = num_extent_pages(eb->start, eb->len);
5219
5220 for (i = 0; i < num_pages; i++) {
5221 page = eb->pages[i];
5222 if (!PageDirty(page))
5223 continue;
5224
5225 lock_page(page);
5226 WARN_ON(!PagePrivate(page));
5227
5228 clear_page_dirty_for_io(page);
5229 spin_lock_irq(&page->mapping->tree_lock);
5230 if (!PageDirty(page)) {
5231 radix_tree_tag_clear(&page->mapping->page_tree,
5232 page_index(page),
5233 PAGECACHE_TAG_DIRTY);
5234 }
5235 spin_unlock_irq(&page->mapping->tree_lock);
5236 ClearPageError(page);
5237 unlock_page(page);
5238 }
5239 WARN_ON(atomic_read(&eb->refs) == 0);
5240 }
5241
5242 int set_extent_buffer_dirty(struct extent_buffer *eb)
5243 {
5244 unsigned long i;
5245 unsigned long num_pages;
5246 int was_dirty = 0;
5247
5248 check_buffer_tree_ref(eb);
5249
5250 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5251
5252 num_pages = num_extent_pages(eb->start, eb->len);
5253 WARN_ON(atomic_read(&eb->refs) == 0);
5254 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5255
5256 for (i = 0; i < num_pages; i++)
5257 set_page_dirty(eb->pages[i]);
5258 return was_dirty;
5259 }
5260
5261 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5262 {
5263 unsigned long i;
5264 struct page *page;
5265 unsigned long num_pages;
5266
5267 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5268 num_pages = num_extent_pages(eb->start, eb->len);
5269 for (i = 0; i < num_pages; i++) {
5270 page = eb->pages[i];
5271 if (page)
5272 ClearPageUptodate(page);
5273 }
5274 }
5275
5276 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5277 {
5278 unsigned long i;
5279 struct page *page;
5280 unsigned long num_pages;
5281
5282 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5283 num_pages = num_extent_pages(eb->start, eb->len);
5284 for (i = 0; i < num_pages; i++) {
5285 page = eb->pages[i];
5286 SetPageUptodate(page);
5287 }
5288 }
5289
5290 int extent_buffer_uptodate(struct extent_buffer *eb)
5291 {
5292 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5293 }
5294
5295 int read_extent_buffer_pages(struct extent_io_tree *tree,
5296 struct extent_buffer *eb, int wait,
5297 get_extent_t *get_extent, int mirror_num)
5298 {
5299 unsigned long i;
5300 struct page *page;
5301 int err;
5302 int ret = 0;
5303 int locked_pages = 0;
5304 int all_uptodate = 1;
5305 unsigned long num_pages;
5306 unsigned long num_reads = 0;
5307 struct bio *bio = NULL;
5308 unsigned long bio_flags = 0;
5309
5310 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5311 return 0;
5312
5313 num_pages = num_extent_pages(eb->start, eb->len);
5314 for (i = 0; i < num_pages; i++) {
5315 page = eb->pages[i];
5316 if (wait == WAIT_NONE) {
5317 if (!trylock_page(page))
5318 goto unlock_exit;
5319 } else {
5320 lock_page(page);
5321 }
5322 locked_pages++;
5323 }
5324 /*
5325 * We need to firstly lock all pages to make sure that
5326 * the uptodate bit of our pages won't be affected by
5327 * clear_extent_buffer_uptodate().
