]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - fs/btrfs/inode.c
ASoC: dwc: Ensure i2s_reg_comp{1,2} is always initialised
[mirror_ubuntu-disco-kernel.git] / fs / btrfs / inode.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
52 #include "xattr.h"
53 #include "tree-log.h"
54 #include "volumes.h"
55 #include "compression.h"
56 #include "locking.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
59 #include "backref.h"
60 #include "hash.h"
61 #include "props.h"
62 #include "qgroup.h"
63
64 struct btrfs_iget_args {
65 struct btrfs_key *location;
66 struct btrfs_root *root;
67 };
68
69 struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
74 };
75
76 static const struct inode_operations btrfs_dir_inode_operations;
77 static const struct inode_operations btrfs_symlink_inode_operations;
78 static const struct inode_operations btrfs_dir_ro_inode_operations;
79 static const struct inode_operations btrfs_special_inode_operations;
80 static const struct inode_operations btrfs_file_inode_operations;
81 static const struct address_space_operations btrfs_aops;
82 static const struct address_space_operations btrfs_symlink_aops;
83 static const struct file_operations btrfs_dir_file_operations;
84 static const struct extent_io_ops btrfs_extent_io_ops;
85
86 static struct kmem_cache *btrfs_inode_cachep;
87 struct kmem_cache *btrfs_trans_handle_cachep;
88 struct kmem_cache *btrfs_transaction_cachep;
89 struct kmem_cache *btrfs_path_cachep;
90 struct kmem_cache *btrfs_free_space_cachep;
91
92 #define S_SHIFT 12
93 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101 };
102
103 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
104 static int btrfs_truncate(struct inode *inode);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
106 static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
108 u64 start, u64 end, int *page_started,
109 unsigned long *nr_written, int unlock);
110 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
111 u64 len, u64 orig_start,
112 u64 block_start, u64 block_len,
113 u64 orig_block_len, u64 ram_bytes,
114 int type);
115
116 static int btrfs_dirty_inode(struct inode *inode);
117
118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
119 void btrfs_test_inode_set_ops(struct inode *inode)
120 {
121 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
122 }
123 #endif
124
125 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
126 struct inode *inode, struct inode *dir,
127 const struct qstr *qstr)
128 {
129 int err;
130
131 err = btrfs_init_acl(trans, inode, dir);
132 if (!err)
133 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
134 return err;
135 }
136
137 /*
138 * this does all the hard work for inserting an inline extent into
139 * the btree. The caller should have done a btrfs_drop_extents so that
140 * no overlapping inline items exist in the btree
141 */
142 static int insert_inline_extent(struct btrfs_trans_handle *trans,
143 struct btrfs_path *path, int extent_inserted,
144 struct btrfs_root *root, struct inode *inode,
145 u64 start, size_t size, size_t compressed_size,
146 int compress_type,
147 struct page **compressed_pages)
148 {
149 struct extent_buffer *leaf;
150 struct page *page = NULL;
151 char *kaddr;
152 unsigned long ptr;
153 struct btrfs_file_extent_item *ei;
154 int err = 0;
155 int ret;
156 size_t cur_size = size;
157 unsigned long offset;
158
159 if (compressed_size && compressed_pages)
160 cur_size = compressed_size;
161
162 inode_add_bytes(inode, size);
163
164 if (!extent_inserted) {
165 struct btrfs_key key;
166 size_t datasize;
167
168 key.objectid = btrfs_ino(inode);
169 key.offset = start;
170 key.type = BTRFS_EXTENT_DATA_KEY;
171
172 datasize = btrfs_file_extent_calc_inline_size(cur_size);
173 path->leave_spinning = 1;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 datasize);
176 if (ret) {
177 err = ret;
178 goto fail;
179 }
180 }
181 leaf = path->nodes[0];
182 ei = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_file_extent_item);
184 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
185 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
186 btrfs_set_file_extent_encryption(leaf, ei, 0);
187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
188 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
189 ptr = btrfs_file_extent_inline_start(ei);
190
191 if (compress_type != BTRFS_COMPRESS_NONE) {
192 struct page *cpage;
193 int i = 0;
194 while (compressed_size > 0) {
195 cpage = compressed_pages[i];
196 cur_size = min_t(unsigned long, compressed_size,
197 PAGE_CACHE_SIZE);
198
199 kaddr = kmap_atomic(cpage);
200 write_extent_buffer(leaf, kaddr, ptr, cur_size);
201 kunmap_atomic(kaddr);
202
203 i++;
204 ptr += cur_size;
205 compressed_size -= cur_size;
206 }
207 btrfs_set_file_extent_compression(leaf, ei,
208 compress_type);
209 } else {
210 page = find_get_page(inode->i_mapping,
211 start >> PAGE_CACHE_SHIFT);
212 btrfs_set_file_extent_compression(leaf, ei, 0);
213 kaddr = kmap_atomic(page);
214 offset = start & (PAGE_CACHE_SIZE - 1);
215 write_extent_buffer(leaf, kaddr + offset, ptr, size);
216 kunmap_atomic(kaddr);
217 page_cache_release(page);
218 }
219 btrfs_mark_buffer_dirty(leaf);
220 btrfs_release_path(path);
221
222 /*
223 * we're an inline extent, so nobody can
224 * extend the file past i_size without locking
225 * a page we already have locked.
226 *
227 * We must do any isize and inode updates
228 * before we unlock the pages. Otherwise we
229 * could end up racing with unlink.
230 */
231 BTRFS_I(inode)->disk_i_size = inode->i_size;
232 ret = btrfs_update_inode(trans, root, inode);
233
234 return ret;
235 fail:
236 return err;
237 }
238
239
240 /*
241 * conditionally insert an inline extent into the file. This
242 * does the checks required to make sure the data is small enough
243 * to fit as an inline extent.
244 */
245 static noinline int cow_file_range_inline(struct btrfs_root *root,
246 struct inode *inode, u64 start,
247 u64 end, size_t compressed_size,
248 int compress_type,
249 struct page **compressed_pages)
250 {
251 struct btrfs_trans_handle *trans;
252 u64 isize = i_size_read(inode);
253 u64 actual_end = min(end + 1, isize);
254 u64 inline_len = actual_end - start;
255 u64 aligned_end = ALIGN(end, root->sectorsize);
256 u64 data_len = inline_len;
257 int ret;
258 struct btrfs_path *path;
259 int extent_inserted = 0;
260 u32 extent_item_size;
261
262 if (compressed_size)
263 data_len = compressed_size;
264
265 if (start > 0 ||
266 actual_end > PAGE_CACHE_SIZE ||
267 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
268 (!compressed_size &&
269 (actual_end & (root->sectorsize - 1)) == 0) ||
270 end + 1 < isize ||
271 data_len > root->fs_info->max_inline) {
272 return 1;
273 }
274
275 path = btrfs_alloc_path();
276 if (!path)
277 return -ENOMEM;
278
279 trans = btrfs_join_transaction(root);
280 if (IS_ERR(trans)) {
281 btrfs_free_path(path);
282 return PTR_ERR(trans);
283 }
284 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
285
286 if (compressed_size && compressed_pages)
287 extent_item_size = btrfs_file_extent_calc_inline_size(
288 compressed_size);
289 else
290 extent_item_size = btrfs_file_extent_calc_inline_size(
291 inline_len);
292
293 ret = __btrfs_drop_extents(trans, root, inode, path,
294 start, aligned_end, NULL,
295 1, 1, extent_item_size, &extent_inserted);
296 if (ret) {
297 btrfs_abort_transaction(trans, root, ret);
298 goto out;
299 }
300
301 if (isize > actual_end)
302 inline_len = min_t(u64, isize, actual_end);
303 ret = insert_inline_extent(trans, path, extent_inserted,
304 root, inode, start,
305 inline_len, compressed_size,
306 compress_type, compressed_pages);
307 if (ret && ret != -ENOSPC) {
308 btrfs_abort_transaction(trans, root, ret);
309 goto out;
310 } else if (ret == -ENOSPC) {
311 ret = 1;
312 goto out;
313 }
314
315 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
316 btrfs_delalloc_release_metadata(inode, end + 1 - start);
317 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
318 out:
319 /*
320 * Don't forget to free the reserved space, as for inlined extent
321 * it won't count as data extent, free them directly here.
322 * And at reserve time, it's always aligned to page size, so
323 * just free one page here.
324 */
325 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
326 btrfs_free_path(path);
327 btrfs_end_transaction(trans, root);
328 return ret;
329 }
330
331 struct async_extent {
332 u64 start;
333 u64 ram_size;
334 u64 compressed_size;
335 struct page **pages;
336 unsigned long nr_pages;
337 int compress_type;
338 struct list_head list;
339 };
340
341 struct async_cow {
342 struct inode *inode;
343 struct btrfs_root *root;
344 struct page *locked_page;
345 u64 start;
346 u64 end;
347 struct list_head extents;
348 struct btrfs_work work;
349 };
350
351 static noinline int add_async_extent(struct async_cow *cow,
352 u64 start, u64 ram_size,
353 u64 compressed_size,
354 struct page **pages,
355 unsigned long nr_pages,
356 int compress_type)
357 {
358 struct async_extent *async_extent;
359
360 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
361 BUG_ON(!async_extent); /* -ENOMEM */
362 async_extent->start = start;
363 async_extent->ram_size = ram_size;
364 async_extent->compressed_size = compressed_size;
365 async_extent->pages = pages;
366 async_extent->nr_pages = nr_pages;
367 async_extent->compress_type = compress_type;
368 list_add_tail(&async_extent->list, &cow->extents);
369 return 0;
370 }
371
372 static inline int inode_need_compress(struct inode *inode)
373 {
374 struct btrfs_root *root = BTRFS_I(inode)->root;
375
376 /* force compress */
377 if (btrfs_test_opt(root, FORCE_COMPRESS))
378 return 1;
379 /* bad compression ratios */
380 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
381 return 0;
382 if (btrfs_test_opt(root, COMPRESS) ||
383 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
384 BTRFS_I(inode)->force_compress)
385 return 1;
386 return 0;
387 }
388
389 /*
390 * we create compressed extents in two phases. The first
391 * phase compresses a range of pages that have already been
392 * locked (both pages and state bits are locked).
393 *
394 * This is done inside an ordered work queue, and the compression
395 * is spread across many cpus. The actual IO submission is step
396 * two, and the ordered work queue takes care of making sure that
397 * happens in the same order things were put onto the queue by
398 * writepages and friends.
399 *
400 * If this code finds it can't get good compression, it puts an
401 * entry onto the work queue to write the uncompressed bytes. This
402 * makes sure that both compressed inodes and uncompressed inodes
403 * are written in the same order that the flusher thread sent them
404 * down.
405 */
406 static noinline void compress_file_range(struct inode *inode,
407 struct page *locked_page,
408 u64 start, u64 end,
409 struct async_cow *async_cow,
410 int *num_added)
411 {
412 struct btrfs_root *root = BTRFS_I(inode)->root;
413 u64 num_bytes;
414 u64 blocksize = root->sectorsize;
415 u64 actual_end;
416 u64 isize = i_size_read(inode);
417 int ret = 0;
418 struct page **pages = NULL;
419 unsigned long nr_pages;
420 unsigned long nr_pages_ret = 0;
421 unsigned long total_compressed = 0;
422 unsigned long total_in = 0;
423 unsigned long max_compressed = SZ_128K;
424 unsigned long max_uncompressed = SZ_128K;
425 int i;
426 int will_compress;
427 int compress_type = root->fs_info->compress_type;
428 int redirty = 0;
429
430 /* if this is a small write inside eof, kick off a defrag */
431 if ((end - start + 1) < SZ_16K &&
432 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
433 btrfs_add_inode_defrag(NULL, inode);
434
435 actual_end = min_t(u64, isize, end + 1);
436 again:
437 will_compress = 0;
438 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
439 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_CACHE_SIZE);
440
441 /*
442 * we don't want to send crud past the end of i_size through
443 * compression, that's just a waste of CPU time. So, if the
444 * end of the file is before the start of our current
445 * requested range of bytes, we bail out to the uncompressed
446 * cleanup code that can deal with all of this.
447 *
448 * It isn't really the fastest way to fix things, but this is a
449 * very uncommon corner.
450 */
451 if (actual_end <= start)
452 goto cleanup_and_bail_uncompressed;
453
454 total_compressed = actual_end - start;
455
456 /*
457 * skip compression for a small file range(<=blocksize) that
458 * isn't an inline extent, since it dosen't save disk space at all.
459 */
460 if (total_compressed <= blocksize &&
461 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
462 goto cleanup_and_bail_uncompressed;
463
464 /* we want to make sure that amount of ram required to uncompress
465 * an extent is reasonable, so we limit the total size in ram
466 * of a compressed extent to 128k. This is a crucial number
467 * because it also controls how easily we can spread reads across
468 * cpus for decompression.
469 *
470 * We also want to make sure the amount of IO required to do
471 * a random read is reasonably small, so we limit the size of
472 * a compressed extent to 128k.
473 */
474 total_compressed = min(total_compressed, max_uncompressed);
475 num_bytes = ALIGN(end - start + 1, blocksize);
476 num_bytes = max(blocksize, num_bytes);
477 total_in = 0;
478 ret = 0;
479
480 /*
481 * we do compression for mount -o compress and when the
482 * inode has not been flagged as nocompress. This flag can
483 * change at any time if we discover bad compression ratios.
484 */
485 if (inode_need_compress(inode)) {
486 WARN_ON(pages);
487 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
488 if (!pages) {
489 /* just bail out to the uncompressed code */
490 goto cont;
491 }
492
493 if (BTRFS_I(inode)->force_compress)
494 compress_type = BTRFS_I(inode)->force_compress;
495
496 /*
497 * we need to call clear_page_dirty_for_io on each
498 * page in the range. Otherwise applications with the file
499 * mmap'd can wander in and change the page contents while
500 * we are compressing them.
501 *
502 * If the compression fails for any reason, we set the pages
503 * dirty again later on.
504 */
505 extent_range_clear_dirty_for_io(inode, start, end);
506 redirty = 1;
507 ret = btrfs_compress_pages(compress_type,
508 inode->i_mapping, start,
509 total_compressed, pages,
510 nr_pages, &nr_pages_ret,
511 &total_in,
512 &total_compressed,
513 max_compressed);
514
515 if (!ret) {
516 unsigned long offset = total_compressed &
517 (PAGE_CACHE_SIZE - 1);
518 struct page *page = pages[nr_pages_ret - 1];
519 char *kaddr;
520
521 /* zero the tail end of the last page, we might be
522 * sending it down to disk
523 */
524 if (offset) {
525 kaddr = kmap_atomic(page);
526 memset(kaddr + offset, 0,
527 PAGE_CACHE_SIZE - offset);
528 kunmap_atomic(kaddr);
529 }
530 will_compress = 1;
531 }
532 }
533 cont:
534 if (start == 0) {
535 /* lets try to make an inline extent */
536 if (ret || total_in < (actual_end - start)) {
537 /* we didn't compress the entire range, try
538 * to make an uncompressed inline extent.
539 */
540 ret = cow_file_range_inline(root, inode, start, end,
541 0, 0, NULL);
542 } else {
543 /* try making a compressed inline extent */
544 ret = cow_file_range_inline(root, inode, start, end,
545 total_compressed,
546 compress_type, pages);
547 }
548 if (ret <= 0) {
549 unsigned long clear_flags = EXTENT_DELALLOC |
550 EXTENT_DEFRAG;
551 unsigned long page_error_op;
552
553 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
554 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
555
556 /*
557 * inline extent creation worked or returned error,
558 * we don't need to create any more async work items.
559 * Unlock and free up our temp pages.
560 */
561 extent_clear_unlock_delalloc(inode, start, end, NULL,
562 clear_flags, PAGE_UNLOCK |
563 PAGE_CLEAR_DIRTY |
564 PAGE_SET_WRITEBACK |
565 page_error_op |
566 PAGE_END_WRITEBACK);
567 goto free_pages_out;
568 }
569 }
570
571 if (will_compress) {
572 /*
573 * we aren't doing an inline extent round the compressed size
574 * up to a block size boundary so the allocator does sane
575 * things
576 */
577 total_compressed = ALIGN(total_compressed, blocksize);
578
579 /*
580 * one last check to make sure the compression is really a
581 * win, compare the page count read with the blocks on disk
582 */
583 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
584 if (total_compressed >= total_in) {
585 will_compress = 0;
586 } else {
587 num_bytes = total_in;
588 }
589 }
590 if (!will_compress && pages) {
591 /*
592 * the compression code ran but failed to make things smaller,
593 * free any pages it allocated and our page pointer array
594 */
595 for (i = 0; i < nr_pages_ret; i++) {
596 WARN_ON(pages[i]->mapping);
597 page_cache_release(pages[i]);
598 }
599 kfree(pages);
600 pages = NULL;
601 total_compressed = 0;
602 nr_pages_ret = 0;
603
604 /* flag the file so we don't compress in the future */
605 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
606 !(BTRFS_I(inode)->force_compress)) {
607 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
608 }
609 }
610 if (will_compress) {
611 *num_added += 1;
612
613 /* the async work queues will take care of doing actual
614 * allocation on disk for these compressed pages,
615 * and will submit them to the elevator.
616 */
617 add_async_extent(async_cow, start, num_bytes,
618 total_compressed, pages, nr_pages_ret,
619 compress_type);
620
621 if (start + num_bytes < end) {
622 start += num_bytes;
623 pages = NULL;
624 cond_resched();
625 goto again;
626 }
627 } else {
628 cleanup_and_bail_uncompressed:
629 /*
630 * No compression, but we still need to write the pages in
631 * the file we've been given so far. redirty the locked
632 * page if it corresponds to our extent and set things up
633 * for the async work queue to run cow_file_range to do
634 * the normal delalloc dance
635 */
636 if (page_offset(locked_page) >= start &&
637 page_offset(locked_page) <= end) {
638 __set_page_dirty_nobuffers(locked_page);
639 /* unlocked later on in the async handlers */
640 }
641 if (redirty)
642 extent_range_redirty_for_io(inode, start, end);
643 add_async_extent(async_cow, start, end - start + 1,
644 0, NULL, 0, BTRFS_COMPRESS_NONE);
645 *num_added += 1;
646 }
647
648 return;
649
650 free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
653 page_cache_release(pages[i]);
654 }
655 kfree(pages);
656 }
657
658 static void free_async_extent_pages(struct async_extent *async_extent)
659 {
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
667 page_cache_release(async_extent->pages[i]);
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
672 }
673
674 /*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
680 static noinline void submit_compressed_extents(struct inode *inode,
681 struct async_cow *async_cow)
682 {
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
690 int ret = 0;
691
692 again:
693 while (!list_empty(&async_cow->extents)) {
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
697
698 io_tree = &BTRFS_I(inode)->io_tree;
699
700 retry:
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1);
709
710 /* allocate blocks */
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
715 &page_started, &nr_written, 0);
716
717 /* JDM XXX */
718
719 /*
720 * if page_started, cow_file_range inserted an
721 * inline extent and took care of all the unlocking
722 * and IO for us. Otherwise, we need to submit
723 * all those pages down to the drive.
724 */
725 if (!page_started && !ret)
726 extent_write_locked_range(io_tree,
727 inode, async_extent->start,
728 async_extent->start +
729 async_extent->ram_size - 1,
730 btrfs_get_extent,
731 WB_SYNC_ALL);
732 else if (ret)
733 unlock_page(async_cow->locked_page);
734 kfree(async_extent);
735 cond_resched();
736 continue;
737 }
738
739 lock_extent(io_tree, async_extent->start,
740 async_extent->start + async_extent->ram_size - 1);
741
742 ret = btrfs_reserve_extent(root,
743 async_extent->compressed_size,
744 async_extent->compressed_size,
745 0, alloc_hint, &ins, 1, 1);
746 if (ret) {
747 free_async_extent_pages(async_extent);
748
749 if (ret == -ENOSPC) {
750 unlock_extent(io_tree, async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1);
753
754 /*
755 * we need to redirty the pages if we decide to
756 * fallback to uncompressed IO, otherwise we
757 * will not submit these pages down to lower
758 * layers.
759 */
760 extent_range_redirty_for_io(inode,
761 async_extent->start,
762 async_extent->start +
763 async_extent->ram_size - 1);
764
765 goto retry;
766 }
767 goto out_free;
768 }
769 /*
770 * here we're doing allocation and writeback of the
771 * compressed pages
772 */
773 btrfs_drop_extent_cache(inode, async_extent->start,
774 async_extent->start +
775 async_extent->ram_size - 1, 0);
776
777 em = alloc_extent_map();
778 if (!em) {
779 ret = -ENOMEM;
780 goto out_free_reserve;
781 }
782 em->start = async_extent->start;
783 em->len = async_extent->ram_size;
784 em->orig_start = em->start;
785 em->mod_start = em->start;
786 em->mod_len = em->len;
787
788 em->block_start = ins.objectid;
789 em->block_len = ins.offset;
790 em->orig_block_len = ins.offset;
791 em->ram_bytes = async_extent->ram_size;
792 em->bdev = root->fs_info->fs_devices->latest_bdev;
793 em->compress_type = async_extent->compress_type;
794 set_bit(EXTENT_FLAG_PINNED, &em->flags);
795 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
796 em->generation = -1;
797
798 while (1) {
799 write_lock(&em_tree->lock);
800 ret = add_extent_mapping(em_tree, em, 1);
801 write_unlock(&em_tree->lock);
802 if (ret != -EEXIST) {
803 free_extent_map(em);
804 break;
805 }
806 btrfs_drop_extent_cache(inode, async_extent->start,
807 async_extent->start +
808 async_extent->ram_size - 1, 0);
809 }
810
811 if (ret)
812 goto out_free_reserve;
813
814 ret = btrfs_add_ordered_extent_compress(inode,
815 async_extent->start,
816 ins.objectid,
817 async_extent->ram_size,
818 ins.offset,
819 BTRFS_ORDERED_COMPRESSED,
820 async_extent->compress_type);
821 if (ret) {
822 btrfs_drop_extent_cache(inode, async_extent->start,
823 async_extent->start +
824 async_extent->ram_size - 1, 0);
825 goto out_free_reserve;
826 }
827
828 /*
829 * clear dirty, set writeback and unlock the pages.
830 */
831 extent_clear_unlock_delalloc(inode, async_extent->start,
832 async_extent->start +
833 async_extent->ram_size - 1,
834 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
835 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
836 PAGE_SET_WRITEBACK);
837 ret = btrfs_submit_compressed_write(inode,
838 async_extent->start,
839 async_extent->ram_size,
840 ins.objectid,
841 ins.offset, async_extent->pages,
842 async_extent->nr_pages);
843 if (ret) {
844 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
845 struct page *p = async_extent->pages[0];
846 const u64 start = async_extent->start;
847 const u64 end = start + async_extent->ram_size - 1;
848
849 p->mapping = inode->i_mapping;
850 tree->ops->writepage_end_io_hook(p, start, end,
851 NULL, 0);
852 p->mapping = NULL;
853 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
854 PAGE_END_WRITEBACK |
855 PAGE_SET_ERROR);
856 free_async_extent_pages(async_extent);
857 }
858 alloc_hint = ins.objectid + ins.offset;
859 kfree(async_extent);
860 cond_resched();
861 }
862 return;
863 out_free_reserve:
864 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
865 out_free:
866 extent_clear_unlock_delalloc(inode, async_extent->start,
867 async_extent->start +
868 async_extent->ram_size - 1,
869 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
870 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
871 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
872 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
873 PAGE_SET_ERROR);
874 free_async_extent_pages(async_extent);
875 kfree(async_extent);
876 goto again;
877 }
878
879 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
880 u64 num_bytes)
881 {
882 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
883 struct extent_map *em;
884 u64 alloc_hint = 0;
885
886 read_lock(&em_tree->lock);
887 em = search_extent_mapping(em_tree, start, num_bytes);
888 if (em) {
889 /*
890 * if block start isn't an actual block number then find the
891 * first block in this inode and use that as a hint. If that
892 * block is also bogus then just don't worry about it.
893 */
894 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
895 free_extent_map(em);
896 em = search_extent_mapping(em_tree, 0, 0);
897 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
898 alloc_hint = em->block_start;
899 if (em)
900 free_extent_map(em);
901 } else {
902 alloc_hint = em->block_start;
903 free_extent_map(em);
904 }
905 }
906 read_unlock(&em_tree->lock);
907
908 return alloc_hint;
909 }
910
911 /*
912 * when extent_io.c finds a delayed allocation range in the file,
913 * the call backs end up in this code. The basic idea is to
914 * allocate extents on disk for the range, and create ordered data structs
915 * in ram to track those extents.
916 *
917 * locked_page is the page that writepage had locked already. We use
918 * it to make sure we don't do extra locks or unlocks.
919 *
920 * *page_started is set to one if we unlock locked_page and do everything
921 * required to start IO on it. It may be clean and already done with
922 * IO when we return.
923 */
924 static noinline int cow_file_range(struct inode *inode,
925 struct page *locked_page,
926 u64 start, u64 end, int *page_started,
927 unsigned long *nr_written,
928 int unlock)
929 {
930 struct btrfs_root *root = BTRFS_I(inode)->root;
931 u64 alloc_hint = 0;
932 u64 num_bytes;
933 unsigned long ram_size;
934 u64 disk_num_bytes;
935 u64 cur_alloc_size;
936 u64 blocksize = root->sectorsize;
937 struct btrfs_key ins;
938 struct extent_map *em;
939 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
940 int ret = 0;
941
942 if (btrfs_is_free_space_inode(inode)) {
943 WARN_ON_ONCE(1);
944 ret = -EINVAL;
945 goto out_unlock;
946 }
947
948 num_bytes = ALIGN(end - start + 1, blocksize);
949 num_bytes = max(blocksize, num_bytes);
950 disk_num_bytes = num_bytes;
951
952 /* if this is a small write inside eof, kick off defrag */
953 if (num_bytes < SZ_64K &&
954 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
955 btrfs_add_inode_defrag(NULL, inode);
956
957 if (start == 0) {
958 /* lets try to make an inline extent */
959 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
960 NULL);
961 if (ret == 0) {
962 extent_clear_unlock_delalloc(inode, start, end, NULL,
963 EXTENT_LOCKED | EXTENT_DELALLOC |
964 EXTENT_DEFRAG, PAGE_UNLOCK |
965 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
966 PAGE_END_WRITEBACK);
967
968 *nr_written = *nr_written +
969 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
970 *page_started = 1;
971 goto out;
972 } else if (ret < 0) {
973 goto out_unlock;
974 }
975 }
976
977 BUG_ON(disk_num_bytes >
978 btrfs_super_total_bytes(root->fs_info->super_copy));
979
980 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
981 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
982
983 while (disk_num_bytes > 0) {
984 unsigned long op;
985
986 cur_alloc_size = disk_num_bytes;
987 ret = btrfs_reserve_extent(root, cur_alloc_size,
988 root->sectorsize, 0, alloc_hint,
989 &ins, 1, 1);
990 if (ret < 0)
991 goto out_unlock;
992
993 em = alloc_extent_map();
994 if (!em) {
995 ret = -ENOMEM;
996 goto out_reserve;
997 }
998 em->start = start;
999 em->orig_start = em->start;
1000 ram_size = ins.offset;
1001 em->len = ins.offset;
1002 em->mod_start = em->start;
1003 em->mod_len = em->len;
1004
1005 em->block_start = ins.objectid;
1006 em->block_len = ins.offset;
1007 em->orig_block_len = ins.offset;
1008 em->ram_bytes = ram_size;
1009 em->bdev = root->fs_info->fs_devices->latest_bdev;
1010 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1011 em->generation = -1;
1012
1013 while (1) {
1014 write_lock(&em_tree->lock);
1015 ret = add_extent_mapping(em_tree, em, 1);
1016 write_unlock(&em_tree->lock);
1017 if (ret != -EEXIST) {
1018 free_extent_map(em);
1019 break;
1020 }
1021 btrfs_drop_extent_cache(inode, start,
1022 start + ram_size - 1, 0);
1023 }
1024 if (ret)
1025 goto out_reserve;
1026
1027 cur_alloc_size = ins.offset;
1028 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1029 ram_size, cur_alloc_size, 0);
1030 if (ret)
1031 goto out_drop_extent_cache;
1032
1033 if (root->root_key.objectid ==
1034 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1035 ret = btrfs_reloc_clone_csums(inode, start,
1036 cur_alloc_size);
1037 if (ret)
1038 goto out_drop_extent_cache;
1039 }
1040
1041 if (disk_num_bytes < cur_alloc_size)
1042 break;
1043
1044 /* we're not doing compressed IO, don't unlock the first
1045 * page (which the caller expects to stay locked), don't
1046 * clear any dirty bits and don't set any writeback bits
1047 *
1048 * Do set the Private2 bit so we know this page was properly
1049 * setup for writepage
1050 */
1051 op = unlock ? PAGE_UNLOCK : 0;
1052 op |= PAGE_SET_PRIVATE2;
1053
1054 extent_clear_unlock_delalloc(inode, start,
1055 start + ram_size - 1, locked_page,
1056 EXTENT_LOCKED | EXTENT_DELALLOC,
1057 op);
1058 disk_num_bytes -= cur_alloc_size;
1059 num_bytes -= cur_alloc_size;
1060 alloc_hint = ins.objectid + ins.offset;
1061 start += cur_alloc_size;
1062 }
1063 out:
1064 return ret;
1065
1066 out_drop_extent_cache:
1067 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1068 out_reserve:
1069 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1070 out_unlock:
1071 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1072 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1073 EXTENT_DELALLOC | EXTENT_DEFRAG,
1074 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1075 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1076 goto out;
1077 }
1078
1079 /*
1080 * work queue call back to started compression on a file and pages
1081 */
1082 static noinline void async_cow_start(struct btrfs_work *work)
1083 {
1084 struct async_cow *async_cow;
1085 int num_added = 0;
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 compress_file_range(async_cow->inode, async_cow->locked_page,
1089 async_cow->start, async_cow->end, async_cow,
1090 &num_added);
1091 if (num_added == 0) {
1092 btrfs_add_delayed_iput(async_cow->inode);
1093 async_cow->inode = NULL;
1094 }
1095 }
1096
1097 /*
1098 * work queue call back to submit previously compressed pages
1099 */
1100 static noinline void async_cow_submit(struct btrfs_work *work)
1101 {
1102 struct async_cow *async_cow;
1103 struct btrfs_root *root;
1104 unsigned long nr_pages;
1105
1106 async_cow = container_of(work, struct async_cow, work);
1107
1108 root = async_cow->root;
1109 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1110 PAGE_CACHE_SHIFT;
1111
1112 /*
1113 * atomic_sub_return implies a barrier for waitqueue_active
1114 */
1115 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1116 5 * SZ_1M &&
1117 waitqueue_active(&root->fs_info->async_submit_wait))
1118 wake_up(&root->fs_info->async_submit_wait);
1119
1120 if (async_cow->inode)
1121 submit_compressed_extents(async_cow->inode, async_cow);
1122 }
1123
1124 static noinline void async_cow_free(struct btrfs_work *work)
1125 {
1126 struct async_cow *async_cow;
1127 async_cow = container_of(work, struct async_cow, work);
1128 if (async_cow->inode)
1129 btrfs_add_delayed_iput(async_cow->inode);
1130 kfree(async_cow);
1131 }
1132
1133 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1134 u64 start, u64 end, int *page_started,
1135 unsigned long *nr_written)
1136 {
1137 struct async_cow *async_cow;
1138 struct btrfs_root *root = BTRFS_I(inode)->root;
1139 unsigned long nr_pages;
1140 u64 cur_end;
1141 int limit = 10 * SZ_1M;
1142
1143 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1144 1, 0, NULL, GFP_NOFS);
1145 while (start < end) {
1146 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1147 BUG_ON(!async_cow); /* -ENOMEM */
1148 async_cow->inode = igrab(inode);
1149 async_cow->root = root;
1150 async_cow->locked_page = locked_page;
1151 async_cow->start = start;
1152
1153 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1154 !btrfs_test_opt(root, FORCE_COMPRESS))
1155 cur_end = end;
1156 else
1157 cur_end = min(end, start + SZ_512K - 1);
1158
1159 async_cow->end = cur_end;
1160 INIT_LIST_HEAD(&async_cow->extents);
1161
1162 btrfs_init_work(&async_cow->work,
1163 btrfs_delalloc_helper,
1164 async_cow_start, async_cow_submit,
1165 async_cow_free);
1166
1167 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1168 PAGE_CACHE_SHIFT;
1169 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1170
1171 btrfs_queue_work(root->fs_info->delalloc_workers,
1172 &async_cow->work);
1173
1174 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1175 wait_event(root->fs_info->async_submit_wait,
1176 (atomic_read(&root->fs_info->async_delalloc_pages) <
1177 limit));
1178 }
1179
1180 while (atomic_read(&root->fs_info->async_submit_draining) &&
1181 atomic_read(&root->fs_info->async_delalloc_pages)) {
1182 wait_event(root->fs_info->async_submit_wait,
1183 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1184 0));
1185 }
1186
1187 *nr_written += nr_pages;
1188 start = cur_end + 1;
1189 }
1190 *page_started = 1;
1191 return 0;
1192 }
1193
1194 static noinline int csum_exist_in_range(struct btrfs_root *root,
1195 u64 bytenr, u64 num_bytes)
1196 {
1197 int ret;
1198 struct btrfs_ordered_sum *sums;
1199 LIST_HEAD(list);
1200
1201 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1202 bytenr + num_bytes - 1, &list, 0);
1203 if (ret == 0 && list_empty(&list))
1204 return 0;
1205
1206 while (!list_empty(&list)) {
1207 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1208 list_del(&sums->list);
1209 kfree(sums);
1210 }
1211 return 1;
1212 }
1213
1214 /*
1215 * when nowcow writeback call back. This checks for snapshots or COW copies
1216 * of the extents that exist in the file, and COWs the file as required.
1217 *
1218 * If no cow copies or snapshots exist, we write directly to the existing
1219 * blocks on disk
1220 */
1221 static noinline int run_delalloc_nocow(struct inode *inode,
1222 struct page *locked_page,
1223 u64 start, u64 end, int *page_started, int force,
1224 unsigned long *nr_written)
1225 {
1226 struct btrfs_root *root = BTRFS_I(inode)->root;
1227 struct btrfs_trans_handle *trans;
1228 struct extent_buffer *leaf;
1229 struct btrfs_path *path;
1230 struct btrfs_file_extent_item *fi;
1231 struct btrfs_key found_key;
1232 u64 cow_start;
1233 u64 cur_offset;
1234 u64 extent_end;
1235 u64 extent_offset;
1236 u64 disk_bytenr;
1237 u64 num_bytes;
1238 u64 disk_num_bytes;
1239 u64 ram_bytes;
1240 int extent_type;
1241 int ret, err;
1242 int type;
1243 int nocow;
1244 int check_prev = 1;
1245 bool nolock;
1246 u64 ino = btrfs_ino(inode);
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1251 EXTENT_LOCKED | EXTENT_DELALLOC |
1252 EXTENT_DO_ACCOUNTING |
1253 EXTENT_DEFRAG, PAGE_UNLOCK |
1254 PAGE_CLEAR_DIRTY |
1255 PAGE_SET_WRITEBACK |
1256 PAGE_END_WRITEBACK);
1257 return -ENOMEM;
1258 }
1259
1260 nolock = btrfs_is_free_space_inode(inode);
1261
1262 if (nolock)
1263 trans = btrfs_join_transaction_nolock(root);
1264 else
1265 trans = btrfs_join_transaction(root);
1266
1267 if (IS_ERR(trans)) {
1268 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1269 EXTENT_LOCKED | EXTENT_DELALLOC |
1270 EXTENT_DO_ACCOUNTING |
1271 EXTENT_DEFRAG, PAGE_UNLOCK |
1272 PAGE_CLEAR_DIRTY |
1273 PAGE_SET_WRITEBACK |
1274 PAGE_END_WRITEBACK);
1275 btrfs_free_path(path);
1276 return PTR_ERR(trans);
1277 }
1278
1279 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1280
1281 cow_start = (u64)-1;
1282 cur_offset = start;
1283 while (1) {
1284 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1285 cur_offset, 0);
1286 if (ret < 0)
1287 goto error;
1288 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1289 leaf = path->nodes[0];
1290 btrfs_item_key_to_cpu(leaf, &found_key,
1291 path->slots[0] - 1);
1292 if (found_key.objectid == ino &&
1293 found_key.type == BTRFS_EXTENT_DATA_KEY)
1294 path->slots[0]--;
1295 }
1296 check_prev = 0;
1297 next_slot:
1298 leaf = path->nodes[0];
1299 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1300 ret = btrfs_next_leaf(root, path);
1301 if (ret < 0)
1302 goto error;
1303 if (ret > 0)
1304 break;
1305 leaf = path->nodes[0];
1306 }
1307
1308 nocow = 0;
1309 disk_bytenr = 0;
1310 num_bytes = 0;
1311 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1312
1313 if (found_key.objectid > ino)
1314 break;
1315 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1316 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1317 path->slots[0]++;
1318 goto next_slot;
1319 }
1320 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1321 found_key.offset > end)
1322 break;
1323
1324 if (found_key.offset > cur_offset) {
1325 extent_end = found_key.offset;
1326 extent_type = 0;
1327 goto out_check;
1328 }
1329
1330 fi = btrfs_item_ptr(leaf, path->slots[0],
1331 struct btrfs_file_extent_item);
1332 extent_type = btrfs_file_extent_type(leaf, fi);
1333
1334 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1335 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1336 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1338 extent_offset = btrfs_file_extent_offset(leaf, fi);
1339 extent_end = found_key.offset +
1340 btrfs_file_extent_num_bytes(leaf, fi);
1341 disk_num_bytes =
1342 btrfs_file_extent_disk_num_bytes(leaf, fi);
1343 if (extent_end <= start) {
1344 path->slots[0]++;
1345 goto next_slot;
1346 }
1347 if (disk_bytenr == 0)
1348 goto out_check;
1349 if (btrfs_file_extent_compression(leaf, fi) ||
1350 btrfs_file_extent_encryption(leaf, fi) ||
1351 btrfs_file_extent_other_encoding(leaf, fi))
1352 goto out_check;
1353 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1354 goto out_check;
1355 if (btrfs_extent_readonly(root, disk_bytenr))
1356 goto out_check;
1357 if (btrfs_cross_ref_exist(trans, root, ino,
1358 found_key.offset -
1359 extent_offset, disk_bytenr))
1360 goto out_check;
1361 disk_bytenr += extent_offset;
1362 disk_bytenr += cur_offset - found_key.offset;
1363 num_bytes = min(end + 1, extent_end) - cur_offset;
1364 /*
1365 * if there are pending snapshots for this root,
1366 * we fall into common COW way.