5328 */
5329 for (i = 0; i < num_pages; i++) {
5330 page = eb->pages[i];
5331 if (!PageUptodate(page)) {
5332 num_reads++;
5333 all_uptodate = 0;
5334 }
5335 }
5336
5337 if (all_uptodate) {
5338 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5339 goto unlock_exit;
5340 }
5341
5342 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5343 eb->read_mirror = 0;
5344 atomic_set(&eb->io_pages, num_reads);
5345 for (i = 0; i < num_pages; i++) {
5346 page = eb->pages[i];
5347
5348 if (!PageUptodate(page)) {
5349 if (ret) {
5350 atomic_dec(&eb->io_pages);
5351 unlock_page(page);
5352 continue;
5353 }
5354
5355 ClearPageError(page);
5356 err = __extent_read_full_page(tree, page,
5357 get_extent, &bio,
5358 mirror_num, &bio_flags,
5359 REQ_META);
5360 if (err) {
5361 ret = err;
5362 /*
5363 * We use &bio in above __extent_read_full_page,
5364 * so we ensure that if it returns error, the
5365 * current page fails to add itself to bio and
5366 * it's been unlocked.
5367 *
5368 * We must dec io_pages by ourselves.
5369 */
5370 atomic_dec(&eb->io_pages);
5371 }
5372 } else {
5373 unlock_page(page);
5374 }
5375 }
5376
5377 if (bio) {
5378 err = submit_one_bio(bio, mirror_num, bio_flags);
5379 if (err)
5380 return err;
5381 }
5382
5383 if (ret || wait != WAIT_COMPLETE)
5384 return ret;
5385
5386 for (i = 0; i < num_pages; i++) {
5387 page = eb->pages[i];
5388 wait_on_page_locked(page);
5389 if (!PageUptodate(page))
5390 ret = -EIO;
5391 }
5392
5393 return ret;
5394
5395 unlock_exit:
5396 while (locked_pages > 0) {
5397 locked_pages--;
5398 page = eb->pages[locked_pages];
5399 unlock_page(page);
5400 }
5401 return ret;
5402 }
5403
5404 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5405 unsigned long start,
5406 unsigned long len)
5407 {
5408 size_t cur;
5409 size_t offset;
5410 struct page *page;
5411 char *kaddr;
5412 char *dst = (char *)dstv;
5413 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5414 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5415
5416 WARN_ON(start > eb->len);
5417 WARN_ON(start + len > eb->start + eb->len);
5418
5419 offset = (start_offset + start) & (PAGE_SIZE - 1);
5420
5421 while (len > 0) {
5422 page = eb->pages[i];
5423
5424 cur = min(len, (PAGE_SIZE - offset));
5425 kaddr = page_address(page);
5426 memcpy(dst, kaddr + offset, cur);
5427
5428 dst += cur;
5429 len -= cur;
5430 offset = 0;
5431 i++;
5432 }
5433 }
5434
5435 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5436 unsigned long start,
5437 unsigned long len)
5438 {
5439 size_t cur;
5440 size_t offset;
5441 struct page *page;
5442 char *kaddr;
5443 char __user *dst = (char __user *)dstv;
5444 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5445 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5446 int ret = 0;
5447
5448 WARN_ON(start > eb->len);
5449 WARN_ON(start + len > eb->start + eb->len);
5450
5451 offset = (start_offset + start) & (PAGE_SIZE - 1);
5452
5453 while (len > 0) {
5454 page = eb->pages[i];
5455
5456 cur = min(len, (PAGE_SIZE - offset));
5457 kaddr = page_address(page);
5458 if (copy_to_user(dst, kaddr + offset, cur)) {
5459 ret = -EFAULT;
5460 break;
5461 }
5462
5463 dst += cur;
5464 len -= cur;
5465 offset = 0;
5466 i++;
5467 }
5468
5469 return ret;
5470 }
5471
5472 /*
5473 * return 0 if the item is found within a page.
5474 * return 1 if the item spans two pages.
5475 * return -EINVAL otherwise.
5476 */
5477 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5478 unsigned long min_len, char **map,
5479 unsigned long *map_start,
5480 unsigned long *map_len)
5481 {
5482 size_t offset = start & (PAGE_SIZE - 1);
5483 char *kaddr;
5484 struct page *p;
5485 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5486 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5487 unsigned long end_i = (start_offset + start + min_len - 1) >>
5488 PAGE_SHIFT;
5489
5490 if (i != end_i)
5491 return 1;
5492
5493 if (i == 0) {
5494 offset = start_offset;
5495 *map_start = 0;
5496 } else {
5497 offset = 0;
5498 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5499 }
5500
5501 if (start + min_len > eb->len) {
5502 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5503 eb->start, eb->len, start, min_len);
5504 return -EINVAL;
5505 }
5506
5507 p = eb->pages[i];
5508 kaddr = page_address(p);
5509 *map = kaddr + offset;
5510 *map_len = PAGE_SIZE - offset;
5511 return 0;
5512 }
5513
5514 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5515 unsigned long start,
5516 unsigned long len)
5517 {
5518 size_t cur;
5519 size_t offset;
5520 struct page *page;
5521 char *kaddr;
5522 char *ptr = (char *)ptrv;
5523 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5524 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5525 int ret = 0;
5526
5527 WARN_ON(start > eb->len);
5528 WARN_ON(start + len > eb->start + eb->len);
5529
5530 offset = (start_offset + start) & (PAGE_SIZE - 1);
5531
5532 while (len > 0) {
5533 page = eb->pages[i];
5534
5535 cur = min(len, (PAGE_SIZE - offset));
5536
5537 kaddr = page_address(page);
5538 ret = memcmp(ptr, kaddr + offset, cur);
5539 if (ret)
5540 break;
5541
5542 ptr += cur;
5543 len -= cur;
5544 offset = 0;
5545 i++;
5546 }
5547 return ret;
5548 }
5549
5550 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5551 const void *srcv)
5552 {
5553 char *kaddr;
5554
5555 WARN_ON(!PageUptodate(eb->pages[0]));
5556 kaddr = page_address(eb->pages[0]);
5557 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5558 BTRFS_FSID_SIZE);
5559 }
5560
5561 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5562 {
5563 char *kaddr;
5564
5565 WARN_ON(!PageUptodate(eb->pages[0]));
5566 kaddr = page_address(eb->pages[0]);
5567 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5568 BTRFS_FSID_SIZE);
5569 }
5570
5571 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5572 unsigned long start, unsigned long len)
5573 {
5574 size_t cur;
5575 size_t offset;
5576 struct page *page;
5577 char *kaddr;
5578 char *src = (char *)srcv;
5579 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5580 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5581
5582 WARN_ON(start > eb->len);
5583 WARN_ON(start + len > eb->start + eb->len);
5584
5585 offset = (start_offset + start) & (PAGE_SIZE - 1);
5586
5587 while (len > 0) {
5588 page = eb->pages[i];
5589 WARN_ON(!PageUptodate(page));
5590
5591 cur = min(len, PAGE_SIZE - offset);
5592 kaddr = page_address(page);
5593 memcpy(kaddr + offset, src, cur);
5594
5595 src += cur;
5596 len -= cur;
5597 offset = 0;
5598 i++;
5599 }
5600 }
5601
5602 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5603 unsigned long len)
5604 {
5605 size_t cur;
5606 size_t offset;
5607 struct page *page;
5608 char *kaddr;
5609 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5610 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5611
5612 WARN_ON(start > eb->len);
5613 WARN_ON(start + len > eb->start + eb->len);
5614
5615 offset = (start_offset + start) & (PAGE_SIZE - 1);