1367 */
1368 if (!nolock) {
1369 err = btrfs_start_write_no_snapshoting(root);
1370 if (!err)
1371 goto out_check;
1372 }
1373 /*
1374 * force cow if csum exists in the range.
1375 * this ensure that csum for a given extent are
1376 * either valid or do not exist.
1377 */
1378 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1379 goto out_check;
1380 nocow = 1;
1381 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1382 extent_end = found_key.offset +
1383 btrfs_file_extent_inline_len(leaf,
1384 path->slots[0], fi);
1385 extent_end = ALIGN(extent_end, root->sectorsize);
1386 } else {
1387 BUG_ON(1);
1388 }
1389 out_check:
1390 if (extent_end <= start) {
1391 path->slots[0]++;
1392 if (!nolock && nocow)
1393 btrfs_end_write_no_snapshoting(root);
1394 goto next_slot;
1395 }
1396 if (!nocow) {
1397 if (cow_start == (u64)-1)
1398 cow_start = cur_offset;
1399 cur_offset = extent_end;
1400 if (cur_offset > end)
1401 break;
1402 path->slots[0]++;
1403 goto next_slot;
1404 }
1405
1406 btrfs_release_path(path);
1407 if (cow_start != (u64)-1) {
1408 ret = cow_file_range(inode, locked_page,
1409 cow_start, found_key.offset - 1,
1410 page_started, nr_written, 1);
1411 if (ret) {
1412 if (!nolock && nocow)
1413 btrfs_end_write_no_snapshoting(root);
1414 goto error;
1415 }
1416 cow_start = (u64)-1;
1417 }
1418
1419 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1420 struct extent_map *em;
1421 struct extent_map_tree *em_tree;
1422 em_tree = &BTRFS_I(inode)->extent_tree;
1423 em = alloc_extent_map();
1424 BUG_ON(!em); /* -ENOMEM */
1425 em->start = cur_offset;
1426 em->orig_start = found_key.offset - extent_offset;
1427 em->len = num_bytes;
1428 em->block_len = num_bytes;
1429 em->block_start = disk_bytenr;
1430 em->orig_block_len = disk_num_bytes;
1431 em->ram_bytes = ram_bytes;
1432 em->bdev = root->fs_info->fs_devices->latest_bdev;
1433 em->mod_start = em->start;
1434 em->mod_len = em->len;
1435 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1436 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1437 em->generation = -1;
1438 while (1) {
1439 write_lock(&em_tree->lock);
1440 ret = add_extent_mapping(em_tree, em, 1);
1441 write_unlock(&em_tree->lock);
1442 if (ret != -EEXIST) {
1443 free_extent_map(em);
1444 break;
1445 }
1446 btrfs_drop_extent_cache(inode, em->start,
1447 em->start + em->len - 1, 0);
1448 }
1449 type = BTRFS_ORDERED_PREALLOC;
1450 } else {
1451 type = BTRFS_ORDERED_NOCOW;
1452 }
1453
1454 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1455 num_bytes, num_bytes, type);
1456 BUG_ON(ret); /* -ENOMEM */
1457
1458 if (root->root_key.objectid ==
1459 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1460 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1461 num_bytes);
1462 if (ret) {
1463 if (!nolock && nocow)
1464 btrfs_end_write_no_snapshoting(root);
1465 goto error;
1466 }
1467 }
1468
1469 extent_clear_unlock_delalloc(inode, cur_offset,
1470 cur_offset + num_bytes - 1,
1471 locked_page, EXTENT_LOCKED |
1472 EXTENT_DELALLOC, PAGE_UNLOCK |
1473 PAGE_SET_PRIVATE2);
1474 if (!nolock && nocow)
1475 btrfs_end_write_no_snapshoting(root);
1476 cur_offset = extent_end;
1477 if (cur_offset > end)
1478 break;
1479 }
1480 btrfs_release_path(path);
1481
1482 if (cur_offset <= end && cow_start == (u64)-1) {
1483 cow_start = cur_offset;
1484 cur_offset = end;
1485 }
1486
1487 if (cow_start != (u64)-1) {
1488 ret = cow_file_range(inode, locked_page, cow_start, end,
1489 page_started, nr_written, 1);
1490 if (ret)
1491 goto error;
1492 }
1493
1494 error:
1495 err = btrfs_end_transaction(trans, root);
1496 if (!ret)
1497 ret = err;
1498
1499 if (ret && cur_offset < end)
1500 extent_clear_unlock_delalloc(inode, cur_offset, end,
1501 locked_page, EXTENT_LOCKED |
1502 EXTENT_DELALLOC | EXTENT_DEFRAG |
1503 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1504 PAGE_CLEAR_DIRTY |
1505 PAGE_SET_WRITEBACK |
1506 PAGE_END_WRITEBACK);
1507 btrfs_free_path(path);
1508 return ret;
1509 }
1510
1511 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1512 {
1513
1514 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1515 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1516 return 0;
1517
1518 /*
1519 * @defrag_bytes is a hint value, no spinlock held here,
1520 * if is not zero, it means the file is defragging.
1521 * Force cow if given extent needs to be defragged.
1522 */
1523 if (BTRFS_I(inode)->defrag_bytes &&
1524 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1525 EXTENT_DEFRAG, 0, NULL))
1526 return 1;
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * extent_io.c call back to do delayed allocation processing
1533 */
1534 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1535 u64 start, u64 end, int *page_started,
1536 unsigned long *nr_written)
1537 {
1538 int ret;
1539 int force_cow = need_force_cow(inode, start, end);
1540
1541 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1542 ret = run_delalloc_nocow(inode, locked_page, start, end,
1543 page_started, 1, nr_written);
1544 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1545 ret = run_delalloc_nocow(inode, locked_page, start, end,
1546 page_started, 0, nr_written);
1547 } else if (!inode_need_compress(inode)) {
1548 ret = cow_file_range(inode, locked_page, start, end,
1549 page_started, nr_written, 1);
1550 } else {
1551 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags);
1553 ret = cow_file_range_async(inode, locked_page, start, end,
1554 page_started, nr_written);
1555 }
1556 return ret;
1557 }
1558
1559 static void btrfs_split_extent_hook(struct inode *inode,
1560 struct extent_state *orig, u64 split)
1561 {
1562 u64 size;
1563
1564 /* not delalloc, ignore it */
1565 if (!(orig->state & EXTENT_DELALLOC))
1566 return;
1567
1568 size = orig->end - orig->start + 1;
1569 if (size > BTRFS_MAX_EXTENT_SIZE) {
1570 u64 num_extents;
1571 u64 new_size;
1572
1573 /*
1574 * See the explanation in btrfs_merge_extent_hook, the same
1575 * applies here, just in reverse.
1576 */
1577 new_size = orig->end - split + 1;
1578 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1579 BTRFS_MAX_EXTENT_SIZE);
1580 new_size = split - orig->start;
1581 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1582 BTRFS_MAX_EXTENT_SIZE);
1583 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1584 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1585 return;
1586 }
1587
1588 spin_lock(&BTRFS_I(inode)->lock);
1589 BTRFS_I(inode)->outstanding_extents++;
1590 spin_unlock(&BTRFS_I(inode)->lock);
1591 }
1592
1593 /*
1594 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1595 * extents so we can keep track of new extents that are just merged onto old
1596 * extents, such as when we are doing sequential writes, so we can properly
1597 * account for the metadata space we'll need.
1598 */
1599 static void btrfs_merge_extent_hook(struct inode *inode,
1600 struct extent_state *new,
1601 struct extent_state *other)
1602 {
1603 u64 new_size, old_size;
1604 u64 num_extents;
1605
1606 /* not delalloc, ignore it */
1607 if (!(other->state & EXTENT_DELALLOC))
1608 return;
1609
1610 if (new->start > other->start)
1611 new_size = new->end - other->start + 1;
1612 else
1613 new_size = other->end - new->start + 1;
1614
1615 /* we're not bigger than the max, unreserve the space and go */
1616 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1617 spin_lock(&BTRFS_I(inode)->lock);
1618 BTRFS_I(inode)->outstanding_extents--;
1619 spin_unlock(&BTRFS_I(inode)->lock);
1620 return;
1621 }
1622
1623 /*
1624 * We have to add up either side to figure out how many extents were
1625 * accounted for before we merged into one big extent. If the number of
1626 * extents we accounted for is <= the amount we need for the new range
1627 * then we can return, otherwise drop. Think of it like this
1628 *
1629 * [ 4k][MAX_SIZE]
1630 *
1631 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1632 * need 2 outstanding extents, on one side we have 1 and the other side
1633 * we have 1 so they are == and we can return. But in this case
1634 *
1635 * [MAX_SIZE+4k][MAX_SIZE+4k]
1636 *
1637 * Each range on their own accounts for 2 extents, but merged together
1638 * they are only 3 extents worth of accounting, so we need to drop in
1639 * this case.
1640 */
1641 old_size = other->end - other->start + 1;
1642 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1643 BTRFS_MAX_EXTENT_SIZE);
1644 old_size = new->end - new->start + 1;
1645 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1646 BTRFS_MAX_EXTENT_SIZE);
1647
1648 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1649 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1650 return;
1651
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 BTRFS_I(inode)->outstanding_extents--;
1654 spin_unlock(&BTRFS_I(inode)->lock);
1655 }
1656
1657 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1658 struct inode *inode)
1659 {
1660 spin_lock(&root->delalloc_lock);
1661 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1662 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1663 &root->delalloc_inodes);
1664 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1665 &BTRFS_I(inode)->runtime_flags);
1666 root->nr_delalloc_inodes++;
1667 if (root->nr_delalloc_inodes == 1) {
1668 spin_lock(&root->fs_info->delalloc_root_lock);
1669 BUG_ON(!list_empty(&root->delalloc_root));
1670 list_add_tail(&root->delalloc_root,
1671 &root->fs_info->delalloc_roots);
1672 spin_unlock(&root->fs_info->delalloc_root_lock);
1673 }
1674 }
1675 spin_unlock(&root->delalloc_lock);
1676 }
1677
1678 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1679 struct inode *inode)
1680 {
1681 spin_lock(&root->delalloc_lock);
1682 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1683 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1684 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes--;
1687 if (!root->nr_delalloc_inodes) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(list_empty(&root->delalloc_root));
1690 list_del_init(&root->delalloc_root);
1691 spin_unlock(&root->fs_info->delalloc_root_lock);
1692 }
1693 }
1694 spin_unlock(&root->delalloc_lock);
1695 }
1696
1697 /*
1698 * extent_io.c set_bit_hook, used to track delayed allocation
1699 * bytes in this file, and to maintain the list of inodes that
1700 * have pending delalloc work to be done.
1701 */
1702 static void btrfs_set_bit_hook(struct inode *inode,
1703 struct extent_state *state, unsigned *bits)
1704 {
1705
1706 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1707 WARN_ON(1);
1708 /*
1709 * set_bit and clear bit hooks normally require _irqsave/restore
1710 * but in this case, we are only testing for the DELALLOC
1711 * bit, which is only set or cleared with irqs on
1712 */
1713 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1714 struct btrfs_root *root = BTRFS_I(inode)->root;
1715 u64 len = state->end + 1 - state->start;
1716 bool do_list = !btrfs_is_free_space_inode(inode);
1717
1718 if (*bits & EXTENT_FIRST_DELALLOC) {
1719 *bits &= ~EXTENT_FIRST_DELALLOC;
1720 } else {
1721 spin_lock(&BTRFS_I(inode)->lock);
1722 BTRFS_I(inode)->outstanding_extents++;
1723 spin_unlock(&BTRFS_I(inode)->lock);
1724 }
1725
1726 /* For sanity tests */
1727 if (btrfs_test_is_dummy_root(root))
1728 return;
1729
1730 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1731 root->fs_info->delalloc_batch);
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 BTRFS_I(inode)->delalloc_bytes += len;
1734 if (*bits & EXTENT_DEFRAG)
1735 BTRFS_I(inode)->defrag_bytes += len;
1736 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1737 &BTRFS_I(inode)->runtime_flags))
1738 btrfs_add_delalloc_inodes(root, inode);
1739 spin_unlock(&BTRFS_I(inode)->lock);
1740 }
1741 }
1742
1743 /*
1744 * extent_io.c clear_bit_hook, see set_bit_hook for why
1745 */
1746 static void btrfs_clear_bit_hook(struct inode *inode,
1747 struct extent_state *state,
1748 unsigned *bits)
1749 {
1750 u64 len = state->end + 1 - state->start;
1751 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1752 BTRFS_MAX_EXTENT_SIZE);
1753
1754 spin_lock(&BTRFS_I(inode)->lock);
1755 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1756 BTRFS_I(inode)->defrag_bytes -= len;
1757 spin_unlock(&BTRFS_I(inode)->lock);
1758
1759 /*
1760 * set_bit and clear bit hooks normally require _irqsave/restore
1761 * but in this case, we are only testing for the DELALLOC
1762 * bit, which is only set or cleared with irqs on
1763 */
1764 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1765 struct btrfs_root *root = BTRFS_I(inode)->root;
1766 bool do_list = !btrfs_is_free_space_inode(inode);
1767
1768 if (*bits & EXTENT_FIRST_DELALLOC) {
1769 *bits &= ~EXTENT_FIRST_DELALLOC;
1770 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1771 spin_lock(&BTRFS_I(inode)->lock);
1772 BTRFS_I(inode)->outstanding_extents -= num_extents;
1773 spin_unlock(&BTRFS_I(inode)->lock);
1774 }
1775
1776 /*
1777 * We don't reserve metadata space for space cache inodes so we
1778 * don't need to call dellalloc_release_metadata if there is an
1779 * error.
1780 */
1781 if (*bits & EXTENT_DO_ACCOUNTING &&
1782 root != root->fs_info->tree_root)
1783 btrfs_delalloc_release_metadata(inode, len);
1784
1785 /* For sanity tests. */
1786 if (btrfs_test_is_dummy_root(root))
1787 return;
1788
1789 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1790 && do_list && !(state->state & EXTENT_NORESERVE))
1791 btrfs_free_reserved_data_space_noquota(inode,
1792 state->start, len);
1793
1794 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1795 root->fs_info->delalloc_batch);
1796 spin_lock(&BTRFS_I(inode)->lock);
1797 BTRFS_I(inode)->delalloc_bytes -= len;
1798 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1799 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1800 &BTRFS_I(inode)->runtime_flags))
1801 btrfs_del_delalloc_inode(root, inode);
1802 spin_unlock(&BTRFS_I(inode)->lock);
1803 }
1804 }
1805
1806 /*
1807 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1808 * we don't create bios that span stripes or chunks
1809 */
1810 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1811 size_t size, struct bio *bio,
1812 unsigned long bio_flags)
1813 {
1814 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1815 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1816 u64 length = 0;
1817 u64 map_length;
1818 int ret;
1819
1820 if (bio_flags & EXTENT_BIO_COMPRESSED)
1821 return 0;
1822
1823 length = bio->bi_iter.bi_size;
1824 map_length = length;
1825 ret = btrfs_map_block(root->fs_info, rw, logical,
1826 &map_length, NULL, 0);
1827 /* Will always return 0 with map_multi == NULL */
1828 BUG_ON(ret < 0);
1829 if (map_length < length + size)
1830 return 1;
1831 return 0;
1832 }
1833
1834 /*
1835 * in order to insert checksums into the metadata in large chunks,
1836 * we wait until bio submission time. All the pages in the bio are
1837 * checksummed and sums are attached onto the ordered extent record.
1838 *
1839 * At IO completion time the cums attached on the ordered extent record
1840 * are inserted into the btree
1841 */
1842 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1843 struct bio *bio, int mirror_num,
1844 unsigned long bio_flags,
1845 u64 bio_offset)
1846 {
1847 struct btrfs_root *root = BTRFS_I(inode)->root;
1848 int ret = 0;
1849
1850 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1851 BUG_ON(ret); /* -ENOMEM */
1852 return 0;
1853 }
1854
1855 /*
1856 * in order to insert checksums into the metadata in large chunks,
1857 * we wait until bio submission time. All the pages in the bio are
1858 * checksummed and sums are attached onto the ordered extent record.
1859 *
1860 * At IO completion time the cums attached on the ordered extent record
1861 * are inserted into the btree
1862 */
1863 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1864 int mirror_num, unsigned long bio_flags,
1865 u64 bio_offset)
1866 {
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 int ret;
1869
1870 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1871 if (ret) {
1872 bio->bi_error = ret;
1873 bio_endio(bio);
1874 }
1875 return ret;
1876 }
1877
1878 /*
1879 * extent_io.c submission hook. This does the right thing for csum calculation
1880 * on write, or reading the csums from the tree before a read
1881 */
1882 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1883 int mirror_num, unsigned long bio_flags,
1884 u64 bio_offset)
1885 {
1886 struct btrfs_root *root = BTRFS_I(inode)->root;
1887 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1888 int ret = 0;
1889 int skip_sum;
1890 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1891
1892 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1893
1894 if (btrfs_is_free_space_inode(inode))
1895 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1896
1897 if (!(rw & REQ_WRITE)) {
1898 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1899 if (ret)
1900 goto out;
1901
1902 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1903 ret = btrfs_submit_compressed_read(inode, bio,
1904 mirror_num,
1905 bio_flags);
1906 goto out;
1907 } else if (!skip_sum) {
1908 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1909 if (ret)
1910 goto out;
1911 }
1912 goto mapit;
1913 } else if (async && !skip_sum) {
1914 /* csum items have already been cloned */
1915 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1916 goto mapit;
1917 /* we're doing a write, do the async checksumming */
1918 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1919 inode, rw, bio, mirror_num,
1920 bio_flags, bio_offset,
1921 __btrfs_submit_bio_start,
1922 __btrfs_submit_bio_done);
1923 goto out;
1924 } else if (!skip_sum) {
1925 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1926 if (ret)
1927 goto out;
1928 }
1929
1930 mapit:
1931 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1932
1933 out:
1934 if (ret < 0) {
1935 bio->bi_error = ret;
1936 bio_endio(bio);
1937 }
1938 return ret;
1939 }
1940
1941 /*
1942 * given a list of ordered sums record them in the inode. This happens
1943 * at IO completion time based on sums calculated at bio submission time.
1944 */
1945 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1946 struct inode *inode, u64 file_offset,
1947 struct list_head *list)
1948 {
1949 struct btrfs_ordered_sum *sum;
1950
1951 list_for_each_entry(sum, list, list) {
1952 trans->adding_csums = 1;
1953 btrfs_csum_file_blocks(trans,
1954 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1955 trans->adding_csums = 0;
1956 }
1957 return 0;
1958 }
1959
1960 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1961 struct extent_state **cached_state)
1962 {
1963 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1964 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1965 cached_state, GFP_NOFS);
1966 }
1967
1968 /* see btrfs_writepage_start_hook for details on why this is required */
1969 struct btrfs_writepage_fixup {
1970 struct page *page;
1971 struct btrfs_work work;
1972 };
1973
1974 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1975 {
1976 struct btrfs_writepage_fixup *fixup;
1977 struct btrfs_ordered_extent *ordered;
1978 struct extent_state *cached_state = NULL;
1979 struct page *page;
1980 struct inode *inode;
1981 u64 page_start;
1982 u64 page_end;
1983 int ret;
1984
1985 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1986 page = fixup->page;
1987 again:
1988 lock_page(page);
1989 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1990 ClearPageChecked(page);
1991 goto out_page;
1992 }
1993
1994 inode = page->mapping->host;
1995 page_start = page_offset(page);
1996 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1997
1998 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
1999 &cached_state);
2000
2001 /* already ordered? We're done */
2002 if (PagePrivate2(page))
2003 goto out;
2004
2005 ordered = btrfs_lookup_ordered_extent(inode, page_start);
2006 if (ordered) {
2007 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2008 page_end, &cached_state, GFP_NOFS);
2009 unlock_page(page);
2010 btrfs_start_ordered_extent(inode, ordered, 1);
2011 btrfs_put_ordered_extent(ordered);
2012 goto again;
2013 }
2014
2015 ret = btrfs_delalloc_reserve_space(inode, page_start,
2016 PAGE_CACHE_SIZE);
2017 if (ret) {
2018 mapping_set_error(page->mapping, ret);
2019 end_extent_writepage(page, ret, page_start, page_end);
2020 ClearPageChecked(page);
2021 goto out;
2022 }
2023
2024 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2025 ClearPageChecked(page);
2026 set_page_dirty(page);
2027 out:
2028 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2029 &cached_state, GFP_NOFS);
2030 out_page:
2031 unlock_page(page);
2032 page_cache_release(page);
2033 kfree(fixup);
2034 }
2035
2036 /*
2037 * There are a few paths in the higher layers of the kernel that directly
2038 * set the page dirty bit without asking the filesystem if it is a
2039 * good idea. This causes problems because we want to make sure COW
2040 * properly happens and the data=ordered rules are followed.
2041 *
2042 * In our case any range that doesn't have the ORDERED bit set
2043 * hasn't been properly setup for IO. We kick off an async process
2044 * to fix it up. The async helper will wait for ordered extents, set
2045 * the delalloc bit and make it safe to write the page.
2046 */
2047 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2048 {
2049 struct inode *inode = page->mapping->host;
2050 struct btrfs_writepage_fixup *fixup;
2051 struct btrfs_root *root = BTRFS_I(inode)->root;
2052
2053 /* this page is properly in the ordered list */
2054 if (TestClearPagePrivate2(page))
2055 return 0;
2056
2057 if (PageChecked(page))
2058 return -EAGAIN;
2059
2060 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2061 if (!fixup)
2062 return -EAGAIN;
2063
2064 SetPageChecked(page);
2065 page_cache_get(page);
2066 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2067 btrfs_writepage_fixup_worker, NULL, NULL);
2068 fixup->page = page;
2069 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2070 return -EBUSY;
2071 }
2072
2073 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2074 struct inode *inode, u64 file_pos,
2075 u64 disk_bytenr, u64 disk_num_bytes,
2076 u64 num_bytes, u64 ram_bytes,
2077 u8 compression, u8 encryption,
2078 u16 other_encoding, int extent_type)
2079 {
2080 struct btrfs_root *root = BTRFS_I(inode)->root;
2081 struct btrfs_file_extent_item *fi;
2082 struct btrfs_path *path;
2083 struct extent_buffer *leaf;
2084 struct btrfs_key ins;
2085 int extent_inserted = 0;
2086 int ret;
2087
2088 path = btrfs_alloc_path();
2089 if (!path)
2090 return -ENOMEM;
2091
2092 /*
2093 * we may be replacing one extent in the tree with another.
2094 * The new extent is pinned in the extent map, and we don't want
2095 * to drop it from the cache until it is completely in the btree.
2096 *
2097 * So, tell btrfs_drop_extents to leave this extent in the cache.
2098 * the caller is expected to unpin it and allow it to be merged
2099 * with the others.
2100 */
2101 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2102 file_pos + num_bytes, NULL, 0,
2103 1, sizeof(*fi), &extent_inserted);
2104 if (ret)
2105 goto out;
2106
2107 if (!extent_inserted) {
2108 ins.objectid = btrfs_ino(inode);
2109 ins.offset = file_pos;
2110 ins.type = BTRFS_EXTENT_DATA_KEY;
2111
2112 path->leave_spinning = 1;
2113 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2114 sizeof(*fi));
2115 if (ret)
2116 goto out;
2117 }
2118 leaf = path->nodes[0];
2119 fi = btrfs_item_ptr(leaf, path->slots[0],
2120 struct btrfs_file_extent_item);
2121 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2122 btrfs_set_file_extent_type(leaf, fi, extent_type);
2123 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2124 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2125 btrfs_set_file_extent_offset(leaf, fi, 0);
2126 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2127 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2128 btrfs_set_file_extent_compression(leaf, fi, compression);
2129 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2130 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2131
2132 btrfs_mark_buffer_dirty(leaf);
2133 btrfs_release_path(path);
2134
2135 inode_add_bytes(inode, num_bytes);
2136
2137 ins.objectid = disk_bytenr;
2138 ins.offset = disk_num_bytes;
2139 ins.type = BTRFS_EXTENT_ITEM_KEY;
2140 ret = btrfs_alloc_reserved_file_extent(trans, root,
2141 root->root_key.objectid,
2142 btrfs_ino(inode), file_pos,
2143 ram_bytes, &ins);
2144 /*
2145 * Release the reserved range from inode dirty range map, as it is
2146 * already moved into delayed_ref_head
2147 */
2148 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2149 out:
2150 btrfs_free_path(path);
2151
2152 return ret;
2153 }
2154
2155 /* snapshot-aware defrag */
2156 struct sa_defrag_extent_backref {
2157 struct rb_node node;
2158 struct old_sa_defrag_extent *old;
2159 u64 root_id;
2160 u64 inum;
2161 u64 file_pos;
2162 u64 extent_offset;
2163 u64 num_bytes;
2164 u64 generation;
2165 };
2166
2167 struct old_sa_defrag_extent {
2168 struct list_head list;
2169 struct new_sa_defrag_extent *new;
2170
2171 u64 extent_offset;
2172 u64 bytenr;
2173 u64 offset;
2174 u64 len;
2175 int count;
2176 };
2177
2178 struct new_sa_defrag_extent {
2179 struct rb_root root;
2180 struct list_head head;
2181 struct btrfs_path *path;
2182 struct inode *inode;
2183 u64 file_pos;
2184 u64 len;
2185 u64 bytenr;
2186 u64 disk_len;
2187 u8 compress_type;
2188 };
2189
2190 static int backref_comp(struct sa_defrag_extent_backref *b1,
2191 struct sa_defrag_extent_backref *b2)
2192 {
2193 if (b1->root_id < b2->root_id)
2194 return -1;
2195 else if (b1->root_id > b2->root_id)
2196 return 1;
2197
2198 if (b1->inum < b2->inum)
2199 return -1;
2200 else if (b1->inum > b2->inum)
2201 return 1;
2202
2203 if (b1->file_pos < b2->file_pos)
2204 return -1;
2205 else if (b1->file_pos > b2->file_pos)
2206 return 1;
2207
2208 /*
2209 * [------------------------------] ===> (a range of space)
2210 * |<--->| |<---->| =============> (fs/file tree A)
2211 * |<---------------------------->| ===> (fs/file tree B)
2212 *
2213 * A range of space can refer to two file extents in one tree while
2214 * refer to only one file extent in another tree.
2215 *
2216 * So we may process a disk offset more than one time(two extents in A)
2217 * and locate at the same extent(one extent in B), then insert two same
2218 * backrefs(both refer to the extent in B).
2219 */
2220 return 0;
2221 }
2222
2223 static void backref_insert(struct rb_root *root,
2224 struct sa_defrag_extent_backref *backref)
2225 {
2226 struct rb_node **p = &root->rb_node;
2227 struct rb_node *parent = NULL;
2228 struct sa_defrag_extent_backref *entry;
2229 int ret;
2230
2231 while (*p) {
2232 parent = *p;
2233 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2234
2235 ret = backref_comp(backref, entry);
2236 if (ret < 0)
2237 p = &(*p)->rb_left;
2238 else
2239 p = &(*p)->rb_right;
2240 }
2241
2242 rb_link_node(&backref->node, parent, p);
2243 rb_insert_color(&backref->node, root);
2244 }
2245
2246 /*
2247 * Note the backref might has changed, and in this case we just return 0.
2248 */
2249 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2250 void *ctx)
2251 {
2252 struct btrfs_file_extent_item *extent;
2253 struct btrfs_fs_info *fs_info;
2254 struct old_sa_defrag_extent *old = ctx;
2255 struct new_sa_defrag_extent *new = old->new;
2256 struct btrfs_path *path = new->path;
2257 struct btrfs_key key;
2258 struct btrfs_root *root;
2259 struct sa_defrag_extent_backref *backref;
2260 struct extent_buffer *leaf;
2261 struct inode *inode = new->inode;
2262 int slot;
2263 int ret;
2264 u64 extent_offset;
2265 u64 num_bytes;
2266
2267 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2268 inum == btrfs_ino(inode))
2269 return 0;
2270
2271 key.objectid = root_id;
2272 key.type = BTRFS_ROOT_ITEM_KEY;
2273 key.offset = (u64)-1;
2274
2275 fs_info = BTRFS_I(inode)->root->fs_info;
2276 root = btrfs_read_fs_root_no_name(fs_info, &key);
2277 if (IS_ERR(root)) {
2278 if (PTR_ERR(root) == -ENOENT)
2279 return 0;
2280 WARN_ON(1);
2281 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2282 inum, offset, root_id);
2283 return PTR_ERR(root);
2284 }
2285
2286 key.objectid = inum;
2287 key.type = BTRFS_EXTENT_DATA_KEY;
2288 if (offset > (u64)-1 << 32)
2289 key.offset = 0;
2290 else
2291 key.offset = offset;
2292
2293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2294 if (WARN_ON(ret < 0))
2295 return ret;
2296 ret = 0;
2297
2298 while (1) {
2299 cond_resched();
2300
2301 leaf = path->nodes[0];
2302 slot = path->slots[0];
2303
2304 if (slot >= btrfs_header_nritems(leaf)) {
2305 ret = btrfs_next_leaf(root, path);
2306 if (ret < 0) {
2307 goto out;
2308 } else if (ret > 0) {
2309 ret = 0;
2310 goto out;
2311 }
2312 continue;
2313 }
2314
2315 path->slots[0]++;
2316
2317 btrfs_item_key_to_cpu(leaf, &key, slot);
2318
2319 if (key.objectid > inum)
2320 goto out;
2321
2322 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2323 continue;
2324
2325 extent = btrfs_item_ptr(leaf, slot,
2326 struct btrfs_file_extent_item);
2327
2328 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2329 continue;
2330
2331 /*
2332 * 'offset' refers to the exact key.offset,
2333 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2334 * (key.offset - extent_offset).
2335 */
2336 if (key.offset != offset)
2337 continue;
2338
2339 extent_offset = btrfs_file_extent_offset(leaf, extent);
2340 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2341
2342 if (extent_offset >= old->extent_offset + old->offset +
2343 old->len || extent_offset + num_bytes <=
2344 old->extent_offset + old->offset)
2345 continue;
2346 break;
2347 }
2348
2349 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2350 if (!backref) {
2351 ret = -ENOENT;
2352 goto out;
2353 }
2354
2355 backref->root_id = root_id;
2356 backref->inum = inum;
2357 backref->file_pos = offset;
2358 backref->num_bytes = num_bytes;
2359 backref->extent_offset = extent_offset;
2360 backref->generation = btrfs_file_extent_generation(leaf, extent);
2361 backref->old = old;
2362 backref_insert(&new->root, backref);
2363 old->count++;
2364 out:
2365 btrfs_release_path(path);
2366 WARN_ON(ret);
2367 return ret;
2368 }
2369
2370 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2371 struct new_sa_defrag_extent *new)
2372 {
2373 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2374 struct old_sa_defrag_extent *old, *tmp;
2375 int ret;
2376
2377 new->path = path;
2378
2379 list_for_each_entry_safe(old, tmp, &new->head, list) {
2380 ret = iterate_inodes_from_logical(old->bytenr +
2381 old->extent_offset, fs_info,
2382 path, record_one_backref,
2383 old);
2384 if (ret < 0 && ret != -ENOENT)
2385 return false;
2386
2387 /* no backref to be processed for this extent */
2388 if (!old->count) {
2389 list_del(&old->list);
2390 kfree(old);
2391 }
2392 }
2393
2394 if (list_empty(&new->head))
2395 return false;
2396
2397 return true;
2398 }
2399
2400 static int relink_is_mergable(struct extent_buffer *leaf,
2401 struct btrfs_file_extent_item *fi,
2402 struct new_sa_defrag_extent *new)
2403 {
2404 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2405 return 0;
2406
2407 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2408 return 0;
2409
2410 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2411 return 0;
2412
2413 if (btrfs_file_extent_encryption(leaf, fi) ||
2414 btrfs_file_extent_other_encoding(leaf, fi))
2415 return 0;
2416
2417 return 1;
2418 }
2419
2420 /*
2421 * Note the backref might has changed, and in this case we just return 0.