5616
5617 while (len > 0) {
5618 page = eb->pages[i];
5619 WARN_ON(!PageUptodate(page));
5620
5621 cur = min(len, PAGE_SIZE - offset);
5622 kaddr = page_address(page);
5623 memset(kaddr + offset, 0, cur);
5624
5625 len -= cur;
5626 offset = 0;
5627 i++;
5628 }
5629 }
5630
5631 void copy_extent_buffer_full(struct extent_buffer *dst,
5632 struct extent_buffer *src)
5633 {
5634 int i;
5635 unsigned num_pages;
5636
5637 ASSERT(dst->len == src->len);
5638
5639 num_pages = num_extent_pages(dst->start, dst->len);
5640 for (i = 0; i < num_pages; i++)
5641 copy_page(page_address(dst->pages[i]),
5642 page_address(src->pages[i]));
5643 }
5644
5645 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5646 unsigned long dst_offset, unsigned long src_offset,
5647 unsigned long len)
5648 {
5649 u64 dst_len = dst->len;
5650 size_t cur;
5651 size_t offset;
5652 struct page *page;
5653 char *kaddr;
5654 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5655 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5656
5657 WARN_ON(src->len != dst_len);
5658
5659 offset = (start_offset + dst_offset) &
5660 (PAGE_SIZE - 1);
5661
5662 while (len > 0) {
5663 page = dst->pages[i];
5664 WARN_ON(!PageUptodate(page));
5665
5666 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5667
5668 kaddr = page_address(page);
5669 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5670
5671 src_offset += cur;
5672 len -= cur;
5673 offset = 0;
5674 i++;
5675 }
5676 }
5677
5678 void le_bitmap_set(u8 *map, unsigned int start, int len)
5679 {
5680 u8 *p = map + BIT_BYTE(start);
5681 const unsigned int size = start + len;
5682 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5683 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5684
5685 while (len - bits_to_set >= 0) {
5686 *p |= mask_to_set;
5687 len -= bits_to_set;
5688 bits_to_set = BITS_PER_BYTE;
5689 mask_to_set = ~0;
5690 p++;
5691 }
5692 if (len) {
5693 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5694 *p |= mask_to_set;
5695 }
5696 }
5697
5698 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5699 {
5700 u8 *p = map + BIT_BYTE(start);
5701 const unsigned int size = start + len;
5702 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5703 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5704
5705 while (len - bits_to_clear >= 0) {
5706 *p &= ~mask_to_clear;
5707 len -= bits_to_clear;
5708 bits_to_clear = BITS_PER_BYTE;
5709 mask_to_clear = ~0;
5710 p++;
5711 }
5712 if (len) {
5713 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5714 *p &= ~mask_to_clear;
5715 }
5716 }
5717
5718 /*
5719 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5720 * given bit number
5721 * @eb: the extent buffer
5722 * @start: offset of the bitmap item in the extent buffer
5723 * @nr: bit number
5724 * @page_index: return index of the page in the extent buffer that contains the
5725 * given bit number
5726 * @page_offset: return offset into the page given by page_index
5727 *
5728 * This helper hides the ugliness of finding the byte in an extent buffer which
5729 * contains a given bit.
5730 */
5731 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5732 unsigned long start, unsigned long nr,
5733 unsigned long *page_index,
5734 size_t *page_offset)
5735 {
5736 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5737 size_t byte_offset = BIT_BYTE(nr);
5738 size_t offset;
5739
5740 /*
5741 * The byte we want is the offset of the extent buffer + the offset of
5742 * the bitmap item in the extent buffer + the offset of the byte in the
5743 * bitmap item.
5744 */
5745 offset = start_offset + start + byte_offset;
5746
5747 *page_index = offset >> PAGE_SHIFT;
5748 *page_offset = offset & (PAGE_SIZE - 1);
5749 }
5750
5751 /**
5752 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5753 * @eb: the extent buffer
5754 * @start: offset of the bitmap item in the extent buffer
5755 * @nr: bit number to test
5756 */
5757 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5758 unsigned long nr)
5759 {
5760 u8 *kaddr;
5761 struct page *page;
5762 unsigned long i;
5763 size_t offset;
5764
5765 eb_bitmap_offset(eb, start, nr, &i, &offset);
5766 page = eb->pages[i];
5767 WARN_ON(!PageUptodate(page));
5768 kaddr = page_address(page);
5769 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5770 }
5771
5772 /**
5773 * extent_buffer_bitmap_set - set an area of a bitmap
5774 * @eb: the extent buffer
5775 * @start: offset of the bitmap item in the extent buffer
5776 * @pos: bit number of the first bit
5777 * @len: number of bits to set
5778 */
5779 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5780 unsigned long pos, unsigned long len)
5781 {
5782 u8 *kaddr;
5783 struct page *page;
5784 unsigned long i;
5785 size_t offset;
5786 const unsigned int size = pos + len;
5787 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5788 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5789
5790 eb_bitmap_offset(eb, start, pos, &i, &offset);
5791 page = eb->pages[i];
5792 WARN_ON(!PageUptodate(page));
5793 kaddr = page_address(page);
5794
5795 while (len >= bits_to_set) {
5796 kaddr[offset] |= mask_to_set;
5797 len -= bits_to_set;
5798 bits_to_set = BITS_PER_BYTE;
5799 mask_to_set = ~0;
5800 if (++offset >= PAGE_SIZE && len > 0) {
5801 offset = 0;
5802 page = eb->pages[++i];
5803 WARN_ON(!PageUptodate(page));
5804 kaddr = page_address(page);
5805 }
5806 }
5807 if (len) {
5808 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5809 kaddr[offset] |= mask_to_set;
5810 }
5811 }
5812
5813
5814 /**
5815 * extent_buffer_bitmap_clear - clear an area of a bitmap
5816 * @eb: the extent buffer
5817 * @start: offset of the bitmap item in the extent buffer
5818 * @pos: bit number of the first bit
5819 * @len: number of bits to clear
5820 */
5821 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5822 unsigned long pos, unsigned long len)
5823 {
5824 u8 *kaddr;
5825 struct page *page;
5826 unsigned long i;
5827 size_t offset;
5828 const unsigned int size = pos + len;
5829 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5830 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5831
5832 eb_bitmap_offset(eb, start, pos, &i, &offset);
5833 page = eb->pages[i];
5834 WARN_ON(!PageUptodate(page));
5835 kaddr = page_address(page);
5836
5837 while (len >= bits_to_clear) {
5838 kaddr[offset] &= ~mask_to_clear;
5839 len -= bits_to_clear;
5840 bits_to_clear = BITS_PER_BYTE;
5841 mask_to_clear = ~0;
5842 if (++offset >= PAGE_SIZE && len > 0) {
5843 offset = 0;
5844 page = eb->pages[++i];
5845 WARN_ON(!PageUptodate(page));
5846 kaddr = page_address(page);
5847 }
5848 }
5849 if (len) {
5850 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5851 kaddr[offset] &= ~mask_to_clear;
5852 }
5853 }
5854
5855 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5856 {
5857 unsigned long distance = (src > dst) ? src - dst : dst - src;
5858 return distance < len;
5859 }
5860
5861 static void copy_pages(struct page *dst_page, struct page *src_page,
5862 unsigned long dst_off, unsigned long src_off,
5863 unsigned long len)
5864 {
5865 char *dst_kaddr = page_address(dst_page);
5866 char *src_kaddr;
5867 int must_memmove = 0;
5868
5869 if (dst_page != src_page) {
5870 src_kaddr = page_address(src_page);
5871 } else {
5872 src_kaddr = dst_kaddr;
5873 if (areas_overlap(src_off, dst_off, len))
5874 must_memmove = 1;
5875 }
5876
5877 if (must_memmove)
5878 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5879 else
5880 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5881 }
5882
5883 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5884 unsigned long src_offset, unsigned long len)