2422 */
2423 static noinline int relink_extent_backref(struct btrfs_path *path,
2424 struct sa_defrag_extent_backref *prev,
2425 struct sa_defrag_extent_backref *backref)
2426 {
2427 struct btrfs_file_extent_item *extent;
2428 struct btrfs_file_extent_item *item;
2429 struct btrfs_ordered_extent *ordered;
2430 struct btrfs_trans_handle *trans;
2431 struct btrfs_fs_info *fs_info;
2432 struct btrfs_root *root;
2433 struct btrfs_key key;
2434 struct extent_buffer *leaf;
2435 struct old_sa_defrag_extent *old = backref->old;
2436 struct new_sa_defrag_extent *new = old->new;
2437 struct inode *src_inode = new->inode;
2438 struct inode *inode;
2439 struct extent_state *cached = NULL;
2440 int ret = 0;
2441 u64 start;
2442 u64 len;
2443 u64 lock_start;
2444 u64 lock_end;
2445 bool merge = false;
2446 int index;
2447
2448 if (prev && prev->root_id == backref->root_id &&
2449 prev->inum == backref->inum &&
2450 prev->file_pos + prev->num_bytes == backref->file_pos)
2451 merge = true;
2452
2453 /* step 1: get root */
2454 key.objectid = backref->root_id;
2455 key.type = BTRFS_ROOT_ITEM_KEY;
2456 key.offset = (u64)-1;
2457
2458 fs_info = BTRFS_I(src_inode)->root->fs_info;
2459 index = srcu_read_lock(&fs_info->subvol_srcu);
2460
2461 root = btrfs_read_fs_root_no_name(fs_info, &key);
2462 if (IS_ERR(root)) {
2463 srcu_read_unlock(&fs_info->subvol_srcu, index);
2464 if (PTR_ERR(root) == -ENOENT)
2465 return 0;
2466 return PTR_ERR(root);
2467 }
2468
2469 if (btrfs_root_readonly(root)) {
2470 srcu_read_unlock(&fs_info->subvol_srcu, index);
2471 return 0;
2472 }
2473
2474 /* step 2: get inode */
2475 key.objectid = backref->inum;
2476 key.type = BTRFS_INODE_ITEM_KEY;
2477 key.offset = 0;
2478
2479 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2480 if (IS_ERR(inode)) {
2481 srcu_read_unlock(&fs_info->subvol_srcu, index);
2482 return 0;
2483 }
2484
2485 srcu_read_unlock(&fs_info->subvol_srcu, index);
2486
2487 /* step 3: relink backref */
2488 lock_start = backref->file_pos;
2489 lock_end = backref->file_pos + backref->num_bytes - 1;
2490 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2491 &cached);
2492
2493 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2494 if (ordered) {
2495 btrfs_put_ordered_extent(ordered);
2496 goto out_unlock;
2497 }
2498
2499 trans = btrfs_join_transaction(root);
2500 if (IS_ERR(trans)) {
2501 ret = PTR_ERR(trans);
2502 goto out_unlock;
2503 }
2504
2505 key.objectid = backref->inum;
2506 key.type = BTRFS_EXTENT_DATA_KEY;
2507 key.offset = backref->file_pos;
2508
2509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2510 if (ret < 0) {
2511 goto out_free_path;
2512 } else if (ret > 0) {
2513 ret = 0;
2514 goto out_free_path;
2515 }
2516
2517 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2518 struct btrfs_file_extent_item);
2519
2520 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2521 backref->generation)
2522 goto out_free_path;
2523
2524 btrfs_release_path(path);
2525
2526 start = backref->file_pos;
2527 if (backref->extent_offset < old->extent_offset + old->offset)
2528 start += old->extent_offset + old->offset -
2529 backref->extent_offset;
2530
2531 len = min(backref->extent_offset + backref->num_bytes,
2532 old->extent_offset + old->offset + old->len);
2533 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2534
2535 ret = btrfs_drop_extents(trans, root, inode, start,
2536 start + len, 1);
2537 if (ret)
2538 goto out_free_path;
2539 again:
2540 key.objectid = btrfs_ino(inode);
2541 key.type = BTRFS_EXTENT_DATA_KEY;
2542 key.offset = start;
2543
2544 path->leave_spinning = 1;
2545 if (merge) {
2546 struct btrfs_file_extent_item *fi;
2547 u64 extent_len;
2548 struct btrfs_key found_key;
2549
2550 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2551 if (ret < 0)
2552 goto out_free_path;
2553
2554 path->slots[0]--;
2555 leaf = path->nodes[0];
2556 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2557
2558 fi = btrfs_item_ptr(leaf, path->slots[0],
2559 struct btrfs_file_extent_item);
2560 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2561
2562 if (extent_len + found_key.offset == start &&
2563 relink_is_mergable(leaf, fi, new)) {
2564 btrfs_set_file_extent_num_bytes(leaf, fi,
2565 extent_len + len);
2566 btrfs_mark_buffer_dirty(leaf);
2567 inode_add_bytes(inode, len);
2568
2569 ret = 1;
2570 goto out_free_path;
2571 } else {
2572 merge = false;
2573 btrfs_release_path(path);
2574 goto again;
2575 }
2576 }
2577
2578 ret = btrfs_insert_empty_item(trans, root, path, &key,
2579 sizeof(*extent));
2580 if (ret) {
2581 btrfs_abort_transaction(trans, root, ret);
2582 goto out_free_path;
2583 }
2584
2585 leaf = path->nodes[0];
2586 item = btrfs_item_ptr(leaf, path->slots[0],
2587 struct btrfs_file_extent_item);
2588 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2589 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2590 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2591 btrfs_set_file_extent_num_bytes(leaf, item, len);
2592 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2593 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2594 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2595 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2596 btrfs_set_file_extent_encryption(leaf, item, 0);
2597 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2598
2599 btrfs_mark_buffer_dirty(leaf);
2600 inode_add_bytes(inode, len);
2601 btrfs_release_path(path);
2602
2603 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2604 new->disk_len, 0,
2605 backref->root_id, backref->inum,
2606 new->file_pos); /* start - extent_offset */
2607 if (ret) {
2608 btrfs_abort_transaction(trans, root, ret);
2609 goto out_free_path;
2610 }
2611
2612 ret = 1;
2613 out_free_path:
2614 btrfs_release_path(path);
2615 path->leave_spinning = 0;
2616 btrfs_end_transaction(trans, root);
2617 out_unlock:
2618 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2619 &cached, GFP_NOFS);
2620 iput(inode);
2621 return ret;
2622 }
2623
2624 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2625 {
2626 struct old_sa_defrag_extent *old, *tmp;
2627
2628 if (!new)
2629 return;
2630
2631 list_for_each_entry_safe(old, tmp, &new->head, list) {
2632 kfree(old);
2633 }
2634 kfree(new);
2635 }
2636
2637 static void relink_file_extents(struct new_sa_defrag_extent *new)
2638 {
2639 struct btrfs_path *path;
2640 struct sa_defrag_extent_backref *backref;
2641 struct sa_defrag_extent_backref *prev = NULL;
2642 struct inode *inode;
2643 struct btrfs_root *root;
2644 struct rb_node *node;
2645 int ret;
2646
2647 inode = new->inode;
2648 root = BTRFS_I(inode)->root;
2649
2650 path = btrfs_alloc_path();
2651 if (!path)
2652 return;
2653
2654 if (!record_extent_backrefs(path, new)) {
2655 btrfs_free_path(path);
2656 goto out;
2657 }
2658 btrfs_release_path(path);
2659
2660 while (1) {
2661 node = rb_first(&new->root);
2662 if (!node)
2663 break;
2664 rb_erase(node, &new->root);
2665
2666 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2667
2668 ret = relink_extent_backref(path, prev, backref);
2669 WARN_ON(ret < 0);
2670
2671 kfree(prev);
2672
2673 if (ret == 1)
2674 prev = backref;
2675 else
2676 prev = NULL;
2677 cond_resched();
2678 }
2679 kfree(prev);
2680
2681 btrfs_free_path(path);
2682 out:
2683 free_sa_defrag_extent(new);
2684
2685 atomic_dec(&root->fs_info->defrag_running);
2686 wake_up(&root->fs_info->transaction_wait);
2687 }
2688
2689 static struct new_sa_defrag_extent *
2690 record_old_file_extents(struct inode *inode,
2691 struct btrfs_ordered_extent *ordered)
2692 {
2693 struct btrfs_root *root = BTRFS_I(inode)->root;
2694 struct btrfs_path *path;
2695 struct btrfs_key key;
2696 struct old_sa_defrag_extent *old;
2697 struct new_sa_defrag_extent *new;
2698 int ret;
2699
2700 new = kmalloc(sizeof(*new), GFP_NOFS);
2701 if (!new)
2702 return NULL;
2703
2704 new->inode = inode;
2705 new->file_pos = ordered->file_offset;
2706 new->len = ordered->len;
2707 new->bytenr = ordered->start;
2708 new->disk_len = ordered->disk_len;
2709 new->compress_type = ordered->compress_type;
2710 new->root = RB_ROOT;
2711 INIT_LIST_HEAD(&new->head);
2712
2713 path = btrfs_alloc_path();
2714 if (!path)
2715 goto out_kfree;
2716
2717 key.objectid = btrfs_ino(inode);
2718 key.type = BTRFS_EXTENT_DATA_KEY;
2719 key.offset = new->file_pos;
2720
2721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2722 if (ret < 0)
2723 goto out_free_path;
2724 if (ret > 0 && path->slots[0] > 0)
2725 path->slots[0]--;
2726
2727 /* find out all the old extents for the file range */
2728 while (1) {
2729 struct btrfs_file_extent_item *extent;
2730 struct extent_buffer *l;
2731 int slot;
2732 u64 num_bytes;
2733 u64 offset;
2734 u64 end;
2735 u64 disk_bytenr;
2736 u64 extent_offset;
2737
2738 l = path->nodes[0];
2739 slot = path->slots[0];
2740
2741 if (slot >= btrfs_header_nritems(l)) {
2742 ret = btrfs_next_leaf(root, path);
2743 if (ret < 0)
2744 goto out_free_path;
2745 else if (ret > 0)
2746 break;
2747 continue;
2748 }
2749
2750 btrfs_item_key_to_cpu(l, &key, slot);
2751
2752 if (key.objectid != btrfs_ino(inode))
2753 break;
2754 if (key.type != BTRFS_EXTENT_DATA_KEY)
2755 break;
2756 if (key.offset >= new->file_pos + new->len)
2757 break;
2758
2759 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2760
2761 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2762 if (key.offset + num_bytes < new->file_pos)
2763 goto next;
2764
2765 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2766 if (!disk_bytenr)
2767 goto next;
2768
2769 extent_offset = btrfs_file_extent_offset(l, extent);
2770
2771 old = kmalloc(sizeof(*old), GFP_NOFS);
2772 if (!old)
2773 goto out_free_path;
2774
2775 offset = max(new->file_pos, key.offset);
2776 end = min(new->file_pos + new->len, key.offset + num_bytes);
2777
2778 old->bytenr = disk_bytenr;
2779 old->extent_offset = extent_offset;
2780 old->offset = offset - key.offset;
2781 old->len = end - offset;
2782 old->new = new;
2783 old->count = 0;
2784 list_add_tail(&old->list, &new->head);
2785 next:
2786 path->slots[0]++;
2787 cond_resched();
2788 }
2789
2790 btrfs_free_path(path);
2791 atomic_inc(&root->fs_info->defrag_running);
2792
2793 return new;
2794
2795 out_free_path:
2796 btrfs_free_path(path);
2797 out_kfree:
2798 free_sa_defrag_extent(new);
2799 return NULL;
2800 }
2801
2802 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2803 u64 start, u64 len)
2804 {
2805 struct btrfs_block_group_cache *cache;
2806
2807 cache = btrfs_lookup_block_group(root->fs_info, start);
2808 ASSERT(cache);
2809
2810 spin_lock(&cache->lock);
2811 cache->delalloc_bytes -= len;
2812 spin_unlock(&cache->lock);
2813
2814 btrfs_put_block_group(cache);
2815 }
2816
2817 /* as ordered data IO finishes, this gets called so we can finish
2818 * an ordered extent if the range of bytes in the file it covers are
2819 * fully written.
2820 */
2821 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2822 {
2823 struct inode *inode = ordered_extent->inode;
2824 struct btrfs_root *root = BTRFS_I(inode)->root;
2825 struct btrfs_trans_handle *trans = NULL;
2826 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2827 struct extent_state *cached_state = NULL;
2828 struct new_sa_defrag_extent *new = NULL;
2829 int compress_type = 0;
2830 int ret = 0;
2831 u64 logical_len = ordered_extent->len;
2832 bool nolock;
2833 bool truncated = false;
2834
2835 nolock = btrfs_is_free_space_inode(inode);
2836
2837 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2838 ret = -EIO;
2839 goto out;
2840 }
2841
2842 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2843 ordered_extent->file_offset +
2844 ordered_extent->len - 1);
2845
2846 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2847 truncated = true;
2848 logical_len = ordered_extent->truncated_len;
2849 /* Truncated the entire extent, don't bother adding */
2850 if (!logical_len)
2851 goto out;
2852 }
2853
2854 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2855 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2856
2857 /*
2858 * For mwrite(mmap + memset to write) case, we still reserve
2859 * space for NOCOW range.
2860 * As NOCOW won't cause a new delayed ref, just free the space
2861 */
2862 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2863 ordered_extent->len);
2864 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2865 if (nolock)
2866 trans = btrfs_join_transaction_nolock(root);
2867 else
2868 trans = btrfs_join_transaction(root);
2869 if (IS_ERR(trans)) {
2870 ret = PTR_ERR(trans);
2871 trans = NULL;
2872 goto out;
2873 }
2874 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2875 ret = btrfs_update_inode_fallback(trans, root, inode);
2876 if (ret) /* -ENOMEM or corruption */
2877 btrfs_abort_transaction(trans, root, ret);
2878 goto out;
2879 }
2880
2881 lock_extent_bits(io_tree, ordered_extent->file_offset,
2882 ordered_extent->file_offset + ordered_extent->len - 1,
2883 &cached_state);
2884
2885 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2886 ordered_extent->file_offset + ordered_extent->len - 1,
2887 EXTENT_DEFRAG, 1, cached_state);
2888 if (ret) {
2889 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2890 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2891 /* the inode is shared */
2892 new = record_old_file_extents(inode, ordered_extent);
2893
2894 clear_extent_bit(io_tree, ordered_extent->file_offset,
2895 ordered_extent->file_offset + ordered_extent->len - 1,
2896 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2897 }
2898
2899 if (nolock)
2900 trans = btrfs_join_transaction_nolock(root);
2901 else
2902 trans = btrfs_join_transaction(root);
2903 if (IS_ERR(trans)) {
2904 ret = PTR_ERR(trans);
2905 trans = NULL;
2906 goto out_unlock;
2907 }
2908
2909 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2910
2911 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2912 compress_type = ordered_extent->compress_type;
2913 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2914 BUG_ON(compress_type);
2915 ret = btrfs_mark_extent_written(trans, inode,
2916 ordered_extent->file_offset,
2917 ordered_extent->file_offset +
2918 logical_len);
2919 } else {
2920 BUG_ON(root == root->fs_info->tree_root);
2921 ret = insert_reserved_file_extent(trans, inode,
2922 ordered_extent->file_offset,
2923 ordered_extent->start,
2924 ordered_extent->disk_len,
2925 logical_len, logical_len,
2926 compress_type, 0, 0,
2927 BTRFS_FILE_EXTENT_REG);
2928 if (!ret)
2929 btrfs_release_delalloc_bytes(root,
2930 ordered_extent->start,
2931 ordered_extent->disk_len);
2932 }
2933 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2934 ordered_extent->file_offset, ordered_extent->len,
2935 trans->transid);
2936 if (ret < 0) {
2937 btrfs_abort_transaction(trans, root, ret);
2938 goto out_unlock;
2939 }
2940
2941 add_pending_csums(trans, inode, ordered_extent->file_offset,
2942 &ordered_extent->list);
2943
2944 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2945 ret = btrfs_update_inode_fallback(trans, root, inode);
2946 if (ret) { /* -ENOMEM or corruption */
2947 btrfs_abort_transaction(trans, root, ret);
2948 goto out_unlock;
2949 }
2950 ret = 0;
2951 out_unlock:
2952 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2953 ordered_extent->file_offset +
2954 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2955 out:
2956 if (root != root->fs_info->tree_root)
2957 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2958 if (trans)
2959 btrfs_end_transaction(trans, root);
2960
2961 if (ret || truncated) {
2962 u64 start, end;
2963
2964 if (truncated)
2965 start = ordered_extent->file_offset + logical_len;
2966 else
2967 start = ordered_extent->file_offset;
2968 end = ordered_extent->file_offset + ordered_extent->len - 1;
2969 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2970
2971 /* Drop the cache for the part of the extent we didn't write. */
2972 btrfs_drop_extent_cache(inode, start, end, 0);
2973
2974 /*
2975 * If the ordered extent had an IOERR or something else went
2976 * wrong we need to return the space for this ordered extent
2977 * back to the allocator. We only free the extent in the
2978 * truncated case if we didn't write out the extent at all.
2979 */
2980 if ((ret || !logical_len) &&
2981 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2982 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2983 btrfs_free_reserved_extent(root, ordered_extent->start,
2984 ordered_extent->disk_len, 1);
2985 }
2986
2987
2988 /*
2989 * This needs to be done to make sure anybody waiting knows we are done
2990 * updating everything for this ordered extent.
2991 */
2992 btrfs_remove_ordered_extent(inode, ordered_extent);
2993
2994 /* for snapshot-aware defrag */
2995 if (new) {
2996 if (ret) {
2997 free_sa_defrag_extent(new);
2998 atomic_dec(&root->fs_info->defrag_running);
2999 } else {
3000 relink_file_extents(new);
3001 }
3002 }
3003
3004 /* once for us */
3005 btrfs_put_ordered_extent(ordered_extent);
3006 /* once for the tree */
3007 btrfs_put_ordered_extent(ordered_extent);
3008
3009 return ret;
3010 }
3011
3012 static void finish_ordered_fn(struct btrfs_work *work)
3013 {
3014 struct btrfs_ordered_extent *ordered_extent;
3015 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3016 btrfs_finish_ordered_io(ordered_extent);
3017 }
3018
3019 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3020 struct extent_state *state, int uptodate)
3021 {
3022 struct inode *inode = page->mapping->host;
3023 struct btrfs_root *root = BTRFS_I(inode)->root;
3024 struct btrfs_ordered_extent *ordered_extent = NULL;
3025 struct btrfs_workqueue *wq;
3026 btrfs_work_func_t func;
3027
3028 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3029
3030 ClearPagePrivate2(page);
3031 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3032 end - start + 1, uptodate))
3033 return 0;
3034
3035 if (btrfs_is_free_space_inode(inode)) {
3036 wq = root->fs_info->endio_freespace_worker;
3037 func = btrfs_freespace_write_helper;
3038 } else {
3039 wq = root->fs_info->endio_write_workers;
3040 func = btrfs_endio_write_helper;
3041 }
3042
3043 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3044 NULL);
3045 btrfs_queue_work(wq, &ordered_extent->work);
3046
3047 return 0;
3048 }
3049
3050 static int __readpage_endio_check(struct inode *inode,
3051 struct btrfs_io_bio *io_bio,
3052 int icsum, struct page *page,
3053 int pgoff, u64 start, size_t len)
3054 {
3055 char *kaddr;
3056 u32 csum_expected;
3057 u32 csum = ~(u32)0;
3058
3059 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3060
3061 kaddr = kmap_atomic(page);
3062 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3063 btrfs_csum_final(csum, (char *)&csum);
3064 if (csum != csum_expected)
3065 goto zeroit;
3066
3067 kunmap_atomic(kaddr);
3068 return 0;
3069 zeroit:
3070 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3071 "csum failed ino %llu off %llu csum %u expected csum %u",
3072 btrfs_ino(inode), start, csum, csum_expected);
3073 memset(kaddr + pgoff, 1, len);
3074 flush_dcache_page(page);
3075 kunmap_atomic(kaddr);
3076 if (csum_expected == 0)
3077 return 0;
3078 return -EIO;
3079 }
3080
3081 /*
3082 * when reads are done, we need to check csums to verify the data is correct
3083 * if there's a match, we allow the bio to finish. If not, the code in
3084 * extent_io.c will try to find good copies for us.
3085 */
3086 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3087 u64 phy_offset, struct page *page,
3088 u64 start, u64 end, int mirror)
3089 {
3090 size_t offset = start - page_offset(page);
3091 struct inode *inode = page->mapping->host;
3092 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3093 struct btrfs_root *root = BTRFS_I(inode)->root;
3094
3095 if (PageChecked(page)) {
3096 ClearPageChecked(page);
3097 return 0;
3098 }
3099
3100 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3101 return 0;
3102
3103 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3104 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3105 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3106 GFP_NOFS);
3107 return 0;
3108 }
3109
3110 phy_offset >>= inode->i_sb->s_blocksize_bits;
3111 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3112 start, (size_t)(end - start + 1));
3113 }
3114
3115 void btrfs_add_delayed_iput(struct inode *inode)
3116 {
3117 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3118 struct btrfs_inode *binode = BTRFS_I(inode);
3119
3120 if (atomic_add_unless(&inode->i_count, -1, 1))
3121 return;
3122
3123 spin_lock(&fs_info->delayed_iput_lock);
3124 if (binode->delayed_iput_count == 0) {
3125 ASSERT(list_empty(&binode->delayed_iput));
3126 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3127 } else {
3128 binode->delayed_iput_count++;
3129 }
3130 spin_unlock(&fs_info->delayed_iput_lock);
3131 }
3132
3133 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3134 {
3135 struct btrfs_fs_info *fs_info = root->fs_info;
3136
3137 spin_lock(&fs_info->delayed_iput_lock);
3138 while (!list_empty(&fs_info->delayed_iputs)) {
3139 struct btrfs_inode *inode;
3140
3141 inode = list_first_entry(&fs_info->delayed_iputs,
3142 struct btrfs_inode, delayed_iput);
3143 if (inode->delayed_iput_count) {
3144 inode->delayed_iput_count--;
3145 list_move_tail(&inode->delayed_iput,
3146 &fs_info->delayed_iputs);
3147 } else {
3148 list_del_init(&inode->delayed_iput);
3149 }
3150 spin_unlock(&fs_info->delayed_iput_lock);
3151 iput(&inode->vfs_inode);
3152 spin_lock(&fs_info->delayed_iput_lock);
3153 }
3154 spin_unlock(&fs_info->delayed_iput_lock);
3155 }
3156
3157 /*
3158 * This is called in transaction commit time. If there are no orphan
3159 * files in the subvolume, it removes orphan item and frees block_rsv
3160 * structure.
3161 */
3162 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3163 struct btrfs_root *root)
3164 {
3165 struct btrfs_block_rsv *block_rsv;
3166 int ret;
3167
3168 if (atomic_read(&root->orphan_inodes) ||
3169 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3170 return;
3171
3172 spin_lock(&root->orphan_lock);
3173 if (atomic_read(&root->orphan_inodes)) {
3174 spin_unlock(&root->orphan_lock);
3175 return;
3176 }
3177
3178 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3179 spin_unlock(&root->orphan_lock);
3180 return;
3181 }
3182
3183 block_rsv = root->orphan_block_rsv;
3184 root->orphan_block_rsv = NULL;
3185 spin_unlock(&root->orphan_lock);
3186
3187 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3188 btrfs_root_refs(&root->root_item) > 0) {
3189 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3190 root->root_key.objectid);
3191 if (ret)
3192 btrfs_abort_transaction(trans, root, ret);
3193 else
3194 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3195 &root->state);
3196 }
3197
3198 if (block_rsv) {
3199 WARN_ON(block_rsv->size > 0);
3200 btrfs_free_block_rsv(root, block_rsv);
3201 }
3202 }
3203
3204 /*
3205 * This creates an orphan entry for the given inode in case something goes
3206 * wrong in the middle of an unlink/truncate.
3207 *
3208 * NOTE: caller of this function should reserve 5 units of metadata for
3209 * this function.
3210 */
3211 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3212 {
3213 struct btrfs_root *root = BTRFS_I(inode)->root;
3214 struct btrfs_block_rsv *block_rsv = NULL;
3215 int reserve = 0;
3216 int insert = 0;
3217 int ret;
3218
3219 if (!root->orphan_block_rsv) {
3220 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3221 if (!block_rsv)
3222 return -ENOMEM;
3223 }
3224
3225 spin_lock(&root->orphan_lock);
3226 if (!root->orphan_block_rsv) {
3227 root->orphan_block_rsv = block_rsv;
3228 } else if (block_rsv) {
3229 btrfs_free_block_rsv(root, block_rsv);
3230 block_rsv = NULL;
3231 }
3232
3233 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3234 &BTRFS_I(inode)->runtime_flags)) {
3235 #if 0
3236 /*
3237 * For proper ENOSPC handling, we should do orphan
3238 * cleanup when mounting. But this introduces backward
3239 * compatibility issue.
3240 */
3241 if (!xchg(&root->orphan_item_inserted, 1))
3242 insert = 2;
3243 else
3244 insert = 1;
3245 #endif
3246 insert = 1;
3247 atomic_inc(&root->orphan_inodes);
3248 }
3249
3250 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3251 &BTRFS_I(inode)->runtime_flags))
3252 reserve = 1;
3253 spin_unlock(&root->orphan_lock);
3254
3255 /* grab metadata reservation from transaction handle */
3256 if (reserve) {
3257 ret = btrfs_orphan_reserve_metadata(trans, inode);
3258 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3259 }
3260
3261 /* insert an orphan item to track this unlinked/truncated file */
3262 if (insert >= 1) {
3263 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3264 if (ret) {
3265 atomic_dec(&root->orphan_inodes);
3266 if (reserve) {
3267 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3268 &BTRFS_I(inode)->runtime_flags);
3269 btrfs_orphan_release_metadata(inode);
3270 }
3271 if (ret != -EEXIST) {
3272 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3273 &BTRFS_I(inode)->runtime_flags);
3274 btrfs_abort_transaction(trans, root, ret);
3275 return ret;
3276 }
3277 }
3278 ret = 0;
3279 }
3280
3281 /* insert an orphan item to track subvolume contains orphan files */
3282 if (insert >= 2) {
3283 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3284 root->root_key.objectid);
3285 if (ret && ret != -EEXIST) {
3286 btrfs_abort_transaction(trans, root, ret);
3287 return ret;
3288 }
3289 }
3290 return 0;
3291 }
3292
3293 /*
3294 * We have done the truncate/delete so we can go ahead and remove the orphan
3295 * item for this particular inode.
3296 */
3297 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3298 struct inode *inode)
3299 {
3300 struct btrfs_root *root = BTRFS_I(inode)->root;
3301 int delete_item = 0;
3302 int release_rsv = 0;
3303 int ret = 0;
3304
3305 spin_lock(&root->orphan_lock);
3306 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 &BTRFS_I(inode)->runtime_flags))
3308 delete_item = 1;
3309
3310 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3311 &BTRFS_I(inode)->runtime_flags))
3312 release_rsv = 1;
3313 spin_unlock(&root->orphan_lock);
3314
3315 if (delete_item) {
3316 atomic_dec(&root->orphan_inodes);
3317 if (trans)
3318 ret = btrfs_del_orphan_item(trans, root,
3319 btrfs_ino(inode));
3320 }
3321
3322 if (release_rsv)
3323 btrfs_orphan_release_metadata(inode);
3324
3325 return ret;
3326 }
3327
3328 /*
3329 * this cleans up any orphans that may be left on the list from the last use
3330 * of this root.
3331 */
3332 int btrfs_orphan_cleanup(struct btrfs_root *root)
3333 {
3334 struct btrfs_path *path;
3335 struct extent_buffer *leaf;
3336 struct btrfs_key key, found_key;
3337 struct btrfs_trans_handle *trans;
3338 struct inode *inode;
3339 u64 last_objectid = 0;
3340 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3341
3342 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3343 return 0;
3344
3345 path = btrfs_alloc_path();
3346 if (!path) {
3347 ret = -ENOMEM;
3348 goto out;
3349 }
3350 path->reada = READA_BACK;
3351
3352 key.objectid = BTRFS_ORPHAN_OBJECTID;
3353 key.type = BTRFS_ORPHAN_ITEM_KEY;
3354 key.offset = (u64)-1;
3355
3356 while (1) {
3357 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3358 if (ret < 0)
3359 goto out;
3360
3361 /*
3362 * if ret == 0 means we found what we were searching for, which
3363 * is weird, but possible, so only screw with path if we didn't
3364 * find the key and see if we have stuff that matches
3365 */
3366 if (ret > 0) {
3367 ret = 0;
3368 if (path->slots[0] == 0)
3369 break;
3370 path->slots[0]--;
3371 }
3372
3373 /* pull out the item */
3374 leaf = path->nodes[0];
3375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3376
3377 /* make sure the item matches what we want */
3378 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3379 break;
3380 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3381 break;
3382
3383 /* release the path since we're done with it */
3384 btrfs_release_path(path);
3385
3386 /*
3387 * this is where we are basically btrfs_lookup, without the
3388 * crossing root thing. we store the inode number in the
3389 * offset of the orphan item.
3390 */
3391
3392 if (found_key.offset == last_objectid) {
3393 btrfs_err(root->fs_info,
3394 "Error removing orphan entry, stopping orphan cleanup");
3395 ret = -EINVAL;
3396 goto out;
3397 }
3398
3399 last_objectid = found_key.offset;
3400
3401 found_key.objectid = found_key.offset;
3402 found_key.type = BTRFS_INODE_ITEM_KEY;
3403 found_key.offset = 0;
3404 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3405 ret = PTR_ERR_OR_ZERO(inode);
3406 if (ret && ret != -ESTALE)
3407 goto out;
3408
3409 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3410 struct btrfs_root *dead_root;
3411 struct btrfs_fs_info *fs_info = root->fs_info;
3412 int is_dead_root = 0;
3413
3414 /*
3415 * this is an orphan in the tree root. Currently these
3416 * could come from 2 sources:
3417 * a) a snapshot deletion in progress
3418 * b) a free space cache inode
3419 * We need to distinguish those two, as the snapshot
3420 * orphan must not get deleted.
3421 * find_dead_roots already ran before us, so if this
3422 * is a snapshot deletion, we should find the root
3423 * in the dead_roots list
3424 */
3425 spin_lock(&fs_info->trans_lock);
3426 list_for_each_entry(dead_root, &fs_info->dead_roots,
3427 root_list) {
3428 if (dead_root->root_key.objectid ==
3429 found_key.objectid) {
3430 is_dead_root = 1;
3431 break;
3432 }
3433 }
3434 spin_unlock(&fs_info->trans_lock);
3435 if (is_dead_root) {
3436 /* prevent this orphan from being found again */
3437 key.offset = found_key.objectid - 1;
3438 continue;
3439 }
3440 }
3441 /*
3442 * Inode is already gone but the orphan item is still there,
3443 * kill the orphan item.
3444 */
3445 if (ret == -ESTALE) {
3446 trans = btrfs_start_transaction(root, 1);
3447 if (IS_ERR(trans)) {
3448 ret = PTR_ERR(trans);
3449 goto out;
3450 }
3451 btrfs_debug(root->fs_info, "auto deleting %Lu",
3452 found_key.objectid);
3453 ret = btrfs_del_orphan_item(trans, root,
3454 found_key.objectid);
3455 btrfs_end_transaction(trans, root);
3456 if (ret)
3457 goto out;
3458 continue;
3459 }
3460
3461 /*
3462 * add this inode to the orphan list so btrfs_orphan_del does
3463 * the proper thing when we hit it
3464 */
3465 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3466 &BTRFS_I(inode)->runtime_flags);
3467 atomic_inc(&root->orphan_inodes);
3468
3469 /* if we have links, this was a truncate, lets do that */
3470 if (inode->i_nlink) {
3471 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3472 iput(inode);
3473 continue;
3474 }
3475 nr_truncate++;
3476
3477 /* 1 for the orphan item deletion. */
3478 trans = btrfs_start_transaction(root, 1);
3479 if (IS_ERR(trans)) {
3480 iput(inode);
3481 ret = PTR_ERR(trans);
3482 goto out;
3483 }
3484 ret = btrfs_orphan_add(trans, inode);
3485 btrfs_end_transaction(trans, root);
3486 if (ret) {
3487 iput(inode);
3488 goto out;
3489 }
3490
3491 ret = btrfs_truncate(inode);
3492 if (ret)
3493 btrfs_orphan_del(NULL, inode);
3494 } else {
3495 nr_unlink++;
3496 }
3497
3498 /* this will do delete_inode and everything for us */
3499 iput(inode);
3500 if (ret)
3501 goto out;
3502 }
3503 /* release the path since we're done with it */
3504 btrfs_release_path(path);
3505
3506 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3507
3508 if (root->orphan_block_rsv)
3509 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3510 (u64)-1);
3511
3512 if (root->orphan_block_rsv ||
3513 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3514 trans = btrfs_join_transaction(root);
3515 if (!IS_ERR(trans))
3516 btrfs_end_transaction(trans, root);
3517 }
3518
3519 if (nr_unlink)
3520 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3521 if (nr_truncate)
3522 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3523
3524 out:
3525 if (ret)
3526 btrfs_err(root->fs_info,
3527 "could not do orphan cleanup %d", ret);
3528 btrfs_free_path(path);
3529 return ret;
3530 }
3531
3532 /*
3533 * very simple check to peek ahead in the leaf looking for xattrs. If we
3534 * don't find any xattrs, we know there can't be any acls.
3535 *
3536 * slot is the slot the inode is in, objectid is the objectid of the inode
3537 */
3538 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3539 int slot, u64 objectid,
3540 int *first_xattr_slot)
3541 {
3542 u32 nritems = btrfs_header_nritems(leaf);
3543 struct btrfs_key found_key;
3544 static u64 xattr_access = 0;
3545 static u64 xattr_default = 0;
3546 int scanned = 0;
3547
3548 if (!xattr_access) {
3549 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3550 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3551 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3552 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3553 }
3554
3555 slot++;
3556 *first_xattr_slot = -1;
3557 while (slot < nritems) {
3558 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3559
3560 /* we found a different objectid, there must not be acls */
3561 if (found_key.objectid != objectid)
3562 return 0;
3563
3564 /* we found an xattr, assume we've got an acl */
3565 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3566 if (*first_xattr_slot == -1)
3567 *first_xattr_slot = slot;
3568 if (found_key.offset == xattr_access ||
3569 found_key.offset == xattr_default)
3570 return 1;
3571 }
3572
3573 /*
3574 * we found a key greater than an xattr key, there can't
3575 * be any acls later on
3576 */
3577 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3578 return 0;
3579
3580 slot++;
3581 scanned++;
3582
3583 /*
3584 * it goes inode, inode backrefs, xattrs, extents,
3585 * so if there are a ton of hard links to an inode there can
3586 * be a lot of backrefs. Don't waste time searching too hard,
3587 * this is just an optimization
3588 */
3589 if (scanned >= 8)
3590 break;
3591 }
3592 /* we hit the end of the leaf before we found an xattr or
3593 * something larger than an xattr. We have to assume the inode
3594 * has acls
3595 */
3596 if (*first_xattr_slot == -1)
3597 *first_xattr_slot = slot;
3598 return 1;
3599 }
3600
3601 /*
3602 * read an inode from the btree into the in-memory inode
3603 */
3604 static void btrfs_read_locked_inode(struct inode *inode)
3605 {
3606 struct btrfs_path *path;
3607 struct extent_buffer *leaf;
3608 struct btrfs_inode_item *inode_item;
3609 struct btrfs_root *root = BTRFS_I(inode)->root;
3610 struct btrfs_key location;
3611 unsigned long ptr;
3612 int maybe_acls;
3613 u32 rdev;
3614 int ret;
3615 bool filled = false;
3616 int first_xattr_slot;
3617
3618 ret = btrfs_fill_inode(inode, &rdev);
3619 if (!ret)
3620 filled = true;
3621
3622 path = btrfs_alloc_path();
3623 if (!path)
3624 goto make_bad;
3625
3626 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3627
3628 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3629 if (ret)
3630 goto make_bad;
3631
3632 leaf = path->nodes[0];
3633
3634 if (filled)
3635 goto cache_index;
3636
3637 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3638 struct btrfs_inode_item);
3639 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3640 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3641 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3642 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3643 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3644
3645 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3646 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3647
3648 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3649 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3650
3651 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3652 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3653
3654 BTRFS_I(inode)->i_otime.tv_sec =
3655 btrfs_timespec_sec(leaf, &inode_item->otime);
3656 BTRFS_I(inode)->i_otime.tv_nsec =
3657 btrfs_timespec_nsec(leaf, &inode_item->otime);
3658
3659 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3660 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3661 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3662
3663 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3664 inode->i_generation = BTRFS_I(inode)->generation;
3665 inode->i_rdev = 0;
3666 rdev = btrfs_inode_rdev(leaf, inode_item);
3667
3668 BTRFS_I(inode)->index_cnt = (u64)-1;
3669 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3670
3671 cache_index:
3672 /*
3673 * If we were modified in the current generation and evicted from memory
3674 * and then re-read we need to do a full sync since we don't have any
3675 * idea about which extents were modified before we were evicted from
3676 * cache.
3677 *
3678 * This is required for both inode re-read from disk and delayed inode
3679 * in delayed_nodes_tree.
3680 */
3681 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3682 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3683 &BTRFS_I(inode)->runtime_flags);
3684
3685 /*
3686 * We don't persist the id of the transaction where an unlink operation
3687 * against the inode was last made. So here we assume the inode might
3688 * have been evicted, and therefore the exact value of last_unlink_trans
3689 * lost, and set it to last_trans to avoid metadata inconsistencies
3690 * between the inode and its parent if the inode is fsync'ed and the log
3691 * replayed. For example, in the scenario:
3692 *
3693 * touch mydir/foo
3694 * ln mydir/foo mydir/bar
3695 * sync
3696 * unlink mydir/bar
3697 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3698 * xfs_io -c fsync mydir/foo
3699 * <power failure>
3700 * mount fs, triggers fsync log replay
3701 *
3702 * We must make sure that when we fsync our inode foo we also log its
3703 * parent inode, otherwise after log replay the parent still has the
3704 * dentry with the "bar" name but our inode foo has a link count of 1
3705 * and doesn't have an inode ref with the name "bar" anymore.
3706 *
3707 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3708 * but it guarantees correctness at the expense of ocassional full
3709 * transaction commits on fsync if our inode is a directory, or if our
3710 * inode is not a directory, logging its parent unnecessarily.
3711 */
3712 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3713
3714 path->slots[0]++;
3715 if (inode->i_nlink != 1 ||
3716 path->slots[0] >= btrfs_header_nritems(leaf))
3717 goto cache_acl;
3718
3719 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3720 if (location.objectid != btrfs_ino(inode))
3721 goto cache_acl;
3722
3723 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3724 if (location.type == BTRFS_INODE_REF_KEY) {
3725 struct btrfs_inode_ref *ref;
3726
3727 ref = (struct btrfs_inode_ref *)ptr;
3728 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3729 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3730 struct btrfs_inode_extref *extref;
3731
3732 extref = (struct btrfs_inode_extref *)ptr;
3733 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3734 extref);
3735 }
3736 cache_acl:
3737 /*
3738 * try to precache a NULL acl entry for files that don't have
3739 * any xattrs or acls
3740 */
3741 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3742 btrfs_ino(inode), &first_xattr_slot);
3743 if (first_xattr_slot != -1) {
3744 path->slots[0] = first_xattr_slot;
3745 ret = btrfs_load_inode_props(inode, path);
3746 if (ret)
3747 btrfs_err(root->fs_info,
3748 "error loading props for ino %llu (root %llu): %d",
3749 btrfs_ino(inode),
3750 root->root_key.objectid, ret);
3751 }
3752 btrfs_free_path(path);
3753
3754 if (!maybe_acls)
3755 cache_no_acl(inode);
3756
3757 switch (inode->i_mode & S_IFMT) {
3758 case S_IFREG:
3759 inode->i_mapping->a_ops = &btrfs_aops;
3760 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3761 inode->i_fop = &btrfs_file_operations;
3762 inode->i_op = &btrfs_file_inode_operations;
3763 break;
3764 case S_IFDIR:
3765 inode->i_fop = &btrfs_dir_file_operations;
3766 if (root == root->fs_info->tree_root)
3767 inode->i_op = &btrfs_dir_ro_inode_operations;
3768 else
3769 inode->i_op = &btrfs_dir_inode_operations;
3770 break;
3771 case S_IFLNK:
3772 inode->i_op = &btrfs_symlink_inode_operations;
3773 inode_nohighmem(inode);
3774 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3775 break;
3776 default:
3777 inode->i_op = &btrfs_special_inode_operations;
3778 init_special_inode(inode, inode->i_mode, rdev);
3779 break;
3780 }
3781
3782 btrfs_update_iflags(inode);
3783 return;
3784
3785 make_bad:
3786 btrfs_free_path(path);
3787 make_bad_inode(inode);
3788 }
3789
3790 /*
3791 * given a leaf and an inode, copy the inode fields into the leaf
3792 */
3793 static void fill_inode_item(struct btrfs_trans_handle *trans,
3794 struct extent_buffer *leaf,
3795 struct btrfs_inode_item *item,
3796 struct inode *inode)
3797 {
3798 struct btrfs_map_token token;
3799
3800 btrfs_init_map_token(&token);
3801
3802 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3803 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3804 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3805 &token);
3806 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3807 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3808
3809 btrfs_set_token_timespec_sec(leaf, &item->atime,
3810 inode->i_atime.tv_sec, &token);
3811 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3812 inode->i_atime.tv_nsec, &token);
3813
3814 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3815 inode->i_mtime.tv_sec, &token);
3816 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3817 inode->i_mtime.tv_nsec, &token);
3818
3819 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3820 inode->i_ctime.tv_sec, &token);
3821 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3822 inode->i_ctime.tv_nsec, &token);
3823
3824 btrfs_set_token_timespec_sec(leaf, &item->otime,
3825 BTRFS_I(inode)->i_otime.tv_sec, &token);
3826 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3827 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3828
3829 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3830 &token);
3831 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3832 &token);
3833 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3834 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3835 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3836 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3837 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3838 }
3839
3840 /*
3841 * copy everything in the in-memory inode into the btree.
3842 */
3843 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3844 struct btrfs_root *root, struct inode *inode)
3845 {
3846 struct btrfs_inode_item *inode_item;
3847 struct btrfs_path *path;
3848 struct extent_buffer *leaf;
3849 int ret;
3850
3851 path = btrfs_alloc_path();
3852 if (!path)
3853 return -ENOMEM;
3854
3855 path->leave_spinning = 1;
3856 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3857 1);
3858 if (ret) {
3859 if (ret > 0)
3860 ret = -ENOENT;
3861 goto failed;
3862 }
3863
3864 leaf = path->nodes[0];
3865 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3866 struct btrfs_inode_item);
3867
3868 fill_inode_item(trans, leaf, inode_item, inode);
3869 btrfs_mark_buffer_dirty(leaf);
3870 btrfs_set_inode_last_trans(trans, inode);
3871 ret = 0;
3872 failed:
3873 btrfs_free_path(path);
3874 return ret;
3875 }
3876
3877 /*
3878 * copy everything in the in-memory inode into the btree.
3879 */
3880 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3881 struct btrfs_root *root, struct inode *inode)
3882 {
3883 int ret;
3884
3885 /*
3886 * If the inode is a free space inode, we can deadlock during commit
3887 * if we put it into the delayed code.
3888 *
3889 * The data relocation inode should also be directly updated
3890 * without delay
3891 */
3892 if (!btrfs_is_free_space_inode(inode)
3893 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3894 && !root->fs_info->log_root_recovering) {
3895 btrfs_update_root_times(trans, root);
3896
3897 ret = btrfs_delayed_update_inode(trans, root, inode);
3898 if (!ret)
3899 btrfs_set_inode_last_trans(trans, inode);
3900 return ret;
3901 }
3902
3903 return btrfs_update_inode_item(trans, root, inode);
3904 }
3905
3906 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3907 struct btrfs_root *root,
3908 struct inode *inode)
3909 {
3910 int ret;
3911
3912 ret = btrfs_update_inode(trans, root, inode);
3913 if (ret == -ENOSPC)
3914 return btrfs_update_inode_item(trans, root, inode);
3915 return ret;
3916 }
3917
3918 /*
3919 * unlink helper that gets used here in inode.c and in the tree logging
3920 * recovery code. It remove a link in a directory with a given name, and
3921 * also drops the back refs in the inode to the directory
3922 */
3923 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3924 struct btrfs_root *root,
3925 struct inode *dir, struct inode *inode,
3926 const char *name, int name_len)
3927 {
3928 struct btrfs_path *path;
3929 int ret = 0;
3930 struct extent_buffer *leaf;
3931 struct btrfs_dir_item *di;
3932 struct btrfs_key key;
3933 u64 index;
3934 u64 ino = btrfs_ino(inode);
3935 u64 dir_ino = btrfs_ino(dir);
3936
3937 path = btrfs_alloc_path();
3938 if (!path) {
3939 ret = -ENOMEM;
3940 goto out;
3941 }
3942
3943 path->leave_spinning = 1;
3944 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3945 name, name_len, -1);
3946 if (IS_ERR(di)) {
3947 ret = PTR_ERR(di);
3948 goto err;
3949 }
3950 if (!di) {
3951 ret = -ENOENT;
3952 goto err;
3953 }
3954 leaf = path->nodes[0];
3955 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3956 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3957 if (ret)
3958 goto err;
3959 btrfs_release_path(path);
3960
3961 /*
3962 * If we don't have dir index, we have to get it by looking up
3963 * the inode ref, since we get the inode ref, remove it directly,
3964 * it is unnecessary to do delayed deletion.
3965 *
3966 * But if we have dir index, needn't search inode ref to get it.
3967 * Since the inode ref is close to the inode item, it is better
3968 * that we delay to delete it, and just do this deletion when
3969 * we update the inode item.
3970 */
3971 if (BTRFS_I(inode)->dir_index) {
3972 ret = btrfs_delayed_delete_inode_ref(inode);
3973 if (!ret) {
3974 index = BTRFS_I(inode)->dir_index;
3975 goto skip_backref;
3976 }
3977 }
3978
3979 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3980 dir_ino, &index);
3981 if (ret) {
3982 btrfs_info(root->fs_info,
3983 "failed to delete reference to %.*s, inode %llu parent %llu",
3984 name_len, name, ino, dir_ino);
3985 btrfs_abort_transaction(trans, root, ret);
3986 goto err;
3987 }
3988 skip_backref:
3989 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3990 if (ret) {
3991 btrfs_abort_transaction(trans, root, ret);
3992 goto err;
3993 }
3994
3995 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3996 inode, dir_ino);
3997 if (ret != 0 && ret != -ENOENT) {
3998 btrfs_abort_transaction(trans, root, ret);
3999 goto err;
4000 }
4001
4002 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4003 dir, index);
4004 if (ret == -ENOENT)
4005 ret = 0;
4006 else if (ret)
4007 btrfs_abort_transaction(trans, root, ret);
4008 err:
4009 btrfs_free_path(path);
4010 if (ret)
4011 goto out;
4012
4013 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4014 inode_inc_iversion(inode);
4015 inode_inc_iversion(dir);
4016 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4017 ret = btrfs_update_inode(trans, root, dir);
4018 out:
4019 return ret;
4020 }
4021
4022 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4023 struct btrfs_root *root,
4024 struct inode *dir, struct inode *inode,
4025 const char *name, int name_len)
4026 {
4027 int ret;
4028 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4029 if (!ret) {
4030 drop_nlink(inode);
4031 ret = btrfs_update_inode(trans, root, inode);
4032 }
4033 return ret;
4034 }
4035
4036 /*
4037 * helper to start transaction for unlink and rmdir.
4038 *
4039 * unlink and rmdir are special in btrfs, they do not always free space, so
4040 * if we cannot make our reservations the normal way try and see if there is
4041 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4042 * allow the unlink to occur.
4043 */
4044 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4045 {
4046 struct btrfs_root *root = BTRFS_I(dir)->root;
4047
4048 /*
4049 * 1 for the possible orphan item
4050 * 1 for the dir item
4051 * 1 for the dir index
4052 * 1 for the inode ref
4053 * 1 for the inode
4054 */
4055 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4056 }
4057
4058 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4059 {
4060 struct btrfs_root *root = BTRFS_I(dir)->root;
4061 struct btrfs_trans_handle *trans;
4062 struct inode *inode = d_inode(dentry);
4063 int ret;
4064
4065 trans = __unlink_start_trans(dir);
4066 if (IS_ERR(trans))
4067 return PTR_ERR(trans);
4068
4069 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4070
4071 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4072 dentry->d_name.name, dentry->d_name.len);
4073 if (ret)
4074 goto out;
4075
4076 if (inode->i_nlink == 0) {
4077 ret = btrfs_orphan_add(trans, inode);
4078 if (ret)
4079 goto out;
4080 }
4081
4082 out:
4083 btrfs_end_transaction(trans, root);
4084 btrfs_btree_balance_dirty(root);
4085 return ret;
4086 }
4087
4088 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *root,
4090 struct inode *dir, u64 objectid,
4091 const char *name, int name_len)
4092 {
4093 struct btrfs_path *path;
4094 struct extent_buffer *leaf;
4095 struct btrfs_dir_item *di;
4096 struct btrfs_key key;
4097 u64 index;
4098 int ret;
4099 u64 dir_ino = btrfs_ino(dir);
4100
4101 path = btrfs_alloc_path();
4102 if (!path)
4103 return -ENOMEM;
4104
4105 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4106 name, name_len, -1);
4107 if (IS_ERR_OR_NULL(di)) {
4108 if (!di)
4109 ret = -ENOENT;
4110 else
4111 ret = PTR_ERR(di);
4112 goto out;
4113 }
4114
4115 leaf = path->nodes[0];
4116 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4117 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4118 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4119 if (ret) {
4120 btrfs_abort_transaction(trans, root, ret);
4121 goto out;
4122 }
4123 btrfs_release_path(path);
4124
4125 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4126 objectid, root->root_key.objectid,
4127 dir_ino, &index, name, name_len);
4128 if (ret < 0) {
4129 if (ret != -ENOENT) {
4130 btrfs_abort_transaction(trans, root, ret);
4131 goto out;
4132 }
4133 di = btrfs_search_dir_index_item(root, path, dir_ino,
4134 name, name_len);
4135 if (IS_ERR_OR_NULL(di)) {
4136 if (!di)
4137 ret = -ENOENT;
4138 else
4139 ret = PTR_ERR(di);
4140 btrfs_abort_transaction(trans, root, ret);
4141 goto out;
4142 }
4143
4144 leaf = path->nodes[0];
4145 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4146 btrfs_release_path(path);
4147 index = key.offset;
4148 }
4149 btrfs_release_path(path);
4150
4151 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4152 if (ret) {
4153 btrfs_abort_transaction(trans, root, ret);
4154 goto out;
4155 }
4156
4157 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4158 inode_inc_iversion(dir);
4159 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4160 ret = btrfs_update_inode_fallback(trans, root, dir);
4161 if (ret)
4162 btrfs_abort_transaction(trans, root, ret);
4163 out:
4164 btrfs_free_path(path);
4165 return ret;
4166 }
4167
4168 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4169 {
4170 struct inode *inode = d_inode(dentry);
4171 int err = 0;
4172 struct btrfs_root *root = BTRFS_I(dir)->root;
4173 struct btrfs_trans_handle *trans;
4174
4175 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4176 return -ENOTEMPTY;
4177 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4178 return -EPERM;
4179
4180 trans = __unlink_start_trans(dir);
4181 if (IS_ERR(trans))
4182 return PTR_ERR(trans);
4183
4184 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4185 err = btrfs_unlink_subvol(trans, root, dir,
4186 BTRFS_I(inode)->location.objectid,
4187 dentry->d_name.name,
4188 dentry->d_name.len);
4189 goto out;
4190 }
4191
4192 err = btrfs_orphan_add(trans, inode);
4193 if (err)
4194 goto out;
4195
4196 /* now the directory is empty */
4197 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4198 dentry->d_name.name, dentry->d_name.len);
4199 if (!err)
4200 btrfs_i_size_write(inode, 0);
4201 out:
4202 btrfs_end_transaction(trans, root);
4203 btrfs_btree_balance_dirty(root);
4204
4205 return err;
4206 }
4207
4208 static int truncate_space_check(struct btrfs_trans_handle *trans,
4209 struct btrfs_root *root,
4210 u64 bytes_deleted)
4211 {
4212 int ret;
4213
4214 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4215 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4216 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4217 if (!ret)
4218 trans->bytes_reserved += bytes_deleted;
4219 return ret;
4220
4221 }
4222
4223 static int truncate_inline_extent(struct inode *inode,
4224 struct btrfs_path *path,
4225 struct btrfs_key *found_key,
4226 const u64 item_end,
4227 const u64 new_size)
4228 {
4229 struct extent_buffer *leaf = path->nodes[0];
4230 int slot = path->slots[0];
4231 struct btrfs_file_extent_item *fi;
4232 u32 size = (u32)(new_size - found_key->offset);
4233 struct btrfs_root *root = BTRFS_I(inode)->root;
4234
4235 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4236
4237 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4238 loff_t offset = new_size;
4239 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4240
4241 /*
4242 * Zero out the remaining of the last page of our inline extent,
4243 * instead of directly truncating our inline extent here - that
4244 * would be much more complex (decompressing all the data, then
4245 * compressing the truncated data, which might be bigger than
4246 * the size of the inline extent, resize the extent, etc).
4247 * We release the path because to get the page we might need to
4248 * read the extent item from disk (data not in the page cache).
4249 */
4250 btrfs_release_path(path);
4251 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4252 }
4253
4254 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4255 size = btrfs_file_extent_calc_inline_size(size);
4256 btrfs_truncate_item(root, path, size, 1);
4257
4258 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4259 inode_sub_bytes(inode, item_end + 1 - new_size);
4260
4261 return 0;
4262 }
4263
4264 /*
4265 * this can truncate away extent items, csum items and directory items.
4266 * It starts at a high offset and removes keys until it can't find
4267 * any higher than new_size
4268 *
4269 * csum items that cross the new i_size are truncated to the new size
4270 * as well.
4271 *
4272 * min_type is the minimum key type to truncate down to. If set to 0, this
4273 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4274 */
4275 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4276 struct btrfs_root *root,
4277 struct inode *inode,
4278 u64 new_size, u32 min_type)
4279 {
4280 struct btrfs_path *path;
4281 struct extent_buffer *leaf;
4282 struct btrfs_file_extent_item *fi;
4283 struct btrfs_key key;
4284 struct btrfs_key found_key;
4285 u64 extent_start = 0;
4286 u64 extent_num_bytes = 0;
4287 u64 extent_offset = 0;
4288 u64 item_end = 0;
4289 u64 last_size = new_size;
4290 u32 found_type = (u8)-1;
4291 int found_extent;
4292 int del_item;
4293 int pending_del_nr = 0;
4294 int pending_del_slot = 0;
4295 int extent_type = -1;
4296 int ret;
4297 int err = 0;
4298 u64 ino = btrfs_ino(inode);
4299 u64 bytes_deleted = 0;
4300 bool be_nice = 0;
4301 bool should_throttle = 0;
4302 bool should_end = 0;
4303
4304 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4305
4306 /*
4307 * for non-free space inodes and ref cows, we want to back off from
4308 * time to time
4309 */
4310 if (!btrfs_is_free_space_inode(inode) &&
4311 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4312 be_nice = 1;
4313
4314 path = btrfs_alloc_path();
4315 if (!path)
4316 return -ENOMEM;
4317 path->reada = READA_BACK;
4318
4319 /*
4320 * We want to drop from the next block forward in case this new size is
4321 * not block aligned since we will be keeping the last block of the
4322 * extent just the way it is.
4323 */
4324 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4325 root == root->fs_info->tree_root)
4326 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4327 root->sectorsize), (u64)-1, 0);
4328
4329 /*
4330 * This function is also used to drop the items in the log tree before
4331 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4332 * it is used to drop the loged items. So we shouldn't kill the delayed
4333 * items.
4334 */
4335 if (min_type == 0 && root == BTRFS_I(inode)->root)
4336 btrfs_kill_delayed_inode_items(inode);
4337
4338 key.objectid = ino;
4339 key.offset = (u64)-1;
4340 key.type = (u8)-1;
4341
4342 search_again:
4343 /*
4344 * with a 16K leaf size and 128MB extents, you can actually queue
4345 * up a huge file in a single leaf. Most of the time that
4346 * bytes_deleted is > 0, it will be huge by the time we get here
4347 */
4348 if (be_nice && bytes_deleted > SZ_32M) {
4349 if (btrfs_should_end_transaction(trans, root)) {
4350 err = -EAGAIN;
4351 goto error;
4352 }
4353 }
4354
4355
4356 path->leave_spinning = 1;
4357 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4358 if (ret < 0) {
4359 err = ret;
4360 goto out;
4361 }
4362
4363 if (ret > 0) {
4364 /* there are no items in the tree for us to truncate, we're
4365 * done
4366 */
4367 if (path->slots[0] == 0)
4368 goto out;
4369 path->slots[0]--;
4370 }
4371
4372 while (1) {
4373 fi = NULL;
4374 leaf = path->nodes[0];
4375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4376 found_type = found_key.type;
4377
4378 if (found_key.objectid != ino)
4379 break;
4380
4381 if (found_type < min_type)
4382 break;
4383
4384 item_end = found_key.offset;
4385 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4386 fi = btrfs_item_ptr(leaf, path->slots[0],
4387 struct btrfs_file_extent_item);
4388 extent_type = btrfs_file_extent_type(leaf, fi);
4389 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4390 item_end +=
4391 btrfs_file_extent_num_bytes(leaf, fi);
4392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4393 item_end += btrfs_file_extent_inline_len(leaf,
4394 path->slots[0], fi);
4395 }
4396 item_end--;
4397 }
4398 if (found_type > min_type) {
4399 del_item = 1;
4400 } else {
4401 if (item_end < new_size)
4402 break;
4403 if (found_key.offset >= new_size)
4404 del_item = 1;
4405 else
4406 del_item = 0;
4407 }
4408 found_extent = 0;
4409 /* FIXME, shrink the extent if the ref count is only 1 */
4410 if (found_type != BTRFS_EXTENT_DATA_KEY)
4411 goto delete;
4412
4413 if (del_item)
4414 last_size = found_key.offset;
4415 else
4416 last_size = new_size;
4417
4418 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4419 u64 num_dec;
4420 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4421 if (!del_item) {
4422 u64 orig_num_bytes =
4423 btrfs_file_extent_num_bytes(leaf, fi);
4424 extent_num_bytes = ALIGN(new_size -
4425 found_key.offset,
4426 root->sectorsize);
4427 btrfs_set_file_extent_num_bytes(leaf, fi,
4428 extent_num_bytes);
4429 num_dec = (orig_num_bytes -
4430 extent_num_bytes);
4431 if (test_bit(BTRFS_ROOT_REF_COWS,
4432 &root->state) &&
4433 extent_start != 0)
4434 inode_sub_bytes(inode, num_dec);
4435 btrfs_mark_buffer_dirty(leaf);
4436 } else {
4437 extent_num_bytes =
4438 btrfs_file_extent_disk_num_bytes(leaf,
4439 fi);
4440 extent_offset = found_key.offset -
4441 btrfs_file_extent_offset(leaf, fi);
4442
4443 /* FIXME blocksize != 4096 */
4444 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4445 if (extent_start != 0) {
4446 found_extent = 1;
4447 if (test_bit(BTRFS_ROOT_REF_COWS,
4448 &root->state))
4449 inode_sub_bytes(inode, num_dec);
4450 }
4451 }
4452 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4453 /*
4454 * we can't truncate inline items that have had
4455 * special encodings
4456 */
4457 if (!del_item &&
4458 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4459 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4460
4461 /*
4462 * Need to release path in order to truncate a
4463 * compressed extent. So delete any accumulated
4464 * extent items so far.
4465 */
4466 if (btrfs_file_extent_compression(leaf, fi) !=
4467 BTRFS_COMPRESS_NONE && pending_del_nr) {
4468 err = btrfs_del_items(trans, root, path,
4469 pending_del_slot,
4470 pending_del_nr);
4471 if (err) {
4472 btrfs_abort_transaction(trans,
4473 root,
4474 err);
4475 goto error;
4476 }
4477 pending_del_nr = 0;
4478 }
4479
4480 err = truncate_inline_extent(inode, path,
4481 &found_key,
4482 item_end,
4483 new_size);
4484 if (err) {
4485 btrfs_abort_transaction(trans,
4486 root, err);
4487 goto error;
4488 }
4489 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4490 &root->state)) {
4491 inode_sub_bytes(inode, item_end + 1 - new_size);
4492 }
4493 }
4494 delete:
4495 if (del_item) {
4496 if (!pending_del_nr) {
4497 /* no pending yet, add ourselves */
4498 pending_del_slot = path->slots[0];
4499 pending_del_nr = 1;
4500 } else if (pending_del_nr &&
4501 path->slots[0] + 1 == pending_del_slot) {
4502 /* hop on the pending chunk */
4503 pending_del_nr++;
4504 pending_del_slot = path->slots[0];
4505 } else {
4506 BUG();
4507 }
4508 } else {
4509 break;
4510 }
4511 should_throttle = 0;
4512
4513 if (found_extent &&
4514 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4515 root == root->fs_info->tree_root)) {
4516 btrfs_set_path_blocking(path);
4517 bytes_deleted += extent_num_bytes;
4518 ret = btrfs_free_extent(trans, root, extent_start,
4519 extent_num_bytes, 0,
4520 btrfs_header_owner(leaf),
4521 ino, extent_offset);
4522 BUG_ON(ret);
4523 if (btrfs_should_throttle_delayed_refs(trans, root))
4524 btrfs_async_run_delayed_refs(root,
4525 trans->delayed_ref_updates * 2, 0);
4526 if (be_nice) {
4527 if (truncate_space_check(trans, root,
4528 extent_num_bytes)) {
4529 should_end = 1;
4530 }
4531 if (btrfs_should_throttle_delayed_refs(trans,
4532 root)) {
4533 should_throttle = 1;
4534 }
4535 }
4536 }
4537
4538 if (found_type == BTRFS_INODE_ITEM_KEY)
4539 break;
4540
4541 if (path->slots[0] == 0 ||
4542 path->slots[0] != pending_del_slot ||
4543 should_throttle || should_end) {
4544 if (pending_del_nr) {
4545 ret = btrfs_del_items(trans, root, path,
4546 pending_del_slot,
4547 pending_del_nr);
4548 if (ret) {
4549 btrfs_abort_transaction(trans,
4550 root, ret);
4551 goto error;
4552 }
4553 pending_del_nr = 0;
4554 }
4555 btrfs_release_path(path);
4556 if (should_throttle) {
4557 unsigned long updates = trans->delayed_ref_updates;
4558 if (updates) {
4559 trans->delayed_ref_updates = 0;
4560 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4561 if (ret && !err)
4562 err = ret;
4563 }
4564 }
4565 /*
4566 * if we failed to refill our space rsv, bail out
4567 * and let the transaction restart
4568 */
4569 if (should_end) {
4570 err = -EAGAIN;
4571 goto error;
4572 }
4573 goto search_again;
4574 } else {
4575 path->slots[0]--;
4576 }
4577 }
4578 out:
4579 if (pending_del_nr) {
4580 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4581 pending_del_nr);
4582 if (ret)
4583 btrfs_abort_transaction(trans, root, ret);
4584 }
4585 error:
4586 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4587 btrfs_ordered_update_i_size(inode, last_size, NULL);
4588
4589 btrfs_free_path(path);
4590
4591 if (be_nice && bytes_deleted > SZ_32M) {
4592 unsigned long updates = trans->delayed_ref_updates;
4593 if (updates) {
4594 trans->delayed_ref_updates = 0;
4595 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4596 if (ret && !err)
4597 err = ret;
4598 }
4599 }
4600 return err;
4601 }
4602
4603 /*
4604 * btrfs_truncate_page - read, zero a chunk and write a page
4605 * @inode - inode that we're zeroing
4606 * @from - the offset to start zeroing
4607 * @len - the length to zero, 0 to zero the entire range respective to the
4608 * offset
4609 * @front - zero up to the offset instead of from the offset on
4610 *
4611 * This will find the page for the "from" offset and cow the page and zero the
4612 * part we want to zero. This is used with truncate and hole punching.
4613 */
4614 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4615 int front)
4616 {
4617 struct address_space *mapping = inode->i_mapping;
4618 struct btrfs_root *root = BTRFS_I(inode)->root;
4619 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4620 struct btrfs_ordered_extent *ordered;
4621 struct extent_state *cached_state = NULL;
4622 char *kaddr;
4623 u32 blocksize = root->sectorsize;
4624 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4625 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4626 struct page *page;
4627 gfp_t mask = btrfs_alloc_write_mask(mapping);
4628 int ret = 0;
4629 u64 page_start;
4630 u64 page_end;
4631
4632 if ((offset & (blocksize - 1)) == 0 &&
4633 (!len || ((len & (blocksize - 1)) == 0)))
4634 goto out;
4635 ret = btrfs_delalloc_reserve_space(inode,
4636 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
4637 if (ret)
4638 goto out;
4639
4640 again:
4641 page = find_or_create_page(mapping, index, mask);
4642 if (!page) {
4643 btrfs_delalloc_release_space(inode,
4644 round_down(from, PAGE_CACHE_SIZE),
4645 PAGE_CACHE_SIZE);
4646 ret = -ENOMEM;
4647 goto out;
4648 }
4649
4650 page_start = page_offset(page);
4651 page_end = page_start + PAGE_CACHE_SIZE - 1;
4652
4653 if (!PageUptodate(page)) {
4654 ret = btrfs_readpage(NULL, page);
4655 lock_page(page);
4656 if (page->mapping != mapping) {
4657 unlock_page(page);
4658 page_cache_release(page);
4659 goto again;
4660 }
4661 if (!PageUptodate(page)) {
4662 ret = -EIO;
4663 goto out_unlock;
4664 }
4665 }
4666 wait_on_page_writeback(page);
4667
4668 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
4669 set_page_extent_mapped(page);
4670
4671 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4672 if (ordered) {
4673 unlock_extent_cached(io_tree, page_start, page_end,
4674 &cached_state, GFP_NOFS);
4675 unlock_page(page);
4676 page_cache_release(page);
4677 btrfs_start_ordered_extent(inode, ordered, 1);
4678 btrfs_put_ordered_extent(ordered);
4679 goto again;
4680 }
4681
4682 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4683 EXTENT_DIRTY | EXTENT_DELALLOC |
4684 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4685 0, 0, &cached_state, GFP_NOFS);
4686
4687 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4688 &cached_state);
4689 if (ret) {
4690 unlock_extent_cached(io_tree, page_start, page_end,
4691 &cached_state, GFP_NOFS);
4692 goto out_unlock;
4693 }
4694
4695 if (offset != PAGE_CACHE_SIZE) {
4696 if (!len)
4697 len = PAGE_CACHE_SIZE - offset;
4698 kaddr = kmap(page);
4699 if (front)
4700 memset(kaddr, 0, offset);
4701 else
4702 memset(kaddr + offset, 0, len);
4703 flush_dcache_page(page);
4704 kunmap(page);
4705 }
4706 ClearPageChecked(page);
4707 set_page_dirty(page);
4708 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4709 GFP_NOFS);
4710
4711 out_unlock:
4712 if (ret)
4713 btrfs_delalloc_release_space(inode, page_start,
4714 PAGE_CACHE_SIZE);
4715 unlock_page(page);
4716 page_cache_release(page);
4717 out:
4718 return ret;
4719 }
4720
4721 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4722 u64 offset, u64 len)
4723 {
4724 struct btrfs_trans_handle *trans;
4725 int ret;
4726
4727 /*
4728 * Still need to make sure the inode looks like it's been updated so
4729 * that any holes get logged if we fsync.
4730 */
4731 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4732 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4733 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4734 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4735 return 0;
4736 }
4737
4738 /*
4739 * 1 - for the one we're dropping
4740 * 1 - for the one we're adding
4741 * 1 - for updating the inode.
4742 */
4743 trans = btrfs_start_transaction(root, 3);
4744 if (IS_ERR(trans))
4745 return PTR_ERR(trans);
4746
4747 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4748 if (ret) {
4749 btrfs_abort_transaction(trans, root, ret);
4750 btrfs_end_transaction(trans, root);
4751 return ret;
4752 }
4753
4754 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4755 0, 0, len, 0, len, 0, 0, 0);
4756 if (ret)
4757 btrfs_abort_transaction(trans, root, ret);
4758 else
4759 btrfs_update_inode(trans, root, inode);
4760 btrfs_end_transaction(trans, root);
4761 return ret;
4762 }
4763
4764 /*
4765 * This function puts in dummy file extents for the area we're creating a hole
4766 * for. So if we are truncating this file to a larger size we need to insert
4767 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4768 * the range between oldsize and size
4769 */
4770 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4771 {
4772 struct btrfs_root *root = BTRFS_I(inode)->root;
4773 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4774 struct extent_map *em = NULL;
4775 struct extent_state *cached_state = NULL;
4776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4777 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4778 u64 block_end = ALIGN(size, root->sectorsize);
4779 u64 last_byte;
4780 u64 cur_offset;
4781 u64 hole_size;
4782 int err = 0;
4783
4784 /*
4785 * If our size started in the middle of a page we need to zero out the
4786 * rest of the page before we expand the i_size, otherwise we could
4787 * expose stale data.
4788 */
4789 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4790 if (err)
4791 return err;
4792
4793 if (size <= hole_start)
4794 return 0;
4795
4796 while (1) {
4797 struct btrfs_ordered_extent *ordered;
4798
4799 lock_extent_bits(io_tree, hole_start, block_end - 1,
4800 &cached_state);
4801 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4802 block_end - hole_start);
4803 if (!ordered)
4804 break;
4805 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4806 &cached_state, GFP_NOFS);
4807 btrfs_start_ordered_extent(inode, ordered, 1);
4808 btrfs_put_ordered_extent(ordered);
4809 }
4810
4811 cur_offset = hole_start;
4812 while (1) {
4813 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4814 block_end - cur_offset, 0);
4815 if (IS_ERR(em)) {
4816 err = PTR_ERR(em);
4817 em = NULL;
4818 break;
4819 }
4820 last_byte = min(extent_map_end(em), block_end);
4821 last_byte = ALIGN(last_byte , root->sectorsize);
4822 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4823 struct extent_map *hole_em;
4824 hole_size = last_byte - cur_offset;
4825
4826 err = maybe_insert_hole(root, inode, cur_offset,
4827 hole_size);
4828 if (err)
4829 break;
4830 btrfs_drop_extent_cache(inode, cur_offset,
4831 cur_offset + hole_size - 1, 0);
4832 hole_em = alloc_extent_map();
4833 if (!hole_em) {
4834 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4835 &BTRFS_I(inode)->runtime_flags);
4836 goto next;
4837 }
4838 hole_em->start = cur_offset;
4839 hole_em->len = hole_size;
4840 hole_em->orig_start = cur_offset;
4841
4842 hole_em->block_start = EXTENT_MAP_HOLE;
4843 hole_em->block_len = 0;
4844 hole_em->orig_block_len = 0;
4845 hole_em->ram_bytes = hole_size;
4846 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4847 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4848 hole_em->generation = root->fs_info->generation;
4849
4850 while (1) {
4851 write_lock(&em_tree->lock);
4852 err = add_extent_mapping(em_tree, hole_em, 1);
4853 write_unlock(&em_tree->lock);
4854 if (err != -EEXIST)
4855 break;
4856 btrfs_drop_extent_cache(inode, cur_offset,
4857 cur_offset +
4858 hole_size - 1, 0);
4859 }
4860 free_extent_map(hole_em);
4861 }
4862 next:
4863 free_extent_map(em);
4864 em = NULL;
4865 cur_offset = last_byte;
4866 if (cur_offset >= block_end)
4867 break;
4868 }
4869 free_extent_map(em);
4870 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4871 GFP_NOFS);
4872 return err;
4873 }
4874
4875 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4876 {
4877 struct btrfs_root *root = BTRFS_I(inode)->root;
4878 struct btrfs_trans_handle *trans;
4879 loff_t oldsize = i_size_read(inode);
4880 loff_t newsize = attr->ia_size;
4881 int mask = attr->ia_valid;
4882 int ret;
4883
4884 /*
4885 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4886 * special case where we need to update the times despite not having
4887 * these flags set. For all other operations the VFS set these flags
4888 * explicitly if it wants a timestamp update.
4889 */
4890 if (newsize != oldsize) {
4891 inode_inc_iversion(inode);
4892 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4893 inode->i_ctime = inode->i_mtime =
4894 current_fs_time(inode->i_sb);
4895 }
4896
4897 if (newsize > oldsize) {
4898 truncate_pagecache(inode, newsize);
4899 /*
4900 * Don't do an expanding truncate while snapshoting is ongoing.
4901 * This is to ensure the snapshot captures a fully consistent
4902 * state of this file - if the snapshot captures this expanding
4903 * truncation, it must capture all writes that happened before
4904 * this truncation.
4905 */
4906 btrfs_wait_for_snapshot_creation(root);
4907 ret = btrfs_cont_expand(inode, oldsize, newsize);
4908 if (ret) {
4909 btrfs_end_write_no_snapshoting(root);
4910 return ret;
4911 }
4912
4913 trans = btrfs_start_transaction(root, 1);
4914 if (IS_ERR(trans)) {
4915 btrfs_end_write_no_snapshoting(root);
4916 return PTR_ERR(trans);
4917 }
4918
4919 i_size_write(inode, newsize);
4920 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4921 ret = btrfs_update_inode(trans, root, inode);
4922 btrfs_end_write_no_snapshoting(root);
4923 btrfs_end_transaction(trans, root);
4924 } else {
4925
4926 /*
4927 * We're truncating a file that used to have good data down to
4928 * zero. Make sure it gets into the ordered flush list so that
4929 * any new writes get down to disk quickly.
4930 */
4931 if (newsize == 0)
4932 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4933 &BTRFS_I(inode)->runtime_flags);
4934
4935 /*
4936 * 1 for the orphan item we're going to add
4937 * 1 for the orphan item deletion.
4938 */
4939 trans = btrfs_start_transaction(root, 2);
4940 if (IS_ERR(trans))
4941 return PTR_ERR(trans);
4942
4943 /*
4944 * We need to do this in case we fail at _any_ point during the
4945 * actual truncate. Once we do the truncate_setsize we could
4946 * invalidate pages which forces any outstanding ordered io to
4947 * be instantly completed which will give us extents that need
4948 * to be truncated. If we fail to get an orphan inode down we
4949 * could have left over extents that were never meant to live,
4950 * so we need to garuntee from this point on that everything
4951 * will be consistent.
4952 */
4953 ret = btrfs_orphan_add(trans, inode);
4954 btrfs_end_transaction(trans, root);
4955 if (ret)
4956 return ret;
4957
4958 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4959 truncate_setsize(inode, newsize);
4960
4961 /* Disable nonlocked read DIO to avoid the end less truncate */
4962 btrfs_inode_block_unlocked_dio(inode);
4963 inode_dio_wait(inode);
4964 btrfs_inode_resume_unlocked_dio(inode);
4965
4966 ret = btrfs_truncate(inode);
4967 if (ret && inode->i_nlink) {
4968 int err;
4969
4970 /*
4971 * failed to truncate, disk_i_size is only adjusted down
4972 * as we remove extents, so it should represent the true
4973 * size of the inode, so reset the in memory size and
4974 * delete our orphan entry.
4975 */
4976 trans = btrfs_join_transaction(root);
4977 if (IS_ERR(trans)) {
4978 btrfs_orphan_del(NULL, inode);
4979 return ret;
4980 }
4981 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4982 err = btrfs_orphan_del(trans, inode);
4983 if (err)
4984 btrfs_abort_transaction(trans, root, err);
4985 btrfs_end_transaction(trans, root);
4986 }
4987 }
4988
4989 return ret;
4990 }
4991
4992 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4993 {
4994 struct inode *inode = d_inode(dentry);
4995 struct btrfs_root *root = BTRFS_I(inode)->root;
4996 int err;
4997
4998 if (btrfs_root_readonly(root))
4999 return -EROFS;
5000
5001 err = inode_change_ok(inode, attr);
5002 if (err)
5003 return err;
5004
5005 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5006 err = btrfs_setsize(inode, attr);
5007 if (err)
5008 return err;
5009 }
5010
5011 if (attr->ia_valid) {
5012 setattr_copy(inode, attr);
5013 inode_inc_iversion(inode);
5014 err = btrfs_dirty_inode(inode);
5015
5016 if (!err && attr->ia_valid & ATTR_MODE)
5017 err = posix_acl_chmod(inode, inode->i_mode);
5018 }
5019
5020 return err;
5021 }
5022
5023 /*
5024 * While truncating the inode pages during eviction, we get the VFS calling
5025 * btrfs_invalidatepage() against each page of the inode. This is slow because
5026 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5027 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5028 * extent_state structures over and over, wasting lots of time.
5029 *
5030 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5031 * those expensive operations on a per page basis and do only the ordered io
5032 * finishing, while we release here the extent_map and extent_state structures,
5033 * without the excessive merging and splitting.
5034 */
5035 static void evict_inode_truncate_pages(struct inode *inode)
5036 {
5037 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5038 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5039 struct rb_node *node;
5040
5041 ASSERT(inode->i_state & I_FREEING);
5042 truncate_inode_pages_final(&inode->i_data);
5043
5044 write_lock(&map_tree->lock);
5045 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5046 struct extent_map *em;
5047
5048 node = rb_first(&map_tree->map);
5049 em = rb_entry(node, struct extent_map, rb_node);
5050 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5051 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5052 remove_extent_mapping(map_tree, em);
5053 free_extent_map(em);
5054 if (need_resched()) {
5055 write_unlock(&map_tree->lock);
5056 cond_resched();
5057 write_lock(&map_tree->lock);
5058 }
5059 }
5060 write_unlock(&map_tree->lock);
5061
5062 /*
5063 * Keep looping until we have no more ranges in the io tree.
5064 * We can have ongoing bios started by readpages (called from readahead)
5065 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5066 * still in progress (unlocked the pages in the bio but did not yet
5067 * unlocked the ranges in the io tree). Therefore this means some
5068 * ranges can still be locked and eviction started because before
5069 * submitting those bios, which are executed by a separate task (work
5070 * queue kthread), inode references (inode->i_count) were not taken
5071 * (which would be dropped in the end io callback of each bio).
5072 * Therefore here we effectively end up waiting for those bios and
5073 * anyone else holding locked ranges without having bumped the inode's
5074 * reference count - if we don't do it, when they access the inode's
5075 * io_tree to unlock a range it may be too late, leading to an
5076 * use-after-free issue.
5077 */
5078 spin_lock(&io_tree->lock);
5079 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5080 struct extent_state *state;
5081 struct extent_state *cached_state = NULL;
5082 u64 start;
5083 u64 end;
5084
5085 node = rb_first(&io_tree->state);
5086 state = rb_entry(node, struct extent_state, rb_node);
5087 start = state->start;
5088 end = state->end;
5089 spin_unlock(&io_tree->lock);
5090
5091 lock_extent_bits(io_tree, start, end, &cached_state);
5092
5093 /*
5094 * If still has DELALLOC flag, the extent didn't reach disk,
5095 * and its reserved space won't be freed by delayed_ref.
5096 * So we need to free its reserved space here.
5097 * (Refer to comment in btrfs_invalidatepage, case 2)
5098 *
5099 * Note, end is the bytenr of last byte, so we need + 1 here.
5100 */
5101 if (state->state & EXTENT_DELALLOC)
5102 btrfs_qgroup_free_data(inode, start, end - start + 1);
5103
5104 clear_extent_bit(io_tree, start, end,
5105 EXTENT_LOCKED | EXTENT_DIRTY |
5106 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5107 EXTENT_DEFRAG, 1, 1,
5108 &cached_state, GFP_NOFS);
5109
5110 cond_resched();
5111 spin_lock(&io_tree->lock);
5112 }
5113 spin_unlock(&io_tree->lock);
5114 }
5115
5116 void btrfs_evict_inode(struct inode *inode)
5117 {
5118 struct btrfs_trans_handle *trans;
5119 struct btrfs_root *root = BTRFS_I(inode)->root;
5120 struct btrfs_block_rsv *rsv, *global_rsv;
5121 int steal_from_global = 0;
5122 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5123 int ret;
5124
5125 trace_btrfs_inode_evict(inode);
5126
5127 evict_inode_truncate_pages(inode);
5128
5129 if (inode->i_nlink &&
5130 ((btrfs_root_refs(&root->root_item) != 0 &&
5131 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5132 btrfs_is_free_space_inode(inode)))
5133 goto no_delete;
5134
5135 if (is_bad_inode(inode)) {
5136 btrfs_orphan_del(NULL, inode);
5137 goto no_delete;
5138 }
5139 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5140 if (!special_file(inode->i_mode))
5141 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5142
5143 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5144
5145 if (root->fs_info->log_root_recovering) {
5146 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5147 &BTRFS_I(inode)->runtime_flags));
5148 goto no_delete;
5149 }
5150
5151 if (inode->i_nlink > 0) {
5152 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5153 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5154 goto no_delete;
5155 }
5156
5157 ret = btrfs_commit_inode_delayed_inode(inode);
5158 if (ret) {
5159 btrfs_orphan_del(NULL, inode);
5160 goto no_delete;
5161 }
5162
5163 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5164 if (!rsv) {
5165 btrfs_orphan_del(NULL, inode);
5166 goto no_delete;
5167 }
5168 rsv->size = min_size;
5169 rsv->failfast = 1;
5170 global_rsv = &root->fs_info->global_block_rsv;
5171
5172 btrfs_i_size_write(inode, 0);
5173
5174 /*
5175 * This is a bit simpler than btrfs_truncate since we've already
5176 * reserved our space for our orphan item in the unlink, so we just
5177 * need to reserve some slack space in case we add bytes and update
5178 * inode item when doing the truncate.