5885 {
5886 struct btrfs_fs_info *fs_info = dst->fs_info;
5887 size_t cur;
5888 size_t dst_off_in_page;
5889 size_t src_off_in_page;
5890 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5891 unsigned long dst_i;
5892 unsigned long src_i;
5893
5894 if (src_offset + len > dst->len) {
5895 btrfs_err(fs_info,
5896 "memmove bogus src_offset %lu move len %lu dst len %lu",
5897 src_offset, len, dst->len);
5898 BUG_ON(1);
5899 }
5900 if (dst_offset + len > dst->len) {
5901 btrfs_err(fs_info,
5902 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5903 dst_offset, len, dst->len);
5904 BUG_ON(1);
5905 }
5906
5907 while (len > 0) {
5908 dst_off_in_page = (start_offset + dst_offset) &
5909 (PAGE_SIZE - 1);
5910 src_off_in_page = (start_offset + src_offset) &
5911 (PAGE_SIZE - 1);
5912
5913 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5914 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5915
5916 cur = min(len, (unsigned long)(PAGE_SIZE -
5917 src_off_in_page));
5918 cur = min_t(unsigned long, cur,
5919 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5920
5921 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5922 dst_off_in_page, src_off_in_page, cur);
5923
5924 src_offset += cur;
5925 dst_offset += cur;
5926 len -= cur;
5927 }
5928 }
5929
5930 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5931 unsigned long src_offset, unsigned long len)
5932 {
5933 struct btrfs_fs_info *fs_info = dst->fs_info;
5934 size_t cur;
5935 size_t dst_off_in_page;
5936 size_t src_off_in_page;
5937 unsigned long dst_end = dst_offset + len - 1;
5938 unsigned long src_end = src_offset + len - 1;
5939 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5940 unsigned long dst_i;
5941 unsigned long src_i;
5942
5943 if (src_offset + len > dst->len) {
5944 btrfs_err(fs_info,
5945 "memmove bogus src_offset %lu move len %lu len %lu",
5946 src_offset, len, dst->len);
5947 BUG_ON(1);
5948 }
5949 if (dst_offset + len > dst->len) {
5950 btrfs_err(fs_info,
5951 "memmove bogus dst_offset %lu move len %lu len %lu",
5952 dst_offset, len, dst->len);
5953 BUG_ON(1);
5954 }
5955 if (dst_offset < src_offset) {
5956 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5957 return;
5958 }
5959 while (len > 0) {
5960 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5961 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5962
5963 dst_off_in_page = (start_offset + dst_end) &
5964 (PAGE_SIZE - 1);
5965 src_off_in_page = (start_offset + src_end) &
5966 (PAGE_SIZE - 1);
5967
5968 cur = min_t(unsigned long, len, src_off_in_page + 1);
5969 cur = min(cur, dst_off_in_page + 1);
5970 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5971 dst_off_in_page - cur + 1,
5972 src_off_in_page - cur + 1, cur);
5973
5974 dst_end -= cur;
5975 src_end -= cur;
5976 len -= cur;
5977 }
5978 }
5979
5980 int try_release_extent_buffer(struct page *page)
5981 {
5982 struct extent_buffer *eb;
5983
5984 /*
5985 * We need to make sure nobody is attaching this page to an eb right
5986 * now.
5987 */
5988 spin_lock(&page->mapping->private_lock);
5989 if (!PagePrivate(page)) {
5990 spin_unlock(&page->mapping->private_lock);
5991 return 1;
5992 }
5993
5994 eb = (struct extent_buffer *)page->private;
5995 BUG_ON(!eb);
5996
5997 /*
5998 * This is a little awful but should be ok, we need to make sure that
5999 * the eb doesn't disappear out from under us while we're looking at
6000 * this page.
6001 */
6002 spin_lock(&eb->refs_lock);
6003 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6004 spin_unlock(&eb->refs_lock);
6005 spin_unlock(&page->mapping->private_lock);
6006 return 0;
6007 }
6008 spin_unlock(&page->mapping->private_lock);
6009
6010 /*
6011 * If tree ref isn't set then we know the ref on this eb is a real ref,
6012 * so just return, this page will likely be freed soon anyway.
6013 */
6014 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6015 spin_unlock(&eb->refs_lock);
6016 return 0;
6017 }
6018
6019 return release_extent_buffer(eb);
6020 }