5179 */
5180 while (1) {
5181 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5182 BTRFS_RESERVE_FLUSH_LIMIT);
5183
5184 /*
5185 * Try and steal from the global reserve since we will
5186 * likely not use this space anyway, we want to try as
5187 * hard as possible to get this to work.
5188 */
5189 if (ret)
5190 steal_from_global++;
5191 else
5192 steal_from_global = 0;
5193 ret = 0;
5194
5195 /*
5196 * steal_from_global == 0: we reserved stuff, hooray!
5197 * steal_from_global == 1: we didn't reserve stuff, boo!
5198 * steal_from_global == 2: we've committed, still not a lot of
5199 * room but maybe we'll have room in the global reserve this
5200 * time.
5201 * steal_from_global == 3: abandon all hope!
5202 */
5203 if (steal_from_global > 2) {
5204 btrfs_warn(root->fs_info,
5205 "Could not get space for a delete, will truncate on mount %d",
5206 ret);
5207 btrfs_orphan_del(NULL, inode);
5208 btrfs_free_block_rsv(root, rsv);
5209 goto no_delete;
5210 }
5211
5212 trans = btrfs_join_transaction(root);
5213 if (IS_ERR(trans)) {
5214 btrfs_orphan_del(NULL, inode);
5215 btrfs_free_block_rsv(root, rsv);
5216 goto no_delete;
5217 }
5218
5219 /*
5220 * We can't just steal from the global reserve, we need tomake
5221 * sure there is room to do it, if not we need to commit and try
5222 * again.
5223 */
5224 if (steal_from_global) {
5225 if (!btrfs_check_space_for_delayed_refs(trans, root))
5226 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5227 min_size);
5228 else
5229 ret = -ENOSPC;
5230 }
5231
5232 /*
5233 * Couldn't steal from the global reserve, we have too much
5234 * pending stuff built up, commit the transaction and try it
5235 * again.
5236 */
5237 if (ret) {
5238 ret = btrfs_commit_transaction(trans, root);
5239 if (ret) {
5240 btrfs_orphan_del(NULL, inode);
5241 btrfs_free_block_rsv(root, rsv);
5242 goto no_delete;
5243 }
5244 continue;
5245 } else {
5246 steal_from_global = 0;
5247 }
5248
5249 trans->block_rsv = rsv;
5250
5251 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5252 if (ret != -ENOSPC && ret != -EAGAIN)
5253 break;
5254
5255 trans->block_rsv = &root->fs_info->trans_block_rsv;
5256 btrfs_end_transaction(trans, root);
5257 trans = NULL;
5258 btrfs_btree_balance_dirty(root);
5259 }
5260
5261 btrfs_free_block_rsv(root, rsv);
5262
5263 /*
5264 * Errors here aren't a big deal, it just means we leave orphan items
5265 * in the tree. They will be cleaned up on the next mount.
5266 */
5267 if (ret == 0) {
5268 trans->block_rsv = root->orphan_block_rsv;
5269 btrfs_orphan_del(trans, inode);
5270 } else {
5271 btrfs_orphan_del(NULL, inode);
5272 }
5273
5274 trans->block_rsv = &root->fs_info->trans_block_rsv;
5275 if (!(root == root->fs_info->tree_root ||
5276 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5277 btrfs_return_ino(root, btrfs_ino(inode));
5278
5279 btrfs_end_transaction(trans, root);
5280 btrfs_btree_balance_dirty(root);
5281 no_delete:
5282 btrfs_remove_delayed_node(inode);
5283 clear_inode(inode);
5284 }
5285
5286 /*
5287 * this returns the key found in the dir entry in the location pointer.
5288 * If no dir entries were found, location->objectid is 0.
5289 */
5290 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5291 struct btrfs_key *location)
5292 {
5293 const char *name = dentry->d_name.name;
5294 int namelen = dentry->d_name.len;
5295 struct btrfs_dir_item *di;
5296 struct btrfs_path *path;
5297 struct btrfs_root *root = BTRFS_I(dir)->root;
5298 int ret = 0;
5299
5300 path = btrfs_alloc_path();
5301 if (!path)
5302 return -ENOMEM;
5303
5304 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5305 namelen, 0);
5306 if (IS_ERR(di))
5307 ret = PTR_ERR(di);
5308
5309 if (IS_ERR_OR_NULL(di))
5310 goto out_err;
5311
5312 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5313 out:
5314 btrfs_free_path(path);
5315 return ret;
5316 out_err:
5317 location->objectid = 0;
5318 goto out;
5319 }
5320
5321 /*
5322 * when we hit a tree root in a directory, the btrfs part of the inode
5323 * needs to be changed to reflect the root directory of the tree root. This
5324 * is kind of like crossing a mount point.
5325 */
5326 static int fixup_tree_root_location(struct btrfs_root *root,
5327 struct inode *dir,
5328 struct dentry *dentry,
5329 struct btrfs_key *location,
5330 struct btrfs_root **sub_root)
5331 {
5332 struct btrfs_path *path;
5333 struct btrfs_root *new_root;
5334 struct btrfs_root_ref *ref;
5335 struct extent_buffer *leaf;
5336 struct btrfs_key key;
5337 int ret;
5338 int err = 0;
5339
5340 path = btrfs_alloc_path();
5341 if (!path) {
5342 err = -ENOMEM;
5343 goto out;
5344 }
5345
5346 err = -ENOENT;
5347 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5348 key.type = BTRFS_ROOT_REF_KEY;
5349 key.offset = location->objectid;
5350
5351 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5352 0, 0);
5353 if (ret) {
5354 if (ret < 0)
5355 err = ret;
5356 goto out;
5357 }
5358
5359 leaf = path->nodes[0];
5360 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5361 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5362 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5363 goto out;
5364
5365 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5366 (unsigned long)(ref + 1),
5367 dentry->d_name.len);
5368 if (ret)
5369 goto out;
5370
5371 btrfs_release_path(path);
5372
5373 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5374 if (IS_ERR(new_root)) {
5375 err = PTR_ERR(new_root);
5376 goto out;
5377 }
5378
5379 *sub_root = new_root;
5380 location->objectid = btrfs_root_dirid(&new_root->root_item);
5381 location->type = BTRFS_INODE_ITEM_KEY;
5382 location->offset = 0;
5383 err = 0;
5384 out:
5385 btrfs_free_path(path);
5386 return err;
5387 }
5388
5389 static void inode_tree_add(struct inode *inode)
5390 {
5391 struct btrfs_root *root = BTRFS_I(inode)->root;
5392 struct btrfs_inode *entry;
5393 struct rb_node **p;
5394 struct rb_node *parent;
5395 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5396 u64 ino = btrfs_ino(inode);
5397
5398 if (inode_unhashed(inode))
5399 return;
5400 parent = NULL;
5401 spin_lock(&root->inode_lock);
5402 p = &root->inode_tree.rb_node;
5403 while (*p) {
5404 parent = *p;
5405 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5406
5407 if (ino < btrfs_ino(&entry->vfs_inode))
5408 p = &parent->rb_left;
5409 else if (ino > btrfs_ino(&entry->vfs_inode))
5410 p = &parent->rb_right;
5411 else {
5412 WARN_ON(!(entry->vfs_inode.i_state &
5413 (I_WILL_FREE | I_FREEING)));
5414 rb_replace_node(parent, new, &root->inode_tree);
5415 RB_CLEAR_NODE(parent);
5416 spin_unlock(&root->inode_lock);
5417 return;
5418 }
5419 }
5420 rb_link_node(new, parent, p);
5421 rb_insert_color(new, &root->inode_tree);
5422 spin_unlock(&root->inode_lock);
5423 }
5424
5425 static void inode_tree_del(struct inode *inode)
5426 {
5427 struct btrfs_root *root = BTRFS_I(inode)->root;
5428 int empty = 0;
5429
5430 spin_lock(&root->inode_lock);
5431 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5432 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5433 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5434 empty = RB_EMPTY_ROOT(&root->inode_tree);
5435 }
5436 spin_unlock(&root->inode_lock);
5437
5438 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5439 synchronize_srcu(&root->fs_info->subvol_srcu);
5440 spin_lock(&root->inode_lock);
5441 empty = RB_EMPTY_ROOT(&root->inode_tree);
5442 spin_unlock(&root->inode_lock);
5443 if (empty)
5444 btrfs_add_dead_root(root);
5445 }
5446 }
5447
5448 void btrfs_invalidate_inodes(struct btrfs_root *root)
5449 {
5450 struct rb_node *node;
5451 struct rb_node *prev;
5452 struct btrfs_inode *entry;
5453 struct inode *inode;
5454 u64 objectid = 0;
5455
5456 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5457 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5458
5459 spin_lock(&root->inode_lock);
5460 again:
5461 node = root->inode_tree.rb_node;
5462 prev = NULL;
5463 while (node) {
5464 prev = node;
5465 entry = rb_entry(node, struct btrfs_inode, rb_node);
5466
5467 if (objectid < btrfs_ino(&entry->vfs_inode))
5468 node = node->rb_left;
5469 else if (objectid > btrfs_ino(&entry->vfs_inode))
5470 node = node->rb_right;
5471 else
5472 break;
5473 }
5474 if (!node) {
5475 while (prev) {
5476 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5477 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5478 node = prev;
5479 break;
5480 }
5481 prev = rb_next(prev);
5482 }
5483 }
5484 while (node) {
5485 entry = rb_entry(node, struct btrfs_inode, rb_node);
5486 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5487 inode = igrab(&entry->vfs_inode);
5488 if (inode) {
5489 spin_unlock(&root->inode_lock);
5490 if (atomic_read(&inode->i_count) > 1)
5491 d_prune_aliases(inode);
5492 /*
5493 * btrfs_drop_inode will have it removed from
5494 * the inode cache when its usage count
5495 * hits zero.
5496 */
5497 iput(inode);
5498 cond_resched();
5499 spin_lock(&root->inode_lock);
5500 goto again;
5501 }
5502
5503 if (cond_resched_lock(&root->inode_lock))
5504 goto again;
5505
5506 node = rb_next(node);
5507 }
5508 spin_unlock(&root->inode_lock);
5509 }
5510
5511 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5512 {
5513 struct btrfs_iget_args *args = p;
5514 inode->i_ino = args->location->objectid;
5515 memcpy(&BTRFS_I(inode)->location, args->location,
5516 sizeof(*args->location));
5517 BTRFS_I(inode)->root = args->root;
5518 return 0;
5519 }
5520
5521 static int btrfs_find_actor(struct inode *inode, void *opaque)
5522 {
5523 struct btrfs_iget_args *args = opaque;
5524 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5525 args->root == BTRFS_I(inode)->root;
5526 }
5527
5528 static struct inode *btrfs_iget_locked(struct super_block *s,
5529 struct btrfs_key *location,
5530 struct btrfs_root *root)
5531 {
5532 struct inode *inode;
5533 struct btrfs_iget_args args;
5534 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5535
5536 args.location = location;
5537 args.root = root;
5538
5539 inode = iget5_locked(s, hashval, btrfs_find_actor,
5540 btrfs_init_locked_inode,
5541 (void *)&args);
5542 return inode;
5543 }
5544
5545 /* Get an inode object given its location and corresponding root.
5546 * Returns in *is_new if the inode was read from disk
5547 */
5548 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5549 struct btrfs_root *root, int *new)
5550 {
5551 struct inode *inode;
5552
5553 inode = btrfs_iget_locked(s, location, root);
5554 if (!inode)
5555 return ERR_PTR(-ENOMEM);
5556
5557 if (inode->i_state & I_NEW) {
5558 btrfs_read_locked_inode(inode);
5559 if (!is_bad_inode(inode)) {
5560 inode_tree_add(inode);
5561 unlock_new_inode(inode);
5562 if (new)
5563 *new = 1;
5564 } else {
5565 unlock_new_inode(inode);
5566 iput(inode);
5567 inode = ERR_PTR(-ESTALE);
5568 }
5569 }
5570
5571 return inode;
5572 }
5573
5574 static struct inode *new_simple_dir(struct super_block *s,
5575 struct btrfs_key *key,
5576 struct btrfs_root *root)
5577 {
5578 struct inode *inode = new_inode(s);
5579
5580 if (!inode)
5581 return ERR_PTR(-ENOMEM);
5582
5583 BTRFS_I(inode)->root = root;
5584 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5585 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5586
5587 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5588 inode->i_op = &btrfs_dir_ro_inode_operations;
5589 inode->i_fop = &simple_dir_operations;
5590 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5591 inode->i_mtime = CURRENT_TIME;
5592 inode->i_atime = inode->i_mtime;
5593 inode->i_ctime = inode->i_mtime;
5594 BTRFS_I(inode)->i_otime = inode->i_mtime;
5595
5596 return inode;
5597 }
5598
5599 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5600 {
5601 struct inode *inode;
5602 struct btrfs_root *root = BTRFS_I(dir)->root;
5603 struct btrfs_root *sub_root = root;
5604 struct btrfs_key location;
5605 int index;
5606 int ret = 0;
5607
5608 if (dentry->d_name.len > BTRFS_NAME_LEN)
5609 return ERR_PTR(-ENAMETOOLONG);
5610
5611 ret = btrfs_inode_by_name(dir, dentry, &location);
5612 if (ret < 0)
5613 return ERR_PTR(ret);
5614
5615 if (location.objectid == 0)
5616 return ERR_PTR(-ENOENT);
5617
5618 if (location.type == BTRFS_INODE_ITEM_KEY) {
5619 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5620 return inode;
5621 }
5622
5623 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5624
5625 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5626 ret = fixup_tree_root_location(root, dir, dentry,
5627 &location, &sub_root);
5628 if (ret < 0) {
5629 if (ret != -ENOENT)
5630 inode = ERR_PTR(ret);
5631 else
5632 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5633 } else {
5634 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5635 }
5636 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5637
5638 if (!IS_ERR(inode) && root != sub_root) {
5639 down_read(&root->fs_info->cleanup_work_sem);
5640 if (!(inode->i_sb->s_flags & MS_RDONLY))
5641 ret = btrfs_orphan_cleanup(sub_root);
5642 up_read(&root->fs_info->cleanup_work_sem);
5643 if (ret) {
5644 iput(inode);
5645 inode = ERR_PTR(ret);
5646 }
5647 }
5648
5649 return inode;
5650 }
5651
5652 static int btrfs_dentry_delete(const struct dentry *dentry)
5653 {
5654 struct btrfs_root *root;
5655 struct inode *inode = d_inode(dentry);
5656
5657 if (!inode && !IS_ROOT(dentry))
5658 inode = d_inode(dentry->d_parent);
5659
5660 if (inode) {
5661 root = BTRFS_I(inode)->root;
5662 if (btrfs_root_refs(&root->root_item) == 0)
5663 return 1;
5664
5665 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5666 return 1;
5667 }
5668 return 0;
5669 }
5670
5671 static void btrfs_dentry_release(struct dentry *dentry)
5672 {
5673 kfree(dentry->d_fsdata);
5674 }
5675
5676 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5677 unsigned int flags)
5678 {
5679 struct inode *inode;
5680
5681 inode = btrfs_lookup_dentry(dir, dentry);
5682 if (IS_ERR(inode)) {
5683 if (PTR_ERR(inode) == -ENOENT)
5684 inode = NULL;
5685 else
5686 return ERR_CAST(inode);
5687 }
5688
5689 return d_splice_alias(inode, dentry);
5690 }
5691
5692 unsigned char btrfs_filetype_table[] = {
5693 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5694 };
5695
5696 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5697 {
5698 struct inode *inode = file_inode(file);
5699 struct btrfs_root *root = BTRFS_I(inode)->root;
5700 struct btrfs_item *item;
5701 struct btrfs_dir_item *di;
5702 struct btrfs_key key;
5703 struct btrfs_key found_key;
5704 struct btrfs_path *path;
5705 struct list_head ins_list;
5706 struct list_head del_list;
5707 int ret;
5708 struct extent_buffer *leaf;
5709 int slot;
5710 unsigned char d_type;
5711 int over = 0;
5712 u32 di_cur;
5713 u32 di_total;
5714 u32 di_len;
5715 int key_type = BTRFS_DIR_INDEX_KEY;
5716 char tmp_name[32];
5717 char *name_ptr;
5718 int name_len;
5719 int is_curr = 0; /* ctx->pos points to the current index? */
5720
5721 /* FIXME, use a real flag for deciding about the key type */
5722 if (root->fs_info->tree_root == root)
5723 key_type = BTRFS_DIR_ITEM_KEY;
5724
5725 if (!dir_emit_dots(file, ctx))
5726 return 0;
5727
5728 path = btrfs_alloc_path();
5729 if (!path)
5730 return -ENOMEM;
5731
5732 path->reada = READA_FORWARD;
5733
5734 if (key_type == BTRFS_DIR_INDEX_KEY) {
5735 INIT_LIST_HEAD(&ins_list);
5736 INIT_LIST_HEAD(&del_list);
5737 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5738 }
5739
5740 key.type = key_type;
5741 key.offset = ctx->pos;
5742 key.objectid = btrfs_ino(inode);
5743
5744 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5745 if (ret < 0)
5746 goto err;
5747
5748 while (1) {
5749 leaf = path->nodes[0];
5750 slot = path->slots[0];
5751 if (slot >= btrfs_header_nritems(leaf)) {
5752 ret = btrfs_next_leaf(root, path);
5753 if (ret < 0)
5754 goto err;
5755 else if (ret > 0)
5756 break;
5757 continue;
5758 }
5759
5760 item = btrfs_item_nr(slot);
5761 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5762
5763 if (found_key.objectid != key.objectid)
5764 break;
5765 if (found_key.type != key_type)
5766 break;
5767 if (found_key.offset < ctx->pos)
5768 goto next;
5769 if (key_type == BTRFS_DIR_INDEX_KEY &&
5770 btrfs_should_delete_dir_index(&del_list,
5771 found_key.offset))
5772 goto next;
5773
5774 ctx->pos = found_key.offset;
5775 is_curr = 1;
5776
5777 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5778 di_cur = 0;
5779 di_total = btrfs_item_size(leaf, item);
5780
5781 while (di_cur < di_total) {
5782 struct btrfs_key location;
5783
5784 if (verify_dir_item(root, leaf, di))
5785 break;
5786
5787 name_len = btrfs_dir_name_len(leaf, di);
5788 if (name_len <= sizeof(tmp_name)) {
5789 name_ptr = tmp_name;
5790 } else {
5791 name_ptr = kmalloc(name_len, GFP_NOFS);
5792 if (!name_ptr) {
5793 ret = -ENOMEM;
5794 goto err;
5795 }
5796 }
5797 read_extent_buffer(leaf, name_ptr,
5798 (unsigned long)(di + 1), name_len);
5799
5800 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5801 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5802
5803
5804 /* is this a reference to our own snapshot? If so
5805 * skip it.
5806 *
5807 * In contrast to old kernels, we insert the snapshot's
5808 * dir item and dir index after it has been created, so
5809 * we won't find a reference to our own snapshot. We
5810 * still keep the following code for backward
5811 * compatibility.
5812 */
5813 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5814 location.objectid == root->root_key.objectid) {
5815 over = 0;
5816 goto skip;
5817 }
5818 over = !dir_emit(ctx, name_ptr, name_len,
5819 location.objectid, d_type);
5820
5821 skip:
5822 if (name_ptr != tmp_name)
5823 kfree(name_ptr);
5824
5825 if (over)
5826 goto nopos;
5827 di_len = btrfs_dir_name_len(leaf, di) +
5828 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5829 di_cur += di_len;
5830 di = (struct btrfs_dir_item *)((char *)di + di_len);
5831 }
5832 next:
5833 path->slots[0]++;
5834 }
5835
5836 if (key_type == BTRFS_DIR_INDEX_KEY) {
5837 if (is_curr)
5838 ctx->pos++;
5839 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5840 if (ret)
5841 goto nopos;
5842 }
5843
5844 /* Reached end of directory/root. Bump pos past the last item. */
5845 ctx->pos++;
5846
5847 /*
5848 * Stop new entries from being returned after we return the last
5849 * entry.
5850 *
5851 * New directory entries are assigned a strictly increasing
5852 * offset. This means that new entries created during readdir
5853 * are *guaranteed* to be seen in the future by that readdir.
5854 * This has broken buggy programs which operate on names as
5855 * they're returned by readdir. Until we re-use freed offsets
5856 * we have this hack to stop new entries from being returned
5857 * under the assumption that they'll never reach this huge
5858 * offset.
5859 *
5860 * This is being careful not to overflow 32bit loff_t unless the
5861 * last entry requires it because doing so has broken 32bit apps
5862 * in the past.
5863 */
5864 if (key_type == BTRFS_DIR_INDEX_KEY) {
5865 if (ctx->pos >= INT_MAX)
5866 ctx->pos = LLONG_MAX;
5867 else
5868 ctx->pos = INT_MAX;
5869 }
5870 nopos:
5871 ret = 0;
5872 err:
5873 if (key_type == BTRFS_DIR_INDEX_KEY)
5874 btrfs_put_delayed_items(&ins_list, &del_list);
5875 btrfs_free_path(path);
5876 return ret;
5877 }
5878
5879 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5880 {
5881 struct btrfs_root *root = BTRFS_I(inode)->root;
5882 struct btrfs_trans_handle *trans;
5883 int ret = 0;
5884 bool nolock = false;
5885
5886 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5887 return 0;
5888
5889 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5890 nolock = true;
5891
5892 if (wbc->sync_mode == WB_SYNC_ALL) {
5893 if (nolock)
5894 trans = btrfs_join_transaction_nolock(root);
5895 else
5896 trans = btrfs_join_transaction(root);
5897 if (IS_ERR(trans))
5898 return PTR_ERR(trans);
5899 ret = btrfs_commit_transaction(trans, root);
5900 }
5901 return ret;
5902 }
5903
5904 /*
5905 * This is somewhat expensive, updating the tree every time the
5906 * inode changes. But, it is most likely to find the inode in cache.
5907 * FIXME, needs more benchmarking...there are no reasons other than performance
5908 * to keep or drop this code.
5909 */
5910 static int btrfs_dirty_inode(struct inode *inode)
5911 {
5912 struct btrfs_root *root = BTRFS_I(inode)->root;
5913 struct btrfs_trans_handle *trans;
5914 int ret;
5915
5916 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5917 return 0;
5918
5919 trans = btrfs_join_transaction(root);
5920 if (IS_ERR(trans))
5921 return PTR_ERR(trans);
5922
5923 ret = btrfs_update_inode(trans, root, inode);
5924 if (ret && ret == -ENOSPC) {
5925 /* whoops, lets try again with the full transaction */
5926 btrfs_end_transaction(trans, root);
5927 trans = btrfs_start_transaction(root, 1);
5928 if (IS_ERR(trans))
5929 return PTR_ERR(trans);
5930
5931 ret = btrfs_update_inode(trans, root, inode);
5932 }
5933 btrfs_end_transaction(trans, root);
5934 if (BTRFS_I(inode)->delayed_node)
5935 btrfs_balance_delayed_items(root);
5936
5937 return ret;
5938 }
5939
5940 /*
5941 * This is a copy of file_update_time. We need this so we can return error on
5942 * ENOSPC for updating the inode in the case of file write and mmap writes.
5943 */
5944 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5945 int flags)
5946 {
5947 struct btrfs_root *root = BTRFS_I(inode)->root;
5948
5949 if (btrfs_root_readonly(root))
5950 return -EROFS;
5951
5952 if (flags & S_VERSION)
5953 inode_inc_iversion(inode);
5954 if (flags & S_CTIME)
5955 inode->i_ctime = *now;
5956 if (flags & S_MTIME)
5957 inode->i_mtime = *now;
5958 if (flags & S_ATIME)
5959 inode->i_atime = *now;
5960 return btrfs_dirty_inode(inode);
5961 }
5962
5963 /*
5964 * find the highest existing sequence number in a directory
5965 * and then set the in-memory index_cnt variable to reflect
5966 * free sequence numbers
5967 */
5968 static int btrfs_set_inode_index_count(struct inode *inode)
5969 {
5970 struct btrfs_root *root = BTRFS_I(inode)->root;
5971 struct btrfs_key key, found_key;
5972 struct btrfs_path *path;
5973 struct extent_buffer *leaf;
5974 int ret;
5975
5976 key.objectid = btrfs_ino(inode);
5977 key.type = BTRFS_DIR_INDEX_KEY;
5978 key.offset = (u64)-1;
5979
5980 path = btrfs_alloc_path();
5981 if (!path)
5982 return -ENOMEM;
5983
5984 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5985 if (ret < 0)
5986 goto out;
5987 /* FIXME: we should be able to handle this */
5988 if (ret == 0)
5989 goto out;
5990 ret = 0;
5991
5992 /*
5993 * MAGIC NUMBER EXPLANATION:
5994 * since we search a directory based on f_pos we have to start at 2
5995 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5996 * else has to start at 2
5997 */
5998 if (path->slots[0] == 0) {
5999 BTRFS_I(inode)->index_cnt = 2;
6000 goto out;
6001 }
6002
6003 path->slots[0]--;
6004
6005 leaf = path->nodes[0];
6006 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6007
6008 if (found_key.objectid != btrfs_ino(inode) ||
6009 found_key.type != BTRFS_DIR_INDEX_KEY) {
6010 BTRFS_I(inode)->index_cnt = 2;
6011 goto out;
6012 }
6013
6014 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6015 out:
6016 btrfs_free_path(path);
6017 return ret;
6018 }
6019
6020 /*
6021 * helper to find a free sequence number in a given directory. This current
6022 * code is very simple, later versions will do smarter things in the btree
6023 */
6024 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6025 {
6026 int ret = 0;
6027
6028 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6029 ret = btrfs_inode_delayed_dir_index_count(dir);
6030 if (ret) {
6031 ret = btrfs_set_inode_index_count(dir);
6032 if (ret)
6033 return ret;
6034 }
6035 }
6036
6037 *index = BTRFS_I(dir)->index_cnt;
6038 BTRFS_I(dir)->index_cnt++;
6039
6040 return ret;
6041 }
6042
6043 static int btrfs_insert_inode_locked(struct inode *inode)
6044 {
6045 struct btrfs_iget_args args;
6046 args.location = &BTRFS_I(inode)->location;
6047 args.root = BTRFS_I(inode)->root;
6048
6049 return insert_inode_locked4(inode,
6050 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6051 btrfs_find_actor, &args);
6052 }
6053
6054 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6055 struct btrfs_root *root,
6056 struct inode *dir,
6057 const char *name, int name_len,
6058 u64 ref_objectid, u64 objectid,
6059 umode_t mode, u64 *index)
6060 {
6061 struct inode *inode;
6062 struct btrfs_inode_item *inode_item;
6063 struct btrfs_key *location;
6064 struct btrfs_path *path;
6065 struct btrfs_inode_ref *ref;
6066 struct btrfs_key key[2];
6067 u32 sizes[2];
6068 int nitems = name ? 2 : 1;
6069 unsigned long ptr;
6070 int ret;
6071
6072 path = btrfs_alloc_path();
6073 if (!path)
6074 return ERR_PTR(-ENOMEM);
6075
6076 inode = new_inode(root->fs_info->sb);
6077 if (!inode) {
6078 btrfs_free_path(path);
6079 return ERR_PTR(-ENOMEM);
6080 }
6081
6082 /*
6083 * O_TMPFILE, set link count to 0, so that after this point,
6084 * we fill in an inode item with the correct link count.
6085 */
6086 if (!name)
6087 set_nlink(inode, 0);
6088
6089 /*
6090 * we have to initialize this early, so we can reclaim the inode
6091 * number if we fail afterwards in this function.
6092 */
6093 inode->i_ino = objectid;
6094
6095 if (dir && name) {
6096 trace_btrfs_inode_request(dir);
6097
6098 ret = btrfs_set_inode_index(dir, index);
6099 if (ret) {
6100 btrfs_free_path(path);
6101 iput(inode);
6102 return ERR_PTR(ret);
6103 }
6104 } else if (dir) {
6105 *index = 0;
6106 }
6107 /*
6108 * index_cnt is ignored for everything but a dir,
6109 * btrfs_get_inode_index_count has an explanation for the magic
6110 * number
6111 */
6112 BTRFS_I(inode)->index_cnt = 2;
6113 BTRFS_I(inode)->dir_index = *index;
6114 BTRFS_I(inode)->root = root;
6115 BTRFS_I(inode)->generation = trans->transid;
6116 inode->i_generation = BTRFS_I(inode)->generation;
6117
6118 /*
6119 * We could have gotten an inode number from somebody who was fsynced
6120 * and then removed in this same transaction, so let's just set full
6121 * sync since it will be a full sync anyway and this will blow away the
6122 * old info in the log.
6123 */
6124 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6125
6126 key[0].objectid = objectid;
6127 key[0].type = BTRFS_INODE_ITEM_KEY;
6128 key[0].offset = 0;
6129
6130 sizes[0] = sizeof(struct btrfs_inode_item);
6131
6132 if (name) {
6133 /*
6134 * Start new inodes with an inode_ref. This is slightly more
6135 * efficient for small numbers of hard links since they will
6136 * be packed into one item. Extended refs will kick in if we
6137 * add more hard links than can fit in the ref item.
6138 */
6139 key[1].objectid = objectid;
6140 key[1].type = BTRFS_INODE_REF_KEY;
6141 key[1].offset = ref_objectid;
6142
6143 sizes[1] = name_len + sizeof(*ref);
6144 }
6145
6146 location = &BTRFS_I(inode)->location;
6147 location->objectid = objectid;
6148 location->offset = 0;
6149 location->type = BTRFS_INODE_ITEM_KEY;
6150
6151 ret = btrfs_insert_inode_locked(inode);
6152 if (ret < 0)
6153 goto fail;
6154
6155 path->leave_spinning = 1;
6156 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6157 if (ret != 0)
6158 goto fail_unlock;
6159
6160 inode_init_owner(inode, dir, mode);
6161 inode_set_bytes(inode, 0);
6162
6163 inode->i_mtime = CURRENT_TIME;
6164 inode->i_atime = inode->i_mtime;
6165 inode->i_ctime = inode->i_mtime;
6166 BTRFS_I(inode)->i_otime = inode->i_mtime;
6167
6168 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6169 struct btrfs_inode_item);
6170 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6171 sizeof(*inode_item));
6172 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6173
6174 if (name) {
6175 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6176 struct btrfs_inode_ref);
6177 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6178 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6179 ptr = (unsigned long)(ref + 1);
6180 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6181 }
6182
6183 btrfs_mark_buffer_dirty(path->nodes[0]);
6184 btrfs_free_path(path);
6185
6186 btrfs_inherit_iflags(inode, dir);
6187
6188 if (S_ISREG(mode)) {
6189 if (btrfs_test_opt(root, NODATASUM))
6190 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6191 if (btrfs_test_opt(root, NODATACOW))
6192 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6193 BTRFS_INODE_NODATASUM;
6194 }
6195
6196 inode_tree_add(inode);
6197
6198 trace_btrfs_inode_new(inode);
6199 btrfs_set_inode_last_trans(trans, inode);
6200
6201 btrfs_update_root_times(trans, root);
6202
6203 ret = btrfs_inode_inherit_props(trans, inode, dir);
6204 if (ret)
6205 btrfs_err(root->fs_info,
6206 "error inheriting props for ino %llu (root %llu): %d",
6207 btrfs_ino(inode), root->root_key.objectid, ret);
6208
6209 return inode;
6210
6211 fail_unlock:
6212 unlock_new_inode(inode);
6213 fail:
6214 if (dir && name)
6215 BTRFS_I(dir)->index_cnt--;
6216 btrfs_free_path(path);
6217 iput(inode);
6218 return ERR_PTR(ret);
6219 }
6220
6221 static inline u8 btrfs_inode_type(struct inode *inode)
6222 {
6223 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6224 }
6225
6226 /*
6227 * utility function to add 'inode' into 'parent_inode' with
6228 * a give name and a given sequence number.
6229 * if 'add_backref' is true, also insert a backref from the
6230 * inode to the parent directory.
6231 */
6232 int btrfs_add_link(struct btrfs_trans_handle *trans,
6233 struct inode *parent_inode, struct inode *inode,
6234 const char *name, int name_len, int add_backref, u64 index)
6235 {
6236 int ret = 0;
6237 struct btrfs_key key;
6238 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6239 u64 ino = btrfs_ino(inode);
6240 u64 parent_ino = btrfs_ino(parent_inode);
6241
6242 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6243 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6244 } else {
6245 key.objectid = ino;
6246 key.type = BTRFS_INODE_ITEM_KEY;
6247 key.offset = 0;
6248 }
6249
6250 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6251 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6252 key.objectid, root->root_key.objectid,
6253 parent_ino, index, name, name_len);
6254 } else if (add_backref) {
6255 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6256 parent_ino, index);
6257 }
6258
6259 /* Nothing to clean up yet */
6260 if (ret)
6261 return ret;
6262
6263 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6264 parent_inode, &key,
6265 btrfs_inode_type(inode), index);
6266 if (ret == -EEXIST || ret == -EOVERFLOW)
6267 goto fail_dir_item;
6268 else if (ret) {
6269 btrfs_abort_transaction(trans, root, ret);
6270 return ret;
6271 }
6272
6273 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6274 name_len * 2);
6275 inode_inc_iversion(parent_inode);
6276 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6277 ret = btrfs_update_inode(trans, root, parent_inode);
6278 if (ret)
6279 btrfs_abort_transaction(trans, root, ret);
6280 return ret;
6281
6282 fail_dir_item:
6283 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6284 u64 local_index;
6285 int err;
6286 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6287 key.objectid, root->root_key.objectid,
6288 parent_ino, &local_index, name, name_len);
6289
6290 } else if (add_backref) {
6291 u64 local_index;
6292 int err;
6293
6294 err = btrfs_del_inode_ref(trans, root, name, name_len,
6295 ino, parent_ino, &local_index);
6296 }
6297 return ret;
6298 }
6299
6300 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6301 struct inode *dir, struct dentry *dentry,
6302 struct inode *inode, int backref, u64 index)
6303 {
6304 int err = btrfs_add_link(trans, dir, inode,
6305 dentry->d_name.name, dentry->d_name.len,
6306 backref, index);
6307 if (err > 0)
6308 err = -EEXIST;
6309 return err;
6310 }
6311
6312 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6313 umode_t mode, dev_t rdev)
6314 {
6315 struct btrfs_trans_handle *trans;
6316 struct btrfs_root *root = BTRFS_I(dir)->root;
6317 struct inode *inode = NULL;
6318 int err;
6319 int drop_inode = 0;
6320 u64 objectid;
6321 u64 index = 0;
6322
6323 /*
6324 * 2 for inode item and ref
6325 * 2 for dir items
6326 * 1 for xattr if selinux is on
6327 */
6328 trans = btrfs_start_transaction(root, 5);
6329 if (IS_ERR(trans))
6330 return PTR_ERR(trans);
6331
6332 err = btrfs_find_free_ino(root, &objectid);
6333 if (err)
6334 goto out_unlock;
6335
6336 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6337 dentry->d_name.len, btrfs_ino(dir), objectid,
6338 mode, &index);
6339 if (IS_ERR(inode)) {
6340 err = PTR_ERR(inode);
6341 goto out_unlock;
6342 }
6343
6344 /*
6345 * If the active LSM wants to access the inode during
6346 * d_instantiate it needs these. Smack checks to see
6347 * if the filesystem supports xattrs by looking at the
6348 * ops vector.
6349 */
6350 inode->i_op = &btrfs_special_inode_operations;
6351 init_special_inode(inode, inode->i_mode, rdev);
6352
6353 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6354 if (err)
6355 goto out_unlock_inode;
6356
6357 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6358 if (err) {
6359 goto out_unlock_inode;
6360 } else {
6361 btrfs_update_inode(trans, root, inode);
6362 unlock_new_inode(inode);
6363 d_instantiate(dentry, inode);
6364 }
6365
6366 out_unlock:
6367 btrfs_end_transaction(trans, root);
6368 btrfs_balance_delayed_items(root);
6369 btrfs_btree_balance_dirty(root);
6370 if (drop_inode) {
6371 inode_dec_link_count(inode);
6372 iput(inode);
6373 }
6374 return err;
6375
6376 out_unlock_inode:
6377 drop_inode = 1;
6378 unlock_new_inode(inode);
6379 goto out_unlock;
6380
6381 }
6382
6383 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6384 umode_t mode, bool excl)
6385 {
6386 struct btrfs_trans_handle *trans;
6387 struct btrfs_root *root = BTRFS_I(dir)->root;
6388 struct inode *inode = NULL;
6389 int drop_inode_on_err = 0;
6390 int err;
6391 u64 objectid;
6392 u64 index = 0;
6393
6394 /*
6395 * 2 for inode item and ref
6396 * 2 for dir items
6397 * 1 for xattr if selinux is on
6398 */
6399 trans = btrfs_start_transaction(root, 5);
6400 if (IS_ERR(trans))
6401 return PTR_ERR(trans);
6402
6403 err = btrfs_find_free_ino(root, &objectid);
6404 if (err)
6405 goto out_unlock;
6406
6407 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6408 dentry->d_name.len, btrfs_ino(dir), objectid,
6409 mode, &index);
6410 if (IS_ERR(inode)) {
6411 err = PTR_ERR(inode);
6412 goto out_unlock;
6413 }
6414 drop_inode_on_err = 1;
6415 /*
6416 * If the active LSM wants to access the inode during
6417 * d_instantiate it needs these. Smack checks to see
6418 * if the filesystem supports xattrs by looking at the
6419 * ops vector.
6420 */
6421 inode->i_fop = &btrfs_file_operations;
6422 inode->i_op = &btrfs_file_inode_operations;
6423 inode->i_mapping->a_ops = &btrfs_aops;
6424
6425 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6426 if (err)
6427 goto out_unlock_inode;
6428
6429 err = btrfs_update_inode(trans, root, inode);
6430 if (err)
6431 goto out_unlock_inode;
6432
6433 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6434 if (err)
6435 goto out_unlock_inode;
6436
6437 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6438 unlock_new_inode(inode);
6439 d_instantiate(dentry, inode);
6440
6441 out_unlock:
6442 btrfs_end_transaction(trans, root);
6443 if (err && drop_inode_on_err) {
6444 inode_dec_link_count(inode);
6445 iput(inode);
6446 }
6447 btrfs_balance_delayed_items(root);
6448 btrfs_btree_balance_dirty(root);
6449 return err;
6450
6451 out_unlock_inode:
6452 unlock_new_inode(inode);
6453 goto out_unlock;
6454
6455 }
6456
6457 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6458 struct dentry *dentry)
6459 {
6460 struct btrfs_trans_handle *trans = NULL;
6461 struct btrfs_root *root = BTRFS_I(dir)->root;
6462 struct inode *inode = d_inode(old_dentry);
6463 u64 index;
6464 int err;
6465 int drop_inode = 0;
6466
6467 /* do not allow sys_link's with other subvols of the same device */
6468 if (root->objectid != BTRFS_I(inode)->root->objectid)
6469 return -EXDEV;
6470
6471 if (inode->i_nlink >= BTRFS_LINK_MAX)
6472 return -EMLINK;
6473
6474 err = btrfs_set_inode_index(dir, &index);
6475 if (err)
6476 goto fail;
6477
6478 /*
6479 * 2 items for inode and inode ref
6480 * 2 items for dir items
6481 * 1 item for parent inode
6482 */
6483 trans = btrfs_start_transaction(root, 5);
6484 if (IS_ERR(trans)) {
6485 err = PTR_ERR(trans);
6486 trans = NULL;
6487 goto fail;
6488 }
6489
6490 /* There are several dir indexes for this inode, clear the cache. */
6491 BTRFS_I(inode)->dir_index = 0ULL;
6492 inc_nlink(inode);
6493 inode_inc_iversion(inode);
6494 inode->i_ctime = CURRENT_TIME;
6495 ihold(inode);
6496 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6497
6498 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6499
6500 if (err) {
6501 drop_inode = 1;
6502 } else {
6503 struct dentry *parent = dentry->d_parent;
6504 err = btrfs_update_inode(trans, root, inode);
6505 if (err)
6506 goto fail;
6507 if (inode->i_nlink == 1) {
6508 /*
6509 * If new hard link count is 1, it's a file created
6510 * with open(2) O_TMPFILE flag.
6511 */
6512 err = btrfs_orphan_del(trans, inode);
6513 if (err)
6514 goto fail;
6515 }
6516 d_instantiate(dentry, inode);
6517 btrfs_log_new_name(trans, inode, NULL, parent);
6518 }
6519
6520 btrfs_balance_delayed_items(root);
6521 fail:
6522 if (trans)
6523 btrfs_end_transaction(trans, root);
6524 if (drop_inode) {
6525 inode_dec_link_count(inode);
6526 iput(inode);
6527 }
6528 btrfs_btree_balance_dirty(root);
6529 return err;
6530 }
6531
6532 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6533 {
6534 struct inode *inode = NULL;
6535 struct btrfs_trans_handle *trans;
6536 struct btrfs_root *root = BTRFS_I(dir)->root;
6537 int err = 0;
6538 int drop_on_err = 0;
6539 u64 objectid = 0;
6540 u64 index = 0;
6541
6542 /*
6543 * 2 items for inode and ref
6544 * 2 items for dir items
6545 * 1 for xattr if selinux is on
6546 */
6547 trans = btrfs_start_transaction(root, 5);
6548 if (IS_ERR(trans))
6549 return PTR_ERR(trans);
6550
6551 err = btrfs_find_free_ino(root, &objectid);
6552 if (err)
6553 goto out_fail;
6554
6555 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6556 dentry->d_name.len, btrfs_ino(dir), objectid,
6557 S_IFDIR | mode, &index);
6558 if (IS_ERR(inode)) {
6559 err = PTR_ERR(inode);
6560 goto out_fail;
6561 }
6562
6563 drop_on_err = 1;
6564 /* these must be set before we unlock the inode */
6565 inode->i_op = &btrfs_dir_inode_operations;
6566 inode->i_fop = &btrfs_dir_file_operations;
6567
6568 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6569 if (err)
6570 goto out_fail_inode;
6571
6572 btrfs_i_size_write(inode, 0);
6573 err = btrfs_update_inode(trans, root, inode);
6574 if (err)
6575 goto out_fail_inode;
6576
6577 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6578 dentry->d_name.len, 0, index);
6579 if (err)
6580 goto out_fail_inode;
6581
6582 d_instantiate(dentry, inode);
6583 /*
6584 * mkdir is special. We're unlocking after we call d_instantiate
6585 * to avoid a race with nfsd calling d_instantiate.
6586 */
6587 unlock_new_inode(inode);
6588 drop_on_err = 0;
6589
6590 out_fail:
6591 btrfs_end_transaction(trans, root);
6592 if (drop_on_err) {
6593 inode_dec_link_count(inode);
6594 iput(inode);
6595 }
6596 btrfs_balance_delayed_items(root);
6597 btrfs_btree_balance_dirty(root);
6598 return err;
6599
6600 out_fail_inode:
6601 unlock_new_inode(inode);
6602 goto out_fail;
6603 }
6604
6605 /* Find next extent map of a given extent map, caller needs to ensure locks */
6606 static struct extent_map *next_extent_map(struct extent_map *em)
6607 {
6608 struct rb_node *next;
6609
6610 next = rb_next(&em->rb_node);
6611 if (!next)
6612 return NULL;
6613 return container_of(next, struct extent_map, rb_node);
6614 }
6615
6616 static struct extent_map *prev_extent_map(struct extent_map *em)
6617 {
6618 struct rb_node *prev;
6619
6620 prev = rb_prev(&em->rb_node);
6621 if (!prev)
6622 return NULL;
6623 return container_of(prev, struct extent_map, rb_node);
6624 }
6625
6626 /* helper for btfs_get_extent. Given an existing extent in the tree,
6627 * the existing extent is the nearest extent to map_start,
6628 * and an extent that you want to insert, deal with overlap and insert
6629 * the best fitted new extent into the tree.
6630 */
6631 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6632 struct extent_map *existing,
6633 struct extent_map *em,
6634 u64 map_start)
6635 {
6636 struct extent_map *prev;
6637 struct extent_map *next;
6638 u64 start;
6639 u64 end;
6640 u64 start_diff;
6641
6642 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6643
6644 if (existing->start > map_start) {
6645 next = existing;
6646 prev = prev_extent_map(next);
6647 } else {
6648 prev = existing;
6649 next = next_extent_map(prev);
6650 }
6651
6652 start = prev ? extent_map_end(prev) : em->start;
6653 start = max_t(u64, start, em->start);
6654 end = next ? next->start : extent_map_end(em);
6655 end = min_t(u64, end, extent_map_end(em));
6656 start_diff = start - em->start;
6657 em->start = start;
6658 em->len = end - start;
6659 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6660 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6661 em->block_start += start_diff;
6662 em->block_len -= start_diff;
6663 }
6664 return add_extent_mapping(em_tree, em, 0);
6665 }
6666
6667 static noinline int uncompress_inline(struct btrfs_path *path,
6668 struct page *page,
6669 size_t pg_offset, u64 extent_offset,
6670 struct btrfs_file_extent_item *item)
6671 {
6672 int ret;
6673 struct extent_buffer *leaf = path->nodes[0];
6674 char *tmp;
6675 size_t max_size;
6676 unsigned long inline_size;
6677 unsigned long ptr;
6678 int compress_type;
6679
6680 WARN_ON(pg_offset != 0);
6681 compress_type = btrfs_file_extent_compression(leaf, item);
6682 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6683 inline_size = btrfs_file_extent_inline_item_len(leaf,
6684 btrfs_item_nr(path->slots[0]));
6685 tmp = kmalloc(inline_size, GFP_NOFS);
6686 if (!tmp)
6687 return -ENOMEM;
6688 ptr = btrfs_file_extent_inline_start(item);
6689
6690 read_extent_buffer(leaf, tmp, ptr, inline_size);
6691
6692 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6693 ret = btrfs_decompress(compress_type, tmp, page,
6694 extent_offset, inline_size, max_size);
6695 kfree(tmp);
6696 return ret;
6697 }
6698
6699 /*
6700 * a bit scary, this does extent mapping from logical file offset to the disk.
6701 * the ugly parts come from merging extents from the disk with the in-ram
6702 * representation. This gets more complex because of the data=ordered code,
6703 * where the in-ram extents might be locked pending data=ordered completion.
6704 *
6705 * This also copies inline extents directly into the page.
6706 */
6707
6708 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6709 size_t pg_offset, u64 start, u64 len,
6710 int create)
6711 {
6712 int ret;
6713 int err = 0;
6714 u64 extent_start = 0;
6715 u64 extent_end = 0;
6716 u64 objectid = btrfs_ino(inode);
6717 u32 found_type;
6718 struct btrfs_path *path = NULL;
6719 struct btrfs_root *root = BTRFS_I(inode)->root;
6720 struct btrfs_file_extent_item *item;
6721 struct extent_buffer *leaf;
6722 struct btrfs_key found_key;
6723 struct extent_map *em = NULL;
6724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6725 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6726 struct btrfs_trans_handle *trans = NULL;
6727 const bool new_inline = !page || create;
6728
6729 again:
6730 read_lock(&em_tree->lock);
6731 em = lookup_extent_mapping(em_tree, start, len);
6732 if (em)
6733 em->bdev = root->fs_info->fs_devices->latest_bdev;
6734 read_unlock(&em_tree->lock);
6735
6736 if (em) {
6737 if (em->start > start || em->start + em->len <= start)
6738 free_extent_map(em);
6739 else if (em->block_start == EXTENT_MAP_INLINE && page)
6740 free_extent_map(em);
6741 else
6742 goto out;
6743 }
6744 em = alloc_extent_map();
6745 if (!em) {
6746 err = -ENOMEM;
6747 goto out;
6748 }
6749 em->bdev = root->fs_info->fs_devices->latest_bdev;
6750 em->start = EXTENT_MAP_HOLE;
6751 em->orig_start = EXTENT_MAP_HOLE;
6752 em->len = (u64)-1;
6753 em->block_len = (u64)-1;
6754
6755 if (!path) {
6756 path = btrfs_alloc_path();
6757 if (!path) {
6758 err = -ENOMEM;
6759 goto out;
6760 }
6761 /*
6762 * Chances are we'll be called again, so go ahead and do
6763 * readahead
6764 */
6765 path->reada = READA_FORWARD;
6766 }
6767
6768 ret = btrfs_lookup_file_extent(trans, root, path,
6769 objectid, start, trans != NULL);
6770 if (ret < 0) {
6771 err = ret;
6772 goto out;
6773 }
6774
6775 if (ret != 0) {
6776 if (path->slots[0] == 0)
6777 goto not_found;
6778 path->slots[0]--;
6779 }
6780
6781 leaf = path->nodes[0];
6782 item = btrfs_item_ptr(leaf, path->slots[0],
6783 struct btrfs_file_extent_item);
6784 /* are we inside the extent that was found? */
6785 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6786 found_type = found_key.type;
6787 if (found_key.objectid != objectid ||
6788 found_type != BTRFS_EXTENT_DATA_KEY) {
6789 /*
6790 * If we backup past the first extent we want to move forward
6791 * and see if there is an extent in front of us, otherwise we'll
6792 * say there is a hole for our whole search range which can
6793 * cause problems.
6794 */
6795 extent_end = start;
6796 goto next;
6797 }
6798
6799 found_type = btrfs_file_extent_type(leaf, item);
6800 extent_start = found_key.offset;
6801 if (found_type == BTRFS_FILE_EXTENT_REG ||
6802 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6803 extent_end = extent_start +
6804 btrfs_file_extent_num_bytes(leaf, item);
6805 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6806 size_t size;
6807 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6808 extent_end = ALIGN(extent_start + size, root->sectorsize);
6809 }
6810 next:
6811 if (start >= extent_end) {
6812 path->slots[0]++;
6813 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6814 ret = btrfs_next_leaf(root, path);
6815 if (ret < 0) {
6816 err = ret;
6817 goto out;
6818 }
6819 if (ret > 0)
6820 goto not_found;
6821 leaf = path->nodes[0];
6822 }
6823 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6824 if (found_key.objectid != objectid ||
6825 found_key.type != BTRFS_EXTENT_DATA_KEY)
6826 goto not_found;
6827 if (start + len <= found_key.offset)
6828 goto not_found;
6829 if (start > found_key.offset)
6830 goto next;
6831 em->start = start;
6832 em->orig_start = start;
6833 em->len = found_key.offset - start;
6834 goto not_found_em;
6835 }
6836
6837 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6838
6839 if (found_type == BTRFS_FILE_EXTENT_REG ||
6840 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6841 goto insert;
6842 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6843 unsigned long ptr;
6844 char *map;
6845 size_t size;
6846 size_t extent_offset;
6847 size_t copy_size;
6848
6849 if (new_inline)
6850 goto out;
6851
6852 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6853 extent_offset = page_offset(page) + pg_offset - extent_start;
6854 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6855 size - extent_offset);
6856 em->start = extent_start + extent_offset;
6857 em->len = ALIGN(copy_size, root->sectorsize);
6858 em->orig_block_len = em->len;
6859 em->orig_start = em->start;
6860 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6861 if (create == 0 && !PageUptodate(page)) {
6862 if (btrfs_file_extent_compression(leaf, item) !=
6863 BTRFS_COMPRESS_NONE) {
6864 ret = uncompress_inline(path, page, pg_offset,
6865 extent_offset, item);
6866 if (ret) {
6867 err = ret;
6868 goto out;
6869 }
6870 } else {
6871 map = kmap(page);
6872 read_extent_buffer(leaf, map + pg_offset, ptr,
6873 copy_size);
6874 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6875 memset(map + pg_offset + copy_size, 0,
6876 PAGE_CACHE_SIZE - pg_offset -
6877 copy_size);
6878 }
6879 kunmap(page);
6880 }
6881 flush_dcache_page(page);
6882 } else if (create && PageUptodate(page)) {
6883 BUG();
6884 if (!trans) {
6885 kunmap(page);
6886 free_extent_map(em);
6887 em = NULL;
6888
6889 btrfs_release_path(path);
6890 trans = btrfs_join_transaction(root);
6891
6892 if (IS_ERR(trans))
6893 return ERR_CAST(trans);
6894 goto again;
6895 }
6896 map = kmap(page);
6897 write_extent_buffer(leaf, map + pg_offset, ptr,
6898 copy_size);
6899 kunmap(page);
6900 btrfs_mark_buffer_dirty(leaf);
6901 }
6902 set_extent_uptodate(io_tree, em->start,
6903 extent_map_end(em) - 1, NULL, GFP_NOFS);
6904 goto insert;
6905 }
6906 not_found:
6907 em->start = start;
6908 em->orig_start = start;
6909 em->len = len;
6910 not_found_em:
6911 em->block_start = EXTENT_MAP_HOLE;
6912 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6913 insert:
6914 btrfs_release_path(path);
6915 if (em->start > start || extent_map_end(em) <= start) {
6916 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6917 em->start, em->len, start, len);
6918 err = -EIO;
6919 goto out;
6920 }
6921
6922 err = 0;
6923 write_lock(&em_tree->lock);
6924 ret = add_extent_mapping(em_tree, em, 0);
6925 /* it is possible that someone inserted the extent into the tree
6926 * while we had the lock dropped. It is also possible that
6927 * an overlapping map exists in the tree
6928 */
6929 if (ret == -EEXIST) {
6930 struct extent_map *existing;
6931
6932 ret = 0;
6933
6934 existing = search_extent_mapping(em_tree, start, len);
6935 /*
6936 * existing will always be non-NULL, since there must be
6937 * extent causing the -EEXIST.
6938 */
6939 if (start >= extent_map_end(existing) ||
6940 start <= existing->start) {
6941 /*
6942 * The existing extent map is the one nearest to
6943 * the [start, start + len) range which overlaps
6944 */
6945 err = merge_extent_mapping(em_tree, existing,
6946 em, start);
6947 free_extent_map(existing);
6948 if (err) {
6949 free_extent_map(em);
6950 em = NULL;
6951 }
6952 } else {
6953 free_extent_map(em);
6954 em = existing;
6955 err = 0;
6956 }
6957 }
6958 write_unlock(&em_tree->lock);
6959 out:
6960
6961 trace_btrfs_get_extent(root, em);
6962
6963 btrfs_free_path(path);
6964 if (trans) {
6965 ret = btrfs_end_transaction(trans, root);
6966 if (!err)
6967 err = ret;
6968 }
6969 if (err) {
6970 free_extent_map(em);
6971 return ERR_PTR(err);
6972 }
6973 BUG_ON(!em); /* Error is always set */
6974 return em;
6975 }
6976
6977 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6978 size_t pg_offset, u64 start, u64 len,
6979 int create)
6980 {
6981 struct extent_map *em;
6982 struct extent_map *hole_em = NULL;
6983 u64 range_start = start;
6984 u64 end;
6985 u64 found;
6986 u64 found_end;
6987 int err = 0;
6988
6989 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6990 if (IS_ERR(em))
6991 return em;
6992 if (em) {
6993 /*
6994 * if our em maps to
6995 * - a hole or
6996 * - a pre-alloc extent,
6997 * there might actually be delalloc bytes behind it.
6998 */
6999 if (em->block_start != EXTENT_MAP_HOLE &&
7000 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7001 return em;
7002 else
7003 hole_em = em;
7004 }
7005
7006 /* check to see if we've wrapped (len == -1 or similar) */
7007 end = start + len;
7008 if (end < start)
7009 end = (u64)-1;
7010 else
7011 end -= 1;
7012
7013 em = NULL;
7014
7015 /* ok, we didn't find anything, lets look for delalloc */
7016 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7017 end, len, EXTENT_DELALLOC, 1);
7018 found_end = range_start + found;
7019 if (found_end < range_start)
7020 found_end = (u64)-1;
7021
7022 /*
7023 * we didn't find anything useful, return
7024 * the original results from get_extent()
7025 */
7026 if (range_start > end || found_end <= start) {
7027 em = hole_em;
7028 hole_em = NULL;
7029 goto out;
7030 }
7031
7032 /* adjust the range_start to make sure it doesn't
7033 * go backwards from the start they passed in
7034 */
7035 range_start = max(start, range_start);
7036 found = found_end - range_start;
7037
7038 if (found > 0) {
7039 u64 hole_start = start;
7040 u64 hole_len = len;
7041
7042 em = alloc_extent_map();
7043 if (!em) {
7044 err = -ENOMEM;
7045 goto out;
7046 }
7047 /*
7048 * when btrfs_get_extent can't find anything it
7049 * returns one huge hole
7050 *
7051 * make sure what it found really fits our range, and
7052 * adjust to make sure it is based on the start from
7053 * the caller
7054 */
7055 if (hole_em) {
7056 u64 calc_end = extent_map_end(hole_em);
7057
7058 if (calc_end <= start || (hole_em->start > end)) {
7059 free_extent_map(hole_em);
7060 hole_em = NULL;
7061 } else {
7062 hole_start = max(hole_em->start, start);
7063 hole_len = calc_end - hole_start;
7064 }
7065 }
7066 em->bdev = NULL;
7067 if (hole_em && range_start > hole_start) {
7068 /* our hole starts before our delalloc, so we
7069 * have to return just the parts of the hole
7070 * that go until the delalloc starts
7071 */
7072 em->len = min(hole_len,
7073 range_start - hole_start);
7074 em->start = hole_start;
7075 em->orig_start = hole_start;
7076 /*
7077 * don't adjust block start at all,
7078 * it is fixed at EXTENT_MAP_HOLE
7079 */
7080 em->block_start = hole_em->block_start;
7081 em->block_len = hole_len;
7082 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7083 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7084 } else {
7085 em->start = range_start;
7086 em->len = found;
7087 em->orig_start = range_start;
7088 em->block_start = EXTENT_MAP_DELALLOC;
7089 em->block_len = found;
7090 }
7091 } else if (hole_em) {
7092 return hole_em;
7093 }
7094 out:
7095
7096 free_extent_map(hole_em);
7097 if (err) {
7098 free_extent_map(em);
7099 return ERR_PTR(err);
7100 }
7101 return em;
7102 }
7103
7104 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7105 u64 start, u64 len)
7106 {
7107 struct btrfs_root *root = BTRFS_I(inode)->root;
7108 struct extent_map *em;
7109 struct btrfs_key ins;
7110 u64 alloc_hint;
7111 int ret;
7112
7113 alloc_hint = get_extent_allocation_hint(inode, start, len);
7114 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7115 alloc_hint, &ins, 1, 1);
7116 if (ret)
7117 return ERR_PTR(ret);
7118
7119 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7120 ins.offset, ins.offset, ins.offset, 0);
7121 if (IS_ERR(em)) {
7122 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7123 return em;
7124 }
7125
7126 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7127 ins.offset, ins.offset, 0);
7128 if (ret) {
7129 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7130 free_extent_map(em);
7131 return ERR_PTR(ret);
7132 }
7133
7134 return em;
7135 }
7136
7137 /*
7138 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7139 * block must be cow'd
7140 */
7141 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7142 u64 *orig_start, u64 *orig_block_len,
7143 u64 *ram_bytes)
7144 {
7145 struct btrfs_trans_handle *trans;
7146 struct btrfs_path *path;
7147 int ret;
7148 struct extent_buffer *leaf;
7149 struct btrfs_root *root = BTRFS_I(inode)->root;
7150 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7151 struct btrfs_file_extent_item *fi;
7152 struct btrfs_key key;
7153 u64 disk_bytenr;
7154 u64 backref_offset;
7155 u64 extent_end;
7156 u64 num_bytes;
7157 int slot;
7158 int found_type;
7159 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7160
7161 path = btrfs_alloc_path();
7162 if (!path)
7163 return -ENOMEM;
7164
7165 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7166 offset, 0);
7167 if (ret < 0)
7168 goto out;
7169
7170 slot = path->slots[0];
7171 if (ret == 1) {
7172 if (slot == 0) {
7173 /* can't find the item, must cow */
7174 ret = 0;
7175 goto out;
7176 }
7177 slot--;
7178 }
7179 ret = 0;
7180 leaf = path->nodes[0];
7181 btrfs_item_key_to_cpu(leaf, &key, slot);
7182 if (key.objectid != btrfs_ino(inode) ||
7183 key.type != BTRFS_EXTENT_DATA_KEY) {
7184 /* not our file or wrong item type, must cow */
7185 goto out;
7186 }
7187
7188 if (key.offset > offset) {
7189 /* Wrong offset, must cow */
7190 goto out;
7191 }
7192
7193 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7194 found_type = btrfs_file_extent_type(leaf, fi);
7195 if (found_type != BTRFS_FILE_EXTENT_REG &&
7196 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7197 /* not a regular extent, must cow */
7198 goto out;
7199 }
7200
7201 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7202 goto out;
7203
7204 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7205 if (extent_end <= offset)
7206 goto out;
7207
7208 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7209 if (disk_bytenr == 0)
7210 goto out;
7211
7212 if (btrfs_file_extent_compression(leaf, fi) ||
7213 btrfs_file_extent_encryption(leaf, fi) ||
7214 btrfs_file_extent_other_encoding(leaf, fi))
7215 goto out;
7216
7217 backref_offset = btrfs_file_extent_offset(leaf, fi);
7218
7219 if (orig_start) {
7220 *orig_start = key.offset - backref_offset;
7221 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7222 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7223 }
7224
7225 if (btrfs_extent_readonly(root, disk_bytenr))
7226 goto out;
7227
7228 num_bytes = min(offset + *len, extent_end) - offset;
7229 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7230 u64 range_end;
7231
7232 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7233 ret = test_range_bit(io_tree, offset, range_end,
7234 EXTENT_DELALLOC, 0, NULL);
7235 if (ret) {
7236 ret = -EAGAIN;
7237 goto out;
7238 }
7239 }
7240
7241 btrfs_release_path(path);
7242
7243 /*
7244 * look for other files referencing this extent, if we
7245 * find any we must cow
7246 */
7247 trans = btrfs_join_transaction(root);
7248 if (IS_ERR(trans)) {
7249 ret = 0;
7250 goto out;
7251 }
7252
7253 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7254 key.offset - backref_offset, disk_bytenr);
7255 btrfs_end_transaction(trans, root);
7256 if (ret) {
7257 ret = 0;
7258 goto out;
7259 }
7260
7261 /*
7262 * adjust disk_bytenr and num_bytes to cover just the bytes
7263 * in this extent we are about to write. If there
7264 * are any csums in that range we have to cow in order
7265 * to keep the csums correct
7266 */
7267 disk_bytenr += backref_offset;
7268 disk_bytenr += offset - key.offset;
7269 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7270 goto out;
7271 /*
7272 * all of the above have passed, it is safe to overwrite this extent
7273 * without cow
7274 */
7275 *len = num_bytes;
7276 ret = 1;
7277 out:
7278 btrfs_free_path(path);
7279 return ret;
7280 }
7281
7282 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7283 {
7284 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7285 int found = false;
7286 void **pagep = NULL;
7287 struct page *page = NULL;
7288 int start_idx;
7289 int end_idx;
7290
7291 start_idx = start >> PAGE_CACHE_SHIFT;
7292
7293 /*
7294 * end is the last byte in the last page. end == start is legal
7295 */
7296 end_idx = end >> PAGE_CACHE_SHIFT;
7297
7298 rcu_read_lock();
7299
7300 /* Most of the code in this while loop is lifted from
7301 * find_get_page. It's been modified to begin searching from a
7302 * page and return just the first page found in that range. If the
7303 * found idx is less than or equal to the end idx then we know that
7304 * a page exists. If no pages are found or if those pages are
7305 * outside of the range then we're fine (yay!) */
7306 while (page == NULL &&
7307 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7308 page = radix_tree_deref_slot(pagep);
7309 if (unlikely(!page))
7310 break;
7311
7312 if (radix_tree_exception(page)) {
7313 if (radix_tree_deref_retry(page)) {
7314 page = NULL;
7315 continue;
7316 }
7317 /*
7318 * Otherwise, shmem/tmpfs must be storing a swap entry
7319 * here as an exceptional entry: so return it without
7320 * attempting to raise page count.
7321 */
7322 page = NULL;
7323 break; /* TODO: Is this relevant for this use case? */
7324 }
7325
7326 if (!page_cache_get_speculative(page)) {
7327 page = NULL;
7328 continue;
7329 }
7330
7331 /*
7332 * Has the page moved?
7333 * This is part of the lockless pagecache protocol. See
7334 * include/linux/pagemap.h for details.
7335 */
7336 if (unlikely(page != *pagep)) {
7337 page_cache_release(page);
7338 page = NULL;
7339 }
7340 }
7341
7342 if (page) {
7343 if (page->index <= end_idx)
7344 found = true;
7345 page_cache_release(page);
7346 }
7347
7348 rcu_read_unlock();
7349 return found;
7350 }
7351
7352 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7353 struct extent_state **cached_state, int writing)
7354 {
7355 struct btrfs_ordered_extent *ordered;
7356 int ret = 0;
7357
7358 while (1) {
7359 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7360 cached_state);
7361 /*
7362 * We're concerned with the entire range that we're going to be
7363 * doing DIO to, so we need to make sure theres no ordered
7364 * extents in this range.
7365 */
7366 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7367 lockend - lockstart + 1);
7368
7369 /*
7370 * We need to make sure there are no buffered pages in this
7371 * range either, we could have raced between the invalidate in
7372 * generic_file_direct_write and locking the extent. The
7373 * invalidate needs to happen so that reads after a write do not
7374 * get stale data.
7375 */
7376 if (!ordered &&
7377 (!writing ||
7378 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7379 break;
7380
7381 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7382 cached_state, GFP_NOFS);
7383
7384 if (ordered) {
7385 btrfs_start_ordered_extent(inode, ordered, 1);
7386 btrfs_put_ordered_extent(ordered);
7387 } else {
7388 /*
7389 * We could trigger writeback for this range (and wait
7390 * for it to complete) and then invalidate the pages for
7391 * this range (through invalidate_inode_pages2_range()),
7392 * but that can lead us to a deadlock with a concurrent
7393 * call to readpages() (a buffered read or a defrag call
7394 * triggered a readahead) on a page lock due to an
7395 * ordered dio extent we created before but did not have
7396 * yet a corresponding bio submitted (whence it can not
7397 * complete), which makes readpages() wait for that
7398 * ordered extent to complete while holding a lock on
7399 * that page.
7400 */
7401 ret = -ENOTBLK;
7402 break;
7403 }
7404
7405 cond_resched();
7406 }
7407
7408 return ret;
7409 }
7410
7411 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7412 u64 len, u64 orig_start,
7413 u64 block_start, u64 block_len,
7414 u64 orig_block_len, u64 ram_bytes,
7415 int type)
7416 {
7417 struct extent_map_tree *em_tree;
7418 struct extent_map *em;
7419 struct btrfs_root *root = BTRFS_I(inode)->root;
7420 int ret;
7421
7422 em_tree = &BTRFS_I(inode)->extent_tree;
7423 em = alloc_extent_map();
7424 if (!em)
7425 return ERR_PTR(-ENOMEM);
7426
7427 em->start = start;
7428 em->orig_start = orig_start;
7429 em->mod_start = start;
7430 em->mod_len = len;
7431 em->len = len;
7432 em->block_len = block_len;
7433 em->block_start = block_start;
7434 em->bdev = root->fs_info->fs_devices->latest_bdev;
7435 em->orig_block_len = orig_block_len;
7436 em->ram_bytes = ram_bytes;
7437 em->generation = -1;
7438 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7439 if (type == BTRFS_ORDERED_PREALLOC)
7440 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7441
7442 do {
7443 btrfs_drop_extent_cache(inode, em->start,
7444 em->start + em->len - 1, 0);
7445 write_lock(&em_tree->lock);
7446 ret = add_extent_mapping(em_tree, em, 1);
7447 write_unlock(&em_tree->lock);
7448 } while (ret == -EEXIST);
7449
7450 if (ret) {
7451 free_extent_map(em);
7452 return ERR_PTR(ret);
7453 }
7454
7455 return em;
7456 }
7457
7458 static void adjust_dio_outstanding_extents(struct inode *inode,
7459 struct btrfs_dio_data *dio_data,
7460 const u64 len)
7461 {
7462 unsigned num_extents;
7463
7464 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7465 BTRFS_MAX_EXTENT_SIZE);
7466 /*
7467 * If we have an outstanding_extents count still set then we're
7468 * within our reservation, otherwise we need to adjust our inode
7469 * counter appropriately.
7470 */
7471 if (dio_data->outstanding_extents) {
7472 dio_data->outstanding_extents -= num_extents;
7473 } else {
7474 spin_lock(&BTRFS_I(inode)->lock);
7475 BTRFS_I(inode)->outstanding_extents += num_extents;
7476 spin_unlock(&BTRFS_I(inode)->lock);
7477 }
7478 }
7479
7480 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7481 struct buffer_head *bh_result, int create)
7482 {
7483 struct extent_map *em;
7484 struct btrfs_root *root = BTRFS_I(inode)->root;
7485 struct extent_state *cached_state = NULL;
7486 struct btrfs_dio_data *dio_data = NULL;
7487 u64 start = iblock << inode->i_blkbits;
7488 u64 lockstart, lockend;
7489 u64 len = bh_result->b_size;
7490 int unlock_bits = EXTENT_LOCKED;
7491 int ret = 0;
7492
7493 if (create)
7494 unlock_bits |= EXTENT_DIRTY;
7495 else
7496 len = min_t(u64, len, root->sectorsize);
7497
7498 lockstart = start;
7499 lockend = start + len - 1;
7500
7501 if (current->journal_info) {
7502 /*
7503 * Need to pull our outstanding extents and set journal_info to NULL so
7504 * that anything that needs to check if there's a transction doesn't get
7505 * confused.
7506 */
7507 dio_data = current->journal_info;
7508 current->journal_info = NULL;
7509 }
7510
7511 /*
7512 * If this errors out it's because we couldn't invalidate pagecache for
7513 * this range and we need to fallback to buffered.
7514 */
7515 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7516 create)) {
7517 ret = -ENOTBLK;
7518 goto err;
7519 }
7520
7521 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7522 if (IS_ERR(em)) {
7523 ret = PTR_ERR(em);
7524 goto unlock_err;
7525 }
7526
7527 /*
7528 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7529 * io. INLINE is special, and we could probably kludge it in here, but
7530 * it's still buffered so for safety lets just fall back to the generic
7531 * buffered path.
7532 *
7533 * For COMPRESSED we _have_ to read the entire extent in so we can
7534 * decompress it, so there will be buffering required no matter what we
7535 * do, so go ahead and fallback to buffered.
7536 *
7537 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7538 * to buffered IO. Don't blame me, this is the price we pay for using
7539 * the generic code.
7540 */
7541 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7542 em->block_start == EXTENT_MAP_INLINE) {
7543 free_extent_map(em);
7544 ret = -ENOTBLK;
7545 goto unlock_err;
7546 }
7547
7548 /* Just a good old fashioned hole, return */
7549 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7550 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7551 free_extent_map(em);
7552 goto unlock_err;
7553 }
7554
7555 /*
7556 * We don't allocate a new extent in the following cases
7557 *
7558 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7559 * existing extent.
7560 * 2) The extent is marked as PREALLOC. We're good to go here and can
7561 * just use the extent.
7562 *
7563 */
7564 if (!create) {
7565 len = min(len, em->len - (start - em->start));
7566 lockstart = start + len;
7567 goto unlock;
7568 }
7569
7570 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7571 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7572 em->block_start != EXTENT_MAP_HOLE)) {
7573 int type;
7574 u64 block_start, orig_start, orig_block_len, ram_bytes;
7575
7576 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7577 type = BTRFS_ORDERED_PREALLOC;
7578 else
7579 type = BTRFS_ORDERED_NOCOW;
7580 len = min(len, em->len - (start - em->start));
7581 block_start = em->block_start + (start - em->start);
7582
7583 if (can_nocow_extent(inode, start, &len, &orig_start,
7584 &orig_block_len, &ram_bytes) == 1) {
7585 if (type == BTRFS_ORDERED_PREALLOC) {
7586 free_extent_map(em);
7587 em = create_pinned_em(inode, start, len,
7588 orig_start,
7589 block_start, len,
7590 orig_block_len,
7591 ram_bytes, type);
7592 if (IS_ERR(em)) {
7593 ret = PTR_ERR(em);
7594 goto unlock_err;
7595 }
7596 }
7597
7598 ret = btrfs_add_ordered_extent_dio(inode, start,
7599 block_start, len, len, type);
7600 if (ret) {
7601 free_extent_map(em);
7602 goto unlock_err;
7603 }
7604 goto unlock;
7605 }
7606 }
7607
7608 /*
7609 * this will cow the extent, reset the len in case we changed
7610 * it above
7611 */
7612 len = bh_result->b_size;
7613 free_extent_map(em);
7614 em = btrfs_new_extent_direct(inode, start, len);
7615 if (IS_ERR(em)) {
7616 ret = PTR_ERR(em);
7617 goto unlock_err;
7618 }
7619 len = min(len, em->len - (start - em->start));
7620 unlock:
7621 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7622 inode->i_blkbits;
7623 bh_result->b_size = len;
7624 bh_result->b_bdev = em->bdev;
7625 set_buffer_mapped(bh_result);
7626 if (create) {
7627 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7628 set_buffer_new(bh_result);
7629
7630 /*
7631 * Need to update the i_size under the extent lock so buffered
7632 * readers will get the updated i_size when we unlock.
7633 */
7634 if (start + len > i_size_read(inode))
7635 i_size_write(inode, start + len);
7636
7637 adjust_dio_outstanding_extents(inode, dio_data, len);
7638 btrfs_free_reserved_data_space(inode, start, len);
7639 WARN_ON(dio_data->reserve < len);
7640 dio_data->reserve -= len;
7641 dio_data->unsubmitted_oe_range_end = start + len;
7642 current->journal_info = dio_data;
7643 }
7644
7645 /*
7646 * In the case of write we need to clear and unlock the entire range,
7647 * in the case of read we need to unlock only the end area that we
7648 * aren't using if there is any left over space.
7649 */
7650 if (lockstart < lockend) {
7651 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7652 lockend, unlock_bits, 1, 0,
7653 &cached_state, GFP_NOFS);
7654 } else {
7655 free_extent_state(cached_state);
7656 }
7657
7658 free_extent_map(em);
7659
7660 return 0;
7661
7662 unlock_err:
7663 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7664 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7665 err:
7666 if (dio_data)
7667 current->journal_info = dio_data;
7668 /*
7669 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7670 * write less data then expected, so that we don't underflow our inode's
7671 * outstanding extents counter.
7672 */
7673 if (create && dio_data)
7674 adjust_dio_outstanding_extents(inode, dio_data, len);
7675
7676 return ret;
7677 }
7678
7679 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7680 int rw, int mirror_num)
7681 {
7682 struct btrfs_root *root = BTRFS_I(inode)->root;
7683 int ret;
7684
7685 BUG_ON(rw & REQ_WRITE);
7686
7687 bio_get(bio);
7688
7689 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7690 BTRFS_WQ_ENDIO_DIO_REPAIR);
7691 if (ret)
7692 goto err;
7693
7694 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7695 err:
7696 bio_put(bio);
7697 return ret;
7698 }
7699
7700 static int btrfs_check_dio_repairable(struct inode *inode,
7701 struct bio *failed_bio,
7702 struct io_failure_record *failrec,
7703 int failed_mirror)
7704 {
7705 int num_copies;
7706
7707 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7708 failrec->logical, failrec->len);
7709 if (num_copies == 1) {
7710 /*
7711 * we only have a single copy of the data, so don't bother with
7712 * all the retry and error correction code that follows. no
7713 * matter what the error is, it is very likely to persist.
7714 */
7715 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7716 num_copies, failrec->this_mirror, failed_mirror);
7717 return 0;
7718 }
7719
7720 failrec->failed_mirror = failed_mirror;
7721 failrec->this_mirror++;
7722 if (failrec->this_mirror == failed_mirror)
7723 failrec->this_mirror++;
7724
7725 if (failrec->this_mirror > num_copies) {
7726 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7727 num_copies, failrec->this_mirror, failed_mirror);
7728 return 0;
7729 }
7730
7731 return 1;
7732 }
7733
7734 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7735 struct page *page, u64 start, u64 end,
7736 int failed_mirror, bio_end_io_t *repair_endio,
7737 void *repair_arg)
7738 {
7739 struct io_failure_record *failrec;
7740 struct bio *bio;
7741 int isector;
7742 int read_mode;
7743 int ret;
7744
7745 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7746
7747 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7748 if (ret)
7749 return ret;
7750
7751 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7752 failed_mirror);
7753 if (!ret) {
7754 free_io_failure(inode, failrec);
7755 return -EIO;
7756 }
7757
7758 if (failed_bio->bi_vcnt > 1)
7759 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7760 else
7761 read_mode = READ_SYNC;
7762
7763 isector = start - btrfs_io_bio(failed_bio)->logical;
7764 isector >>= inode->i_sb->s_blocksize_bits;
7765 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7766 0, isector, repair_endio, repair_arg);
7767 if (!bio) {
7768 free_io_failure(inode, failrec);
7769 return -EIO;
7770 }
7771
7772 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7773 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7774 read_mode, failrec->this_mirror, failrec->in_validation);
7775
7776 ret = submit_dio_repair_bio(inode, bio, read_mode,
7777 failrec->this_mirror);
7778 if (ret) {
7779 free_io_failure(inode, failrec);
7780 bio_put(bio);
7781 }
7782
7783 return ret;
7784 }
7785
7786 struct btrfs_retry_complete {
7787 struct completion done;
7788 struct inode *inode;
7789 u64 start;
7790 int uptodate;
7791 };
7792
7793 static void btrfs_retry_endio_nocsum(struct bio *bio)
7794 {
7795 struct btrfs_retry_complete *done = bio->bi_private;
7796 struct bio_vec *bvec;
7797 int i;
7798
7799 if (bio->bi_error)
7800 goto end;
7801
7802 done->uptodate = 1;
7803 bio_for_each_segment_all(bvec, bio, i)
7804 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7805 end:
7806 complete(&done->done);
7807 bio_put(bio);
7808 }
7809
7810 static int __btrfs_correct_data_nocsum(struct inode *inode,
7811 struct btrfs_io_bio *io_bio)
7812 {
7813 struct bio_vec *bvec;
7814 struct btrfs_retry_complete done;
7815 u64 start;
7816 int i;
7817 int ret;
7818
7819 start = io_bio->logical;
7820 done.inode = inode;
7821
7822 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7823 try_again:
7824 done.uptodate = 0;
7825 done.start = start;
7826 init_completion(&done.done);
7827
7828 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7829 start + bvec->bv_len - 1,
7830 io_bio->mirror_num,
7831 btrfs_retry_endio_nocsum, &done);
7832 if (ret)
7833 return ret;
7834
7835 wait_for_completion(&done.done);
7836
7837 if (!done.uptodate) {
7838 /* We might have another mirror, so try again */
7839 goto try_again;
7840 }
7841
7842 start += bvec->bv_len;
7843 }
7844
7845 return 0;
7846 }
7847
7848 static void btrfs_retry_endio(struct bio *bio)
7849 {
7850 struct btrfs_retry_complete *done = bio->bi_private;
7851 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7852 struct bio_vec *bvec;
7853 int uptodate;
7854 int ret;
7855 int i;
7856
7857 if (bio->bi_error)
7858 goto end;
7859
7860 uptodate = 1;
7861 bio_for_each_segment_all(bvec, bio, i) {
7862 ret = __readpage_endio_check(done->inode, io_bio, i,
7863 bvec->bv_page, 0,
7864 done->start, bvec->bv_len);
7865 if (!ret)
7866 clean_io_failure(done->inode, done->start,
7867 bvec->bv_page, 0);
7868 else
7869 uptodate = 0;
7870 }
7871
7872 done->uptodate = uptodate;
7873 end:
7874 complete(&done->done);
7875 bio_put(bio);
7876 }
7877
7878 static int __btrfs_subio_endio_read(struct inode *inode,
7879 struct btrfs_io_bio *io_bio, int err)
7880 {
7881 struct bio_vec *bvec;
7882 struct btrfs_retry_complete done;
7883 u64 start;
7884 u64 offset = 0;
7885 int i;
7886 int ret;
7887
7888 err = 0;
7889 start = io_bio->logical;
7890 done.inode = inode;
7891
7892 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7893 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7894 0, start, bvec->bv_len);
7895 if (likely(!ret))
7896 goto next;
7897 try_again:
7898 done.uptodate = 0;
7899 done.start = start;
7900 init_completion(&done.done);
7901
7902 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7903 start + bvec->bv_len - 1,
7904 io_bio->mirror_num,
7905 btrfs_retry_endio, &done);
7906 if (ret) {
7907 err = ret;
7908 goto next;
7909 }
7910
7911 wait_for_completion(&done.done);
7912
7913 if (!done.uptodate) {
7914 /* We might have another mirror, so try again */
7915 goto try_again;
7916 }
7917 next:
7918 offset += bvec->bv_len;
7919 start += bvec->bv_len;
7920 }
7921
7922 return err;
7923 }
7924
7925 static int btrfs_subio_endio_read(struct inode *inode,
7926 struct btrfs_io_bio *io_bio, int err)
7927 {
7928 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7929
7930 if (skip_csum) {
7931 if (unlikely(err))
7932 return __btrfs_correct_data_nocsum(inode, io_bio);
7933 else
7934 return 0;
7935 } else {
7936 return __btrfs_subio_endio_read(inode, io_bio, err);
7937 }
7938 }
7939
7940 static void btrfs_endio_direct_read(struct bio *bio)
7941 {
7942 struct btrfs_dio_private *dip = bio->bi_private;
7943 struct inode *inode = dip->inode;
7944 struct bio *dio_bio;
7945 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7946 int err = bio->bi_error;
7947
7948 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7949 err = btrfs_subio_endio_read(inode, io_bio, err);
7950
7951 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7952 dip->logical_offset + dip->bytes - 1);
7953 dio_bio = dip->dio_bio;
7954
7955 kfree(dip);
7956
7957 dio_end_io(dio_bio, bio->bi_error);
7958
7959 if (io_bio->end_io)
7960 io_bio->end_io(io_bio, err);
7961 bio_put(bio);
7962 }
7963
7964 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
7965 const u64 offset,
7966 const u64 bytes,
7967 const int uptodate)
7968 {
7969 struct btrfs_root *root = BTRFS_I(inode)->root;
7970 struct btrfs_ordered_extent *ordered = NULL;
7971 u64 ordered_offset = offset;
7972 u64 ordered_bytes = bytes;
7973 int ret;
7974
7975 again:
7976 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7977 &ordered_offset,
7978 ordered_bytes,
7979 uptodate);
7980 if (!ret)
7981 goto out_test;
7982
7983 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7984 finish_ordered_fn, NULL, NULL);
7985 btrfs_queue_work(root->fs_info->endio_write_workers,
7986 &ordered->work);
7987 out_test:
7988 /*
7989 * our bio might span multiple ordered extents. If we haven't
7990 * completed the accounting for the whole dio, go back and try again
7991 */
7992 if (ordered_offset < offset + bytes) {
7993 ordered_bytes = offset + bytes - ordered_offset;
7994 ordered = NULL;
7995 goto again;
7996 }
7997 }
7998
7999 static void btrfs_endio_direct_write(struct bio *bio)
8000 {
8001 struct btrfs_dio_private *dip = bio->bi_private;
8002 struct bio *dio_bio = dip->dio_bio;
8003
8004 btrfs_endio_direct_write_update_ordered(dip->inode,
8005 dip->logical_offset,
8006 dip->bytes,
8007 !bio->bi_error);
8008
8009 kfree(dip);
8010
8011 dio_end_io(dio_bio, bio->bi_error);
8012 bio_put(bio);
8013 }
8014
8015 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8016 struct bio *bio, int mirror_num,
8017 unsigned long bio_flags, u64 offset)
8018 {
8019 int ret;
8020 struct btrfs_root *root = BTRFS_I(inode)->root;
8021 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8022 BUG_ON(ret); /* -ENOMEM */
8023 return 0;
8024 }
8025
8026 static void btrfs_end_dio_bio(struct bio *bio)
8027 {
8028 struct btrfs_dio_private *dip = bio->bi_private;
8029 int err = bio->bi_error;
8030
8031 if (err)
8032 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8033 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8034 btrfs_ino(dip->inode), bio->bi_rw,
8035 (unsigned long long)bio->bi_iter.bi_sector,
8036 bio->bi_iter.bi_size, err);
8037
8038 if (dip->subio_endio)
8039 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8040
8041 if (err) {
8042 dip->errors = 1;
8043
8044 /*
8045 * before atomic variable goto zero, we must make sure
8046 * dip->errors is perceived to be set.
8047 */
8048 smp_mb__before_atomic();
8049 }
8050
8051 /* if there are more bios still pending for this dio, just exit */
8052 if (!atomic_dec_and_test(&dip->pending_bios))
8053 goto out;
8054
8055 if (dip->errors) {
8056 bio_io_error(dip->orig_bio);
8057 } else {
8058 dip->dio_bio->bi_error = 0;
8059 bio_endio(dip->orig_bio);
8060 }
8061 out:
8062 bio_put(bio);
8063 }
8064
8065 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8066 u64 first_sector, gfp_t gfp_flags)
8067 {
8068 struct bio *bio;
8069 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8070 if (bio)
8071 bio_associate_current(bio);
8072 return bio;
8073 }
8074
8075 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8076 struct inode *inode,
8077 struct btrfs_dio_private *dip,
8078 struct bio *bio,
8079 u64 file_offset)
8080 {
8081 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8082 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8083 int ret;
8084
8085 /*
8086 * We load all the csum data we need when we submit
8087 * the first bio to reduce the csum tree search and
8088 * contention.
8089 */
8090 if (dip->logical_offset == file_offset) {
8091 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8092 file_offset);
8093 if (ret)
8094 return ret;
8095 }
8096
8097 if (bio == dip->orig_bio)
8098 return 0;
8099
8100 file_offset -= dip->logical_offset;
8101 file_offset >>= inode->i_sb->s_blocksize_bits;
8102 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8103
8104 return 0;
8105 }
8106
8107 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8108 int rw, u64 file_offset, int skip_sum,
8109 int async_submit)
8110 {
8111 struct btrfs_dio_private *dip = bio->bi_private;
8112 int write = rw & REQ_WRITE;
8113 struct btrfs_root *root = BTRFS_I(inode)->root;
8114 int ret;
8115
8116 if (async_submit)
8117 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8118
8119 bio_get(bio);
8120
8121 if (!write) {
8122 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8123 BTRFS_WQ_ENDIO_DATA);
8124 if (ret)
8125 goto err;
8126 }
8127
8128 if (skip_sum)
8129 goto map;
8130
8131 if (write && async_submit) {
8132 ret = btrfs_wq_submit_bio(root->fs_info,
8133 inode, rw, bio, 0, 0,
8134 file_offset,
8135 __btrfs_submit_bio_start_direct_io,
8136 __btrfs_submit_bio_done);
8137 goto err;
8138 } else if (write) {
8139 /*
8140 * If we aren't doing async submit, calculate the csum of the
8141 * bio now.
8142 */
8143 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8144 if (ret)
8145 goto err;
8146 } else {
8147 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8148 file_offset);
8149 if (ret)
8150 goto err;
8151 }
8152 map:
8153 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8154 err:
8155 bio_put(bio);
8156 return ret;
8157 }
8158
8159 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8160 int skip_sum)
8161 {
8162 struct inode *inode = dip->inode;
8163 struct btrfs_root *root = BTRFS_I(inode)->root;
8164 struct bio *bio;
8165 struct bio *orig_bio = dip->orig_bio;
8166 struct bio_vec *bvec = orig_bio->bi_io_vec;
8167 u64 start_sector = orig_bio->bi_iter.bi_sector;
8168 u64 file_offset = dip->logical_offset;
8169 u64 submit_len = 0;
8170 u64 map_length;
8171 int nr_pages = 0;
8172 int ret;
8173 int async_submit = 0;
8174
8175 map_length = orig_bio->bi_iter.bi_size;
8176 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8177 &map_length, NULL, 0);
8178 if (ret)
8179 return -EIO;
8180
8181 if (map_length >= orig_bio->bi_iter.bi_size) {
8182 bio = orig_bio;
8183 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8184 goto submit;
8185 }
8186
8187 /* async crcs make it difficult to collect full stripe writes. */
8188 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8189 async_submit = 0;
8190 else
8191 async_submit = 1;
8192
8193 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8194 if (!bio)
8195 return -ENOMEM;
8196
8197 bio->bi_private = dip;
8198 bio->bi_end_io = btrfs_end_dio_bio;
8199 btrfs_io_bio(bio)->logical = file_offset;
8200 atomic_inc(&dip->pending_bios);
8201
8202 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8203 if (map_length < submit_len + bvec->bv_len ||
8204 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8205 bvec->bv_offset) < bvec->bv_len) {
8206 /*
8207 * inc the count before we submit the bio so
8208 * we know the end IO handler won't happen before
8209 * we inc the count. Otherwise, the dip might get freed
8210 * before we're done setting it up
8211 */
8212 atomic_inc(&dip->pending_bios);
8213 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8214 file_offset, skip_sum,
8215 async_submit);
8216 if (ret) {
8217 bio_put(bio);
8218 atomic_dec(&dip->pending_bios);
8219 goto out_err;
8220 }
8221
8222 start_sector += submit_len >> 9;
8223 file_offset += submit_len;
8224
8225 submit_len = 0;
8226 nr_pages = 0;
8227
8228 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8229 start_sector, GFP_NOFS);
8230 if (!bio)
8231 goto out_err;
8232 bio->bi_private = dip;
8233 bio->bi_end_io = btrfs_end_dio_bio;
8234 btrfs_io_bio(bio)->logical = file_offset;
8235
8236 map_length = orig_bio->bi_iter.bi_size;
8237 ret = btrfs_map_block(root->fs_info, rw,
8238 start_sector << 9,
8239 &map_length, NULL, 0);
8240 if (ret) {
8241 bio_put(bio);
8242 goto out_err;
8243 }
8244 } else {
8245 submit_len += bvec->bv_len;
8246 nr_pages++;
8247 bvec++;
8248 }
8249 }
8250
8251 submit:
8252 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8253 async_submit);
8254 if (!ret)
8255 return 0;
8256
8257 bio_put(bio);
8258 out_err:
8259 dip->errors = 1;
8260 /*
8261 * before atomic variable goto zero, we must
8262 * make sure dip->errors is perceived to be set.
8263 */
8264 smp_mb__before_atomic();
8265 if (atomic_dec_and_test(&dip->pending_bios))
8266 bio_io_error(dip->orig_bio);
8267
8268 /* bio_end_io() will handle error, so we needn't return it */
8269 return 0;
8270 }
8271
8272 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8273 struct inode *inode, loff_t file_offset)
8274 {
8275 struct btrfs_dio_private *dip = NULL;
8276 struct bio *io_bio = NULL;
8277 struct btrfs_io_bio *btrfs_bio;
8278 int skip_sum;
8279 int write = rw & REQ_WRITE;
8280 int ret = 0;
8281
8282 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8283
8284 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8285 if (!io_bio) {
8286 ret = -ENOMEM;
8287 goto free_ordered;
8288 }
8289
8290 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8291 if (!dip) {
8292 ret = -ENOMEM;
8293 goto free_ordered;
8294 }
8295
8296 dip->private = dio_bio->bi_private;
8297 dip->inode = inode;
8298 dip->logical_offset = file_offset;
8299 dip->bytes = dio_bio->bi_iter.bi_size;
8300 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8301 io_bio->bi_private = dip;
8302 dip->orig_bio = io_bio;
8303 dip->dio_bio = dio_bio;
8304 atomic_set(&dip->pending_bios, 0);
8305 btrfs_bio = btrfs_io_bio(io_bio);
8306 btrfs_bio->logical = file_offset;
8307
8308 if (write) {
8309 io_bio->bi_end_io = btrfs_endio_direct_write;
8310 } else {
8311 io_bio->bi_end_io = btrfs_endio_direct_read;
8312 dip->subio_endio = btrfs_subio_endio_read;
8313 }
8314
8315 /*
8316 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8317 * even if we fail to submit a bio, because in such case we do the
8318 * corresponding error handling below and it must not be done a second
8319 * time by btrfs_direct_IO().
8320 */
8321 if (write) {
8322 struct btrfs_dio_data *dio_data = current->journal_info;
8323
8324 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8325 dip->bytes;
8326 dio_data->unsubmitted_oe_range_start =
8327 dio_data->unsubmitted_oe_range_end;
8328 }
8329
8330 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8331 if (!ret)
8332 return;
8333
8334 if (btrfs_bio->end_io)
8335 btrfs_bio->end_io(btrfs_bio, ret);
8336
8337 free_ordered:
8338 /*
8339 * If we arrived here it means either we failed to submit the dip
8340 * or we either failed to clone the dio_bio or failed to allocate the
8341 * dip. If we cloned the dio_bio and allocated the dip, we can just
8342 * call bio_endio against our io_bio so that we get proper resource
8343 * cleanup if we fail to submit the dip, otherwise, we must do the
8344 * same as btrfs_endio_direct_[write|read] because we can't call these
8345 * callbacks - they require an allocated dip and a clone of dio_bio.
8346 */
8347 if (io_bio && dip) {
8348 io_bio->bi_error = -EIO;
8349 bio_endio(io_bio);
8350 /*
8351 * The end io callbacks free our dip, do the final put on io_bio
8352 * and all the cleanup and final put for dio_bio (through
8353 * dio_end_io()).
8354 */
8355 dip = NULL;
8356 io_bio = NULL;
8357 } else {
8358 if (write)
8359 btrfs_endio_direct_write_update_ordered(inode,
8360 file_offset,
8361 dio_bio->bi_iter.bi_size,
8362 0);
8363 else
8364 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8365 file_offset + dio_bio->bi_iter.bi_size - 1);
8366
8367 dio_bio->bi_error = -EIO;
8368 /*
8369 * Releases and cleans up our dio_bio, no need to bio_put()
8370 * nor bio_endio()/bio_io_error() against dio_bio.
8371 */
8372 dio_end_io(dio_bio, ret);
8373 }
8374 if (io_bio)
8375 bio_put(io_bio);
8376 kfree(dip);
8377 }
8378
8379 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8380 const struct iov_iter *iter, loff_t offset)
8381 {
8382 int seg;
8383 int i;
8384 unsigned blocksize_mask = root->sectorsize - 1;
8385 ssize_t retval = -EINVAL;
8386
8387 if (offset & blocksize_mask)
8388 goto out;
8389
8390 if (iov_iter_alignment(iter) & blocksize_mask)
8391 goto out;
8392
8393 /* If this is a write we don't need to check anymore */
8394 if (iov_iter_rw(iter) == WRITE)
8395 return 0;
8396 /*
8397 * Check to make sure we don't have duplicate iov_base's in this
8398 * iovec, if so return EINVAL, otherwise we'll get csum errors
8399 * when reading back.
8400 */
8401 for (seg = 0; seg < iter->nr_segs; seg++) {
8402 for (i = seg + 1; i < iter->nr_segs; i++) {
8403 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8404 goto out;
8405 }
8406 }
8407 retval = 0;
8408 out:
8409 return retval;
8410 }
8411
8412 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8413 loff_t offset)
8414 {
8415 struct file *file = iocb->ki_filp;
8416 struct inode *inode = file->f_mapping->host;
8417 struct btrfs_root *root = BTRFS_I(inode)->root;
8418 struct btrfs_dio_data dio_data = { 0 };
8419 size_t count = 0;
8420 int flags = 0;
8421 bool wakeup = true;
8422 bool relock = false;
8423 ssize_t ret;
8424
8425 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8426 return 0;
8427
8428 inode_dio_begin(inode);
8429 smp_mb__after_atomic();
8430
8431 /*
8432 * The generic stuff only does filemap_write_and_wait_range, which
8433 * isn't enough if we've written compressed pages to this area, so
8434 * we need to flush the dirty pages again to make absolutely sure
8435 * that any outstanding dirty pages are on disk.
8436 */
8437 count = iov_iter_count(iter);
8438 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8439 &BTRFS_I(inode)->runtime_flags))
8440 filemap_fdatawrite_range(inode->i_mapping, offset,
8441 offset + count - 1);
8442
8443 if (iov_iter_rw(iter) == WRITE) {
8444 /*
8445 * If the write DIO is beyond the EOF, we need update
8446 * the isize, but it is protected by i_mutex. So we can
8447 * not unlock the i_mutex at this case.
8448 */
8449 if (offset + count <= inode->i_size) {
8450 inode_unlock(inode);
8451 relock = true;
8452 }
8453 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8454 if (ret)
8455 goto out;
8456 dio_data.outstanding_extents = div64_u64(count +
8457 BTRFS_MAX_EXTENT_SIZE - 1,
8458 BTRFS_MAX_EXTENT_SIZE);
8459
8460 /*
8461 * We need to know how many extents we reserved so that we can
8462 * do the accounting properly if we go over the number we
8463 * originally calculated. Abuse current->journal_info for this.
8464 */
8465 dio_data.reserve = round_up(count, root->sectorsize);
8466 dio_data.unsubmitted_oe_range_start = (u64)offset;
8467 dio_data.unsubmitted_oe_range_end = (u64)offset;
8468 current->journal_info = &dio_data;
8469 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8470 &BTRFS_I(inode)->runtime_flags)) {
8471 inode_dio_end(inode);
8472 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8473 wakeup = false;
8474 }
8475
8476 ret = __blockdev_direct_IO(iocb, inode,
8477 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8478 iter, offset, btrfs_get_blocks_direct, NULL,
8479 btrfs_submit_direct, flags);
8480 if (iov_iter_rw(iter) == WRITE) {
8481 current->journal_info = NULL;
8482 if (ret < 0 && ret != -EIOCBQUEUED) {
8483 if (dio_data.reserve)
8484 btrfs_delalloc_release_space(inode, offset,
8485 dio_data.reserve);
8486 /*
8487 * On error we might have left some ordered extents
8488 * without submitting corresponding bios for them, so
8489 * cleanup them up to avoid other tasks getting them
8490 * and waiting for them to complete forever.
8491 */
8492 if (dio_data.unsubmitted_oe_range_start <
8493 dio_data.unsubmitted_oe_range_end)
8494 btrfs_endio_direct_write_update_ordered(inode,
8495 dio_data.unsubmitted_oe_range_start,
8496 dio_data.unsubmitted_oe_range_end -
8497 dio_data.unsubmitted_oe_range_start,
8498 0);
8499 } else if (ret >= 0 && (size_t)ret < count)
8500 btrfs_delalloc_release_space(inode, offset,
8501 count - (size_t)ret);
8502 }
8503 out:
8504 if (wakeup)
8505 inode_dio_end(inode);
8506 if (relock)
8507 inode_lock(inode);
8508
8509 return ret;
8510 }
8511
8512 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8513
8514 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8515 __u64 start, __u64 len)
8516 {
8517 int ret;
8518
8519 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8520 if (ret)
8521 return ret;
8522
8523 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8524 }
8525
8526 int btrfs_readpage(struct file *file, struct page *page)
8527 {
8528 struct extent_io_tree *tree;
8529 tree = &BTRFS_I(page->mapping->host)->io_tree;
8530 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8531 }
8532
8533 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8534 {
8535 struct extent_io_tree *tree;
8536 struct inode *inode = page->mapping->host;
8537 int ret;
8538
8539 if (current->flags & PF_MEMALLOC) {
8540 redirty_page_for_writepage(wbc, page);
8541 unlock_page(page);
8542 return 0;
8543 }
8544
8545 /*
8546 * If we are under memory pressure we will call this directly from the
8547 * VM, we need to make sure we have the inode referenced for the ordered
8548 * extent. If not just return like we didn't do anything.
8549 */
8550 if (!igrab(inode)) {
8551 redirty_page_for_writepage(wbc, page);
8552 return AOP_WRITEPAGE_ACTIVATE;
8553 }
8554 tree = &BTRFS_I(page->mapping->host)->io_tree;
8555 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8556 btrfs_add_delayed_iput(inode);
8557 return ret;
8558 }
8559
8560 static int btrfs_writepages(struct address_space *mapping,
8561 struct writeback_control *wbc)
8562 {
8563 struct extent_io_tree *tree;
8564
8565 tree = &BTRFS_I(mapping->host)->io_tree;
8566 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8567 }
8568
8569 static int
8570 btrfs_readpages(struct file *file, struct address_space *mapping,
8571 struct list_head *pages, unsigned nr_pages)
8572 {
8573 struct extent_io_tree *tree;
8574 tree = &BTRFS_I(mapping->host)->io_tree;
8575 return extent_readpages(tree, mapping, pages, nr_pages,
8576 btrfs_get_extent);
8577 }
8578 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8579 {
8580 struct extent_io_tree *tree;
8581 struct extent_map_tree *map;
8582 int ret;
8583
8584 tree = &BTRFS_I(page->mapping->host)->io_tree;
8585 map = &BTRFS_I(page->mapping->host)->extent_tree;
8586 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8587 if (ret == 1) {
8588 ClearPagePrivate(page);
8589 set_page_private(page, 0);
8590 page_cache_release(page);
8591 }
8592 return ret;
8593 }
8594
8595 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8596 {
8597 if (PageWriteback(page) || PageDirty(page))
8598 return 0;
8599 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8600 }
8601
8602 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8603 unsigned int length)
8604 {
8605 struct inode *inode = page->mapping->host;
8606 struct extent_io_tree *tree;
8607 struct btrfs_ordered_extent *ordered;
8608 struct extent_state *cached_state = NULL;
8609 u64 page_start = page_offset(page);
8610 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8611 int inode_evicting = inode->i_state & I_FREEING;
8612
8613 /*
8614 * we have the page locked, so new writeback can't start,
8615 * and the dirty bit won't be cleared while we are here.
8616 *
8617 * Wait for IO on this page so that we can safely clear
8618 * the PagePrivate2 bit and do ordered accounting
8619 */
8620 wait_on_page_writeback(page);
8621
8622 tree = &BTRFS_I(inode)->io_tree;
8623 if (offset) {
8624 btrfs_releasepage(page, GFP_NOFS);
8625 return;
8626 }
8627
8628 if (!inode_evicting)
8629 lock_extent_bits(tree, page_start, page_end, &cached_state);
8630 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8631 if (ordered) {
8632 /*
8633 * IO on this page will never be started, so we need
8634 * to account for any ordered extents now
8635 */
8636 if (!inode_evicting)
8637 clear_extent_bit(tree, page_start, page_end,
8638 EXTENT_DIRTY | EXTENT_DELALLOC |
8639 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8640 EXTENT_DEFRAG, 1, 0, &cached_state,
8641 GFP_NOFS);
8642 /*
8643 * whoever cleared the private bit is responsible
8644 * for the finish_ordered_io
8645 */
8646 if (TestClearPagePrivate2(page)) {
8647 struct btrfs_ordered_inode_tree *tree;
8648 u64 new_len;
8649
8650 tree = &BTRFS_I(inode)->ordered_tree;
8651
8652 spin_lock_irq(&tree->lock);
8653 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8654 new_len = page_start - ordered->file_offset;
8655 if (new_len < ordered->truncated_len)
8656 ordered->truncated_len = new_len;
8657 spin_unlock_irq(&tree->lock);
8658
8659 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8660 page_start,
8661 PAGE_CACHE_SIZE, 1))
8662 btrfs_finish_ordered_io(ordered);
8663 }
8664 btrfs_put_ordered_extent(ordered);
8665 if (!inode_evicting) {
8666 cached_state = NULL;
8667 lock_extent_bits(tree, page_start, page_end,
8668 &cached_state);
8669 }
8670 }
8671
8672 /*
8673 * Qgroup reserved space handler
8674 * Page here will be either
8675 * 1) Already written to disk
8676 * In this case, its reserved space is released from data rsv map
8677 * and will be freed by delayed_ref handler finally.
8678 * So even we call qgroup_free_data(), it won't decrease reserved
8679 * space.
8680 * 2) Not written to disk
8681 * This means the reserved space should be freed here.
8682 */
8683 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
8684 if (!inode_evicting) {
8685 clear_extent_bit(tree, page_start, page_end,
8686 EXTENT_LOCKED | EXTENT_DIRTY |
8687 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8688 EXTENT_DEFRAG, 1, 1,
8689 &cached_state, GFP_NOFS);
8690
8691 __btrfs_releasepage(page, GFP_NOFS);
8692 }
8693
8694 ClearPageChecked(page);
8695 if (PagePrivate(page)) {
8696 ClearPagePrivate(page);
8697 set_page_private(page, 0);
8698 page_cache_release(page);
8699 }
8700 }
8701
8702 /*
8703 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8704 * called from a page fault handler when a page is first dirtied. Hence we must
8705 * be careful to check for EOF conditions here. We set the page up correctly
8706 * for a written page which means we get ENOSPC checking when writing into
8707 * holes and correct delalloc and unwritten extent mapping on filesystems that
8708 * support these features.
8709 *
8710 * We are not allowed to take the i_mutex here so we have to play games to
8711 * protect against truncate races as the page could now be beyond EOF. Because
8712 * vmtruncate() writes the inode size before removing pages, once we have the
8713 * page lock we can determine safely if the page is beyond EOF. If it is not
8714 * beyond EOF, then the page is guaranteed safe against truncation until we
8715 * unlock the page.
8716 */
8717 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8718 {
8719 struct page *page = vmf->page;
8720 struct inode *inode = file_inode(vma->vm_file);
8721 struct btrfs_root *root = BTRFS_I(inode)->root;
8722 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8723 struct btrfs_ordered_extent *ordered;
8724 struct extent_state *cached_state = NULL;
8725 char *kaddr;
8726 unsigned long zero_start;
8727 loff_t size;
8728 int ret;
8729 int reserved = 0;
8730 u64 page_start;
8731 u64 page_end;
8732
8733 sb_start_pagefault(inode->i_sb);
8734 page_start = page_offset(page);
8735 page_end = page_start + PAGE_CACHE_SIZE - 1;
8736
8737 ret = btrfs_delalloc_reserve_space(inode, page_start,
8738 PAGE_CACHE_SIZE);
8739 if (!ret) {
8740 ret = file_update_time(vma->vm_file);
8741 reserved = 1;
8742 }
8743 if (ret) {
8744 if (ret == -ENOMEM)
8745 ret = VM_FAULT_OOM;
8746 else /* -ENOSPC, -EIO, etc */
8747 ret = VM_FAULT_SIGBUS;
8748 if (reserved)
8749 goto out;
8750 goto out_noreserve;
8751 }
8752
8753 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8754 again:
8755 lock_page(page);
8756 size = i_size_read(inode);
8757
8758 if ((page->mapping != inode->i_mapping) ||
8759 (page_start >= size)) {
8760 /* page got truncated out from underneath us */
8761 goto out_unlock;
8762 }
8763 wait_on_page_writeback(page);
8764
8765 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8766 set_page_extent_mapped(page);
8767
8768 /*
8769 * we can't set the delalloc bits if there are pending ordered
8770 * extents. Drop our locks and wait for them to finish
8771 */
8772 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8773 if (ordered) {
8774 unlock_extent_cached(io_tree, page_start, page_end,
8775 &cached_state, GFP_NOFS);
8776 unlock_page(page);
8777 btrfs_start_ordered_extent(inode, ordered, 1);
8778 btrfs_put_ordered_extent(ordered);
8779 goto again;
8780 }
8781
8782 /*
8783 * XXX - page_mkwrite gets called every time the page is dirtied, even
8784 * if it was already dirty, so for space accounting reasons we need to
8785 * clear any delalloc bits for the range we are fixing to save. There
8786 * is probably a better way to do this, but for now keep consistent with
8787 * prepare_pages in the normal write path.
8788 */
8789 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8790 EXTENT_DIRTY | EXTENT_DELALLOC |
8791 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8792 0, 0, &cached_state, GFP_NOFS);
8793
8794 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8795 &cached_state);
8796 if (ret) {
8797 unlock_extent_cached(io_tree, page_start, page_end,
8798 &cached_state, GFP_NOFS);
8799 ret = VM_FAULT_SIGBUS;
8800 goto out_unlock;
8801 }
8802 ret = 0;
8803
8804 /* page is wholly or partially inside EOF */
8805 if (page_start + PAGE_CACHE_SIZE > size)
8806 zero_start = size & ~PAGE_CACHE_MASK;
8807 else
8808 zero_start = PAGE_CACHE_SIZE;
8809
8810 if (zero_start != PAGE_CACHE_SIZE) {
8811 kaddr = kmap(page);
8812 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8813 flush_dcache_page(page);
8814 kunmap(page);
8815 }
8816 ClearPageChecked(page);
8817 set_page_dirty(page);
8818 SetPageUptodate(page);
8819
8820 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8821 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8822 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8823
8824 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8825
8826 out_unlock:
8827 if (!ret) {
8828 sb_end_pagefault(inode->i_sb);
8829 return VM_FAULT_LOCKED;
8830 }
8831 unlock_page(page);
8832 out:
8833 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
8834 out_noreserve:
8835 sb_end_pagefault(inode->i_sb);
8836 return ret;
8837 }
8838
8839 static int btrfs_truncate(struct inode *inode)
8840 {
8841 struct btrfs_root *root = BTRFS_I(inode)->root;
8842 struct btrfs_block_rsv *rsv;
8843 int ret = 0;
8844 int err = 0;
8845 struct btrfs_trans_handle *trans;
8846 u64 mask = root->sectorsize - 1;
8847 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8848
8849 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8850 (u64)-1);
8851 if (ret)
8852 return ret;
8853
8854 /*
8855 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8856 * 3 things going on here
8857 *
8858 * 1) We need to reserve space for our orphan item and the space to
8859 * delete our orphan item. Lord knows we don't want to have a dangling
8860 * orphan item because we didn't reserve space to remove it.
8861 *
8862 * 2) We need to reserve space to update our inode.
8863 *
8864 * 3) We need to have something to cache all the space that is going to
8865 * be free'd up by the truncate operation, but also have some slack
8866 * space reserved in case it uses space during the truncate (thank you
8867 * very much snapshotting).
8868 *
8869 * And we need these to all be seperate. The fact is we can use alot of
8870 * space doing the truncate, and we have no earthly idea how much space
8871 * we will use, so we need the truncate reservation to be seperate so it
8872 * doesn't end up using space reserved for updating the inode or
8873 * removing the orphan item. We also need to be able to stop the
8874 * transaction and start a new one, which means we need to be able to
8875 * update the inode several times, and we have no idea of knowing how
8876 * many times that will be, so we can't just reserve 1 item for the
8877 * entirety of the opration, so that has to be done seperately as well.
8878 * Then there is the orphan item, which does indeed need to be held on
8879 * to for the whole operation, and we need nobody to touch this reserved
8880 * space except the orphan code.
8881 *
8882 * So that leaves us with
8883 *
8884 * 1) root->orphan_block_rsv - for the orphan deletion.
8885 * 2) rsv - for the truncate reservation, which we will steal from the
8886 * transaction reservation.
8887 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8888 * updating the inode.
8889 */
8890 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8891 if (!rsv)
8892 return -ENOMEM;
8893 rsv->size = min_size;
8894 rsv->failfast = 1;
8895
8896 /*
8897 * 1 for the truncate slack space
8898 * 1 for updating the inode.
8899 */
8900 trans = btrfs_start_transaction(root, 2);
8901 if (IS_ERR(trans)) {
8902 err = PTR_ERR(trans);
8903 goto out;
8904 }
8905
8906 /* Migrate the slack space for the truncate to our reserve */
8907 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8908 min_size);
8909 BUG_ON(ret);
8910
8911 /*
8912 * So if we truncate and then write and fsync we normally would just
8913 * write the extents that changed, which is a problem if we need to
8914 * first truncate that entire inode. So set this flag so we write out
8915 * all of the extents in the inode to the sync log so we're completely
8916 * safe.
8917 */
8918 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8919 trans->block_rsv = rsv;
8920
8921 while (1) {
8922 ret = btrfs_truncate_inode_items(trans, root, inode,
8923 inode->i_size,
8924 BTRFS_EXTENT_DATA_KEY);
8925 if (ret != -ENOSPC && ret != -EAGAIN) {
8926 err = ret;
8927 break;
8928 }
8929
8930 trans->block_rsv = &root->fs_info->trans_block_rsv;
8931 ret = btrfs_update_inode(trans, root, inode);
8932 if (ret) {
8933 err = ret;
8934 break;
8935 }
8936
8937 btrfs_end_transaction(trans, root);
8938 btrfs_btree_balance_dirty(root);
8939
8940 trans = btrfs_start_transaction(root, 2);
8941 if (IS_ERR(trans)) {
8942 ret = err = PTR_ERR(trans);
8943 trans = NULL;
8944 break;
8945 }
8946
8947 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8948 rsv, min_size);
8949 BUG_ON(ret); /* shouldn't happen */
8950 trans->block_rsv = rsv;
8951 }
8952
8953 if (ret == 0 && inode->i_nlink > 0) {
8954 trans->block_rsv = root->orphan_block_rsv;
8955 ret = btrfs_orphan_del(trans, inode);
8956 if (ret)
8957 err = ret;
8958 }
8959
8960 if (trans) {
8961 trans->block_rsv = &root->fs_info->trans_block_rsv;
8962 ret = btrfs_update_inode(trans, root, inode);
8963 if (ret && !err)
8964 err = ret;
8965
8966 ret = btrfs_end_transaction(trans, root);
8967 btrfs_btree_balance_dirty(root);
8968 }
8969
8970 out:
8971 btrfs_free_block_rsv(root, rsv);
8972
8973 if (ret && !err)
8974 err = ret;
8975
8976 return err;
8977 }
8978
8979 /*
8980 * create a new subvolume directory/inode (helper for the ioctl).
8981 */
8982 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8983 struct btrfs_root *new_root,
8984 struct btrfs_root *parent_root,
8985 u64 new_dirid)
8986 {
8987 struct inode *inode;
8988 int err;
8989 u64 index = 0;
8990
8991 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8992 new_dirid, new_dirid,
8993 S_IFDIR | (~current_umask() & S_IRWXUGO),
8994 &index);
8995 if (IS_ERR(inode))
8996 return PTR_ERR(inode);
8997 inode->i_op = &btrfs_dir_inode_operations;
8998 inode->i_fop = &btrfs_dir_file_operations;
8999
9000 set_nlink(inode, 1);
9001 btrfs_i_size_write(inode, 0);
9002 unlock_new_inode(inode);
9003
9004 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9005 if (err)
9006 btrfs_err(new_root->fs_info,
9007 "error inheriting subvolume %llu properties: %d",
9008 new_root->root_key.objectid, err);
9009
9010 err = btrfs_update_inode(trans, new_root, inode);
9011
9012 iput(inode);
9013 return err;
9014 }
9015
9016 struct inode *btrfs_alloc_inode(struct super_block *sb)
9017 {
9018 struct btrfs_inode *ei;
9019 struct inode *inode;
9020
9021 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9022 if (!ei)
9023 return NULL;
9024
9025 ei->root = NULL;
9026 ei->generation = 0;
9027 ei->last_trans = 0;
9028 ei->last_sub_trans = 0;
9029 ei->logged_trans = 0;
9030 ei->delalloc_bytes = 0;
9031 ei->defrag_bytes = 0;
9032 ei->disk_i_size = 0;
9033 ei->flags = 0;
9034 ei->csum_bytes = 0;
9035 ei->index_cnt = (u64)-1;
9036 ei->dir_index = 0;
9037 ei->last_unlink_trans = 0;
9038 ei->last_log_commit = 0;
9039 ei->delayed_iput_count = 0;
9040
9041 spin_lock_init(&ei->lock);
9042 ei->outstanding_extents = 0;
9043 ei->reserved_extents = 0;
9044
9045 ei->runtime_flags = 0;
9046 ei->force_compress = BTRFS_COMPRESS_NONE;
9047
9048 ei->delayed_node = NULL;
9049
9050 ei->i_otime.tv_sec = 0;
9051 ei->i_otime.tv_nsec = 0;
9052
9053 inode = &ei->vfs_inode;
9054 extent_map_tree_init(&ei->extent_tree);
9055 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9056 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9057 ei->io_tree.track_uptodate = 1;
9058 ei->io_failure_tree.track_uptodate = 1;
9059 atomic_set(&ei->sync_writers, 0);
9060 mutex_init(&ei->log_mutex);
9061 mutex_init(&ei->delalloc_mutex);
9062 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9063 INIT_LIST_HEAD(&ei->delalloc_inodes);
9064 INIT_LIST_HEAD(&ei->delayed_iput);
9065 RB_CLEAR_NODE(&ei->rb_node);
9066
9067 return inode;
9068 }
9069
9070 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9071 void btrfs_test_destroy_inode(struct inode *inode)
9072 {
9073 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9074 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9075 }
9076 #endif
9077
9078 static void btrfs_i_callback(struct rcu_head *head)
9079 {
9080 struct inode *inode = container_of(head, struct inode, i_rcu);
9081 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9082 }
9083
9084 void btrfs_destroy_inode(struct inode *inode)
9085 {
9086 struct btrfs_ordered_extent *ordered;
9087 struct btrfs_root *root = BTRFS_I(inode)->root;
9088
9089 WARN_ON(!hlist_empty(&inode->i_dentry));
9090 WARN_ON(inode->i_data.nrpages);
9091 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9092 WARN_ON(BTRFS_I(inode)->reserved_extents);
9093 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9094 WARN_ON(BTRFS_I(inode)->csum_bytes);
9095 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9096
9097 /*
9098 * This can happen where we create an inode, but somebody else also
9099 * created the same inode and we need to destroy the one we already
9100 * created.
9101 */
9102 if (!root)
9103 goto free;
9104
9105 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9106 &BTRFS_I(inode)->runtime_flags)) {
9107 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9108 btrfs_ino(inode));
9109 atomic_dec(&root->orphan_inodes);
9110 }
9111
9112 while (1) {
9113 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9114 if (!ordered)
9115 break;
9116 else {
9117 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
9118 ordered->file_offset, ordered->len);
9119 btrfs_remove_ordered_extent(inode, ordered);
9120 btrfs_put_ordered_extent(ordered);
9121 btrfs_put_ordered_extent(ordered);
9122 }
9123 }
9124 btrfs_qgroup_check_reserved_leak(inode);
9125 inode_tree_del(inode);
9126 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9127 free:
9128 call_rcu(&inode->i_rcu, btrfs_i_callback);
9129 }
9130
9131 int btrfs_drop_inode(struct inode *inode)
9132 {
9133 struct btrfs_root *root = BTRFS_I(inode)->root;
9134
9135 if (root == NULL)
9136 return 1;
9137
9138 /* the snap/subvol tree is on deleting */
9139 if (btrfs_root_refs(&root->root_item) == 0)
9140 return 1;
9141 else
9142 return generic_drop_inode(inode);
9143 }
9144
9145 static void init_once(void *foo)
9146 {
9147 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9148
9149 inode_init_once(&ei->vfs_inode);
9150 }
9151
9152 void btrfs_destroy_cachep(void)
9153 {
9154 /*
9155 * Make sure all delayed rcu free inodes are flushed before we
9156 * destroy cache.
9157 */
9158 rcu_barrier();
9159 if (btrfs_inode_cachep)
9160 kmem_cache_destroy(btrfs_inode_cachep);
9161 if (btrfs_trans_handle_cachep)
9162 kmem_cache_destroy(btrfs_trans_handle_cachep);
9163 if (btrfs_transaction_cachep)
9164 kmem_cache_destroy(btrfs_transaction_cachep);
9165 if (btrfs_path_cachep)
9166 kmem_cache_destroy(btrfs_path_cachep);
9167 if (btrfs_free_space_cachep)
9168 kmem_cache_destroy(btrfs_free_space_cachep);
9169 }
9170
9171 int btrfs_init_cachep(void)
9172 {
9173 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9174 sizeof(struct btrfs_inode), 0,
9175 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9176 init_once);
9177 if (!btrfs_inode_cachep)
9178 goto fail;
9179
9180 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9181 sizeof(struct btrfs_trans_handle), 0,
9182 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9183 if (!btrfs_trans_handle_cachep)
9184 goto fail;
9185
9186 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9187 sizeof(struct btrfs_transaction), 0,
9188 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9189 if (!btrfs_transaction_cachep)
9190 goto fail;
9191
9192 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9193 sizeof(struct btrfs_path), 0,
9194 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9195 if (!btrfs_path_cachep)
9196 goto fail;
9197
9198 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9199 sizeof(struct btrfs_free_space), 0,
9200 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9201 if (!btrfs_free_space_cachep)
9202 goto fail;
9203
9204 return 0;
9205 fail:
9206 btrfs_destroy_cachep();
9207 return -ENOMEM;
9208 }
9209
9210 static int btrfs_getattr(struct vfsmount *mnt,
9211 struct dentry *dentry, struct kstat *stat)
9212 {
9213 u64 delalloc_bytes;
9214 struct inode *inode = d_inode(dentry);
9215 u32 blocksize = inode->i_sb->s_blocksize;
9216
9217 generic_fillattr(inode, stat);
9218 stat->dev = BTRFS_I(inode)->root->anon_dev;
9219 stat->blksize = PAGE_CACHE_SIZE;
9220
9221 spin_lock(&BTRFS_I(inode)->lock);
9222 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9223 spin_unlock(&BTRFS_I(inode)->lock);
9224 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9225 ALIGN(delalloc_bytes, blocksize)) >> 9;
9226 return 0;
9227 }
9228
9229 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9230 struct inode *new_dir, struct dentry *new_dentry)
9231 {
9232 struct btrfs_trans_handle *trans;
9233 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9234 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9235 struct inode *new_inode = d_inode(new_dentry);
9236 struct inode *old_inode = d_inode(old_dentry);
9237 struct timespec ctime = CURRENT_TIME;
9238 u64 index = 0;
9239 u64 root_objectid;
9240 int ret;
9241 u64 old_ino = btrfs_ino(old_inode);
9242
9243 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9244 return -EPERM;
9245
9246 /* we only allow rename subvolume link between subvolumes */
9247 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9248 return -EXDEV;
9249
9250 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9251 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9252 return -ENOTEMPTY;
9253
9254 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9255 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9256 return -ENOTEMPTY;
9257
9258
9259 /* check for collisions, even if the name isn't there */
9260 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9261 new_dentry->d_name.name,
9262 new_dentry->d_name.len);
9263
9264 if (ret) {
9265 if (ret == -EEXIST) {
9266 /* we shouldn't get
9267 * eexist without a new_inode */
9268 if (WARN_ON(!new_inode)) {
9269 return ret;
9270 }
9271 } else {
9272 /* maybe -EOVERFLOW */
9273 return ret;
9274 }
9275 }
9276 ret = 0;
9277
9278 /*
9279 * we're using rename to replace one file with another. Start IO on it
9280 * now so we don't add too much work to the end of the transaction
9281 */
9282 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9283 filemap_flush(old_inode->i_mapping);
9284
9285 /* close the racy window with snapshot create/destroy ioctl */
9286 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9287 down_read(&root->fs_info->subvol_sem);
9288 /*
9289 * We want to reserve the absolute worst case amount of items. So if
9290 * both inodes are subvols and we need to unlink them then that would
9291 * require 4 item modifications, but if they are both normal inodes it
9292 * would require 5 item modifications, so we'll assume their normal
9293 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9294 * should cover the worst case number of items we'll modify.
9295 */
9296 trans = btrfs_start_transaction(root, 11);
9297 if (IS_ERR(trans)) {
9298 ret = PTR_ERR(trans);
9299 goto out_notrans;
9300 }
9301
9302 if (dest != root)
9303 btrfs_record_root_in_trans(trans, dest);
9304
9305 ret = btrfs_set_inode_index(new_dir, &index);
9306 if (ret)
9307 goto out_fail;
9308
9309 BTRFS_I(old_inode)->dir_index = 0ULL;
9310 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9311 /* force full log commit if subvolume involved. */
9312 btrfs_set_log_full_commit(root->fs_info, trans);
9313 } else {
9314 ret = btrfs_insert_inode_ref(trans, dest,
9315 new_dentry->d_name.name,
9316 new_dentry->d_name.len,
9317 old_ino,
9318 btrfs_ino(new_dir), index);
9319 if (ret)
9320 goto out_fail;
9321 /*
9322 * this is an ugly little race, but the rename is required
9323 * to make sure that if we crash, the inode is either at the
9324 * old name or the new one. pinning the log transaction lets
9325 * us make sure we don't allow a log commit to come in after
9326 * we unlink the name but before we add the new name back in.
9327 */
9328 btrfs_pin_log_trans(root);
9329 }
9330
9331 inode_inc_iversion(old_dir);
9332 inode_inc_iversion(new_dir);
9333 inode_inc_iversion(old_inode);
9334 old_dir->i_ctime = old_dir->i_mtime = ctime;
9335 new_dir->i_ctime = new_dir->i_mtime = ctime;
9336 old_inode->i_ctime = ctime;
9337
9338 if (old_dentry->d_parent != new_dentry->d_parent)
9339 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9340
9341 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9342 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9343 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9344 old_dentry->d_name.name,
9345 old_dentry->d_name.len);
9346 } else {
9347 ret = __btrfs_unlink_inode(trans, root, old_dir,
9348 d_inode(old_dentry),
9349 old_dentry->d_name.name,
9350 old_dentry->d_name.len);
9351 if (!ret)
9352 ret = btrfs_update_inode(trans, root, old_inode);
9353 }
9354 if (ret) {
9355 btrfs_abort_transaction(trans, root, ret);
9356 goto out_fail;
9357 }
9358
9359 if (new_inode) {
9360 inode_inc_iversion(new_inode);
9361 new_inode->i_ctime = CURRENT_TIME;
9362 if (unlikely(btrfs_ino(new_inode) ==
9363 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9364 root_objectid = BTRFS_I(new_inode)->location.objectid;
9365 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9366 root_objectid,
9367 new_dentry->d_name.name,
9368 new_dentry->d_name.len);
9369 BUG_ON(new_inode->i_nlink == 0);
9370 } else {
9371 ret = btrfs_unlink_inode(trans, dest, new_dir,
9372 d_inode(new_dentry),
9373 new_dentry->d_name.name,
9374 new_dentry->d_name.len);
9375 }
9376 if (!ret && new_inode->i_nlink == 0)
9377 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9378 if (ret) {
9379 btrfs_abort_transaction(trans, root, ret);
9380 goto out_fail;
9381 }
9382 }
9383
9384 ret = btrfs_add_link(trans, new_dir, old_inode,
9385 new_dentry->d_name.name,
9386 new_dentry->d_name.len, 0, index);
9387 if (ret) {
9388 btrfs_abort_transaction(trans, root, ret);
9389 goto out_fail;
9390 }
9391
9392 if (old_inode->i_nlink == 1)
9393 BTRFS_I(old_inode)->dir_index = index;
9394
9395 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9396 struct dentry *parent = new_dentry->d_parent;
9397 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9398 btrfs_end_log_trans(root);
9399 }
9400 out_fail:
9401 btrfs_end_transaction(trans, root);
9402 out_notrans:
9403 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9404 up_read(&root->fs_info->subvol_sem);
9405
9406 return ret;
9407 }
9408
9409 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9410 struct inode *new_dir, struct dentry *new_dentry,
9411 unsigned int flags)
9412 {
9413 if (flags & ~RENAME_NOREPLACE)
9414 return -EINVAL;
9415
9416 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9417 }
9418
9419 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9420 {
9421 struct btrfs_delalloc_work *delalloc_work;
9422 struct inode *inode;
9423
9424 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9425 work);
9426 inode = delalloc_work->inode;
9427 filemap_flush(inode->i_mapping);
9428 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9429 &BTRFS_I(inode)->runtime_flags))
9430 filemap_flush(inode->i_mapping);
9431
9432 if (delalloc_work->delay_iput)
9433 btrfs_add_delayed_iput(inode);
9434 else
9435 iput(inode);
9436 complete(&delalloc_work->completion);
9437 }
9438
9439 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9440 int delay_iput)
9441 {
9442 struct btrfs_delalloc_work *work;
9443
9444 work = kmalloc(sizeof(*work), GFP_NOFS);
9445 if (!work)
9446 return NULL;
9447
9448 init_completion(&work->completion);
9449 INIT_LIST_HEAD(&work->list);
9450 work->inode = inode;
9451 work->delay_iput = delay_iput;
9452 WARN_ON_ONCE(!inode);
9453 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9454 btrfs_run_delalloc_work, NULL, NULL);
9455
9456 return work;
9457 }
9458
9459 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9460 {
9461 wait_for_completion(&work->completion);
9462 kfree(work);
9463 }
9464
9465 /*
9466 * some fairly slow code that needs optimization. This walks the list
9467 * of all the inodes with pending delalloc and forces them to disk.
9468 */
9469 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9470 int nr)
9471 {
9472 struct btrfs_inode *binode;
9473 struct inode *inode;
9474 struct btrfs_delalloc_work *work, *next;
9475 struct list_head works;
9476 struct list_head splice;
9477 int ret = 0;
9478
9479 INIT_LIST_HEAD(&works);
9480 INIT_LIST_HEAD(&splice);
9481
9482 mutex_lock(&root->delalloc_mutex);
9483 spin_lock(&root->delalloc_lock);
9484 list_splice_init(&root->delalloc_inodes, &splice);
9485 while (!list_empty(&splice)) {
9486 binode = list_entry(splice.next, struct btrfs_inode,
9487 delalloc_inodes);
9488
9489 list_move_tail(&binode->delalloc_inodes,
9490 &root->delalloc_inodes);
9491 inode = igrab(&binode->vfs_inode);
9492 if (!inode) {
9493 cond_resched_lock(&root->delalloc_lock);
9494 continue;
9495 }
9496 spin_unlock(&root->delalloc_lock);
9497
9498 work = btrfs_alloc_delalloc_work(inode, delay_iput);
9499 if (!work) {
9500 if (delay_iput)
9501 btrfs_add_delayed_iput(inode);
9502 else
9503 iput(inode);
9504 ret = -ENOMEM;
9505 goto out;
9506 }
9507 list_add_tail(&work->list, &works);
9508 btrfs_queue_work(root->fs_info->flush_workers,
9509 &work->work);
9510 ret++;
9511 if (nr != -1 && ret >= nr)
9512 goto out;
9513 cond_resched();
9514 spin_lock(&root->delalloc_lock);
9515 }
9516 spin_unlock(&root->delalloc_lock);
9517
9518 out:
9519 list_for_each_entry_safe(work, next, &works, list) {
9520 list_del_init(&work->list);
9521 btrfs_wait_and_free_delalloc_work(work);
9522 }
9523
9524 if (!list_empty_careful(&splice)) {
9525 spin_lock(&root->delalloc_lock);
9526 list_splice_tail(&splice, &root->delalloc_inodes);
9527 spin_unlock(&root->delalloc_lock);
9528 }
9529 mutex_unlock(&root->delalloc_mutex);
9530 return ret;
9531 }
9532
9533 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9534 {
9535 int ret;
9536
9537 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9538 return -EROFS;
9539
9540 ret = __start_delalloc_inodes(root, delay_iput, -1);
9541 if (ret > 0)
9542 ret = 0;
9543 /*
9544 * the filemap_flush will queue IO into the worker threads, but
9545 * we have to make sure the IO is actually started and that
9546 * ordered extents get created before we return
9547 */
9548 atomic_inc(&root->fs_info->async_submit_draining);
9549 while (atomic_read(&root->fs_info->nr_async_submits) ||
9550 atomic_read(&root->fs_info->async_delalloc_pages)) {
9551 wait_event(root->fs_info->async_submit_wait,
9552 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9553 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9554 }
9555 atomic_dec(&root->fs_info->async_submit_draining);
9556 return ret;
9557 }
9558
9559 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9560 int nr)
9561 {
9562 struct btrfs_root *root;
9563 struct list_head splice;
9564 int ret;
9565
9566 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9567 return -EROFS;
9568
9569 INIT_LIST_HEAD(&splice);
9570
9571 mutex_lock(&fs_info->delalloc_root_mutex);
9572 spin_lock(&fs_info->delalloc_root_lock);
9573 list_splice_init(&fs_info->delalloc_roots, &splice);
9574 while (!list_empty(&splice) && nr) {
9575 root = list_first_entry(&splice, struct btrfs_root,
9576 delalloc_root);
9577 root = btrfs_grab_fs_root(root);
9578 BUG_ON(!root);
9579 list_move_tail(&root->delalloc_root,
9580 &fs_info->delalloc_roots);
9581 spin_unlock(&fs_info->delalloc_root_lock);
9582
9583 ret = __start_delalloc_inodes(root, delay_iput, nr);
9584 btrfs_put_fs_root(root);
9585 if (ret < 0)
9586 goto out;
9587
9588 if (nr != -1) {
9589 nr -= ret;
9590 WARN_ON(nr < 0);
9591 }
9592 spin_lock(&fs_info->delalloc_root_lock);
9593 }
9594 spin_unlock(&fs_info->delalloc_root_lock);
9595
9596 ret = 0;
9597 atomic_inc(&fs_info->async_submit_draining);
9598 while (atomic_read(&fs_info->nr_async_submits) ||
9599 atomic_read(&fs_info->async_delalloc_pages)) {
9600 wait_event(fs_info->async_submit_wait,
9601 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9602 atomic_read(&fs_info->async_delalloc_pages) == 0));
9603 }
9604 atomic_dec(&fs_info->async_submit_draining);
9605 out:
9606 if (!list_empty_careful(&splice)) {
9607 spin_lock(&fs_info->delalloc_root_lock);
9608 list_splice_tail(&splice, &fs_info->delalloc_roots);
9609 spin_unlock(&fs_info->delalloc_root_lock);
9610 }
9611 mutex_unlock(&fs_info->delalloc_root_mutex);
9612 return ret;
9613 }
9614
9615 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9616 const char *symname)
9617 {
9618 struct btrfs_trans_handle *trans;
9619 struct btrfs_root *root = BTRFS_I(dir)->root;
9620 struct btrfs_path *path;
9621 struct btrfs_key key;
9622 struct inode *inode = NULL;
9623 int err;
9624 int drop_inode = 0;
9625 u64 objectid;
9626 u64 index = 0;
9627 int name_len;
9628 int datasize;
9629 unsigned long ptr;
9630 struct btrfs_file_extent_item *ei;
9631 struct extent_buffer *leaf;
9632
9633 name_len = strlen(symname);
9634 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9635 return -ENAMETOOLONG;
9636
9637 /*
9638 * 2 items for inode item and ref
9639 * 2 items for dir items
9640 * 1 item for updating parent inode item
9641 * 1 item for the inline extent item
9642 * 1 item for xattr if selinux is on
9643 */
9644 trans = btrfs_start_transaction(root, 7);
9645 if (IS_ERR(trans))
9646 return PTR_ERR(trans);
9647
9648 err = btrfs_find_free_ino(root, &objectid);
9649 if (err)
9650 goto out_unlock;
9651
9652 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9653 dentry->d_name.len, btrfs_ino(dir), objectid,
9654 S_IFLNK|S_IRWXUGO, &index);
9655 if (IS_ERR(inode)) {
9656 err = PTR_ERR(inode);
9657 goto out_unlock;
9658 }
9659
9660 /*
9661 * If the active LSM wants to access the inode during
9662 * d_instantiate it needs these. Smack checks to see
9663 * if the filesystem supports xattrs by looking at the
9664 * ops vector.
9665 */
9666 inode->i_fop = &btrfs_file_operations;
9667 inode->i_op = &btrfs_file_inode_operations;
9668 inode->i_mapping->a_ops = &btrfs_aops;
9669 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9670
9671 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9672 if (err)
9673 goto out_unlock_inode;
9674
9675 path = btrfs_alloc_path();
9676 if (!path) {
9677 err = -ENOMEM;
9678 goto out_unlock_inode;
9679 }
9680 key.objectid = btrfs_ino(inode);
9681 key.offset = 0;
9682 key.type = BTRFS_EXTENT_DATA_KEY;
9683 datasize = btrfs_file_extent_calc_inline_size(name_len);
9684 err = btrfs_insert_empty_item(trans, root, path, &key,
9685 datasize);
9686 if (err) {
9687 btrfs_free_path(path);
9688 goto out_unlock_inode;
9689 }
9690 leaf = path->nodes[0];
9691 ei = btrfs_item_ptr(leaf, path->slots[0],
9692 struct btrfs_file_extent_item);
9693 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9694 btrfs_set_file_extent_type(leaf, ei,
9695 BTRFS_FILE_EXTENT_INLINE);
9696 btrfs_set_file_extent_encryption(leaf, ei, 0);
9697 btrfs_set_file_extent_compression(leaf, ei, 0);
9698 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9699 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9700
9701 ptr = btrfs_file_extent_inline_start(ei);
9702 write_extent_buffer(leaf, symname, ptr, name_len);
9703 btrfs_mark_buffer_dirty(leaf);
9704 btrfs_free_path(path);
9705
9706 inode->i_op = &btrfs_symlink_inode_operations;
9707 inode_nohighmem(inode);
9708 inode->i_mapping->a_ops = &btrfs_symlink_aops;
9709 inode_set_bytes(inode, name_len);
9710 btrfs_i_size_write(inode, name_len);
9711 err = btrfs_update_inode(trans, root, inode);
9712 /*
9713 * Last step, add directory indexes for our symlink inode. This is the
9714 * last step to avoid extra cleanup of these indexes if an error happens
9715 * elsewhere above.
9716 */
9717 if (!err)
9718 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9719 if (err) {
9720 drop_inode = 1;
9721 goto out_unlock_inode;
9722 }
9723
9724 unlock_new_inode(inode);
9725 d_instantiate(dentry, inode);
9726
9727 out_unlock:
9728 btrfs_end_transaction(trans, root);
9729 if (drop_inode) {
9730 inode_dec_link_count(inode);
9731 iput(inode);
9732 }
9733 btrfs_btree_balance_dirty(root);
9734 return err;
9735
9736 out_unlock_inode:
9737 drop_inode = 1;
9738 unlock_new_inode(inode);
9739 goto out_unlock;
9740 }
9741
9742 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9743 u64 start, u64 num_bytes, u64 min_size,
9744 loff_t actual_len, u64 *alloc_hint,
9745 struct btrfs_trans_handle *trans)
9746 {
9747 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9748 struct extent_map *em;
9749 struct btrfs_root *root = BTRFS_I(inode)->root;
9750 struct btrfs_key ins;
9751 u64 cur_offset = start;
9752 u64 i_size;
9753 u64 cur_bytes;
9754 u64 last_alloc = (u64)-1;
9755 int ret = 0;
9756 bool own_trans = true;
9757
9758 if (trans)
9759 own_trans = false;
9760 while (num_bytes > 0) {
9761 if (own_trans) {
9762 trans = btrfs_start_transaction(root, 3);
9763 if (IS_ERR(trans)) {
9764 ret = PTR_ERR(trans);
9765 break;
9766 }
9767 }
9768
9769 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9770 cur_bytes = max(cur_bytes, min_size);
9771 /*
9772 * If we are severely fragmented we could end up with really
9773 * small allocations, so if the allocator is returning small
9774 * chunks lets make its job easier by only searching for those
9775 * sized chunks.
9776 */
9777 cur_bytes = min(cur_bytes, last_alloc);
9778 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9779 *alloc_hint, &ins, 1, 0);
9780 if (ret) {
9781 if (own_trans)
9782 btrfs_end_transaction(trans, root);
9783 break;
9784 }
9785
9786 last_alloc = ins.offset;
9787 ret = insert_reserved_file_extent(trans, inode,
9788 cur_offset, ins.objectid,
9789 ins.offset, ins.offset,
9790 ins.offset, 0, 0, 0,
9791 BTRFS_FILE_EXTENT_PREALLOC);
9792 if (ret) {
9793 btrfs_free_reserved_extent(root, ins.objectid,
9794 ins.offset, 0);
9795 btrfs_abort_transaction(trans, root, ret);
9796 if (own_trans)
9797 btrfs_end_transaction(trans, root);
9798 break;
9799 }
9800
9801 btrfs_drop_extent_cache(inode, cur_offset,
9802 cur_offset + ins.offset -1, 0);
9803
9804 em = alloc_extent_map();
9805 if (!em) {
9806 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9807 &BTRFS_I(inode)->runtime_flags);
9808 goto next;
9809 }
9810
9811 em->start = cur_offset;
9812 em->orig_start = cur_offset;
9813 em->len = ins.offset;
9814 em->block_start = ins.objectid;
9815 em->block_len = ins.offset;
9816 em->orig_block_len = ins.offset;
9817 em->ram_bytes = ins.offset;
9818 em->bdev = root->fs_info->fs_devices->latest_bdev;
9819 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9820 em->generation = trans->transid;
9821
9822 while (1) {
9823 write_lock(&em_tree->lock);
9824 ret = add_extent_mapping(em_tree, em, 1);
9825 write_unlock(&em_tree->lock);
9826 if (ret != -EEXIST)
9827 break;
9828 btrfs_drop_extent_cache(inode, cur_offset,
9829 cur_offset + ins.offset - 1,
9830 0);
9831 }
9832 free_extent_map(em);
9833 next:
9834 num_bytes -= ins.offset;
9835 cur_offset += ins.offset;
9836 *alloc_hint = ins.objectid + ins.offset;
9837
9838 inode_inc_iversion(inode);
9839 inode->i_ctime = CURRENT_TIME;
9840 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9841 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9842 (actual_len > inode->i_size) &&
9843 (cur_offset > inode->i_size)) {
9844 if (cur_offset > actual_len)
9845 i_size = actual_len;
9846 else
9847 i_size = cur_offset;
9848 i_size_write(inode, i_size);
9849 btrfs_ordered_update_i_size(inode, i_size, NULL);
9850 }
9851
9852 ret = btrfs_update_inode(trans, root, inode);
9853
9854 if (ret) {
9855 btrfs_abort_transaction(trans, root, ret);
9856 if (own_trans)
9857 btrfs_end_transaction(trans, root);
9858 break;
9859 }
9860
9861 if (own_trans)
9862 btrfs_end_transaction(trans, root);
9863 }
9864 return ret;
9865 }
9866
9867 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9868 u64 start, u64 num_bytes, u64 min_size,
9869 loff_t actual_len, u64 *alloc_hint)
9870 {
9871 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9872 min_size, actual_len, alloc_hint,
9873 NULL);
9874 }
9875
9876 int btrfs_prealloc_file_range_trans(struct inode *inode,
9877 struct btrfs_trans_handle *trans, int mode,
9878 u64 start, u64 num_bytes, u64 min_size,
9879 loff_t actual_len, u64 *alloc_hint)
9880 {
9881 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9882 min_size, actual_len, alloc_hint, trans);
9883 }
9884
9885 static int btrfs_set_page_dirty(struct page *page)
9886 {
9887 return __set_page_dirty_nobuffers(page);
9888 }
9889
9890 static int btrfs_permission(struct inode *inode, int mask)
9891 {
9892 struct btrfs_root *root = BTRFS_I(inode)->root;
9893 umode_t mode = inode->i_mode;
9894
9895 if (mask & MAY_WRITE &&
9896 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9897 if (btrfs_root_readonly(root))
9898 return -EROFS;
9899 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9900 return -EACCES;
9901 }
9902 return generic_permission(inode, mask);
9903 }
9904
9905 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9906 {
9907 struct btrfs_trans_handle *trans;
9908 struct btrfs_root *root = BTRFS_I(dir)->root;
9909 struct inode *inode = NULL;
9910 u64 objectid;
9911 u64 index;
9912 int ret = 0;
9913
9914 /*
9915 * 5 units required for adding orphan entry
9916 */
9917 trans = btrfs_start_transaction(root, 5);
9918 if (IS_ERR(trans))
9919 return PTR_ERR(trans);
9920
9921 ret = btrfs_find_free_ino(root, &objectid);
9922 if (ret)
9923 goto out;
9924
9925 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9926 btrfs_ino(dir), objectid, mode, &index);
9927 if (IS_ERR(inode)) {
9928 ret = PTR_ERR(inode);
9929 inode = NULL;
9930 goto out;
9931 }
9932
9933 inode->i_fop = &btrfs_file_operations;
9934 inode->i_op = &btrfs_file_inode_operations;
9935
9936 inode->i_mapping->a_ops = &btrfs_aops;
9937 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9938
9939 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9940 if (ret)
9941 goto out_inode;
9942
9943 ret = btrfs_update_inode(trans, root, inode);
9944 if (ret)
9945 goto out_inode;
9946 ret = btrfs_orphan_add(trans, inode);
9947 if (ret)
9948 goto out_inode;
9949
9950 /*
9951 * We set number of links to 0 in btrfs_new_inode(), and here we set
9952 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9953 * through:
9954 *
9955 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9956 */
9957 set_nlink(inode, 1);
9958 unlock_new_inode(inode);
9959 d_tmpfile(dentry, inode);
9960 mark_inode_dirty(inode);
9961
9962 out:
9963 btrfs_end_transaction(trans, root);
9964 if (ret)
9965 iput(inode);
9966 btrfs_balance_delayed_items(root);
9967 btrfs_btree_balance_dirty(root);
9968 return ret;
9969
9970 out_inode:
9971 unlock_new_inode(inode);
9972 goto out;
9973
9974 }
9975
9976 /* Inspired by filemap_check_errors() */
9977 int btrfs_inode_check_errors(struct inode *inode)
9978 {
9979 int ret = 0;
9980
9981 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9982 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9983 ret = -ENOSPC;
9984 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9985 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9986 ret = -EIO;
9987
9988 return ret;
9989 }
9990
9991 static const struct inode_operations btrfs_dir_inode_operations = {
9992 .getattr = btrfs_getattr,
9993 .lookup = btrfs_lookup,
9994 .create = btrfs_create,
9995 .unlink = btrfs_unlink,
9996 .link = btrfs_link,
9997 .mkdir = btrfs_mkdir,
9998 .rmdir = btrfs_rmdir,
9999 .rename2 = btrfs_rename2,
10000 .symlink = btrfs_symlink,
10001 .setattr = btrfs_setattr,
10002 .mknod = btrfs_mknod,
10003 .setxattr = btrfs_setxattr,
10004 .getxattr = generic_getxattr,
10005 .listxattr = btrfs_listxattr,
10006 .removexattr = btrfs_removexattr,
10007 .permission = btrfs_permission,
10008 .get_acl = btrfs_get_acl,
10009 .set_acl = btrfs_set_acl,
10010 .update_time = btrfs_update_time,
10011 .tmpfile = btrfs_tmpfile,
10012 };
10013 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10014 .lookup = btrfs_lookup,
10015 .permission = btrfs_permission,
10016 .get_acl = btrfs_get_acl,
10017 .set_acl = btrfs_set_acl,
10018 .update_time = btrfs_update_time,
10019 };
10020
10021 static const struct file_operations btrfs_dir_file_operations = {
10022 .llseek = generic_file_llseek,
10023 .read = generic_read_dir,
10024 .iterate = btrfs_real_readdir,
10025 .unlocked_ioctl = btrfs_ioctl,
10026 #ifdef CONFIG_COMPAT
10027 .compat_ioctl = btrfs_ioctl,
10028 #endif
10029 .release = btrfs_release_file,
10030 .fsync = btrfs_sync_file,
10031 };
10032
10033 static const struct extent_io_ops btrfs_extent_io_ops = {
10034 .fill_delalloc = run_delalloc_range,
10035 .submit_bio_hook = btrfs_submit_bio_hook,
10036 .merge_bio_hook = btrfs_merge_bio_hook,
10037 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10038 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10039 .writepage_start_hook = btrfs_writepage_start_hook,
10040 .set_bit_hook = btrfs_set_bit_hook,
10041 .clear_bit_hook = btrfs_clear_bit_hook,
10042 .merge_extent_hook = btrfs_merge_extent_hook,
10043 .split_extent_hook = btrfs_split_extent_hook,
10044 };
10045
10046 /*
10047 * btrfs doesn't support the bmap operation because swapfiles
10048 * use bmap to make a mapping of extents in the file. They assume
10049 * these extents won't change over the life of the file and they
10050 * use the bmap result to do IO directly to the drive.
10051 *
10052 * the btrfs bmap call would return logical addresses that aren't
10053 * suitable for IO and they also will change frequently as COW
10054 * operations happen. So, swapfile + btrfs == corruption.
10055 *
10056 * For now we're avoiding this by dropping bmap.
10057 */
10058 static const struct address_space_operations btrfs_aops = {
10059 .readpage = btrfs_readpage,
10060 .writepage = btrfs_writepage,
10061 .writepages = btrfs_writepages,
10062 .readpages = btrfs_readpages,
10063 .direct_IO = btrfs_direct_IO,
10064 .invalidatepage = btrfs_invalidatepage,
10065 .releasepage = btrfs_releasepage,
10066 .set_page_dirty = btrfs_set_page_dirty,
10067 .error_remove_page = generic_error_remove_page,
10068 };
10069
10070 static const struct address_space_operations btrfs_symlink_aops = {
10071 .readpage = btrfs_readpage,
10072 .writepage = btrfs_writepage,
10073 .invalidatepage = btrfs_invalidatepage,
10074 .releasepage = btrfs_releasepage,
10075 };
10076
10077 static const struct inode_operations btrfs_file_inode_operations = {
10078 .getattr = btrfs_getattr,
10079 .setattr = btrfs_setattr,
10080 .setxattr = btrfs_setxattr,
10081 .getxattr = generic_getxattr,
10082 .listxattr = btrfs_listxattr,
10083 .removexattr = btrfs_removexattr,
10084 .permission = btrfs_permission,
10085 .fiemap = btrfs_fiemap,
10086 .get_acl = btrfs_get_acl,
10087 .set_acl = btrfs_set_acl,
10088 .update_time = btrfs_update_time,
10089 };
10090 static const struct inode_operations btrfs_special_inode_operations = {
10091 .getattr = btrfs_getattr,
10092 .setattr = btrfs_setattr,
10093 .permission = btrfs_permission,
10094 .setxattr = btrfs_setxattr,
10095 .getxattr = generic_getxattr,
10096 .listxattr = btrfs_listxattr,
10097 .removexattr = btrfs_removexattr,
10098 .get_acl = btrfs_get_acl,
10099 .set_acl = btrfs_set_acl,
10100 .update_time = btrfs_update_time,
10101 };
10102 static const struct inode_operations btrfs_symlink_inode_operations = {
10103 .readlink = generic_readlink,
10104 .get_link = page_get_link,
10105 .getattr = btrfs_getattr,
10106 .setattr = btrfs_setattr,
10107 .permission = btrfs_permission,
10108 .setxattr = btrfs_setxattr,
10109 .getxattr = generic_getxattr,
10110 .listxattr = btrfs_listxattr,
10111 .removexattr = btrfs_removexattr,
10112 .update_time = btrfs_update_time,
10113 };
10114
10115 const struct dentry_operations btrfs_dentry_operations = {
10116 .d_delete = btrfs_dentry_delete,
10117 .d_release = btrfs_dentry_release,
10118 };